Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.145
      1 /* $NetBSD: subr_autoconf.c,v 1.145 2008/04/22 11:45:28 ad Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.145 2008/04/22 11:45:28 ad Exp $");
     81 
     82 #include "opt_multiprocessor.h"
     83 #include "opt_ddb.h"
     84 
     85 #include <sys/param.h>
     86 #include <sys/device.h>
     87 #include <sys/disklabel.h>
     88 #include <sys/conf.h>
     89 #include <sys/kauth.h>
     90 #include <sys/malloc.h>
     91 #include <sys/systm.h>
     92 #include <sys/kernel.h>
     93 #include <sys/errno.h>
     94 #include <sys/proc.h>
     95 #include <sys/reboot.h>
     96 #include <sys/kthread.h>
     97 #include <sys/buf.h>
     98 #include <sys/dirent.h>
     99 #include <sys/vnode.h>
    100 #include <sys/mount.h>
    101 #include <sys/namei.h>
    102 #include <sys/unistd.h>
    103 #include <sys/fcntl.h>
    104 #include <sys/lockf.h>
    105 #include <sys/callout.h>
    106 #include <sys/mutex.h>
    107 #include <sys/condvar.h>
    108 
    109 #include <sys/disk.h>
    110 
    111 #include <machine/limits.h>
    112 
    113 #include "opt_userconf.h"
    114 #ifdef USERCONF
    115 #include <sys/userconf.h>
    116 #endif
    117 
    118 #ifdef __i386__
    119 #include "opt_splash.h"
    120 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    121 #include <dev/splash/splash.h>
    122 extern struct splash_progress *splash_progress_state;
    123 #endif
    124 #endif
    125 
    126 /*
    127  * Autoconfiguration subroutines.
    128  */
    129 
    130 typedef struct pmf_private {
    131 	int		pp_nwait;
    132 	int		pp_nlock;
    133 	lwp_t		*pp_holder;
    134 	kmutex_t	pp_mtx;
    135 	kcondvar_t	pp_cv;
    136 } pmf_private_t;
    137 
    138 /*
    139  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    140  * devices and drivers are found via these tables.
    141  */
    142 extern struct cfdata cfdata[];
    143 extern const short cfroots[];
    144 
    145 /*
    146  * List of all cfdriver structures.  We use this to detect duplicates
    147  * when other cfdrivers are loaded.
    148  */
    149 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    150 extern struct cfdriver * const cfdriver_list_initial[];
    151 
    152 /*
    153  * Initial list of cfattach's.
    154  */
    155 extern const struct cfattachinit cfattachinit[];
    156 
    157 /*
    158  * List of cfdata tables.  We always have one such list -- the one
    159  * built statically when the kernel was configured.
    160  */
    161 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    162 static struct cftable initcftable;
    163 
    164 #define	ROOT ((device_t)NULL)
    165 
    166 struct matchinfo {
    167 	cfsubmatch_t fn;
    168 	struct	device *parent;
    169 	const int *locs;
    170 	void	*aux;
    171 	struct	cfdata *match;
    172 	int	pri;
    173 };
    174 
    175 static char *number(char *, int);
    176 static void mapply(struct matchinfo *, cfdata_t);
    177 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    178 static void config_devdealloc(device_t);
    179 static void config_makeroom(int, struct cfdriver *);
    180 static void config_devlink(device_t);
    181 static void config_devunlink(device_t);
    182 
    183 static void pmflock_debug(device_t, const char *, int);
    184 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
    185 
    186 static device_t deviter_next1(deviter_t *);
    187 static void deviter_reinit(deviter_t *);
    188 
    189 struct deferred_config {
    190 	TAILQ_ENTRY(deferred_config) dc_queue;
    191 	device_t dc_dev;
    192 	void (*dc_func)(device_t);
    193 };
    194 
    195 TAILQ_HEAD(deferred_config_head, deferred_config);
    196 
    197 struct deferred_config_head deferred_config_queue =
    198 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    199 struct deferred_config_head interrupt_config_queue =
    200 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    201 int interrupt_config_threads = 8;
    202 
    203 static void config_process_deferred(struct deferred_config_head *, device_t);
    204 
    205 /* Hooks to finalize configuration once all real devices have been found. */
    206 struct finalize_hook {
    207 	TAILQ_ENTRY(finalize_hook) f_list;
    208 	int (*f_func)(device_t);
    209 	device_t f_dev;
    210 };
    211 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    212 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    213 static int config_finalize_done;
    214 
    215 /* list of all devices */
    216 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    217 kcondvar_t alldevs_cv;
    218 kmutex_t alldevs_mtx;
    219 static int alldevs_nread = 0;
    220 static int alldevs_nwrite = 0;
    221 static lwp_t *alldevs_writer = NULL;
    222 
    223 volatile int config_pending;		/* semaphore for mountroot */
    224 
    225 #define	STREQ(s1, s2)			\
    226 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    227 
    228 static int config_initialized;		/* config_init() has been called. */
    229 
    230 static int config_do_twiddle;
    231 
    232 MALLOC_DEFINE(M_PMFPRIV, "pmfpriv", "device pmf private storage");
    233 
    234 struct vnode *
    235 opendisk(struct device *dv)
    236 {
    237 	int bmajor, bminor;
    238 	struct vnode *tmpvn;
    239 	int error;
    240 	dev_t dev;
    241 
    242 	/*
    243 	 * Lookup major number for disk block device.
    244 	 */
    245 	bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
    246 	if (bmajor == -1)
    247 		return NULL;
    248 
    249 	bminor = minor(device_unit(dv));
    250 	/*
    251 	 * Fake a temporary vnode for the disk, open it, and read
    252 	 * and hash the sectors.
    253 	 */
    254 	dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
    255 	    MAKEDISKDEV(bmajor, bminor, RAW_PART);
    256 	if (bdevvp(dev, &tmpvn))
    257 		panic("%s: can't alloc vnode for %s", __func__,
    258 		    device_xname(dv));
    259 	error = VOP_OPEN(tmpvn, FREAD, NOCRED);
    260 	if (error) {
    261 #ifndef DEBUG
    262 		/*
    263 		 * Ignore errors caused by missing device, partition,
    264 		 * or medium.
    265 		 */
    266 		if (error != ENXIO && error != ENODEV)
    267 #endif
    268 			printf("%s: can't open dev %s (%d)\n",
    269 			    __func__, device_xname(dv), error);
    270 		vput(tmpvn);
    271 		return NULL;
    272 	}
    273 
    274 	return tmpvn;
    275 }
    276 
    277 int
    278 config_handle_wedges(struct device *dv, int par)
    279 {
    280 	struct dkwedge_list wl;
    281 	struct dkwedge_info *wi;
    282 	struct vnode *vn;
    283 	char diskname[16];
    284 	int i, error;
    285 
    286 	if ((vn = opendisk(dv)) == NULL)
    287 		return -1;
    288 
    289 	wl.dkwl_bufsize = sizeof(*wi) * 16;
    290 	wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
    291 
    292 	error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
    293 	VOP_CLOSE(vn, FREAD, NOCRED);
    294 	vput(vn);
    295 	if (error) {
    296 #ifdef DEBUG_WEDGE
    297 		printf("%s: List wedges returned %d\n",
    298 		    device_xname(dv), error);
    299 #endif
    300 		free(wi, M_TEMP);
    301 		return -1;
    302 	}
    303 
    304 #ifdef DEBUG_WEDGE
    305 	printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
    306 	    wl.dkwl_nwedges, wl.dkwl_ncopied);
    307 #endif
    308 	snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
    309 	    par + 'a');
    310 
    311 	for (i = 0; i < wl.dkwl_ncopied; i++) {
    312 #ifdef DEBUG_WEDGE
    313 		printf("%s: Looking for %s in %s\n",
    314 		    device_xname(dv), diskname, wi[i].dkw_wname);
    315 #endif
    316 		if (strcmp(wi[i].dkw_wname, diskname) == 0)
    317 			break;
    318 	}
    319 
    320 	if (i == wl.dkwl_ncopied) {
    321 #ifdef DEBUG_WEDGE
    322 		printf("%s: Cannot find wedge with parent %s\n",
    323 		    device_xname(dv), diskname);
    324 #endif
    325 		free(wi, M_TEMP);
    326 		return -1;
    327 	}
    328 
    329 #ifdef DEBUG_WEDGE
    330 	printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
    331 		device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
    332 		(unsigned long long)wi[i].dkw_offset,
    333 		(unsigned long long)wi[i].dkw_size);
    334 #endif
    335 	dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
    336 	free(wi, M_TEMP);
    337 	return 0;
    338 }
    339 
    340 /*
    341  * Initialize the autoconfiguration data structures.  Normally this
    342  * is done by configure(), but some platforms need to do this very
    343  * early (to e.g. initialize the console).
    344  */
    345 void
    346 config_init(void)
    347 {
    348 	const struct cfattachinit *cfai;
    349 	int i, j;
    350 
    351 	if (config_initialized)
    352 		return;
    353 
    354 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
    355 	cv_init(&alldevs_cv, "alldevs");
    356 
    357 	/* allcfdrivers is statically initialized. */
    358 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
    359 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
    360 			panic("configure: duplicate `%s' drivers",
    361 			    cfdriver_list_initial[i]->cd_name);
    362 	}
    363 
    364 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
    365 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    366 			if (config_cfattach_attach(cfai->cfai_name,
    367 						   cfai->cfai_list[j]) != 0)
    368 				panic("configure: duplicate `%s' attachment "
    369 				    "of `%s' driver",
    370 				    cfai->cfai_list[j]->ca_name,
    371 				    cfai->cfai_name);
    372 		}
    373 	}
    374 
    375 	initcftable.ct_cfdata = cfdata;
    376 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    377 
    378 	config_initialized = 1;
    379 }
    380 
    381 void
    382 config_deferred(device_t dev)
    383 {
    384 	config_process_deferred(&deferred_config_queue, dev);
    385 	config_process_deferred(&interrupt_config_queue, dev);
    386 }
    387 
    388 static void
    389 config_interrupts_thread(void *cookie)
    390 {
    391 	struct deferred_config *dc;
    392 
    393 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    394 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    395 		(*dc->dc_func)(dc->dc_dev);
    396 		free(dc, M_DEVBUF);
    397 		config_pending_decr();
    398 	}
    399 	kthread_exit(0);
    400 }
    401 
    402 /*
    403  * Configure the system's hardware.
