subr_autoconf.c revision 1.146.2.8 1 /* $NetBSD: subr_autoconf.c,v 1.146.2.8 2010/10/09 03:32:31 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.146.2.8 2010/10/09 03:32:31 yamt Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #endif
85
86 #include <sys/param.h>
87 #include <sys/device.h>
88 #include <sys/disklabel.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91 #include <sys/malloc.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110
111 #include <sys/disk.h>
112
113 #include <machine/limits.h>
114
115 #if defined(__i386__) && defined(_KERNEL_OPT)
116 #include "opt_splash.h"
117 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
118 #include <dev/splash/splash.h>
119 extern struct splash_progress *splash_progress_state;
120 #endif
121 #endif
122
123 /*
124 * Autoconfiguration subroutines.
125 */
126
127 /*
128 * ioconf.c exports exactly two names: cfdata and cfroots. All system
129 * devices and drivers are found via these tables.
130 */
131 extern struct cfdata cfdata[];
132 extern const short cfroots[];
133
134 /*
135 * List of all cfdriver structures. We use this to detect duplicates
136 * when other cfdrivers are loaded.
137 */
138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
139 extern struct cfdriver * const cfdriver_list_initial[];
140
141 /*
142 * Initial list of cfattach's.
143 */
144 extern const struct cfattachinit cfattachinit[];
145
146 /*
147 * List of cfdata tables. We always have one such list -- the one
148 * built statically when the kernel was configured.
149 */
150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
151 static struct cftable initcftable;
152
153 #define ROOT ((device_t)NULL)
154
155 struct matchinfo {
156 cfsubmatch_t fn;
157 struct device *parent;
158 const int *locs;
159 void *aux;
160 struct cfdata *match;
161 int pri;
162 };
163
164 struct alldevs_foray {
165 int af_s;
166 struct devicelist af_garbage;
167 };
168
169 static char *number(char *, int);
170 static void mapply(struct matchinfo *, cfdata_t);
171 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
172 static void config_devdelete(device_t);
173 static void config_devunlink(device_t, struct devicelist *);
174 static void config_makeroom(int, struct cfdriver *);
175 static void config_devlink(device_t);
176 static void config_alldevs_unlock(int);
177 static int config_alldevs_lock(void);
178 static void config_alldevs_enter(struct alldevs_foray *);
179 static void config_alldevs_exit(struct alldevs_foray *);
180
181 static void config_collect_garbage(struct devicelist *);
182 static void config_dump_garbage(struct devicelist *);
183
184 static void pmflock_debug(device_t, const char *, int);
185
186 static device_t deviter_next1(deviter_t *);
187 static void deviter_reinit(deviter_t *);
188
189 struct deferred_config {
190 TAILQ_ENTRY(deferred_config) dc_queue;
191 device_t dc_dev;
192 void (*dc_func)(device_t);
193 };
194
195 TAILQ_HEAD(deferred_config_head, deferred_config);
196
197 struct deferred_config_head deferred_config_queue =
198 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
199 struct deferred_config_head interrupt_config_queue =
200 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
201 int interrupt_config_threads = 8;
202 struct deferred_config_head mountroot_config_queue =
203 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
204 int mountroot_config_threads = 2;
205 static bool root_is_mounted = false;
206
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 TAILQ_ENTRY(finalize_hook) f_list;
212 int (*f_func)(device_t);
213 device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218
219 /* list of all devices */
220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
221 static kmutex_t alldevs_mtx;
222 static volatile bool alldevs_garbage = false;
223 static volatile devgen_t alldevs_gen = 1;
224 static volatile int alldevs_nread = 0;
225 static volatile int alldevs_nwrite = 0;
226
227 static int config_pending; /* semaphore for mountroot */
228 static kmutex_t config_misc_lock;
229 static kcondvar_t config_misc_cv;
230
231 static int detachall = 0;
232
233 #define STREQ(s1, s2) \
234 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
235
236 static bool config_initialized = false; /* config_init() has been called. */
237
238 static int config_do_twiddle;
239 static callout_t config_twiddle_ch;
240
241 static void sysctl_detach_setup(struct sysctllog **);
242
243 typedef int (*cfdriver_fn)(struct cfdriver *);
244 static int
245 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
246 cfdriver_fn drv_do, cfdriver_fn drv_undo,
247 const char *style, bool dopanic)
248 {
249 void (*pr)(const char *, ...) = dopanic ? panic : printf;
250 int i = 0, error = 0, e2;
251
252 for (i = 0; cfdriverv[i] != NULL; i++) {
253 if ((error = drv_do(cfdriverv[i])) != 0) {
254 pr("configure: `%s' driver %s failed: %d",
255 cfdriverv[i]->cd_name, style, error);
256 goto bad;
257 }
258 }
259
260 KASSERT(error == 0);
261 return 0;
262
263 bad:
264 printf("\n");
265 for (i--; i >= 0; i--) {
266 e2 = drv_undo(cfdriverv[i]);
267 KASSERT(e2 == 0);
268 }
269
270 return error;
271 }
272
273 typedef int (*cfattach_fn)(const char *, struct cfattach *);
274 static int
275 frob_cfattachvec(const struct cfattachinit *cfattachv,
276 cfattach_fn att_do, cfattach_fn att_undo,
277 const char *style, bool dopanic)
278 {
279 const struct cfattachinit *cfai = NULL;
280 void (*pr)(const char *, ...) = dopanic ? panic : printf;
281 int j = 0, error = 0, e2;
282
283 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
284 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
285 if ((error = att_do(cfai->cfai_name,
286 cfai->cfai_list[j]) != 0)) {
287 pr("configure: attachment `%s' "
288 "of `%s' driver %s failed: %d",
289 cfai->cfai_list[j]->ca_name,
290 cfai->cfai_name, style, error);
291 goto bad;
292 }
293 }
294 }
295
296 KASSERT(error == 0);
297 return 0;
298
299 bad:
300 /*
301 * Rollback in reverse order. dunno if super-important, but
302 * do that anyway. Although the code looks a little like
303 * someone did a little integration (in the math sense).
304 */
305 printf("\n");
306 if (cfai) {
307 bool last;
308
309 for (last = false; last == false; ) {
310 if (cfai == &cfattachv[0])
311 last = true;
312 for (j--; j >= 0; j--) {
313 e2 = att_undo(cfai->cfai_name,
314 cfai->cfai_list[j]);
315 KASSERT(e2 == 0);
316 }
317 if (!last) {
318 cfai--;
319 for (j = 0; cfai->cfai_list[j] != NULL; j++)
320 ;
321 }
322 }
323 }
324
325 return error;
326 }
327
328 /*
329 * Initialize the autoconfiguration data structures. Normally this
330 * is done by configure(), but some platforms need to do this very
331 * early (to e.g. initialize the console).
332 */
333 void
334 config_init(void)
335 {
336
337 KASSERT(config_initialized == false);
338
339 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
340
341 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
342 cv_init(&config_misc_cv, "cfgmisc");
343
344 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
345
346 frob_cfdrivervec(cfdriver_list_initial,
347 config_cfdriver_attach, NULL, "bootstrap", true);
348 frob_cfattachvec(cfattachinit,
349 config_cfattach_attach, NULL, "bootstrap", true);
350
351 initcftable.ct_cfdata = cfdata;
352 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
353
354 config_initialized = true;
355 }
356
357 /*
358 * Init or fini drivers and attachments. Either all or none
359 * are processed (via rollback). It would be nice if this were
360 * atomic to outside consumers, but with the current state of
361 * locking ...
362 */
363 int
364 config_init_component(struct cfdriver * const *cfdriverv,
365 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
366 {
367 int error;
368
369 if ((error = frob_cfdrivervec(cfdriverv,
370 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
371 return error;
372 if ((error = frob_cfattachvec(cfattachv,
373 config_cfattach_attach, config_cfattach_detach,
374 "init", false)) != 0) {
375 frob_cfdrivervec(cfdriverv,
376 config_cfdriver_detach, NULL, "init rollback", true);
377 return error;
378 }
379 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
380 frob_cfattachvec(cfattachv,
381 config_cfattach_detach, NULL, "init rollback", true);
382 frob_cfdrivervec(cfdriverv,
383 config_cfdriver_detach, NULL, "init rollback", true);
384 return error;
385 }
386
387 return 0;
388 }
389
390 int
391 config_fini_component(struct cfdriver * const *cfdriverv,
392 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
393 {
394 int error;
395
396 if ((error = config_cfdata_detach(cfdatav)) != 0)
397 return error;
398 if ((error = frob_cfattachvec(cfattachv,
399 config_cfattach_detach, config_cfattach_attach,
400 "fini", false)) != 0) {
401 if (config_cfdata_attach(cfdatav, 0) != 0)
402 panic("config_cfdata fini rollback failed");
403 return error;
404 }
405 if ((error = frob_cfdrivervec(cfdriverv,
406 config_cfdriver_detach, config_cfdriver_attach,
407 "fini", false)) != 0) {
408 frob_cfattachvec(cfattachv,
409 config_cfattach_attach, NULL, "fini rollback", true);
410 if (config_cfdata_attach(cfdatav, 0) != 0)
411 panic("config_cfdata fini rollback failed");
412 return error;
413 }
414
415 return 0;
416 }
417
418 void
419 config_init_mi(void)
420 {
421
422 if (!config_initialized)
423 config_init();
424
425 sysctl_detach_setup(NULL);
426 }
427
428 void
429 config_deferred(device_t dev)
430 {
431 config_process_deferred(&deferred_config_queue, dev);
432 config_process_deferred(&interrupt_config_queue, dev);
433 config_process_deferred(&mountroot_config_queue, dev);
434 }
435
436 static void
437 config_interrupts_thread(void *cookie)
438 {
439 struct deferred_config *dc;
440
441 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
442 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
443 (*dc->dc_func)(dc->dc_dev);
444 kmem_free(dc, sizeof(*dc));
445 config_pending_decr();
446 }
447 kthread_exit(0);
448 }
449
450 void
451 config_create_interruptthreads()
452 {
453 int i;
454
455 for (i = 0; i < interrupt_config_threads; i++) {
456 (void)kthread_create(PRI_NONE, 0, NULL,
457 config_interrupts_thread, NULL, NULL, "config");
458 }
459 }
460
461 static void
462 config_mountroot_thread(void *cookie)
463 {
464 struct deferred_config *dc;
465
466 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
467 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
468 (*dc->dc_func)(dc->dc_dev);
469 kmem_free(dc, sizeof(*dc));
470 }
471 kthread_exit(0);
472 }
473
474 void
475 config_create_mountrootthreads()
476 {
477 int i;
478
479 if (!root_is_mounted)
480 root_is_mounted = true;
481
482 for (i = 0; i < mountroot_config_threads; i++) {
483 (void)kthread_create(PRI_NONE, 0, NULL,
484 config_mountroot_thread, NULL, NULL, "config");
485 }
486 }
487
488 /*
489 * Announce device attach/detach to userland listeners.
