subr_autoconf.c revision 1.149 1 /* $NetBSD: subr_autoconf.c,v 1.149 2008/05/25 12:30:40 jmcneill Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.149 2008/05/25 12:30:40 jmcneill Exp $");
81
82 #include "opt_ddb.h"
83 #include "drvctl.h"
84
85 #include <sys/param.h>
86 #include <sys/device.h>
87 #include <sys/disklabel.h>
88 #include <sys/conf.h>
89 #include <sys/kauth.h>
90 #include <sys/malloc.h>
91 #include <sys/systm.h>
92 #include <sys/kernel.h>
93 #include <sys/errno.h>
94 #include <sys/proc.h>
95 #include <sys/reboot.h>
96 #include <sys/kthread.h>
97 #include <sys/buf.h>
98 #include <sys/dirent.h>
99 #include <sys/vnode.h>
100 #include <sys/mount.h>
101 #include <sys/namei.h>
102 #include <sys/unistd.h>
103 #include <sys/fcntl.h>
104 #include <sys/lockf.h>
105 #include <sys/callout.h>
106 #include <sys/mutex.h>
107 #include <sys/condvar.h>
108 #include <sys/devmon.h>
109
110 #include <sys/disk.h>
111
112 #include <machine/limits.h>
113
114 #include "opt_userconf.h"
115 #ifdef USERCONF
116 #include <sys/userconf.h>
117 #endif
118
119 #ifdef __i386__
120 #include "opt_splash.h"
121 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
122 #include <dev/splash/splash.h>
123 extern struct splash_progress *splash_progress_state;
124 #endif
125 #endif
126
127 /*
128 * Autoconfiguration subroutines.
129 */
130
131 typedef struct pmf_private {
132 int pp_nwait;
133 int pp_nlock;
134 lwp_t *pp_holder;
135 kmutex_t pp_mtx;
136 kcondvar_t pp_cv;
137 } pmf_private_t;
138
139 /*
140 * ioconf.c exports exactly two names: cfdata and cfroots. All system
141 * devices and drivers are found via these tables.
142 */
143 extern struct cfdata cfdata[];
144 extern const short cfroots[];
145
146 /*
147 * List of all cfdriver structures. We use this to detect duplicates
148 * when other cfdrivers are loaded.
149 */
150 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
151 extern struct cfdriver * const cfdriver_list_initial[];
152
153 /*
154 * Initial list of cfattach's.
155 */
156 extern const struct cfattachinit cfattachinit[];
157
158 /*
159 * List of cfdata tables. We always have one such list -- the one
160 * built statically when the kernel was configured.
161 */
162 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
163 static struct cftable initcftable;
164
165 #define ROOT ((device_t)NULL)
166
167 struct matchinfo {
168 cfsubmatch_t fn;
169 struct device *parent;
170 const int *locs;
171 void *aux;
172 struct cfdata *match;
173 int pri;
174 };
175
176 static char *number(char *, int);
177 static void mapply(struct matchinfo *, cfdata_t);
178 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
179 static void config_devdealloc(device_t);
180 static void config_makeroom(int, struct cfdriver *);
181 static void config_devlink(device_t);
182 static void config_devunlink(device_t);
183
184 static void pmflock_debug(device_t, const char *, int);
185 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
186
187 static device_t deviter_next1(deviter_t *);
188 static void deviter_reinit(deviter_t *);
189
190 struct deferred_config {
191 TAILQ_ENTRY(deferred_config) dc_queue;
192 device_t dc_dev;
193 void (*dc_func)(device_t);
194 };
195
196 TAILQ_HEAD(deferred_config_head, deferred_config);
197
198 struct deferred_config_head deferred_config_queue =
199 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
200 struct deferred_config_head interrupt_config_queue =
201 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
202 int interrupt_config_threads = 8;
203
204 static void config_process_deferred(struct deferred_config_head *, device_t);
205
206 /* Hooks to finalize configuration once all real devices have been found. */
207 struct finalize_hook {
208 TAILQ_ENTRY(finalize_hook) f_list;
209 int (*f_func)(device_t);
210 device_t f_dev;
211 };
212 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
213 TAILQ_HEAD_INITIALIZER(config_finalize_list);
214 static int config_finalize_done;
215
216 /* list of all devices */
217 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
218 kcondvar_t alldevs_cv;
219 kmutex_t alldevs_mtx;
220 static int alldevs_nread = 0;
221 static int alldevs_nwrite = 0;
222 static lwp_t *alldevs_writer = NULL;
223
224 volatile int config_pending; /* semaphore for mountroot */
225
226 #define STREQ(s1, s2) \
227 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
228
229 static int config_initialized; /* config_init() has been called. */
230
231 static int config_do_twiddle;
232
233 MALLOC_DEFINE(M_PMFPRIV, "pmfpriv", "device pmf private storage");
234
235 struct vnode *
236 opendisk(struct device *dv)
237 {
238 int bmajor, bminor;
239 struct vnode *tmpvn;
240 int error;
241 dev_t dev;
242
243 /*
244 * Lookup major number for disk block device.
245 */
246 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
247 if (bmajor == -1)
248 return NULL;
249
250 bminor = minor(device_unit(dv));
251 /*
252 * Fake a temporary vnode for the disk, open it, and read
253 * and hash the sectors.
254 */
255 dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
256 MAKEDISKDEV(bmajor, bminor, RAW_PART);
257 if (bdevvp(dev, &tmpvn))
258 panic("%s: can't alloc vnode for %s", __func__,
259 device_xname(dv));
260 error = VOP_OPEN(tmpvn, FREAD, NOCRED);
261 if (error) {
262 #ifndef DEBUG
263 /*
264 * Ignore errors caused by missing device, partition,
265 * or medium.
266 */
267 if (error != ENXIO && error != ENODEV)
268 #endif
269 printf("%s: can't open dev %s (%d)\n",
270 __func__, device_xname(dv), error);
271 vput(tmpvn);
272 return NULL;
273 }
274
275 return tmpvn;
276 }
277
278 int
279 config_handle_wedges(struct device *dv, int par)
280 {
281 struct dkwedge_list wl;
282 struct dkwedge_info *wi;
283 struct vnode *vn;
284 char diskname[16];
285 int i, error;
286
287 if ((vn = opendisk(dv)) == NULL)
288 return -1;
289
290 wl.dkwl_bufsize = sizeof(*wi) * 16;
291 wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
292
293 error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
294 VOP_CLOSE(vn, FREAD, NOCRED);
295 vput(vn);
296 if (error) {
297 #ifdef DEBUG_WEDGE
298 printf("%s: List wedges returned %d\n",
299 device_xname(dv), error);
300 #endif
301 free(wi, M_TEMP);
302 return -1;
303 }
304
305 #ifdef DEBUG_WEDGE
306 printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
307 wl.dkwl_nwedges, wl.dkwl_ncopied);
308 #endif
309 snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
310 par + 'a');
311
312 for (i = 0; i < wl.dkwl_ncopied; i++) {
313 #ifdef DEBUG_WEDGE
314 printf("%s: Looking for %s in %s\n",
315 device_xname(dv), diskname, wi[i].dkw_wname);
316 #endif
317 if (strcmp(wi[i].dkw_wname, diskname) == 0)
318 break;
319 }
320
321 if (i == wl.dkwl_ncopied) {
322 #ifdef DEBUG_WEDGE
323 printf("%s: Cannot find wedge with parent %s\n",
324 device_xname(dv), diskname);
325 #endif
326 free(wi, M_TEMP);
327 return -1;
328 }
329
330 #ifdef DEBUG_WEDGE
331 printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
332 device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
333 (unsigned long long)wi[i].dkw_offset,
334 (unsigned long long)wi[i].dkw_size);
335 #endif
336 dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
337 free(wi, M_TEMP);
338 return 0;
339 }
340
341 /*
342 * Initialize the autoconfiguration data structures. Normally this
343 * is done by configure(), but some platforms need to do this very
344 * early (to e.g. initialize the console).
345 */
346 void
347 config_init(void)
348 {
349 const struct cfattachinit *cfai;
350 int i, j;
351
352 if (config_initialized)
353 return;
354
355 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
356 cv_init(&alldevs_cv, "alldevs");
357
358 /* allcfdrivers is statically initialized. */
359 for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
360 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
361 panic("configure: duplicate `%s' drivers",
362 cfdriver_list_initial[i]->cd_name);
363 }
364
365 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
366 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
367 if (config_cfattach_attach(cfai->cfai_name,
368 cfai->cfai_list[j]) != 0)
369 panic("configure: duplicate `%s' attachment "
370 "of `%s' driver",
371 cfai->cfai_list[j]->ca_name,
372 cfai->cfai_name);
373 }
374 }
375
376 initcftable.ct_cfdata = cfdata;
377 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
378
379 config_initialized = 1;
380 }
381
382 void
383 config_deferred(device_t dev)
384 {
385 config_process_deferred(&deferred_config_queue, dev);
386 config_process_deferred(&interrupt_config_queue, dev);
387 }
388
389 static void
390 config_interrupts_thread(void *cookie)
391 {
392 struct deferred_config *dc;
393
394 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
395 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
396 (*dc->dc_func)(dc->dc_dev);
397 free(dc, M_DEVBUF);
398 config_pending_decr();
399 }
400 kthread_exit(0);
401 }
402
403 /*
404 * Configure the system's hardware.
