Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.151
      1 /* $NetBSD: subr_autoconf.c,v 1.151 2008/05/27 17:50:03 ad Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.151 2008/05/27 17:50:03 ad Exp $");
     81 
     82 #include "opt_ddb.h"
     83 #include "drvctl.h"
     84 
     85 #include <sys/param.h>
     86 #include <sys/device.h>
     87 #include <sys/disklabel.h>
     88 #include <sys/conf.h>
     89 #include <sys/kauth.h>
     90 #include <sys/malloc.h>
     91 #include <sys/systm.h>
     92 #include <sys/kernel.h>
     93 #include <sys/errno.h>
     94 #include <sys/proc.h>
     95 #include <sys/reboot.h>
     96 #include <sys/kthread.h>
     97 #include <sys/buf.h>
     98 #include <sys/dirent.h>
     99 #include <sys/vnode.h>
    100 #include <sys/mount.h>
    101 #include <sys/namei.h>
    102 #include <sys/unistd.h>
    103 #include <sys/fcntl.h>
    104 #include <sys/lockf.h>
    105 #include <sys/callout.h>
    106 #include <sys/mutex.h>
    107 #include <sys/condvar.h>
    108 #include <sys/devmon.h>
    109 
    110 #include <sys/disk.h>
    111 
    112 #include <machine/limits.h>
    113 
    114 #include "opt_userconf.h"
    115 #ifdef USERCONF
    116 #include <sys/userconf.h>
    117 #endif
    118 
    119 #ifdef __i386__
    120 #include "opt_splash.h"
    121 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    122 #include <dev/splash/splash.h>
    123 extern struct splash_progress *splash_progress_state;
    124 #endif
    125 #endif
    126 
    127 /*
    128  * Autoconfiguration subroutines.
    129  */
    130 
    131 typedef struct pmf_private {
    132 	int		pp_nwait;
    133 	int		pp_nlock;
    134 	lwp_t		*pp_holder;
    135 	kmutex_t	pp_mtx;
    136 	kcondvar_t	pp_cv;
    137 } pmf_private_t;
    138 
    139 /*
    140  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    141  * devices and drivers are found via these tables.
    142  */
    143 extern struct cfdata cfdata[];
    144 extern const short cfroots[];
    145 
    146 /*
    147  * List of all cfdriver structures.  We use this to detect duplicates
    148  * when other cfdrivers are loaded.
    149  */
    150 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    151 extern struct cfdriver * const cfdriver_list_initial[];
    152 
    153 /*
    154  * Initial list of cfattach's.
    155  */
    156 extern const struct cfattachinit cfattachinit[];
    157 
    158 /*
    159  * List of cfdata tables.  We always have one such list -- the one
    160  * built statically when the kernel was configured.
    161  */
    162 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    163 static struct cftable initcftable;
    164 
    165 #define	ROOT ((device_t)NULL)
    166 
    167 struct matchinfo {
    168 	cfsubmatch_t fn;
    169 	struct	device *parent;
    170 	const int *locs;
    171 	void	*aux;
    172 	struct	cfdata *match;
    173 	int	pri;
    174 };
    175 
    176 static char *number(char *, int);
    177 static void mapply(struct matchinfo *, cfdata_t);
    178 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    179 static void config_devdealloc(device_t);
    180 static void config_makeroom(int, struct cfdriver *);
    181 static void config_devlink(device_t);
    182 static void config_devunlink(device_t);
    183 
    184 static void pmflock_debug(device_t, const char *, int);
    185 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
    186 
    187 static device_t deviter_next1(deviter_t *);
    188 static void deviter_reinit(deviter_t *);
    189 
    190 struct deferred_config {
    191 	TAILQ_ENTRY(deferred_config) dc_queue;
    192 	device_t dc_dev;
    193 	void (*dc_func)(device_t);
    194 };
    195 
    196 TAILQ_HEAD(deferred_config_head, deferred_config);
    197 
    198 struct deferred_config_head deferred_config_queue =
    199 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    200 struct deferred_config_head interrupt_config_queue =
    201 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    202 int interrupt_config_threads = 8;
    203 
    204 static void config_process_deferred(struct deferred_config_head *, device_t);
    205 
    206 /* Hooks to finalize configuration once all real devices have been found. */
    207 struct finalize_hook {
    208 	TAILQ_ENTRY(finalize_hook) f_list;
    209 	int (*f_func)(device_t);
    210 	device_t f_dev;
    211 };
    212 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    213 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    214 static int config_finalize_done;
    215 
    216 /* list of all devices */
    217 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    218 kcondvar_t alldevs_cv;
    219 kmutex_t alldevs_mtx;
    220 static int alldevs_nread = 0;
    221 static int alldevs_nwrite = 0;
    222 static lwp_t *alldevs_writer = NULL;
    223 
    224 static int config_pending;		/* semaphore for mountroot */
    225 static kmutex_t config_misc_lock;
    226 static kcondvar_t config_misc_cv;
    227 
    228 #define	STREQ(s1, s2)			\
    229 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    230 
    231 static int config_initialized;		/* config_init() has been called. */
    232 
    233 static int config_do_twiddle;
    234 
    235 MALLOC_DEFINE(M_PMFPRIV, "pmfpriv", "device pmf private storage");
    236 
    237 struct vnode *
    238 opendisk(struct device *dv)
    239 {
    240 	int bmajor, bminor;
    241 	struct vnode *tmpvn;
    242 	int error;
    243 	dev_t dev;
    244 
    245 	/*
    246 	 * Lookup major number for disk block device.