490 */
491 static void
492 devmon_report_device(device_t dev, bool isattach)
493 {
494 #if NDRVCTL > 0
495 prop_dictionary_t ev;
496 const char *parent;
497 const char *what;
498 device_t pdev = device_parent(dev);
499
500 ev = prop_dictionary_create();
501 if (ev == NULL)
502 return;
503
504 what = (isattach ? "device-attach" : "device-detach");
505 parent = (pdev == NULL ? "root" : device_xname(pdev));
506 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
507 !prop_dictionary_set_cstring(ev, "parent", parent)) {
508 prop_object_release(ev);
509 return;
510 }
511
512 devmon_insert(what, ev);
513 #endif
514 }
515
516 /*
517 * Add a cfdriver to the system.
518 */
519 int
520 config_cfdriver_attach(struct cfdriver *cd)
521 {
522 struct cfdriver *lcd;
523
524 /* Make sure this driver isn't already in the system. */
525 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
526 if (STREQ(lcd->cd_name, cd->cd_name))
527 return EEXIST;
528 }
529
530 LIST_INIT(&cd->cd_attach);
531 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
532
533 return 0;
534 }
535
536 /*
537 * Remove a cfdriver from the system.
538 */
539 int
540 config_cfdriver_detach(struct cfdriver *cd)
541 {
542 struct alldevs_foray af;
543 int i, rc = 0;
544
545 config_alldevs_enter(&af);
546 /* Make sure there are no active instances. */
547 for (i = 0; i < cd->cd_ndevs; i++) {
548 if (cd->cd_devs[i] != NULL) {
549 rc = EBUSY;
550 break;
551 }
552 }
553 config_alldevs_exit(&af);
554
555 if (rc != 0)
556 return rc;
557
558 /* ...and no attachments loaded. */
559 if (LIST_EMPTY(&cd->cd_attach) == 0)
560 return EBUSY;
561
562 LIST_REMOVE(cd, cd_list);
563
564 KASSERT(cd->cd_devs == NULL);
565
566 return 0;
567 }
568
569 /*
570 * Look up a cfdriver by name.
571 */
572 struct cfdriver *
573 config_cfdriver_lookup(const char *name)
574 {
575 struct cfdriver *cd;
576
577 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
578 if (STREQ(cd->cd_name, name))
579 return cd;
580 }
581
582 return NULL;
583 }
584
585 /*
586 * Add a cfattach to the specified driver.
587 */
588 int
589 config_cfattach_attach(const char *driver, struct cfattach *ca)
590 {
591 struct cfattach *lca;
592 struct cfdriver *cd;
593
594 cd = config_cfdriver_lookup(driver);
595 if (cd == NULL)
596 return ESRCH;
597
598 /* Make sure this attachment isn't already on this driver. */
599 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
600 if (STREQ(lca->ca_name, ca->ca_name))
601 return EEXIST;
602 }
603
604 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
605
606 return 0;
607 }
608
609 /*
610 * Remove a cfattach from the specified driver.
611 */
612 int
613 config_cfattach_detach(const char *driver, struct cfattach *ca)
614 {
615 struct alldevs_foray af;
616 struct cfdriver *cd;
617 device_t dev;
618 int i, rc = 0;
619
620 cd = config_cfdriver_lookup(driver);
621 if (cd == NULL)
622 return ESRCH;
623
624 config_alldevs_enter(&af);
625 /* Make sure there are no active instances. */
626 for (i = 0; i < cd->cd_ndevs; i++) {
627 if ((dev = cd->cd_devs[i]) == NULL)
628 continue;
629 if (dev->dv_cfattach == ca) {
630 rc = EBUSY;
631 break;
632 }
633 }
634 config_alldevs_exit(&af);
635
636 if (rc != 0)
637 return rc;
638
639 LIST_REMOVE(ca, ca_list);
640
641 return 0;
642 }
643
644 /*
645 * Look up a cfattach by name.
646 */
647 static struct cfattach *
648 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
649 {
650 struct cfattach *ca;
651
652 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
653 if (STREQ(ca->ca_name, atname))
654 return ca;
655 }
656
657 return NULL;
658 }
659
660 /*
661 * Look up a cfattach by driver/attachment name.
662 */
663 struct cfattach *
664 config_cfattach_lookup(const char *name, const char *atname)
665 {
666 struct cfdriver *cd;
667
668 cd = config_cfdriver_lookup(name);
669 if (cd == NULL)
670 return NULL;
671
672 return config_cfattach_lookup_cd(cd, atname);
673 }
674
675 /*
676 * Apply the matching function and choose the best. This is used
677 * a few times and we want to keep the code small.
678 */
679 static void
680 mapply(struct matchinfo *m, cfdata_t cf)
681 {
682 int pri;
683
684 if (m->fn != NULL) {
685 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
686 } else {
687 pri = config_match(m->parent, cf, m->aux);
688 }
689 if (pri > m->pri) {
690 m->match = cf;
691 m->pri = pri;
692 }
693 }
694
695 int
696 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
697 {
698 const struct cfiattrdata *ci;
699 const struct cflocdesc *cl;
700 int nlocs, i;
701
702 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
703 KASSERT(ci);
704 nlocs = ci->ci_loclen;
705 KASSERT(!nlocs || locs);
706 for (i = 0; i < nlocs; i++) {
707 cl = &ci->ci_locdesc[i];
708 /* !cld_defaultstr means no default value */
709 if ((!(cl->cld_defaultstr)
710 || (cf->cf_loc[i] != cl->cld_default))
711 && cf->cf_loc[i] != locs[i])
712 return 0;
713 }
714
715 return config_match(parent, cf, aux);
716 }
717
718 /*
719 * Helper function: check whether the driver supports the interface attribute
720 * and return its descriptor structure.
721 */
722 static const struct cfiattrdata *
723 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
724 {
725 const struct cfiattrdata * const *cpp;
726
727 if (cd->cd_attrs == NULL)
728 return 0;
729
730 for (cpp = cd->cd_attrs; *cpp; cpp++) {
731 if (STREQ((*cpp)->ci_name, ia)) {
732 /* Match. */
733 return *cpp;
734 }
735 }
736 return 0;
737 }
738
739 /*
740 * Lookup an interface attribute description by name.
741 * If the driver is given, consider only its supported attributes.
742 */
743 const struct cfiattrdata *
744 cfiattr_lookup(const char *name, const struct cfdriver *cd)
745 {
746 const struct cfdriver *d;
747 const struct cfiattrdata *ia;
748
749 if (cd)
750 return cfdriver_get_iattr(cd, name);
751
752 LIST_FOREACH(d, &allcfdrivers, cd_list) {
753 ia = cfdriver_get_iattr(d, name);
754 if (ia)
755 return ia;
756 }
757 return 0;
758 }
759
760 /*
761 * Determine if `parent' is a potential parent for a device spec based
762 * on `cfp'.
763 */
764 static int
765 cfparent_match(const device_t parent, const struct cfparent *cfp)
766 {
767 struct cfdriver *pcd;
768
769 /* We don't match root nodes here. */
770 if (cfp == NULL)
771 return 0;
772
773 pcd = parent->dv_cfdriver;
774 KASSERT(pcd != NULL);
775
776 /*
777 * First, ensure this parent has the correct interface
778 * attribute.
779 */
780 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
781 return 0;
782
783 /*
784 * If no specific parent device instance was specified (i.e.
785 * we're attaching to the attribute only), we're done!
786 */
787 if (cfp->cfp_parent == NULL)
788 return 1;
789
790 /*
791 * Check the parent device's name.
792 */
793 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
794 return 0; /* not the same parent */
795
796 /*
797 * Make sure the unit number matches.
798 */
799 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
800 cfp->cfp_unit == parent->dv_unit)
801 return 1;
802
803 /* Unit numbers don't match. */
804 return 0;
805 }
806
807 /*
808 * Helper for config_cfdata_attach(): check all devices whether it could be
809 * parent any attachment in the config data table passed, and rescan.