405 */
406 void
407 configure(void)
408 {
409 extern void ssp_init(void);
410 int i, s;
411
412 /* Initialize data structures. */
413 config_init();
414 pmf_init();
415 #if NDRVCTL > 0
416 drvctl_init();
417 #endif
418
419 #ifdef USERCONF
420 if (boothowto & RB_USERCONF)
421 user_config();
422 #endif
423
424 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
425 config_do_twiddle = 1;
426 printf_nolog("Detecting hardware...");
427 }
428
429 /*
430 * Do the machine-dependent portion of autoconfiguration. This
431 * sets the configuration machinery here in motion by "finding"
432 * the root bus. When this function returns, we expect interrupts
433 * to be enabled.
434 */
435 cpu_configure();
436
437 /* Initialize SSP. */
438 ssp_init();
439
440 /*
441 * Now that we've found all the hardware, start the real time
442 * and statistics clocks.
443 */
444 initclocks();
445
446 cold = 0; /* clocks are running, we're warm now! */
447 s = splsched();
448 curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
449 splx(s);
450
451 /* Boot the secondary processors. */
452 mp_online = true;
453 #if defined(MULTIPROCESSOR)
454 cpu_boot_secondary_processors();
455 #endif
456
457 /* Setup the runqueues and scheduler. */
458 runq_init();
459 sched_init();
460
461 /*
462 * Create threads to call back and finish configuration for
463 * devices that want interrupts enabled.
464 */
465 for (i = 0; i < interrupt_config_threads; i++) {
466 (void)kthread_create(PRI_NONE, 0, NULL,
467 config_interrupts_thread, NULL, NULL, "config");
468 }
469
470 /* Get the threads going and into any sleeps before continuing. */
471 yield();
472
473 /* Lock the kernel on behalf of lwp0. */
474 KERNEL_LOCK(1, NULL);
475 }
476
477 /*
478 * Announce device attach/detach to userland listeners.
479 */
480 static void
481 devmon_report_device(device_t dev, bool isattach)
482 {
483 #if NDRVCTL > 0
484 prop_dictionary_t ev;
485 const char *parent;
486 const char *what;
487 device_t pdev = device_parent(dev);
488
489 ev = prop_dictionary_create();
490 if (ev == NULL)
491 return;
492
493 what = (isattach ? "device-attach" : "device-detach");
494 parent = (pdev == NULL ? "root" : device_xname(pdev));
495 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
496 !prop_dictionary_set_cstring(ev, "parent", parent)) {
497 prop_object_release(ev);
498 return;
499 }
500
501 devmon_insert(what, ev);
502 #endif
503 }
504
505 /*
506 * Add a cfdriver to the system.
507 */
508 int
509 config_cfdriver_attach(struct cfdriver *cd)
510 {
511 struct cfdriver *lcd;
512
513 /* Make sure this driver isn't already in the system. */
514 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
515 if (STREQ(lcd->cd_name, cd->cd_name))
516 return (EEXIST);
517 }
518
519 LIST_INIT(&cd->cd_attach);
520 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
521
522 return (0);
523 }
524
525 /*
526 * Remove a cfdriver from the system.
527 */
528 int
529 config_cfdriver_detach(struct cfdriver *cd)
530 {
531 int i;
532
533 /* Make sure there are no active instances. */
534 for (i = 0; i < cd->cd_ndevs; i++) {
535 if (cd->cd_devs[i] != NULL)
536 return (EBUSY);
537 }
538
539 /* ...and no attachments loaded. */
540 if (LIST_EMPTY(&cd->cd_attach) == 0)
541 return (EBUSY);
542
543 LIST_REMOVE(cd, cd_list);
544
545 KASSERT(cd->cd_devs == NULL);
546
547 return (0);
548 }
549
550 /*
551 * Look up a cfdriver by name.
552 */
553 struct cfdriver *
554 config_cfdriver_lookup(const char *name)
555 {
556 struct cfdriver *cd;
557
558 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
559 if (STREQ(cd->cd_name, name))
560 return (cd);
561 }
562
563 return (NULL);
564 }
565
566 /*
567 * Add a cfattach to the specified driver.
568 */
569 int
570 config_cfattach_attach(const char *driver, struct cfattach *ca)
571 {
572 struct cfattach *lca;
573 struct cfdriver *cd;
574
575 cd = config_cfdriver_lookup(driver);
576 if (cd == NULL)
577 return (ESRCH);
578
579 /* Make sure this attachment isn't already on this driver. */
580 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
581 if (STREQ(lca->ca_name, ca->ca_name))
582 return (EEXIST);
583 }
584
585 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
586
587 return (0);
588 }
589
590 /*
591 * Remove a cfattach from the specified driver.
592 */
593 int
594 config_cfattach_detach(const char *driver, struct cfattach *ca)
595 {
596 struct cfdriver *cd;
597 device_t dev;
598 int i;
599
600 cd = config_cfdriver_lookup(driver);
601 if (cd == NULL)
602 return (ESRCH);
603
604 /* Make sure there are no active instances. */
605 for (i = 0; i < cd->cd_ndevs; i++) {
606 if ((dev = cd->cd_devs[i]) == NULL)
607 continue;
608 if (dev->dv_cfattach == ca)
609 return (EBUSY);
610 }
611
612 LIST_REMOVE(ca, ca_list);
613
614 return (0);
615 }
616
617 /*
618 * Look up a cfattach by name.
619 */
620 static struct cfattach *
621 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
622 {
623 struct cfattach *ca;
624
625 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
626 if (STREQ(ca->ca_name, atname))
627 return (ca);
628 }
629
630 return (NULL);
631 }
632
633 /*
634 * Look up a cfattach by driver/attachment name.
635 */
636 struct cfattach *
637 config_cfattach_lookup(const char *name, const char *atname)
638 {
639 struct cfdriver *cd;
640
641 cd = config_cfdriver_lookup(name);
642 if (cd == NULL)
643 return (NULL);
644
645 return (config_cfattach_lookup_cd(cd, atname));
646 }
647
648 /*
649 * Apply the matching function and choose the best. This is used
650 * a few times and we want to keep the code small.
651 */
652 static void
653 mapply(struct matchinfo *m, cfdata_t cf)
654 {
655 int pri;
656
657 if (m->fn != NULL) {
658 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
659 } else {
660 pri = config_match(m->parent, cf, m->aux);
661 }
662 if (pri > m->pri) {
663 m->match = cf;
664 m->pri = pri;
665 }
666 }
667
668 int
669 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
670 {
671 const struct cfiattrdata *ci;
672 const struct cflocdesc *cl;
673 int nlocs, i;
674
675 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
676 KASSERT(ci);
677 nlocs = ci->ci_loclen;
678 for (i = 0; i < nlocs; i++) {
679 cl = &ci->ci_locdesc[i];
680 /* !cld_defaultstr means no default value */
681 if ((!(cl->cld_defaultstr)
682 || (cf->cf_loc[i] != cl->cld_default))
683 && cf->cf_loc[i] != locs[i])
684 return (0);
685 }
686
687 return (config_match(parent, cf, aux));
688 }
689
690 /*
691 * Helper function: check whether the driver supports the interface attribute
692 * and return its descriptor structure.
693 */
694 static const struct cfiattrdata *
695 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
696 {
697 const struct cfiattrdata * const *cpp;
698
699 if (cd->cd_attrs == NULL)
700 return (0);
701
702 for (cpp = cd->cd_attrs; *cpp; cpp++) {
703 if (STREQ((*cpp)->ci_name, ia)) {
704 /* Match. */
705 return (*cpp);
706 }
707 }
708 return (0);
709 }
710
711 /*
712 * Lookup an interface attribute description by name.
713 * If the driver is given, consider only its supported attributes.
714 */
715 const struct cfiattrdata *
716 cfiattr_lookup(const char *name, const struct cfdriver *cd)
717 {
718 const struct cfdriver *d;
719 const struct cfiattrdata *ia;
720
721 if (cd)
722 return (cfdriver_get_iattr(cd, name));
723
724 LIST_FOREACH(d, &allcfdrivers, cd_list) {
725 ia = cfdriver_get_iattr(d, name);
726 if (ia)
727 return (ia);
728 }
729 return (0);
730 }
731
732 /*
733 * Determine if `parent' is a potential parent for a device spec based
734 * on `cfp'.
735 */
736 static int
737 cfparent_match(const device_t parent, const struct cfparent *cfp)
738 {
739 struct cfdriver *pcd;
740
741 /* We don't match root nodes here. */
742 if (cfp == NULL)
743 return (0);
744
745 pcd = parent->dv_cfdriver;
746 KASSERT(pcd != NULL);
747
748 /*
749 * First, ensure this parent has the correct interface
750 * attribute.