    404  */
    405 void
    406 configure(void)
    407 {
    408 	extern void ssp_init(void);
    409 	int i;
    410 
    411 	/* Initialize data structures. */
    412 	config_init();
    413 	pmf_init();
    414 
    415 #ifdef USERCONF
    416 	if (boothowto & RB_USERCONF)
    417 		user_config();
    418 #endif
    419 
    420 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
    421 		config_do_twiddle = 1;
    422 		printf_nolog("Detecting hardware...");
    423 	}
    424 
    425 	/*
    426 	 * Do the machine-dependent portion of autoconfiguration.  This
    427 	 * sets the configuration machinery here in motion by "finding"
    428 	 * the root bus.  When this function returns, we expect interrupts
    429 	 * to be enabled.
    430 	 */
    431 	cpu_configure();
    432 
    433 	/* Initialize SSP. */
    434 	ssp_init();
    435 
    436 	/*
    437 	 * Now that we've found all the hardware, start the real time
    438 	 * and statistics clocks.
    439 	 */
    440 	initclocks();
    441 
    442 	cold = 0;	/* clocks are running, we're warm now! */
    443 
    444 	/* Boot the secondary processors. */
    445 	mp_online = true;
    446 #if defined(MULTIPROCESSOR)
    447 	cpu_boot_secondary_processors();
    448 #endif
    449 
    450 	/* Setup the scheduler. */
    451 	sched_init();
    452 
    453 	/*
    454 	 * Create threads to call back and finish configuration for
    455 	 * devices that want interrupts enabled.
    456 	 */
    457 	for (i = 0; i < interrupt_config_threads; i++) {
    458 		(void)kthread_create(PRI_NONE, 0, NULL,
    459 		    config_interrupts_thread, NULL, NULL, "config");
    460 	}
    461 
    462 	/* Get the threads going and into any sleeps before continuing. */
    463 	yield();
    464 
    465 	/* Lock the kernel on behalf of lwp0. */
    466 	KERNEL_LOCK(1, NULL);
    467 }
    468 
    469 /*
    470  * Add a cfdriver to the system.
    471  */
    472 int
    473 config_cfdriver_attach(struct cfdriver *cd)
    474 {
    475 	struct cfdriver *lcd;
    476 
    477 	/* Make sure this driver isn't already in the system. */
    478 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    479 		if (STREQ(lcd->cd_name, cd->cd_name))
    480 			return (EEXIST);
    481 	}
    482 
    483 	LIST_INIT(&cd->cd_attach);
    484 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    485 
    486 	return (0);
    487 }
    488 
    489 /*
    490  * Remove a cfdriver from the system.
    491  */
    492 int
    493 config_cfdriver_detach(struct cfdriver *cd)
    494 {
    495 	int i;
    496 
    497 	/* Make sure there are no active instances. */
    498 	for (i = 0; i < cd->cd_ndevs; i++) {
    499 		if (cd->cd_devs[i] != NULL)
    500 			return (EBUSY);
    501 	}
    502 
    503 	/* ...and no attachments loaded. */
    504 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    505 		return (EBUSY);
    506 
    507 	LIST_REMOVE(cd, cd_list);
    508 
    509 	KASSERT(cd->cd_devs == NULL);
    510 
    511 	return (0);
    512 }
    513 
    514 /*
    515  * Look up a cfdriver by name.
    516  */
    517 struct cfdriver *
    518 config_cfdriver_lookup(const char *name)
    519 {
    520 	struct cfdriver *cd;
    521 
    522 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    523 		if (STREQ(cd->cd_name, name))
    524 			return (cd);
    525 	}
    526 
    527 	return (NULL);
    528 }
    529 
    530 /*
    531  * Add a cfattach to the specified driver.
    532  */
    533 int
    534 config_cfattach_attach(const char *driver, struct cfattach *ca)
    535 {
    536 	struct cfattach *lca;
    537 	struct cfdriver *cd;
    538 
    539 	cd = config_cfdriver_lookup(driver);
    540 	if (cd == NULL)
    541 		return (ESRCH);
    542 
    543 	/* Make sure this attachment isn't already on this driver. */
    544 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    545 		if (STREQ(lca->ca_name, ca->ca_name))
    546 			return (EEXIST);
    547 	}
    548 
    549 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    550 
    551 	return (0);
    552 }
    553 
    554 /*
    555  * Remove a cfattach from the specified driver.
    556  */
    557 int
    558 config_cfattach_detach(const char *driver, struct cfattach *ca)
    559 {
    560 	struct cfdriver *cd;
    561 	device_t dev;
    562 	int i;
    563 
    564 	cd = config_cfdriver_lookup(driver);
    565 	if (cd == NULL)
    566 		return (ESRCH);
    567 
    568 	/* Make sure there are no active instances. */
    569 	for (i = 0; i < cd->cd_ndevs; i++) {
    570 		if ((dev = cd->cd_devs[i]) == NULL)
    571 			continue;
    572 		if (dev->dv_cfattach == ca)
    573 			return (EBUSY);
    574 	}
    575 
    576 	LIST_REMOVE(ca, ca_list);
    577 
    578 	return (0);
    579 }
    580 
    581 /*
    582  * Look up a cfattach by name.
    583  */
    584 static struct cfattach *
    585 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    586 {
    587 	struct cfattach *ca;
    588 
    589 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    590 		if (STREQ(ca->ca_name, atname))
    591 			return (ca);
    592 	}
    593 
    594 	return (NULL);
    595 }
    596 
    597 /*
    598  * Look up a cfattach by driver/attachment name.
    599  */
    600 struct cfattach *
    601 config_cfattach_lookup(const char *name, const char *atname)
    602 {
    603 	struct cfdriver *cd;
    604 
    605 	cd = config_cfdriver_lookup(name);
    606 	if (cd == NULL)
    607 		return (NULL);
    608 
    609 	return (config_cfattach_lookup_cd(cd, atname));
    610 }
    611 
    612 /*
    613  * Apply the matching function and choose the best.  This is used
    614  * a few times and we want to keep the code small.
    615  */
    616 static void
    617 mapply(struct matchinfo *m, cfdata_t cf)
    618 {
    619 	int pri;
    620 
    621 	if (m->fn != NULL) {
    622 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    623 	} else {
    624 		pri = config_match(m->parent, cf, m->aux);
    625 	}
    626 	if (pri > m->pri) {
    627 		m->match = cf;
    628 		m->pri = pri;
    629 	}
    630 }
    631 
    632 int
    633 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    634 {
    635 	const struct cfiattrdata *ci;
    636 	const struct cflocdesc *cl;
    637 	int nlocs, i;
    638 
    639 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
    640 	KASSERT(ci);
    641 	nlocs = ci->ci_loclen;
    642 	for (i = 0; i < nlocs; i++) {
    643 		cl = &ci->ci_locdesc[i];
    644 		/* !cld_defaultstr means no default value */
    645 		if ((!(cl->cld_defaultstr)
    646 		     || (cf->cf_loc[i] != cl->cld_default))
    647 		    && cf->cf_loc[i] != locs[i])
    648 			return (0);
    649 	}
    650 
    651 	return (config_match(parent, cf, aux));
    652 }
    653 
    654 /*
    655  * Helper function: check whether the driver supports the interface attribute
    656  * and return its descriptor structure.
    657  */
    658 static const struct cfiattrdata *
    659 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    660 {
    661 	const struct cfiattrdata * const *cpp;
    662 
    663 	if (cd->cd_attrs == NULL)
    664 		return (0);
    665 
    666 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    667 		if (STREQ((*cpp)->ci_name, ia)) {
    668 			/* Match. */
    669 			return (*cpp);
    670 		}
    671 	}
    672 	return (0);
    673 }
    674 
    675 /*
    676  * Lookup an interface attribute description by name.
    677  * If the driver is given, consider only its supported attributes.
    678  */
    679 const struct cfiattrdata *
    680 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    681 {
    682 	const struct cfdriver *d;
    683 	const struct cfiattrdata *ia;
    684 
    685 	if (cd)
    686 		return (cfdriver_get_iattr(cd, name));
    687 
    688 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    689 		ia = cfdriver_get_iattr(d, name);
    690 		if (ia)
    691 			return (ia);
    692 	}
    693 	return (0);
    694 }
    695 
    696 /*
    697  * Determine if `parent' is a potential parent for a device spec based
    698  * on `cfp'.
    699  */
    700 static int
    701 cfparent_match(const device_t parent, const struct cfparent *cfp)
    702 {
    703 	struct cfdriver *pcd;
    704 
    705 	/* We don't match root nodes here. */
    706 	if (cfp == NULL)
    707 		return (0);
    708 
    709 	pcd = parent->dv_cfdriver;
    710 	KASSERT(pcd != NULL);
    711 
    712 	/*
    713 	 * First, ensure this parent has the correct interface
    714 	 * attribute.
    715 	 */
    716 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    717 		return (0);
    718 
    719 	/*
    720 	 * If no specific parent device instance was specified (i.e.
    721 	 * we're attaching to the attribute only), we're done!
    722 	 */
    723 	if (cfp->cfp_parent == NULL)
    724 		return (1);
    725 
    726 	/*
    727 	 * Check the parent device's name.