810 */
811 static void
812 rescan_with_cfdata(const struct cfdata *cf)
813 {
814 device_t d;
815 const struct cfdata *cf1;
816 deviter_t di;
817
818
819 /*
820 * "alldevs" is likely longer than a modules's cfdata, so make it
821 * the outer loop.
822 */
823 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
824
825 if (!(d->dv_cfattach->ca_rescan))
826 continue;
827
828 for (cf1 = cf; cf1->cf_name; cf1++) {
829
830 if (!cfparent_match(d, cf1->cf_pspec))
831 continue;
832
833 (*d->dv_cfattach->ca_rescan)(d,
834 cfdata_ifattr(cf1), cf1->cf_loc);
835
836 config_deferred(d);
837 }
838 }
839 deviter_release(&di);
840 }
841
842 /*
843 * Attach a supplemental config data table and rescan potential
844 * parent devices if required.
845 */
846 int
847 config_cfdata_attach(cfdata_t cf, int scannow)
848 {
849 struct cftable *ct;
850
851 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
852 ct->ct_cfdata = cf;
853 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
854
855 if (scannow)
856 rescan_with_cfdata(cf);
857
858 return 0;
859 }
860
861 /*
862 * Helper for config_cfdata_detach: check whether a device is
863 * found through any attachment in the config data table.
864 */
865 static int
866 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
867 {
868 const struct cfdata *cf1;
869
870 for (cf1 = cf; cf1->cf_name; cf1++)
871 if (d->dv_cfdata == cf1)
872 return 1;
873
874 return 0;
875 }
876
877 /*
878 * Detach a supplemental config data table. Detach all devices found
879 * through that table (and thus keeping references to it) before.
880 */
881 int
882 config_cfdata_detach(cfdata_t cf)
883 {
884 device_t d;
885 int error = 0;
886 struct cftable *ct;
887 deviter_t di;
888
889 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
890 d = deviter_next(&di)) {
891 if (!dev_in_cfdata(d, cf))
892 continue;
893 if ((error = config_detach(d, 0)) != 0)
894 break;
895 }
896 deviter_release(&di);
897 if (error) {
898 aprint_error_dev(d, "unable to detach instance\n");
899 return error;
900 }
901
902 TAILQ_FOREACH(ct, &allcftables, ct_list) {
903 if (ct->ct_cfdata == cf) {
904 TAILQ_REMOVE(&allcftables, ct, ct_list);
905 kmem_free(ct, sizeof(*ct));
906 return 0;
907 }
908 }
909
910 /* not found -- shouldn't happen */
911 return EINVAL;
912 }
913
914 /*
915 * Invoke the "match" routine for a cfdata entry on behalf of
916 * an external caller, usually a "submatch" routine.
917 */
918 int
919 config_match(device_t parent, cfdata_t cf, void *aux)
920 {
921 struct cfattach *ca;
922
923 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
924 if (ca == NULL) {
925 /* No attachment for this entry, oh well. */
926 return 0;
927 }
928
929 return (*ca->ca_match)(parent, cf, aux);
930 }
931
932 /*
933 * Iterate over all potential children of some device, calling the given
934 * function (default being the child's match function) for each one.
935 * Nonzero returns are matches; the highest value returned is considered
936 * the best match. Return the `found child' if we got a match, or NULL
937 * otherwise. The `aux' pointer is simply passed on through.
938 *
939 * Note that this function is designed so that it can be used to apply
940 * an arbitrary function to all potential children (its return value
941 * can be ignored).
942 */
943 cfdata_t
944 config_search_loc(cfsubmatch_t fn, device_t parent,
945 const char *ifattr, const int *locs, void *aux)
946 {
947 struct cftable *ct;
948 cfdata_t cf;
949 struct matchinfo m;
950
951 KASSERT(config_initialized);
952 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
953
954 m.fn = fn;
955 m.parent = parent;
956 m.locs = locs;
957 m.aux = aux;
958 m.match = NULL;
959 m.pri = 0;
960
961 TAILQ_FOREACH(ct, &allcftables, ct_list) {
962 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
963
964 /* We don't match root nodes here. */
965 if (!cf->cf_pspec)
966 continue;
967
968 /*
969 * Skip cf if no longer eligible, otherwise scan
970 * through parents for one matching `parent', and
971 * try match function.
972 */
973 if (cf->cf_fstate == FSTATE_FOUND)
974 continue;
975 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
976 cf->cf_fstate == FSTATE_DSTAR)
977 continue;
978
979 /*
980 * If an interface attribute was specified,
981 * consider only children which attach to
982 * that attribute.
983 */
984 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
985 continue;
986
987 if (cfparent_match(parent, cf->cf_pspec))
988 mapply(&m, cf);
989 }
990 }
991 return m.match;
992 }
993
994 cfdata_t
995 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
996 void *aux)
997 {
998
999 return config_search_loc(fn, parent, ifattr, NULL, aux);
1000 }
1001
1002 /*
1003 * Find the given root device.
1004 * This is much like config_search, but there is no parent.
1005 * Don't bother with multiple cfdata tables; the root node
1006 * must always be in the initial table.
1007 */
1008 cfdata_t
1009 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1010 {
1011 cfdata_t cf;
1012 const short *p;
1013 struct matchinfo m;
1014
1015 m.fn = fn;
1016 m.parent = ROOT;
1017 m.aux = aux;
1018 m.match = NULL;
1019 m.pri = 0;
1020 m.locs = 0;
1021 /*
1022 * Look at root entries for matching name. We do not bother
1023 * with found-state here since only one root should ever be
1024 * searched (and it must be done first).
1025 */
1026 for (p = cfroots; *p >= 0; p++) {
1027 cf = &cfdata[*p];
1028 if (strcmp(cf->cf_name, rootname) == 0)
1029 mapply(&m, cf);
1030 }
1031 return m.match;
1032 }
1033
1034 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1035
1036 /*
1037 * The given `aux' argument describes a device that has been found
1038 * on the given parent, but not necessarily configured. Locate the
1039 * configuration data for that device (using the submatch function
1040 * provided, or using candidates' cd_match configuration driver
1041 * functions) and attach it, and return true. If the device was
1042 * not configured, call the given `print' function and return 0.
1043 */
1044 device_t
1045 config_found_sm_loc(device_t parent,
1046 const char *ifattr, const int *locs, void *aux,
1047 cfprint_t print, cfsubmatch_t submatch)
1048 {
1049 cfdata_t cf;
1050
1051 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1052 if (splash_progress_state)
1053 splash_progress_update(splash_progress_state);
1054 #endif
1055
1056 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1057 return(config_attach_loc(parent, cf, locs, aux, print));
1058 if (print) {
1059 if (config_do_twiddle && cold)
1060 twiddle();
1061 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1062 }
1063
1064 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1065 if (splash_progress_state)
1066 splash_progress_update(splash_progress_state);
1067 #endif
1068
1069 return NULL;
1070 }
1071
1072 device_t
1073 config_found_ia(device_t parent, const char *ifattr, void *aux,
1074 cfprint_t print)
1075 {
1076
1077 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1078 }
1079
1080 device_t
1081 config_found(device_t parent, void *aux, cfprint_t print)
1082 {
1083
1084 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1085 }
1086
1087 /*
1088 * As above, but for root devices.
1089 */
1090 device_t
1091 config_rootfound(const char *rootname, void *aux)
1092 {
1093 cfdata_t cf;
1094
1095 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1096 return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
1097 aprint_error("root device %s not configured\n", rootname);
1098 return NULL;
1099 }
1100
1101 /* just like sprintf(buf, "%d") except that it works from the end */
1102 static char *
1103 number(char *ep, int n)
1104 {
1105
1106 *--ep = 0;
1107 while (n >= 10) {
1108 *--ep = (n % 10) + '0';
1109 n /= 10;
1110 }
1111 *--ep = n + '0';
1112 return ep;
1113 }
1114
1115 /*
1116 * Expand the size of the cd_devs array if necessary.
1117 *
1118 * The caller must hold alldevs_mtx. config_makeroom() may release and
1119 * re-acquire alldevs_mtx, so callers should re-check conditions such
1120 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1121 * returns.
1122 */
1123 static void
1124 config_makeroom(int n, struct cfdriver *cd)
1125 {
1126 int old, new;
1127 device_t *osp, *nsp;
1128
1129 alldevs_nwrite++;
1130
1131 for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
1132 ;
1133
1134 while (n >= cd->cd_ndevs) {
1135 /*
1136 * Need to expand the array.
1137 */
1138 old = cd->cd_ndevs;
1139 osp = cd->cd_devs;
1140
1141 /* Release alldevs_mtx around allocation, which may
1142 * sleep.
1143 */
1144 mutex_exit(&alldevs_mtx);
1145 nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
1146 if (nsp == NULL)
1147 panic("%s: could not expand cd_devs", __func__);
1148 mutex_enter(&alldevs_mtx);
1149
1150 /* If another thread moved the array while we did
1151 * not hold alldevs_mtx, try again.
1152 */
1153 if (cd->cd_devs != osp) {
1154 mutex_exit(&alldevs_mtx);
1155 kmem_free(nsp, sizeof(device_t[new]));
1156 mutex_enter(&alldevs_mtx);
1157 continue;
1158 }
1159
1160 memset(nsp + old, 0, sizeof(device_t[new - old]));
1161 if (old != 0)
1162 memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
1163
1164 cd->cd_ndevs = new;
1165 cd->cd_devs = nsp;
1166 if (old != 0) {
1167 mutex_exit(&alldevs_mtx);
1168 kmem_free(osp, sizeof(device_t[old]));
1169 mutex_enter(&alldevs_mtx);
1170 }
1171 }
1172 alldevs_nwrite--;
1173 }
1174
1175 /*
1176 * Put dev into the devices list.
