subr_autoconf.c revision 1.144 1 /* $NetBSD: subr_autoconf.c,v 1.144 2008/04/14 18:07:51 ad Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.144 2008/04/14 18:07:51 ad Exp $");
81
82 #include "opt_multiprocessor.h"
83 #include "opt_ddb.h"
84
85 #include <sys/param.h>
86 #include <sys/device.h>
87 #include <sys/disklabel.h>
88 #include <sys/conf.h>
89 #include <sys/kauth.h>
90 #include <sys/malloc.h>
91 #include <sys/systm.h>
92 #include <sys/kernel.h>
93 #include <sys/errno.h>
94 #include <sys/proc.h>
95 #include <sys/reboot.h>
96 #include <sys/kthread.h>
97 #include <sys/buf.h>
98 #include <sys/dirent.h>
99 #include <sys/vnode.h>
100 #include <sys/mount.h>
101 #include <sys/namei.h>
102 #include <sys/unistd.h>
103 #include <sys/fcntl.h>
104 #include <sys/lockf.h>
105 #include <sys/callout.h>
106 #include <sys/mutex.h>
107 #include <sys/condvar.h>
108
109 #include <sys/disk.h>
110
111 #include <machine/limits.h>
112
113 #include "opt_userconf.h"
114 #ifdef USERCONF
115 #include <sys/userconf.h>
116 #endif
117
118 #ifdef __i386__
119 #include "opt_splash.h"
120 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
121 #include <dev/splash/splash.h>
122 extern struct splash_progress *splash_progress_state;
123 #endif
124 #endif
125
126 /*
127 * Autoconfiguration subroutines.
128 */
129
130 typedef struct pmf_private {
131 int pp_nwait;
132 int pp_nlock;
133 lwp_t *pp_holder;
134 kmutex_t pp_mtx;
135 kcondvar_t pp_cv;
136 } pmf_private_t;
137
138 /*
139 * ioconf.c exports exactly two names: cfdata and cfroots. All system
140 * devices and drivers are found via these tables.
141 */
142 extern struct cfdata cfdata[];
143 extern const short cfroots[];
144
145 /*
146 * List of all cfdriver structures. We use this to detect duplicates
147 * when other cfdrivers are loaded.
148 */
149 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
150 extern struct cfdriver * const cfdriver_list_initial[];
151
152 /*
153 * Initial list of cfattach's.
154 */
155 extern const struct cfattachinit cfattachinit[];
156
157 /*
158 * List of cfdata tables. We always have one such list -- the one
159 * built statically when the kernel was configured.
160 */
161 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
162 static struct cftable initcftable;
163
164 #define ROOT ((device_t)NULL)
165
166 struct matchinfo {
167 cfsubmatch_t fn;
168 struct device *parent;
169 const int *locs;
170 void *aux;
171 struct cfdata *match;
172 int pri;
173 };
174
175 static char *number(char *, int);
176 static void mapply(struct matchinfo *, cfdata_t);
177 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
178 static void config_devdealloc(device_t);
179 static void config_makeroom(int, struct cfdriver *);
180 static void config_devlink(device_t);
181 static void config_devunlink(device_t);
182
183 static void pmflock_debug(device_t, const char *, int);
184 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
185
186 static device_t deviter_next1(deviter_t *);
187 static void deviter_reinit(deviter_t *);
188
189 struct deferred_config {
190 TAILQ_ENTRY(deferred_config) dc_queue;
191 device_t dc_dev;
192 void (*dc_func)(device_t);
193 };
194
195 TAILQ_HEAD(deferred_config_head, deferred_config);
196
197 struct deferred_config_head deferred_config_queue =
198 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
199 struct deferred_config_head interrupt_config_queue =
200 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
201 int interrupt_config_threads = 8;
202
203 static void config_process_deferred(struct deferred_config_head *, device_t);
204
205 /* Hooks to finalize configuration once all real devices have been found. */
206 struct finalize_hook {
207 TAILQ_ENTRY(finalize_hook) f_list;
208 int (*f_func)(device_t);
209 device_t f_dev;
210 };
211 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
212 TAILQ_HEAD_INITIALIZER(config_finalize_list);
213 static int config_finalize_done;
214
215 /* list of all devices */
216 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
217 kcondvar_t alldevs_cv;
218 kmutex_t alldevs_mtx;
219 static int alldevs_nread = 0;
220 static int alldevs_nwrite = 0;
221 static lwp_t *alldevs_writer = NULL;
222
223 volatile int config_pending; /* semaphore for mountroot */
224
225 #define STREQ(s1, s2) \
226 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
227
228 static int config_initialized; /* config_init() has been called. */
229
230 static int config_do_twiddle;
231
232 MALLOC_DEFINE(M_PMFPRIV, "pmfpriv", "device pmf private storage");
233
234 struct vnode *
235 opendisk(struct device *dv)
236 {
237 int bmajor, bminor;
238 struct vnode *tmpvn;
239 int error;
240 dev_t dev;
241
242 /*
243 * Lookup major number for disk block device.
244 */
245 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
246 if (bmajor == -1)
247 return NULL;
248
249 bminor = minor(device_unit(dv));
250 /*
251 * Fake a temporary vnode for the disk, open it, and read
252 * and hash the sectors.
253 */
254 dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
255 MAKEDISKDEV(bmajor, bminor, RAW_PART);
256 if (bdevvp(dev, &tmpvn))
257 panic("%s: can't alloc vnode for %s", __func__,
258 device_xname(dv));
259 error = VOP_OPEN(tmpvn, FREAD, NOCRED);
260 if (error) {
261 #ifndef DEBUG
262 /*
263 * Ignore errors caused by missing device, partition,
264 * or medium.
265 */
266 if (error != ENXIO && error != ENODEV)
267 #endif
268 printf("%s: can't open dev %s (%d)\n",
269 __func__, device_xname(dv), error);
270 vput(tmpvn);
271 return NULL;
272 }
273
274 return tmpvn;
275 }
276
277 int
278 config_handle_wedges(struct device *dv, int par)
279 {
280 struct dkwedge_list wl;
281 struct dkwedge_info *wi;
282 struct vnode *vn;
283 char diskname[16];
284 int i, error;
285
286 if ((vn = opendisk(dv)) == NULL)
287 return -1;
288
289 wl.dkwl_bufsize = sizeof(*wi) * 16;
290 wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
291
292 error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
293 VOP_CLOSE(vn, FREAD, NOCRED);
294 vput(vn);
295 if (error) {
296 #ifdef DEBUG_WEDGE
297 printf("%s: List wedges returned %d\n",
298 device_xname(dv), error);
299 #endif
300 free(wi, M_TEMP);
301 return -1;
302 }
303
304 #ifdef DEBUG_WEDGE
305 printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
306 wl.dkwl_nwedges, wl.dkwl_ncopied);
307 #endif
308 snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
309 par + 'a');
310
311 for (i = 0; i < wl.dkwl_ncopied; i++) {
312 #ifdef DEBUG_WEDGE
313 printf("%s: Looking for %s in %s\n",
314 device_xname(dv), diskname, wi[i].dkw_wname);
315 #endif
316 if (strcmp(wi[i].dkw_wname, diskname) == 0)
317 break;
318 }
319
320 if (i == wl.dkwl_ncopied) {
321 #ifdef DEBUG_WEDGE
322 printf("%s: Cannot find wedge with parent %s\n",
323 device_xname(dv), diskname);
324 #endif
325 free(wi, M_TEMP);
326 return -1;
327 }
328
329 #ifdef DEBUG_WEDGE
330 printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
331 device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
332 (unsigned long long)wi[i].dkw_offset,
333 (unsigned long long)wi[i].dkw_size);
334 #endif
335 dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
336 free(wi, M_TEMP);
337 return 0;
338 }
339
340 /*
341 * Initialize the autoconfiguration data structures. Normally this
342 * is done by configure(), but some platforms need to do this very
343 * early (to e.g. initialize the console).
344 */
345 void
346 config_init(void)
347 {
348 const struct cfattachinit *cfai;
349 int i, j;
350
351 if (config_initialized)
352 return;
353
354 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
355 cv_init(&alldevs_cv, "alldevs");
356
357 /* allcfdrivers is statically initialized. */
358 for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
359 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
360 panic("configure: duplicate `%s' drivers",
361 cfdriver_list_initial[i]->cd_name);
362 }
363
364 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
365 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
366 if (config_cfattach_attach(cfai->cfai_name,
367 cfai->cfai_list[j]) != 0)
368 panic("configure: duplicate `%s' attachment "
369 "of `%s' driver",
370 cfai->cfai_list[j]->ca_name,
371 cfai->cfai_name);
372 }
373 }
374
375 initcftable.ct_cfdata = cfdata;
376 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
377
378 config_initialized = 1;
379 }
380
381 void
382 config_deferred(device_t dev)
383 {
384 config_process_deferred(&deferred_config_queue, dev);
385 config_process_deferred(&interrupt_config_queue, dev);
386 }
387
388 static void
389 config_interrupts_thread(void *cookie)
390 {
391 struct deferred_config *dc;
392
393 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
394 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
395 (*dc->dc_func)(dc->dc_dev);
396 free(dc, M_DEVBUF);
397 config_pending_decr();
398 }
399 kthread_exit(0);
400 }
401
402 /*
403 * Configure the system's hardware.