    247 	 */
    248 	bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
    249 	if (bmajor == -1)
    250 		return NULL;
    251 
    252 	bminor = minor(device_unit(dv));
    253 	/*
    254 	 * Fake a temporary vnode for the disk, open it, and read
    255 	 * and hash the sectors.
    256 	 */
    257 	dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
    258 	    MAKEDISKDEV(bmajor, bminor, RAW_PART);
    259 	if (bdevvp(dev, &tmpvn))
    260 		panic("%s: can't alloc vnode for %s", __func__,
    261 		    device_xname(dv));
    262 	error = VOP_OPEN(tmpvn, FREAD, NOCRED);
    263 	if (error) {
    264 #ifndef DEBUG
    265 		/*
    266 		 * Ignore errors caused by missing device, partition,
    267 		 * or medium.
    268 		 */
    269 		if (error != ENXIO && error != ENODEV)
    270 #endif
    271 			printf("%s: can't open dev %s (%d)\n",
    272 			    __func__, device_xname(dv), error);
    273 		vput(tmpvn);
    274 		return NULL;
    275 	}
    276 
    277 	return tmpvn;
    278 }
    279 
    280 int
    281 config_handle_wedges(struct device *dv, int par)
    282 {
    283 	struct dkwedge_list wl;
    284 	struct dkwedge_info *wi;
    285 	struct vnode *vn;
    286 	char diskname[16];
    287 	int i, error;
    288 
    289 	if ((vn = opendisk(dv)) == NULL)
    290 		return -1;
    291 
    292 	wl.dkwl_bufsize = sizeof(*wi) * 16;
    293 	wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
    294 
    295 	error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
    296 	VOP_CLOSE(vn, FREAD, NOCRED);
    297 	vput(vn);
    298 	if (error) {
    299 #ifdef DEBUG_WEDGE
    300 		printf("%s: List wedges returned %d\n",
    301 		    device_xname(dv), error);
    302 #endif
    303 		free(wi, M_TEMP);
    304 		return -1;
    305 	}
    306 
    307 #ifdef DEBUG_WEDGE
    308 	printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
    309 	    wl.dkwl_nwedges, wl.dkwl_ncopied);
    310 #endif
    311 	snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
    312 	    par + 'a');
    313 
    314 	for (i = 0; i < wl.dkwl_ncopied; i++) {
    315 #ifdef DEBUG_WEDGE
    316 		printf("%s: Looking for %s in %s\n",
    317 		    device_xname(dv), diskname, wi[i].dkw_wname);
    318 #endif
    319 		if (strcmp(wi[i].dkw_wname, diskname) == 0)
    320 			break;
    321 	}
    322 
    323 	if (i == wl.dkwl_ncopied) {
    324 #ifdef DEBUG_WEDGE
    325 		printf("%s: Cannot find wedge with parent %s\n",
    326 		    device_xname(dv), diskname);
    327 #endif
    328 		free(wi, M_TEMP);
    329 		return -1;
    330 	}
    331 
    332 #ifdef DEBUG_WEDGE
    333 	printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
    334 		device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
    335 		(unsigned long long)wi[i].dkw_offset,
    336 		(unsigned long long)wi[i].dkw_size);
    337 #endif
    338 	dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
    339 	free(wi, M_TEMP);
    340 	return 0;
    341 }
    342 
    343 /*
    344  * Initialize the autoconfiguration data structures.  Normally this
    345  * is done by configure(), but some platforms need to do this very
    346  * early (to e.g. initialize the console).
    347  */
    348 void
    349 config_init(void)
    350 {
    351 	const struct cfattachinit *cfai;
    352 	int i, j;
    353 
    354 	if (config_initialized)
    355 		return;
    356 
    357 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
    358 	cv_init(&alldevs_cv, "alldevs");
    359 
    360 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    361 	cv_init(&config_misc_cv, "cfgmisc");
    362 
    363 	/* allcfdrivers is statically initialized. */
    364 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
    365 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
    366 			panic("configure: duplicate `%s' drivers",
    367 			    cfdriver_list_initial[i]->cd_name);
    368 	}
    369 
    370 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
    371 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    372 			if (config_cfattach_attach(cfai->cfai_name,
    373 						   cfai->cfai_list[j]) != 0)
    374 				panic("configure: duplicate `%s' attachment "
    375 				    "of `%s' driver",
    376 				    cfai->cfai_list[j]->ca_name,
    377 				    cfai->cfai_name);
    378 		}
    379 	}
    380 
    381 	initcftable.ct_cfdata = cfdata;
    382 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    383 
    384 	config_initialized = 1;
    385 }
    386 
    387 void
    388 config_deferred(device_t dev)
    389 {
    390 	config_process_deferred(&deferred_config_queue, dev);
    391 	config_process_deferred(&interrupt_config_queue, dev);
    392 }
    393 
    394 static void
    395 config_interrupts_thread(void *cookie)
    396 {
    397 	struct deferred_config *dc;
    398 
    399 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    400 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    401 		(*dc->dc_func)(dc->dc_dev);
    402 		free(dc, M_DEVBUF);
    403 		config_pending_decr();
    404 	}
    405 	kthread_exit(0);
    406 }
    407 
    408 /*
    409  * Configure the system's hardware.