1177 */
1178 static void
1179 config_devlink(device_t dev)
1180 {
1181 int s;
1182
1183 s = config_alldevs_lock();
1184
1185 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1186
1187 dev->dv_add_gen = alldevs_gen;
1188 /* It is safe to add a device to the tail of the list while
1189 * readers and writers are in the list.
1190 */
1191 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1192 config_alldevs_unlock(s);
1193 }
1194
1195 static void
1196 config_devfree(device_t dev)
1197 {
1198 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1199
1200 if (dev->dv_cfattach->ca_devsize > 0)
1201 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1202 if (priv)
1203 kmem_free(dev, sizeof(*dev));
1204 }
1205
1206 /*
1207 * Caller must hold alldevs_mtx.
1208 */
1209 static void
1210 config_devunlink(device_t dev, struct devicelist *garbage)
1211 {
1212 struct device_garbage *dg = &dev->dv_garbage;
1213 cfdriver_t cd = device_cfdriver(dev);
1214 int i;
1215
1216 KASSERT(mutex_owned(&alldevs_mtx));
1217
1218 /* Unlink from device list. Link to garbage list. */
1219 TAILQ_REMOVE(&alldevs, dev, dv_list);
1220 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1221
1222 /* Remove from cfdriver's array. */
1223 cd->cd_devs[dev->dv_unit] = NULL;
1224
1225 /*
1226 * If the device now has no units in use, unlink its softc array.
1227 */
1228 for (i = 0; i < cd->cd_ndevs; i++) {
1229 if (cd->cd_devs[i] != NULL)
1230 break;
1231 }
1232 /* Nothing found. Unlink, now. Deallocate, later. */
1233 if (i == cd->cd_ndevs) {
1234 dg->dg_ndevs = cd->cd_ndevs;
1235 dg->dg_devs = cd->cd_devs;
1236 cd->cd_devs = NULL;
1237 cd->cd_ndevs = 0;
1238 }
1239 }
1240
1241 static void
1242 config_devdelete(device_t dev)
1243 {
1244 struct device_garbage *dg = &dev->dv_garbage;
1245 device_lock_t dvl = device_getlock(dev);
1246
1247 if (dg->dg_devs != NULL)
1248 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1249
1250 cv_destroy(&dvl->dvl_cv);
1251 mutex_destroy(&dvl->dvl_mtx);
1252
1253 KASSERT(dev->dv_properties != NULL);
1254 prop_object_release(dev->dv_properties);
1255
1256 if (dev->dv_activity_handlers)
1257 panic("%s with registered handlers", __func__);
1258
1259 if (dev->dv_locators) {
1260 size_t amount = *--dev->dv_locators;
1261 kmem_free(dev->dv_locators, amount);
1262 }
1263
1264 config_devfree(dev);
1265 }
1266
1267 static int
1268 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1269 {
1270 int unit;
1271
1272 if (cf->cf_fstate == FSTATE_STAR) {
1273 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1274 if (cd->cd_devs[unit] == NULL)
1275 break;
1276 /*
1277 * unit is now the unit of the first NULL device pointer,
1278 * or max(cd->cd_ndevs,cf->cf_unit).
1279 */
1280 } else {
1281 unit = cf->cf_unit;
1282 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1283 unit = -1;
1284 }
1285 return unit;
1286 }
1287
1288 static int
1289 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1290 {
1291 struct alldevs_foray af;
1292 int unit;
1293
1294 config_alldevs_enter(&af);
1295 for (;;) {
1296 unit = config_unit_nextfree(cd, cf);
1297 if (unit == -1)
1298 break;
1299 if (unit < cd->cd_ndevs) {
1300 cd->cd_devs[unit] = dev;
1301 dev->dv_unit = unit;
1302 break;
1303 }
1304 config_makeroom(unit, cd);
1305 }
1306 config_alldevs_exit(&af);
1307
1308 return unit;
1309 }
1310
1311 static device_t
1312 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1313 {
1314 cfdriver_t cd;
1315 cfattach_t ca;
1316 size_t lname, lunit;
1317 const char *xunit;
1318 int myunit;
1319 char num[10];
1320 device_t dev;
1321 void *dev_private;
1322 const struct cfiattrdata *ia;
1323 device_lock_t dvl;
1324
1325 cd = config_cfdriver_lookup(cf->cf_name);
1326 if (cd == NULL)
1327 return NULL;
1328
1329 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1330 if (ca == NULL)
1331 return NULL;
1332
1333 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1334 ca->ca_devsize < sizeof(struct device))
1335 panic("config_devalloc: %s", cf->cf_atname);
1336
1337 /* get memory for all device vars */
1338 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1339 if (ca->ca_devsize > 0) {
1340 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1341 if (dev_private == NULL)
1342 panic("config_devalloc: memory allocation for device softc failed");
1343 } else {
1344 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1345 dev_private = NULL;
1346 }
1347
1348 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1349 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1350 } else {
1351 dev = dev_private;
1352 }
1353 if (dev == NULL)
1354 panic("config_devalloc: memory allocation for device_t failed");
1355
1356 dev->dv_class = cd->cd_class;
1357 dev->dv_cfdata = cf;
1358 dev->dv_cfdriver = cd;
1359 dev->dv_cfattach = ca;
1360 dev->dv_activity_count = 0;
1361 dev->dv_activity_handlers = NULL;
1362 dev->dv_private = dev_private;
1363 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1364
1365 myunit = config_unit_alloc(dev, cd, cf);
1366 if (myunit == -1) {
1367 config_devfree(dev);
1368 return NULL;
1369 }
1370
1371 /* compute length of name and decimal expansion of unit number */
1372 lname = strlen(cd->cd_name);
1373 xunit = number(&num[sizeof(num)], myunit);
1374 lunit = &num[sizeof(num)] - xunit;
1375 if (lname + lunit > sizeof(dev->dv_xname))
1376 panic("config_devalloc: device name too long");
1377
1378 dvl = device_getlock(dev);
1379
1380 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1381 cv_init(&dvl->dvl_cv, "pmfsusp");
1382
1383 memcpy(dev->dv_xname, cd->cd_name, lname);
1384 memcpy(dev->dv_xname + lname, xunit, lunit);
1385 dev->dv_parent = parent;
1386 if (parent != NULL)
1387 dev->dv_depth = parent->dv_depth + 1;
1388 else
1389 dev->dv_depth = 0;
1390 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1391 if (locs) {
1392 KASSERT(parent); /* no locators at root */
1393 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1394 dev->dv_locators =
1395 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1396 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1397 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1398 }
1399 dev->dv_properties = prop_dictionary_create();
1400 KASSERT(dev->dv_properties != NULL);
1401
1402 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1403 "device-driver", dev->dv_cfdriver->cd_name);
1404 prop_dictionary_set_uint16(dev->dv_properties,
1405 "device-unit", dev->dv_unit);
1406
1407 return dev;
1408 }
1409
1410 /*
1411 * Attach a found device.
1412 */
1413 device_t
1414 config_attach_loc(device_t parent, cfdata_t cf,
1415 const int *locs, void *aux, cfprint_t print)
1416 {
1417 device_t dev;
1418 struct cftable *ct;
1419 const char *drvname;
1420
1421 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1422 if (splash_progress_state)
1423 splash_progress_update(splash_progress_state);
1424 #endif
1425
1426 dev = config_devalloc(parent, cf, locs);
1427 if (!dev)
1428 panic("config_attach: allocation of device softc failed");
1429
1430 /* XXX redundant - see below? */
1431 if (cf->cf_fstate != FSTATE_STAR) {
1432 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1433 cf->cf_fstate = FSTATE_FOUND;
1434 }
1435
1436 config_devlink(dev);
1437
1438 if (config_do_twiddle && cold)
1439 twiddle();
1440 else
1441 aprint_naive("Found ");
1442 /*
1443 * We want the next two printfs for normal, verbose, and quiet,
1444 * but not silent (in which case, we're twiddling, instead).
1445 */
1446 if (parent == ROOT) {
1447 aprint_naive("%s (root)", device_xname(dev));
1448 aprint_normal("%s (root)", device_xname(dev));
1449 } else {
1450 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1451 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1452 if (print)
1453 (void) (*print)(aux, NULL);
1454 }
1455
1456 /*
1457 * Before attaching, clobber any unfound devices that are
1458 * otherwise identical.
1459 * XXX code above is redundant?
1460 */
1461 drvname = dev->dv_cfdriver->cd_name;
1462 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1463 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1464 if (STREQ(cf->cf_name, drvname) &&
1465 cf->cf_unit == dev->dv_unit) {
1466 if (cf->cf_fstate == FSTATE_NOTFOUND)
1467 cf->cf_fstate = FSTATE_FOUND;
1468 }
1469 }
1470 }
1471 #ifdef __HAVE_DEVICE_REGISTER
1472 device_register(dev, aux);
1473 #endif
1474
1475 /* Let userland know */
1476 devmon_report_device(dev, true);
1477
1478 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1479 if (splash_progress_state)
1480 splash_progress_update(splash_progress_state);
1481 #endif
1482 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1483 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1484 if (splash_progress_state)
1485 splash_progress_update(splash_progress_state);
1486 #endif
1487
1488 if (!device_pmf_is_registered(dev))
1489 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1490
1491 config_process_deferred(&deferred_config_queue, dev);
1492
1493 #ifdef __HAVE_DEVICE_REGISTER_POSTCONFIG
1494 device_register_post_config(dev, aux);
1495 #endif
1496 return dev;
1497 }
1498
1499 device_t
1500 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1501 {
1502
1503 return config_attach_loc(parent, cf, NULL, aux, print);
1504 }
1505
1506 /*
1507 * As above, but for pseudo-devices. Pseudo-devices attached in this
1508 * way are silently inserted into the device tree, and their children
1509 * attached.