404 */
405 void
406 configure(void)
407 {
408 extern void ssp_init(void);
409 int i;
410
411 /* Initialize data structures. */
412 config_init();
413 pmf_init();
414
415 #ifdef USERCONF
416 if (boothowto & RB_USERCONF)
417 user_config();
418 #endif
419
420 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
421 config_do_twiddle = 1;
422 printf_nolog("Detecting hardware...");
423 }
424
425 /*
426 * Do the machine-dependent portion of autoconfiguration. This
427 * sets the configuration machinery here in motion by "finding"
428 * the root bus. When this function returns, we expect interrupts
429 * to be enabled.
430 */
431 cpu_configure();
432
433 /* Initialize SSP. */
434 ssp_init();
435
436 /* Initialize callouts, part 2. */
437 callout_startup2();
438
439 /*
440 * Now that we've found all the hardware, start the real time
441 * and statistics clocks.
442 */
443 initclocks();
444
445 cold = 0; /* clocks are running, we're warm now! */
446
447 /* Boot the secondary processors. */
448 mp_online = true;
449 #if defined(MULTIPROCESSOR)
450 cpu_boot_secondary_processors();
451 #endif
452
453 /* Setup the scheduler. */
454 sched_init();
455
456 /*
457 * Create threads to call back and finish configuration for
458 * devices that want interrupts enabled.
459 */
460 for (i = 0; i < interrupt_config_threads; i++) {
461 (void)kthread_create(PRI_NONE, 0, NULL,
462 config_interrupts_thread, NULL, NULL, "config");
463 }
464
465 /* Get the threads going and into any sleeps before continuing. */
466 yield();
467
468 /* Lock the kernel on behalf of lwp0. */
469 KERNEL_LOCK(1, NULL);
470 }
471
472 /*
473 * Add a cfdriver to the system.
474 */
475 int
476 config_cfdriver_attach(struct cfdriver *cd)
477 {
478 struct cfdriver *lcd;
479
480 /* Make sure this driver isn't already in the system. */
481 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
482 if (STREQ(lcd->cd_name, cd->cd_name))
483 return (EEXIST);
484 }
485
486 LIST_INIT(&cd->cd_attach);
487 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
488
489 return (0);
490 }
491
492 /*
493 * Remove a cfdriver from the system.
494 */
495 int
496 config_cfdriver_detach(struct cfdriver *cd)
497 {
498 int i;
499
500 /* Make sure there are no active instances. */
501 for (i = 0; i < cd->cd_ndevs; i++) {
502 if (cd->cd_devs[i] != NULL)
503 return (EBUSY);
504 }
505
506 /* ...and no attachments loaded. */
507 if (LIST_EMPTY(&cd->cd_attach) == 0)
508 return (EBUSY);
509
510 LIST_REMOVE(cd, cd_list);
511
512 KASSERT(cd->cd_devs == NULL);
513
514 return (0);
515 }
516
517 /*
518 * Look up a cfdriver by name.
519 */
520 struct cfdriver *
521 config_cfdriver_lookup(const char *name)
522 {
523 struct cfdriver *cd;
524
525 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
526 if (STREQ(cd->cd_name, name))
527 return (cd);
528 }
529
530 return (NULL);
531 }
532
533 /*
534 * Add a cfattach to the specified driver.
535 */
536 int
537 config_cfattach_attach(const char *driver, struct cfattach *ca)
538 {
539 struct cfattach *lca;
540 struct cfdriver *cd;
541
542 cd = config_cfdriver_lookup(driver);
543 if (cd == NULL)
544 return (ESRCH);
545
546 /* Make sure this attachment isn't already on this driver. */
547 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
548 if (STREQ(lca->ca_name, ca->ca_name))
549 return (EEXIST);
550 }
551
552 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
553
554 return (0);
555 }
556
557 /*
558 * Remove a cfattach from the specified driver.
559 */
560 int
561 config_cfattach_detach(const char *driver, struct cfattach *ca)
562 {
563 struct cfdriver *cd;
564 device_t dev;
565 int i;
566
567 cd = config_cfdriver_lookup(driver);
568 if (cd == NULL)
569 return (ESRCH);
570
571 /* Make sure there are no active instances. */
572 for (i = 0; i < cd->cd_ndevs; i++) {
573 if ((dev = cd->cd_devs[i]) == NULL)
574 continue;
575 if (dev->dv_cfattach == ca)
576 return (EBUSY);
577 }
578
579 LIST_REMOVE(ca, ca_list);
580
581 return (0);
582 }
583
584 /*
585 * Look up a cfattach by name.
586 */
587 static struct cfattach *
588 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
589 {
590 struct cfattach *ca;
591
592 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
593 if (STREQ(ca->ca_name, atname))
594 return (ca);
595 }
596
597 return (NULL);
598 }
599
600 /*
601 * Look up a cfattach by driver/attachment name.
602 */
603 struct cfattach *
604 config_cfattach_lookup(const char *name, const char *atname)
605 {
606 struct cfdriver *cd;
607
608 cd = config_cfdriver_lookup(name);
609 if (cd == NULL)
610 return (NULL);
611
612 return (config_cfattach_lookup_cd(cd, atname));
613 }
614
615 /*
616 * Apply the matching function and choose the best. This is used
617 * a few times and we want to keep the code small.
618 */
619 static void
620 mapply(struct matchinfo *m, cfdata_t cf)
621 {
622 int pri;
623
624 if (m->fn != NULL) {
625 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
626 } else {
627 pri = config_match(m->parent, cf, m->aux);
628 }
629 if (pri > m->pri) {
630 m->match = cf;
631 m->pri = pri;
632 }
633 }
634
635 int
636 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
637 {
638 const struct cfiattrdata *ci;
639 const struct cflocdesc *cl;
640 int nlocs, i;
641
642 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
643 KASSERT(ci);
644 nlocs = ci->ci_loclen;
645 for (i = 0; i < nlocs; i++) {
646 cl = &ci->ci_locdesc[i];
647 /* !cld_defaultstr means no default value */
648 if ((!(cl->cld_defaultstr)
649 || (cf->cf_loc[i] != cl->cld_default))
650 && cf->cf_loc[i] != locs[i])
651 return (0);
652 }
653
654 return (config_match(parent, cf, aux));
655 }
656
657 /*
658 * Helper function: check whether the driver supports the interface attribute
659 * and return its descriptor structure.
660 */
661 static const struct cfiattrdata *
662 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
663 {
664 const struct cfiattrdata * const *cpp;
665
666 if (cd->cd_attrs == NULL)
667 return (0);
668
669 for (cpp = cd->cd_attrs; *cpp; cpp++) {
670 if (STREQ((*cpp)->ci_name, ia)) {
671 /* Match. */
672 return (*cpp);
673 }
674 }
675 return (0);
676 }
677
678 /*
679 * Lookup an interface attribute description by name.
680 * If the driver is given, consider only its supported attributes.
681 */
682 const struct cfiattrdata *
683 cfiattr_lookup(const char *name, const struct cfdriver *cd)
684 {
685 const struct cfdriver *d;
686 const struct cfiattrdata *ia;
687
688 if (cd)
689 return (cfdriver_get_iattr(cd, name));
690
691 LIST_FOREACH(d, &allcfdrivers, cd_list) {
692 ia = cfdriver_get_iattr(d, name);
693 if (ia)
694 return (ia);
695 }
696 return (0);
697 }
698
699 /*
700 * Determine if `parent' is a potential parent for a device spec based
701 * on `cfp'.
702 */
703 static int
704 cfparent_match(const device_t parent, const struct cfparent *cfp)
705 {
706 struct cfdriver *pcd;
707
708 /* We don't match root nodes here. */
709 if (cfp == NULL)
710 return (0);
711
712 pcd = parent->dv_cfdriver;
713 KASSERT(pcd != NULL);
714
715 /*
716 * First, ensure this parent has the correct interface
717 * attribute.
718 */
719 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
720 return (0);
721
722 /*
723 * If no specific parent device instance was specified (i.e.
724 * we're attaching to the attribute only), we're done!
725 */
726 if (cfp->cfp_parent == NULL)
727 return (1);
728
729 /*
730 * Check the parent device's name.
731 */
732 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
733 return (0); /* not the same parent */
734
735 /*
736 * Make sure the unit number matches.