751 */
752 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
753 return (0);
754
755 /*
756 * If no specific parent device instance was specified (i.e.
757 * we're attaching to the attribute only), we're done!
758 */
759 if (cfp->cfp_parent == NULL)
760 return (1);
761
762 /*
763 * Check the parent device's name.
764 */
765 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
766 return (0); /* not the same parent */
767
768 /*
769 * Make sure the unit number matches.
770 */
771 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
772 cfp->cfp_unit == parent->dv_unit)
773 return (1);
774
775 /* Unit numbers don't match. */
776 return (0);
777 }
778
779 /*
780 * Helper for config_cfdata_attach(): check all devices whether it could be
781 * parent any attachment in the config data table passed, and rescan.
782 */
783 static void
784 rescan_with_cfdata(const struct cfdata *cf)
785 {
786 device_t d;
787 const struct cfdata *cf1;
788 deviter_t di;
789
790
791 /*
792 * "alldevs" is likely longer than an LKM's cfdata, so make it
793 * the outer loop.
794 */
795 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
796
797 if (!(d->dv_cfattach->ca_rescan))
798 continue;
799
800 for (cf1 = cf; cf1->cf_name; cf1++) {
801
802 if (!cfparent_match(d, cf1->cf_pspec))
803 continue;
804
805 (*d->dv_cfattach->ca_rescan)(d,
806 cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
807 }
808 }
809 deviter_release(&di);
810 }
811
812 /*
813 * Attach a supplemental config data table and rescan potential
814 * parent devices if required.
815 */
816 int
817 config_cfdata_attach(cfdata_t cf, int scannow)
818 {
819 struct cftable *ct;
820
821 ct = malloc(sizeof(struct cftable), M_DEVBUF, M_WAITOK);
822 ct->ct_cfdata = cf;
823 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
824
825 if (scannow)
826 rescan_with_cfdata(cf);
827
828 return (0);
829 }
830
831 /*
832 * Helper for config_cfdata_detach: check whether a device is
833 * found through any attachment in the config data table.
834 */
835 static int
836 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
837 {
838 const struct cfdata *cf1;
839
840 for (cf1 = cf; cf1->cf_name; cf1++)
841 if (d->dv_cfdata == cf1)
842 return (1);
843
844 return (0);
845 }
846
847 /*
848 * Detach a supplemental config data table. Detach all devices found
849 * through that table (and thus keeping references to it) before.
850 */
851 int
852 config_cfdata_detach(cfdata_t cf)
853 {
854 device_t d;
855 int error = 0;
856 struct cftable *ct;
857 deviter_t di;
858
859 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
860 d = deviter_next(&di)) {
861 if (!dev_in_cfdata(d, cf))
862 continue;
863 if ((error = config_detach(d, 0)) != 0)
864 break;
865 }
866 deviter_release(&di);
867 if (error) {
868 aprint_error_dev(d, "unable to detach instance\n");
869 return error;
870 }
871
872 TAILQ_FOREACH(ct, &allcftables, ct_list) {
873 if (ct->ct_cfdata == cf) {
874 TAILQ_REMOVE(&allcftables, ct, ct_list);
875 free(ct, M_DEVBUF);
876 return (0);
877 }
878 }
879
880 /* not found -- shouldn't happen */
881 return (EINVAL);
882 }
883
884 /*
885 * Invoke the "match" routine for a cfdata entry on behalf of
886 * an external caller, usually a "submatch" routine.
887 */
888 int
889 config_match(device_t parent, cfdata_t cf, void *aux)
890 {
891 struct cfattach *ca;
892
893 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
894 if (ca == NULL) {
895 /* No attachment for this entry, oh well. */
896 return (0);
897 }
898
899 return ((*ca->ca_match)(parent, cf, aux));
900 }
901
902 /*
903 * Iterate over all potential children of some device, calling the given
904 * function (default being the child's match function) for each one.
905 * Nonzero returns are matches; the highest value returned is considered
906 * the best match. Return the `found child' if we got a match, or NULL
907 * otherwise. The `aux' pointer is simply passed on through.
908 *
909 * Note that this function is designed so that it can be used to apply
910 * an arbitrary function to all potential children (its return value
911 * can be ignored).
912 */
913 cfdata_t
914 config_search_loc(cfsubmatch_t fn, device_t parent,
915 const char *ifattr, const int *locs, void *aux)
916 {
917 struct cftable *ct;
918 cfdata_t cf;
919 struct matchinfo m;
920
921 KASSERT(config_initialized);
922 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
923
924 m.fn = fn;
925 m.parent = parent;
926 m.locs = locs;
927 m.aux = aux;
928 m.match = NULL;
929 m.pri = 0;
930
931 TAILQ_FOREACH(ct, &allcftables, ct_list) {
932 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
933
934 /* We don't match root nodes here. */
935 if (!cf->cf_pspec)
936 continue;
937
938 /*
939 * Skip cf if no longer eligible, otherwise scan
940 * through parents for one matching `parent', and
941 * try match function.
942 */
943 if (cf->cf_fstate == FSTATE_FOUND)
944 continue;
945 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
946 cf->cf_fstate == FSTATE_DSTAR)
947 continue;
948
949 /*
950 * If an interface attribute was specified,
951 * consider only children which attach to
952 * that attribute.
953 */
954 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
955 continue;
956
957 if (cfparent_match(parent, cf->cf_pspec))
958 mapply(&m, cf);
959 }
960 }
961 return (m.match);
962 }
963
964 cfdata_t
965 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
966 void *aux)
967 {
968
969 return (config_search_loc(fn, parent, ifattr, NULL, aux));
970 }
971
972 /*
973 * Find the given root device.
974 * This is much like config_search, but there is no parent.
975 * Don't bother with multiple cfdata tables; the root node
976 * must always be in the initial table.
977 */
978 cfdata_t
979 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
980 {
981 cfdata_t cf;
982 const short *p;
983 struct matchinfo m;
984
985 m.fn = fn;
986 m.parent = ROOT;
987 m.aux = aux;
988 m.match = NULL;
989 m.pri = 0;
990 m.locs = 0;
991 /*
992 * Look at root entries for matching name. We do not bother
993 * with found-state here since only one root should ever be
994 * searched (and it must be done first).
995 */
996 for (p = cfroots; *p >= 0; p++) {
997 cf = &cfdata[*p];
998 if (strcmp(cf->cf_name, rootname) == 0)
999 mapply(&m, cf);
1000 }
1001 return (m.match);
1002 }
1003
1004 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1005
1006 /*
1007 * The given `aux' argument describes a device that has been found
1008 * on the given parent, but not necessarily configured. Locate the
1009 * configuration data for that device (using the submatch function
1010 * provided, or using candidates' cd_match configuration driver
1011 * functions) and attach it, and return true. If the device was
1012 * not configured, call the given `print' function and return 0.
1013 */
1014 device_t
1015 config_found_sm_loc(device_t parent,
1016 const char *ifattr, const int *locs, void *aux,
1017 cfprint_t print, cfsubmatch_t submatch)
1018 {
1019 cfdata_t cf;
1020
1021 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1022 if (splash_progress_state)
1023 splash_progress_update(splash_progress_state);
1024 #endif
1025
1026 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1027 return(config_attach_loc(parent, cf, locs, aux, print));
1028 if (print) {
1029 if (config_do_twiddle)
1030 twiddle();
1031 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1032 }
1033
1034 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1035 if (splash_progress_state)
1036 splash_progress_update(splash_progress_state);
1037 #endif
1038
1039 return (NULL);
1040 }
1041
1042 device_t
1043 config_found_ia(device_t parent, const char *ifattr, void *aux,
1044 cfprint_t print)
1045 {
1046
1047 return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
1048 }
1049
1050 device_t
1051 config_found(device_t parent, void *aux, cfprint_t print)
1052 {
1053
1054 return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
1055 }
1056
1057 /*
1058 * As above, but for root devices.
1059 */
1060 device_t
1061 config_rootfound(const char *rootname, void *aux)
1062 {
1063 cfdata_t cf;
1064
1065 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1066 return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
1067 aprint_error("root device %s not configured\n", rootname);
1068 return (NULL);
1069 }
1070
1071 /* just like sprintf(buf, "%d") except that it works from the end */
1072 static char *
1073 number(char *ep, int n)
1074 {
1075
1076 *--ep = 0;
1077 while (n >= 10) {
1078 *--ep = (n % 10) + '0';
1079 n /= 10;
1080 }
1081 *--ep = n + '0';
1082 return (ep);
1083 }
1084
1085 /*
1086 * Expand the size of the cd_devs array if necessary.
1087 */
1088 static void
1089 config_makeroom(int n, struct cfdriver *cd)
1090 {
1091 int old, new;
1092 void **nsp;
1093
1094 if (n < cd->cd_ndevs)
1095 return;
1096
1097 /*
1098 * Need to expand the array.