    728 	 */
    729 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    730 		return (0);	/* not the same parent */
    731 
    732 	/*
    733 	 * Make sure the unit number matches.
    734 	 */
    735 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    736 	    cfp->cfp_unit == parent->dv_unit)
    737 		return (1);
    738 
    739 	/* Unit numbers don't match. */
    740 	return (0);
    741 }
    742 
    743 /*
    744  * Helper for config_cfdata_attach(): check all devices whether it could be
    745  * parent any attachment in the config data table passed, and rescan.
    746  */
    747 static void
    748 rescan_with_cfdata(const struct cfdata *cf)
    749 {
    750 	device_t d;
    751 	const struct cfdata *cf1;
    752 	deviter_t di;
    753 
    754 
    755 	/*
    756 	 * "alldevs" is likely longer than an LKM's cfdata, so make it
    757 	 * the outer loop.
    758 	 */
    759 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    760 
    761 		if (!(d->dv_cfattach->ca_rescan))
    762 			continue;
    763 
    764 		for (cf1 = cf; cf1->cf_name; cf1++) {
    765 
    766 			if (!cfparent_match(d, cf1->cf_pspec))
    767 				continue;
    768 
    769 			(*d->dv_cfattach->ca_rescan)(d,
    770 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
    771 		}
    772 	}
    773 	deviter_release(&di);
    774 }
    775 
    776 /*
    777  * Attach a supplemental config data table and rescan potential
    778  * parent devices if required.
    779  */
    780 int
    781 config_cfdata_attach(cfdata_t cf, int scannow)
    782 {
    783 	struct cftable *ct;
    784 
    785 	ct = malloc(sizeof(struct cftable), M_DEVBUF, M_WAITOK);
    786 	ct->ct_cfdata = cf;
    787 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    788 
    789 	if (scannow)
    790 		rescan_with_cfdata(cf);
    791 
    792 	return (0);
    793 }
    794 
    795 /*
    796  * Helper for config_cfdata_detach: check whether a device is
    797  * found through any attachment in the config data table.
    798  */
    799 static int
    800 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
    801 {
    802 	const struct cfdata *cf1;
    803 
    804 	for (cf1 = cf; cf1->cf_name; cf1++)
    805 		if (d->dv_cfdata == cf1)
    806 			return (1);
    807 
    808 	return (0);
    809 }
    810 
    811 /*
    812  * Detach a supplemental config data table. Detach all devices found
    813  * through that table (and thus keeping references to it) before.
    814  */
    815 int
    816 config_cfdata_detach(cfdata_t cf)
    817 {
    818 	device_t d;
    819 	int error = 0;
    820 	struct cftable *ct;
    821 	deviter_t di;
    822 
    823 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    824 	     d = deviter_next(&di)) {
    825 		if (!dev_in_cfdata(d, cf))
    826 			continue;
    827 		if ((error = config_detach(d, 0)) != 0)
    828 			break;
    829 	}
    830 	deviter_release(&di);
    831 	if (error) {
    832 		aprint_error_dev(d, "unable to detach instance\n");
    833 		return error;
    834 	}
    835 
    836 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    837 		if (ct->ct_cfdata == cf) {
    838 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    839 			free(ct, M_DEVBUF);
    840 			return (0);
    841 		}
    842 	}
    843 
    844 	/* not found -- shouldn't happen */
    845 	return (EINVAL);
    846 }
    847 
    848 /*
    849  * Invoke the "match" routine for a cfdata entry on behalf of
    850  * an external caller, usually a "submatch" routine.
    851  */
    852 int
    853 config_match(device_t parent, cfdata_t cf, void *aux)
    854 {
    855 	struct cfattach *ca;
    856 
    857 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    858 	if (ca == NULL) {
    859 		/* No attachment for this entry, oh well. */
    860 		return (0);
    861 	}
    862 
    863 	return ((*ca->ca_match)(parent, cf, aux));
    864 }
    865 
    866 /*
    867  * Iterate over all potential children of some device, calling the given
    868  * function (default being the child's match function) for each one.
    869  * Nonzero returns are matches; the highest value returned is considered
    870  * the best match.  Return the `found child' if we got a match, or NULL
    871  * otherwise.  The `aux' pointer is simply passed on through.
    872  *
    873  * Note that this function is designed so that it can be used to apply
    874  * an arbitrary function to all potential children (its return value
    875  * can be ignored).
    876  */
    877 cfdata_t
    878 config_search_loc(cfsubmatch_t fn, device_t parent,
    879 		  const char *ifattr, const int *locs, void *aux)
    880 {
    881 	struct cftable *ct;
    882 	cfdata_t cf;
    883 	struct matchinfo m;
    884 
    885 	KASSERT(config_initialized);
    886 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
    887 
    888 	m.fn = fn;
    889 	m.parent = parent;
    890 	m.locs = locs;
    891 	m.aux = aux;
    892 	m.match = NULL;
    893 	m.pri = 0;
    894 
    895 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    896 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
    897 
    898 			/* We don't match root nodes here. */
    899 			if (!cf->cf_pspec)
    900 				continue;
    901 
    902 			/*
    903 			 * Skip cf if no longer eligible, otherwise scan
    904 			 * through parents for one matching `parent', and
    905 			 * try match function.
    906 			 */
    907 			if (cf->cf_fstate == FSTATE_FOUND)
    908 				continue;
    909 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
    910 			    cf->cf_fstate == FSTATE_DSTAR)
    911 				continue;
    912 
    913 			/*
    914 			 * If an interface attribute was specified,
    915 			 * consider only children which attach to
    916 			 * that attribute.
    917 			 */
    918 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
    919 				continue;
    920 
    921 			if (cfparent_match(parent, cf->cf_pspec))
    922 				mapply(&m, cf);
    923 		}
    924 	}
    925 	return (m.match);
    926 }
    927 
    928 cfdata_t
    929 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
    930     void *aux)
    931 {
    932 
    933 	return (config_search_loc(fn, parent, ifattr, NULL, aux));
    934 }
    935 
    936 /*
    937  * Find the given root device.
    938  * This is much like config_search, but there is no parent.
    939  * Don't bother with multiple cfdata tables; the root node
    940  * must always be in the initial table.
    941  */
    942 cfdata_t
    943 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
    944 {
    945 	cfdata_t cf;
    946 	const short *p;
    947 	struct matchinfo m;
    948 
    949 	m.fn = fn;
    950 	m.parent = ROOT;
    951 	m.aux = aux;
    952 	m.match = NULL;
    953 	m.pri = 0;
    954 	m.locs = 0;
    955 	/*
    956 	 * Look at root entries for matching name.  We do not bother
    957 	 * with found-state here since only one root should ever be
    958 	 * searched (and it must be done first).
    959 	 */
    960 	for (p = cfroots; *p >= 0; p++) {
    961 		cf = &cfdata[*p];
    962 		if (strcmp(cf->cf_name, rootname) == 0)
    963 			mapply(&m, cf);
    964 	}
    965 	return (m.match);
    966 }
    967 
    968 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
    969 
    970 /*
    971  * The given `aux' argument describes a device that has been found
    972  * on the given parent, but not necessarily configured.  Locate the
    973  * configuration data for that device (using the submatch function
    974  * provided, or using candidates' cd_match configuration driver
    975  * functions) and attach it, and return true.  If the device was
    976  * not configured, call the given `print' function and return 0.
    977  */
    978 device_t
    979 config_found_sm_loc(device_t parent,
    980 		const char *ifattr, const int *locs, void *aux,
    981 		cfprint_t print, cfsubmatch_t submatch)
    982 {
    983 	cfdata_t cf;
    984 
    985 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    986 	if (splash_progress_state)
    987 		splash_progress_update(splash_progress_state);
    988 #endif
    989 
    990 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
    991 		return(config_attach_loc(parent, cf, locs, aux, print));
    992 	if (print) {
    993 		if (config_do_twiddle)
    994 			twiddle();
    995 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
    996 	}
    997 
    998 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    999 	if (splash_progress_state)
   1000 		splash_progress_update(splash_progress_state);
   1001 #endif
   1002 
   1003 	return (NULL);
   1004 }
   1005 
   1006 device_t
   1007 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1008     cfprint_t print)
   1009 {
   1010 
   1011 	return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
   1012 }
   1013 
   1014 device_t
   1015 config_found(device_t parent, void *aux, cfprint_t print)
   1016 {
   1017 
   1018 	return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
   1019 }
   1020 
   1021 /*
   1022  * As above, but for root devices.
   1023  */
   1024 device_t
   1025 config_rootfound(const char *rootname, void *aux)
   1026 {
   1027 	cfdata_t cf;
   1028 
   1029 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
   1030 		return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
   1031 	aprint_error("root device %s not configured\n", rootname);
   1032 	return (NULL);
   1033 }
   1034 
   1035 /* just like sprintf(buf, "%d") except that it works from the end */
   1036 static char *
   1037 number(char *ep, int n)
   1038 {
   1039 
   1040 	*--ep = 0;
   1041 	while (n >= 10) {
   1042 		*--ep = (n % 10) + '0';
   1043 		n /= 10;
   1044 	}
   1045 	*--ep = n + '0';
   1046 	return (ep);
   1047 }
   1048 
   1049 /*
   1050  * Expand the size of the cd_devs array if necessary.
   1051  */
   1052 static void
   1053 config_makeroom(int n, struct cfdriver *cd)
   1054 {
   1055 	int old, new;
   1056 	void **nsp;
   1057 
   1058 	if (n < cd->cd_ndevs)
   1059 		return;
   1060 
   1061 	/*
   1062 	 * Need to expand the array.
