subr_autoconf.c revision 1.145 1 /* $NetBSD: subr_autoconf.c,v 1.145 2008/04/22 11:45:28 ad Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.145 2008/04/22 11:45:28 ad Exp $");
81
82 #include "opt_multiprocessor.h"
83 #include "opt_ddb.h"
84
85 #include <sys/param.h>
86 #include <sys/device.h>
87 #include <sys/disklabel.h>
88 #include <sys/conf.h>
89 #include <sys/kauth.h>
90 #include <sys/malloc.h>
91 #include <sys/systm.h>
92 #include <sys/kernel.h>
93 #include <sys/errno.h>
94 #include <sys/proc.h>
95 #include <sys/reboot.h>
96 #include <sys/kthread.h>
97 #include <sys/buf.h>
98 #include <sys/dirent.h>
99 #include <sys/vnode.h>
100 #include <sys/mount.h>
101 #include <sys/namei.h>
102 #include <sys/unistd.h>
103 #include <sys/fcntl.h>
104 #include <sys/lockf.h>
105 #include <sys/callout.h>
106 #include <sys/mutex.h>
107 #include <sys/condvar.h>
108
109 #include <sys/disk.h>
110
111 #include <machine/limits.h>
112
113 #include "opt_userconf.h"
114 #ifdef USERCONF
115 #include <sys/userconf.h>
116 #endif
117
118 #ifdef __i386__
119 #include "opt_splash.h"
120 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
121 #include <dev/splash/splash.h>
122 extern struct splash_progress *splash_progress_state;
123 #endif
124 #endif
125
126 /*
127 * Autoconfiguration subroutines.
128 */
129
130 typedef struct pmf_private {
131 int pp_nwait;
132 int pp_nlock;
133 lwp_t *pp_holder;
134 kmutex_t pp_mtx;
135 kcondvar_t pp_cv;
136 } pmf_private_t;
137
138 /*
139 * ioconf.c exports exactly two names: cfdata and cfroots. All system
140 * devices and drivers are found via these tables.
141 */
142 extern struct cfdata cfdata[];
143 extern const short cfroots[];
144
145 /*
146 * List of all cfdriver structures. We use this to detect duplicates
147 * when other cfdrivers are loaded.
148 */
149 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
150 extern struct cfdriver * const cfdriver_list_initial[];
151
152 /*
153 * Initial list of cfattach's.
154 */
155 extern const struct cfattachinit cfattachinit[];
156
157 /*
158 * List of cfdata tables. We always have one such list -- the one
159 * built statically when the kernel was configured.
160 */
161 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
162 static struct cftable initcftable;
163
164 #define ROOT ((device_t)NULL)
165
166 struct matchinfo {
167 cfsubmatch_t fn;
168 struct device *parent;
169 const int *locs;
170 void *aux;
171 struct cfdata *match;
172 int pri;
173 };
174
175 static char *number(char *, int);
176 static void mapply(struct matchinfo *, cfdata_t);
177 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
178 static void config_devdealloc(device_t);
179 static void config_makeroom(int, struct cfdriver *);
180 static void config_devlink(device_t);
181 static void config_devunlink(device_t);
182
183 static void pmflock_debug(device_t, const char *, int);
184 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
185
186 static device_t deviter_next1(deviter_t *);
187 static void deviter_reinit(deviter_t *);
188
189 struct deferred_config {
190 TAILQ_ENTRY(deferred_config) dc_queue;
191 device_t dc_dev;
192 void (*dc_func)(device_t);
193 };
194
195 TAILQ_HEAD(deferred_config_head, deferred_config);
196
197 struct deferred_config_head deferred_config_queue =
198 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
199 struct deferred_config_head interrupt_config_queue =
200 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
201 int interrupt_config_threads = 8;
202
203 static void config_process_deferred(struct deferred_config_head *, device_t);
204
205 /* Hooks to finalize configuration once all real devices have been found. */
206 struct finalize_hook {
207 TAILQ_ENTRY(finalize_hook) f_list;
208 int (*f_func)(device_t);
209 device_t f_dev;
210 };
211 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
212 TAILQ_HEAD_INITIALIZER(config_finalize_list);
213 static int config_finalize_done;
214
215 /* list of all devices */
216 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
217 kcondvar_t alldevs_cv;
218 kmutex_t alldevs_mtx;
219 static int alldevs_nread = 0;
220 static int alldevs_nwrite = 0;
221 static lwp_t *alldevs_writer = NULL;
222
223 volatile int config_pending; /* semaphore for mountroot */
224
225 #define STREQ(s1, s2) \
226 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
227
228 static int config_initialized; /* config_init() has been called. */
229
230 static int config_do_twiddle;
231
232 MALLOC_DEFINE(M_PMFPRIV, "pmfpriv", "device pmf private storage");
233
234 struct vnode *
235 opendisk(struct device *dv)
236 {
237 int bmajor, bminor;
238 struct vnode *tmpvn;
239 int error;
240 dev_t dev;
241
242 /*
243 * Lookup major number for disk block device.
244 */
245 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
246 if (bmajor == -1)
247 return NULL;
248
249 bminor = minor(device_unit(dv));
250 /*
251 * Fake a temporary vnode for the disk, open it, and read
252 * and hash the sectors.
253 */
254 dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
255 MAKEDISKDEV(bmajor, bminor, RAW_PART);
256 if (bdevvp(dev, &tmpvn))
257 panic("%s: can't alloc vnode for %s", __func__,
258 device_xname(dv));
259 error = VOP_OPEN(tmpvn, FREAD, NOCRED);
260 if (error) {
261 #ifndef DEBUG
262 /*
263 * Ignore errors caused by missing device, partition,
264 * or medium.
265 */
266 if (error != ENXIO && error != ENODEV)
267 #endif
268 printf("%s: can't open dev %s (%d)\n",
269 __func__, device_xname(dv), error);
270 vput(tmpvn);
271 return NULL;
272 }
273
274 return tmpvn;
275 }
276
277 int
278 config_handle_wedges(struct device *dv, int par)
279 {
280 struct dkwedge_list wl;
281 struct dkwedge_info *wi;
282 struct vnode *vn;
283 char diskname[16];
284 int i, error;
285
286 if ((vn = opendisk(dv)) == NULL)
287 return -1;
288
289 wl.dkwl_bufsize = sizeof(*wi) * 16;
290 wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
291
292 error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
293 VOP_CLOSE(vn, FREAD, NOCRED);
294 vput(vn);
295 if (error) {
296 #ifdef DEBUG_WEDGE
297 printf("%s: List wedges returned %d\n",
298 device_xname(dv), error);
299 #endif
300 free(wi, M_TEMP);
301 return -1;
302 }
303
304 #ifdef DEBUG_WEDGE
305 printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
306 wl.dkwl_nwedges, wl.dkwl_ncopied);
307 #endif
308 snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
309 par + 'a');
310
311 for (i = 0; i < wl.dkwl_ncopied; i++) {
312 #ifdef DEBUG_WEDGE
313 printf("%s: Looking for %s in %s\n",
314 device_xname(dv), diskname, wi[i].dkw_wname);
315 #endif
316 if (strcmp(wi[i].dkw_wname, diskname) == 0)
317 break;
318 }
319
320 if (i == wl.dkwl_ncopied) {
321 #ifdef DEBUG_WEDGE
322 printf("%s: Cannot find wedge with parent %s\n",
323 device_xname(dv), diskname);
324 #endif
325 free(wi, M_TEMP);
326 return -1;
327 }
328
329 #ifdef DEBUG_WEDGE
330 printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
331 device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
332 (unsigned long long)wi[i].dkw_offset,
333 (unsigned long long)wi[i].dkw_size);
334 #endif
335 dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
336 free(wi, M_TEMP);
337 return 0;
338 }
339
340 /*
341 * Initialize the autoconfiguration data structures. Normally this
342 * is done by configure(), but some platforms need to do this very
343 * early (to e.g. initialize the console).
344 */
345 void
346 config_init(void)
347 {
348 const struct cfattachinit *cfai;
349 int i, j;
350
351 if (config_initialized)
352 return;
353
354 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
355 cv_init(&alldevs_cv, "alldevs");
356
357 /* allcfdrivers is statically initialized. */
358 for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
359 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
360 panic("configure: duplicate `%s' drivers",
361 cfdriver_list_initial[i]->cd_name);
362 }
363
364 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
365 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
366 if (config_cfattach_attach(cfai->cfai_name,
367 cfai->cfai_list[j]) != 0)
368 panic("configure: duplicate `%s' attachment "
369 "of `%s' driver",
370 cfai->cfai_list[j]->ca_name,
371 cfai->cfai_name);
372 }
373 }
374
375 initcftable.ct_cfdata = cfdata;
376 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
377
378 config_initialized = 1;
379 }
380
381 void
382 config_deferred(device_t dev)
383 {
384 config_process_deferred(&deferred_config_queue, dev);
385 config_process_deferred(&interrupt_config_queue, dev);
386 }
387
388 static void
389 config_interrupts_thread(void *cookie)
390 {
391 struct deferred_config *dc;
392
393 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
394 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
395 (*dc->dc_func)(dc->dc_dev);
396 free(dc, M_DEVBUF);
397 config_pending_decr();
398 }
399 kthread_exit(0);
400 }
401
402 /*
403 * Configure the system's hardware.