737 */
738 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
739 cfp->cfp_unit == parent->dv_unit)
740 return (1);
741
742 /* Unit numbers don't match. */
743 return (0);
744 }
745
746 /*
747 * Helper for config_cfdata_attach(): check all devices whether it could be
748 * parent any attachment in the config data table passed, and rescan.
749 */
750 static void
751 rescan_with_cfdata(const struct cfdata *cf)
752 {
753 device_t d;
754 const struct cfdata *cf1;
755 deviter_t di;
756
757
758 /*
759 * "alldevs" is likely longer than an LKM's cfdata, so make it
760 * the outer loop.
761 */
762 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
763
764 if (!(d->dv_cfattach->ca_rescan))
765 continue;
766
767 for (cf1 = cf; cf1->cf_name; cf1++) {
768
769 if (!cfparent_match(d, cf1->cf_pspec))
770 continue;
771
772 (*d->dv_cfattach->ca_rescan)(d,
773 cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
774 }
775 }
776 deviter_release(&di);
777 }
778
779 /*
780 * Attach a supplemental config data table and rescan potential
781 * parent devices if required.
782 */
783 int
784 config_cfdata_attach(cfdata_t cf, int scannow)
785 {
786 struct cftable *ct;
787
788 ct = malloc(sizeof(struct cftable), M_DEVBUF, M_WAITOK);
789 ct->ct_cfdata = cf;
790 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
791
792 if (scannow)
793 rescan_with_cfdata(cf);
794
795 return (0);
796 }
797
798 /*
799 * Helper for config_cfdata_detach: check whether a device is
800 * found through any attachment in the config data table.
801 */
802 static int
803 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
804 {
805 const struct cfdata *cf1;
806
807 for (cf1 = cf; cf1->cf_name; cf1++)
808 if (d->dv_cfdata == cf1)
809 return (1);
810
811 return (0);
812 }
813
814 /*
815 * Detach a supplemental config data table. Detach all devices found
816 * through that table (and thus keeping references to it) before.
817 */
818 int
819 config_cfdata_detach(cfdata_t cf)
820 {
821 device_t d;
822 int error = 0;
823 struct cftable *ct;
824 deviter_t di;
825
826 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
827 d = deviter_next(&di)) {
828 if (!dev_in_cfdata(d, cf))
829 continue;
830 if ((error = config_detach(d, 0)) != 0)
831 break;
832 }
833 deviter_release(&di);
834 if (error) {
835 aprint_error_dev(d, "unable to detach instance\n");
836 return error;
837 }
838
839 TAILQ_FOREACH(ct, &allcftables, ct_list) {
840 if (ct->ct_cfdata == cf) {
841 TAILQ_REMOVE(&allcftables, ct, ct_list);
842 free(ct, M_DEVBUF);
843 return (0);
844 }
845 }
846
847 /* not found -- shouldn't happen */
848 return (EINVAL);
849 }
850
851 /*
852 * Invoke the "match" routine for a cfdata entry on behalf of
853 * an external caller, usually a "submatch" routine.
854 */
855 int
856 config_match(device_t parent, cfdata_t cf, void *aux)
857 {
858 struct cfattach *ca;
859
860 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
861 if (ca == NULL) {
862 /* No attachment for this entry, oh well. */
863 return (0);
864 }
865
866 return ((*ca->ca_match)(parent, cf, aux));
867 }
868
869 /*
870 * Iterate over all potential children of some device, calling the given
871 * function (default being the child's match function) for each one.
872 * Nonzero returns are matches; the highest value returned is considered
873 * the best match. Return the `found child' if we got a match, or NULL
874 * otherwise. The `aux' pointer is simply passed on through.
875 *
876 * Note that this function is designed so that it can be used to apply
877 * an arbitrary function to all potential children (its return value
878 * can be ignored).
879 */
880 cfdata_t
881 config_search_loc(cfsubmatch_t fn, device_t parent,
882 const char *ifattr, const int *locs, void *aux)
883 {
884 struct cftable *ct;
885 cfdata_t cf;
886 struct matchinfo m;
887
888 KASSERT(config_initialized);
889 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
890
891 m.fn = fn;
892 m.parent = parent;
893 m.locs = locs;
894 m.aux = aux;
895 m.match = NULL;
896 m.pri = 0;
897
898 TAILQ_FOREACH(ct, &allcftables, ct_list) {
899 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
900
901 /* We don't match root nodes here. */
902 if (!cf->cf_pspec)
903 continue;
904
905 /*
906 * Skip cf if no longer eligible, otherwise scan
907 * through parents for one matching `parent', and
908 * try match function.
909 */
910 if (cf->cf_fstate == FSTATE_FOUND)
911 continue;
912 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
913 cf->cf_fstate == FSTATE_DSTAR)
914 continue;
915
916 /*
917 * If an interface attribute was specified,
918 * consider only children which attach to
919 * that attribute.
920 */
921 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
922 continue;
923
924 if (cfparent_match(parent, cf->cf_pspec))
925 mapply(&m, cf);
926 }
927 }
928 return (m.match);
929 }
930
931 cfdata_t
932 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
933 void *aux)
934 {
935
936 return (config_search_loc(fn, parent, ifattr, NULL, aux));
937 }
938
939 /*
940 * Find the given root device.
941 * This is much like config_search, but there is no parent.
942 * Don't bother with multiple cfdata tables; the root node
943 * must always be in the initial table.
944 */
945 cfdata_t
946 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
947 {
948 cfdata_t cf;
949 const short *p;
950 struct matchinfo m;
951
952 m.fn = fn;
953 m.parent = ROOT;
954 m.aux = aux;
955 m.match = NULL;
956 m.pri = 0;
957 m.locs = 0;
958 /*
959 * Look at root entries for matching name. We do not bother
960 * with found-state here since only one root should ever be
961 * searched (and it must be done first).
962 */
963 for (p = cfroots; *p >= 0; p++) {
964 cf = &cfdata[*p];
965 if (strcmp(cf->cf_name, rootname) == 0)
966 mapply(&m, cf);
967 }
968 return (m.match);
969 }
970
971 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
972
973 /*
974 * The given `aux' argument describes a device that has been found
975 * on the given parent, but not necessarily configured. Locate the
976 * configuration data for that device (using the submatch function
977 * provided, or using candidates' cd_match configuration driver
978 * functions) and attach it, and return true. If the device was
979 * not configured, call the given `print' function and return 0.
980 */
981 device_t
982 config_found_sm_loc(device_t parent,
983 const char *ifattr, const int *locs, void *aux,
984 cfprint_t print, cfsubmatch_t submatch)
985 {
986 cfdata_t cf;
987
988 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
989 if (splash_progress_state)
990 splash_progress_update(splash_progress_state);
991 #endif
992
993 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
994 return(config_attach_loc(parent, cf, locs, aux, print));
995 if (print) {
996 if (config_do_twiddle)
997 twiddle();
998 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
999 }
1000
1001 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1002 if (splash_progress_state)
1003 splash_progress_update(splash_progress_state);
1004 #endif
1005
1006 return (NULL);
1007 }
1008
1009 device_t
1010 config_found_ia(device_t parent, const char *ifattr, void *aux,
1011 cfprint_t print)
1012 {
1013
1014 return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
1015 }
1016
1017 device_t
1018 config_found(device_t parent, void *aux, cfprint_t print)
1019 {
1020
1021 return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
1022 }
1023
1024 /*
1025 * As above, but for root devices.
1026 */
1027 device_t
1028 config_rootfound(const char *rootname, void *aux)
1029 {
1030 cfdata_t cf;
1031
1032 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1033 return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
1034 aprint_error("root device %s not configured\n", rootname);
1035 return (NULL);
1036 }
1037
1038 /* just like sprintf(buf, "%d") except that it works from the end */
1039 static char *
1040 number(char *ep, int n)
1041 {
1042
1043 *--ep = 0;
1044 while (n >= 10) {
1045 *--ep = (n % 10) + '0';
1046 n /= 10;
1047 }
1048 *--ep = n + '0';
1049 return (ep);
1050 }
1051
1052 /*
1053 * Expand the size of the cd_devs array if necessary.
1054 */
1055 static void
1056 config_makeroom(int n, struct cfdriver *cd)
1057 {
1058 int old, new;
1059 void **nsp;
1060
1061 if (n < cd->cd_ndevs)
1062 return;
1063
1064 /*
1065 * Need to expand the array.