   1063 	 */
   1064 	old = cd->cd_ndevs;
   1065 	if (old == 0)
   1066 		new = 4;
   1067 	else
   1068 		new = old * 2;
   1069 	while (new <= n)
   1070 		new *= 2;
   1071 	cd->cd_ndevs = new;
   1072 	nsp = malloc(new * sizeof(void *), M_DEVBUF,
   1073 	    cold ? M_NOWAIT : M_WAITOK);
   1074 	if (nsp == NULL)
   1075 		panic("config_attach: %sing dev array",
   1076 		    old != 0 ? "expand" : "creat");
   1077 	memset(nsp + old, 0, (new - old) * sizeof(void *));
   1078 	if (old != 0) {
   1079 		memcpy(nsp, cd->cd_devs, old * sizeof(void *));
   1080 		free(cd->cd_devs, M_DEVBUF);
   1081 	}
   1082 	cd->cd_devs = nsp;
   1083 }
   1084 
   1085 static void
   1086 config_devlink(device_t dev)
   1087 {
   1088 	struct cfdriver *cd = dev->dv_cfdriver;
   1089 
   1090 	/* put this device in the devices array */
   1091 	config_makeroom(dev->dv_unit, cd);
   1092 	if (cd->cd_devs[dev->dv_unit])
   1093 		panic("config_attach: duplicate %s", device_xname(dev));
   1094 	cd->cd_devs[dev->dv_unit] = dev;
   1095 
   1096 	/* It is safe to add a device to the tail of the list while
   1097 	 * readers are in the list, but not while a writer is in
   1098 	 * the list.  Wait for any writer to complete.
   1099 	 */
   1100 	mutex_enter(&alldevs_mtx);
   1101 	while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
   1102 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1103 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
   1104 	cv_signal(&alldevs_cv);
   1105 	mutex_exit(&alldevs_mtx);
   1106 }
   1107 
   1108 static void
   1109 config_devunlink(device_t dev)
   1110 {
   1111 	struct cfdriver *cd = dev->dv_cfdriver;
   1112 	int i;
   1113 
   1114 	/* Unlink from device list. */
   1115 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1116 
   1117 	/* Remove from cfdriver's array. */
   1118 	cd->cd_devs[dev->dv_unit] = NULL;
   1119 
   1120 	/*
   1121 	 * If the device now has no units in use, deallocate its softc array.
   1122 	 */
   1123 	for (i = 0; i < cd->cd_ndevs; i++)
   1124 		if (cd->cd_devs[i] != NULL)
   1125 			break;
   1126 	if (i == cd->cd_ndevs) {		/* nothing found; deallocate */
   1127 		free(cd->cd_devs, M_DEVBUF);
   1128 		cd->cd_devs = NULL;
   1129 		cd->cd_ndevs = 0;
   1130 	}
   1131 }
   1132 
   1133 static device_t
   1134 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1135 {
   1136 	struct cfdriver *cd;
   1137 	struct cfattach *ca;
   1138 	size_t lname, lunit;
   1139 	const char *xunit;
   1140 	int myunit;
   1141 	char num[10];
   1142 	device_t dev;
   1143 	void *dev_private;
   1144 	const struct cfiattrdata *ia;
   1145 
   1146 	cd = config_cfdriver_lookup(cf->cf_name);
   1147 	if (cd == NULL)
   1148 		return (NULL);
   1149 
   1150 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1151 	if (ca == NULL)
   1152 		return (NULL);
   1153 
   1154 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
   1155 	    ca->ca_devsize < sizeof(struct device))
   1156 		panic("config_devalloc: %s", cf->cf_atname);
   1157 
   1158 #ifndef __BROKEN_CONFIG_UNIT_USAGE
   1159 	if (cf->cf_fstate == FSTATE_STAR) {
   1160 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
   1161 			if (cd->cd_devs[myunit] == NULL)
   1162 				break;
   1163 		/*
   1164 		 * myunit is now the unit of the first NULL device pointer,
   1165 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1166 		 */
   1167 	} else {
   1168 		myunit = cf->cf_unit;
   1169 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
   1170 			return (NULL);
   1171 	}
   1172 #else
   1173 	myunit = cf->cf_unit;
   1174 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
   1175 
   1176 	/* compute length of name and decimal expansion of unit number */
   1177 	lname = strlen(cd->cd_name);
   1178 	xunit = number(&num[sizeof(num)], myunit);
   1179 	lunit = &num[sizeof(num)] - xunit;
   1180 	if (lname + lunit > sizeof(dev->dv_xname))
   1181 		panic("config_devalloc: device name too long");
   1182 
   1183 	/* get memory for all device vars */
   1184 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
   1185 	if (ca->ca_devsize > 0) {
   1186 		dev_private = malloc(ca->ca_devsize, M_DEVBUF,
   1187 				     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
   1188 		if (dev_private == NULL)
   1189 			panic("config_devalloc: memory allocation for device softc failed");
   1190 	} else {
   1191 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1192 		dev_private = NULL;
   1193 	}
   1194 
   1195 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1196 		dev = malloc(sizeof(struct device), M_DEVBUF,
   1197 			     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
   1198 	} else {
   1199 		dev = dev_private;
   1200 	}
   1201 	if (dev == NULL)
   1202 		panic("config_devalloc: memory allocation for device_t failed");
   1203 
   1204 	dev->dv_class = cd->cd_class;
   1205 	dev->dv_cfdata = cf;
   1206 	dev->dv_cfdriver = cd;
   1207 	dev->dv_cfattach = ca;
   1208 	dev->dv_unit = myunit;
   1209 	dev->dv_activity_count = 0;
   1210 	dev->dv_activity_handlers = NULL;
   1211 	dev->dv_private = dev_private;
   1212 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1213 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1214 	dev->dv_parent = parent;
   1215 	if (parent != NULL)
   1216 		dev->dv_depth = parent->dv_depth + 1;
   1217 	else
   1218 		dev->dv_depth = 0;
   1219 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
   1220 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
   1221 	if (locs) {
   1222 		KASSERT(parent); /* no locators at root */
   1223 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
   1224 				    parent->dv_cfdriver);
   1225 		dev->dv_locators = malloc(ia->ci_loclen * sizeof(int),
   1226 					  M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1227 		memcpy(dev->dv_locators, locs, ia->ci_loclen * sizeof(int));
   1228 	}
   1229 	dev->dv_properties = prop_dictionary_create();
   1230 	KASSERT(dev->dv_properties != NULL);
   1231 
   1232 	return (dev);
   1233 }
   1234 
   1235 static void
   1236 config_devdealloc(device_t dev)
   1237 {
   1238 
   1239 	KASSERT(dev->dv_properties != NULL);
   1240 	prop_object_release(dev->dv_properties);
   1241 
   1242 	if (dev->dv_activity_handlers)
   1243 		panic("config_devdealloc with registered handlers");
   1244 
   1245 	if (dev->dv_locators)
   1246 		free(dev->dv_locators, M_DEVBUF);
   1247 
   1248 	if ((dev->dv_flags & DVF_PRIV_ALLOC) != 0 && dev->dv_private != NULL)
   1249 		free(dev->dv_private, M_DEVBUF);
   1250 
   1251 	free(dev, M_DEVBUF);
   1252 }
   1253 
   1254 /*
   1255  * Attach a found device.
   1256  */
   1257 device_t
   1258 config_attach_loc(device_t parent, cfdata_t cf,
   1259 	const int *locs, void *aux, cfprint_t print)
   1260 {
   1261 	device_t dev;
   1262 	struct cftable *ct;
   1263 	const char *drvname;
   1264 
   1265 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1266 	if (splash_progress_state)
   1267 		splash_progress_update(splash_progress_state);
   1268 #endif
   1269 
   1270 	dev = config_devalloc(parent, cf, locs);
   1271 	if (!dev)
   1272 		panic("config_attach: allocation of device softc failed");
   1273 
   1274 	/* XXX redundant - see below? */
   1275 	if (cf->cf_fstate != FSTATE_STAR) {
   1276 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1277 		cf->cf_fstate = FSTATE_FOUND;
   1278 	}
   1279 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1280 	  else
   1281 		cf->cf_unit++;
   1282 #endif
   1283 
   1284 	config_devlink(dev);
   1285 
   1286 	if (config_do_twiddle)
   1287 		twiddle();
   1288 	else
   1289 		aprint_naive("Found ");
   1290 	/*
   1291 	 * We want the next two printfs for normal, verbose, and quiet,
   1292 	 * but not silent (in which case, we're twiddling, instead).
   1293 	 */
   1294 	if (parent == ROOT) {
   1295 		aprint_naive("%s (root)", device_xname(dev));
   1296 		aprint_normal("%s (root)", device_xname(dev));
   1297 	} else {
   1298 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
   1299 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
   1300 		if (print)
   1301 			(void) (*print)(aux, NULL);
   1302 	}
   1303 
   1304 	/*
   1305 	 * Before attaching, clobber any unfound devices that are
   1306 	 * otherwise identical.
   1307 	 * XXX code above is redundant?
   1308 	 */
   1309 	drvname = dev->dv_cfdriver->cd_name;
   1310 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1311 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1312 			if (STREQ(cf->cf_name, drvname) &&
   1313 			    cf->cf_unit == dev->dv_unit) {
   1314 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1315 					cf->cf_fstate = FSTATE_FOUND;
   1316 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1317 				/*
   1318 				 * Bump the unit number on all starred cfdata
   1319 				 * entries for this device.
   1320 				 */
   1321 				if (cf->cf_fstate == FSTATE_STAR)
   1322 					cf->cf_unit++;
   1323 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1324 			}
   1325 		}
   1326 	}
   1327 #ifdef __HAVE_DEVICE_REGISTER
   1328 	device_register(dev, aux);
   1329 #endif
   1330 
   1331 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1332 	if (splash_progress_state)
   1333 		splash_progress_update(splash_progress_state);
   1334 #endif
   1335 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1336 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1337 	if (splash_progress_state)
   1338 		splash_progress_update(splash_progress_state);
   1339 #endif
   1340 
   1341 	if (!device_pmf_is_registered(dev))
   1342 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
   1343 
   1344 	config_process_deferred(&deferred_config_queue, dev);
   1345 	return (dev);
   1346 }
   1347 
   1348 device_t
   1349 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1350 {
   1351 
   1352 	return (config_attach_loc(parent, cf, NULL, aux, print));
   1353 }
   1354 
   1355 /*
   1356  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1357  * way are silently inserted into the device tree, and their children
   1358  * attached.