404 */
405 void
406 configure(void)
407 {
408 extern void ssp_init(void);
409 int i;
410
411 /* Initialize data structures. */
412 config_init();
413 pmf_init();
414
415 #ifdef USERCONF
416 if (boothowto & RB_USERCONF)
417 user_config();
418 #endif
419
420 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
421 config_do_twiddle = 1;
422 printf_nolog("Detecting hardware...");
423 }
424
425 /*
426 * Do the machine-dependent portion of autoconfiguration. This
427 * sets the configuration machinery here in motion by "finding"
428 * the root bus. When this function returns, we expect interrupts
429 * to be enabled.
430 */
431 cpu_configure();
432
433 /* Initialize SSP. */
434 ssp_init();
435
436 /*
437 * Now that we've found all the hardware, start the real time
438 * and statistics clocks.
439 */
440 initclocks();
441
442 cold = 0; /* clocks are running, we're warm now! */
443
444 /* Boot the secondary processors. */
445 mp_online = true;
446 #if defined(MULTIPROCESSOR)
447 cpu_boot_secondary_processors();
448 #endif
449
450 /* Setup the scheduler. */
451 sched_init();
452
453 /*
454 * Create threads to call back and finish configuration for
455 * devices that want interrupts enabled.
456 */
457 for (i = 0; i < interrupt_config_threads; i++) {
458 (void)kthread_create(PRI_NONE, 0, NULL,
459 config_interrupts_thread, NULL, NULL, "config");
460 }
461
462 /* Get the threads going and into any sleeps before continuing. */
463 yield();
464
465 /* Lock the kernel on behalf of lwp0. */
466 KERNEL_LOCK(1, NULL);
467 }
468
469 /*
470 * Add a cfdriver to the system.
471 */
472 int
473 config_cfdriver_attach(struct cfdriver *cd)
474 {
475 struct cfdriver *lcd;
476
477 /* Make sure this driver isn't already in the system. */
478 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
479 if (STREQ(lcd->cd_name, cd->cd_name))
480 return (EEXIST);
481 }
482
483 LIST_INIT(&cd->cd_attach);
484 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
485
486 return (0);
487 }
488
489 /*
490 * Remove a cfdriver from the system.
491 */
492 int
493 config_cfdriver_detach(struct cfdriver *cd)
494 {
495 int i;
496
497 /* Make sure there are no active instances. */
498 for (i = 0; i < cd->cd_ndevs; i++) {
499 if (cd->cd_devs[i] != NULL)
500 return (EBUSY);
501 }
502
503 /* ...and no attachments loaded. */
504 if (LIST_EMPTY(&cd->cd_attach) == 0)
505 return (EBUSY);
506
507 LIST_REMOVE(cd, cd_list);
508
509 KASSERT(cd->cd_devs == NULL);
510
511 return (0);
512 }
513
514 /*
515 * Look up a cfdriver by name.
516 */
517 struct cfdriver *
518 config_cfdriver_lookup(const char *name)
519 {
520 struct cfdriver *cd;
521
522 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
523 if (STREQ(cd->cd_name, name))
524 return (cd);
525 }
526
527 return (NULL);
528 }
529
530 /*
531 * Add a cfattach to the specified driver.
532 */
533 int
534 config_cfattach_attach(const char *driver, struct cfattach *ca)
535 {
536 struct cfattach *lca;
537 struct cfdriver *cd;
538
539 cd = config_cfdriver_lookup(driver);
540 if (cd == NULL)
541 return (ESRCH);
542
543 /* Make sure this attachment isn't already on this driver. */
544 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
545 if (STREQ(lca->ca_name, ca->ca_name))
546 return (EEXIST);
547 }
548
549 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
550
551 return (0);
552 }
553
554 /*
555 * Remove a cfattach from the specified driver.
556 */
557 int
558 config_cfattach_detach(const char *driver, struct cfattach *ca)
559 {
560 struct cfdriver *cd;
561 device_t dev;
562 int i;
563
564 cd = config_cfdriver_lookup(driver);
565 if (cd == NULL)
566 return (ESRCH);
567
568 /* Make sure there are no active instances. */
569 for (i = 0; i < cd->cd_ndevs; i++) {
570 if ((dev = cd->cd_devs[i]) == NULL)
571 continue;
572 if (dev->dv_cfattach == ca)
573 return (EBUSY);
574 }
575
576 LIST_REMOVE(ca, ca_list);
577
578 return (0);
579 }
580
581 /*
582 * Look up a cfattach by name.
583 */
584 static struct cfattach *
585 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
586 {
587 struct cfattach *ca;
588
589 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
590 if (STREQ(ca->ca_name, atname))
591 return (ca);
592 }
593
594 return (NULL);
595 }
596
597 /*
598 * Look up a cfattach by driver/attachment name.
599 */
600 struct cfattach *
601 config_cfattach_lookup(const char *name, const char *atname)
602 {
603 struct cfdriver *cd;
604
605 cd = config_cfdriver_lookup(name);
606 if (cd == NULL)
607 return (NULL);
608
609 return (config_cfattach_lookup_cd(cd, atname));
610 }
611
612 /*
613 * Apply the matching function and choose the best. This is used
614 * a few times and we want to keep the code small.
615 */
616 static void
617 mapply(struct matchinfo *m, cfdata_t cf)
618 {
619 int pri;
620
621 if (m->fn != NULL) {
622 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
623 } else {
624 pri = config_match(m->parent, cf, m->aux);
625 }
626 if (pri > m->pri) {
627 m->match = cf;
628 m->pri = pri;
629 }
630 }
631
632 int
633 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
634 {
635 const struct cfiattrdata *ci;
636 const struct cflocdesc *cl;
637 int nlocs, i;
638
639 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
640 KASSERT(ci);
641 nlocs = ci->ci_loclen;
642 for (i = 0; i < nlocs; i++) {
643 cl = &ci->ci_locdesc[i];
644 /* !cld_defaultstr means no default value */
645 if ((!(cl->cld_defaultstr)
646 || (cf->cf_loc[i] != cl->cld_default))
647 && cf->cf_loc[i] != locs[i])
648 return (0);
649 }
650
651 return (config_match(parent, cf, aux));
652 }
653
654 /*
655 * Helper function: check whether the driver supports the interface attribute
656 * and return its descriptor structure.
657 */
658 static const struct cfiattrdata *
659 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
660 {
661 const struct cfiattrdata * const *cpp;
662
663 if (cd->cd_attrs == NULL)
664 return (0);
665
666 for (cpp = cd->cd_attrs; *cpp; cpp++) {
667 if (STREQ((*cpp)->ci_name, ia)) {
668 /* Match. */
669 return (*cpp);
670 }
671 }
672 return (0);
673 }
674
675 /*
676 * Lookup an interface attribute description by name.
677 * If the driver is given, consider only its supported attributes.
678 */
679 const struct cfiattrdata *
680 cfiattr_lookup(const char *name, const struct cfdriver *cd)
681 {
682 const struct cfdriver *d;
683 const struct cfiattrdata *ia;
684
685 if (cd)
686 return (cfdriver_get_iattr(cd, name));
687
688 LIST_FOREACH(d, &allcfdrivers, cd_list) {
689 ia = cfdriver_get_iattr(d, name);
690 if (ia)
691 return (ia);
692 }
693 return (0);
694 }
695
696 /*
697 * Determine if `parent' is a potential parent for a device spec based
698 * on `cfp'.
699 */
700 static int
701 cfparent_match(const device_t parent, const struct cfparent *cfp)
702 {
703 struct cfdriver *pcd;
704
705 /* We don't match root nodes here. */
706 if (cfp == NULL)
707 return (0);
708
709 pcd = parent->dv_cfdriver;
710 KASSERT(pcd != NULL);
711
712 /*
713 * First, ensure this parent has the correct interface
714 * attribute.
715 */
716 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
717 return (0);
718
719 /*
720 * If no specific parent device instance was specified (i.e.
721 * we're attaching to the attribute only), we're done!
722 */
723 if (cfp->cfp_parent == NULL)
724 return (1);
725
726 /*
727 * Check the parent device's name.
728 */
729 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
730 return (0); /* not the same parent */
731
732 /*
733 * Make sure the unit number matches.