1099 */
1100 old = cd->cd_ndevs;
1101 if (old == 0)
1102 new = 4;
1103 else
1104 new = old * 2;
1105 while (new <= n)
1106 new *= 2;
1107 cd->cd_ndevs = new;
1108 nsp = malloc(new * sizeof(void *), M_DEVBUF,
1109 cold ? M_NOWAIT : M_WAITOK);
1110 if (nsp == NULL)
1111 panic("config_attach: %sing dev array",
1112 old != 0 ? "expand" : "creat");
1113 memset(nsp + old, 0, (new - old) * sizeof(void *));
1114 if (old != 0) {
1115 memcpy(nsp, cd->cd_devs, old * sizeof(void *));
1116 free(cd->cd_devs, M_DEVBUF);
1117 }
1118 cd->cd_devs = nsp;
1119 }
1120
1121 static void
1122 config_devlink(device_t dev)
1123 {
1124 struct cfdriver *cd = dev->dv_cfdriver;
1125
1126 /* put this device in the devices array */
1127 config_makeroom(dev->dv_unit, cd);
1128 if (cd->cd_devs[dev->dv_unit])
1129 panic("config_attach: duplicate %s", device_xname(dev));
1130 cd->cd_devs[dev->dv_unit] = dev;
1131
1132 /* It is safe to add a device to the tail of the list while
1133 * readers are in the list, but not while a writer is in
1134 * the list. Wait for any writer to complete.
1135 */
1136 mutex_enter(&alldevs_mtx);
1137 while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1138 cv_wait(&alldevs_cv, &alldevs_mtx);
1139 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
1140 cv_signal(&alldevs_cv);
1141 mutex_exit(&alldevs_mtx);
1142 }
1143
1144 static void
1145 config_devunlink(device_t dev)
1146 {
1147 struct cfdriver *cd = dev->dv_cfdriver;
1148 int i;
1149
1150 /* Unlink from device list. */
1151 TAILQ_REMOVE(&alldevs, dev, dv_list);
1152
1153 /* Remove from cfdriver's array. */
1154 cd->cd_devs[dev->dv_unit] = NULL;
1155
1156 /*
1157 * If the device now has no units in use, deallocate its softc array.
1158 */
1159 for (i = 0; i < cd->cd_ndevs; i++)
1160 if (cd->cd_devs[i] != NULL)
1161 break;
1162 if (i == cd->cd_ndevs) { /* nothing found; deallocate */
1163 free(cd->cd_devs, M_DEVBUF);
1164 cd->cd_devs = NULL;
1165 cd->cd_ndevs = 0;
1166 }
1167 }
1168
1169 static device_t
1170 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1171 {
1172 struct cfdriver *cd;
1173 struct cfattach *ca;
1174 size_t lname, lunit;
1175 const char *xunit;
1176 int myunit;
1177 char num[10];
1178 device_t dev;
1179 void *dev_private;
1180 const struct cfiattrdata *ia;
1181
1182 cd = config_cfdriver_lookup(cf->cf_name);
1183 if (cd == NULL)
1184 return (NULL);
1185
1186 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1187 if (ca == NULL)
1188 return (NULL);
1189
1190 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1191 ca->ca_devsize < sizeof(struct device))
1192 panic("config_devalloc: %s", cf->cf_atname);
1193
1194 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1195 if (cf->cf_fstate == FSTATE_STAR) {
1196 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1197 if (cd->cd_devs[myunit] == NULL)
1198 break;
1199 /*
1200 * myunit is now the unit of the first NULL device pointer,
1201 * or max(cd->cd_ndevs,cf->cf_unit).
1202 */
1203 } else {
1204 myunit = cf->cf_unit;
1205 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1206 return (NULL);
1207 }
1208 #else
1209 myunit = cf->cf_unit;
1210 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1211
1212 /* compute length of name and decimal expansion of unit number */
1213 lname = strlen(cd->cd_name);
1214 xunit = number(&num[sizeof(num)], myunit);
1215 lunit = &num[sizeof(num)] - xunit;
1216 if (lname + lunit > sizeof(dev->dv_xname))
1217 panic("config_devalloc: device name too long");
1218
1219 /* get memory for all device vars */
1220 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1221 if (ca->ca_devsize > 0) {
1222 dev_private = malloc(ca->ca_devsize, M_DEVBUF,
1223 M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
1224 if (dev_private == NULL)
1225 panic("config_devalloc: memory allocation for device softc failed");
1226 } else {
1227 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1228 dev_private = NULL;
1229 }
1230
1231 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1232 dev = malloc(sizeof(struct device), M_DEVBUF,
1233 M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
1234 } else {
1235 dev = dev_private;
1236 }
1237 if (dev == NULL)
1238 panic("config_devalloc: memory allocation for device_t failed");
1239
1240 dev->dv_class = cd->cd_class;
1241 dev->dv_cfdata = cf;
1242 dev->dv_cfdriver = cd;
1243 dev->dv_cfattach = ca;
1244 dev->dv_unit = myunit;
1245 dev->dv_activity_count = 0;
1246 dev->dv_activity_handlers = NULL;
1247 dev->dv_private = dev_private;
1248 memcpy(dev->dv_xname, cd->cd_name, lname);
1249 memcpy(dev->dv_xname + lname, xunit, lunit);
1250 dev->dv_parent = parent;
1251 if (parent != NULL)
1252 dev->dv_depth = parent->dv_depth + 1;
1253 else
1254 dev->dv_depth = 0;
1255 dev->dv_flags = DVF_ACTIVE; /* always initially active */
1256 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
1257 if (locs) {
1258 KASSERT(parent); /* no locators at root */
1259 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1260 parent->dv_cfdriver);
1261 dev->dv_locators = malloc(ia->ci_loclen * sizeof(int),
1262 M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1263 memcpy(dev->dv_locators, locs, ia->ci_loclen * sizeof(int));
1264 }
1265 dev->dv_properties = prop_dictionary_create();
1266 KASSERT(dev->dv_properties != NULL);
1267
1268 return (dev);
1269 }
1270
1271 static void
1272 config_devdealloc(device_t dev)
1273 {
1274
1275 KASSERT(dev->dv_properties != NULL);
1276 prop_object_release(dev->dv_properties);
1277
1278 if (dev->dv_activity_handlers)
1279 panic("config_devdealloc with registered handlers");
1280
1281 if (dev->dv_locators)
1282 free(dev->dv_locators, M_DEVBUF);
1283
1284 if ((dev->dv_flags & DVF_PRIV_ALLOC) != 0 && dev->dv_private != NULL)
1285 free(dev->dv_private, M_DEVBUF);
1286
1287 free(dev, M_DEVBUF);
1288 }
1289
1290 /*
1291 * Attach a found device.
1292 */
1293 device_t
1294 config_attach_loc(device_t parent, cfdata_t cf,
1295 const int *locs, void *aux, cfprint_t print)
1296 {
1297 device_t dev;
1298 struct cftable *ct;
1299 const char *drvname;
1300
1301 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1302 if (splash_progress_state)
1303 splash_progress_update(splash_progress_state);
1304 #endif
1305
1306 dev = config_devalloc(parent, cf, locs);
1307 if (!dev)
1308 panic("config_attach: allocation of device softc failed");
1309
1310 /* XXX redundant - see below? */
1311 if (cf->cf_fstate != FSTATE_STAR) {
1312 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1313 cf->cf_fstate = FSTATE_FOUND;
1314 }
1315 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1316 else
1317 cf->cf_unit++;
1318 #endif
1319
1320 config_devlink(dev);
1321
1322 if (config_do_twiddle)
1323 twiddle();
1324 else
1325 aprint_naive("Found ");
1326 /*
1327 * We want the next two printfs for normal, verbose, and quiet,
1328 * but not silent (in which case, we're twiddling, instead).
1329 */
1330 if (parent == ROOT) {
1331 aprint_naive("%s (root)", device_xname(dev));
1332 aprint_normal("%s (root)", device_xname(dev));
1333 } else {
1334 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1335 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1336 if (print)
1337 (void) (*print)(aux, NULL);
1338 }
1339
1340 /*
1341 * Before attaching, clobber any unfound devices that are
1342 * otherwise identical.
1343 * XXX code above is redundant?
1344 */
1345 drvname = dev->dv_cfdriver->cd_name;
1346 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1347 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1348 if (STREQ(cf->cf_name, drvname) &&
1349 cf->cf_unit == dev->dv_unit) {
1350 if (cf->cf_fstate == FSTATE_NOTFOUND)
1351 cf->cf_fstate = FSTATE_FOUND;
1352 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1353 /*
1354 * Bump the unit number on all starred cfdata
1355 * entries for this device.
