Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.147
      1 /* $NetBSD: subr_autoconf.c,v 1.147 2008/04/29 14:35:21 rmind Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.147 2008/04/29 14:35:21 rmind Exp $");
     81 
     82 #include "opt_multiprocessor.h"
     83 #include "opt_ddb.h"
     84 
     85 #include <sys/param.h>
     86 #include <sys/device.h>
     87 #include <sys/disklabel.h>
     88 #include <sys/conf.h>
     89 #include <sys/kauth.h>
     90 #include <sys/malloc.h>
     91 #include <sys/systm.h>
     92 #include <sys/kernel.h>
     93 #include <sys/errno.h>
     94 #include <sys/proc.h>
     95 #include <sys/reboot.h>
     96 #include <sys/kthread.h>
     97 #include <sys/buf.h>
     98 #include <sys/dirent.h>
     99 #include <sys/vnode.h>
    100 #include <sys/mount.h>
    101 #include <sys/namei.h>
    102 #include <sys/unistd.h>
    103 #include <sys/fcntl.h>
    104 #include <sys/lockf.h>
    105 #include <sys/callout.h>
    106 #include <sys/mutex.h>
    107 #include <sys/condvar.h>
    108 
    109 #include <sys/disk.h>
    110 
    111 #include <machine/limits.h>
    112 
    113 #include "opt_userconf.h"
    114 #ifdef USERCONF
    115 #include <sys/userconf.h>
    116 #endif
    117 
    118 #ifdef __i386__
    119 #include "opt_splash.h"
    120 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    121 #include <dev/splash/splash.h>
    122 extern struct splash_progress *splash_progress_state;
    123 #endif
    124 #endif
    125 
    126 /*
    127  * Autoconfiguration subroutines.
    128  */
    129 
    130 typedef struct pmf_private {
    131 	int		pp_nwait;
    132 	int		pp_nlock;
    133 	lwp_t		*pp_holder;
    134 	kmutex_t	pp_mtx;
    135 	kcondvar_t	pp_cv;
    136 } pmf_private_t;
    137 
    138 /*
    139  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    140  * devices and drivers are found via these tables.
    141  */
    142 extern struct cfdata cfdata[];
    143 extern const short cfroots[];
    144 
    145 /*
    146  * List of all cfdriver structures.  We use this to detect duplicates
    147  * when other cfdrivers are loaded.
    148  */
    149 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    150 extern struct cfdriver * const cfdriver_list_initial[];
    151 
    152 /*
    153  * Initial list of cfattach's.
    154  */
    155 extern const struct cfattachinit cfattachinit[];
    156 
    157 /*
    158  * List of cfdata tables.  We always have one such list -- the one
    159  * built statically when the kernel was configured.
    160  */
    161 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    162 static struct cftable initcftable;
    163 
    164 #define	ROOT ((device_t)NULL)
    165 
    166 struct matchinfo {
    167 	cfsubmatch_t fn;
    168 	struct	device *parent;
    169 	const int *locs;
    170 	void	*aux;
    171 	struct	cfdata *match;
    172 	int	pri;
    173 };
    174 
    175 static char *number(char *, int);
    176 static void mapply(struct matchinfo *, cfdata_t);
    177 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    178 static void config_devdealloc(device_t);
    179 static void config_makeroom(int, struct cfdriver *);
    180 static void config_devlink(device_t);
    181 static void config_devunlink(device_t);
    182 
    183 static void pmflock_debug(device_t, const char *, int);
    184 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
    185 
    186 static device_t deviter_next1(deviter_t *);
    187 static void deviter_reinit(deviter_t *);
    188 
    189 struct deferred_config {
    190 	TAILQ_ENTRY(deferred_config) dc_queue;
    191 	device_t dc_dev;
    192 	void (*dc_func)(device_t);
    193 };
    194 
    195 TAILQ_HEAD(deferred_config_head, deferred_config);
    196 
    197 struct deferred_config_head deferred_config_queue =
    198 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    199 struct deferred_config_head interrupt_config_queue =
    200 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    201 int interrupt_config_threads = 8;
    202 
    203 static void config_process_deferred(struct deferred_config_head *, device_t);
    204 
    205 /* Hooks to finalize configuration once all real devices have been found. */
    206 struct finalize_hook {
    207 	TAILQ_ENTRY(finalize_hook) f_list;
    208 	int (*f_func)(device_t);
    209 	device_t f_dev;
    210 };
    211 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    212 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    213 static int config_finalize_done;
    214 
    215 /* list of all devices */
    216 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    217 kcondvar_t alldevs_cv;
    218 kmutex_t alldevs_mtx;
    219 static int alldevs_nread = 0;
    220 static int alldevs_nwrite = 0;
    221 static lwp_t *alldevs_writer = NULL;
    222 
    223 volatile int config_pending;		/* semaphore for mountroot */
    224 
    225 #define	STREQ(s1, s2)			\
    226 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    227 
    228 static int config_initialized;		/* config_init() has been called. */
    229 
    230 static int config_do_twiddle;
    231 
    232 MALLOC_DEFINE(M_PMFPRIV, "pmfpriv", "device pmf private storage");
    233 
    234 struct vnode *
    235 opendisk(struct device *dv)
    236 {
    237 	int bmajor, bminor;
    238 	struct vnode *tmpvn;
    239 	int error;
    240 	dev_t dev;
    241 
    242 	/*
    243 	 * Lookup major number for disk block device.
    244 	 */
    245 	bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
    246 	if (bmajor == -1)
    247 		return NULL;
    248 
    249 	bminor = minor(device_unit(dv));
    250 	/*
    251 	 * Fake a temporary vnode for the disk, open it, and read
    252 	 * and hash the sectors.
    253 	 */
    254 	dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
    255 	    MAKEDISKDEV(bmajor, bminor, RAW_PART);
    256 	if (bdevvp(dev, &tmpvn))
    257 		panic("%s: can't alloc vnode for %s", __func__,
    258 		    device_xname(dv));
    259 	error = VOP_OPEN(tmpvn, FREAD, NOCRED);
    260 	if (error) {
    261 #ifndef DEBUG
    262 		/*
    263 		 * Ignore errors caused by missing device, partition,
    264 		 * or medium.
    265 		 */
    266 		if (error != ENXIO && error != ENODEV)
    267 #endif
    268 			printf("%s: can't open dev %s (%d)\n",
    269 			    __func__, device_xname(dv), error);
    270 		vput(tmpvn);
    271 		return NULL;
    272 	}
    273 
    274 	return tmpvn;
    275 }
    276 
    277 int
    278 config_handle_wedges(struct device *dv, int par)
    279 {
    280 	struct dkwedge_list wl;
    281 	struct dkwedge_info *wi;
    282 	struct vnode *vn;
    283 	char diskname[16];
    284 	int i, error;
    285 
    286 	if ((vn = opendisk(dv)) == NULL)
    287 		return -1;
    288 
    289 	wl.dkwl_bufsize = sizeof(*wi) * 16;
    290 	wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
    291 
    292 	error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
    293 	VOP_CLOSE(vn, FREAD, NOCRED);
    294 	vput(vn);
    295 	if (error) {
    296 #ifdef DEBUG_WEDGE
    297 		printf("%s: List wedges returned %d\n",
    298 		    device_xname(dv), error);
    299 #endif
    300 		free(wi, M_TEMP);
    301 		return -1;
    302 	}
    303 
    304 #ifdef DEBUG_WEDGE
    305 	printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
    306 	    wl.dkwl_nwedges, wl.dkwl_ncopied);
    307 #endif
    308 	snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
    309 	    par + 'a');
    310 
    311 	for (i = 0; i < wl.dkwl_ncopied; i++) {
    312 #ifdef DEBUG_WEDGE
    313 		printf("%s: Looking for %s in %s\n",
    314 		    device_xname(dv), diskname, wi[i].dkw_wname);
    315 #endif
    316 		if (strcmp(wi[i].dkw_wname, diskname) == 0)
    317 			break;
    318 	}
    319 
    320 	if (i == wl.dkwl_ncopied) {
    321 #ifdef DEBUG_WEDGE
    322 		printf("%s: Cannot find wedge with parent %s\n",
    323 		    device_xname(dv), diskname);
    324 #endif
    325 		free(wi, M_TEMP);
    326 		return -1;
    327 	}
    328 
    329 #ifdef DEBUG_WEDGE
    330 	printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
    331 		device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
    332 		(unsigned long long)wi[i].dkw_offset,
    333 		(unsigned long long)wi[i].dkw_size);
    334 #endif
    335 	dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
    336 	free(wi, M_TEMP);
    337 	return 0;
    338 }
    339 
    340 /*
    341  * Initialize the autoconfiguration data structures.  Normally this
    342  * is done by configure(), but some platforms need to do this very
    343  * early (to e.g. initialize the console).
    344  */
    345 void
    346 config_init(void)
    347 {
    348 	const struct cfattachinit *cfai;
    349 	int i, j;
    350 
    351 	if (config_initialized)
    352 		return;
    353 
    354 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
    355 	cv_init(&alldevs_cv, "alldevs");
    356 
    357 	/* allcfdrivers is statically initialized. */
    358 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
    359 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
    360 			panic("configure: duplicate `%s' drivers",
    361 			    cfdriver_list_initial[i]->cd_name);
    362 	}
    363 
    364 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
    365 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    366 			if (config_cfattach_attach(cfai->cfai_name,
    367 						   cfai->cfai_list[j]) != 0)
    368 				panic("configure: duplicate `%s' attachment "
    369 				    "of `%s' driver",
    370 				    cfai->cfai_list[j]->ca_name,
    371 				    cfai->cfai_name);
    372 		}
    373 	}
    374 
    375 	initcftable.ct_cfdata = cfdata;
    376 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    377 
    378 	config_initialized = 1;
    379 }
    380 
    381 void
    382 config_deferred(device_t dev)
    383 {
    384 	config_process_deferred(&deferred_config_queue, dev);
    385 	config_process_deferred(&interrupt_config_queue, dev);
    386 }
    387 
    388 static void
    389 config_interrupts_thread(void *cookie)
    390 {
    391 	struct deferred_config *dc;
    392 
    393 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    394 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    395 		(*dc->dc_func)(dc->dc_dev);
    396 		free(dc, M_DEVBUF);
    397 		config_pending_decr();
    398 	}
    399 	kthread_exit(0);
    400 }
    401 
    402 /*
    403  * Configure the system's hardware.