734 */
735 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
736 cfp->cfp_unit == parent->dv_unit)
737 return (1);
738
739 /* Unit numbers don't match. */
740 return (0);
741 }
742
743 /*
744 * Helper for config_cfdata_attach(): check all devices whether it could be
745 * parent any attachment in the config data table passed, and rescan.
746 */
747 static void
748 rescan_with_cfdata(const struct cfdata *cf)
749 {
750 device_t d;
751 const struct cfdata *cf1;
752 deviter_t di;
753
754
755 /*
756 * "alldevs" is likely longer than an LKM's cfdata, so make it
757 * the outer loop.
758 */
759 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
760
761 if (!(d->dv_cfattach->ca_rescan))
762 continue;
763
764 for (cf1 = cf; cf1->cf_name; cf1++) {
765
766 if (!cfparent_match(d, cf1->cf_pspec))
767 continue;
768
769 (*d->dv_cfattach->ca_rescan)(d,
770 cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
771 }
772 }
773 deviter_release(&di);
774 }
775
776 /*
777 * Attach a supplemental config data table and rescan potential
778 * parent devices if required.
779 */
780 int
781 config_cfdata_attach(cfdata_t cf, int scannow)
782 {
783 struct cftable *ct;
784
785 ct = malloc(sizeof(struct cftable), M_DEVBUF, M_WAITOK);
786 ct->ct_cfdata = cf;
787 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
788
789 if (scannow)
790 rescan_with_cfdata(cf);
791
792 return (0);
793 }
794
795 /*
796 * Helper for config_cfdata_detach: check whether a device is
797 * found through any attachment in the config data table.
798 */
799 static int
800 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
801 {
802 const struct cfdata *cf1;
803
804 for (cf1 = cf; cf1->cf_name; cf1++)
805 if (d->dv_cfdata == cf1)
806 return (1);
807
808 return (0);
809 }
810
811 /*
812 * Detach a supplemental config data table. Detach all devices found
813 * through that table (and thus keeping references to it) before.
814 */
815 int
816 config_cfdata_detach(cfdata_t cf)
817 {
818 device_t d;
819 int error = 0;
820 struct cftable *ct;
821 deviter_t di;
822
823 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
824 d = deviter_next(&di)) {
825 if (!dev_in_cfdata(d, cf))
826 continue;
827 if ((error = config_detach(d, 0)) != 0)
828 break;
829 }
830 deviter_release(&di);
831 if (error) {
832 aprint_error_dev(d, "unable to detach instance\n");
833 return error;
834 }
835
836 TAILQ_FOREACH(ct, &allcftables, ct_list) {
837 if (ct->ct_cfdata == cf) {
838 TAILQ_REMOVE(&allcftables, ct, ct_list);
839 free(ct, M_DEVBUF);
840 return (0);
841 }
842 }
843
844 /* not found -- shouldn't happen */
845 return (EINVAL);
846 }
847
848 /*
849 * Invoke the "match" routine for a cfdata entry on behalf of
850 * an external caller, usually a "submatch" routine.
851 */
852 int
853 config_match(device_t parent, cfdata_t cf, void *aux)
854 {
855 struct cfattach *ca;
856
857 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
858 if (ca == NULL) {
859 /* No attachment for this entry, oh well. */
860 return (0);
861 }
862
863 return ((*ca->ca_match)(parent, cf, aux));
864 }
865
866 /*
867 * Iterate over all potential children of some device, calling the given
868 * function (default being the child's match function) for each one.
869 * Nonzero returns are matches; the highest value returned is considered
870 * the best match. Return the `found child' if we got a match, or NULL
871 * otherwise. The `aux' pointer is simply passed on through.
872 *
873 * Note that this function is designed so that it can be used to apply
874 * an arbitrary function to all potential children (its return value
875 * can be ignored).
876 */
877 cfdata_t
878 config_search_loc(cfsubmatch_t fn, device_t parent,
879 const char *ifattr, const int *locs, void *aux)
880 {
881 struct cftable *ct;
882 cfdata_t cf;
883 struct matchinfo m;
884
885 KASSERT(config_initialized);
886 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
887
888 m.fn = fn;
889 m.parent = parent;
890 m.locs = locs;
891 m.aux = aux;
892 m.match = NULL;
893 m.pri = 0;
894
895 TAILQ_FOREACH(ct, &allcftables, ct_list) {
896 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
897
898 /* We don't match root nodes here. */
899 if (!cf->cf_pspec)
900 continue;
901
902 /*
903 * Skip cf if no longer eligible, otherwise scan
904 * through parents for one matching `parent', and
905 * try match function.
906 */
907 if (cf->cf_fstate == FSTATE_FOUND)
908 continue;
909 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
910 cf->cf_fstate == FSTATE_DSTAR)
911 continue;
912
913 /*
914 * If an interface attribute was specified,
915 * consider only children which attach to
916 * that attribute.
917 */
918 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
919 continue;
920
921 if (cfparent_match(parent, cf->cf_pspec))
922 mapply(&m, cf);
923 }
924 }
925 return (m.match);
926 }
927
928 cfdata_t
929 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
930 void *aux)
931 {
932
933 return (config_search_loc(fn, parent, ifattr, NULL, aux));
934 }
935
936 /*
937 * Find the given root device.
938 * This is much like config_search, but there is no parent.
939 * Don't bother with multiple cfdata tables; the root node
940 * must always be in the initial table.
941 */
942 cfdata_t
943 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
944 {
945 cfdata_t cf;
946 const short *p;
947 struct matchinfo m;
948
949 m.fn = fn;
950 m.parent = ROOT;
951 m.aux = aux;
952 m.match = NULL;
953 m.pri = 0;
954 m.locs = 0;
955 /*
956 * Look at root entries for matching name. We do not bother
957 * with found-state here since only one root should ever be
958 * searched (and it must be done first).
959 */
960 for (p = cfroots; *p >= 0; p++) {
961 cf = &cfdata[*p];
962 if (strcmp(cf->cf_name, rootname) == 0)
963 mapply(&m, cf);
964 }
965 return (m.match);
966 }
967
968 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
969
970 /*
971 * The given `aux' argument describes a device that has been found
972 * on the given parent, but not necessarily configured. Locate the
973 * configuration data for that device (using the submatch function
974 * provided, or using candidates' cd_match configuration driver
975 * functions) and attach it, and return true. If the device was
976 * not configured, call the given `print' function and return 0.
977 */
978 device_t
979 config_found_sm_loc(device_t parent,
980 const char *ifattr, const int *locs, void *aux,
981 cfprint_t print, cfsubmatch_t submatch)
982 {
983 cfdata_t cf;
984
985 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
986 if (splash_progress_state)
987 splash_progress_update(splash_progress_state);
988 #endif
989
990 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
991 return(config_attach_loc(parent, cf, locs, aux, print));
992 if (print) {
993 if (config_do_twiddle)
994 twiddle();
995 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
996 }
997
998 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
999 if (splash_progress_state)
1000 splash_progress_update(splash_progress_state);
1001 #endif
1002
1003 return (NULL);
1004 }
1005
1006 device_t
1007 config_found_ia(device_t parent, const char *ifattr, void *aux,
1008 cfprint_t print)
1009 {
1010
1011 return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
1012 }
1013
1014 device_t
1015 config_found(device_t parent, void *aux, cfprint_t print)
1016 {
1017
1018 return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
1019 }
1020
1021 /*
1022 * As above, but for root devices.
1023 */
1024 device_t
1025 config_rootfound(const char *rootname, void *aux)
1026 {
1027 cfdata_t cf;
1028
1029 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1030 return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
1031 aprint_error("root device %s not configured\n", rootname);
1032 return (NULL);
1033 }
1034
1035 /* just like sprintf(buf, "%d") except that it works from the end */
1036 static char *
1037 number(char *ep, int n)
1038 {
1039
1040 *--ep = 0;
1041 while (n >= 10) {
1042 *--ep = (n % 10) + '0';
1043 n /= 10;
1044 }
1045 *--ep = n + '0';
1046 return (ep);
1047 }
1048
1049 /*
1050 * Expand the size of the cd_devs array if necessary.
1051 */
1052 static void
1053 config_makeroom(int n, struct cfdriver *cd)
1054 {
1055 int old, new;
1056 void **nsp;
1057
1058 if (n < cd->cd_ndevs)
1059 return;
1060
1061 /*
1062 * Need to expand the array.