    410  */
    411 void
    412 configure(void)
    413 {
    414 	extern void ssp_init(void);
    415 	int i, s;
    416 
    417 	/* Initialize data structures. */
    418 	config_init();
    419 	pmf_init();
    420 #if NDRVCTL > 0
    421 	drvctl_init();
    422 #endif
    423 
    424 #ifdef USERCONF
    425 	if (boothowto & RB_USERCONF)
    426 		user_config();
    427 #endif
    428 
    429 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
    430 		config_do_twiddle = 1;
    431 		printf_nolog("Detecting hardware...");
    432 	}
    433 
    434 	/*
    435 	 * Do the machine-dependent portion of autoconfiguration.  This
    436 	 * sets the configuration machinery here in motion by "finding"
    437 	 * the root bus.  When this function returns, we expect interrupts
    438 	 * to be enabled.
    439 	 */
    440 	cpu_configure();
    441 
    442 	/* Initialize SSP. */
    443 	ssp_init();
    444 
    445 	/*
    446 	 * Now that we've found all the hardware, start the real time
    447 	 * and statistics clocks.
    448 	 */
    449 	initclocks();
    450 
    451 	cold = 0;	/* clocks are running, we're warm now! */
    452 	s = splsched();
    453 	curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
    454 	splx(s);
    455 
    456 	/* Boot the secondary processors. */
    457 	mp_online = true;
    458 #if defined(MULTIPROCESSOR)
    459 	cpu_boot_secondary_processors();
    460 #endif
    461 
    462 	/* Setup the runqueues and scheduler. */
    463 	runq_init();
    464 	sched_init();
    465 
    466 	/*
    467 	 * Create threads to call back and finish configuration for
    468 	 * devices that want interrupts enabled.
    469 	 */
    470 	for (i = 0; i < interrupt_config_threads; i++) {
    471 		(void)kthread_create(PRI_NONE, 0, NULL,
    472 		    config_interrupts_thread, NULL, NULL, "config");
    473 	}
    474 
    475 	/* Get the threads going and into any sleeps before continuing. */
    476 	yield();
    477 
    478 	/* Lock the kernel on behalf of lwp0. */
    479 	KERNEL_LOCK(1, NULL);
    480 }
    481 
    482 /*
    483  * Announce device attach/detach to userland listeners.
    484  */
    485 static void
    486 devmon_report_device(device_t dev, bool isattach)
    487 {
    488 #if NDRVCTL > 0
    489 	prop_dictionary_t ev;
    490 	const char *parent;
    491 	const char *what;
    492 	device_t pdev = device_parent(dev);
    493 
    494 	ev = prop_dictionary_create();
    495 	if (ev == NULL)
    496 		return;
    497 
    498 	what = (isattach ? "device-attach" : "device-detach");
    499 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    500 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
    501 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
    502 		prop_object_release(ev);
    503 		return;
    504 	}
    505 
    506 	devmon_insert(what, ev);
    507 #endif
    508 }
    509 
    510 /*
    511  * Add a cfdriver to the system.
    512  */
    513 int
    514 config_cfdriver_attach(struct cfdriver *cd)
    515 {
    516 	struct cfdriver *lcd;
    517 
    518 	/* Make sure this driver isn't already in the system. */
    519 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    520 		if (STREQ(lcd->cd_name, cd->cd_name))
    521 			return (EEXIST);
    522 	}
    523 
    524 	LIST_INIT(&cd->cd_attach);
    525 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    526 
    527 	return (0);
    528 }
    529 
    530 /*
    531  * Remove a cfdriver from the system.
    532  */
    533 int
    534 config_cfdriver_detach(struct cfdriver *cd)
    535 {
    536 	int i;
    537 
    538 	/* Make sure there are no active instances. */
    539 	for (i = 0; i < cd->cd_ndevs; i++) {
    540 		if (cd->cd_devs[i] != NULL)
    541 			return (EBUSY);
    542 	}
    543 
    544 	/* ...and no attachments loaded. */
    545 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    546 		return (EBUSY);
    547 
    548 	LIST_REMOVE(cd, cd_list);
    549 
    550 	KASSERT(cd->cd_devs == NULL);
    551 
    552 	return (0);
    553 }
    554 
    555 /*
    556  * Look up a cfdriver by name.
    557  */
    558 struct cfdriver *
    559 config_cfdriver_lookup(const char *name)
    560 {
    561 	struct cfdriver *cd;
    562 
    563 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    564 		if (STREQ(cd->cd_name, name))
    565 			return (cd);
    566 	}
    567 
    568 	return (NULL);
    569 }
    570 
    571 /*
    572  * Add a cfattach to the specified driver.