1066 */
1067 old = cd->cd_ndevs;
1068 if (old == 0)
1069 new = 4;
1070 else
1071 new = old * 2;
1072 while (new <= n)
1073 new *= 2;
1074 cd->cd_ndevs = new;
1075 nsp = malloc(new * sizeof(void *), M_DEVBUF,
1076 cold ? M_NOWAIT : M_WAITOK);
1077 if (nsp == NULL)
1078 panic("config_attach: %sing dev array",
1079 old != 0 ? "expand" : "creat");
1080 memset(nsp + old, 0, (new - old) * sizeof(void *));
1081 if (old != 0) {
1082 memcpy(nsp, cd->cd_devs, old * sizeof(void *));
1083 free(cd->cd_devs, M_DEVBUF);
1084 }
1085 cd->cd_devs = nsp;
1086 }
1087
1088 static void
1089 config_devlink(device_t dev)
1090 {
1091 struct cfdriver *cd = dev->dv_cfdriver;
1092
1093 /* put this device in the devices array */
1094 config_makeroom(dev->dv_unit, cd);
1095 if (cd->cd_devs[dev->dv_unit])
1096 panic("config_attach: duplicate %s", device_xname(dev));
1097 cd->cd_devs[dev->dv_unit] = dev;
1098
1099 /* It is safe to add a device to the tail of the list while
1100 * readers are in the list, but not while a writer is in
1101 * the list. Wait for any writer to complete.
1102 */
1103 mutex_enter(&alldevs_mtx);
1104 while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1105 cv_wait(&alldevs_cv, &alldevs_mtx);
1106 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
1107 cv_signal(&alldevs_cv);
1108 mutex_exit(&alldevs_mtx);
1109 }
1110
1111 static void
1112 config_devunlink(device_t dev)
1113 {
1114 struct cfdriver *cd = dev->dv_cfdriver;
1115 int i;
1116
1117 /* Unlink from device list. */
1118 TAILQ_REMOVE(&alldevs, dev, dv_list);
1119
1120 /* Remove from cfdriver's array. */
1121 cd->cd_devs[dev->dv_unit] = NULL;
1122
1123 /*
1124 * If the device now has no units in use, deallocate its softc array.
1125 */
1126 for (i = 0; i < cd->cd_ndevs; i++)
1127 if (cd->cd_devs[i] != NULL)
1128 break;
1129 if (i == cd->cd_ndevs) { /* nothing found; deallocate */
1130 free(cd->cd_devs, M_DEVBUF);
1131 cd->cd_devs = NULL;
1132 cd->cd_ndevs = 0;
1133 }
1134 }
1135
1136 static device_t
1137 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1138 {
1139 struct cfdriver *cd;
1140 struct cfattach *ca;
1141 size_t lname, lunit;
1142 const char *xunit;
1143 int myunit;
1144 char num[10];
1145 device_t dev;
1146 void *dev_private;
1147 const struct cfiattrdata *ia;
1148
1149 cd = config_cfdriver_lookup(cf->cf_name);
1150 if (cd == NULL)
1151 return (NULL);
1152
1153 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1154 if (ca == NULL)
1155 return (NULL);
1156
1157 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1158 ca->ca_devsize < sizeof(struct device))
1159 panic("config_devalloc: %s", cf->cf_atname);
1160
1161 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1162 if (cf->cf_fstate == FSTATE_STAR) {
1163 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1164 if (cd->cd_devs[myunit] == NULL)
1165 break;
1166 /*
1167 * myunit is now the unit of the first NULL device pointer,
1168 * or max(cd->cd_ndevs,cf->cf_unit).
1169 */
1170 } else {
1171 myunit = cf->cf_unit;
1172 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1173 return (NULL);
1174 }
1175 #else
1176 myunit = cf->cf_unit;
1177 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1178
1179 /* compute length of name and decimal expansion of unit number */
1180 lname = strlen(cd->cd_name);
1181 xunit = number(&num[sizeof(num)], myunit);
1182 lunit = &num[sizeof(num)] - xunit;
1183 if (lname + lunit > sizeof(dev->dv_xname))
1184 panic("config_devalloc: device name too long");
1185
1186 /* get memory for all device vars */
1187 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1188 if (ca->ca_devsize > 0) {
1189 dev_private = malloc(ca->ca_devsize, M_DEVBUF,
1190 M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
1191 if (dev_private == NULL)
1192 panic("config_devalloc: memory allocation for device softc failed");
1193 } else {
1194 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1195 dev_private = NULL;
1196 }
1197
1198 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1199 dev = malloc(sizeof(struct device), M_DEVBUF,
1200 M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
1201 } else {
1202 dev = dev_private;
1203 }
1204 if (dev == NULL)
1205 panic("config_devalloc: memory allocation for device_t failed");
1206
1207 dev->dv_class = cd->cd_class;
1208 dev->dv_cfdata = cf;
1209 dev->dv_cfdriver = cd;
1210 dev->dv_cfattach = ca;
1211 dev->dv_unit = myunit;
1212 dev->dv_activity_count = 0;
1213 dev->dv_activity_handlers = NULL;
1214 dev->dv_private = dev_private;
1215 memcpy(dev->dv_xname, cd->cd_name, lname);
1216 memcpy(dev->dv_xname + lname, xunit, lunit);
1217 dev->dv_parent = parent;
1218 if (parent != NULL)
1219 dev->dv_depth = parent->dv_depth + 1;
1220 else
1221 dev->dv_depth = 0;
1222 dev->dv_flags = DVF_ACTIVE; /* always initially active */
1223 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
1224 if (locs) {
1225 KASSERT(parent); /* no locators at root */
1226 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1227 parent->dv_cfdriver);
1228 dev->dv_locators = malloc(ia->ci_loclen * sizeof(int),
1229 M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1230 memcpy(dev->dv_locators, locs, ia->ci_loclen * sizeof(int));
1231 }
1232 dev->dv_properties = prop_dictionary_create();
1233 KASSERT(dev->dv_properties != NULL);
1234
1235 return (dev);
1236 }
1237
1238 static void
1239 config_devdealloc(device_t dev)
1240 {
1241
1242 KASSERT(dev->dv_properties != NULL);
1243 prop_object_release(dev->dv_properties);
1244
1245 if (dev->dv_activity_handlers)
1246 panic("config_devdealloc with registered handlers");
1247
1248 if (dev->dv_locators)
1249 free(dev->dv_locators, M_DEVBUF);
1250
1251 if ((dev->dv_flags & DVF_PRIV_ALLOC) != 0 && dev->dv_private != NULL)
1252 free(dev->dv_private, M_DEVBUF);
1253
1254 free(dev, M_DEVBUF);
1255 }
1256
1257 /*
1258 * Attach a found device.
1259 */
1260 device_t
1261 config_attach_loc(device_t parent, cfdata_t cf,
1262 const int *locs, void *aux, cfprint_t print)
1263 {
1264 device_t dev;
1265 struct cftable *ct;
1266 const char *drvname;
1267
1268 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1269 if (splash_progress_state)
1270 splash_progress_update(splash_progress_state);
1271 #endif
1272
1273 dev = config_devalloc(parent, cf, locs);
1274 if (!dev)
1275 panic("config_attach: allocation of device softc failed");
1276
1277 /* XXX redundant - see below? */
1278 if (cf->cf_fstate != FSTATE_STAR) {
1279 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1280 cf->cf_fstate = FSTATE_FOUND;
1281 }
1282 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1283 else
1284 cf->cf_unit++;
1285 #endif
1286
1287 config_devlink(dev);
1288
1289 if (config_do_twiddle)
1290 twiddle();
1291 else
1292 aprint_naive("Found ");
1293 /*
1294 * We want the next two printfs for normal, verbose, and quiet,
1295 * but not silent (in which case, we're twiddling, instead).
1296 */
1297 if (parent == ROOT) {
1298 aprint_naive("%s (root)", device_xname(dev));
1299 aprint_normal("%s (root)", device_xname(dev));
1300 } else {
1301 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1302 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1303 if (print)
1304 (void) (*print)(aux, NULL);
1305 }
1306
1307 /*
1308 * Before attaching, clobber any unfound devices that are
1309 * otherwise identical.
1310 * XXX code above is redundant?
1311 */
1312 drvname = dev->dv_cfdriver->cd_name;
1313 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1314 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1315 if (STREQ(cf->cf_name, drvname) &&
1316 cf->cf_unit == dev->dv_unit) {
1317 if (cf->cf_fstate == FSTATE_NOTFOUND)
1318 cf->cf_fstate = FSTATE_FOUND;
1319 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1320 /*
1321 * Bump the unit number on all starred cfdata
1322 * entries for this device.
1323 */
1324 if (cf->cf_fstate == FSTATE_STAR)
1325 cf->cf_unit++;
1326 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1327 }
1328 }
1329 }
1330 #ifdef __HAVE_DEVICE_REGISTER
1331 device_register(dev, aux);
1332 #endif
1333
1334 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1335 if (splash_progress_state)
1336 splash_progress_update(splash_progress_state);
1337 #endif
1338 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1339 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1340 if (splash_progress_state)
1341 splash_progress_update(splash_progress_state);
1342 #endif
1343
1344 if (!device_pmf_is_registered(dev))
1345 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1346
1347 config_process_deferred(&deferred_config_queue, dev);
1348 return (dev);
1349 }
1350
1351 device_t
1352 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1353 {
1354
1355 return (config_attach_loc(parent, cf, NULL, aux, print));
1356 }
1357
1358 /*
1359 * As above, but for pseudo-devices. Pseudo-devices attached in this
1360 * way are silently inserted into the device tree, and their children
1361 * attached.