1063 */
1064 old = cd->cd_ndevs;
1065 if (old == 0)
1066 new = 4;
1067 else
1068 new = old * 2;
1069 while (new <= n)
1070 new *= 2;
1071 cd->cd_ndevs = new;
1072 nsp = malloc(new * sizeof(void *), M_DEVBUF,
1073 cold ? M_NOWAIT : M_WAITOK);
1074 if (nsp == NULL)
1075 panic("config_attach: %sing dev array",
1076 old != 0 ? "expand" : "creat");
1077 memset(nsp + old, 0, (new - old) * sizeof(void *));
1078 if (old != 0) {
1079 memcpy(nsp, cd->cd_devs, old * sizeof(void *));
1080 free(cd->cd_devs, M_DEVBUF);
1081 }
1082 cd->cd_devs = nsp;
1083 }
1084
1085 static void
1086 config_devlink(device_t dev)
1087 {
1088 struct cfdriver *cd = dev->dv_cfdriver;
1089
1090 /* put this device in the devices array */
1091 config_makeroom(dev->dv_unit, cd);
1092 if (cd->cd_devs[dev->dv_unit])
1093 panic("config_attach: duplicate %s", device_xname(dev));
1094 cd->cd_devs[dev->dv_unit] = dev;
1095
1096 /* It is safe to add a device to the tail of the list while
1097 * readers are in the list, but not while a writer is in
1098 * the list. Wait for any writer to complete.
1099 */
1100 mutex_enter(&alldevs_mtx);
1101 while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1102 cv_wait(&alldevs_cv, &alldevs_mtx);
1103 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
1104 cv_signal(&alldevs_cv);
1105 mutex_exit(&alldevs_mtx);
1106 }
1107
1108 static void
1109 config_devunlink(device_t dev)
1110 {
1111 struct cfdriver *cd = dev->dv_cfdriver;
1112 int i;
1113
1114 /* Unlink from device list. */
1115 TAILQ_REMOVE(&alldevs, dev, dv_list);
1116
1117 /* Remove from cfdriver's array. */
1118 cd->cd_devs[dev->dv_unit] = NULL;
1119
1120 /*
1121 * If the device now has no units in use, deallocate its softc array.
1122 */
1123 for (i = 0; i < cd->cd_ndevs; i++)
1124 if (cd->cd_devs[i] != NULL)
1125 break;
1126 if (i == cd->cd_ndevs) { /* nothing found; deallocate */
1127 free(cd->cd_devs, M_DEVBUF);
1128 cd->cd_devs = NULL;
1129 cd->cd_ndevs = 0;
1130 }
1131 }
1132
1133 static device_t
1134 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1135 {
1136 struct cfdriver *cd;
1137 struct cfattach *ca;
1138 size_t lname, lunit;
1139 const char *xunit;
1140 int myunit;
1141 char num[10];
1142 device_t dev;
1143 void *dev_private;
1144 const struct cfiattrdata *ia;
1145
1146 cd = config_cfdriver_lookup(cf->cf_name);
1147 if (cd == NULL)
1148 return (NULL);
1149
1150 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1151 if (ca == NULL)
1152 return (NULL);
1153
1154 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1155 ca->ca_devsize < sizeof(struct device))
1156 panic("config_devalloc: %s", cf->cf_atname);
1157
1158 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1159 if (cf->cf_fstate == FSTATE_STAR) {
1160 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1161 if (cd->cd_devs[myunit] == NULL)
1162 break;
1163 /*
1164 * myunit is now the unit of the first NULL device pointer,
1165 * or max(cd->cd_ndevs,cf->cf_unit).
1166 */
1167 } else {
1168 myunit = cf->cf_unit;
1169 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1170 return (NULL);
1171 }
1172 #else
1173 myunit = cf->cf_unit;
1174 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1175
1176 /* compute length of name and decimal expansion of unit number */
1177 lname = strlen(cd->cd_name);
1178 xunit = number(&num[sizeof(num)], myunit);
1179 lunit = &num[sizeof(num)] - xunit;
1180 if (lname + lunit > sizeof(dev->dv_xname))
1181 panic("config_devalloc: device name too long");
1182
1183 /* get memory for all device vars */
1184 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1185 if (ca->ca_devsize > 0) {
1186 dev_private = malloc(ca->ca_devsize, M_DEVBUF,
1187 M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
1188 if (dev_private == NULL)
1189 panic("config_devalloc: memory allocation for device softc failed");
1190 } else {
1191 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1192 dev_private = NULL;
1193 }
1194
1195 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1196 dev = malloc(sizeof(struct device), M_DEVBUF,
1197 M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
1198 } else {
1199 dev = dev_private;
1200 }
1201 if (dev == NULL)
1202 panic("config_devalloc: memory allocation for device_t failed");
1203
1204 dev->dv_class = cd->cd_class;
1205 dev->dv_cfdata = cf;
1206 dev->dv_cfdriver = cd;
1207 dev->dv_cfattach = ca;
1208 dev->dv_unit = myunit;
1209 dev->dv_activity_count = 0;
1210 dev->dv_activity_handlers = NULL;
1211 dev->dv_private = dev_private;
1212 memcpy(dev->dv_xname, cd->cd_name, lname);
1213 memcpy(dev->dv_xname + lname, xunit, lunit);
1214 dev->dv_parent = parent;
1215 if (parent != NULL)
1216 dev->dv_depth = parent->dv_depth + 1;
1217 else
1218 dev->dv_depth = 0;
1219 dev->dv_flags = DVF_ACTIVE; /* always initially active */
1220 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
1221 if (locs) {
1222 KASSERT(parent); /* no locators at root */
1223 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1224 parent->dv_cfdriver);
1225 dev->dv_locators = malloc(ia->ci_loclen * sizeof(int),
1226 M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1227 memcpy(dev->dv_locators, locs, ia->ci_loclen * sizeof(int));
1228 }
1229 dev->dv_properties = prop_dictionary_create();
1230 KASSERT(dev->dv_properties != NULL);
1231
1232 return (dev);
1233 }
1234
1235 static void
1236 config_devdealloc(device_t dev)
1237 {
1238
1239 KASSERT(dev->dv_properties != NULL);
1240 prop_object_release(dev->dv_properties);
1241
1242 if (dev->dv_activity_handlers)
1243 panic("config_devdealloc with registered handlers");
1244
1245 if (dev->dv_locators)
1246 free(dev->dv_locators, M_DEVBUF);
1247
1248 if ((dev->dv_flags & DVF_PRIV_ALLOC) != 0 && dev->dv_private != NULL)
1249 free(dev->dv_private, M_DEVBUF);
1250
1251 free(dev, M_DEVBUF);
1252 }
1253
1254 /*
1255 * Attach a found device.
1256 */
1257 device_t
1258 config_attach_loc(device_t parent, cfdata_t cf,
1259 const int *locs, void *aux, cfprint_t print)
1260 {
1261 device_t dev;
1262 struct cftable *ct;
1263 const char *drvname;
1264
1265 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1266 if (splash_progress_state)
1267 splash_progress_update(splash_progress_state);
1268 #endif
1269
1270 dev = config_devalloc(parent, cf, locs);
1271 if (!dev)
1272 panic("config_attach: allocation of device softc failed");
1273
1274 /* XXX redundant - see below? */
1275 if (cf->cf_fstate != FSTATE_STAR) {
1276 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1277 cf->cf_fstate = FSTATE_FOUND;
1278 }
1279 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1280 else
1281 cf->cf_unit++;
1282 #endif
1283
1284 config_devlink(dev);
1285
1286 if (config_do_twiddle)
1287 twiddle();
1288 else
1289 aprint_naive("Found ");
1290 /*
1291 * We want the next two printfs for normal, verbose, and quiet,
1292 * but not silent (in which case, we're twiddling, instead).
1293 */
1294 if (parent == ROOT) {
1295 aprint_naive("%s (root)", device_xname(dev));
1296 aprint_normal("%s (root)", device_xname(dev));
1297 } else {
1298 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1299 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1300 if (print)
1301 (void) (*print)(aux, NULL);
1302 }
1303
1304 /*
1305 * Before attaching, clobber any unfound devices that are
1306 * otherwise identical.
1307 * XXX code above is redundant?
1308 */
1309 drvname = dev->dv_cfdriver->cd_name;
1310 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1311 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1312 if (STREQ(cf->cf_name, drvname) &&
1313 cf->cf_unit == dev->dv_unit) {
1314 if (cf->cf_fstate == FSTATE_NOTFOUND)
1315 cf->cf_fstate = FSTATE_FOUND;
1316 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1317 /*
1318 * Bump the unit number on all starred cfdata
1319 * entries for this device.
1320 */
1321 if (cf->cf_fstate == FSTATE_STAR)
1322 cf->cf_unit++;
1323 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1324 }
1325 }
1326 }
1327 #ifdef __HAVE_DEVICE_REGISTER
1328 device_register(dev, aux);
1329 #endif
1330
1331 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1332 if (splash_progress_state)
1333 splash_progress_update(splash_progress_state);
1334 #endif
1335 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1336 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1337 if (splash_progress_state)
1338 splash_progress_update(splash_progress_state);
1339 #endif
1340
1341 if (!device_pmf_is_registered(dev))
1342 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1343
1344 config_process_deferred(&deferred_config_queue, dev);
1345 return (dev);
1346 }
1347
1348 device_t
1349 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1350 {
1351
1352 return (config_attach_loc(parent, cf, NULL, aux, print));
1353 }
1354
1355 /*
1356 * As above, but for pseudo-devices. Pseudo-devices attached in this
1357 * way are silently inserted into the device tree, and their children
1358 * attached.