    573  */
    574 int
    575 config_cfattach_attach(const char *driver, struct cfattach *ca)
    576 {
    577 	struct cfattach *lca;
    578 	struct cfdriver *cd;
    579 
    580 	cd = config_cfdriver_lookup(driver);
    581 	if (cd == NULL)
    582 		return (ESRCH);
    583 
    584 	/* Make sure this attachment isn't already on this driver. */
    585 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    586 		if (STREQ(lca->ca_name, ca->ca_name))
    587 			return (EEXIST);
    588 	}
    589 
    590 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    591 
    592 	return (0);
    593 }
    594 
    595 /*
    596  * Remove a cfattach from the specified driver.
    597  */
    598 int
    599 config_cfattach_detach(const char *driver, struct cfattach *ca)
    600 {
    601 	struct cfdriver *cd;
    602 	device_t dev;
    603 	int i;
    604 
    605 	cd = config_cfdriver_lookup(driver);
    606 	if (cd == NULL)
    607 		return (ESRCH);
    608 
    609 	/* Make sure there are no active instances. */
    610 	for (i = 0; i < cd->cd_ndevs; i++) {
    611 		if ((dev = cd->cd_devs[i]) == NULL)
    612 			continue;
    613 		if (dev->dv_cfattach == ca)
    614 			return (EBUSY);
    615 	}
    616 
    617 	LIST_REMOVE(ca, ca_list);
    618 
    619 	return (0);
    620 }
    621 
    622 /*
    623  * Look up a cfattach by name.
    624  */
    625 static struct cfattach *
    626 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    627 {
    628 	struct cfattach *ca;
    629 
    630 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    631 		if (STREQ(ca->ca_name, atname))
    632 			return (ca);
    633 	}
    634 
    635 	return (NULL);
    636 }
    637 
    638 /*
    639  * Look up a cfattach by driver/attachment name.
    640  */
    641 struct cfattach *
    642 config_cfattach_lookup(const char *name, const char *atname)
    643 {
    644 	struct cfdriver *cd;
    645 
    646 	cd = config_cfdriver_lookup(name);
    647 	if (cd == NULL)
    648 		return (NULL);
    649 
    650 	return (config_cfattach_lookup_cd(cd, atname));
    651 }
    652 
    653 /*
    654  * Apply the matching function and choose the best.  This is used
    655  * a few times and we want to keep the code small.
    656  */
    657 static void
    658 mapply(struct matchinfo *m, cfdata_t cf)
    659 {
    660 	int pri;
    661 
    662 	if (m->fn != NULL) {
    663 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    664 	} else {
    665 		pri = config_match(m->parent, cf, m->aux);
    666 	}
    667 	if (pri > m->pri) {
    668 		m->match = cf;
    669 		m->pri = pri;
    670 	}
    671 }
    672 
    673 int
    674 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    675 {
    676 	const struct cfiattrdata *ci;
    677 	const struct cflocdesc *cl;
    678 	int nlocs, i;
    679 
    680 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
    681 	KASSERT(ci);
    682 	nlocs = ci->ci_loclen;
    683 	for (i = 0; i < nlocs; i++) {
    684 		cl = &ci->ci_locdesc[i];
    685 		/* !cld_defaultstr means no default value */
    686 		if ((!(cl->cld_defaultstr)
    687 		     || (cf->cf_loc[i] != cl->cld_default))
    688 		    && cf->cf_loc[i] != locs[i])
    689 			return (0);
    690 	}
    691 
    692 	return (config_match(parent, cf, aux));
    693 }
    694 
    695 /*
    696  * Helper function: check whether the driver supports the interface attribute
    697  * and return its descriptor structure.
    698  */
    699 static const struct cfiattrdata *
    700 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    701 {
    702 	const struct cfiattrdata * const *cpp;
    703 
    704 	if (cd->cd_attrs == NULL)
    705 		return (0);
    706 
    707 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    708 		if (STREQ((*cpp)->ci_name, ia)) {
    709 			/* Match. */
    710 			return (*cpp);
    711 		}
    712 	}
    713 	return (0);
    714 }
    715 
    716 /*
    717  * Lookup an interface attribute description by name.
    718  * If the driver is given, consider only its supported attributes.
    719  */
    720 const struct cfiattrdata *
    721 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    722 {
    723 	const struct cfdriver *d;
    724 	const struct cfiattrdata *ia;
    725 
    726 	if (cd)
    727 		return (cfdriver_get_iattr(cd, name));
    728 
    729 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    730 		ia = cfdriver_get_iattr(d, name);
    731 		if (ia)
    732 			return (ia);
    733 	}
    734 	return (0);
    735 }
    736 
    737 /*
    738  * Determine if `parent' is a potential parent for a device spec based
    739  * on `cfp'.