1356 */
1357 if (cf->cf_fstate == FSTATE_STAR)
1358 cf->cf_unit++;
1359 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1360 }
1361 }
1362 }
1363 #ifdef __HAVE_DEVICE_REGISTER
1364 device_register(dev, aux);
1365 #endif
1366
1367 /* Let userland know */
1368 devmon_report_device(dev, true);
1369
1370 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1371 if (splash_progress_state)
1372 splash_progress_update(splash_progress_state);
1373 #endif
1374 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1375 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1376 if (splash_progress_state)
1377 splash_progress_update(splash_progress_state);
1378 #endif
1379
1380 if (!device_pmf_is_registered(dev))
1381 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1382
1383 config_process_deferred(&deferred_config_queue, dev);
1384 return (dev);
1385 }
1386
1387 device_t
1388 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1389 {
1390
1391 return (config_attach_loc(parent, cf, NULL, aux, print));
1392 }
1393
1394 /*
1395 * As above, but for pseudo-devices. Pseudo-devices attached in this
1396 * way are silently inserted into the device tree, and their children
1397 * attached.
1398 *
1399 * Note that because pseudo-devices are attached silently, any information
1400 * the attach routine wishes to print should be prefixed with the device
1401 * name by the attach routine.
1402 */
1403 device_t
1404 config_attach_pseudo(cfdata_t cf)
1405 {
1406 device_t dev;
1407
1408 dev = config_devalloc(ROOT, cf, NULL);
1409 if (!dev)
1410 return (NULL);
1411
1412 /* XXX mark busy in cfdata */
1413
1414 config_devlink(dev);
1415
1416 #if 0 /* XXXJRT not yet */
1417 #ifdef __HAVE_DEVICE_REGISTER
1418 device_register(dev, NULL); /* like a root node */
1419 #endif
1420 #endif
1421 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1422 config_process_deferred(&deferred_config_queue, dev);
1423 return (dev);
1424 }
1425
1426 /*
1427 * Detach a device. Optionally forced (e.g. because of hardware
1428 * removal) and quiet. Returns zero if successful, non-zero
1429 * (an error code) otherwise.
1430 *
1431 * Note that this code wants to be run from a process context, so
1432 * that the detach can sleep to allow processes which have a device
1433 * open to run and unwind their stacks.
1434 */
1435 int
1436 config_detach(device_t dev, int flags)
1437 {
1438 struct cftable *ct;
1439 cfdata_t cf;
1440 const struct cfattach *ca;
1441 struct cfdriver *cd;
1442 #ifdef DIAGNOSTIC
1443 device_t d;
1444 #endif
1445 int rv = 0;
1446
1447 #ifdef DIAGNOSTIC
1448 if (dev->dv_cfdata != NULL &&
1449 dev->dv_cfdata->cf_fstate != FSTATE_FOUND &&
1450 dev->dv_cfdata->cf_fstate != FSTATE_STAR)
1451 panic("config_detach: bad device fstate");
1452 #endif
1453 cd = dev->dv_cfdriver;
1454 KASSERT(cd != NULL);
1455
1456 ca = dev->dv_cfattach;
1457 KASSERT(ca != NULL);
1458
1459 KASSERT(curlwp != NULL);
1460 mutex_enter(&alldevs_mtx);
1461 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1462 ;
1463 else while (alldevs_nread != 0 ||
1464 (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1465 cv_wait(&alldevs_cv, &alldevs_mtx);
1466 if (alldevs_nwrite++ == 0)
1467 alldevs_writer = curlwp;
1468 mutex_exit(&alldevs_mtx);
1469
1470 /*
1471 * Ensure the device is deactivated. If the device doesn't
1472 * have an activation entry point, we allow DVF_ACTIVE to
1473 * remain set. Otherwise, if DVF_ACTIVE is still set, the
1474 * device is busy, and the detach fails.
1475 */
1476 if (ca->ca_activate != NULL)
1477 rv = config_deactivate(dev);
1478
1479 /*
1480 * Try to detach the device. If that's not possible, then
1481 * we either panic() (for the forced but failed case), or
1482 * return an error.
1483 */
1484 if (rv == 0) {
1485 if (ca->ca_detach != NULL)
1486 rv = (*ca->ca_detach)(dev, flags);
1487 else
1488 rv = EOPNOTSUPP;
1489 }
1490 if (rv != 0) {
1491 if ((flags & DETACH_FORCE) == 0)
1492 goto out;
1493 else
1494 panic("config_detach: forced detach of %s failed (%d)",
1495 device_xname(dev), rv);
1496 }
1497
1498 /*
1499 * The device has now been successfully detached.
1500 */
1501
1502 /* Let userland know */
1503 devmon_report_device(dev, false);
1504
1505 #ifdef DIAGNOSTIC
1506 /*
1507 * Sanity: If you're successfully detached, you should have no
1508 * children. (Note that because children must be attached
1509 * after parents, we only need to search the latter part of
1510 * the list.)
1511 */
1512 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1513 d = TAILQ_NEXT(d, dv_list)) {
1514 if (d->dv_parent == dev) {
1515 printf("config_detach: detached device %s"
1516 " has children %s\n", device_xname(dev), device_xname(d));
1517 panic("config_detach");
1518 }
1519 }
1520 #endif
1521
1522 /* notify the parent that the child is gone */
1523 if (dev->dv_parent) {
1524 device_t p = dev->dv_parent;
1525 if (p->dv_cfattach->ca_childdetached)
1526 (*p->dv_cfattach->ca_childdetached)(p, dev);
1527 }
1528
1529 /*
1530 * Mark cfdata to show that the unit can be reused, if possible.
1531 */
1532 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1533 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1534 if (STREQ(cf->cf_name, cd->cd_name)) {
1535 if (cf->cf_fstate == FSTATE_FOUND &&
1536 cf->cf_unit == dev->dv_unit)
1537 cf->cf_fstate = FSTATE_NOTFOUND;
1538 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1539 /*
1540 * Note that we can only re-use a starred
1541 * unit number if the unit being detached
1542 * had the last assigned unit number.
1543 */
1544 if (cf->cf_fstate == FSTATE_STAR &&
1545 cf->cf_unit == dev->dv_unit + 1)
1546 cf->cf_unit--;
1547 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1548 }
1549 }
1550 }
1551
1552 config_devunlink(dev);
1553
1554 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1555 aprint_normal_dev(dev, "detached\n");
1556
1557 config_devdealloc(dev);
1558
1559 out:
1560 mutex_enter(&alldevs_mtx);
1561 if (--alldevs_nwrite == 0)
1562 alldevs_writer = NULL;
1563 cv_signal(&alldevs_cv);
1564 mutex_exit(&alldevs_mtx);
1565 return rv;
1566 }
1567
1568 int
1569 config_detach_children(device_t parent, int flags)
1570 {
1571 device_t dv;
1572 deviter_t di;
1573 int error = 0;
1574
1575 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1576 dv = deviter_next(&di)) {
1577 if (device_parent(dv) != parent)
1578 continue;
1579 if ((error = config_detach(dv, flags)) != 0)
1580 break;
1581 }
1582 deviter_release(&di);
1583 return error;
1584 }
1585
1586 int
1587 config_activate(device_t dev)
1588 {
1589 const struct cfattach *ca = dev->dv_cfattach;
1590 int rv = 0, oflags = dev->dv_flags;
1591
1592 if (ca->ca_activate == NULL)
1593 return (EOPNOTSUPP);
1594
1595 if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1596 dev->dv_flags |= DVF_ACTIVE;
1597 rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1598 if (rv)
1599 dev->dv_flags = oflags;
1600 }
1601 return (rv);
1602 }
1603
1604 int
1605 config_deactivate(device_t dev)
1606 {
1607 const struct cfattach *ca = dev->dv_cfattach;
1608 int rv = 0, oflags = dev->dv_flags;
1609
1610 if (ca->ca_activate == NULL)
1611 return (EOPNOTSUPP);
1612
1613 if (dev->dv_flags & DVF_ACTIVE) {
1614 dev->dv_flags &= ~DVF_ACTIVE;
1615 rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1616 if (rv)
1617 dev->dv_flags = oflags;
1618 }
1619 return (rv);
1620 }
1621
1622 /*
1623 * Defer the configuration of the specified device until all
1624 * of its parent's devices have been attached.
1625 */
1626 void
1627 config_defer(device_t dev, void (*func)(device_t))
1628 {
1629 struct deferred_config *dc;
1630
1631 if (dev->dv_parent == NULL)
1632 panic("config_defer: can't defer config of a root device");
1633
1634 #ifdef DIAGNOSTIC
1635 for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1636 dc = TAILQ_NEXT(dc, dc_queue)) {
1637 if (dc->dc_dev == dev)
1638 panic("config_defer: deferred twice");
1639 }
1640 #endif
1641
1642 dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1643 if (dc == NULL)
1644 panic("config_defer: unable to allocate callback");
1645
1646 dc->dc_dev = dev;
1647 dc->dc_func = func;
1648 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1649 config_pending_incr();
1650 }
1651
1652 /*
1653 * Defer some autoconfiguration for a device until after interrupts
1654 * are enabled.
1655 */
1656 void
1657 config_interrupts(device_t dev, void (*func)(device_t))
1658 {
1659 struct deferred_config *dc;
1660
1661 /*
1662 * If interrupts are enabled, callback now.