1359 *
1360 * Note that because pseudo-devices are attached silently, any information
1361 * the attach routine wishes to print should be prefixed with the device
1362 * name by the attach routine.
1363 */
1364 device_t
1365 config_attach_pseudo(cfdata_t cf)
1366 {
1367 device_t dev;
1368
1369 dev = config_devalloc(ROOT, cf, NULL);
1370 if (!dev)
1371 return (NULL);
1372
1373 /* XXX mark busy in cfdata */
1374
1375 config_devlink(dev);
1376
1377 #if 0 /* XXXJRT not yet */
1378 #ifdef __HAVE_DEVICE_REGISTER
1379 device_register(dev, NULL); /* like a root node */
1380 #endif
1381 #endif
1382 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1383 config_process_deferred(&deferred_config_queue, dev);
1384 return (dev);
1385 }
1386
1387 /*
1388 * Detach a device. Optionally forced (e.g. because of hardware
1389 * removal) and quiet. Returns zero if successful, non-zero
1390 * (an error code) otherwise.
1391 *
1392 * Note that this code wants to be run from a process context, so
1393 * that the detach can sleep to allow processes which have a device
1394 * open to run and unwind their stacks.
1395 */
1396 int
1397 config_detach(device_t dev, int flags)
1398 {
1399 struct cftable *ct;
1400 cfdata_t cf;
1401 const struct cfattach *ca;
1402 struct cfdriver *cd;
1403 #ifdef DIAGNOSTIC
1404 device_t d;
1405 #endif
1406 int rv = 0;
1407
1408 #ifdef DIAGNOSTIC
1409 if (dev->dv_cfdata != NULL &&
1410 dev->dv_cfdata->cf_fstate != FSTATE_FOUND &&
1411 dev->dv_cfdata->cf_fstate != FSTATE_STAR)
1412 panic("config_detach: bad device fstate");
1413 #endif
1414 cd = dev->dv_cfdriver;
1415 KASSERT(cd != NULL);
1416
1417 ca = dev->dv_cfattach;
1418 KASSERT(ca != NULL);
1419
1420 KASSERT(curlwp != NULL);
1421 mutex_enter(&alldevs_mtx);
1422 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1423 ;
1424 else while (alldevs_nread != 0 ||
1425 (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1426 cv_wait(&alldevs_cv, &alldevs_mtx);
1427 if (alldevs_nwrite++ == 0)
1428 alldevs_writer = curlwp;
1429 mutex_exit(&alldevs_mtx);
1430
1431 /*
1432 * Ensure the device is deactivated. If the device doesn't
1433 * have an activation entry point, we allow DVF_ACTIVE to
1434 * remain set. Otherwise, if DVF_ACTIVE is still set, the
1435 * device is busy, and the detach fails.
1436 */
1437 if (ca->ca_activate != NULL)
1438 rv = config_deactivate(dev);
1439
1440 /*
1441 * Try to detach the device. If that's not possible, then
1442 * we either panic() (for the forced but failed case), or
1443 * return an error.
1444 */
1445 if (rv == 0) {
1446 if (ca->ca_detach != NULL)
1447 rv = (*ca->ca_detach)(dev, flags);
1448 else
1449 rv = EOPNOTSUPP;
1450 }
1451 if (rv != 0) {
1452 if ((flags & DETACH_FORCE) == 0)
1453 goto out;
1454 else
1455 panic("config_detach: forced detach of %s failed (%d)",
1456 device_xname(dev), rv);
1457 }
1458
1459 /*
1460 * The device has now been successfully detached.
1461 */
1462
1463 #ifdef DIAGNOSTIC
1464 /*
1465 * Sanity: If you're successfully detached, you should have no
1466 * children. (Note that because children must be attached
1467 * after parents, we only need to search the latter part of
1468 * the list.)
1469 */
1470 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1471 d = TAILQ_NEXT(d, dv_list)) {
1472 if (d->dv_parent == dev) {
1473 printf("config_detach: detached device %s"
1474 " has children %s\n", device_xname(dev), device_xname(d));
1475 panic("config_detach");
1476 }
1477 }
1478 #endif
1479
1480 /* notify the parent that the child is gone */
1481 if (dev->dv_parent) {
1482 device_t p = dev->dv_parent;
1483 if (p->dv_cfattach->ca_childdetached)
1484 (*p->dv_cfattach->ca_childdetached)(p, dev);
1485 }
1486
1487 /*
1488 * Mark cfdata to show that the unit can be reused, if possible.
1489 */
1490 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1491 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1492 if (STREQ(cf->cf_name, cd->cd_name)) {
1493 if (cf->cf_fstate == FSTATE_FOUND &&
1494 cf->cf_unit == dev->dv_unit)
1495 cf->cf_fstate = FSTATE_NOTFOUND;
1496 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1497 /*
1498 * Note that we can only re-use a starred
1499 * unit number if the unit being detached
1500 * had the last assigned unit number.
1501 */
1502 if (cf->cf_fstate == FSTATE_STAR &&
1503 cf->cf_unit == dev->dv_unit + 1)
1504 cf->cf_unit--;
1505 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1506 }
1507 }
1508 }
1509
1510 config_devunlink(dev);
1511
1512 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1513 aprint_normal_dev(dev, "detached\n");
1514
1515 config_devdealloc(dev);
1516
1517 out:
1518 mutex_enter(&alldevs_mtx);
1519 if (--alldevs_nwrite == 0)
1520 alldevs_writer = NULL;
1521 cv_signal(&alldevs_cv);
1522 mutex_exit(&alldevs_mtx);
1523 return rv;
1524 }
1525
1526 int
1527 config_detach_children(device_t parent, int flags)
1528 {
1529 device_t dv;
1530 deviter_t di;
1531 int error = 0;
1532
1533 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1534 dv = deviter_next(&di)) {
1535 if (device_parent(dv) != parent)
1536 continue;
1537 if ((error = config_detach(dv, flags)) != 0)
1538 break;
1539 }
1540 deviter_release(&di);
1541 return error;
1542 }
1543
1544 int
1545 config_activate(device_t dev)
1546 {
1547 const struct cfattach *ca = dev->dv_cfattach;
1548 int rv = 0, oflags = dev->dv_flags;
1549
1550 if (ca->ca_activate == NULL)
1551 return (EOPNOTSUPP);
1552
1553 if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1554 dev->dv_flags |= DVF_ACTIVE;
1555 rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1556 if (rv)
1557 dev->dv_flags = oflags;
1558 }
1559 return (rv);
1560 }
1561
1562 int
1563 config_deactivate(device_t dev)
1564 {
1565 const struct cfattach *ca = dev->dv_cfattach;
1566 int rv = 0, oflags = dev->dv_flags;
1567
1568 if (ca->ca_activate == NULL)
1569 return (EOPNOTSUPP);
1570
1571 if (dev->dv_flags & DVF_ACTIVE) {
1572 dev->dv_flags &= ~DVF_ACTIVE;
1573 rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1574 if (rv)
1575 dev->dv_flags = oflags;
1576 }
1577 return (rv);
1578 }
1579
1580 /*
1581 * Defer the configuration of the specified device until all
1582 * of its parent's devices have been attached.
1583 */
1584 void
1585 config_defer(device_t dev, void (*func)(device_t))
1586 {
1587 struct deferred_config *dc;
1588
1589 if (dev->dv_parent == NULL)
1590 panic("config_defer: can't defer config of a root device");
1591
1592 #ifdef DIAGNOSTIC
1593 for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1594 dc = TAILQ_NEXT(dc, dc_queue)) {
1595 if (dc->dc_dev == dev)
1596 panic("config_defer: deferred twice");
1597 }
1598 #endif
1599
1600 dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1601 if (dc == NULL)
1602 panic("config_defer: unable to allocate callback");
1603
1604 dc->dc_dev = dev;
1605 dc->dc_func = func;
1606 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1607 config_pending_incr();
1608 }
1609
1610 /*
1611 * Defer some autoconfiguration for a device until after interrupts
1612 * are enabled.
1613 */
1614 void
1615 config_interrupts(device_t dev, void (*func)(device_t))
1616 {
1617 struct deferred_config *dc;
1618
1619 /*
1620 * If interrupts are enabled, callback now.
1621 */
1622 if (cold == 0) {
1623 (*func)(dev);
1624 return;
1625 }
1626
1627 #ifdef DIAGNOSTIC
1628 for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1629 dc = TAILQ_NEXT(dc, dc_queue)) {
1630 if (dc->dc_dev == dev)
1631 panic("config_interrupts: deferred twice");
1632 }
1633 #endif
1634
1635 dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1636 if (dc == NULL)
1637 panic("config_interrupts: unable to allocate callback");
1638
1639 dc->dc_dev = dev;
1640 dc->dc_func = func;
1641 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1642 config_pending_incr();
1643 }
1644
1645 /*
1646 * Process a deferred configuration queue.