   1359  *
   1360  * Note that because pseudo-devices are attached silently, any information
   1361  * the attach routine wishes to print should be prefixed with the device
   1362  * name by the attach routine.
   1363  */
   1364 device_t
   1365 config_attach_pseudo(cfdata_t cf)
   1366 {
   1367 	device_t dev;
   1368 
   1369 	dev = config_devalloc(ROOT, cf, NULL);
   1370 	if (!dev)
   1371 		return (NULL);
   1372 
   1373 	/* XXX mark busy in cfdata */
   1374 
   1375 	config_devlink(dev);
   1376 
   1377 #if 0	/* XXXJRT not yet */
   1378 #ifdef __HAVE_DEVICE_REGISTER
   1379 	device_register(dev, NULL);	/* like a root node */
   1380 #endif
   1381 #endif
   1382 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1383 	config_process_deferred(&deferred_config_queue, dev);
   1384 	return (dev);
   1385 }
   1386 
   1387 /*
   1388  * Detach a device.  Optionally forced (e.g. because of hardware
   1389  * removal) and quiet.  Returns zero if successful, non-zero
   1390  * (an error code) otherwise.
   1391  *
   1392  * Note that this code wants to be run from a process context, so
   1393  * that the detach can sleep to allow processes which have a device
   1394  * open to run and unwind their stacks.
   1395  */
   1396 int
   1397 config_detach(device_t dev, int flags)
   1398 {
   1399 	struct cftable *ct;
   1400 	cfdata_t cf;
   1401 	const struct cfattach *ca;
   1402 	struct cfdriver *cd;
   1403 #ifdef DIAGNOSTIC
   1404 	device_t d;
   1405 #endif
   1406 	int rv = 0;
   1407 
   1408 #ifdef DIAGNOSTIC
   1409 	if (dev->dv_cfdata != NULL &&
   1410 	    dev->dv_cfdata->cf_fstate != FSTATE_FOUND &&
   1411 	    dev->dv_cfdata->cf_fstate != FSTATE_STAR)
   1412 		panic("config_detach: bad device fstate");
   1413 #endif
   1414 	cd = dev->dv_cfdriver;
   1415 	KASSERT(cd != NULL);
   1416 
   1417 	ca = dev->dv_cfattach;
   1418 	KASSERT(ca != NULL);
   1419 
   1420 	KASSERT(curlwp != NULL);
   1421 	mutex_enter(&alldevs_mtx);
   1422 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   1423 		;
   1424 	else while (alldevs_nread != 0 ||
   1425 	       (alldevs_nwrite != 0 && alldevs_writer != curlwp))
   1426 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1427 	if (alldevs_nwrite++ == 0)
   1428 		alldevs_writer = curlwp;
   1429 	mutex_exit(&alldevs_mtx);
   1430 
   1431 	/*
   1432 	 * Ensure the device is deactivated.  If the device doesn't
   1433 	 * have an activation entry point, we allow DVF_ACTIVE to
   1434 	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
   1435 	 * device is busy, and the detach fails.
   1436 	 */
   1437 	if (ca->ca_activate != NULL)
   1438 		rv = config_deactivate(dev);
   1439 
   1440 	/*
   1441 	 * Try to detach the device.  If that's not possible, then
   1442 	 * we either panic() (for the forced but failed case), or
   1443 	 * return an error.
   1444 	 */
   1445 	if (rv == 0) {
   1446 		if (ca->ca_detach != NULL)
   1447 			rv = (*ca->ca_detach)(dev, flags);
   1448 		else
   1449 			rv = EOPNOTSUPP;
   1450 	}
   1451 	if (rv != 0) {
   1452 		if ((flags & DETACH_FORCE) == 0)
   1453 			goto out;
   1454 		else
   1455 			panic("config_detach: forced detach of %s failed (%d)",
   1456 			    device_xname(dev), rv);
   1457 	}
   1458 
   1459 	/*
   1460 	 * The device has now been successfully detached.
   1461 	 */
   1462 
   1463 #ifdef DIAGNOSTIC
   1464 	/*
   1465 	 * Sanity: If you're successfully detached, you should have no
   1466 	 * children.  (Note that because children must be attached
   1467 	 * after parents, we only need to search the latter part of
   1468 	 * the list.)
   1469 	 */
   1470 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1471 	    d = TAILQ_NEXT(d, dv_list)) {
   1472 		if (d->dv_parent == dev) {
   1473 			printf("config_detach: detached device %s"
   1474 			    " has children %s\n", device_xname(dev), device_xname(d));
   1475 			panic("config_detach");
   1476 		}
   1477 	}
   1478 #endif
   1479 
   1480 	/* notify the parent that the child is gone */
   1481 	if (dev->dv_parent) {
   1482 		device_t p = dev->dv_parent;
   1483 		if (p->dv_cfattach->ca_childdetached)
   1484 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1485 	}
   1486 
   1487 	/*
   1488 	 * Mark cfdata to show that the unit can be reused, if possible.
   1489 	 */
   1490 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1491 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1492 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1493 				if (cf->cf_fstate == FSTATE_FOUND &&
   1494 				    cf->cf_unit == dev->dv_unit)
   1495 					cf->cf_fstate = FSTATE_NOTFOUND;
   1496 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1497 				/*
   1498 				 * Note that we can only re-use a starred
   1499 				 * unit number if the unit being detached
   1500 				 * had the last assigned unit number.
   1501 				 */
   1502 				if (cf->cf_fstate == FSTATE_STAR &&
   1503 				    cf->cf_unit == dev->dv_unit + 1)
   1504 					cf->cf_unit--;
   1505 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1506 			}
   1507 		}
   1508 	}
   1509 
   1510 	config_devunlink(dev);
   1511 
   1512 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1513 		aprint_normal_dev(dev, "detached\n");
   1514 
   1515 	config_devdealloc(dev);
   1516 
   1517 out:
   1518 	mutex_enter(&alldevs_mtx);
   1519 	if (--alldevs_nwrite == 0)
   1520 		alldevs_writer = NULL;
   1521 	cv_signal(&alldevs_cv);
   1522 	mutex_exit(&alldevs_mtx);
   1523 	return rv;
   1524 }
   1525 
   1526 int
   1527 config_detach_children(device_t parent, int flags)
   1528 {
   1529 	device_t dv;
   1530 	deviter_t di;
   1531 	int error = 0;
   1532 
   1533 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1534 	     dv = deviter_next(&di)) {
   1535 		if (device_parent(dv) != parent)
   1536 			continue;
   1537 		if ((error = config_detach(dv, flags)) != 0)
   1538 			break;
   1539 	}
   1540 	deviter_release(&di);
   1541 	return error;
   1542 }
   1543 
   1544 int
   1545 config_activate(device_t dev)
   1546 {
   1547 	const struct cfattach *ca = dev->dv_cfattach;
   1548 	int rv = 0, oflags = dev->dv_flags;
   1549 
   1550 	if (ca->ca_activate == NULL)
   1551 		return (EOPNOTSUPP);
   1552 
   1553 	if ((dev->dv_flags & DVF_ACTIVE) == 0) {
   1554 		dev->dv_flags |= DVF_ACTIVE;
   1555 		rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
   1556 		if (rv)
   1557 			dev->dv_flags = oflags;
   1558 	}
   1559 	return (rv);
   1560 }
   1561 
   1562 int
   1563 config_deactivate(device_t dev)
   1564 {
   1565 	const struct cfattach *ca = dev->dv_cfattach;
   1566 	int rv = 0, oflags = dev->dv_flags;
   1567 
   1568 	if (ca->ca_activate == NULL)
   1569 		return (EOPNOTSUPP);
   1570 
   1571 	if (dev->dv_flags & DVF_ACTIVE) {
   1572 		dev->dv_flags &= ~DVF_ACTIVE;
   1573 		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
   1574 		if (rv)
   1575 			dev->dv_flags = oflags;
   1576 	}
   1577 	return (rv);
   1578 }
   1579 
   1580 /*
   1581  * Defer the configuration of the specified device until all
   1582  * of its parent's devices have been attached.
   1583  */
   1584 void
   1585 config_defer(device_t dev, void (*func)(device_t))
   1586 {
   1587 	struct deferred_config *dc;
   1588 
   1589 	if (dev->dv_parent == NULL)
   1590 		panic("config_defer: can't defer config of a root device");
   1591 
   1592 #ifdef DIAGNOSTIC
   1593 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
   1594 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1595 		if (dc->dc_dev == dev)
   1596 			panic("config_defer: deferred twice");
   1597 	}
   1598 #endif
   1599 
   1600 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1601 	if (dc == NULL)
   1602 		panic("config_defer: unable to allocate callback");
   1603 
   1604 	dc->dc_dev = dev;
   1605 	dc->dc_func = func;
   1606 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1607 	config_pending_incr();
   1608 }
   1609 
   1610 /*
   1611  * Defer some autoconfiguration for a device until after interrupts
   1612  * are enabled.
   1613  */
   1614 void
   1615 config_interrupts(device_t dev, void (*func)(device_t))
   1616 {
   1617 	struct deferred_config *dc;
   1618 
   1619 	/*
   1620 	 * If interrupts are enabled, callback now.