    404  */
    405 void
    406 configure(void)
    407 {
    408 	extern void ssp_init(void);
    409 	int i, s;
    410 
    411 	/* Initialize data structures. */
    412 	config_init();
    413 	pmf_init();
    414 
    415 #ifdef USERCONF
    416 	if (boothowto & RB_USERCONF)
    417 		user_config();
    418 #endif
    419 
    420 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
    421 		config_do_twiddle = 1;
    422 		printf_nolog("Detecting hardware...");
    423 	}
    424 
    425 	/*
    426 	 * Do the machine-dependent portion of autoconfiguration.  This
    427 	 * sets the configuration machinery here in motion by "finding"
    428 	 * the root bus.  When this function returns, we expect interrupts
    429 	 * to be enabled.
    430 	 */
    431 	cpu_configure();
    432 
    433 	/* Initialize SSP. */
    434 	ssp_init();
    435 
    436 	/*
    437 	 * Now that we've found all the hardware, start the real time
    438 	 * and statistics clocks.
    439 	 */
    440 	initclocks();
    441 
    442 	cold = 0;	/* clocks are running, we're warm now! */
    443 	s = splsched();
    444 	curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
    445 	splx(s);
    446 
    447 	/* Boot the secondary processors. */
    448 	mp_online = true;
    449 #if defined(MULTIPROCESSOR)
    450 	cpu_boot_secondary_processors();
    451 #endif
    452 
    453 	/* Setup the runqueues and scheduler. */
    454 	runq_init();
    455 	sched_init();
    456 
    457 	/*
    458 	 * Create threads to call back and finish configuration for
    459 	 * devices that want interrupts enabled.
    460 	 */
    461 	for (i = 0; i < interrupt_config_threads; i++) {
    462 		(void)kthread_create(PRI_NONE, 0, NULL,
    463 		    config_interrupts_thread, NULL, NULL, "config");
    464 	}
    465 
    466 	/* Get the threads going and into any sleeps before continuing. */
    467 	yield();
    468 
    469 	/* Lock the kernel on behalf of lwp0. */
    470 	KERNEL_LOCK(1, NULL);
    471 }
    472 
    473 /*
    474  * Add a cfdriver to the system.
    475  */
    476 int
    477 config_cfdriver_attach(struct cfdriver *cd)
    478 {
    479 	struct cfdriver *lcd;
    480 
    481 	/* Make sure this driver isn't already in the system. */
    482 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    483 		if (STREQ(lcd->cd_name, cd->cd_name))
    484 			return (EEXIST);
    485 	}
    486 
    487 	LIST_INIT(&cd->cd_attach);
    488 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    489 
    490 	return (0);
    491 }
    492 
    493 /*
    494  * Remove a cfdriver from the system.
    495  */
    496 int
    497 config_cfdriver_detach(struct cfdriver *cd)
    498 {
    499 	int i;
    500 
    501 	/* Make sure there are no active instances. */
    502 	for (i = 0; i < cd->cd_ndevs; i++) {
    503 		if (cd->cd_devs[i] != NULL)
    504 			return (EBUSY);
    505 	}
    506 
    507 	/* ...and no attachments loaded. */
    508 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    509 		return (EBUSY);
    510 
    511 	LIST_REMOVE(cd, cd_list);
    512 
    513 	KASSERT(cd->cd_devs == NULL);
    514 
    515 	return (0);
    516 }
    517 
    518 /*
    519  * Look up a cfdriver by name.
    520  */
    521 struct cfdriver *
    522 config_cfdriver_lookup(const char *name)
    523 {
    524 	struct cfdriver *cd;
    525 
    526 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    527 		if (STREQ(cd->cd_name, name))
    528 			return (cd);
    529 	}
    530 
    531 	return (NULL);
    532 }
    533 
    534 /*
    535  * Add a cfattach to the specified driver.
    536  */
    537 int
    538 config_cfattach_attach(const char *driver, struct cfattach *ca)
    539 {
    540 	struct cfattach *lca;
    541 	struct cfdriver *cd;
    542 
    543 	cd = config_cfdriver_lookup(driver);
    544 	if (cd == NULL)
    545 		return (ESRCH);
    546 
    547 	/* Make sure this attachment isn't already on this driver. */
    548 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    549 		if (STREQ(lca->ca_name, ca->ca_name))
    550 			return (EEXIST);
    551 	}
    552 
    553 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    554 
    555 	return (0);
    556 }
    557 
    558 /*
    559  * Remove a cfattach from the specified driver.
    560  */
    561 int
    562 config_cfattach_detach(const char *driver, struct cfattach *ca)
    563 {
    564 	struct cfdriver *cd;
    565 	device_t dev;
    566 	int i;
    567 
    568 	cd = config_cfdriver_lookup(driver);
    569 	if (cd == NULL)
    570 		return (ESRCH);
    571 
    572 	/* Make sure there are no active instances. */
    573 	for (i = 0; i < cd->cd_ndevs; i++) {
    574 		if ((dev = cd->cd_devs[i]) == NULL)
    575 			continue;
    576 		if (dev->dv_cfattach == ca)
    577 			return (EBUSY);
    578 	}
    579 
    580 	LIST_REMOVE(ca, ca_list);
    581 
    582 	return (0);
    583 }
    584 
    585 /*
    586  * Look up a cfattach by name.
    587  */
    588 static struct cfattach *
    589 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    590 {
    591 	struct cfattach *ca;
    592 
    593 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    594 		if (STREQ(ca->ca_name, atname))
    595 			return (ca);
    596 	}
    597 
    598 	return (NULL);
    599 }
    600 
    601 /*
    602  * Look up a cfattach by driver/attachment name.
    603  */
    604 struct cfattach *
    605 config_cfattach_lookup(const char *name, const char *atname)
    606 {
    607 	struct cfdriver *cd;
    608 
    609 	cd = config_cfdriver_lookup(name);
    610 	if (cd == NULL)
    611 		return (NULL);
    612 
    613 	return (config_cfattach_lookup_cd(cd, atname));
    614 }
    615 
    616 /*
    617  * Apply the matching function and choose the best.  This is used
    618  * a few times and we want to keep the code small.
    619  */
    620 static void
    621 mapply(struct matchinfo *m, cfdata_t cf)
    622 {
    623 	int pri;
    624 
    625 	if (m->fn != NULL) {
    626 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    627 	} else {
    628 		pri = config_match(m->parent, cf, m->aux);
    629 	}
    630 	if (pri > m->pri) {
    631 		m->match = cf;
    632 		m->pri = pri;
    633 	}
    634 }
    635 
    636 int
    637 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    638 {
    639 	const struct cfiattrdata *ci;
    640 	const struct cflocdesc *cl;
    641 	int nlocs, i;
    642 
    643 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
    644 	KASSERT(ci);
    645 	nlocs = ci->ci_loclen;
    646 	for (i = 0; i < nlocs; i++) {
    647 		cl = &ci->ci_locdesc[i];
    648 		/* !cld_defaultstr means no default value */
    649 		if ((!(cl->cld_defaultstr)
    650 		     || (cf->cf_loc[i] != cl->cld_default))
    651 		    && cf->cf_loc[i] != locs[i])
    652 			return (0);
    653 	}
    654 
    655 	return (config_match(parent, cf, aux));
    656 }
    657 
    658 /*
    659  * Helper function: check whether the driver supports the interface attribute
    660  * and return its descriptor structure.
    661  */
    662 static const struct cfiattrdata *
    663 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    664 {
    665 	const struct cfiattrdata * const *cpp;
    666 
    667 	if (cd->cd_attrs == NULL)
    668 		return (0);
    669 
    670 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    671 		if (STREQ((*cpp)->ci_name, ia)) {
    672 			/* Match. */
    673 			return (*cpp);
    674 		}
    675 	}
    676 	return (0);
    677 }
    678 
    679 /*
    680  * Lookup an interface attribute description by name.
    681  * If the driver is given, consider only its supported attributes.
    682  */
    683 const struct cfiattrdata *
    684 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    685 {
    686 	const struct cfdriver *d;
    687 	const struct cfiattrdata *ia;
    688 
    689 	if (cd)
    690 		return (cfdriver_get_iattr(cd, name));
    691 
    692 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    693 		ia = cfdriver_get_iattr(d, name);
    694 		if (ia)
    695 			return (ia);
    696 	}
    697 	return (0);
    698 }
    699 
    700 /*
    701  * Determine if `parent' is a potential parent for a device spec based
    702  * on `cfp'.
    703  */
    704 static int
    705 cfparent_match(const device_t parent, const struct cfparent *cfp)
    706 {
    707 	struct cfdriver *pcd;
    708 
    709 	/* We don't match root nodes here. */
    710 	if (cfp == NULL)
    711 		return (0);
    712 
    713 	pcd = parent->dv_cfdriver;
    714 	KASSERT(pcd != NULL);
    715 
    716 	/*
    717 	 * First, ensure this parent has the correct interface
    718 	 * attribute.
    719 	 */
    720 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    721 		return (0);
    722 
    723 	/*
    724 	 * If no specific parent device instance was specified (i.e.
    725 	 * we're attaching to the attribute only), we're done!
    726 	 */
    727 	if (cfp->cfp_parent == NULL)
    728 		return (1);
    729 
    730 	/*
    731 	 * Check the parent device's name.