    740  */
    741 static int
    742 cfparent_match(const device_t parent, const struct cfparent *cfp)
    743 {
    744 	struct cfdriver *pcd;
    745 
    746 	/* We don't match root nodes here. */
    747 	if (cfp == NULL)
    748 		return (0);
    749 
    750 	pcd = parent->dv_cfdriver;
    751 	KASSERT(pcd != NULL);
    752 
    753 	/*
    754 	 * First, ensure this parent has the correct interface
    755 	 * attribute.
    756 	 */
    757 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    758 		return (0);
    759 
    760 	/*
    761 	 * If no specific parent device instance was specified (i.e.
    762 	 * we're attaching to the attribute only), we're done!
    763 	 */
    764 	if (cfp->cfp_parent == NULL)
    765 		return (1);
    766 
    767 	/*
    768 	 * Check the parent device's name.
    769 	 */
    770 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    771 		return (0);	/* not the same parent */
    772 
    773 	/*
    774 	 * Make sure the unit number matches.
    775 	 */
    776 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    777 	    cfp->cfp_unit == parent->dv_unit)
    778 		return (1);
    779 
    780 	/* Unit numbers don't match. */
    781 	return (0);
    782 }
    783 
    784 /*
    785  * Helper for config_cfdata_attach(): check all devices whether it could be
    786  * parent any attachment in the config data table passed, and rescan.
    787  */
    788 static void
    789 rescan_with_cfdata(const struct cfdata *cf)
    790 {
    791 	device_t d;
    792 	const struct cfdata *cf1;
    793 	deviter_t di;
    794 
    795 
    796 	/*
    797 	 * "alldevs" is likely longer than an LKM's cfdata, so make it
    798 	 * the outer loop.
    799 	 */
    800 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    801 
    802 		if (!(d->dv_cfattach->ca_rescan))
    803 			continue;
    804 
    805 		for (cf1 = cf; cf1->cf_name; cf1++) {
    806 
    807 			if (!cfparent_match(d, cf1->cf_pspec))
    808 				continue;
    809 
    810 			(*d->dv_cfattach->ca_rescan)(d,
    811 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
    812 		}
    813 	}
    814 	deviter_release(&di);
    815 }
    816 
    817 /*
    818  * Attach a supplemental config data table and rescan potential
    819  * parent devices if required.
    820  */
    821 int
    822 config_cfdata_attach(cfdata_t cf, int scannow)
    823 {
    824 	struct cftable *ct;
    825 
    826 	ct = malloc(sizeof(struct cftable), M_DEVBUF, M_WAITOK);
    827 	ct->ct_cfdata = cf;
    828 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    829 
    830 	if (scannow)
    831 		rescan_with_cfdata(cf);
    832 
    833 	return (0);
    834 }
    835 
    836 /*
    837  * Helper for config_cfdata_detach: check whether a device is
    838  * found through any attachment in the config data table.
    839  */
    840 static int
    841 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
    842 {
    843 	const struct cfdata *cf1;
    844 
    845 	for (cf1 = cf; cf1->cf_name; cf1++)
    846 		if (d->dv_cfdata == cf1)
    847 			return (1);
    848 
    849 	return (0);
    850 }
    851 
    852 /*
    853  * Detach a supplemental config data table. Detach all devices found
    854  * through that table (and thus keeping references to it) before.
    855  */
    856 int
    857 config_cfdata_detach(cfdata_t cf)
    858 {
    859 	device_t d;
    860 	int error = 0;
    861 	struct cftable *ct;
    862 	deviter_t di;
    863 
    864 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    865 	     d = deviter_next(&di)) {
    866 		if (!dev_in_cfdata(d, cf))
    867 			continue;
    868 		if ((error = config_detach(d, 0)) != 0)
    869 			break;
    870 	}
    871 	deviter_release(&di);
    872 	if (error) {
    873 		aprint_error_dev(d, "unable to detach instance\n");
    874 		return error;
    875 	}
    876 
    877 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    878 		if (ct->ct_cfdata == cf) {
    879 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    880 			free(ct, M_DEVBUF);
    881 			return (0);
    882 		}
    883 	}
    884 
    885 	/* not found -- shouldn't happen */
    886 	return (EINVAL);
    887 }
    888 
    889 /*
    890  * Invoke the "match" routine for a cfdata entry on behalf of
    891  * an external caller, usually a "submatch" routine.
    892  */
    893 int
    894 config_match(device_t parent, cfdata_t cf, void *aux)
    895 {
    896 	struct cfattach *ca;
    897 
    898 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    899 	if (ca == NULL) {
    900 		/* No attachment for this entry, oh well. */
    901 		return (0);
    902 	}
    903 
    904 	return ((*ca->ca_match)(parent, cf, aux));
    905 }
    906 
    907 /*
    908  * Iterate over all potential children of some device, calling the given
    909  * function (default being the child's match function) for each one.
    910  * Nonzero returns are matches; the highest value returned is considered
    911  * the best match.  Return the `found child' if we got a match, or NULL
    912  * otherwise.  The `aux' pointer is simply passed on through.
    913  *
    914  * Note that this function is designed so that it can be used to apply
    915  * an arbitrary function to all potential children (its return value
    916  * can be ignored).