1510 *
1511 * Note that because pseudo-devices are attached silently, any information
1512 * the attach routine wishes to print should be prefixed with the device
1513 * name by the attach routine.
1514 */
1515 device_t
1516 config_attach_pseudo(cfdata_t cf)
1517 {
1518 device_t dev;
1519
1520 dev = config_devalloc(ROOT, cf, NULL);
1521 if (!dev)
1522 return NULL;
1523
1524 /* XXX mark busy in cfdata */
1525
1526 if (cf->cf_fstate != FSTATE_STAR) {
1527 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1528 cf->cf_fstate = FSTATE_FOUND;
1529 }
1530
1531 config_devlink(dev);
1532
1533 #if 0 /* XXXJRT not yet */
1534 #ifdef __HAVE_DEVICE_REGISTER
1535 device_register(dev, NULL); /* like a root node */
1536 #endif
1537 #endif
1538 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1539 config_process_deferred(&deferred_config_queue, dev);
1540 return dev;
1541 }
1542
1543 /*
1544 * Caller must hold alldevs_mtx.
1545 */
1546 static void
1547 config_collect_garbage(struct devicelist *garbage)
1548 {
1549 device_t dv;
1550
1551 KASSERT(!cpu_intr_p());
1552 KASSERT(!cpu_softintr_p());
1553 KASSERT(mutex_owned(&alldevs_mtx));
1554
1555 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1556 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1557 if (dv->dv_del_gen != 0)
1558 break;
1559 }
1560 if (dv == NULL) {
1561 alldevs_garbage = false;
1562 break;
1563 }
1564 config_devunlink(dv, garbage);
1565 }
1566 KASSERT(mutex_owned(&alldevs_mtx));
1567 }
1568
1569 static void
1570 config_dump_garbage(struct devicelist *garbage)
1571 {
1572 device_t dv;
1573
1574 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1575 TAILQ_REMOVE(garbage, dv, dv_list);
1576 config_devdelete(dv);
1577 }
1578 }
1579
1580 /*
1581 * Detach a device. Optionally forced (e.g. because of hardware
1582 * removal) and quiet. Returns zero if successful, non-zero
1583 * (an error code) otherwise.
1584 *
1585 * Note that this code wants to be run from a process context, so
1586 * that the detach can sleep to allow processes which have a device
1587 * open to run and unwind their stacks.
1588 */
1589 int
1590 config_detach(device_t dev, int flags)
1591 {
1592 struct alldevs_foray af;
1593 struct cftable *ct;
1594 cfdata_t cf;
1595 const struct cfattach *ca;
1596 struct cfdriver *cd;
1597 #ifdef DIAGNOSTIC
1598 device_t d;
1599 #endif
1600 int rv = 0, s;
1601
1602 #ifdef DIAGNOSTIC
1603 cf = dev->dv_cfdata;
1604 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1605 cf->cf_fstate != FSTATE_STAR)
1606 panic("config_detach: %s: bad device fstate %d",
1607 device_xname(dev), cf ? cf->cf_fstate : -1);
1608 #endif
1609 cd = dev->dv_cfdriver;
1610 KASSERT(cd != NULL);
1611
1612 ca = dev->dv_cfattach;
1613 KASSERT(ca != NULL);
1614
1615 s = config_alldevs_lock();
1616 if (dev->dv_del_gen != 0) {
1617 config_alldevs_unlock(s);
1618 #ifdef DIAGNOSTIC
1619 printf("%s: %s is already detached\n", __func__,
1620 device_xname(dev));
1621 #endif /* DIAGNOSTIC */
1622 return ENOENT;
1623 }
1624 alldevs_nwrite++;
1625 config_alldevs_unlock(s);
1626
1627 if (!detachall &&
1628 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1629 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1630 rv = EOPNOTSUPP;
1631 } else if (ca->ca_detach != NULL) {
1632 rv = (*ca->ca_detach)(dev, flags);
1633 } else
1634 rv = EOPNOTSUPP;
1635
1636 /*
1637 * If it was not possible to detach the device, then we either
1638 * panic() (for the forced but failed case), or return an error.
1639 *
1640 * If it was possible to detach the device, ensure that the
1641 * device is deactivated.
1642 */
1643 if (rv == 0)
1644 dev->dv_flags &= ~DVF_ACTIVE;
1645 else if ((flags & DETACH_FORCE) == 0)
1646 goto out;
1647 else {
1648 panic("config_detach: forced detach of %s failed (%d)",
1649 device_xname(dev), rv);
1650 }
1651
1652 /*
1653 * The device has now been successfully detached.
1654 */
1655
1656 /* Let userland know */
1657 devmon_report_device(dev, false);
1658
1659 #ifdef DIAGNOSTIC
1660 /*
1661 * Sanity: If you're successfully detached, you should have no
1662 * children. (Note that because children must be attached
1663 * after parents, we only need to search the latter part of
1664 * the list.)
1665 */
1666 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1667 d = TAILQ_NEXT(d, dv_list)) {
1668 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1669 printf("config_detach: detached device %s"
1670 " has children %s\n", device_xname(dev), device_xname(d));
1671 panic("config_detach");
1672 }
1673 }
1674 #endif
1675
1676 /* notify the parent that the child is gone */
1677 if (dev->dv_parent) {
1678 device_t p = dev->dv_parent;
1679 if (p->dv_cfattach->ca_childdetached)
1680 (*p->dv_cfattach->ca_childdetached)(p, dev);
1681 }
1682
1683 /*
1684 * Mark cfdata to show that the unit can be reused, if possible.
1685 */
1686 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1687 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1688 if (STREQ(cf->cf_name, cd->cd_name)) {
1689 if (cf->cf_fstate == FSTATE_FOUND &&
1690 cf->cf_unit == dev->dv_unit)
1691 cf->cf_fstate = FSTATE_NOTFOUND;
1692 }
1693 }
1694 }
1695
1696 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1697 aprint_normal_dev(dev, "detached\n");
1698
1699 out:
1700 config_alldevs_enter(&af);
1701 KASSERT(alldevs_nwrite != 0);
1702 --alldevs_nwrite;
1703 if (rv == 0 && dev->dv_del_gen == 0)
1704 config_devunlink(dev, &af.af_garbage);
1705 config_alldevs_exit(&af);
1706
1707 return rv;
1708 }
1709
1710 int
1711 config_detach_children(device_t parent, int flags)
1712 {
1713 device_t dv;
1714 deviter_t di;
1715 int error = 0;
1716
1717 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1718 dv = deviter_next(&di)) {
1719 if (device_parent(dv) != parent)
1720 continue;
1721 if ((error = config_detach(dv, flags)) != 0)
1722 break;
1723 }
1724 deviter_release(&di);
1725 return error;
1726 }
1727
1728 device_t
1729 shutdown_first(struct shutdown_state *s)
1730 {
1731 if (!s->initialized) {
1732 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1733 s->initialized = true;
1734 }
1735 return shutdown_next(s);
1736 }
1737
1738 device_t
1739 shutdown_next(struct shutdown_state *s)
1740 {
1741 device_t dv;
1742
1743 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1744 ;
1745
1746 if (dv == NULL)
1747 s->initialized = false;
1748
1749 return dv;
1750 }
1751
1752 bool
1753 config_detach_all(int how)
1754 {
1755 static struct shutdown_state s;
1756 device_t curdev;
1757 bool progress = false;
1758
1759 if ((how & RB_NOSYNC) != 0)
1760 return false;
1761
1762 for (curdev = shutdown_first(&s); curdev != NULL;
1763 curdev = shutdown_next(&s)) {
1764 aprint_debug(" detaching %s, ", device_xname(curdev));
1765 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1766 progress = true;
1767 aprint_debug("success.");
1768 } else
1769 aprint_debug("failed.");
1770 }
1771 return progress;
1772 }
1773
1774 static bool
1775 device_is_ancestor_of(device_t ancestor, device_t descendant)
1776 {
1777 device_t dv;
1778
1779 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1780 if (device_parent(dv) == ancestor)
1781 return true;
1782 }
1783 return false;
1784 }
1785
1786 int
1787 config_deactivate(device_t dev)
1788 {
1789 deviter_t di;
1790 const struct cfattach *ca;
1791 device_t descendant;
1792 int s, rv = 0, oflags;
1793
1794 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1795 descendant != NULL;
1796 descendant = deviter_next(&di)) {
1797 if (dev != descendant &&
1798 !device_is_ancestor_of(dev, descendant))
1799 continue;
1800
1801 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1802 continue;
1803
1804 ca = descendant->dv_cfattach;
1805 oflags = descendant->dv_flags;
1806
1807 descendant->dv_flags &= ~DVF_ACTIVE;
1808 if (ca->ca_activate == NULL)
1809 continue;
1810 s = splhigh();
1811 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1812 splx(s);
1813 if (rv != 0)
1814 descendant->dv_flags = oflags;
1815 }
1816 deviter_release(&di);
1817 return rv;
1818 }
1819
1820 /*
1821 * Defer the configuration of the specified device until all
1822 * of its parent's devices have been attached.