    732 	 */
    733 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    734 		return (0);	/* not the same parent */
    735 
    736 	/*
    737 	 * Make sure the unit number matches.
    738 	 */
    739 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    740 	    cfp->cfp_unit == parent->dv_unit)
    741 		return (1);
    742 
    743 	/* Unit numbers don't match. */
    744 	return (0);
    745 }
    746 
    747 /*
    748  * Helper for config_cfdata_attach(): check all devices whether it could be
    749  * parent any attachment in the config data table passed, and rescan.
    750  */
    751 static void
    752 rescan_with_cfdata(const struct cfdata *cf)
    753 {
    754 	device_t d;
    755 	const struct cfdata *cf1;
    756 	deviter_t di;
    757 
    758 
    759 	/*
    760 	 * "alldevs" is likely longer than an LKM's cfdata, so make it
    761 	 * the outer loop.
    762 	 */
    763 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    764 
    765 		if (!(d->dv_cfattach->ca_rescan))
    766 			continue;
    767 
    768 		for (cf1 = cf; cf1->cf_name; cf1++) {
    769 
    770 			if (!cfparent_match(d, cf1->cf_pspec))
    771 				continue;
    772 
    773 			(*d->dv_cfattach->ca_rescan)(d,
    774 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
    775 		}
    776 	}
    777 	deviter_release(&di);
    778 }
    779 
    780 /*
    781  * Attach a supplemental config data table and rescan potential
    782  * parent devices if required.
    783  */
    784 int
    785 config_cfdata_attach(cfdata_t cf, int scannow)
    786 {
    787 	struct cftable *ct;
    788 
    789 	ct = malloc(sizeof(struct cftable), M_DEVBUF, M_WAITOK);
    790 	ct->ct_cfdata = cf;
    791 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    792 
    793 	if (scannow)
    794 		rescan_with_cfdata(cf);
    795 
    796 	return (0);
    797 }
    798 
    799 /*
    800  * Helper for config_cfdata_detach: check whether a device is
    801  * found through any attachment in the config data table.
    802  */
    803 static int
    804 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
    805 {
    806 	const struct cfdata *cf1;
    807 
    808 	for (cf1 = cf; cf1->cf_name; cf1++)
    809 		if (d->dv_cfdata == cf1)
    810 			return (1);
    811 
    812 	return (0);
    813 }
    814 
    815 /*
    816  * Detach a supplemental config data table. Detach all devices found
    817  * through that table (and thus keeping references to it) before.
    818  */
    819 int
    820 config_cfdata_detach(cfdata_t cf)
    821 {
    822 	device_t d;
    823 	int error = 0;
    824 	struct cftable *ct;
    825 	deviter_t di;
    826 
    827 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    828 	     d = deviter_next(&di)) {
    829 		if (!dev_in_cfdata(d, cf))
    830 			continue;
    831 		if ((error = config_detach(d, 0)) != 0)
    832 			break;
    833 	}
    834 	deviter_release(&di);
    835 	if (error) {
    836 		aprint_error_dev(d, "unable to detach instance\n");
    837 		return error;
    838 	}
    839 
    840 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    841 		if (ct->ct_cfdata == cf) {
    842 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    843 			free(ct, M_DEVBUF);
    844 			return (0);
    845 		}
    846 	}
    847 
    848 	/* not found -- shouldn't happen */
    849 	return (EINVAL);
    850 }
    851 
    852 /*
    853  * Invoke the "match" routine for a cfdata entry on behalf of
    854  * an external caller, usually a "submatch" routine.
    855  */
    856 int
    857 config_match(device_t parent, cfdata_t cf, void *aux)
    858 {
    859 	struct cfattach *ca;
    860 
    861 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    862 	if (ca == NULL) {
    863 		/* No attachment for this entry, oh well. */
    864 		return (0);
    865 	}
    866 
    867 	return ((*ca->ca_match)(parent, cf, aux));
    868 }
    869 
    870 /*
    871  * Iterate over all potential children of some device, calling the given
    872  * function (default being the child's match function) for each one.
    873  * Nonzero returns are matches; the highest value returned is considered
    874  * the best match.  Return the `found child' if we got a match, or NULL
    875  * otherwise.  The `aux' pointer is simply passed on through.
    876  *
    877  * Note that this function is designed so that it can be used to apply
    878  * an arbitrary function to all potential children (its return value
    879  * can be ignored).
    880  */
    881 cfdata_t
    882 config_search_loc(cfsubmatch_t fn, device_t parent,
    883 		  const char *ifattr, const int *locs, void *aux)
    884 {
    885 	struct cftable *ct;
    886 	cfdata_t cf;
    887 	struct matchinfo m;
    888 
    889 	KASSERT(config_initialized);
    890 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
    891 
    892 	m.fn = fn;
    893 	m.parent = parent;
    894 	m.locs = locs;
    895 	m.aux = aux;
    896 	m.match = NULL;
    897 	m.pri = 0;
    898 
    899 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    900 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
    901 
    902 			/* We don't match root nodes here. */
    903 			if (!cf->cf_pspec)
    904 				continue;
    905 
    906 			/*
    907 			 * Skip cf if no longer eligible, otherwise scan
    908 			 * through parents for one matching `parent', and
    909 			 * try match function.
    910 			 */
    911 			if (cf->cf_fstate == FSTATE_FOUND)
    912 				continue;
    913 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
    914 			    cf->cf_fstate == FSTATE_DSTAR)
    915 				continue;
    916 
    917 			/*
    918 			 * If an interface attribute was specified,
    919 			 * consider only children which attach to
    920 			 * that attribute.
    921 			 */
    922 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
    923 				continue;
    924 
    925 			if (cfparent_match(parent, cf->cf_pspec))
    926 				mapply(&m, cf);
    927 		}
    928 	}
    929 	return (m.match);
    930 }
    931 
    932 cfdata_t
    933 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
    934     void *aux)
    935 {
    936 
    937 	return (config_search_loc(fn, parent, ifattr, NULL, aux));
    938 }
    939 
    940 /*
    941  * Find the given root device.
    942  * This is much like config_search, but there is no parent.
    943  * Don't bother with multiple cfdata tables; the root node
    944  * must always be in the initial table.
    945  */
    946 cfdata_t
    947 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
    948 {
    949 	cfdata_t cf;
    950 	const short *p;
    951 	struct matchinfo m;
    952 
    953 	m.fn = fn;
    954 	m.parent = ROOT;
    955 	m.aux = aux;
    956 	m.match = NULL;
    957 	m.pri = 0;
    958 	m.locs = 0;
    959 	/*
    960 	 * Look at root entries for matching name.  We do not bother
    961 	 * with found-state here since only one root should ever be
    962 	 * searched (and it must be done first).
    963 	 */
    964 	for (p = cfroots; *p >= 0; p++) {
    965 		cf = &cfdata[*p];
    966 		if (strcmp(cf->cf_name, rootname) == 0)
    967 			mapply(&m, cf);
    968 	}
    969 	return (m.match);
    970 }
    971 
    972 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
    973 
    974 /*
    975  * The given `aux' argument describes a device that has been found
    976  * on the given parent, but not necessarily configured.  Locate the
    977  * configuration data for that device (using the submatch function
    978  * provided, or using candidates' cd_match configuration driver
    979  * functions) and attach it, and return true.  If the device was
    980  * not configured, call the given `print' function and return 0.
    981  */
    982 device_t
    983 config_found_sm_loc(device_t parent,
    984 		const char *ifattr, const int *locs, void *aux,
    985 		cfprint_t print, cfsubmatch_t submatch)
    986 {
    987 	cfdata_t cf;
    988 
    989 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    990 	if (splash_progress_state)
    991 		splash_progress_update(splash_progress_state);
    992 #endif
    993 
    994 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
    995 		return(config_attach_loc(parent, cf, locs, aux, print));
    996 	if (print) {
    997 		if (config_do_twiddle)
    998 			twiddle();
    999 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1000 	}
   1001 
   1002 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1003 	if (splash_progress_state)
   1004 		splash_progress_update(splash_progress_state);
   1005 #endif
   1006 
   1007 	return (NULL);
   1008 }
   1009 
   1010 device_t
   1011 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1012     cfprint_t print)
   1013 {
   1014 
   1015 	return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
   1016 }
   1017 
   1018 device_t
   1019 config_found(device_t parent, void *aux, cfprint_t print)
   1020 {
   1021 
   1022 	return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
   1023 }
   1024 
   1025 /*
   1026  * As above, but for root devices.
   1027  */
   1028 device_t
   1029 config_rootfound(const char *rootname, void *aux)
   1030 {
   1031 	cfdata_t cf;
   1032 
   1033 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
   1034 		return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
   1035 	aprint_error("root device %s not configured\n", rootname);
   1036 	return (NULL);
   1037 }
   1038 
   1039 /* just like sprintf(buf, "%d") except that it works from the end */
   1040 static char *
   1041 number(char *ep, int n)
   1042 {
   1043 
   1044 	*--ep = 0;
   1045 	while (n >= 10) {
   1046 		*--ep = (n % 10) + '0';
   1047 		n /= 10;
   1048 	}
   1049 	*--ep = n + '0';
   1050 	return (ep);
   1051 }
   1052 
   1053 /*
   1054  * Expand the size of the cd_devs array if necessary.
   1055  */
   1056 static void
   1057 config_makeroom(int n, struct cfdriver *cd)
   1058 {
   1059 	int old, new;
   1060 	void **nsp;
   1061 
   1062 	if (n < cd->cd_ndevs)
   1063 		return;
   1064 
   1065 	/*
   1066 	 * Need to expand the array.