1663 */
1664 if (cold == 0) {
1665 (*func)(dev);
1666 return;
1667 }
1668
1669 #ifdef DIAGNOSTIC
1670 for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1671 dc = TAILQ_NEXT(dc, dc_queue)) {
1672 if (dc->dc_dev == dev)
1673 panic("config_interrupts: deferred twice");
1674 }
1675 #endif
1676
1677 dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
1678 if (dc == NULL)
1679 panic("config_interrupts: unable to allocate callback");
1680
1681 dc->dc_dev = dev;
1682 dc->dc_func = func;
1683 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1684 config_pending_incr();
1685 }
1686
1687 /*
1688 * Process a deferred configuration queue.
1689 */
1690 static void
1691 config_process_deferred(struct deferred_config_head *queue,
1692 device_t parent)
1693 {
1694 struct deferred_config *dc, *ndc;
1695
1696 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1697 ndc = TAILQ_NEXT(dc, dc_queue);
1698 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1699 TAILQ_REMOVE(queue, dc, dc_queue);
1700 (*dc->dc_func)(dc->dc_dev);
1701 free(dc, M_DEVBUF);
1702 config_pending_decr();
1703 }
1704 }
1705 }
1706
1707 /*
1708 * Manipulate the config_pending semaphore.
1709 */
1710 void
1711 config_pending_incr(void)
1712 {
1713
1714 config_pending++;
1715 }
1716
1717 void
1718 config_pending_decr(void)
1719 {
1720
1721 #ifdef DIAGNOSTIC
1722 if (config_pending == 0)
1723 panic("config_pending_decr: config_pending == 0");
1724 #endif
1725 config_pending--;
1726 if (config_pending == 0)
1727 wakeup(&config_pending);
1728 }
1729
1730 /*
1731 * Register a "finalization" routine. Finalization routines are
1732 * called iteratively once all real devices have been found during
1733 * autoconfiguration, for as long as any one finalizer has done
1734 * any work.
1735 */
1736 int
1737 config_finalize_register(device_t dev, int (*fn)(device_t))
1738 {
1739 struct finalize_hook *f;
1740
1741 /*
1742 * If finalization has already been done, invoke the
1743 * callback function now.
1744 */
1745 if (config_finalize_done) {
1746 while ((*fn)(dev) != 0)
1747 /* loop */ ;
1748 }
1749
1750 /* Ensure this isn't already on the list. */
1751 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1752 if (f->f_func == fn && f->f_dev == dev)
1753 return (EEXIST);
1754 }
1755
1756 f = malloc(sizeof(*f), M_TEMP, M_WAITOK);
1757 f->f_func = fn;
1758 f->f_dev = dev;
1759 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1760
1761 return (0);
1762 }
1763
1764 void
1765 config_finalize(void)
1766 {
1767 struct finalize_hook *f;
1768 struct pdevinit *pdev;
1769 extern struct pdevinit pdevinit[];
1770 int errcnt, rv;
1771
1772 /*
1773 * Now that device driver threads have been created, wait for
1774 * them to finish any deferred autoconfiguration.
1775 */
1776 while (config_pending)
1777 (void) tsleep(&config_pending, PWAIT, "cfpend", hz);
1778
1779 /* Attach pseudo-devices. */
1780 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1781 (*pdev->pdev_attach)(pdev->pdev_count);
1782
1783 /* Run the hooks until none of them does any work. */
1784 do {
1785 rv = 0;
1786 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1787 rv |= (*f->f_func)(f->f_dev);
1788 } while (rv != 0);
1789
1790 config_finalize_done = 1;
1791
1792 /* Now free all the hooks. */
1793 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1794 TAILQ_REMOVE(&config_finalize_list, f, f_list);
1795 free(f, M_TEMP);
1796 }
1797
1798 errcnt = aprint_get_error_count();
1799 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1800 (boothowto & AB_VERBOSE) == 0) {
1801 if (config_do_twiddle) {
1802 config_do_twiddle = 0;
1803 printf_nolog("done.\n");
1804 }
1805 if (errcnt != 0) {
1806 printf("WARNING: %d error%s while detecting hardware; "
1807 "check system log.\n", errcnt,
1808 errcnt == 1 ? "" : "s");
1809 }
1810 }
1811 }
1812
1813 /*
1814 * device_lookup:
1815 *
1816 * Look up a device instance for a given driver.
1817 */
1818 void *
1819 device_lookup(cfdriver_t cd, int unit)
1820 {
1821
1822 if (unit < 0 || unit >= cd->cd_ndevs)
1823 return (NULL);
1824
1825 return (cd->cd_devs[unit]);
1826 }
1827
1828 /*
1829 * device_lookup:
1830 *
1831 * Look up a device instance for a given driver.
1832 */
1833 void *
1834 device_lookup_private(cfdriver_t cd, int unit)
1835 {
1836 device_t dv;
1837
1838 if (unit < 0 || unit >= cd->cd_ndevs)
1839 return NULL;
1840
1841 if ((dv = cd->cd_devs[unit]) == NULL)
1842 return NULL;
1843
1844 return dv->dv_private;
1845 }
1846
1847 /*
1848 * Accessor functions for the device_t type.
1849 */
1850 devclass_t
1851 device_class(device_t dev)
1852 {
1853
1854 return (dev->dv_class);
1855 }
1856
1857 cfdata_t
1858 device_cfdata(device_t dev)
1859 {
1860
1861 return (dev->dv_cfdata);
1862 }
1863
1864 cfdriver_t
1865 device_cfdriver(device_t dev)
1866 {
1867
1868 return (dev->dv_cfdriver);
1869 }
1870
1871 cfattach_t
1872 device_cfattach(device_t dev)
1873 {
1874
1875 return (dev->dv_cfattach);
1876 }
1877
1878 int
1879 device_unit(device_t dev)
1880 {
1881
1882 return (dev->dv_unit);
1883 }
1884
1885 const char *
1886 device_xname(device_t dev)
1887 {
1888
1889 return (dev->dv_xname);
1890 }
1891
1892 device_t
1893 device_parent(device_t dev)
1894 {
1895
1896 return (dev->dv_parent);
1897 }
1898
1899 bool
1900 device_is_active(device_t dev)
1901 {
1902 int active_flags;
1903
1904 active_flags = DVF_ACTIVE;
1905 active_flags |= DVF_CLASS_SUSPENDED;
1906 active_flags |= DVF_DRIVER_SUSPENDED;
1907 active_flags |= DVF_BUS_SUSPENDED;
1908
1909 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1910 }
1911
1912 bool
1913 device_is_enabled(device_t dev)
1914 {
1915 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1916 }
1917
1918 bool
1919 device_has_power(device_t dev)
1920 {
1921 int active_flags;
1922
1923 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1924
1925 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1926 }
1927
1928 int
1929 device_locator(device_t dev, u_int locnum)
1930 {
1931
1932 KASSERT(dev->dv_locators != NULL);
1933 return (dev->dv_locators[locnum]);
1934 }
1935
1936 void *
1937 device_private(device_t dev)
1938 {
1939
1940 /*
1941 * The reason why device_private(NULL) is allowed is to simplify the
1942 * work of a lot of userspace request handlers (i.e., c/bdev
1943 * handlers) which grab cfdriver_t->cd_units[n].
1944 * It avoids having them test for it to be NULL and only then calling
1945 * device_private.
1946 */
1947 return dev == NULL ? NULL : dev->dv_private;
1948 }
1949
1950 prop_dictionary_t
1951 device_properties(device_t dev)
1952 {
1953
1954 return (dev->dv_properties);
1955 }
1956
1957 /*
1958 * device_is_a:
1959 *
1960 * Returns true if the device is an instance of the specified
1961 * driver.
1962 */
1963 bool
1964 device_is_a(device_t dev, const char *dname)
1965 {
1966
1967 return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
1968 }
1969
1970 /*
1971 * device_find_by_xname:
1972 *
1973 * Returns the device of the given name or NULL if it doesn't exist.
1974 */
1975 device_t
1976 device_find_by_xname(const char *name)
1977 {
1978 device_t dv;
1979 deviter_t di;
1980
1981 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
1982 if (strcmp(device_xname(dv), name) == 0)
1983 break;
1984 }
1985 deviter_release(&di);
1986
1987 return dv;
1988 }
1989
1990 /*
1991 * device_find_by_driver_unit:
1992 *
1993 * Returns the device of the given driver name and unit or
1994 * NULL if it doesn't exist.
1995 */
1996 device_t
1997 device_find_by_driver_unit(const char *name, int unit)
1998 {
1999 struct cfdriver *cd;
2000
2001 if ((cd = config_cfdriver_lookup(name)) == NULL)
2002 return NULL;
2003 return device_lookup(cd, unit);
2004 }
2005
2006 /*
2007 * Power management related functions.