1647 */
1648 static void
1649 config_process_deferred(struct deferred_config_head *queue,
1650 device_t parent)
1651 {
1652 struct deferred_config *dc, *ndc;
1653
1654 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1655 ndc = TAILQ_NEXT(dc, dc_queue);
1656 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1657 TAILQ_REMOVE(queue, dc, dc_queue);
1658 (*dc->dc_func)(dc->dc_dev);
1659 free(dc, M_DEVBUF);
1660 config_pending_decr();
1661 }
1662 }
1663 }
1664
1665 /*
1666 * Manipulate the config_pending semaphore.
1667 */
1668 void
1669 config_pending_incr(void)
1670 {
1671
1672 config_pending++;
1673 }
1674
1675 void
1676 config_pending_decr(void)
1677 {
1678
1679 #ifdef DIAGNOSTIC
1680 if (config_pending == 0)
1681 panic("config_pending_decr: config_pending == 0");
1682 #endif
1683 config_pending--;
1684 if (config_pending == 0)
1685 wakeup(&config_pending);
1686 }
1687
1688 /*
1689 * Register a "finalization" routine. Finalization routines are
1690 * called iteratively once all real devices have been found during
1691 * autoconfiguration, for as long as any one finalizer has done
1692 * any work.
1693 */
1694 int
1695 config_finalize_register(device_t dev, int (*fn)(device_t))
1696 {
1697 struct finalize_hook *f;
1698
1699 /*
1700 * If finalization has already been done, invoke the
1701 * callback function now.
1702 */
1703 if (config_finalize_done) {
1704 while ((*fn)(dev) != 0)
1705 /* loop */ ;
1706 }
1707
1708 /* Ensure this isn't already on the list. */
1709 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1710 if (f->f_func == fn && f->f_dev == dev)
1711 return (EEXIST);
1712 }
1713
1714 f = malloc(sizeof(*f), M_TEMP, M_WAITOK);
1715 f->f_func = fn;
1716 f->f_dev = dev;
1717 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1718
1719 return (0);
1720 }
1721
1722 void
1723 config_finalize(void)
1724 {
1725 struct finalize_hook *f;
1726 struct pdevinit *pdev;
1727 extern struct pdevinit pdevinit[];
1728 int errcnt, rv;
1729
1730 /*
1731 * Now that device driver threads have been created, wait for
1732 * them to finish any deferred autoconfiguration.
1733 */
1734 while (config_pending)
1735 (void) tsleep(&config_pending, PWAIT, "cfpend", hz);
1736
1737 /* Attach pseudo-devices. */
1738 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1739 (*pdev->pdev_attach)(pdev->pdev_count);
1740
1741 /* Run the hooks until none of them does any work. */
1742 do {
1743 rv = 0;
1744 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1745 rv |= (*f->f_func)(f->f_dev);
1746 } while (rv != 0);
1747
1748 config_finalize_done = 1;
1749
1750 /* Now free all the hooks. */
1751 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1752 TAILQ_REMOVE(&config_finalize_list, f, f_list);
1753 free(f, M_TEMP);
1754 }
1755
1756 errcnt = aprint_get_error_count();
1757 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1758 (boothowto & AB_VERBOSE) == 0) {
1759 if (config_do_twiddle) {
1760 config_do_twiddle = 0;
1761 printf_nolog("done.\n");
1762 }
1763 if (errcnt != 0) {
1764 printf("WARNING: %d error%s while detecting hardware; "
1765 "check system log.\n", errcnt,
1766 errcnt == 1 ? "" : "s");
1767 }
1768 }
1769 }
1770
1771 /*
1772 * device_lookup:
1773 *
1774 * Look up a device instance for a given driver.
1775 */
1776 void *
1777 device_lookup(cfdriver_t cd, int unit)
1778 {
1779
1780 if (unit < 0 || unit >= cd->cd_ndevs)
1781 return (NULL);
1782
1783 return (cd->cd_devs[unit]);
1784 }
1785
1786 /*
1787 * device_lookup:
1788 *
1789 * Look up a device instance for a given driver.
1790 */
1791 void *
1792 device_lookup_private(cfdriver_t cd, int unit)
1793 {
1794 device_t dv;
1795
1796 if (unit < 0 || unit >= cd->cd_ndevs)
1797 return NULL;
1798
1799 if ((dv = cd->cd_devs[unit]) == NULL)
1800 return NULL;
1801
1802 return dv->dv_private;
1803 }
1804
1805 /*
1806 * Accessor functions for the device_t type.
1807 */
1808 devclass_t
1809 device_class(device_t dev)
1810 {
1811
1812 return (dev->dv_class);
1813 }
1814
1815 cfdata_t
1816 device_cfdata(device_t dev)
1817 {
1818
1819 return (dev->dv_cfdata);
1820 }
1821
1822 cfdriver_t
1823 device_cfdriver(device_t dev)
1824 {
1825
1826 return (dev->dv_cfdriver);
1827 }
1828
1829 cfattach_t
1830 device_cfattach(device_t dev)
1831 {
1832
1833 return (dev->dv_cfattach);
1834 }
1835
1836 int
1837 device_unit(device_t dev)
1838 {
1839
1840 return (dev->dv_unit);
1841 }
1842
1843 const char *
1844 device_xname(device_t dev)
1845 {
1846
1847 return (dev->dv_xname);
1848 }
1849
1850 device_t
1851 device_parent(device_t dev)
1852 {
1853
1854 return (dev->dv_parent);
1855 }
1856
1857 bool
1858 device_is_active(device_t dev)
1859 {
1860 int active_flags;
1861
1862 active_flags = DVF_ACTIVE;
1863 active_flags |= DVF_CLASS_SUSPENDED;
1864 active_flags |= DVF_DRIVER_SUSPENDED;
1865 active_flags |= DVF_BUS_SUSPENDED;
1866
1867 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1868 }
1869
1870 bool
1871 device_is_enabled(device_t dev)
1872 {
1873 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1874 }
1875
1876 bool
1877 device_has_power(device_t dev)
1878 {
1879 int active_flags;
1880
1881 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1882
1883 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1884 }
1885
1886 int
1887 device_locator(device_t dev, u_int locnum)
1888 {
1889
1890 KASSERT(dev->dv_locators != NULL);
1891 return (dev->dv_locators[locnum]);
1892 }
1893
1894 void *
1895 device_private(device_t dev)
1896 {
1897
1898 /*
1899 * The reason why device_private(NULL) is allowed is to simplify the
1900 * work of a lot of userspace request handlers (i.e., c/bdev
1901 * handlers) which grab cfdriver_t->cd_units[n].
1902 * It avoids having them test for it to be NULL and only then calling
1903 * device_private.
1904 */
1905 return dev == NULL ? NULL : dev->dv_private;
1906 }
1907
1908 prop_dictionary_t
1909 device_properties(device_t dev)
1910 {
1911
1912 return (dev->dv_properties);
1913 }
1914
1915 /*
1916 * device_is_a:
1917 *
1918 * Returns true if the device is an instance of the specified
1919 * driver.
1920 */
1921 bool
1922 device_is_a(device_t dev, const char *dname)
1923 {
1924
1925 return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
1926 }
1927
1928 /*
1929 * device_find_by_xname:
1930 *
1931 * Returns the device of the given name or NULL if it doesn't exist.
1932 */
1933 device_t
1934 device_find_by_xname(const char *name)
1935 {
1936 device_t dv;
1937 deviter_t di;
1938
1939 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
1940 if (strcmp(device_xname(dv), name) == 0)
1941 break;
1942 }
1943 deviter_release(&di);
1944
1945 return dv;
1946 }
1947
1948 /*
1949 * device_find_by_driver_unit:
1950 *
1951 * Returns the device of the given driver name and unit or
1952 * NULL if it doesn't exist.
1953 */
1954 device_t
1955 device_find_by_driver_unit(const char *name, int unit)
1956 {
1957 struct cfdriver *cd;
1958
1959 if ((cd = config_cfdriver_lookup(name)) == NULL)
1960 return NULL;
1961 return device_lookup(cd, unit);
1962 }
1963
1964 /*
1965 * Power management related functions.