   1621 	 */
   1622 	if (cold == 0) {
   1623 		(*func)(dev);
   1624 		return;
   1625 	}
   1626 
   1627 #ifdef DIAGNOSTIC
   1628 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
   1629 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1630 		if (dc->dc_dev == dev)
   1631 			panic("config_interrupts: deferred twice");
   1632 	}
   1633 #endif
   1634 
   1635 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1636 	if (dc == NULL)
   1637 		panic("config_interrupts: unable to allocate callback");
   1638 
   1639 	dc->dc_dev = dev;
   1640 	dc->dc_func = func;
   1641 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   1642 	config_pending_incr();
   1643 }
   1644 
   1645 /*
   1646  * Process a deferred configuration queue.
   1647  */
   1648 static void
   1649 config_process_deferred(struct deferred_config_head *queue,
   1650     device_t parent)
   1651 {
   1652 	struct deferred_config *dc, *ndc;
   1653 
   1654 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   1655 		ndc = TAILQ_NEXT(dc, dc_queue);
   1656 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   1657 			TAILQ_REMOVE(queue, dc, dc_queue);
   1658 			(*dc->dc_func)(dc->dc_dev);
   1659 			free(dc, M_DEVBUF);
   1660 			config_pending_decr();
   1661 		}
   1662 	}
   1663 }
   1664 
   1665 /*
   1666  * Manipulate the config_pending semaphore.
   1667  */
   1668 void
   1669 config_pending_incr(void)
   1670 {
   1671 
   1672 	config_pending++;
   1673 }
   1674 
   1675 void
   1676 config_pending_decr(void)
   1677 {
   1678 
   1679 #ifdef DIAGNOSTIC
   1680 	if (config_pending == 0)
   1681 		panic("config_pending_decr: config_pending == 0");
   1682 #endif
   1683 	config_pending--;
   1684 	if (config_pending == 0)
   1685 		wakeup(&config_pending);
   1686 }
   1687 
   1688 /*
   1689  * Register a "finalization" routine.  Finalization routines are
   1690  * called iteratively once all real devices have been found during
   1691  * autoconfiguration, for as long as any one finalizer has done
   1692  * any work.
   1693  */
   1694 int
   1695 config_finalize_register(device_t dev, int (*fn)(device_t))
   1696 {
   1697 	struct finalize_hook *f;
   1698 
   1699 	/*
   1700 	 * If finalization has already been done, invoke the
   1701 	 * callback function now.
   1702 	 */
   1703 	if (config_finalize_done) {
   1704 		while ((*fn)(dev) != 0)
   1705 			/* loop */ ;
   1706 	}
   1707 
   1708 	/* Ensure this isn't already on the list. */
   1709 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   1710 		if (f->f_func == fn && f->f_dev == dev)
   1711 			return (EEXIST);
   1712 	}
   1713 
   1714 	f = malloc(sizeof(*f), M_TEMP, M_WAITOK);
   1715 	f->f_func = fn;
   1716 	f->f_dev = dev;
   1717 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   1718 
   1719 	return (0);
   1720 }
   1721 
   1722 void
   1723 config_finalize(void)
   1724 {
   1725 	struct finalize_hook *f;
   1726 	struct pdevinit *pdev;
   1727 	extern struct pdevinit pdevinit[];
   1728 	int errcnt, rv;
   1729 
   1730 	/*
   1731 	 * Now that device driver threads have been created, wait for
   1732 	 * them to finish any deferred autoconfiguration.
   1733 	 */
   1734 	while (config_pending)
   1735 		(void) tsleep(&config_pending, PWAIT, "cfpend", hz);
   1736 
   1737 	/* Attach pseudo-devices. */
   1738 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   1739 		(*pdev->pdev_attach)(pdev->pdev_count);
   1740 
   1741 	/* Run the hooks until none of them does any work. */
   1742 	do {
   1743 		rv = 0;
   1744 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   1745 			rv |= (*f->f_func)(f->f_dev);
   1746 	} while (rv != 0);
   1747 
   1748 	config_finalize_done = 1;
   1749 
   1750 	/* Now free all the hooks. */
   1751 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   1752 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   1753 		free(f, M_TEMP);
   1754 	}
   1755 
   1756 	errcnt = aprint_get_error_count();
   1757 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   1758 	    (boothowto & AB_VERBOSE) == 0) {
   1759 		if (config_do_twiddle) {
   1760 			config_do_twiddle = 0;
   1761 			printf_nolog("done.\n");
   1762 		}
   1763 		if (errcnt != 0) {
   1764 			printf("WARNING: %d error%s while detecting hardware; "
   1765 			    "check system log.\n", errcnt,
   1766 			    errcnt == 1 ? "" : "s");
   1767 		}
   1768 	}
   1769 }
   1770 
   1771 /*
   1772  * device_lookup:
   1773  *
   1774  *	Look up a device instance for a given driver.
   1775  */
   1776 void *
   1777 device_lookup(cfdriver_t cd, int unit)
   1778 {
   1779 
   1780 	if (unit < 0 || unit >= cd->cd_ndevs)
   1781 		return (NULL);
   1782 
   1783 	return (cd->cd_devs[unit]);
   1784 }
   1785 
   1786 /*
   1787  * device_lookup:
   1788  *
   1789  *	Look up a device instance for a given driver.
   1790  */
   1791 void *
   1792 device_lookup_private(cfdriver_t cd, int unit)
   1793 {
   1794 	device_t dv;
   1795 
   1796 	if (unit < 0 || unit >= cd->cd_ndevs)
   1797 		return NULL;
   1798 
   1799 	if ((dv = cd->cd_devs[unit]) == NULL)
   1800 		return NULL;
   1801 
   1802 	return dv->dv_private;
   1803 }
   1804 
   1805 /*
   1806  * Accessor functions for the device_t type.
   1807  */
   1808 devclass_t
   1809 device_class(device_t dev)
   1810 {
   1811 
   1812 	return (dev->dv_class);
   1813 }
   1814 
   1815 cfdata_t
   1816 device_cfdata(device_t dev)
   1817 {
   1818 
   1819 	return (dev->dv_cfdata);
   1820 }
   1821 
   1822 cfdriver_t
   1823 device_cfdriver(device_t dev)
   1824 {
   1825 
   1826 	return (dev->dv_cfdriver);
   1827 }
   1828 
   1829 cfattach_t
   1830 device_cfattach(device_t dev)
   1831 {
   1832 
   1833 	return (dev->dv_cfattach);
   1834 }
   1835 
   1836 int
   1837 device_unit(device_t dev)
   1838 {
   1839 
   1840 	return (dev->dv_unit);
   1841 }
   1842 
   1843 const char *
   1844 device_xname(device_t dev)
   1845 {
   1846 
   1847 	return (dev->dv_xname);
   1848 }
   1849 
   1850 device_t
   1851 device_parent(device_t dev)
   1852 {
   1853 
   1854 	return (dev->dv_parent);
   1855 }
   1856 
   1857 bool
   1858 device_is_active(device_t dev)
   1859 {
   1860 	int active_flags;
   1861 
   1862 	active_flags = DVF_ACTIVE;
   1863 	active_flags |= DVF_CLASS_SUSPENDED;
   1864 	active_flags |= DVF_DRIVER_SUSPENDED;
   1865 	active_flags |= DVF_BUS_SUSPENDED;
   1866 
   1867 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
   1868 }
   1869 
   1870 bool
   1871 device_is_enabled(device_t dev)
   1872 {
   1873 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
   1874 }
   1875 
   1876 bool
   1877 device_has_power(device_t dev)
   1878 {
   1879 	int active_flags;
   1880 
   1881 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
   1882 
   1883 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
   1884 }
   1885 
   1886 int
   1887 device_locator(device_t dev, u_int locnum)
   1888 {
   1889 
   1890 	KASSERT(dev->dv_locators != NULL);
   1891 	return (dev->dv_locators[locnum]);
   1892 }
   1893 
   1894 void *
   1895 device_private(device_t dev)
   1896 {
   1897 
   1898 	/*
   1899 	 * The reason why device_private(NULL) is allowed is to simplify the
   1900 	 * work of a lot of userspace request handlers (i.e., c/bdev
   1901 	 * handlers) which grab cfdriver_t->cd_units[n].
   1902 	 * It avoids having them test for it to be NULL and only then calling
   1903 	 * device_private.
   1904 	 */
   1905 	return dev == NULL ? NULL : dev->dv_private;
   1906 }
   1907 
   1908 prop_dictionary_t
   1909 device_properties(device_t dev)
   1910 {
   1911 
   1912 	return (dev->dv_properties);
   1913 }
   1914 
   1915 /*
   1916  * device_is_a:
   1917  *
   1918  *	Returns true if the device is an instance of the specified
   1919  *	driver.
   1920  */
   1921 bool
   1922 device_is_a(device_t dev, const char *dname)
   1923 {
   1924 
   1925 	return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
   1926 }
   1927 
   1928 /*
   1929  * device_find_by_xname:
   1930  *
   1931  *	Returns the device of the given name or NULL if it doesn't exist.
   1932  */
   1933 device_t
   1934 device_find_by_xname(const char *name)
   1935 {
   1936 	device_t dv;
   1937 	deviter_t di;
   1938 
   1939 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   1940 		if (strcmp(device_xname(dv), name) == 0)
   1941 			break;
   1942 	}
   1943 	deviter_release(&di);
   1944 
   1945 	return dv;
   1946 }
   1947 
   1948 /*
   1949  * device_find_by_driver_unit:
   1950  *
   1951  *	Returns the device of the given driver name and unit or
   1952  *	NULL if it doesn't exist.
   1953  */
   1954 device_t
   1955 device_find_by_driver_unit(const char *name, int unit)
   1956 {
   1957 	struct cfdriver *cd;
   1958 
   1959 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   1960 		return NULL;
   1961 	return device_lookup(cd, unit);
   1962 }
   1963 
   1964 /*
   1965  * Power management related functions.