1362 *
1363 * Note that because pseudo-devices are attached silently, any information
1364 * the attach routine wishes to print should be prefixed with the device
1365 * name by the attach routine.
1366 */
1367 device_t
1368 config_attach_pseudo(cfdata_t cf)
1369 {
1370 device_t dev;
1371
1372 dev = config_devalloc(ROOT, cf, NULL);
1373 if (!dev)
1374 return (NULL);
1375
1376 /* XXX mark busy in cfdata */
1377
1378 config_devlink(dev);
1379
1380 #if 0 /* XXXJRT not yet */
1381 #ifdef __HAVE_DEVICE_REGISTER
1382 device_register(dev, NULL); /* like a root node */
1383 #endif
1384 #endif
1385 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1386 config_process_deferred(&deferred_config_queue, dev);
1387 return (dev);
1388 }
1389
1390 /*
1391 * Detach a device. Optionally forced (e.g. because of hardware
1392 * removal) and quiet. Returns zero if successful, non-zero
1393 * (an error code) otherwise.
1394 *
1395 * Note that this code wants to be run from a process context, so
1396 * that the detach can sleep to allow processes which have a device
1397 * open to run and unwind their stacks.
1398 */
1399 int
1400 config_detach(device_t dev, int flags)
1401 {
1402 struct cftable *ct;
1403 cfdata_t cf;
1404 const struct cfattach *ca;
1405 struct cfdriver *cd;
1406 #ifdef DIAGNOSTIC
1407 device_t d;
1408 #endif
1409 int rv = 0;
1410
1411 #ifdef DIAGNOSTIC
1412 if (dev->dv_cfdata != NULL &&
1413 dev->dv_cfdata->cf_fstate != FSTATE_FOUND &&
1414 dev->dv_cfdata->cf_fstate != FSTATE_STAR)
1415 panic("config_detach: bad device fstate");
1416 #endif
1417 cd = dev->dv_cfdriver;
1418 KASSERT(cd != NULL);
1419
1420 ca = dev->dv_cfattach;
1421 KASSERT(ca != NULL);
1422
1423 KASSERT(curlwp != NULL);
1424 mutex_enter(&alldevs_mtx);
1425 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1426 ;
1427 else while (alldevs_nread != 0 ||
1428 (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1429 cv_wait(&alldevs_cv, &alldevs_mtx);
1430 if (alldevs_nwrite++ == 0)
1431 alldevs_writer = curlwp;
1432 mutex_exit(&alldevs_mtx);
1433
1434 /*
1435 * Ensure the device is deactivated. If the device doesn't
1436 * have an activation entry point, we allow DVF_ACTIVE to
1437 * remain set. Otherwise, if DVF_ACTIVE is still set, the
1438 * device is busy, and the detach fails.
1439 */
1440 if (ca->ca_activate != NULL)
1441 rv = config_deactivate(dev);
1442
1443 /*
1444 * Try to detach the device. If that's not possible, then
1445 * we either panic() (for the forced but failed case), or
1446 * return an error.
1447 */
1448 if (rv == 0) {
1449 if (ca->ca_detach != NULL)
1450 rv = (*ca->ca_detach)(dev, flags);
1451 else
1452 rv = EOPNOTSUPP;
1453 }
1454 if (rv != 0) {
1455 if ((flags & DETACH_FORCE) == 0)
1456 goto out;
1457 else
1458 panic("config_detach: forced detach of %s failed (%d)",
1459 device_xname(dev), rv);
1460 }
1461
1462 /*
1463 * The device has now been successfully detached.
1464 */
1465
1466 #ifdef DIAGNOSTIC
1467 /*
1468 * Sanity: If you're successfully detached, you should have no
1469 * children. (Note that because children must be attached
1470 * after parents, we only need to search the latter part of
1471 * the list.)
1472 */
1473 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1474 d = TAILQ_NEXT(d, dv_list)) {
1475 if (d->dv_parent == dev) {
1476 printf("config_detach: detached device %s"
1477 " has children %s\n", device_xname(dev), device_xname(d));
1478 panic("config_detach");
1479 }
1480 }
1481 #endif
1482
1483 /* notify the parent that the child is gone */
1484 if (dev->dv_parent) {
1485 device_t p = dev->dv_parent;
1486 if (p->dv_cfattach->ca_childdetached)
1487 (*p->dv_cfattach->ca_childdetached)(p, dev);
1488 }
1489
1490 /*
1491 * Mark cfdata to show that the unit can be reused, if possible.
1492 */
1493 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1494 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1495 if (STREQ(cf->cf_name, cd->cd_name)) {
1496 if (cf->cf_fstate == FSTATE_FOUND &&
1497 cf->cf_unit == dev->dv_unit)
1498 cf->cf_fstate = FSTATE_NOTFOUND;
1499 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1500 /*
1501 * Note that we can only re-use a starred
1502 * unit number if the unit being detached
1503 * had the last assigned unit number.
1504 */
1505 if (cf->cf_fstate == FSTATE_STAR &&
1506 cf->cf_unit == dev->dv_unit + 1)
1507 cf->cf_unit--;
1508 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1509 }
1510 }
1511 }
1512
1513 config_devunlink(dev);
1514
1515 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1516 aprint_normal_dev(dev, "detached\n");
1517
1518 config_devdealloc(dev);
1519
1520 out:
1521 mutex_enter(&alldevs_mtx);
1522 if (--alldevs_nwrite == 0)
1523 alldevs_writer = NULL;
1524 cv_signal(&alldevs_cv);
1525 mutex_exit(&alldevs_mtx);
1526 return rv;
1527 }
1528
1529 int
1530 config_detach_children(device_t parent, int flags)
1531 {
1532 device_t dv;
1533 deviter_t di;
1534 int error = 0;
1535
1536 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1537 dv = deviter_next(&di)) {
1538 if (device_parent(dv) != parent)
1539 continue;
1540 if ((error = config_detach(dv, flags)) != 0)
1541 break;
1542 }
1543 deviter_release(&di);
1544 return error;
1545 }
1546
1547 int
1548 config_activate(device_t dev)
1549 {
1550 const struct cfattach *ca = dev->dv_cfattach;
1551 int rv = 0, oflags = dev->dv_flags;
1552
1553 if (ca->ca_activate == NULL)
1554 return (EOPNOTSUPP);
1555
1556 if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1557 dev->dv_flags |= DVF_ACTIVE;
1558 rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1559 if (rv)
1560 dev->dv_flags = oflags;
1561 }
1562 return (rv);
1563 }
1564
1565 int
1566 config_deactivate(device_t dev)
1567 {
1568 const struct cfattach *ca = dev->dv_cfattach;
1569 int rv = 0, oflags = dev->dv_flags;
1570
1571 if (ca->ca_activate == NULL)
1572 return (EOPNOTSUPP);
1573
1574 if (dev->dv_flags & DVF_ACTIVE) {
1575 dev->dv_flags &= ~DVF_ACTIVE;
1576 rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1577 if (rv)
1578 dev->dv_flags = oflags;
1579 }
1580 return (rv);
1581 }
1582
1583 /*
1584 * Defer the configuration of the specified device until all
1585 * of its parent's devices have been attached.
1586 */
1587 void
1588 config_defer(device_t dev, void (*func)(device_t))
1589 {
1590 struct deferred_config *dc;
1591
1592 if (dev->dv_parent == NULL)
1593 panic("config_defer: can't defer config of a root device");
1594
1595 #ifdef DIAGNOSTIC
1596 for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1597 dc = TAILQ_NEXT(dc, dc_queue)) {
1598 if (dc->dc_dev == dev)
1599 panic("config_defer: deferred twice");
1600 }
1601 #endif
1602
1603 dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1604 if (dc == NULL)
1605 panic("config_defer: unable to allocate callback");
1606
1607 dc->dc_dev = dev;
1608 dc->dc_func = func;
1609 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1610 config_pending_incr();
1611 }
1612
1613 /*
1614 * Defer some autoconfiguration for a device until after interrupts
1615 * are enabled.
1616 */
1617 void
1618 config_interrupts(device_t dev, void (*func)(device_t))
1619 {
1620 struct deferred_config *dc;
1621
1622 /*
1623 * If interrupts are enabled, callback now.
1624 */
1625 if (cold == 0) {
1626 (*func)(dev);
1627 return;
1628 }
1629
1630 #ifdef DIAGNOSTIC
1631 for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1632 dc = TAILQ_NEXT(dc, dc_queue)) {
1633 if (dc->dc_dev == dev)
1634 panic("config_interrupts: deferred twice");
1635 }
1636 #endif
1637
1638 dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1639 if (dc == NULL)
1640 panic("config_interrupts: unable to allocate callback");
1641
1642 dc->dc_dev = dev;
1643 dc->dc_func = func;
1644 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1645 config_pending_incr();
1646 }
1647
1648 /*
1649 * Process a deferred configuration queue.