   1067 	 */
   1068 	old = cd->cd_ndevs;
   1069 	if (old == 0)
   1070 		new = 4;
   1071 	else
   1072 		new = old * 2;
   1073 	while (new <= n)
   1074 		new *= 2;
   1075 	cd->cd_ndevs = new;
   1076 	nsp = malloc(new * sizeof(void *), M_DEVBUF,
   1077 	    cold ? M_NOWAIT : M_WAITOK);
   1078 	if (nsp == NULL)
   1079 		panic("config_attach: %sing dev array",
   1080 		    old != 0 ? "expand" : "creat");
   1081 	memset(nsp + old, 0, (new - old) * sizeof(void *));
   1082 	if (old != 0) {
   1083 		memcpy(nsp, cd->cd_devs, old * sizeof(void *));
   1084 		free(cd->cd_devs, M_DEVBUF);
   1085 	}
   1086 	cd->cd_devs = nsp;
   1087 }
   1088 
   1089 static void
   1090 config_devlink(device_t dev)
   1091 {
   1092 	struct cfdriver *cd = dev->dv_cfdriver;
   1093 
   1094 	/* put this device in the devices array */
   1095 	config_makeroom(dev->dv_unit, cd);
   1096 	if (cd->cd_devs[dev->dv_unit])
   1097 		panic("config_attach: duplicate %s", device_xname(dev));
   1098 	cd->cd_devs[dev->dv_unit] = dev;
   1099 
   1100 	/* It is safe to add a device to the tail of the list while
   1101 	 * readers are in the list, but not while a writer is in
   1102 	 * the list.  Wait for any writer to complete.
   1103 	 */
   1104 	mutex_enter(&alldevs_mtx);
   1105 	while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
   1106 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1107 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
   1108 	cv_signal(&alldevs_cv);
   1109 	mutex_exit(&alldevs_mtx);
   1110 }
   1111 
   1112 static void
   1113 config_devunlink(device_t dev)
   1114 {
   1115 	struct cfdriver *cd = dev->dv_cfdriver;
   1116 	int i;
   1117 
   1118 	/* Unlink from device list. */
   1119 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1120 
   1121 	/* Remove from cfdriver's array. */
   1122 	cd->cd_devs[dev->dv_unit] = NULL;
   1123 
   1124 	/*
   1125 	 * If the device now has no units in use, deallocate its softc array.
   1126 	 */
   1127 	for (i = 0; i < cd->cd_ndevs; i++)
   1128 		if (cd->cd_devs[i] != NULL)
   1129 			break;
   1130 	if (i == cd->cd_ndevs) {		/* nothing found; deallocate */
   1131 		free(cd->cd_devs, M_DEVBUF);
   1132 		cd->cd_devs = NULL;
   1133 		cd->cd_ndevs = 0;
   1134 	}
   1135 }
   1136 
   1137 static device_t
   1138 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1139 {
   1140 	struct cfdriver *cd;
   1141 	struct cfattach *ca;
   1142 	size_t lname, lunit;
   1143 	const char *xunit;
   1144 	int myunit;
   1145 	char num[10];
   1146 	device_t dev;
   1147 	void *dev_private;
   1148 	const struct cfiattrdata *ia;
   1149 
   1150 	cd = config_cfdriver_lookup(cf->cf_name);
   1151 	if (cd == NULL)
   1152 		return (NULL);
   1153 
   1154 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1155 	if (ca == NULL)
   1156 		return (NULL);
   1157 
   1158 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
   1159 	    ca->ca_devsize < sizeof(struct device))
   1160 		panic("config_devalloc: %s", cf->cf_atname);
   1161 
   1162 #ifndef __BROKEN_CONFIG_UNIT_USAGE
   1163 	if (cf->cf_fstate == FSTATE_STAR) {
   1164 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
   1165 			if (cd->cd_devs[myunit] == NULL)
   1166 				break;
   1167 		/*
   1168 		 * myunit is now the unit of the first NULL device pointer,
   1169 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1170 		 */
   1171 	} else {
   1172 		myunit = cf->cf_unit;
   1173 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
   1174 			return (NULL);
   1175 	}
   1176 #else
   1177 	myunit = cf->cf_unit;
   1178 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
   1179 
   1180 	/* compute length of name and decimal expansion of unit number */
   1181 	lname = strlen(cd->cd_name);
   1182 	xunit = number(&num[sizeof(num)], myunit);
   1183 	lunit = &num[sizeof(num)] - xunit;
   1184 	if (lname + lunit > sizeof(dev->dv_xname))
   1185 		panic("config_devalloc: device name too long");
   1186 
   1187 	/* get memory for all device vars */
   1188 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
   1189 	if (ca->ca_devsize > 0) {
   1190 		dev_private = malloc(ca->ca_devsize, M_DEVBUF,
   1191 				     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
   1192 		if (dev_private == NULL)
   1193 			panic("config_devalloc: memory allocation for device softc failed");
   1194 	} else {
   1195 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1196 		dev_private = NULL;
   1197 	}
   1198 
   1199 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1200 		dev = malloc(sizeof(struct device), M_DEVBUF,
   1201 			     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
   1202 	} else {
   1203 		dev = dev_private;
   1204 	}
   1205 	if (dev == NULL)
   1206 		panic("config_devalloc: memory allocation for device_t failed");
   1207 
   1208 	dev->dv_class = cd->cd_class;
   1209 	dev->dv_cfdata = cf;
   1210 	dev->dv_cfdriver = cd;
   1211 	dev->dv_cfattach = ca;
   1212 	dev->dv_unit = myunit;
   1213 	dev->dv_activity_count = 0;
   1214 	dev->dv_activity_handlers = NULL;
   1215 	dev->dv_private = dev_private;
   1216 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1217 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1218 	dev->dv_parent = parent;
   1219 	if (parent != NULL)
   1220 		dev->dv_depth = parent->dv_depth + 1;
   1221 	else
   1222 		dev->dv_depth = 0;
   1223 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
   1224 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
   1225 	if (locs) {
   1226 		KASSERT(parent); /* no locators at root */
   1227 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
   1228 				    parent->dv_cfdriver);
   1229 		dev->dv_locators = malloc(ia->ci_loclen * sizeof(int),
   1230 					  M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1231 		memcpy(dev->dv_locators, locs, ia->ci_loclen * sizeof(int));
   1232 	}
   1233 	dev->dv_properties = prop_dictionary_create();
   1234 	KASSERT(dev->dv_properties != NULL);
   1235 
   1236 	return (dev);
   1237 }
   1238 
   1239 static void
   1240 config_devdealloc(device_t dev)
   1241 {
   1242 
   1243 	KASSERT(dev->dv_properties != NULL);
   1244 	prop_object_release(dev->dv_properties);
   1245 
   1246 	if (dev->dv_activity_handlers)
   1247 		panic("config_devdealloc with registered handlers");
   1248 
   1249 	if (dev->dv_locators)
   1250 		free(dev->dv_locators, M_DEVBUF);
   1251 
   1252 	if ((dev->dv_flags & DVF_PRIV_ALLOC) != 0 && dev->dv_private != NULL)
   1253 		free(dev->dv_private, M_DEVBUF);
   1254 
   1255 	free(dev, M_DEVBUF);
   1256 }
   1257 
   1258 /*
   1259  * Attach a found device.
   1260  */
   1261 device_t
   1262 config_attach_loc(device_t parent, cfdata_t cf,
   1263 	const int *locs, void *aux, cfprint_t print)
   1264 {
   1265 	device_t dev;
   1266 	struct cftable *ct;
   1267 	const char *drvname;
   1268 
   1269 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1270 	if (splash_progress_state)
   1271 		splash_progress_update(splash_progress_state);
   1272 #endif
   1273 
   1274 	dev = config_devalloc(parent, cf, locs);
   1275 	if (!dev)
   1276 		panic("config_attach: allocation of device softc failed");
   1277 
   1278 	/* XXX redundant - see below? */
   1279 	if (cf->cf_fstate != FSTATE_STAR) {
   1280 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1281 		cf->cf_fstate = FSTATE_FOUND;
   1282 	}
   1283 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1284 	  else
   1285 		cf->cf_unit++;
   1286 #endif
   1287 
   1288 	config_devlink(dev);
   1289 
   1290 	if (config_do_twiddle)
   1291 		twiddle();
   1292 	else
   1293 		aprint_naive("Found ");
   1294 	/*
   1295 	 * We want the next two printfs for normal, verbose, and quiet,
   1296 	 * but not silent (in which case, we're twiddling, instead).
   1297 	 */
   1298 	if (parent == ROOT) {
   1299 		aprint_naive("%s (root)", device_xname(dev));
   1300 		aprint_normal("%s (root)", device_xname(dev));
   1301 	} else {
   1302 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
   1303 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
   1304 		if (print)
   1305 			(void) (*print)(aux, NULL);
   1306 	}
   1307 
   1308 	/*
   1309 	 * Before attaching, clobber any unfound devices that are
   1310 	 * otherwise identical.
   1311 	 * XXX code above is redundant?
   1312 	 */
   1313 	drvname = dev->dv_cfdriver->cd_name;
   1314 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1315 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1316 			if (STREQ(cf->cf_name, drvname) &&
   1317 			    cf->cf_unit == dev->dv_unit) {
   1318 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1319 					cf->cf_fstate = FSTATE_FOUND;
   1320 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1321 				/*
   1322 				 * Bump the unit number on all starred cfdata
   1323 				 * entries for this device.
   1324 				 */
   1325 				if (cf->cf_fstate == FSTATE_STAR)
   1326 					cf->cf_unit++;
   1327 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1328 			}
   1329 		}
   1330 	}
   1331 #ifdef __HAVE_DEVICE_REGISTER
   1332 	device_register(dev, aux);
   1333 #endif
   1334 
   1335 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1336 	if (splash_progress_state)
   1337 		splash_progress_update(splash_progress_state);
   1338 #endif
   1339 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1340 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1341 	if (splash_progress_state)
   1342 		splash_progress_update(splash_progress_state);
   1343 #endif
   1344 
   1345 	if (!device_pmf_is_registered(dev))
   1346 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
   1347 
   1348 	config_process_deferred(&deferred_config_queue, dev);
   1349 	return (dev);
   1350 }
   1351 
   1352 device_t
   1353 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1354 {
   1355 
   1356 	return (config_attach_loc(parent, cf, NULL, aux, print));
   1357 }
   1358 
   1359 /*
   1360  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1361  * way are silently inserted into the device tree, and their children
   1362  * attached.