   1966  */
   1967 
   1968 bool
   1969 device_pmf_is_registered(device_t dev)
   1970 {
   1971 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   1972 }
   1973 
   1974 bool
   1975 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
   1976 {
   1977 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   1978 		return true;
   1979 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   1980 		return false;
   1981 	if (*dev->dv_driver_suspend != NULL &&
   1982 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
   1983 		return false;
   1984 
   1985 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   1986 	return true;
   1987 }
   1988 
   1989 bool
   1990 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
   1991 {
   1992 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   1993 		return true;
   1994 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   1995 		return false;
   1996 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
   1997 		return false;
   1998 	if (*dev->dv_driver_resume != NULL &&
   1999 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
   2000 		return false;
   2001 
   2002 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2003 	return true;
   2004 }
   2005 
   2006 bool
   2007 device_pmf_driver_shutdown(device_t dev, int how)
   2008 {
   2009 
   2010 	if (*dev->dv_driver_shutdown != NULL &&
   2011 	    !(*dev->dv_driver_shutdown)(dev, how))
   2012 		return false;
   2013 	return true;
   2014 }
   2015 
   2016 bool
   2017 device_pmf_driver_register(device_t dev,
   2018     bool (*suspend)(device_t PMF_FN_PROTO),
   2019     bool (*resume)(device_t PMF_FN_PROTO),
   2020     bool (*shutdown)(device_t, int))
   2021 {
   2022 	pmf_private_t *pp;
   2023 
   2024 	if ((pp = malloc(sizeof(*pp), M_PMFPRIV, M_NOWAIT|M_ZERO)) == NULL)
   2025 		return false;
   2026 	mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
   2027 	cv_init(&pp->pp_cv, "pmfsusp");
   2028 	dev->dv_pmf_private = pp;
   2029 
   2030 	dev->dv_driver_suspend = suspend;
   2031 	dev->dv_driver_resume = resume;
   2032 	dev->dv_driver_shutdown = shutdown;
   2033 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2034 	return true;
   2035 }
   2036 
   2037 static const char *
   2038 curlwp_name(void)
   2039 {
   2040 	if (curlwp->l_name != NULL)
   2041 		return curlwp->l_name;
   2042 	else
   2043 		return curlwp->l_proc->p_comm;
   2044 }
   2045 
   2046 void
   2047 device_pmf_driver_deregister(device_t dev)
   2048 {
   2049 	pmf_private_t *pp = dev->dv_pmf_private;
   2050 
   2051 	dev->dv_driver_suspend = NULL;
   2052 	dev->dv_driver_resume = NULL;
   2053 
   2054 	dev->dv_pmf_private = NULL;
   2055 
   2056 	mutex_enter(&pp->pp_mtx);
   2057 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2058 	while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
   2059 		/* Wake a thread that waits for the lock.  That
   2060 		 * thread will fail to acquire the lock, and then
   2061 		 * it will wake the next thread that waits for the
   2062 		 * lock, or else it will wake us.
   2063 		 */
   2064 		cv_signal(&pp->pp_cv);
   2065 		pmflock_debug(dev, __func__, __LINE__);
   2066 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
   2067 		pmflock_debug(dev, __func__, __LINE__);
   2068 	}
   2069 	mutex_exit(&pp->pp_mtx);
   2070 
   2071 	cv_destroy(&pp->pp_cv);
   2072 	mutex_destroy(&pp->pp_mtx);
   2073 	free(pp, M_PMFPRIV);
   2074 }
   2075 
   2076 bool
   2077 device_pmf_driver_child_register(device_t dev)
   2078 {
   2079 	device_t parent = device_parent(dev);
   2080 
   2081 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2082 		return true;
   2083 	return (*parent->dv_driver_child_register)(dev);
   2084 }
   2085 
   2086 void
   2087 device_pmf_driver_set_child_register(device_t dev,
   2088     bool (*child_register)(device_t))
   2089 {
   2090 	dev->dv_driver_child_register = child_register;
   2091 }
   2092 
   2093 void
   2094 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
   2095 {
   2096 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2097 	if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
   2098 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
   2099 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2100 }
   2101 
   2102 bool
   2103 device_is_self_suspended(device_t dev)
   2104 {
   2105 	return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
   2106 }
   2107 
   2108 void
   2109 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
   2110 {
   2111 	bool self = (flags & PMF_F_SELF) != 0;
   2112 
   2113 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2114 
   2115 	if (!self)
   2116 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
   2117 	else if (device_is_active(dev))
   2118 		dev->dv_flags |= DVF_SELF_SUSPENDED;
   2119 
   2120 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2121 }
   2122 
   2123 static void
   2124 pmflock_debug(device_t dev, const char *func, int line)
   2125 {
   2126 	pmf_private_t *pp = device_pmf_private(dev);
   2127 
   2128 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
   2129 	    func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
   2130 	    dev->dv_flags);
   2131 }
   2132 
   2133 static void
   2134 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
   2135 {
   2136 	pmf_private_t *pp = device_pmf_private(dev);
   2137 
   2138 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
   2139 	    "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
   2140 	    pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
   2141 }
   2142 
   2143 static bool
   2144 device_pmf_lock1(device_t dev PMF_FN_ARGS)
   2145 {
   2146 	pmf_private_t *pp = device_pmf_private(dev);
   2147 
   2148 	while (pp->pp_nlock > 0 && pp->pp_holder != curlwp &&
   2149 	       device_pmf_is_registered(dev)) {
   2150 		pp->pp_nwait++;
   2151 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2152 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
   2153 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2154 		pp->pp_nwait--;
   2155 	}
   2156 	if (!device_pmf_is_registered(dev)) {
   2157 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2158 		/* We could not acquire the lock, but some other thread may
   2159 		 * wait for it, also.  Wake that thread.
   2160 		 */
   2161 		cv_signal(&pp->pp_cv);
   2162 		return false;
   2163 	}
   2164 	pp->pp_nlock++;
   2165 	pp->pp_holder = curlwp;
   2166 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2167 	return true;
   2168 }
   2169 
   2170 bool
   2171 device_pmf_lock(device_t dev PMF_FN_ARGS)
   2172 {
   2173 	bool rc;
   2174 	pmf_private_t *pp = device_pmf_private(dev);
   2175 
   2176 	mutex_enter(&pp->pp_mtx);
   2177 	rc = device_pmf_lock1(dev PMF_FN_CALL);
   2178 	mutex_exit(&pp->pp_mtx);
   2179 
   2180 	return rc;
   2181 }
   2182 
   2183 void
   2184 device_pmf_unlock(device_t dev PMF_FN_ARGS)
   2185 {
   2186 	pmf_private_t *pp = device_pmf_private(dev);
   2187 
   2188 	KASSERT(pp->pp_nlock > 0);
   2189 	mutex_enter(&pp->pp_mtx);
   2190 	if (--pp->pp_nlock == 0)
   2191 		pp->pp_holder = NULL;
   2192 	cv_signal(&pp->pp_cv);
   2193 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2194 	mutex_exit(&pp->pp_mtx);
   2195 }
   2196 
   2197 void *
   2198 device_pmf_private(device_t dev)
   2199 {
   2200 	return dev->dv_pmf_private;
   2201 }
   2202 
   2203 void *
   2204 device_pmf_bus_private(device_t dev)
   2205 {
   2206 	return dev->dv_bus_private;
   2207 }
   2208 
   2209 bool
   2210 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
   2211 {
   2212 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2213 		return true;
   2214 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2215 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2216 		return false;
   2217 	if (*dev->dv_bus_suspend != NULL &&
   2218 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
   2219 		return false;
   2220 
   2221 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2222 	return true;
   2223 }
   2224 
   2225 bool
   2226 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
   2227 {
   2228 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2229 		return true;
   2230 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
   2231 		return false;
   2232 	if (*dev->dv_bus_resume != NULL &&
   2233 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
   2234 		return false;
   2235 
   2236 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2237 	return true;
   2238 }
   2239 
   2240 bool
   2241 device_pmf_bus_shutdown(device_t dev, int how)
   2242 {
   2243 
   2244 	if (*dev->dv_bus_shutdown != NULL &&
   2245 	    !(*dev->dv_bus_shutdown)(dev, how))
   2246 		return false;
   2247 	return true;
   2248 }
   2249 
   2250 void
   2251 device_pmf_bus_register(device_t dev, void *priv,
   2252     bool (*suspend)(device_t PMF_FN_PROTO),
   2253     bool (*resume)(device_t PMF_FN_PROTO),
   2254     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2255 {
   2256 	dev->dv_bus_private = priv;
   2257 	dev->dv_bus_resume = resume;
   2258 	dev->dv_bus_suspend = suspend;
   2259 	dev->dv_bus_shutdown = shutdown;
   2260 	dev->dv_bus_deregister = deregister;
   2261 }
   2262 
   2263 void
   2264 device_pmf_bus_deregister(device_t dev)
   2265 {
   2266 	if (dev->dv_bus_deregister == NULL)
   2267 		return;
   2268 	(*dev->dv_bus_deregister)(dev);
   2269 	dev->dv_bus_private = NULL;
   2270 	dev->dv_bus_suspend = NULL;
   2271 	dev->dv_bus_resume = NULL;
   2272 	dev->dv_bus_deregister = NULL;
   2273 }
   2274 
   2275 void *
   2276 device_pmf_class_private(device_t dev)
   2277 {
   2278 	return dev->dv_class_private;
   2279 }
   2280 
   2281 bool
   2282 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
   2283 {
   2284 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2285 		return true;
   2286 	if (*dev->dv_class_suspend != NULL &&
   2287 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
   2288 		return false;
   2289 
   2290 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2291 	return true;