1650 */
1651 static void
1652 config_process_deferred(struct deferred_config_head *queue,
1653 device_t parent)
1654 {
1655 struct deferred_config *dc, *ndc;
1656
1657 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1658 ndc = TAILQ_NEXT(dc, dc_queue);
1659 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1660 TAILQ_REMOVE(queue, dc, dc_queue);
1661 (*dc->dc_func)(dc->dc_dev);
1662 free(dc, M_DEVBUF);
1663 config_pending_decr();
1664 }
1665 }
1666 }
1667
1668 /*
1669 * Manipulate the config_pending semaphore.
1670 */
1671 void
1672 config_pending_incr(void)
1673 {
1674
1675 config_pending++;
1676 }
1677
1678 void
1679 config_pending_decr(void)
1680 {
1681
1682 #ifdef DIAGNOSTIC
1683 if (config_pending == 0)
1684 panic("config_pending_decr: config_pending == 0");
1685 #endif
1686 config_pending--;
1687 if (config_pending == 0)
1688 wakeup(&config_pending);
1689 }
1690
1691 /*
1692 * Register a "finalization" routine. Finalization routines are
1693 * called iteratively once all real devices have been found during
1694 * autoconfiguration, for as long as any one finalizer has done
1695 * any work.
1696 */
1697 int
1698 config_finalize_register(device_t dev, int (*fn)(device_t))
1699 {
1700 struct finalize_hook *f;
1701
1702 /*
1703 * If finalization has already been done, invoke the
1704 * callback function now.
1705 */
1706 if (config_finalize_done) {
1707 while ((*fn)(dev) != 0)
1708 /* loop */ ;
1709 }
1710
1711 /* Ensure this isn't already on the list. */
1712 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1713 if (f->f_func == fn && f->f_dev == dev)
1714 return (EEXIST);
1715 }
1716
1717 f = malloc(sizeof(*f), M_TEMP, M_WAITOK);
1718 f->f_func = fn;
1719 f->f_dev = dev;
1720 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1721
1722 return (0);
1723 }
1724
1725 void
1726 config_finalize(void)
1727 {
1728 struct finalize_hook *f;
1729 struct pdevinit *pdev;
1730 extern struct pdevinit pdevinit[];
1731 int errcnt, rv;
1732
1733 /*
1734 * Now that device driver threads have been created, wait for
1735 * them to finish any deferred autoconfiguration.
1736 */
1737 while (config_pending)
1738 (void) tsleep(&config_pending, PWAIT, "cfpend", hz);
1739
1740 /* Attach pseudo-devices. */
1741 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1742 (*pdev->pdev_attach)(pdev->pdev_count);
1743
1744 /* Run the hooks until none of them does any work. */
1745 do {
1746 rv = 0;
1747 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1748 rv |= (*f->f_func)(f->f_dev);
1749 } while (rv != 0);
1750
1751 config_finalize_done = 1;
1752
1753 /* Now free all the hooks. */
1754 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1755 TAILQ_REMOVE(&config_finalize_list, f, f_list);
1756 free(f, M_TEMP);
1757 }
1758
1759 errcnt = aprint_get_error_count();
1760 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1761 (boothowto & AB_VERBOSE) == 0) {
1762 if (config_do_twiddle) {
1763 config_do_twiddle = 0;
1764 printf_nolog("done.\n");
1765 }
1766 if (errcnt != 0) {
1767 printf("WARNING: %d error%s while detecting hardware; "
1768 "check system log.\n", errcnt,
1769 errcnt == 1 ? "" : "s");
1770 }
1771 }
1772 }
1773
1774 /*
1775 * device_lookup:
1776 *
1777 * Look up a device instance for a given driver.
1778 */
1779 void *
1780 device_lookup(cfdriver_t cd, int unit)
1781 {
1782
1783 if (unit < 0 || unit >= cd->cd_ndevs)
1784 return (NULL);
1785
1786 return (cd->cd_devs[unit]);
1787 }
1788
1789 /*
1790 * device_lookup:
1791 *
1792 * Look up a device instance for a given driver.
1793 */
1794 void *
1795 device_lookup_private(cfdriver_t cd, int unit)
1796 {
1797 device_t dv;
1798
1799 if (unit < 0 || unit >= cd->cd_ndevs)
1800 return NULL;
1801
1802 if ((dv = cd->cd_devs[unit]) == NULL)
1803 return NULL;
1804
1805 return dv->dv_private;
1806 }
1807
1808 /*
1809 * Accessor functions for the device_t type.
1810 */
1811 devclass_t
1812 device_class(device_t dev)
1813 {
1814
1815 return (dev->dv_class);
1816 }
1817
1818 cfdata_t
1819 device_cfdata(device_t dev)
1820 {
1821
1822 return (dev->dv_cfdata);
1823 }
1824
1825 cfdriver_t
1826 device_cfdriver(device_t dev)
1827 {
1828
1829 return (dev->dv_cfdriver);
1830 }
1831
1832 cfattach_t
1833 device_cfattach(device_t dev)
1834 {
1835
1836 return (dev->dv_cfattach);
1837 }
1838
1839 int
1840 device_unit(device_t dev)
1841 {
1842
1843 return (dev->dv_unit);
1844 }
1845
1846 const char *
1847 device_xname(device_t dev)
1848 {
1849
1850 return (dev->dv_xname);
1851 }
1852
1853 device_t
1854 device_parent(device_t dev)
1855 {
1856
1857 return (dev->dv_parent);
1858 }
1859
1860 bool
1861 device_is_active(device_t dev)
1862 {
1863 int active_flags;
1864
1865 active_flags = DVF_ACTIVE;
1866 active_flags |= DVF_CLASS_SUSPENDED;
1867 active_flags |= DVF_DRIVER_SUSPENDED;
1868 active_flags |= DVF_BUS_SUSPENDED;
1869
1870 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1871 }
1872
1873 bool
1874 device_is_enabled(device_t dev)
1875 {
1876 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1877 }
1878
1879 bool
1880 device_has_power(device_t dev)
1881 {
1882 int active_flags;
1883
1884 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1885
1886 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1887 }
1888
1889 int
1890 device_locator(device_t dev, u_int locnum)
1891 {
1892
1893 KASSERT(dev->dv_locators != NULL);
1894 return (dev->dv_locators[locnum]);
1895 }
1896
1897 void *
1898 device_private(device_t dev)
1899 {
1900
1901 /*
1902 * The reason why device_private(NULL) is allowed is to simplify the
1903 * work of a lot of userspace request handlers (i.e., c/bdev
1904 * handlers) which grab cfdriver_t->cd_units[n].
1905 * It avoids having them test for it to be NULL and only then calling
1906 * device_private.
1907 */
1908 return dev == NULL ? NULL : dev->dv_private;
1909 }
1910
1911 prop_dictionary_t
1912 device_properties(device_t dev)
1913 {
1914
1915 return (dev->dv_properties);
1916 }
1917
1918 /*
1919 * device_is_a:
1920 *
1921 * Returns true if the device is an instance of the specified
1922 * driver.
1923 */
1924 bool
1925 device_is_a(device_t dev, const char *dname)
1926 {
1927
1928 return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
1929 }
1930
1931 /*
1932 * device_find_by_xname:
1933 *
1934 * Returns the device of the given name or NULL if it doesn't exist.
1935 */
1936 device_t
1937 device_find_by_xname(const char *name)
1938 {
1939 device_t dv;
1940 deviter_t di;
1941
1942 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
1943 if (strcmp(device_xname(dv), name) == 0)
1944 break;
1945 }
1946 deviter_release(&di);
1947
1948 return dv;
1949 }
1950
1951 /*
1952 * device_find_by_driver_unit:
1953 *
1954 * Returns the device of the given driver name and unit or
1955 * NULL if it doesn't exist.
1956 */
1957 device_t
1958 device_find_by_driver_unit(const char *name, int unit)
1959 {
1960 struct cfdriver *cd;
1961
1962 if ((cd = config_cfdriver_lookup(name)) == NULL)
1963 return NULL;
1964 return device_lookup(cd, unit);
1965 }
1966
1967 /*
1968 * Power management related functions.