   1363  *
   1364  * Note that because pseudo-devices are attached silently, any information
   1365  * the attach routine wishes to print should be prefixed with the device
   1366  * name by the attach routine.
   1367  */
   1368 device_t
   1369 config_attach_pseudo(cfdata_t cf)
   1370 {
   1371 	device_t dev;
   1372 
   1373 	dev = config_devalloc(ROOT, cf, NULL);
   1374 	if (!dev)
   1375 		return (NULL);
   1376 
   1377 	/* XXX mark busy in cfdata */
   1378 
   1379 	config_devlink(dev);
   1380 
   1381 #if 0	/* XXXJRT not yet */
   1382 #ifdef __HAVE_DEVICE_REGISTER
   1383 	device_register(dev, NULL);	/* like a root node */
   1384 #endif
   1385 #endif
   1386 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1387 	config_process_deferred(&deferred_config_queue, dev);
   1388 	return (dev);
   1389 }
   1390 
   1391 /*
   1392  * Detach a device.  Optionally forced (e.g. because of hardware
   1393  * removal) and quiet.  Returns zero if successful, non-zero
   1394  * (an error code) otherwise.
   1395  *
   1396  * Note that this code wants to be run from a process context, so
   1397  * that the detach can sleep to allow processes which have a device
   1398  * open to run and unwind their stacks.
   1399  */
   1400 int
   1401 config_detach(device_t dev, int flags)
   1402 {
   1403 	struct cftable *ct;
   1404 	cfdata_t cf;
   1405 	const struct cfattach *ca;
   1406 	struct cfdriver *cd;
   1407 #ifdef DIAGNOSTIC
   1408 	device_t d;
   1409 #endif
   1410 	int rv = 0;
   1411 
   1412 #ifdef DIAGNOSTIC
   1413 	if (dev->dv_cfdata != NULL &&
   1414 	    dev->dv_cfdata->cf_fstate != FSTATE_FOUND &&
   1415 	    dev->dv_cfdata->cf_fstate != FSTATE_STAR)
   1416 		panic("config_detach: bad device fstate");
   1417 #endif
   1418 	cd = dev->dv_cfdriver;
   1419 	KASSERT(cd != NULL);
   1420 
   1421 	ca = dev->dv_cfattach;
   1422 	KASSERT(ca != NULL);
   1423 
   1424 	KASSERT(curlwp != NULL);
   1425 	mutex_enter(&alldevs_mtx);
   1426 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   1427 		;
   1428 	else while (alldevs_nread != 0 ||
   1429 	       (alldevs_nwrite != 0 && alldevs_writer != curlwp))
   1430 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1431 	if (alldevs_nwrite++ == 0)
   1432 		alldevs_writer = curlwp;
   1433 	mutex_exit(&alldevs_mtx);
   1434 
   1435 	/*
   1436 	 * Ensure the device is deactivated.  If the device doesn't
   1437 	 * have an activation entry point, we allow DVF_ACTIVE to
   1438 	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
   1439 	 * device is busy, and the detach fails.
   1440 	 */
   1441 	if (ca->ca_activate != NULL)
   1442 		rv = config_deactivate(dev);
   1443 
   1444 	/*
   1445 	 * Try to detach the device.  If that's not possible, then
   1446 	 * we either panic() (for the forced but failed case), or
   1447 	 * return an error.
   1448 	 */
   1449 	if (rv == 0) {
   1450 		if (ca->ca_detach != NULL)
   1451 			rv = (*ca->ca_detach)(dev, flags);
   1452 		else
   1453 			rv = EOPNOTSUPP;
   1454 	}
   1455 	if (rv != 0) {
   1456 		if ((flags & DETACH_FORCE) == 0)
   1457 			goto out;
   1458 		else
   1459 			panic("config_detach: forced detach of %s failed (%d)",
   1460 			    device_xname(dev), rv);
   1461 	}
   1462 
   1463 	/*
   1464 	 * The device has now been successfully detached.
   1465 	 */
   1466 
   1467 #ifdef DIAGNOSTIC
   1468 	/*
   1469 	 * Sanity: If you're successfully detached, you should have no
   1470 	 * children.  (Note that because children must be attached
   1471 	 * after parents, we only need to search the latter part of
   1472 	 * the list.)
   1473 	 */
   1474 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1475 	    d = TAILQ_NEXT(d, dv_list)) {
   1476 		if (d->dv_parent == dev) {
   1477 			printf("config_detach: detached device %s"
   1478 			    " has children %s\n", device_xname(dev), device_xname(d));
   1479 			panic("config_detach");
   1480 		}
   1481 	}
   1482 #endif
   1483 
   1484 	/* notify the parent that the child is gone */
   1485 	if (dev->dv_parent) {
   1486 		device_t p = dev->dv_parent;
   1487 		if (p->dv_cfattach->ca_childdetached)
   1488 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1489 	}
   1490 
   1491 	/*
   1492 	 * Mark cfdata to show that the unit can be reused, if possible.
   1493 	 */
   1494 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1495 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1496 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1497 				if (cf->cf_fstate == FSTATE_FOUND &&
   1498 				    cf->cf_unit == dev->dv_unit)
   1499 					cf->cf_fstate = FSTATE_NOTFOUND;
   1500 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1501 				/*
   1502 				 * Note that we can only re-use a starred
   1503 				 * unit number if the unit being detached
   1504 				 * had the last assigned unit number.
   1505 				 */
   1506 				if (cf->cf_fstate == FSTATE_STAR &&
   1507 				    cf->cf_unit == dev->dv_unit + 1)
   1508 					cf->cf_unit--;
   1509 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1510 			}
   1511 		}
   1512 	}
   1513 
   1514 	config_devunlink(dev);
   1515 
   1516 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1517 		aprint_normal_dev(dev, "detached\n");
   1518 
   1519 	config_devdealloc(dev);
   1520 
   1521 out:
   1522 	mutex_enter(&alldevs_mtx);
   1523 	if (--alldevs_nwrite == 0)
   1524 		alldevs_writer = NULL;
   1525 	cv_signal(&alldevs_cv);
   1526 	mutex_exit(&alldevs_mtx);
   1527 	return rv;
   1528 }
   1529 
   1530 int
   1531 config_detach_children(device_t parent, int flags)
   1532 {
   1533 	device_t dv;
   1534 	deviter_t di;
   1535 	int error = 0;
   1536 
   1537 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1538 	     dv = deviter_next(&di)) {
   1539 		if (device_parent(dv) != parent)
   1540 			continue;
   1541 		if ((error = config_detach(dv, flags)) != 0)
   1542 			break;
   1543 	}
   1544 	deviter_release(&di);
   1545 	return error;
   1546 }
   1547 
   1548 int
   1549 config_activate(device_t dev)
   1550 {
   1551 	const struct cfattach *ca = dev->dv_cfattach;
   1552 	int rv = 0, oflags = dev->dv_flags;
   1553 
   1554 	if (ca->ca_activate == NULL)
   1555 		return (EOPNOTSUPP);
   1556 
   1557 	if ((dev->dv_flags & DVF_ACTIVE) == 0) {
   1558 		dev->dv_flags |= DVF_ACTIVE;
   1559 		rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
   1560 		if (rv)
   1561 			dev->dv_flags = oflags;
   1562 	}
   1563 	return (rv);
   1564 }
   1565 
   1566 int
   1567 config_deactivate(device_t dev)
   1568 {
   1569 	const struct cfattach *ca = dev->dv_cfattach;
   1570 	int rv = 0, oflags = dev->dv_flags;
   1571 
   1572 	if (ca->ca_activate == NULL)
   1573 		return (EOPNOTSUPP);
   1574 
   1575 	if (dev->dv_flags & DVF_ACTIVE) {
   1576 		dev->dv_flags &= ~DVF_ACTIVE;
   1577 		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
   1578 		if (rv)
   1579 			dev->dv_flags = oflags;
   1580 	}
   1581 	return (rv);
   1582 }
   1583 
   1584 /*
   1585  * Defer the configuration of the specified device until all
   1586  * of its parent's devices have been attached.
   1587  */
   1588 void
   1589 config_defer(device_t dev, void (*func)(device_t))
   1590 {
   1591 	struct deferred_config *dc;
   1592 
   1593 	if (dev->dv_parent == NULL)
   1594 		panic("config_defer: can't defer config of a root device");
   1595 
   1596 #ifdef DIAGNOSTIC
   1597 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
   1598 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1599 		if (dc->dc_dev == dev)
   1600 			panic("config_defer: deferred twice");
   1601 	}
   1602 #endif
   1603 
   1604 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1605 	if (dc == NULL)
   1606 		panic("config_defer: unable to allocate callback");
   1607 
   1608 	dc->dc_dev = dev;
   1609 	dc->dc_func = func;
   1610 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1611 	config_pending_incr();
   1612 }
   1613 
   1614 /*
   1615  * Defer some autoconfiguration for a device until after interrupts
   1616  * are enabled.
   1617  */
   1618 void
   1619 config_interrupts(device_t dev, void (*func)(device_t))
   1620 {
   1621 	struct deferred_config *dc;
   1622 
   1623 	/*
   1624 	 * If interrupts are enabled, callback now.