1966 */
1967
1968 bool
1969 device_pmf_is_registered(device_t dev)
1970 {
1971 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
1972 }
1973
1974 bool
1975 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
1976 {
1977 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
1978 return true;
1979 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
1980 return false;
1981 if (*dev->dv_driver_suspend != NULL &&
1982 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
1983 return false;
1984
1985 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
1986 return true;
1987 }
1988
1989 bool
1990 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
1991 {
1992 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
1993 return true;
1994 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
1995 return false;
1996 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
1997 return false;
1998 if (*dev->dv_driver_resume != NULL &&
1999 !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2000 return false;
2001
2002 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2003 return true;
2004 }
2005
2006 bool
2007 device_pmf_driver_shutdown(device_t dev, int how)
2008 {
2009
2010 if (*dev->dv_driver_shutdown != NULL &&
2011 !(*dev->dv_driver_shutdown)(dev, how))
2012 return false;
2013 return true;
2014 }
2015
2016 bool
2017 device_pmf_driver_register(device_t dev,
2018 bool (*suspend)(device_t PMF_FN_PROTO),
2019 bool (*resume)(device_t PMF_FN_PROTO),
2020 bool (*shutdown)(device_t, int))
2021 {
2022 pmf_private_t *pp;
2023
2024 if ((pp = malloc(sizeof(*pp), M_PMFPRIV, M_NOWAIT|M_ZERO)) == NULL)
2025 return false;
2026 mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
2027 cv_init(&pp->pp_cv, "pmfsusp");
2028 dev->dv_pmf_private = pp;
2029
2030 dev->dv_driver_suspend = suspend;
2031 dev->dv_driver_resume = resume;
2032 dev->dv_driver_shutdown = shutdown;
2033 dev->dv_flags |= DVF_POWER_HANDLERS;
2034 return true;
2035 }
2036
2037 static const char *
2038 curlwp_name(void)
2039 {
2040 if (curlwp->l_name != NULL)
2041 return curlwp->l_name;
2042 else
2043 return curlwp->l_proc->p_comm;
2044 }
2045
2046 void
2047 device_pmf_driver_deregister(device_t dev)
2048 {
2049 pmf_private_t *pp = dev->dv_pmf_private;
2050
2051 dev->dv_driver_suspend = NULL;
2052 dev->dv_driver_resume = NULL;
2053
2054 dev->dv_pmf_private = NULL;
2055
2056 mutex_enter(&pp->pp_mtx);
2057 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2058 while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
2059 /* Wake a thread that waits for the lock. That
2060 * thread will fail to acquire the lock, and then
2061 * it will wake the next thread that waits for the
2062 * lock, or else it will wake us.
2063 */
2064 cv_signal(&pp->pp_cv);
2065 pmflock_debug(dev, __func__, __LINE__);
2066 cv_wait(&pp->pp_cv, &pp->pp_mtx);
2067 pmflock_debug(dev, __func__, __LINE__);
2068 }
2069 mutex_exit(&pp->pp_mtx);
2070
2071 cv_destroy(&pp->pp_cv);
2072 mutex_destroy(&pp->pp_mtx);
2073 free(pp, M_PMFPRIV);
2074 }
2075
2076 bool
2077 device_pmf_driver_child_register(device_t dev)
2078 {
2079 device_t parent = device_parent(dev);
2080
2081 if (parent == NULL || parent->dv_driver_child_register == NULL)
2082 return true;
2083 return (*parent->dv_driver_child_register)(dev);
2084 }
2085
2086 void
2087 device_pmf_driver_set_child_register(device_t dev,
2088 bool (*child_register)(device_t))
2089 {
2090 dev->dv_driver_child_register = child_register;
2091 }
2092
2093 void
2094 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2095 {
2096 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2097 if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2098 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2099 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2100 }
2101
2102 bool
2103 device_is_self_suspended(device_t dev)
2104 {
2105 return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2106 }
2107
2108 void
2109 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2110 {
2111 bool self = (flags & PMF_F_SELF) != 0;
2112
2113 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2114
2115 if (!self)
2116 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2117 else if (device_is_active(dev))
2118 dev->dv_flags |= DVF_SELF_SUSPENDED;
2119
2120 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2121 }
2122
2123 static void
2124 pmflock_debug(device_t dev, const char *func, int line)
2125 {
2126 pmf_private_t *pp = device_pmf_private(dev);
2127
2128 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
2129 func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
2130 dev->dv_flags);
2131 }
2132
2133 static void
2134 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2135 {
2136 pmf_private_t *pp = device_pmf_private(dev);
2137
2138 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
2139 "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2140 pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
2141 }
2142
2143 static bool
2144 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2145 {
2146 pmf_private_t *pp = device_pmf_private(dev);
2147
2148 while (pp->pp_nlock > 0 && pp->pp_holder != curlwp &&
2149 device_pmf_is_registered(dev)) {
2150 pp->pp_nwait++;
2151 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2152 cv_wait(&pp->pp_cv, &pp->pp_mtx);
2153 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2154 pp->pp_nwait--;
2155 }
2156 if (!device_pmf_is_registered(dev)) {
2157 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2158 /* We could not acquire the lock, but some other thread may
2159 * wait for it, also. Wake that thread.
2160 */
2161 cv_signal(&pp->pp_cv);
2162 return false;
2163 }
2164 pp->pp_nlock++;
2165 pp->pp_holder = curlwp;
2166 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2167 return true;
2168 }
2169
2170 bool
2171 device_pmf_lock(device_t dev PMF_FN_ARGS)
2172 {
2173 bool rc;
2174 pmf_private_t *pp = device_pmf_private(dev);
2175
2176 mutex_enter(&pp->pp_mtx);
2177 rc = device_pmf_lock1(dev PMF_FN_CALL);
2178 mutex_exit(&pp->pp_mtx);
2179
2180 return rc;
2181 }
2182
2183 void
2184 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2185 {
2186 pmf_private_t *pp = device_pmf_private(dev);
2187
2188 KASSERT(pp->pp_nlock > 0);
2189 mutex_enter(&pp->pp_mtx);
2190 if (--pp->pp_nlock == 0)
2191 pp->pp_holder = NULL;
2192 cv_signal(&pp->pp_cv);
2193 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2194 mutex_exit(&pp->pp_mtx);
2195 }
2196
2197 void *
2198 device_pmf_private(device_t dev)
2199 {
2200 return dev->dv_pmf_private;
2201 }
2202
2203 void *
2204 device_pmf_bus_private(device_t dev)
2205 {
2206 return dev->dv_bus_private;
2207 }
2208
2209 bool
2210 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2211 {
2212 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2213 return true;
2214 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2215 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2216 return false;
2217 if (*dev->dv_bus_suspend != NULL &&
2218 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2219 return false;
2220
2221 dev->dv_flags |= DVF_BUS_SUSPENDED;
2222 return true;
2223 }
2224
2225 bool
2226 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2227 {
2228 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2229 return true;
2230 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2231 return false;
2232 if (*dev->dv_bus_resume != NULL &&
2233 !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2234 return false;
2235
2236 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2237 return true;
2238 }
2239
2240 bool
2241 device_pmf_bus_shutdown(device_t dev, int how)
2242 {
2243
2244 if (*dev->dv_bus_shutdown != NULL &&
2245 !(*dev->dv_bus_shutdown)(dev, how))
2246 return false;
2247 return true;
2248 }
2249
2250 void
2251 device_pmf_bus_register(device_t dev, void *priv,
2252 bool (*suspend)(device_t PMF_FN_PROTO),
2253 bool (*resume)(device_t PMF_FN_PROTO),
2254 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2255 {
2256 dev->dv_bus_private = priv;
2257 dev->dv_bus_resume = resume;
2258 dev->dv_bus_suspend = suspend;
2259 dev->dv_bus_shutdown = shutdown;
2260 dev->dv_bus_deregister = deregister;
2261 }
2262
2263 void
2264 device_pmf_bus_deregister(device_t dev)
2265 {
2266 if (dev->dv_bus_deregister == NULL)
2267 return;
2268 (*dev->dv_bus_deregister)(dev);
2269 dev->dv_bus_private = NULL;
2270 dev->dv_bus_suspend = NULL;
2271 dev->dv_bus_resume = NULL;
2272 dev->dv_bus_deregister = NULL;
2273 }
2274
2275 void *
2276 device_pmf_class_private(device_t dev)
2277 {
2278 return dev->dv_class_private;
2279 }
2280
2281 bool
2282 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2283 {
2284 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2285 return true;
2286 if (*dev->dv_class_suspend != NULL &&
2287 !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2288 return false;
2289