1969 */
1970
1971 bool
1972 device_pmf_is_registered(device_t dev)
1973 {
1974 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
1975 }
1976
1977 bool
1978 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
1979 {
1980 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
1981 return true;
1982 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
1983 return false;
1984 if (*dev->dv_driver_suspend != NULL &&
1985 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
1986 return false;
1987
1988 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
1989 return true;
1990 }
1991
1992 bool
1993 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
1994 {
1995 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
1996 return true;
1997 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
1998 return false;
1999 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2000 return false;
2001 if (*dev->dv_driver_resume != NULL &&
2002 !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2003 return false;
2004
2005 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2006 return true;
2007 }
2008
2009 bool
2010 device_pmf_driver_shutdown(device_t dev, int how)
2011 {
2012
2013 if (*dev->dv_driver_shutdown != NULL &&
2014 !(*dev->dv_driver_shutdown)(dev, how))
2015 return false;
2016 return true;
2017 }
2018
2019 bool
2020 device_pmf_driver_register(device_t dev,
2021 bool (*suspend)(device_t PMF_FN_PROTO),
2022 bool (*resume)(device_t PMF_FN_PROTO),
2023 bool (*shutdown)(device_t, int))
2024 {
2025 pmf_private_t *pp;
2026
2027 if ((pp = malloc(sizeof(*pp), M_PMFPRIV, M_NOWAIT|M_ZERO)) == NULL)
2028 return false;
2029 mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
2030 cv_init(&pp->pp_cv, "pmfsusp");
2031 dev->dv_pmf_private = pp;
2032
2033 dev->dv_driver_suspend = suspend;
2034 dev->dv_driver_resume = resume;
2035 dev->dv_driver_shutdown = shutdown;
2036 dev->dv_flags |= DVF_POWER_HANDLERS;
2037 return true;
2038 }
2039
2040 static const char *
2041 curlwp_name(void)
2042 {
2043 if (curlwp->l_name != NULL)
2044 return curlwp->l_name;
2045 else
2046 return curlwp->l_proc->p_comm;
2047 }
2048
2049 void
2050 device_pmf_driver_deregister(device_t dev)
2051 {
2052 pmf_private_t *pp = dev->dv_pmf_private;
2053
2054 dev->dv_driver_suspend = NULL;
2055 dev->dv_driver_resume = NULL;
2056
2057 dev->dv_pmf_private = NULL;
2058
2059 mutex_enter(&pp->pp_mtx);
2060 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2061 while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
2062 /* Wake a thread that waits for the lock. That
2063 * thread will fail to acquire the lock, and then
2064 * it will wake the next thread that waits for the
2065 * lock, or else it will wake us.
2066 */
2067 cv_signal(&pp->pp_cv);
2068 pmflock_debug(dev, __func__, __LINE__);
2069 cv_wait(&pp->pp_cv, &pp->pp_mtx);
2070 pmflock_debug(dev, __func__, __LINE__);
2071 }
2072 mutex_exit(&pp->pp_mtx);
2073
2074 cv_destroy(&pp->pp_cv);
2075 mutex_destroy(&pp->pp_mtx);
2076 free(pp, M_PMFPRIV);
2077 }
2078
2079 bool
2080 device_pmf_driver_child_register(device_t dev)
2081 {
2082 device_t parent = device_parent(dev);
2083
2084 if (parent == NULL || parent->dv_driver_child_register == NULL)
2085 return true;
2086 return (*parent->dv_driver_child_register)(dev);
2087 }
2088
2089 void
2090 device_pmf_driver_set_child_register(device_t dev,
2091 bool (*child_register)(device_t))
2092 {
2093 dev->dv_driver_child_register = child_register;
2094 }
2095
2096 void
2097 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2098 {
2099 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2100 if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2101 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2102 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2103 }
2104
2105 bool
2106 device_is_self_suspended(device_t dev)
2107 {
2108 return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2109 }
2110
2111 void
2112 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2113 {
2114 bool self = (flags & PMF_F_SELF) != 0;
2115
2116 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2117
2118 if (!self)
2119 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2120 else if (device_is_active(dev))
2121 dev->dv_flags |= DVF_SELF_SUSPENDED;
2122
2123 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2124 }
2125
2126 static void
2127 pmflock_debug(device_t dev, const char *func, int line)
2128 {
2129 pmf_private_t *pp = device_pmf_private(dev);
2130
2131 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
2132 func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
2133 dev->dv_flags);
2134 }
2135
2136 static void
2137 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2138 {
2139 pmf_private_t *pp = device_pmf_private(dev);
2140
2141 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
2142 "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2143 pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
2144 }
2145
2146 static bool
2147 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2148 {
2149 pmf_private_t *pp = device_pmf_private(dev);
2150
2151 while (pp->pp_nlock > 0 && pp->pp_holder != curlwp &&
2152 device_pmf_is_registered(dev)) {
2153 pp->pp_nwait++;
2154 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2155 cv_wait(&pp->pp_cv, &pp->pp_mtx);
2156 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2157 pp->pp_nwait--;
2158 }
2159 if (!device_pmf_is_registered(dev)) {
2160 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2161 /* We could not acquire the lock, but some other thread may
2162 * wait for it, also. Wake that thread.
2163 */
2164 cv_signal(&pp->pp_cv);
2165 return false;
2166 }
2167 pp->pp_nlock++;
2168 pp->pp_holder = curlwp;
2169 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2170 return true;
2171 }
2172
2173 bool
2174 device_pmf_lock(device_t dev PMF_FN_ARGS)
2175 {
2176 bool rc;
2177 pmf_private_t *pp = device_pmf_private(dev);
2178
2179 mutex_enter(&pp->pp_mtx);
2180 rc = device_pmf_lock1(dev PMF_FN_CALL);
2181 mutex_exit(&pp->pp_mtx);
2182
2183 return rc;
2184 }
2185
2186 void
2187 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2188 {
2189 pmf_private_t *pp = device_pmf_private(dev);
2190
2191 KASSERT(pp->pp_nlock > 0);
2192 mutex_enter(&pp->pp_mtx);
2193 if (--pp->pp_nlock == 0)
2194 pp->pp_holder = NULL;
2195 cv_signal(&pp->pp_cv);
2196 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2197 mutex_exit(&pp->pp_mtx);
2198 }
2199
2200 void *
2201 device_pmf_private(device_t dev)
2202 {
2203 return dev->dv_pmf_private;
2204 }
2205
2206 void *
2207 device_pmf_bus_private(device_t dev)
2208 {
2209 return dev->dv_bus_private;
2210 }
2211
2212 bool
2213 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2214 {
2215 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2216 return true;
2217 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2218 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2219 return false;
2220 if (*dev->dv_bus_suspend != NULL &&
2221 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2222 return false;
2223
2224 dev->dv_flags |= DVF_BUS_SUSPENDED;
2225 return true;
2226 }
2227
2228 bool
2229 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2230 {
2231 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2232 return true;
2233 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2234 return false;
2235 if (*dev->dv_bus_resume != NULL &&
2236 !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2237 return false;
2238
2239 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2240 return true;
2241 }
2242
2243 bool
2244 device_pmf_bus_shutdown(device_t dev, int how)
2245 {
2246
2247 if (*dev->dv_bus_shutdown != NULL &&
2248 !(*dev->dv_bus_shutdown)(dev, how))
2249 return false;
2250 return true;
2251 }
2252
2253 void
2254 device_pmf_bus_register(device_t dev, void *priv,
2255 bool (*suspend)(device_t PMF_FN_PROTO),
2256 bool (*resume)(device_t PMF_FN_PROTO),
2257 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2258 {
2259 dev->dv_bus_private = priv;
2260 dev->dv_bus_resume = resume;
2261 dev->dv_bus_suspend = suspend;
2262 dev->dv_bus_shutdown = shutdown;
2263 dev->dv_bus_deregister = deregister;
2264 }
2265
2266 void
2267 device_pmf_bus_deregister(device_t dev)
2268 {
2269 if (dev->dv_bus_deregister == NULL)
2270 return;
2271 (*dev->dv_bus_deregister)(dev);
2272 dev->dv_bus_private = NULL;
2273 dev->dv_bus_suspend = NULL;
2274 dev->dv_bus_resume = NULL;
2275 dev->dv_bus_deregister = NULL;
2276 }
2277
2278 void *
2279 device_pmf_class_private(device_t dev)
2280 {
2281 return dev->dv_class_private;
2282 }
2283
2284 bool
2285 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2286 {
2287 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2288 return true;
2289 if (*dev->dv_class_suspend != NULL &&
2290 !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2291 return false;
2292