2008 */
2009
2010 bool
2011 device_pmf_is_registered(device_t dev)
2012 {
2013 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2014 }
2015
2016 bool
2017 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
2018 {
2019 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2020 return true;
2021 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2022 return false;
2023 if (*dev->dv_driver_suspend != NULL &&
2024 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
2025 return false;
2026
2027 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2028 return true;
2029 }
2030
2031 bool
2032 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
2033 {
2034 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2035 return true;
2036 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2037 return false;
2038 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2039 return false;
2040 if (*dev->dv_driver_resume != NULL &&
2041 !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2042 return false;
2043
2044 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2045 return true;
2046 }
2047
2048 bool
2049 device_pmf_driver_shutdown(device_t dev, int how)
2050 {
2051
2052 if (*dev->dv_driver_shutdown != NULL &&
2053 !(*dev->dv_driver_shutdown)(dev, how))
2054 return false;
2055 return true;
2056 }
2057
2058 bool
2059 device_pmf_driver_register(device_t dev,
2060 bool (*suspend)(device_t PMF_FN_PROTO),
2061 bool (*resume)(device_t PMF_FN_PROTO),
2062 bool (*shutdown)(device_t, int))
2063 {
2064 pmf_private_t *pp;
2065
2066 if ((pp = malloc(sizeof(*pp), M_PMFPRIV, M_NOWAIT|M_ZERO)) == NULL)
2067 return false;
2068 mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
2069 cv_init(&pp->pp_cv, "pmfsusp");
2070 dev->dv_pmf_private = pp;
2071
2072 dev->dv_driver_suspend = suspend;
2073 dev->dv_driver_resume = resume;
2074 dev->dv_driver_shutdown = shutdown;
2075 dev->dv_flags |= DVF_POWER_HANDLERS;
2076 return true;
2077 }
2078
2079 static const char *
2080 curlwp_name(void)
2081 {
2082 if (curlwp->l_name != NULL)
2083 return curlwp->l_name;
2084 else
2085 return curlwp->l_proc->p_comm;
2086 }
2087
2088 void
2089 device_pmf_driver_deregister(device_t dev)
2090 {
2091 pmf_private_t *pp = dev->dv_pmf_private;
2092
2093 dev->dv_driver_suspend = NULL;
2094 dev->dv_driver_resume = NULL;
2095
2096 dev->dv_pmf_private = NULL;
2097
2098 mutex_enter(&pp->pp_mtx);
2099 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2100 while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
2101 /* Wake a thread that waits for the lock. That
2102 * thread will fail to acquire the lock, and then
2103 * it will wake the next thread that waits for the
2104 * lock, or else it will wake us.
2105 */
2106 cv_signal(&pp->pp_cv);
2107 pmflock_debug(dev, __func__, __LINE__);
2108 cv_wait(&pp->pp_cv, &pp->pp_mtx);
2109 pmflock_debug(dev, __func__, __LINE__);
2110 }
2111 mutex_exit(&pp->pp_mtx);
2112
2113 cv_destroy(&pp->pp_cv);
2114 mutex_destroy(&pp->pp_mtx);
2115 free(pp, M_PMFPRIV);
2116 }
2117
2118 bool
2119 device_pmf_driver_child_register(device_t dev)
2120 {
2121 device_t parent = device_parent(dev);
2122
2123 if (parent == NULL || parent->dv_driver_child_register == NULL)
2124 return true;
2125 return (*parent->dv_driver_child_register)(dev);
2126 }
2127
2128 void
2129 device_pmf_driver_set_child_register(device_t dev,
2130 bool (*child_register)(device_t))
2131 {
2132 dev->dv_driver_child_register = child_register;
2133 }
2134
2135 void
2136 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2137 {
2138 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2139 if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2140 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2141 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2142 }
2143
2144 bool
2145 device_is_self_suspended(device_t dev)
2146 {
2147 return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2148 }
2149
2150 void
2151 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2152 {
2153 bool self = (flags & PMF_F_SELF) != 0;
2154
2155 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2156
2157 if (!self)
2158 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2159 else if (device_is_active(dev))
2160 dev->dv_flags |= DVF_SELF_SUSPENDED;
2161
2162 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2163 }
2164
2165 static void
2166 pmflock_debug(device_t dev, const char *func, int line)
2167 {
2168 pmf_private_t *pp = device_pmf_private(dev);
2169
2170 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
2171 func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
2172 dev->dv_flags);
2173 }
2174
2175 static void
2176 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2177 {
2178 pmf_private_t *pp = device_pmf_private(dev);
2179
2180 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
2181 "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2182 pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
2183 }
2184
2185 static bool
2186 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2187 {
2188 pmf_private_t *pp = device_pmf_private(dev);
2189
2190 while (pp->pp_nlock > 0 && pp->pp_holder != curlwp &&
2191 device_pmf_is_registered(dev)) {
2192 pp->pp_nwait++;
2193 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2194 cv_wait(&pp->pp_cv, &pp->pp_mtx);
2195 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2196 pp->pp_nwait--;
2197 }
2198 if (!device_pmf_is_registered(dev)) {
2199 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2200 /* We could not acquire the lock, but some other thread may
2201 * wait for it, also. Wake that thread.
2202 */
2203 cv_signal(&pp->pp_cv);
2204 return false;
2205 }
2206 pp->pp_nlock++;
2207 pp->pp_holder = curlwp;
2208 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2209 return true;
2210 }
2211
2212 bool
2213 device_pmf_lock(device_t dev PMF_FN_ARGS)
2214 {
2215 bool rc;
2216 pmf_private_t *pp = device_pmf_private(dev);
2217
2218 mutex_enter(&pp->pp_mtx);
2219 rc = device_pmf_lock1(dev PMF_FN_CALL);
2220 mutex_exit(&pp->pp_mtx);
2221
2222 return rc;
2223 }
2224
2225 void
2226 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2227 {
2228 pmf_private_t *pp = device_pmf_private(dev);
2229
2230 KASSERT(pp->pp_nlock > 0);
2231 mutex_enter(&pp->pp_mtx);
2232 if (--pp->pp_nlock == 0)
2233 pp->pp_holder = NULL;
2234 cv_signal(&pp->pp_cv);
2235 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2236 mutex_exit(&pp->pp_mtx);
2237 }
2238
2239 void *
2240 device_pmf_private(device_t dev)
2241 {
2242 return dev->dv_pmf_private;
2243 }
2244
2245 void *
2246 device_pmf_bus_private(device_t dev)
2247 {
2248 return dev->dv_bus_private;
2249 }
2250
2251 bool
2252 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2253 {
2254 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2255 return true;
2256 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2257 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2258 return false;
2259 if (*dev->dv_bus_suspend != NULL &&
2260 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2261 return false;
2262
2263 dev->dv_flags |= DVF_BUS_SUSPENDED;
2264 return true;
2265 }
2266
2267 bool
2268 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2269 {
2270 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2271 return true;
2272 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2273 return false;
2274 if (*dev->dv_bus_resume != NULL &&
2275 !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2276 return false;
2277
2278 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2279 return true;
2280 }
2281
2282 bool
2283 device_pmf_bus_shutdown(device_t dev, int how)
2284 {
2285
2286 if (*dev->dv_bus_shutdown != NULL &&
2287 !(*dev->dv_bus_shutdown)(dev, how))
2288 return false;
2289 return true;
2290 }
2291
2292 void
2293 device_pmf_bus_register(device_t dev, void *priv,
2294 bool (*suspend)(device_t PMF_FN_PROTO),
2295 bool (*resume)(device_t PMF_FN_PROTO),
2296 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2297 {
2298 dev->dv_bus_private = priv;
2299 dev->dv_bus_resume = resume;
2300 dev->dv_bus_suspend = suspend;
2301 dev->dv_bus_shutdown = shutdown;
2302 dev->dv_bus_deregister = deregister;
2303 }
2304
2305 void
2306 device_pmf_bus_deregister(device_t dev)
2307 {
2308 if (dev->dv_bus_deregister == NULL)
2309 return;
2310 (*dev->dv_bus_deregister)(dev);
2311 dev->dv_bus_private = NULL;
2312 dev->dv_bus_suspend = NULL;
2313 dev->dv_bus_resume = NULL;
2314 dev->dv_bus_deregister = NULL;
2315 }
2316
2317 void *
2318 device_pmf_class_private(device_t dev)
2319 {
2320 return dev->dv_class_private;
2321 }
2322
2323 bool
2324 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2325 {
2326 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2327 return true;
2328 if (*dev->dv_class_suspend != NULL &&
2329 !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2330 return false;
2331