    917  */
    918 cfdata_t
    919 config_search_loc(cfsubmatch_t fn, device_t parent,
    920 		  const char *ifattr, const int *locs, void *aux)
    921 {
    922 	struct cftable *ct;
    923 	cfdata_t cf;
    924 	struct matchinfo m;
    925 
    926 	KASSERT(config_initialized);
    927 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
    928 
    929 	m.fn = fn;
    930 	m.parent = parent;
    931 	m.locs = locs;
    932 	m.aux = aux;
    933 	m.match = NULL;
    934 	m.pri = 0;
    935 
    936 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    937 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
    938 
    939 			/* We don't match root nodes here. */
    940 			if (!cf->cf_pspec)
    941 				continue;
    942 
    943 			/*
    944 			 * Skip cf if no longer eligible, otherwise scan
    945 			 * through parents for one matching `parent', and
    946 			 * try match function.
    947 			 */
    948 			if (cf->cf_fstate == FSTATE_FOUND)
    949 				continue;
    950 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
    951 			    cf->cf_fstate == FSTATE_DSTAR)
    952 				continue;
    953 
    954 			/*
    955 			 * If an interface attribute was specified,
    956 			 * consider only children which attach to
    957 			 * that attribute.
    958 			 */
    959 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
    960 				continue;
    961 
    962 			if (cfparent_match(parent, cf->cf_pspec))
    963 				mapply(&m, cf);
    964 		}
    965 	}
    966 	return (m.match);
    967 }
    968 
    969 cfdata_t
    970 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
    971     void *aux)
    972 {
    973 
    974 	return (config_search_loc(fn, parent, ifattr, NULL, aux));
    975 }
    976 
    977 /*
    978  * Find the given root device.
    979  * This is much like config_search, but there is no parent.
    980  * Don't bother with multiple cfdata tables; the root node
    981  * must always be in the initial table.
    982  */
    983 cfdata_t
    984 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
    985 {
    986 	cfdata_t cf;
    987 	const short *p;
    988 	struct matchinfo m;
    989 
    990 	m.fn = fn;
    991 	m.parent = ROOT;
    992 	m.aux = aux;
    993 	m.match = NULL;
    994 	m.pri = 0;
    995 	m.locs = 0;
    996 	/*
    997 	 * Look at root entries for matching name.  We do not bother
    998 	 * with found-state here since only one root should ever be
    999 	 * searched (and it must be done first).
   1000 	 */
   1001 	for (p = cfroots; *p >= 0; p++) {
   1002 		cf = &cfdata[*p];
   1003 		if (strcmp(cf->cf_name, rootname) == 0)
   1004 			mapply(&m, cf);
   1005 	}
   1006 	return (m.match);
   1007 }
   1008 
   1009 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1010 
   1011 /*
   1012  * The given `aux' argument describes a device that has been found
   1013  * on the given parent, but not necessarily configured.  Locate the
   1014  * configuration data for that device (using the submatch function
   1015  * provided, or using candidates' cd_match configuration driver
   1016  * functions) and attach it, and return true.  If the device was
   1017  * not configured, call the given `print' function and return 0.
   1018  */
   1019 device_t
   1020 config_found_sm_loc(device_t parent,
   1021 		const char *ifattr, const int *locs, void *aux,
   1022 		cfprint_t print, cfsubmatch_t submatch)
   1023 {
   1024 	cfdata_t cf;
   1025 
   1026 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1027 	if (splash_progress_state)
   1028 		splash_progress_update(splash_progress_state);
   1029 #endif
   1030 
   1031 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
   1032 		return(config_attach_loc(parent, cf, locs, aux, print));
   1033 	if (print) {
   1034 		if (config_do_twiddle)
   1035 			twiddle();
   1036 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1037 	}
   1038 
   1039 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1040 	if (splash_progress_state)
   1041 		splash_progress_update(splash_progress_state);
   1042 #endif
   1043 
   1044 	return (NULL);
   1045 }
   1046 
   1047 device_t
   1048 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1049     cfprint_t print)
   1050 {
   1051 
   1052 	return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
   1053 }
   1054 
   1055 device_t
   1056 config_found(device_t parent, void *aux, cfprint_t print)
   1057 {
   1058 
   1059 	return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
   1060 }
   1061 
   1062 /*
   1063  * As above, but for root devices.
   1064  */
   1065 device_t
   1066 config_rootfound(const char *rootname, void *aux)
   1067 {
   1068 	cfdata_t cf;
   1069 
   1070 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
   1071 		return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
   1072 	aprint_error("root device %s not configured\n", rootname);
   1073 	return (NULL);
   1074 }
   1075 
   1076 /* just like sprintf(buf, "%d") except that it works from the end */
   1077 static char *
   1078 number(char *ep, int n)
   1079 {
   1080 
   1081 	*--ep = 0;
   1082 	while (n >= 10) {
   1083 		*--ep = (n % 10) + '0';
   1084 		n /= 10;
   1085 	}
   1086 	*--ep = n + '0';
   1087 	return (ep);
   1088 }
   1089 
   1090 /*
   1091  * Expand the size of the cd_devs array if necessary.