1823 */
1824 void
1825 config_defer(device_t dev, void (*func)(device_t))
1826 {
1827 struct deferred_config *dc;
1828
1829 if (dev->dv_parent == NULL)
1830 panic("config_defer: can't defer config of a root device");
1831
1832 #ifdef DIAGNOSTIC
1833 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1834 if (dc->dc_dev == dev)
1835 panic("config_defer: deferred twice");
1836 }
1837 #endif
1838
1839 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1840 if (dc == NULL)
1841 panic("config_defer: unable to allocate callback");
1842
1843 dc->dc_dev = dev;
1844 dc->dc_func = func;
1845 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1846 config_pending_incr();
1847 }
1848
1849 /*
1850 * Defer some autoconfiguration for a device until after interrupts
1851 * are enabled.
1852 */
1853 void
1854 config_interrupts(device_t dev, void (*func)(device_t))
1855 {
1856 struct deferred_config *dc;
1857
1858 /*
1859 * If interrupts are enabled, callback now.
1860 */
1861 if (cold == 0) {
1862 (*func)(dev);
1863 return;
1864 }
1865
1866 #ifdef DIAGNOSTIC
1867 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1868 if (dc->dc_dev == dev)
1869 panic("config_interrupts: deferred twice");
1870 }
1871 #endif
1872
1873 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1874 if (dc == NULL)
1875 panic("config_interrupts: unable to allocate callback");
1876
1877 dc->dc_dev = dev;
1878 dc->dc_func = func;
1879 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1880 config_pending_incr();
1881 }
1882
1883 /*
1884 * Defer some autoconfiguration for a device until after root file system
1885 * is mounted (to load firmware etc).
1886 */
1887 void
1888 config_mountroot(device_t dev, void (*func)(device_t))
1889 {
1890 struct deferred_config *dc;
1891
1892 /*
1893 * If root file system is mounted, callback now.
1894 */
1895 if (root_is_mounted) {
1896 (*func)(dev);
1897 return;
1898 }
1899
1900 #ifdef DIAGNOSTIC
1901 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
1902 if (dc->dc_dev == dev)
1903 panic("%s: deferred twice", __func__);
1904 }
1905 #endif
1906
1907 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1908 if (dc == NULL)
1909 panic("%s: unable to allocate callback", __func__);
1910
1911 dc->dc_dev = dev;
1912 dc->dc_func = func;
1913 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
1914 }
1915
1916 /*
1917 * Process a deferred configuration queue.
1918 */
1919 static void
1920 config_process_deferred(struct deferred_config_head *queue,
1921 device_t parent)
1922 {
1923 struct deferred_config *dc, *ndc;
1924
1925 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1926 ndc = TAILQ_NEXT(dc, dc_queue);
1927 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1928 TAILQ_REMOVE(queue, dc, dc_queue);
1929 (*dc->dc_func)(dc->dc_dev);
1930 kmem_free(dc, sizeof(*dc));
1931 config_pending_decr();
1932 }
1933 }
1934 }
1935
1936 /*
1937 * Manipulate the config_pending semaphore.
1938 */
1939 void
1940 config_pending_incr(void)
1941 {
1942
1943 mutex_enter(&config_misc_lock);
1944 config_pending++;
1945 mutex_exit(&config_misc_lock);
1946 }
1947
1948 void
1949 config_pending_decr(void)
1950 {
1951
1952 #ifdef DIAGNOSTIC
1953 if (config_pending == 0)
1954 panic("config_pending_decr: config_pending == 0");
1955 #endif
1956 mutex_enter(&config_misc_lock);
1957 config_pending--;
1958 if (config_pending == 0)
1959 cv_broadcast(&config_misc_cv);
1960 mutex_exit(&config_misc_lock);
1961 }
1962
1963 /*
1964 * Register a "finalization" routine. Finalization routines are
1965 * called iteratively once all real devices have been found during
1966 * autoconfiguration, for as long as any one finalizer has done
1967 * any work.
1968 */
1969 int
1970 config_finalize_register(device_t dev, int (*fn)(device_t))
1971 {
1972 struct finalize_hook *f;
1973
1974 /*
1975 * If finalization has already been done, invoke the
1976 * callback function now.
1977 */
1978 if (config_finalize_done) {
1979 while ((*fn)(dev) != 0)
1980 /* loop */ ;
1981 }
1982
1983 /* Ensure this isn't already on the list. */
1984 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1985 if (f->f_func == fn && f->f_dev == dev)
1986 return EEXIST;
1987 }
1988
1989 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1990 f->f_func = fn;
1991 f->f_dev = dev;
1992 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1993
1994 return 0;
1995 }
1996
1997 void
1998 config_finalize(void)
1999 {
2000 struct finalize_hook *f;
2001 struct pdevinit *pdev;
2002 extern struct pdevinit pdevinit[];
2003 int errcnt, rv;
2004
2005 /*
2006 * Now that device driver threads have been created, wait for
2007 * them to finish any deferred autoconfiguration.
2008 */
2009 mutex_enter(&config_misc_lock);
2010 while (config_pending != 0)
2011 cv_wait(&config_misc_cv, &config_misc_lock);
2012 mutex_exit(&config_misc_lock);
2013
2014 KERNEL_LOCK(1, NULL);
2015
2016 /* Attach pseudo-devices. */
2017 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2018 (*pdev->pdev_attach)(pdev->pdev_count);
2019
2020 /* Run the hooks until none of them does any work. */
2021 do {
2022 rv = 0;
2023 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2024 rv |= (*f->f_func)(f->f_dev);
2025 } while (rv != 0);
2026
2027 config_finalize_done = 1;
2028
2029 /* Now free all the hooks. */
2030 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2031 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2032 kmem_free(f, sizeof(*f));
2033 }
2034
2035 KERNEL_UNLOCK_ONE(NULL);
2036
2037 errcnt = aprint_get_error_count();
2038 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2039 (boothowto & AB_VERBOSE) == 0) {
2040 mutex_enter(&config_misc_lock);
2041 if (config_do_twiddle) {
2042 config_do_twiddle = 0;
2043 printf_nolog(" done.\n");
2044 }
2045 mutex_exit(&config_misc_lock);
2046 if (errcnt != 0) {
2047 printf("WARNING: %d error%s while detecting hardware; "
2048 "check system log.\n", errcnt,
2049 errcnt == 1 ? "" : "s");
2050 }
2051 }
2052 }
2053
2054 void
2055 config_twiddle_init()
2056 {
2057
2058 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2059 config_do_twiddle = 1;
2060 }
2061 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2062 }
2063
2064 void
2065 config_twiddle_fn(void *cookie)
2066 {
2067
2068 mutex_enter(&config_misc_lock);
2069 if (config_do_twiddle) {
2070 twiddle();
2071 callout_schedule(&config_twiddle_ch, mstohz(100));
2072 }
2073 mutex_exit(&config_misc_lock);
2074 }
2075
2076 static int
2077 config_alldevs_lock(void)
2078 {
2079 mutex_enter(&alldevs_mtx);
2080 return 0;
2081 }
2082
2083 static void
2084 config_alldevs_enter(struct alldevs_foray *af)
2085 {
2086 TAILQ_INIT(&af->af_garbage);
2087 af->af_s = config_alldevs_lock();
2088 config_collect_garbage(&af->af_garbage);
2089 }
2090
2091 static void
2092 config_alldevs_exit(struct alldevs_foray *af)
2093 {
2094 config_alldevs_unlock(af->af_s);
2095 config_dump_garbage(&af->af_garbage);
2096 }
2097
2098 /*ARGSUSED*/
2099 static void
2100 config_alldevs_unlock(int s)
2101 {
2102 mutex_exit(&alldevs_mtx);
2103 }
2104
2105 /*
2106 * device_lookup:
2107 *
2108 * Look up a device instance for a given driver.
2109 */
2110 device_t
2111 device_lookup(cfdriver_t cd, int unit)
2112 {
2113 device_t dv;
2114 int s;
2115
2116 s = config_alldevs_lock();
2117 KASSERT(mutex_owned(&alldevs_mtx));
2118 if (unit < 0 || unit >= cd->cd_ndevs)
2119 dv = NULL;
2120 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2121 dv = NULL;
2122 config_alldevs_unlock(s);
2123
2124 return dv;
2125 }
2126
2127 /*
2128 * device_lookup_private:
2129 *
2130 * Look up a softc instance for a given driver.
2131 */
2132 void *
2133 device_lookup_private(cfdriver_t cd, int unit)
2134 {
2135
2136 return device_private(device_lookup(cd, unit));
2137 }
2138
2139 /*
2140 * device_find_by_xname:
2141 *
2142 * Returns the device of the given name or NULL if it doesn't exist.
2143 */
2144 device_t
2145 device_find_by_xname(const char *name)
2146 {
2147 device_t dv;
2148 deviter_t di;
2149
2150 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2151 if (strcmp(device_xname(dv), name) == 0)
2152 break;
2153 }
2154 deviter_release(&di);
2155
2156 return dv;
2157 }
2158
2159 /*
2160 * device_find_by_driver_unit:
2161 *
2162 * Returns the device of the given driver name and unit or
2163 * NULL if it doesn't exist.