   1625 	 */
   1626 	if (cold == 0) {
   1627 		(*func)(dev);
   1628 		return;
   1629 	}
   1630 
   1631 #ifdef DIAGNOSTIC
   1632 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
   1633 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1634 		if (dc->dc_dev == dev)
   1635 			panic("config_interrupts: deferred twice");
   1636 	}
   1637 #endif
   1638 
   1639 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1640 	if (dc == NULL)
   1641 		panic("config_interrupts: unable to allocate callback");
   1642 
   1643 	dc->dc_dev = dev;
   1644 	dc->dc_func = func;
   1645 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   1646 	config_pending_incr();
   1647 }
   1648 
   1649 /*
   1650  * Process a deferred configuration queue.
   1651  */
   1652 static void
   1653 config_process_deferred(struct deferred_config_head *queue,
   1654     device_t parent)
   1655 {
   1656 	struct deferred_config *dc, *ndc;
   1657 
   1658 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   1659 		ndc = TAILQ_NEXT(dc, dc_queue);
   1660 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   1661 			TAILQ_REMOVE(queue, dc, dc_queue);
   1662 			(*dc->dc_func)(dc->dc_dev);
   1663 			free(dc, M_DEVBUF);
   1664 			config_pending_decr();
   1665 		}
   1666 	}
   1667 }
   1668 
   1669 /*
   1670  * Manipulate the config_pending semaphore.
   1671  */
   1672 void
   1673 config_pending_incr(void)
   1674 {
   1675 
   1676 	config_pending++;
   1677 }
   1678 
   1679 void
   1680 config_pending_decr(void)
   1681 {
   1682 
   1683 #ifdef DIAGNOSTIC
   1684 	if (config_pending == 0)
   1685 		panic("config_pending_decr: config_pending == 0");
   1686 #endif
   1687 	config_pending--;
   1688 	if (config_pending == 0)
   1689 		wakeup(&config_pending);
   1690 }
   1691 
   1692 /*
   1693  * Register a "finalization" routine.  Finalization routines are
   1694  * called iteratively once all real devices have been found during
   1695  * autoconfiguration, for as long as any one finalizer has done
   1696  * any work.
   1697  */
   1698 int
   1699 config_finalize_register(device_t dev, int (*fn)(device_t))
   1700 {
   1701 	struct finalize_hook *f;
   1702 
   1703 	/*
   1704 	 * If finalization has already been done, invoke the
   1705 	 * callback function now.
   1706 	 */
   1707 	if (config_finalize_done) {
   1708 		while ((*fn)(dev) != 0)
   1709 			/* loop */ ;
   1710 	}
   1711 
   1712 	/* Ensure this isn't already on the list. */
   1713 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   1714 		if (f->f_func == fn && f->f_dev == dev)
   1715 			return (EEXIST);
   1716 	}
   1717 
   1718 	f = malloc(sizeof(*f), M_TEMP, M_WAITOK);
   1719 	f->f_func = fn;
   1720 	f->f_dev = dev;
   1721 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   1722 
   1723 	return (0);
   1724 }
   1725 
   1726 void
   1727 config_finalize(void)
   1728 {
   1729 	struct finalize_hook *f;
   1730 	struct pdevinit *pdev;
   1731 	extern struct pdevinit pdevinit[];
   1732 	int errcnt, rv;
   1733 
   1734 	/*
   1735 	 * Now that device driver threads have been created, wait for
   1736 	 * them to finish any deferred autoconfiguration.
   1737 	 */
   1738 	while (config_pending)
   1739 		(void) tsleep(&config_pending, PWAIT, "cfpend", hz);
   1740 
   1741 	/* Attach pseudo-devices. */
   1742 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   1743 		(*pdev->pdev_attach)(pdev->pdev_count);
   1744 
   1745 	/* Run the hooks until none of them does any work. */
   1746 	do {
   1747 		rv = 0;
   1748 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   1749 			rv |= (*f->f_func)(f->f_dev);
   1750 	} while (rv != 0);
   1751 
   1752 	config_finalize_done = 1;
   1753 
   1754 	/* Now free all the hooks. */
   1755 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   1756 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   1757 		free(f, M_TEMP);
   1758 	}
   1759 
   1760 	errcnt = aprint_get_error_count();
   1761 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   1762 	    (boothowto & AB_VERBOSE) == 0) {
   1763 		if (config_do_twiddle) {
   1764 			config_do_twiddle = 0;
   1765 			printf_nolog("done.\n");
   1766 		}
   1767 		if (errcnt != 0) {
   1768 			printf("WARNING: %d error%s while detecting hardware; "
   1769 			    "check system log.\n", errcnt,
   1770 			    errcnt == 1 ? "" : "s");
   1771 		}
   1772 	}
   1773 }
   1774 
   1775 /*
   1776  * device_lookup:
   1777  *
   1778  *	Look up a device instance for a given driver.
   1779  */
   1780 void *
   1781 device_lookup(cfdriver_t cd, int unit)
   1782 {
   1783 
   1784 	if (unit < 0 || unit >= cd->cd_ndevs)
   1785 		return (NULL);
   1786 
   1787 	return (cd->cd_devs[unit]);
   1788 }
   1789 
   1790 /*
   1791  * device_lookup:
   1792  *
   1793  *	Look up a device instance for a given driver.
   1794  */
   1795 void *
   1796 device_lookup_private(cfdriver_t cd, int unit)
   1797 {
   1798 	device_t dv;
   1799 
   1800 	if (unit < 0 || unit >= cd->cd_ndevs)
   1801 		return NULL;
   1802 
   1803 	if ((dv = cd->cd_devs[unit]) == NULL)
   1804 		return NULL;
   1805 
   1806 	return dv->dv_private;
   1807 }
   1808 
   1809 /*
   1810  * Accessor functions for the device_t type.
   1811  */
   1812 devclass_t
   1813 device_class(device_t dev)
   1814 {
   1815 
   1816 	return (dev->dv_class);
   1817 }
   1818 
   1819 cfdata_t
   1820 device_cfdata(device_t dev)
   1821 {
   1822 
   1823 	return (dev->dv_cfdata);
   1824 }
   1825 
   1826 cfdriver_t
   1827 device_cfdriver(device_t dev)
   1828 {
   1829 
   1830 	return (dev->dv_cfdriver);
   1831 }
   1832 
   1833 cfattach_t
   1834 device_cfattach(device_t dev)
   1835 {
   1836 
   1837 	return (dev->dv_cfattach);
   1838 }
   1839 
   1840 int
   1841 device_unit(device_t dev)
   1842 {
   1843 
   1844 	return (dev->dv_unit);
   1845 }
   1846 
   1847 const char *
   1848 device_xname(device_t dev)
   1849 {
   1850 
   1851 	return (dev->dv_xname);
   1852 }
   1853 
   1854 device_t
   1855 device_parent(device_t dev)
   1856 {
   1857 
   1858 	return (dev->dv_parent);
   1859 }
   1860 
   1861 bool
   1862 device_is_active(device_t dev)
   1863 {
   1864 	int active_flags;
   1865 
   1866 	active_flags = DVF_ACTIVE;
   1867 	active_flags |= DVF_CLASS_SUSPENDED;
   1868 	active_flags |= DVF_DRIVER_SUSPENDED;
   1869 	active_flags |= DVF_BUS_SUSPENDED;
   1870 
   1871 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
   1872 }
   1873 
   1874 bool
   1875 device_is_enabled(device_t dev)
   1876 {
   1877 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
   1878 }
   1879 
   1880 bool
   1881 device_has_power(device_t dev)
   1882 {
   1883 	int active_flags;
   1884 
   1885 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
   1886 
   1887 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
   1888 }
   1889 
   1890 int
   1891 device_locator(device_t dev, u_int locnum)
   1892 {
   1893 
   1894 	KASSERT(dev->dv_locators != NULL);
   1895 	return (dev->dv_locators[locnum]);
   1896 }
   1897 
   1898 void *
   1899 device_private(device_t dev)
   1900 {
   1901 
   1902 	/*
   1903 	 * The reason why device_private(NULL) is allowed is to simplify the
   1904 	 * work of a lot of userspace request handlers (i.e., c/bdev
   1905 	 * handlers) which grab cfdriver_t->cd_units[n].
   1906 	 * It avoids having them test for it to be NULL and only then calling
   1907 	 * device_private.
   1908 	 */
   1909 	return dev == NULL ? NULL : dev->dv_private;
   1910 }
   1911 
   1912 prop_dictionary_t
   1913 device_properties(device_t dev)
   1914 {
   1915 
   1916 	return (dev->dv_properties);
   1917 }
   1918 
   1919 /*
   1920  * device_is_a:
   1921  *
   1922  *	Returns true if the device is an instance of the specified
   1923  *	driver.
   1924  */
   1925 bool
   1926 device_is_a(device_t dev, const char *dname)
   1927 {
   1928 
   1929 	return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
   1930 }
   1931 
   1932 /*
   1933  * device_find_by_xname:
   1934  *
   1935  *	Returns the device of the given name or NULL if it doesn't exist.
   1936  */
   1937 device_t
   1938 device_find_by_xname(const char *name)
   1939 {
   1940 	device_t dv;
   1941 	deviter_t di;
   1942 
   1943 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   1944 		if (strcmp(device_xname(dv), name) == 0)
   1945 			break;
   1946 	}
   1947 	deviter_release(&di);
   1948 
   1949 	return dv;
   1950 }
   1951 
   1952 /*
   1953  * device_find_by_driver_unit:
   1954  *
   1955  *	Returns the device of the given driver name and unit or
   1956  *	NULL if it doesn't exist.
   1957  */
   1958 device_t
   1959 device_find_by_driver_unit(const char *name, int unit)
   1960 {
   1961 	struct cfdriver *cd;
   1962 
   1963 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   1964 		return NULL;
   1965 	return device_lookup(cd, unit);
   1966 }
   1967 
   1968 /*
   1969  * Power management related functions.