2293 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2294 return true;
2295 }
2296
2297 bool
2298 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2299 {
2300 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2301 return true;
2302 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2303 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2304 return false;
2305 if (*dev->dv_class_resume != NULL &&
2306 !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2307 return false;
2308
2309 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2310 return true;
2311 }
2312
2313 void
2314 device_pmf_class_register(device_t dev, void *priv,
2315 bool (*suspend)(device_t PMF_FN_PROTO),
2316 bool (*resume)(device_t PMF_FN_PROTO),
2317 void (*deregister)(device_t))
2318 {
2319 dev->dv_class_private = priv;
2320 dev->dv_class_suspend = suspend;
2321 dev->dv_class_resume = resume;
2322 dev->dv_class_deregister = deregister;
2323 }
2324
2325 void
2326 device_pmf_class_deregister(device_t dev)
2327 {
2328 if (dev->dv_class_deregister == NULL)
2329 return;
2330 (*dev->dv_class_deregister)(dev);
2331 dev->dv_class_private = NULL;
2332 dev->dv_class_suspend = NULL;
2333 dev->dv_class_resume = NULL;
2334 dev->dv_class_deregister = NULL;
2335 }
2336
2337 bool
2338 device_active(device_t dev, devactive_t type)
2339 {
2340 size_t i;
2341
2342 if (dev->dv_activity_count == 0)
2343 return false;
2344
2345 for (i = 0; i < dev->dv_activity_count; ++i)
2346 (*dev->dv_activity_handlers[i])(dev, type);
2347
2348 return true;
2349 }
2350
2351 bool
2352 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2353 {
2354 void (**new_handlers)(device_t, devactive_t);
2355 void (**old_handlers)(device_t, devactive_t);
2356 size_t i, new_size;
2357 int s;
2358
2359 old_handlers = dev->dv_activity_handlers;
2360
2361 for (i = 0; i < dev->dv_activity_count; ++i) {
2362 if (old_handlers[i] == handler)
2363 panic("Double registering of idle handlers");
2364 }
2365
2366 new_size = dev->dv_activity_count + 1;
2367 new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF, M_WAITOK);
2368
2369 memcpy(new_handlers, old_handlers,
2370 sizeof(void *) * dev->dv_activity_count);
2371 new_handlers[new_size - 1] = handler;
2372
2373 s = splhigh();
2374 dev->dv_activity_count = new_size;
2375 dev->dv_activity_handlers = new_handlers;
2376 splx(s);
2377
2378 if (old_handlers != NULL)
2379 free(old_handlers, M_DEVBUF);
2380
2381 return true;
2382 }
2383
2384 void
2385 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2386 {
2387 void (**new_handlers)(device_t, devactive_t);
2388 void (**old_handlers)(device_t, devactive_t);
2389 size_t i, new_size;
2390 int s;
2391
2392 old_handlers = dev->dv_activity_handlers;
2393
2394 for (i = 0; i < dev->dv_activity_count; ++i) {
2395 if (old_handlers[i] == handler)
2396 break;
2397 }
2398
2399 if (i == dev->dv_activity_count)
2400 return; /* XXX panic? */
2401
2402 new_size = dev->dv_activity_count - 1;
2403
2404 if (new_size == 0) {
2405 new_handlers = NULL;
2406 } else {
2407 new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF,
2408 M_WAITOK);
2409 memcpy(new_handlers, old_handlers, sizeof(void *) * i);
2410 memcpy(new_handlers + i, old_handlers + i + 1,
2411 sizeof(void *) * (new_size - i));
2412 }
2413
2414 s = splhigh();
2415 dev->dv_activity_count = new_size;
2416 dev->dv_activity_handlers = new_handlers;
2417 splx(s);
2418
2419 free(old_handlers, M_DEVBUF);
2420 }
2421
2422 /*
2423 * Device Iteration
2424 *
2425 * deviter_t: a device iterator. Holds state for a "walk" visiting
2426 * each device_t's in the device tree.
2427 *
2428 * deviter_init(di, flags): initialize the device iterator `di'
2429 * to "walk" the device tree. deviter_next(di) will return
2430 * the first device_t in the device tree, or NULL if there are
2431 * no devices.
2432 *
2433 * `flags' is one or more of DEVITER_F_RW, indicating that the
2434 * caller intends to modify the device tree by calling
2435 * config_detach(9) on devices in the order that the iterator
2436 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2437 * nearest the "root" of the device tree to be returned, first;
2438 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2439 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2440 * indicating both that deviter_init() should not respect any
2441 * locks on the device tree, and that deviter_next(di) may run
2442 * in more than one LWP before the walk has finished.
2443 *
2444 * Only one DEVITER_F_RW iterator may be in the device tree at
2445 * once.
2446 *
2447 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2448 *
2449 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2450 * DEVITER_F_LEAVES_FIRST are used in combination.
2451 *
2452 * deviter_first(di, flags): initialize the device iterator `di'
2453 * and return the first device_t in the device tree, or NULL
2454 * if there are no devices. The statement
2455 *
2456 * dv = deviter_first(di);
2457 *
2458 * is shorthand for
2459 *
2460 * deviter_init(di);
2461 * dv = deviter_next(di);
2462 *
2463 * deviter_next(di): return the next device_t in the device tree,
2464 * or NULL if there are no more devices. deviter_next(di)
2465 * is undefined if `di' was not initialized with deviter_init() or
2466 * deviter_first().
2467 *
2468 * deviter_release(di): stops iteration (subsequent calls to
2469 * deviter_next() will return NULL), releases any locks and
2470 * resources held by the device iterator.
2471 *
2472 * Device iteration does not return device_t's in any particular
2473 * order. An iterator will never return the same device_t twice.
2474 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2475 * is called repeatedly on the same `di', it will eventually return
2476 * NULL. It is ok to attach/detach devices during device iteration.
2477 */
2478 void
2479 deviter_init(deviter_t *di, deviter_flags_t flags)
2480 {
2481 device_t dv;
2482 bool rw;
2483
2484 mutex_enter(&alldevs_mtx);
2485 if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2486 flags |= DEVITER_F_RW;
2487 alldevs_nwrite++;
2488 alldevs_writer = NULL;
2489 alldevs_nread = 0;
2490 } else {
2491 rw = (flags & DEVITER_F_RW) != 0;
2492
2493 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2494 ;
2495 else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2496 (rw && alldevs_nread != 0))
2497 cv_wait(&alldevs_cv, &alldevs_mtx);
2498
2499 if (rw) {
2500 if (alldevs_nwrite++ == 0)
2501 alldevs_writer = curlwp;
2502 } else
2503 alldevs_nread++;
2504 }
2505 mutex_exit(&alldevs_mtx);
2506
2507 memset(di, 0, sizeof(*di));
2508
2509 di->di_flags = flags;
2510
2511 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2512 case DEVITER_F_LEAVES_FIRST:
2513 TAILQ_FOREACH(dv, &alldevs, dv_list)
2514 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2515 break;
2516 case DEVITER_F_ROOT_FIRST:
2517 TAILQ_FOREACH(dv, &alldevs, dv_list)
2518 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2519 break;
2520 default:
2521 break;
2522 }
2523
2524 deviter_reinit(di);
2525 }
2526
2527 static void
2528 deviter_reinit(deviter_t *di)
2529 {
2530 if ((di->di_flags & DEVITER_F_RW) != 0)
2531 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2532 else
2533 di->di_prev = TAILQ_FIRST(&alldevs);
2534 }
2535
2536 device_t
2537 deviter_first(deviter_t *di, deviter_flags_t flags)
2538 {
2539 deviter_init(di, flags);
2540 return deviter_next(di);
2541 }
2542
2543 static device_t
2544 deviter_next1(deviter_t *di)
2545 {
2546 device_t dv;
2547
2548 dv = di->di_prev;
2549
2550 if (dv == NULL)
2551 ;
2552 else if ((di->di_flags & DEVITER_F_RW) != 0)
2553 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2554 else
2555 di->di_prev = TAILQ_NEXT(dv, dv_list);
2556
2557 return dv;
2558 }
2559
2560 device_t
2561 deviter_next(deviter_t *di)
2562 {
2563 device_t dv = NULL;
2564
2565 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2566 case 0:
2567 return deviter_next1(di);
2568 case DEVITER_F_LEAVES_FIRST:
2569 while (di->di_curdepth >= 0) {
2570 if ((dv = deviter_next1(di)) == NULL) {
2571 di->di_curdepth--;
2572 deviter_reinit(di);
2573 } else if (dv->dv_depth == di->di_curdepth)
2574 break;
2575 }
2576 return dv;
2577 case DEVITER_F_ROOT_FIRST:
2578 while (di->di_curdepth <= di->di_maxdepth) {
2579 if ((dv = deviter_next1(di)) == NULL) {
2580 di->di_curdepth++;
2581 deviter_reinit(di);
2582 } else if (dv->dv_depth == di->di_curdepth)
2583 break;
2584 }
2585 return dv;
2586 default:
2587 return NULL;
2588 }
2589 }
2590
2591 void
2592 deviter_release(deviter_t *di)
2593 {
2594 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2595
2596 mutex_enter(&alldevs_mtx);
2597 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2598 --alldevs_nwrite;
2599 else {
2600
2601 if (rw) {
2602 if (--alldevs_nwrite == 0)
2603 alldevs_writer = NULL;
2604 } else
2605 --alldevs_nread;
2606
2607 cv_signal(&alldevs_cv);
2608 }
2609 mutex_exit(&alldevs_mtx);
2610 }
2611