   2292 }
   2293 
   2294 bool
   2295 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
   2296 {
   2297 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2298 		return true;
   2299 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2300 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2301 		return false;
   2302 	if (*dev->dv_class_resume != NULL &&
   2303 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
   2304 		return false;
   2305 
   2306 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2307 	return true;
   2308 }
   2309 
   2310 void
   2311 device_pmf_class_register(device_t dev, void *priv,
   2312     bool (*suspend)(device_t PMF_FN_PROTO),
   2313     bool (*resume)(device_t PMF_FN_PROTO),
   2314     void (*deregister)(device_t))
   2315 {
   2316 	dev->dv_class_private = priv;
   2317 	dev->dv_class_suspend = suspend;
   2318 	dev->dv_class_resume = resume;
   2319 	dev->dv_class_deregister = deregister;
   2320 }
   2321 
   2322 void
   2323 device_pmf_class_deregister(device_t dev)
   2324 {
   2325 	if (dev->dv_class_deregister == NULL)
   2326 		return;
   2327 	(*dev->dv_class_deregister)(dev);
   2328 	dev->dv_class_private = NULL;
   2329 	dev->dv_class_suspend = NULL;
   2330 	dev->dv_class_resume = NULL;
   2331 	dev->dv_class_deregister = NULL;
   2332 }
   2333 
   2334 bool
   2335 device_active(device_t dev, devactive_t type)
   2336 {
   2337 	size_t i;
   2338 
   2339 	if (dev->dv_activity_count == 0)
   2340 		return false;
   2341 
   2342 	for (i = 0; i < dev->dv_activity_count; ++i)
   2343 		(*dev->dv_activity_handlers[i])(dev, type);
   2344 
   2345 	return true;
   2346 }
   2347 
   2348 bool
   2349 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2350 {
   2351 	void (**new_handlers)(device_t, devactive_t);
   2352 	void (**old_handlers)(device_t, devactive_t);
   2353 	size_t i, new_size;
   2354 	int s;
   2355 
   2356 	old_handlers = dev->dv_activity_handlers;
   2357 
   2358 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2359 		if (old_handlers[i] == handler)
   2360 			panic("Double registering of idle handlers");
   2361 	}
   2362 
   2363 	new_size = dev->dv_activity_count + 1;
   2364 	new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF, M_WAITOK);
   2365 
   2366 	memcpy(new_handlers, old_handlers,
   2367 	    sizeof(void *) * dev->dv_activity_count);
   2368 	new_handlers[new_size - 1] = handler;
   2369 
   2370 	s = splhigh();
   2371 	dev->dv_activity_count = new_size;
   2372 	dev->dv_activity_handlers = new_handlers;
   2373 	splx(s);
   2374 
   2375 	if (old_handlers != NULL)
   2376 		free(old_handlers, M_DEVBUF);
   2377 
   2378 	return true;
   2379 }
   2380 
   2381 void
   2382 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2383 {
   2384 	void (**new_handlers)(device_t, devactive_t);
   2385 	void (**old_handlers)(device_t, devactive_t);
   2386 	size_t i, new_size;
   2387 	int s;
   2388 
   2389 	old_handlers = dev->dv_activity_handlers;
   2390 
   2391 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2392 		if (old_handlers[i] == handler)
   2393 			break;
   2394 	}
   2395 
   2396 	if (i == dev->dv_activity_count)
   2397 		return; /* XXX panic? */
   2398 
   2399 	new_size = dev->dv_activity_count - 1;
   2400 
   2401 	if (new_size == 0) {
   2402 		new_handlers = NULL;
   2403 	} else {
   2404 		new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF,
   2405 		    M_WAITOK);
   2406 		memcpy(new_handlers, old_handlers, sizeof(void *) * i);
   2407 		memcpy(new_handlers + i, old_handlers + i + 1,
   2408 		    sizeof(void *) * (new_size - i));
   2409 	}
   2410 
   2411 	s = splhigh();
   2412 	dev->dv_activity_count = new_size;
   2413 	dev->dv_activity_handlers = new_handlers;
   2414 	splx(s);
   2415 
   2416 	free(old_handlers, M_DEVBUF);
   2417 }
   2418 
   2419 /*
   2420  * Device Iteration
   2421  *
   2422  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2423  *     each device_t's in the device tree.
   2424  *
   2425  * deviter_init(di, flags): initialize the device iterator `di'
   2426  *     to "walk" the device tree.  deviter_next(di) will return
   2427  *     the first device_t in the device tree, or NULL if there are
   2428  *     no devices.
   2429  *
   2430  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2431  *     caller intends to modify the device tree by calling
   2432  *     config_detach(9) on devices in the order that the iterator
   2433  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2434  *     nearest the "root" of the device tree to be returned, first;
   2435  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2436  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2437  *     indicating both that deviter_init() should not respect any
   2438  *     locks on the device tree, and that deviter_next(di) may run
   2439  *     in more than one LWP before the walk has finished.
   2440  *
   2441  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2442  *     once.
   2443  *
   2444  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2445  *
   2446  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2447  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2448  *
   2449  * deviter_first(di, flags): initialize the device iterator `di'
   2450  *     and return the first device_t in the device tree, or NULL
   2451  *     if there are no devices.  The statement
   2452  *
   2453  *         dv = deviter_first(di);
   2454  *
   2455  *     is shorthand for
   2456  *
   2457  *         deviter_init(di);
   2458  *         dv = deviter_next(di);
   2459  *
   2460  * deviter_next(di): return the next device_t in the device tree,
   2461  *     or NULL if there are no more devices.  deviter_next(di)
   2462  *     is undefined if `di' was not initialized with deviter_init() or
   2463  *     deviter_first().
   2464  *
   2465  * deviter_release(di): stops iteration (subsequent calls to
   2466  *     deviter_next() will return NULL), releases any locks and
   2467  *     resources held by the device iterator.
   2468  *
   2469  * Device iteration does not return device_t's in any particular
   2470  * order.  An iterator will never return the same device_t twice.
   2471  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2472  * is called repeatedly on the same `di', it will eventually return
   2473  * NULL.  It is ok to attach/detach devices during device iteration.
   2474  */
   2475 void
   2476 deviter_init(deviter_t *di, deviter_flags_t flags)
   2477 {
   2478 	device_t dv;
   2479 	bool rw;
   2480 
   2481 	mutex_enter(&alldevs_mtx);
   2482 	if ((flags & DEVITER_F_SHUTDOWN) != 0) {
   2483 		flags |= DEVITER_F_RW;
   2484 		alldevs_nwrite++;
   2485 		alldevs_writer = NULL;
   2486 		alldevs_nread = 0;
   2487 	} else {
   2488 		rw = (flags & DEVITER_F_RW) != 0;
   2489 
   2490 		if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   2491 			;
   2492 		else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
   2493 		       (rw && alldevs_nread != 0))
   2494 			cv_wait(&alldevs_cv, &alldevs_mtx);
   2495 
   2496 		if (rw) {
   2497 			if (alldevs_nwrite++ == 0)
   2498 				alldevs_writer = curlwp;
   2499 		} else
   2500 			alldevs_nread++;
   2501 	}
   2502 	mutex_exit(&alldevs_mtx);
   2503 
   2504 	memset(di, 0, sizeof(*di));
   2505 
   2506 	di->di_flags = flags;
   2507 
   2508 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2509 	case DEVITER_F_LEAVES_FIRST:
   2510 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2511 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2512 		break;
   2513 	case DEVITER_F_ROOT_FIRST:
   2514 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2515 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2516 		break;
   2517 	default:
   2518 		break;
   2519 	}
   2520 
   2521 	deviter_reinit(di);
   2522 }
   2523 
   2524 static void
   2525 deviter_reinit(deviter_t *di)
   2526 {
   2527 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2528 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2529 	else
   2530 		di->di_prev = TAILQ_FIRST(&alldevs);
   2531 }
   2532 
   2533 device_t
   2534 deviter_first(deviter_t *di, deviter_flags_t flags)
   2535 {
   2536 	deviter_init(di, flags);
   2537 	return deviter_next(di);
   2538 }
   2539 
   2540 static device_t
   2541 deviter_next1(deviter_t *di)
   2542 {
   2543 	device_t dv;
   2544 
   2545 	dv = di->di_prev;
   2546 
   2547 	if (dv == NULL)
   2548 		;
   2549 	else if ((di->di_flags & DEVITER_F_RW) != 0)
   2550 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2551 	else
   2552 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2553 
   2554 	return dv;
   2555 }
   2556 
   2557 device_t
   2558 deviter_next(deviter_t *di)
   2559 {
   2560 	device_t dv = NULL;
   2561 
   2562 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2563 	case 0:
   2564 		return deviter_next1(di);
   2565 	case DEVITER_F_LEAVES_FIRST:
   2566 		while (di->di_curdepth >= 0) {
   2567 			if ((dv = deviter_next1(di)) == NULL) {
   2568 				di->di_curdepth--;
   2569 				deviter_reinit(di);
   2570 			} else if (dv->dv_depth == di->di_curdepth)
   2571 				break;
   2572 		}
   2573 		return dv;
   2574 	case DEVITER_F_ROOT_FIRST:
   2575 		while (di->di_curdepth <= di->di_maxdepth) {
   2576 			if ((dv = deviter_next1(di)) == NULL) {
   2577 				di->di_curdepth++;
   2578 				deviter_reinit(di);
   2579 			} else if (dv->dv_depth == di->di_curdepth)
   2580 				break;
   2581 		}
   2582 		return dv;
   2583 	default:
   2584 		return NULL;
   2585 	}
   2586 }
   2587 
   2588 void
   2589 deviter_release(deviter_t *di)
   2590 {
   2591 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2592 
   2593 	mutex_enter(&alldevs_mtx);
   2594 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   2595 		--alldevs_nwrite;
   2596 	else {
   2597 
   2598 		if (rw) {
   2599 			if (--alldevs_nwrite == 0)
   2600 				alldevs_writer = NULL;
   2601 		} else
   2602 			--alldevs_nread;
   2603 
   2604 		cv_signal(&alldevs_cv);
   2605 	}
   2606 	mutex_exit(&alldevs_mtx);
   2607 }
   2608