   1970  */
   1971 
   1972 bool
   1973 device_pmf_is_registered(device_t dev)
   1974 {
   1975 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   1976 }
   1977 
   1978 bool
   1979 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
   1980 {
   1981 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   1982 		return true;
   1983 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   1984 		return false;
   1985 	if (*dev->dv_driver_suspend != NULL &&
   1986 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
   1987 		return false;
   1988 
   1989 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   1990 	return true;
   1991 }
   1992 
   1993 bool
   1994 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
   1995 {
   1996 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   1997 		return true;
   1998 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   1999 		return false;
   2000 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
   2001 		return false;
   2002 	if (*dev->dv_driver_resume != NULL &&
   2003 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
   2004 		return false;
   2005 
   2006 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2007 	return true;
   2008 }
   2009 
   2010 bool
   2011 device_pmf_driver_shutdown(device_t dev, int how)
   2012 {
   2013 
   2014 	if (*dev->dv_driver_shutdown != NULL &&
   2015 	    !(*dev->dv_driver_shutdown)(dev, how))
   2016 		return false;
   2017 	return true;
   2018 }
   2019 
   2020 bool
   2021 device_pmf_driver_register(device_t dev,
   2022     bool (*suspend)(device_t PMF_FN_PROTO),
   2023     bool (*resume)(device_t PMF_FN_PROTO),
   2024     bool (*shutdown)(device_t, int))
   2025 {
   2026 	pmf_private_t *pp;
   2027 
   2028 	if ((pp = malloc(sizeof(*pp), M_PMFPRIV, M_NOWAIT|M_ZERO)) == NULL)
   2029 		return false;
   2030 	mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
   2031 	cv_init(&pp->pp_cv, "pmfsusp");
   2032 	dev->dv_pmf_private = pp;
   2033 
   2034 	dev->dv_driver_suspend = suspend;
   2035 	dev->dv_driver_resume = resume;
   2036 	dev->dv_driver_shutdown = shutdown;
   2037 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2038 	return true;
   2039 }
   2040 
   2041 static const char *
   2042 curlwp_name(void)
   2043 {
   2044 	if (curlwp->l_name != NULL)
   2045 		return curlwp->l_name;
   2046 	else
   2047 		return curlwp->l_proc->p_comm;
   2048 }
   2049 
   2050 void
   2051 device_pmf_driver_deregister(device_t dev)
   2052 {
   2053 	pmf_private_t *pp = dev->dv_pmf_private;
   2054 
   2055 	dev->dv_driver_suspend = NULL;
   2056 	dev->dv_driver_resume = NULL;
   2057 
   2058 	dev->dv_pmf_private = NULL;
   2059 
   2060 	mutex_enter(&pp->pp_mtx);
   2061 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2062 	while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
   2063 		/* Wake a thread that waits for the lock.  That
   2064 		 * thread will fail to acquire the lock, and then
   2065 		 * it will wake the next thread that waits for the
   2066 		 * lock, or else it will wake us.
   2067 		 */
   2068 		cv_signal(&pp->pp_cv);
   2069 		pmflock_debug(dev, __func__, __LINE__);
   2070 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
   2071 		pmflock_debug(dev, __func__, __LINE__);
   2072 	}
   2073 	mutex_exit(&pp->pp_mtx);
   2074 
   2075 	cv_destroy(&pp->pp_cv);
   2076 	mutex_destroy(&pp->pp_mtx);
   2077 	free(pp, M_PMFPRIV);
   2078 }
   2079 
   2080 bool
   2081 device_pmf_driver_child_register(device_t dev)
   2082 {
   2083 	device_t parent = device_parent(dev);
   2084 
   2085 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2086 		return true;
   2087 	return (*parent->dv_driver_child_register)(dev);
   2088 }
   2089 
   2090 void
   2091 device_pmf_driver_set_child_register(device_t dev,
   2092     bool (*child_register)(device_t))
   2093 {
   2094 	dev->dv_driver_child_register = child_register;
   2095 }
   2096 
   2097 void
   2098 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
   2099 {
   2100 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2101 	if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
   2102 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
   2103 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2104 }
   2105 
   2106 bool
   2107 device_is_self_suspended(device_t dev)
   2108 {
   2109 	return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
   2110 }
   2111 
   2112 void
   2113 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
   2114 {
   2115 	bool self = (flags & PMF_F_SELF) != 0;
   2116 
   2117 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2118 
   2119 	if (!self)
   2120 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
   2121 	else if (device_is_active(dev))
   2122 		dev->dv_flags |= DVF_SELF_SUSPENDED;
   2123 
   2124 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2125 }
   2126 
   2127 static void
   2128 pmflock_debug(device_t dev, const char *func, int line)
   2129 {
   2130 	pmf_private_t *pp = device_pmf_private(dev);
   2131 
   2132 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
   2133 	    func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
   2134 	    dev->dv_flags);
   2135 }
   2136 
   2137 static void
   2138 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
   2139 {
   2140 	pmf_private_t *pp = device_pmf_private(dev);
   2141 
   2142 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
   2143 	    "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
   2144 	    pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
   2145 }
   2146 
   2147 static bool
   2148 device_pmf_lock1(device_t dev PMF_FN_ARGS)
   2149 {
   2150 	pmf_private_t *pp = device_pmf_private(dev);
   2151 
   2152 	while (pp->pp_nlock > 0 && pp->pp_holder != curlwp &&
   2153 	       device_pmf_is_registered(dev)) {
   2154 		pp->pp_nwait++;
   2155 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2156 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
   2157 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2158 		pp->pp_nwait--;
   2159 	}
   2160 	if (!device_pmf_is_registered(dev)) {
   2161 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2162 		/* We could not acquire the lock, but some other thread may
   2163 		 * wait for it, also.  Wake that thread.
   2164 		 */
   2165 		cv_signal(&pp->pp_cv);
   2166 		return false;
   2167 	}
   2168 	pp->pp_nlock++;
   2169 	pp->pp_holder = curlwp;
   2170 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2171 	return true;
   2172 }
   2173 
   2174 bool
   2175 device_pmf_lock(device_t dev PMF_FN_ARGS)
   2176 {
   2177 	bool rc;
   2178 	pmf_private_t *pp = device_pmf_private(dev);
   2179 
   2180 	mutex_enter(&pp->pp_mtx);
   2181 	rc = device_pmf_lock1(dev PMF_FN_CALL);
   2182 	mutex_exit(&pp->pp_mtx);
   2183 
   2184 	return rc;
   2185 }
   2186 
   2187 void
   2188 device_pmf_unlock(device_t dev PMF_FN_ARGS)
   2189 {
   2190 	pmf_private_t *pp = device_pmf_private(dev);
   2191 
   2192 	KASSERT(pp->pp_nlock > 0);
   2193 	mutex_enter(&pp->pp_mtx);
   2194 	if (--pp->pp_nlock == 0)
   2195 		pp->pp_holder = NULL;
   2196 	cv_signal(&pp->pp_cv);
   2197 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2198 	mutex_exit(&pp->pp_mtx);
   2199 }
   2200 
   2201 void *
   2202 device_pmf_private(device_t dev)
   2203 {
   2204 	return dev->dv_pmf_private;
   2205 }
   2206 
   2207 void *
   2208 device_pmf_bus_private(device_t dev)
   2209 {
   2210 	return dev->dv_bus_private;
   2211 }
   2212 
   2213 bool
   2214 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
   2215 {
   2216 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2217 		return true;
   2218 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2219 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2220 		return false;
   2221 	if (*dev->dv_bus_suspend != NULL &&
   2222 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
   2223 		return false;
   2224 
   2225 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2226 	return true;
   2227 }
   2228 
   2229 bool
   2230 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
   2231 {
   2232 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2233 		return true;
   2234 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
   2235 		return false;
   2236 	if (*dev->dv_bus_resume != NULL &&
   2237 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
   2238 		return false;
   2239 
   2240 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2241 	return true;
   2242 }
   2243 
   2244 bool
   2245 device_pmf_bus_shutdown(device_t dev, int how)
   2246 {
   2247 
   2248 	if (*dev->dv_bus_shutdown != NULL &&
   2249 	    !(*dev->dv_bus_shutdown)(dev, how))
   2250 		return false;
   2251 	return true;
   2252 }
   2253 
   2254 void
   2255 device_pmf_bus_register(device_t dev, void *priv,
   2256     bool (*suspend)(device_t PMF_FN_PROTO),
   2257     bool (*resume)(device_t PMF_FN_PROTO),
   2258     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2259 {
   2260 	dev->dv_bus_private = priv;
   2261 	dev->dv_bus_resume = resume;
   2262 	dev->dv_bus_suspend = suspend;
   2263 	dev->dv_bus_shutdown = shutdown;
   2264 	dev->dv_bus_deregister = deregister;
   2265 }
   2266 
   2267 void
   2268 device_pmf_bus_deregister(device_t dev)
   2269 {
   2270 	if (dev->dv_bus_deregister == NULL)
   2271 		return;
   2272 	(*dev->dv_bus_deregister)(dev);
   2273 	dev->dv_bus_private = NULL;
   2274 	dev->dv_bus_suspend = NULL;
   2275 	dev->dv_bus_resume = NULL;
   2276 	dev->dv_bus_deregister = NULL;
   2277 }
   2278 
   2279 void *
   2280 device_pmf_class_private(device_t dev)
   2281 {
   2282 	return dev->dv_class_private;
   2283 }
   2284 
   2285 bool
   2286 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
   2287 {
   2288 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2289 		return true;
   2290 	if (*dev->dv_class_suspend != NULL &&
   2291 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
   2292 		return false;
   2293 
   2294 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2295 	return true;