2332 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2333 return true;
2334 }
2335
2336 bool
2337 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2338 {
2339 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2340 return true;
2341 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2342 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2343 return false;
2344 if (*dev->dv_class_resume != NULL &&
2345 !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2346 return false;
2347
2348 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2349 return true;
2350 }
2351
2352 void
2353 device_pmf_class_register(device_t dev, void *priv,
2354 bool (*suspend)(device_t PMF_FN_PROTO),
2355 bool (*resume)(device_t PMF_FN_PROTO),
2356 void (*deregister)(device_t))
2357 {
2358 dev->dv_class_private = priv;
2359 dev->dv_class_suspend = suspend;
2360 dev->dv_class_resume = resume;
2361 dev->dv_class_deregister = deregister;
2362 }
2363
2364 void
2365 device_pmf_class_deregister(device_t dev)
2366 {
2367 if (dev->dv_class_deregister == NULL)
2368 return;
2369 (*dev->dv_class_deregister)(dev);
2370 dev->dv_class_private = NULL;
2371 dev->dv_class_suspend = NULL;
2372 dev->dv_class_resume = NULL;
2373 dev->dv_class_deregister = NULL;
2374 }
2375
2376 bool
2377 device_active(device_t dev, devactive_t type)
2378 {
2379 size_t i;
2380
2381 if (dev->dv_activity_count == 0)
2382 return false;
2383
2384 for (i = 0; i < dev->dv_activity_count; ++i)
2385 (*dev->dv_activity_handlers[i])(dev, type);
2386
2387 return true;
2388 }
2389
2390 bool
2391 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2392 {
2393 void (**new_handlers)(device_t, devactive_t);
2394 void (**old_handlers)(device_t, devactive_t);
2395 size_t i, new_size;
2396 int s;
2397
2398 old_handlers = dev->dv_activity_handlers;
2399
2400 for (i = 0; i < dev->dv_activity_count; ++i) {
2401 if (old_handlers[i] == handler)
2402 panic("Double registering of idle handlers");
2403 }
2404
2405 new_size = dev->dv_activity_count + 1;
2406 new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF, M_WAITOK);
2407
2408 memcpy(new_handlers, old_handlers,
2409 sizeof(void *) * dev->dv_activity_count);
2410 new_handlers[new_size - 1] = handler;
2411
2412 s = splhigh();
2413 dev->dv_activity_count = new_size;
2414 dev->dv_activity_handlers = new_handlers;
2415 splx(s);
2416
2417 if (old_handlers != NULL)
2418 free(old_handlers, M_DEVBUF);
2419
2420 return true;
2421 }
2422
2423 void
2424 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2425 {
2426 void (**new_handlers)(device_t, devactive_t);
2427 void (**old_handlers)(device_t, devactive_t);
2428 size_t i, new_size;
2429 int s;
2430
2431 old_handlers = dev->dv_activity_handlers;
2432
2433 for (i = 0; i < dev->dv_activity_count; ++i) {
2434 if (old_handlers[i] == handler)
2435 break;
2436 }
2437
2438 if (i == dev->dv_activity_count)
2439 return; /* XXX panic? */
2440
2441 new_size = dev->dv_activity_count - 1;
2442
2443 if (new_size == 0) {
2444 new_handlers = NULL;
2445 } else {
2446 new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF,
2447 M_WAITOK);
2448 memcpy(new_handlers, old_handlers, sizeof(void *) * i);
2449 memcpy(new_handlers + i, old_handlers + i + 1,
2450 sizeof(void *) * (new_size - i));
2451 }
2452
2453 s = splhigh();
2454 dev->dv_activity_count = new_size;
2455 dev->dv_activity_handlers = new_handlers;
2456 splx(s);
2457
2458 free(old_handlers, M_DEVBUF);
2459 }
2460
2461 /*
2462 * Device Iteration
2463 *
2464 * deviter_t: a device iterator. Holds state for a "walk" visiting
2465 * each device_t's in the device tree.
2466 *
2467 * deviter_init(di, flags): initialize the device iterator `di'
2468 * to "walk" the device tree. deviter_next(di) will return
2469 * the first device_t in the device tree, or NULL if there are
2470 * no devices.
2471 *
2472 * `flags' is one or more of DEVITER_F_RW, indicating that the
2473 * caller intends to modify the device tree by calling
2474 * config_detach(9) on devices in the order that the iterator
2475 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2476 * nearest the "root" of the device tree to be returned, first;
2477 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2478 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2479 * indicating both that deviter_init() should not respect any
2480 * locks on the device tree, and that deviter_next(di) may run
2481 * in more than one LWP before the walk has finished.
2482 *
2483 * Only one DEVITER_F_RW iterator may be in the device tree at
2484 * once.
2485 *
2486 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2487 *
2488 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2489 * DEVITER_F_LEAVES_FIRST are used in combination.
2490 *
2491 * deviter_first(di, flags): initialize the device iterator `di'
2492 * and return the first device_t in the device tree, or NULL
2493 * if there are no devices. The statement
2494 *
2495 * dv = deviter_first(di);
2496 *
2497 * is shorthand for
2498 *
2499 * deviter_init(di);
2500 * dv = deviter_next(di);
2501 *
2502 * deviter_next(di): return the next device_t in the device tree,
2503 * or NULL if there are no more devices. deviter_next(di)
2504 * is undefined if `di' was not initialized with deviter_init() or
2505 * deviter_first().
2506 *
2507 * deviter_release(di): stops iteration (subsequent calls to
2508 * deviter_next() will return NULL), releases any locks and
2509 * resources held by the device iterator.
2510 *
2511 * Device iteration does not return device_t's in any particular
2512 * order. An iterator will never return the same device_t twice.
2513 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2514 * is called repeatedly on the same `di', it will eventually return
2515 * NULL. It is ok to attach/detach devices during device iteration.
2516 */
2517 void
2518 deviter_init(deviter_t *di, deviter_flags_t flags)
2519 {
2520 device_t dv;
2521 bool rw;
2522
2523 mutex_enter(&alldevs_mtx);
2524 if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2525 flags |= DEVITER_F_RW;
2526 alldevs_nwrite++;
2527 alldevs_writer = NULL;
2528 alldevs_nread = 0;
2529 } else {
2530 rw = (flags & DEVITER_F_RW) != 0;
2531
2532 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2533 ;
2534 else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2535 (rw && alldevs_nread != 0))
2536 cv_wait(&alldevs_cv, &alldevs_mtx);
2537
2538 if (rw) {
2539 if (alldevs_nwrite++ == 0)
2540 alldevs_writer = curlwp;
2541 } else
2542 alldevs_nread++;
2543 }
2544 mutex_exit(&alldevs_mtx);
2545
2546 memset(di, 0, sizeof(*di));
2547
2548 di->di_flags = flags;
2549
2550 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2551 case DEVITER_F_LEAVES_FIRST:
2552 TAILQ_FOREACH(dv, &alldevs, dv_list)
2553 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2554 break;
2555 case DEVITER_F_ROOT_FIRST:
2556 TAILQ_FOREACH(dv, &alldevs, dv_list)
2557 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2558 break;
2559 default:
2560 break;
2561 }
2562
2563 deviter_reinit(di);
2564 }
2565
2566 static void
2567 deviter_reinit(deviter_t *di)
2568 {
2569 if ((di->di_flags & DEVITER_F_RW) != 0)
2570 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2571 else
2572 di->di_prev = TAILQ_FIRST(&alldevs);
2573 }
2574
2575 device_t
2576 deviter_first(deviter_t *di, deviter_flags_t flags)
2577 {
2578 deviter_init(di, flags);
2579 return deviter_next(di);
2580 }
2581
2582 static device_t
2583 deviter_next1(deviter_t *di)
2584 {
2585 device_t dv;
2586
2587 dv = di->di_prev;
2588
2589 if (dv == NULL)
2590 ;
2591 else if ((di->di_flags & DEVITER_F_RW) != 0)
2592 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2593 else
2594 di->di_prev = TAILQ_NEXT(dv, dv_list);
2595
2596 return dv;
2597 }
2598
2599 device_t
2600 deviter_next(deviter_t *di)
2601 {
2602 device_t dv = NULL;
2603
2604 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2605 case 0:
2606 return deviter_next1(di);
2607 case DEVITER_F_LEAVES_FIRST:
2608 while (di->di_curdepth >= 0) {
2609 if ((dv = deviter_next1(di)) == NULL) {
2610 di->di_curdepth--;
2611 deviter_reinit(di);
2612 } else if (dv->dv_depth == di->di_curdepth)
2613 break;
2614 }
2615 return dv;
2616 case DEVITER_F_ROOT_FIRST:
2617 while (di->di_curdepth <= di->di_maxdepth) {
2618 if ((dv = deviter_next1(di)) == NULL) {
2619 di->di_curdepth++;
2620 deviter_reinit(di);
2621 } else if (dv->dv_depth == di->di_curdepth)
2622 break;
2623 }
2624 return dv;
2625 default:
2626 return NULL;
2627 }
2628 }
2629
2630 void
2631 deviter_release(deviter_t *di)
2632 {
2633 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2634
2635 mutex_enter(&alldevs_mtx);
2636 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2637 --alldevs_nwrite;
2638 else {
2639
2640 if (rw) {
2641 if (--alldevs_nwrite == 0)
2642 alldevs_writer = NULL;
2643 } else
2644 --alldevs_nread;
2645
2646 cv_signal(&alldevs_cv);
2647 }
2648 mutex_exit(&alldevs_mtx);
2649 }
2650