2290 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2291 return true;
2292 }
2293
2294 bool
2295 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2296 {
2297 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2298 return true;
2299 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2300 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2301 return false;
2302 if (*dev->dv_class_resume != NULL &&
2303 !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2304 return false;
2305
2306 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2307 return true;
2308 }
2309
2310 void
2311 device_pmf_class_register(device_t dev, void *priv,
2312 bool (*suspend)(device_t PMF_FN_PROTO),
2313 bool (*resume)(device_t PMF_FN_PROTO),
2314 void (*deregister)(device_t))
2315 {
2316 dev->dv_class_private = priv;
2317 dev->dv_class_suspend = suspend;
2318 dev->dv_class_resume = resume;
2319 dev->dv_class_deregister = deregister;
2320 }
2321
2322 void
2323 device_pmf_class_deregister(device_t dev)
2324 {
2325 if (dev->dv_class_deregister == NULL)
2326 return;
2327 (*dev->dv_class_deregister)(dev);
2328 dev->dv_class_private = NULL;
2329 dev->dv_class_suspend = NULL;
2330 dev->dv_class_resume = NULL;
2331 dev->dv_class_deregister = NULL;
2332 }
2333
2334 bool
2335 device_active(device_t dev, devactive_t type)
2336 {
2337 size_t i;
2338
2339 if (dev->dv_activity_count == 0)
2340 return false;
2341
2342 for (i = 0; i < dev->dv_activity_count; ++i)
2343 (*dev->dv_activity_handlers[i])(dev, type);
2344
2345 return true;
2346 }
2347
2348 bool
2349 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2350 {
2351 void (**new_handlers)(device_t, devactive_t);
2352 void (**old_handlers)(device_t, devactive_t);
2353 size_t i, new_size;
2354 int s;
2355
2356 old_handlers = dev->dv_activity_handlers;
2357
2358 for (i = 0; i < dev->dv_activity_count; ++i) {
2359 if (old_handlers[i] == handler)
2360 panic("Double registering of idle handlers");
2361 }
2362
2363 new_size = dev->dv_activity_count + 1;
2364 new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF, M_WAITOK);
2365
2366 memcpy(new_handlers, old_handlers,
2367 sizeof(void *) * dev->dv_activity_count);
2368 new_handlers[new_size - 1] = handler;
2369
2370 s = splhigh();
2371 dev->dv_activity_count = new_size;
2372 dev->dv_activity_handlers = new_handlers;
2373 splx(s);
2374
2375 if (old_handlers != NULL)
2376 free(old_handlers, M_DEVBUF);
2377
2378 return true;
2379 }
2380
2381 void
2382 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2383 {
2384 void (**new_handlers)(device_t, devactive_t);
2385 void (**old_handlers)(device_t, devactive_t);
2386 size_t i, new_size;
2387 int s;
2388
2389 old_handlers = dev->dv_activity_handlers;
2390
2391 for (i = 0; i < dev->dv_activity_count; ++i) {
2392 if (old_handlers[i] == handler)
2393 break;
2394 }
2395
2396 if (i == dev->dv_activity_count)
2397 return; /* XXX panic? */
2398
2399 new_size = dev->dv_activity_count - 1;
2400
2401 if (new_size == 0) {
2402 new_handlers = NULL;
2403 } else {
2404 new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF,
2405 M_WAITOK);
2406 memcpy(new_handlers, old_handlers, sizeof(void *) * i);
2407 memcpy(new_handlers + i, old_handlers + i + 1,
2408 sizeof(void *) * (new_size - i));
2409 }
2410
2411 s = splhigh();
2412 dev->dv_activity_count = new_size;
2413 dev->dv_activity_handlers = new_handlers;
2414 splx(s);
2415
2416 free(old_handlers, M_DEVBUF);
2417 }
2418
2419 /*
2420 * Device Iteration
2421 *
2422 * deviter_t: a device iterator. Holds state for a "walk" visiting
2423 * each device_t's in the device tree.
2424 *
2425 * deviter_init(di, flags): initialize the device iterator `di'
2426 * to "walk" the device tree. deviter_next(di) will return
2427 * the first device_t in the device tree, or NULL if there are
2428 * no devices.
2429 *
2430 * `flags' is one or more of DEVITER_F_RW, indicating that the
2431 * caller intends to modify the device tree by calling
2432 * config_detach(9) on devices in the order that the iterator
2433 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2434 * nearest the "root" of the device tree to be returned, first;
2435 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2436 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2437 * indicating both that deviter_init() should not respect any
2438 * locks on the device tree, and that deviter_next(di) may run
2439 * in more than one LWP before the walk has finished.
2440 *
2441 * Only one DEVITER_F_RW iterator may be in the device tree at
2442 * once.
2443 *
2444 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2445 *
2446 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2447 * DEVITER_F_LEAVES_FIRST are used in combination.
2448 *
2449 * deviter_first(di, flags): initialize the device iterator `di'
2450 * and return the first device_t in the device tree, or NULL
2451 * if there are no devices. The statement
2452 *
2453 * dv = deviter_first(di);
2454 *
2455 * is shorthand for
2456 *
2457 * deviter_init(di);
2458 * dv = deviter_next(di);
2459 *
2460 * deviter_next(di): return the next device_t in the device tree,
2461 * or NULL if there are no more devices. deviter_next(di)
2462 * is undefined if `di' was not initialized with deviter_init() or
2463 * deviter_first().
2464 *
2465 * deviter_release(di): stops iteration (subsequent calls to
2466 * deviter_next() will return NULL), releases any locks and
2467 * resources held by the device iterator.
2468 *
2469 * Device iteration does not return device_t's in any particular
2470 * order. An iterator will never return the same device_t twice.
2471 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2472 * is called repeatedly on the same `di', it will eventually return
2473 * NULL. It is ok to attach/detach devices during device iteration.
2474 */
2475 void
2476 deviter_init(deviter_t *di, deviter_flags_t flags)
2477 {
2478 device_t dv;
2479 bool rw;
2480
2481 mutex_enter(&alldevs_mtx);
2482 if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2483 flags |= DEVITER_F_RW;
2484 alldevs_nwrite++;
2485 alldevs_writer = NULL;
2486 alldevs_nread = 0;
2487 } else {
2488 rw = (flags & DEVITER_F_RW) != 0;
2489
2490 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2491 ;
2492 else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2493 (rw && alldevs_nread != 0))
2494 cv_wait(&alldevs_cv, &alldevs_mtx);
2495
2496 if (rw) {
2497 if (alldevs_nwrite++ == 0)
2498 alldevs_writer = curlwp;
2499 } else
2500 alldevs_nread++;
2501 }
2502 mutex_exit(&alldevs_mtx);
2503
2504 memset(di, 0, sizeof(*di));
2505
2506 di->di_flags = flags;
2507
2508 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2509 case DEVITER_F_LEAVES_FIRST:
2510 TAILQ_FOREACH(dv, &alldevs, dv_list)
2511 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2512 break;
2513 case DEVITER_F_ROOT_FIRST:
2514 TAILQ_FOREACH(dv, &alldevs, dv_list)
2515 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2516 break;
2517 default:
2518 break;
2519 }
2520
2521 deviter_reinit(di);
2522 }
2523
2524 static void
2525 deviter_reinit(deviter_t *di)
2526 {
2527 if ((di->di_flags & DEVITER_F_RW) != 0)
2528 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2529 else
2530 di->di_prev = TAILQ_FIRST(&alldevs);
2531 }
2532
2533 device_t
2534 deviter_first(deviter_t *di, deviter_flags_t flags)
2535 {
2536 deviter_init(di, flags);
2537 return deviter_next(di);
2538 }
2539
2540 static device_t
2541 deviter_next1(deviter_t *di)
2542 {
2543 device_t dv;
2544
2545 dv = di->di_prev;
2546
2547 if (dv == NULL)
2548 ;
2549 else if ((di->di_flags & DEVITER_F_RW) != 0)
2550 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2551 else
2552 di->di_prev = TAILQ_NEXT(dv, dv_list);
2553
2554 return dv;
2555 }
2556
2557 device_t
2558 deviter_next(deviter_t *di)
2559 {
2560 device_t dv = NULL;
2561
2562 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2563 case 0:
2564 return deviter_next1(di);
2565 case DEVITER_F_LEAVES_FIRST:
2566 while (di->di_curdepth >= 0) {
2567 if ((dv = deviter_next1(di)) == NULL) {
2568 di->di_curdepth--;
2569 deviter_reinit(di);
2570 } else if (dv->dv_depth == di->di_curdepth)
2571 break;
2572 }
2573 return dv;
2574 case DEVITER_F_ROOT_FIRST:
2575 while (di->di_curdepth <= di->di_maxdepth) {
2576 if ((dv = deviter_next1(di)) == NULL) {
2577 di->di_curdepth++;
2578 deviter_reinit(di);
2579 } else if (dv->dv_depth == di->di_curdepth)
2580 break;
2581 }
2582 return dv;
2583 default:
2584 return NULL;
2585 }
2586 }
2587
2588 void
2589 deviter_release(deviter_t *di)
2590 {
2591 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2592
2593 mutex_enter(&alldevs_mtx);
2594 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2595 --alldevs_nwrite;
2596 else {
2597
2598 if (rw) {
2599 if (--alldevs_nwrite == 0)
2600 alldevs_writer = NULL;
2601 } else
2602 --alldevs_nread;
2603
2604 cv_signal(&alldevs_cv);
2605 }
2606 mutex_exit(&alldevs_mtx);
2607 }
2608