   2296 }
   2297 
   2298 bool
   2299 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
   2300 {
   2301 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2302 		return true;
   2303 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2304 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2305 		return false;
   2306 	if (*dev->dv_class_resume != NULL &&
   2307 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
   2308 		return false;
   2309 
   2310 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2311 	return true;
   2312 }
   2313 
   2314 void
   2315 device_pmf_class_register(device_t dev, void *priv,
   2316     bool (*suspend)(device_t PMF_FN_PROTO),
   2317     bool (*resume)(device_t PMF_FN_PROTO),
   2318     void (*deregister)(device_t))
   2319 {
   2320 	dev->dv_class_private = priv;
   2321 	dev->dv_class_suspend = suspend;
   2322 	dev->dv_class_resume = resume;
   2323 	dev->dv_class_deregister = deregister;
   2324 }
   2325 
   2326 void
   2327 device_pmf_class_deregister(device_t dev)
   2328 {
   2329 	if (dev->dv_class_deregister == NULL)
   2330 		return;
   2331 	(*dev->dv_class_deregister)(dev);
   2332 	dev->dv_class_private = NULL;
   2333 	dev->dv_class_suspend = NULL;
   2334 	dev->dv_class_resume = NULL;
   2335 	dev->dv_class_deregister = NULL;
   2336 }
   2337 
   2338 bool
   2339 device_active(device_t dev, devactive_t type)
   2340 {
   2341 	size_t i;
   2342 
   2343 	if (dev->dv_activity_count == 0)
   2344 		return false;
   2345 
   2346 	for (i = 0; i < dev->dv_activity_count; ++i)
   2347 		(*dev->dv_activity_handlers[i])(dev, type);
   2348 
   2349 	return true;
   2350 }
   2351 
   2352 bool
   2353 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2354 {
   2355 	void (**new_handlers)(device_t, devactive_t);
   2356 	void (**old_handlers)(device_t, devactive_t);
   2357 	size_t i, new_size;
   2358 	int s;
   2359 
   2360 	old_handlers = dev->dv_activity_handlers;
   2361 
   2362 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2363 		if (old_handlers[i] == handler)
   2364 			panic("Double registering of idle handlers");
   2365 	}
   2366 
   2367 	new_size = dev->dv_activity_count + 1;
   2368 	new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF, M_WAITOK);
   2369 
   2370 	memcpy(new_handlers, old_handlers,
   2371 	    sizeof(void *) * dev->dv_activity_count);
   2372 	new_handlers[new_size - 1] = handler;
   2373 
   2374 	s = splhigh();
   2375 	dev->dv_activity_count = new_size;
   2376 	dev->dv_activity_handlers = new_handlers;
   2377 	splx(s);
   2378 
   2379 	if (old_handlers != NULL)
   2380 		free(old_handlers, M_DEVBUF);
   2381 
   2382 	return true;
   2383 }
   2384 
   2385 void
   2386 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2387 {
   2388 	void (**new_handlers)(device_t, devactive_t);
   2389 	void (**old_handlers)(device_t, devactive_t);
   2390 	size_t i, new_size;
   2391 	int s;
   2392 
   2393 	old_handlers = dev->dv_activity_handlers;
   2394 
   2395 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2396 		if (old_handlers[i] == handler)
   2397 			break;
   2398 	}
   2399 
   2400 	if (i == dev->dv_activity_count)
   2401 		return; /* XXX panic? */
   2402 
   2403 	new_size = dev->dv_activity_count - 1;
   2404 
   2405 	if (new_size == 0) {
   2406 		new_handlers = NULL;
   2407 	} else {
   2408 		new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF,
   2409 		    M_WAITOK);
   2410 		memcpy(new_handlers, old_handlers, sizeof(void *) * i);
   2411 		memcpy(new_handlers + i, old_handlers + i + 1,
   2412 		    sizeof(void *) * (new_size - i));
   2413 	}
   2414 
   2415 	s = splhigh();
   2416 	dev->dv_activity_count = new_size;
   2417 	dev->dv_activity_handlers = new_handlers;
   2418 	splx(s);
   2419 
   2420 	free(old_handlers, M_DEVBUF);
   2421 }
   2422 
   2423 /*
   2424  * Device Iteration
   2425  *
   2426  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2427  *     each device_t's in the device tree.
   2428  *
   2429  * deviter_init(di, flags): initialize the device iterator `di'
   2430  *     to "walk" the device tree.  deviter_next(di) will return
   2431  *     the first device_t in the device tree, or NULL if there are
   2432  *     no devices.
   2433  *
   2434  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2435  *     caller intends to modify the device tree by calling
   2436  *     config_detach(9) on devices in the order that the iterator
   2437  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2438  *     nearest the "root" of the device tree to be returned, first;
   2439  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2440  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2441  *     indicating both that deviter_init() should not respect any
   2442  *     locks on the device tree, and that deviter_next(di) may run
   2443  *     in more than one LWP before the walk has finished.
   2444  *
   2445  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2446  *     once.
   2447  *
   2448  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2449  *
   2450  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2451  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2452  *
   2453  * deviter_first(di, flags): initialize the device iterator `di'
   2454  *     and return the first device_t in the device tree, or NULL
   2455  *     if there are no devices.  The statement
   2456  *
   2457  *         dv = deviter_first(di);
   2458  *
   2459  *     is shorthand for
   2460  *
   2461  *         deviter_init(di);
   2462  *         dv = deviter_next(di);
   2463  *
   2464  * deviter_next(di): return the next device_t in the device tree,
   2465  *     or NULL if there are no more devices.  deviter_next(di)
   2466  *     is undefined if `di' was not initialized with deviter_init() or
   2467  *     deviter_first().
   2468  *
   2469  * deviter_release(di): stops iteration (subsequent calls to
   2470  *     deviter_next() will return NULL), releases any locks and
   2471  *     resources held by the device iterator.
   2472  *
   2473  * Device iteration does not return device_t's in any particular
   2474  * order.  An iterator will never return the same device_t twice.
   2475  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2476  * is called repeatedly on the same `di', it will eventually return
   2477  * NULL.  It is ok to attach/detach devices during device iteration.
   2478  */
   2479 void
   2480 deviter_init(deviter_t *di, deviter_flags_t flags)
   2481 {
   2482 	device_t dv;
   2483 	bool rw;
   2484 
   2485 	mutex_enter(&alldevs_mtx);
   2486 	if ((flags & DEVITER_F_SHUTDOWN) != 0) {
   2487 		flags |= DEVITER_F_RW;
   2488 		alldevs_nwrite++;
   2489 		alldevs_writer = NULL;
   2490 		alldevs_nread = 0;
   2491 	} else {
   2492 		rw = (flags & DEVITER_F_RW) != 0;
   2493 
   2494 		if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   2495 			;
   2496 		else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
   2497 		       (rw && alldevs_nread != 0))
   2498 			cv_wait(&alldevs_cv, &alldevs_mtx);
   2499 
   2500 		if (rw) {
   2501 			if (alldevs_nwrite++ == 0)
   2502 				alldevs_writer = curlwp;
   2503 		} else
   2504 			alldevs_nread++;
   2505 	}
   2506 	mutex_exit(&alldevs_mtx);
   2507 
   2508 	memset(di, 0, sizeof(*di));
   2509 
   2510 	di->di_flags = flags;
   2511 
   2512 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2513 	case DEVITER_F_LEAVES_FIRST:
   2514 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2515 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2516 		break;
   2517 	case DEVITER_F_ROOT_FIRST:
   2518 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2519 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2520 		break;
   2521 	default:
   2522 		break;
   2523 	}
   2524 
   2525 	deviter_reinit(di);
   2526 }
   2527 
   2528 static void
   2529 deviter_reinit(deviter_t *di)
   2530 {
   2531 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2532 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2533 	else
   2534 		di->di_prev = TAILQ_FIRST(&alldevs);
   2535 }
   2536 
   2537 device_t
   2538 deviter_first(deviter_t *di, deviter_flags_t flags)
   2539 {
   2540 	deviter_init(di, flags);
   2541 	return deviter_next(di);
   2542 }
   2543 
   2544 static device_t
   2545 deviter_next1(deviter_t *di)
   2546 {
   2547 	device_t dv;
   2548 
   2549 	dv = di->di_prev;
   2550 
   2551 	if (dv == NULL)
   2552 		;
   2553 	else if ((di->di_flags & DEVITER_F_RW) != 0)
   2554 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2555 	else
   2556 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2557 
   2558 	return dv;
   2559 }
   2560 
   2561 device_t
   2562 deviter_next(deviter_t *di)
   2563 {
   2564 	device_t dv = NULL;
   2565 
   2566 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2567 	case 0:
   2568 		return deviter_next1(di);
   2569 	case DEVITER_F_LEAVES_FIRST:
   2570 		while (di->di_curdepth >= 0) {
   2571 			if ((dv = deviter_next1(di)) == NULL) {
   2572 				di->di_curdepth--;
   2573 				deviter_reinit(di);
   2574 			} else if (dv->dv_depth == di->di_curdepth)
   2575 				break;
   2576 		}
   2577 		return dv;
   2578 	case DEVITER_F_ROOT_FIRST:
   2579 		while (di->di_curdepth <= di->di_maxdepth) {
   2580 			if ((dv = deviter_next1(di)) == NULL) {
   2581 				di->di_curdepth++;
   2582 				deviter_reinit(di);
   2583 			} else if (dv->dv_depth == di->di_curdepth)
   2584 				break;
   2585 		}
   2586 		return dv;
   2587 	default:
   2588 		return NULL;
   2589 	}
   2590 }
   2591 
   2592 void
   2593 deviter_release(deviter_t *di)
   2594 {
   2595 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2596 
   2597 	mutex_enter(&alldevs_mtx);
   2598 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   2599 		--alldevs_nwrite;
   2600 	else {
   2601 
   2602 		if (rw) {
   2603 			if (--alldevs_nwrite == 0)
   2604 				alldevs_writer = NULL;
   2605 		} else
   2606 			--alldevs_nread;
   2607 
   2608 		cv_signal(&alldevs_cv);
   2609 	}
   2610 	mutex_exit(&alldevs_mtx);
   2611 }
   2612