2164 */
2165 device_t
2166 device_find_by_driver_unit(const char *name, int unit)
2167 {
2168 struct cfdriver *cd;
2169
2170 if ((cd = config_cfdriver_lookup(name)) == NULL)
2171 return NULL;
2172 return device_lookup(cd, unit);
2173 }
2174
2175 /*
2176 * Power management related functions.
2177 */
2178
2179 bool
2180 device_pmf_is_registered(device_t dev)
2181 {
2182 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2183 }
2184
2185 bool
2186 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2187 {
2188 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2189 return true;
2190 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2191 return false;
2192 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2193 dev->dv_driver_suspend != NULL &&
2194 !(*dev->dv_driver_suspend)(dev, qual))
2195 return false;
2196
2197 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2198 return true;
2199 }
2200
2201 bool
2202 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2203 {
2204 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2205 return true;
2206 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2207 return false;
2208 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2209 dev->dv_driver_resume != NULL &&
2210 !(*dev->dv_driver_resume)(dev, qual))
2211 return false;
2212
2213 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2214 return true;
2215 }
2216
2217 bool
2218 device_pmf_driver_shutdown(device_t dev, int how)
2219 {
2220
2221 if (*dev->dv_driver_shutdown != NULL &&
2222 !(*dev->dv_driver_shutdown)(dev, how))
2223 return false;
2224 return true;
2225 }
2226
2227 bool
2228 device_pmf_driver_register(device_t dev,
2229 bool (*suspend)(device_t, const pmf_qual_t *),
2230 bool (*resume)(device_t, const pmf_qual_t *),
2231 bool (*shutdown)(device_t, int))
2232 {
2233 dev->dv_driver_suspend = suspend;
2234 dev->dv_driver_resume = resume;
2235 dev->dv_driver_shutdown = shutdown;
2236 dev->dv_flags |= DVF_POWER_HANDLERS;
2237 return true;
2238 }
2239
2240 static const char *
2241 curlwp_name(void)
2242 {
2243 if (curlwp->l_name != NULL)
2244 return curlwp->l_name;
2245 else
2246 return curlwp->l_proc->p_comm;
2247 }
2248
2249 void
2250 device_pmf_driver_deregister(device_t dev)
2251 {
2252 device_lock_t dvl = device_getlock(dev);
2253
2254 dev->dv_driver_suspend = NULL;
2255 dev->dv_driver_resume = NULL;
2256
2257 mutex_enter(&dvl->dvl_mtx);
2258 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2259 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2260 /* Wake a thread that waits for the lock. That
2261 * thread will fail to acquire the lock, and then
2262 * it will wake the next thread that waits for the
2263 * lock, or else it will wake us.
2264 */
2265 cv_signal(&dvl->dvl_cv);
2266 pmflock_debug(dev, __func__, __LINE__);
2267 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2268 pmflock_debug(dev, __func__, __LINE__);
2269 }
2270 mutex_exit(&dvl->dvl_mtx);
2271 }
2272
2273 bool
2274 device_pmf_driver_child_register(device_t dev)
2275 {
2276 device_t parent = device_parent(dev);
2277
2278 if (parent == NULL || parent->dv_driver_child_register == NULL)
2279 return true;
2280 return (*parent->dv_driver_child_register)(dev);
2281 }
2282
2283 void
2284 device_pmf_driver_set_child_register(device_t dev,
2285 bool (*child_register)(device_t))
2286 {
2287 dev->dv_driver_child_register = child_register;
2288 }
2289
2290 static void
2291 pmflock_debug(device_t dev, const char *func, int line)
2292 {
2293 device_lock_t dvl = device_getlock(dev);
2294
2295 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2296 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2297 dev->dv_flags);
2298 }
2299
2300 static bool
2301 device_pmf_lock1(device_t dev)
2302 {
2303 device_lock_t dvl = device_getlock(dev);
2304
2305 while (device_pmf_is_registered(dev) &&
2306 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2307 dvl->dvl_nwait++;
2308 pmflock_debug(dev, __func__, __LINE__);
2309 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2310 pmflock_debug(dev, __func__, __LINE__);
2311 dvl->dvl_nwait--;
2312 }
2313 if (!device_pmf_is_registered(dev)) {
2314 pmflock_debug(dev, __func__, __LINE__);
2315 /* We could not acquire the lock, but some other thread may
2316 * wait for it, also. Wake that thread.
2317 */
2318 cv_signal(&dvl->dvl_cv);
2319 return false;
2320 }
2321 dvl->dvl_nlock++;
2322 dvl->dvl_holder = curlwp;
2323 pmflock_debug(dev, __func__, __LINE__);
2324 return true;
2325 }
2326
2327 bool
2328 device_pmf_lock(device_t dev)
2329 {
2330 bool rc;
2331 device_lock_t dvl = device_getlock(dev);
2332
2333 mutex_enter(&dvl->dvl_mtx);
2334 rc = device_pmf_lock1(dev);
2335 mutex_exit(&dvl->dvl_mtx);
2336
2337 return rc;
2338 }
2339
2340 void
2341 device_pmf_unlock(device_t dev)
2342 {
2343 device_lock_t dvl = device_getlock(dev);
2344
2345 KASSERT(dvl->dvl_nlock > 0);
2346 mutex_enter(&dvl->dvl_mtx);
2347 if (--dvl->dvl_nlock == 0)
2348 dvl->dvl_holder = NULL;
2349 cv_signal(&dvl->dvl_cv);
2350 pmflock_debug(dev, __func__, __LINE__);
2351 mutex_exit(&dvl->dvl_mtx);
2352 }
2353
2354 device_lock_t
2355 device_getlock(device_t dev)
2356 {
2357 return &dev->dv_lock;
2358 }
2359
2360 void *
2361 device_pmf_bus_private(device_t dev)
2362 {
2363 return dev->dv_bus_private;
2364 }
2365
2366 bool
2367 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2368 {
2369 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2370 return true;
2371 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2372 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2373 return false;
2374 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2375 dev->dv_bus_suspend != NULL &&
2376 !(*dev->dv_bus_suspend)(dev, qual))
2377 return false;
2378
2379 dev->dv_flags |= DVF_BUS_SUSPENDED;
2380 return true;
2381 }
2382
2383 bool
2384 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2385 {
2386 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2387 return true;
2388 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2389 dev->dv_bus_resume != NULL &&
2390 !(*dev->dv_bus_resume)(dev, qual))
2391 return false;
2392
2393 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2394 return true;
2395 }
2396
2397 bool
2398 device_pmf_bus_shutdown(device_t dev, int how)
2399 {
2400
2401 if (*dev->dv_bus_shutdown != NULL &&
2402 !(*dev->dv_bus_shutdown)(dev, how))
2403 return false;
2404 return true;
2405 }
2406
2407 void
2408 device_pmf_bus_register(device_t dev, void *priv,
2409 bool (*suspend)(device_t, const pmf_qual_t *),
2410 bool (*resume)(device_t, const pmf_qual_t *),
2411 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2412 {
2413 dev->dv_bus_private = priv;
2414 dev->dv_bus_resume = resume;
2415 dev->dv_bus_suspend = suspend;
2416 dev->dv_bus_shutdown = shutdown;
2417 dev->dv_bus_deregister = deregister;
2418 }
2419
2420 void
2421 device_pmf_bus_deregister(device_t dev)
2422 {
2423 if (dev->dv_bus_deregister == NULL)
2424 return;
2425 (*dev->dv_bus_deregister)(dev);
2426 dev->dv_bus_private = NULL;
2427 dev->dv_bus_suspend = NULL;
2428 dev->dv_bus_resume = NULL;
2429 dev->dv_bus_deregister = NULL;
2430 }
2431
2432 void *
2433 device_pmf_class_private(device_t dev)
2434 {
2435 return dev->dv_class_private;
2436 }
2437
2438 bool
2439 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2440 {
2441 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2442 return true;
2443 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2444 dev->dv_class_suspend != NULL &&
2445 !(*dev->dv_class_suspend)(dev, qual))
2446 return false;
2447
2448 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2449 return true;
2450 }
2451
2452 bool
2453 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2454 {
2455 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2456 return true;
2457 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2458 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2459 return false;
2460 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2461 dev->dv_class_resume != NULL &&
2462 !(*dev->dv_class_resume)(dev, qual))
2463 return false;
2464
2465 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2466 return true;
2467 }
2468
2469 void
2470 device_pmf_class_register(device_t dev, void *priv,
2471 bool (*suspend)(device_t, const pmf_qual_t *),
2472 bool (*resume)(device_t, const pmf_qual_t *),
2473 void (*deregister)(device_t))
2474 {
2475 dev->dv_class_private = priv;
2476 dev->dv_class_suspend = suspend;
2477 dev->dv_class_resume = resume;
2478 dev->dv_class_deregister = deregister;
2479 }
2480
2481 void
2482 device_pmf_class_deregister(device_t dev)
2483 {
2484 if (dev->dv_class_deregister == NULL)
2485 return;
2486 (*dev->dv_class_deregister)(dev);
2487 dev->dv_class_private = NULL;
2488 dev->dv_class_suspend = NULL;
2489 dev->dv_class_resume = NULL;
2490 dev->dv_class_deregister = NULL;
2491 }
2492
2493 bool
2494 device_active(device_t dev, devactive_t type)
2495 {
2496 size_t i;
2497
2498 if (dev->dv_activity_count == 0)
2499 return false;
2500
2501 for (i = 0; i < dev->dv_activity_count; ++i) {
2502 if (dev->dv_activity_handlers[i] == NULL)
2503 break;
2504 (*dev->dv_activity_handlers[i])(dev, type);
2505 }
2506
2507 return true;
2508 }
2509
2510 bool
2511 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2512 {
2513 void (**new_handlers)(device_t, devactive_t);
2514 void (**old_handlers)(device_t, devactive_t);
2515 size_t i, old_size, new_size;
2516 int s;
2517
2518 old_handlers = dev->dv_activity_handlers;
2519 old_size = dev->dv_activity_count;
2520
2521 for (i = 0; i < old_size; ++i) {
2522 KASSERT(old_handlers[i] != handler);
2523 if (old_handlers[i] == NULL) {
2524 old_handlers[i] = handler;
2525 return true;
2526 }
2527 }
2528
2529 new_size = old_size + 4;
2530 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2531
2532 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2533 new_handlers[old_size] = handler;
2534 memset(new_handlers + old_size + 1, 0,
2535 sizeof(int [new_size - (old_size+1)]));
2536
2537 s = splhigh();
2538 dev->dv_activity_count = new_size;
2539 dev->dv_activity_handlers = new_handlers;
2540 splx(s);
2541
2542 if (old_handlers != NULL)
2543 kmem_free(old_handlers, sizeof(void * [old_size]));
2544
2545 return true;
2546 }
2547
2548 void
2549 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2550 {
2551 void (**old_handlers)(device_t, devactive_t);
2552 size_t i, old_size;
2553 int s;
2554
2555 old_handlers = dev->dv_activity_handlers;
2556 old_size = dev->dv_activity_count;
2557
2558 for (i = 0; i < old_size; ++i) {
2559 if (old_handlers[i] == handler)
2560 break;
2561 if (old_handlers[i] == NULL)
2562 return; /* XXX panic? */
2563 }
2564
2565 if (i == old_size)
2566 return; /* XXX panic? */
2567
2568 for (; i < old_size - 1; ++i) {
2569 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2570 continue;
2571
2572 if (i == 0) {
2573 s = splhigh();
2574 dev->dv_activity_count = 0;
2575 dev->dv_activity_handlers = NULL;
2576 splx(s);
2577 kmem_free(old_handlers, sizeof(void *[old_size]));
2578 }
2579 return;
2580 }
2581 old_handlers[i] = NULL;
2582 }
2583
2584 /* Return true iff the device_t `dev' exists at generation `gen'. */
2585 static bool
2586 device_exists_at(device_t dv, devgen_t gen)
2587 {
2588 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2589 dv->dv_add_gen <= gen;
2590 }
2591
2592 static bool
2593 deviter_visits(const deviter_t *di, device_t dv)
2594 {
2595 return device_exists_at(dv, di->di_gen);
2596 }
2597
2598 /*
2599 * Device Iteration
2600 *
2601 * deviter_t: a device iterator. Holds state for a "walk" visiting
2602 * each device_t's in the device tree.