   1092  */
   1093 static void
   1094 config_makeroom(int n, struct cfdriver *cd)
   1095 {
   1096 	int old, new;
   1097 	void **nsp;
   1098 
   1099 	if (n < cd->cd_ndevs)
   1100 		return;
   1101 
   1102 	/*
   1103 	 * Need to expand the array.
   1104 	 */
   1105 	old = cd->cd_ndevs;
   1106 	if (old == 0)
   1107 		new = 4;
   1108 	else
   1109 		new = old * 2;
   1110 	while (new <= n)
   1111 		new *= 2;
   1112 	cd->cd_ndevs = new;
   1113 	nsp = malloc(new * sizeof(void *), M_DEVBUF,
   1114 	    cold ? M_NOWAIT : M_WAITOK);
   1115 	if (nsp == NULL)
   1116 		panic("config_attach: %sing dev array",
   1117 		    old != 0 ? "expand" : "creat");
   1118 	memset(nsp + old, 0, (new - old) * sizeof(void *));
   1119 	if (old != 0) {
   1120 		memcpy(nsp, cd->cd_devs, old * sizeof(void *));
   1121 		free(cd->cd_devs, M_DEVBUF);
   1122 	}
   1123 	cd->cd_devs = nsp;
   1124 }
   1125 
   1126 static void
   1127 config_devlink(device_t dev)
   1128 {
   1129 	struct cfdriver *cd = dev->dv_cfdriver;
   1130 
   1131 	/* put this device in the devices array */
   1132 	config_makeroom(dev->dv_unit, cd);
   1133 	if (cd->cd_devs[dev->dv_unit])
   1134 		panic("config_attach: duplicate %s", device_xname(dev));
   1135 	cd->cd_devs[dev->dv_unit] = dev;
   1136 
   1137 	/* It is safe to add a device to the tail of the list while
   1138 	 * readers are in the list, but not while a writer is in
   1139 	 * the list.  Wait for any writer to complete.
   1140 	 */
   1141 	mutex_enter(&alldevs_mtx);
   1142 	while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
   1143 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1144 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
   1145 	cv_signal(&alldevs_cv);
   1146 	mutex_exit(&alldevs_mtx);
   1147 }
   1148 
   1149 static void
   1150 config_devunlink(device_t dev)
   1151 {
   1152 	struct cfdriver *cd = dev->dv_cfdriver;
   1153 	int i;
   1154 
   1155 	/* Unlink from device list. */
   1156 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1157 
   1158 	/* Remove from cfdriver's array. */
   1159 	cd->cd_devs[dev->dv_unit] = NULL;
   1160 
   1161 	/*
   1162 	 * If the device now has no units in use, deallocate its softc array.
   1163 	 */
   1164 	for (i = 0; i < cd->cd_ndevs; i++)
   1165 		if (cd->cd_devs[i] != NULL)
   1166 			break;
   1167 	if (i == cd->cd_ndevs) {		/* nothing found; deallocate */
   1168 		free(cd->cd_devs, M_DEVBUF);
   1169 		cd->cd_devs = NULL;
   1170 		cd->cd_ndevs = 0;
   1171 	}
   1172 }
   1173 
   1174 static device_t
   1175 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1176 {
   1177 	struct cfdriver *cd;
   1178 	struct cfattach *ca;
   1179 	size_t lname, lunit;
   1180 	const char *xunit;
   1181 	int myunit;
   1182 	char num[10];
   1183 	device_t dev;
   1184 	void *dev_private;
   1185 	const struct cfiattrdata *ia;
   1186 
   1187 	cd = config_cfdriver_lookup(cf->cf_name);
   1188 	if (cd == NULL)
   1189 		return (NULL);
   1190 
   1191 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1192 	if (ca == NULL)
   1193 		return (NULL);
   1194 
   1195 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
   1196 	    ca->ca_devsize < sizeof(struct device))
   1197 		panic("config_devalloc: %s", cf->cf_atname);
   1198 
   1199 #ifndef __BROKEN_CONFIG_UNIT_USAGE
   1200 	if (cf->cf_fstate == FSTATE_STAR) {
   1201 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
   1202 			if (cd->cd_devs[myunit] == NULL)
   1203 				break;
   1204 		/*
   1205 		 * myunit is now the unit of the first NULL device pointer,
   1206 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1207 		 */
   1208 	} else {
   1209 		myunit = cf->cf_unit;
   1210 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
   1211 			return (NULL);
   1212 	}
   1213 #else
   1214 	myunit = cf->cf_unit;
   1215 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
   1216 
   1217 	/* compute length of name and decimal expansion of unit number */
   1218 	lname = strlen(cd->cd_name);
   1219 	xunit = number(&num[sizeof(num)], myunit);
   1220 	lunit = &num[sizeof(num)] - xunit;
   1221 	if (lname + lunit > sizeof(dev->dv_xname))
   1222 		panic("config_devalloc: device name too long");
   1223 
   1224 	/* get memory for all device vars */
   1225 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
   1226 	if (ca->ca_devsize > 0) {
   1227 		dev_private = malloc(ca->ca_devsize, M_DEVBUF,
   1228 				     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
   1229 		if (dev_private == NULL)
   1230 			panic("config_devalloc: memory allocation for device softc failed");
   1231 	} else {
   1232 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1233 		dev_private = NULL;