2603 *
2604 * deviter_init(di, flags): initialize the device iterator `di'
2605 * to "walk" the device tree. deviter_next(di) will return
2606 * the first device_t in the device tree, or NULL if there are
2607 * no devices.
2608 *
2609 * `flags' is one or more of DEVITER_F_RW, indicating that the
2610 * caller intends to modify the device tree by calling
2611 * config_detach(9) on devices in the order that the iterator
2612 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2613 * nearest the "root" of the device tree to be returned, first;
2614 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2615 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2616 * indicating both that deviter_init() should not respect any
2617 * locks on the device tree, and that deviter_next(di) may run
2618 * in more than one LWP before the walk has finished.
2619 *
2620 * Only one DEVITER_F_RW iterator may be in the device tree at
2621 * once.
2622 *
2623 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2624 *
2625 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2626 * DEVITER_F_LEAVES_FIRST are used in combination.
2627 *
2628 * deviter_first(di, flags): initialize the device iterator `di'
2629 * and return the first device_t in the device tree, or NULL
2630 * if there are no devices. The statement
2631 *
2632 * dv = deviter_first(di);
2633 *
2634 * is shorthand for
2635 *
2636 * deviter_init(di);
2637 * dv = deviter_next(di);
2638 *
2639 * deviter_next(di): return the next device_t in the device tree,
2640 * or NULL if there are no more devices. deviter_next(di)
2641 * is undefined if `di' was not initialized with deviter_init() or
2642 * deviter_first().
2643 *
2644 * deviter_release(di): stops iteration (subsequent calls to
2645 * deviter_next() will return NULL), releases any locks and
2646 * resources held by the device iterator.
2647 *
2648 * Device iteration does not return device_t's in any particular
2649 * order. An iterator will never return the same device_t twice.
2650 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2651 * is called repeatedly on the same `di', it will eventually return
2652 * NULL. It is ok to attach/detach devices during device iteration.
2653 */
2654 void
2655 deviter_init(deviter_t *di, deviter_flags_t flags)
2656 {
2657 device_t dv;
2658 int s;
2659
2660 memset(di, 0, sizeof(*di));
2661
2662 s = config_alldevs_lock();
2663 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2664 flags |= DEVITER_F_RW;
2665
2666 if ((flags & DEVITER_F_RW) != 0)
2667 alldevs_nwrite++;
2668 else
2669 alldevs_nread++;
2670 di->di_gen = alldevs_gen++;
2671 config_alldevs_unlock(s);
2672
2673 di->di_flags = flags;
2674
2675 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2676 case DEVITER_F_LEAVES_FIRST:
2677 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2678 if (!deviter_visits(di, dv))
2679 continue;
2680 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2681 }
2682 break;
2683 case DEVITER_F_ROOT_FIRST:
2684 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2685 if (!deviter_visits(di, dv))
2686 continue;
2687 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2688 }
2689 break;
2690 default:
2691 break;
2692 }
2693
2694 deviter_reinit(di);
2695 }
2696
2697 static void
2698 deviter_reinit(deviter_t *di)
2699 {
2700 if ((di->di_flags & DEVITER_F_RW) != 0)
2701 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2702 else
2703 di->di_prev = TAILQ_FIRST(&alldevs);
2704 }
2705
2706 device_t
2707 deviter_first(deviter_t *di, deviter_flags_t flags)
2708 {
2709 deviter_init(di, flags);
2710 return deviter_next(di);
2711 }
2712
2713 static device_t
2714 deviter_next2(deviter_t *di)
2715 {
2716 device_t dv;
2717
2718 dv = di->di_prev;
2719
2720 if (dv == NULL)
2721 return NULL;
2722
2723 if ((di->di_flags & DEVITER_F_RW) != 0)
2724 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2725 else
2726 di->di_prev = TAILQ_NEXT(dv, dv_list);
2727
2728 return dv;
2729 }
2730
2731 static device_t
2732 deviter_next1(deviter_t *di)
2733 {
2734 device_t dv;
2735
2736 do {
2737 dv = deviter_next2(di);
2738 } while (dv != NULL && !deviter_visits(di, dv));
2739
2740 return dv;
2741 }
2742
2743 device_t
2744 deviter_next(deviter_t *di)
2745 {
2746 device_t dv = NULL;
2747
2748 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2749 case 0:
2750 return deviter_next1(di);
2751 case DEVITER_F_LEAVES_FIRST:
2752 while (di->di_curdepth >= 0) {
2753 if ((dv = deviter_next1(di)) == NULL) {
2754 di->di_curdepth--;
2755 deviter_reinit(di);
2756 } else if (dv->dv_depth == di->di_curdepth)
2757 break;
2758 }
2759 return dv;
2760 case DEVITER_F_ROOT_FIRST:
2761 while (di->di_curdepth <= di->di_maxdepth) {
2762 if ((dv = deviter_next1(di)) == NULL) {
2763 di->di_curdepth++;
2764 deviter_reinit(di);
2765 } else if (dv->dv_depth == di->di_curdepth)
2766 break;
2767 }
2768 return dv;
2769 default:
2770 return NULL;
2771 }
2772 }
2773
2774 void
2775 deviter_release(deviter_t *di)
2776 {
2777 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2778 int s;
2779
2780 s = config_alldevs_lock();
2781 if (rw)
2782 --alldevs_nwrite;
2783 else
2784 --alldevs_nread;
2785 /* XXX wake a garbage-collection thread */
2786 config_alldevs_unlock(s);
2787 }
2788
2789 const char *
2790 cfdata_ifattr(const struct cfdata *cf)
2791 {
2792 return cf->cf_pspec->cfp_iattr;
2793 }
2794
2795 bool
2796 ifattr_match(const char *snull, const char *t)
2797 {
2798 return (snull == NULL) || strcmp(snull, t) == 0;
2799 }
2800
2801 void
2802 null_childdetached(device_t self, device_t child)
2803 {
2804 /* do nothing */
2805 }
2806
2807 static void
2808 sysctl_detach_setup(struct sysctllog **clog)
2809 {
2810 const struct sysctlnode *node = NULL;
2811
2812 sysctl_createv(clog, 0, NULL, &node,
2813 CTLFLAG_PERMANENT,
2814 CTLTYPE_NODE, "kern", NULL,
2815 NULL, 0, NULL, 0,
2816 CTL_KERN, CTL_EOL);
2817
2818 if (node == NULL)
2819 return;
2820
2821 sysctl_createv(clog, 0, &node, NULL,
2822 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2823 CTLTYPE_BOOL, "detachall",
2824 SYSCTL_DESCR("Detach all devices at shutdown"),
2825 NULL, 0, &detachall, 0,
2826 CTL_CREATE, CTL_EOL);
2827 }
2828