   1234 	}
   1235 
   1236 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1237 		dev = malloc(sizeof(struct device), M_DEVBUF,
   1238 			     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
   1239 	} else {
   1240 		dev = dev_private;
   1241 	}
   1242 	if (dev == NULL)
   1243 		panic("config_devalloc: memory allocation for device_t failed");
   1244 
   1245 	dev->dv_class = cd->cd_class;
   1246 	dev->dv_cfdata = cf;
   1247 	dev->dv_cfdriver = cd;
   1248 	dev->dv_cfattach = ca;
   1249 	dev->dv_unit = myunit;
   1250 	dev->dv_activity_count = 0;
   1251 	dev->dv_activity_handlers = NULL;
   1252 	dev->dv_private = dev_private;
   1253 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1254 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1255 	dev->dv_parent = parent;
   1256 	if (parent != NULL)
   1257 		dev->dv_depth = parent->dv_depth + 1;
   1258 	else
   1259 		dev->dv_depth = 0;
   1260 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
   1261 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
   1262 	if (locs) {
   1263 		KASSERT(parent); /* no locators at root */
   1264 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
   1265 				    parent->dv_cfdriver);
   1266 		dev->dv_locators = malloc(ia->ci_loclen * sizeof(int),
   1267 					  M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1268 		memcpy(dev->dv_locators, locs, ia->ci_loclen * sizeof(int));
   1269 	}
   1270 	dev->dv_properties = prop_dictionary_create();
   1271 	KASSERT(dev->dv_properties != NULL);
   1272 
   1273 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
   1274 	    "device-driver", dev->dv_cfdriver->cd_name);
   1275 	prop_dictionary_set_uint16(dev->dv_properties,
   1276 	    "device-unit", dev->dv_unit);
   1277 
   1278 	return (dev);
   1279 }
   1280 
   1281 static void
   1282 config_devdealloc(device_t dev)
   1283 {
   1284 
   1285 	KASSERT(dev->dv_properties != NULL);
   1286 	prop_object_release(dev->dv_properties);
   1287 
   1288 	if (dev->dv_activity_handlers)
   1289 		panic("config_devdealloc with registered handlers");
   1290 
   1291 	if (dev->dv_locators)
   1292 		free(dev->dv_locators, M_DEVBUF);
   1293 
   1294 	if ((dev->dv_flags & DVF_PRIV_ALLOC) != 0 && dev->dv_private != NULL)
   1295 		free(dev->dv_private, M_DEVBUF);
   1296 
   1297 	free(dev, M_DEVBUF);
   1298 }
   1299 
   1300 /*
   1301  * Attach a found device.
   1302  */
   1303 device_t
   1304 config_attach_loc(device_t parent, cfdata_t cf,
   1305 	const int *locs, void *aux, cfprint_t print)
   1306 {
   1307 	device_t dev;
   1308 	struct cftable *ct;
   1309 	const char *drvname;
   1310 
   1311 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1312 	if (splash_progress_state)
   1313 		splash_progress_update(splash_progress_state);
   1314 #endif
   1315 
   1316 	dev = config_devalloc(parent, cf, locs);
   1317 	if (!dev)
   1318 		panic("config_attach: allocation of device softc failed");
   1319 
   1320 	/* XXX redundant - see below? */
   1321 	if (cf->cf_fstate != FSTATE_STAR) {
   1322 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1323 		cf->cf_fstate = FSTATE_FOUND;
   1324 	}
   1325 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1326 	  else
   1327 		cf->cf_unit++;
   1328 #endif
   1329 
   1330 	config_devlink(dev);
   1331 
   1332 	if (config_do_twiddle)
   1333 		twiddle();
   1334 	else
   1335 		aprint_naive("Found ");
   1336 	/*
   1337 	 * We want the next two printfs for normal, verbose, and quiet,
   1338 	 * but not silent (in which case, we're twiddling, instead).
   1339 	 */
   1340 	if (parent == ROOT) {
   1341 		aprint_naive("%s (root)", device_xname(dev));
   1342 		aprint_normal("%s (root)", device_xname(dev));
   1343 	} else {
   1344 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
   1345 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
   1346 		if (print)
   1347 			(void) (*print)(aux, NULL);
   1348 	}
   1349 
   1350 	/*
   1351 	 * Before attaching, clobber any unfound devices that are
   1352 	 * otherwise identical.
   1353 	 * XXX code above is redundant?
   1354 	 */
   1355 	drvname = dev->dv_cfdriver->cd_name;
   1356 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1357 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1358 			if (STREQ(cf->cf_name, drvname) &&
   1359 			    cf->cf_unit == dev->dv_unit) {
   1360 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1361 					cf->cf_fstate = FSTATE_FOUND;
   1362 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1363 				/*
   1364 				 * Bump the unit number on all starred cfdata
   1365 				 * entries for this device.
   1366 				 */
   1367 				if (cf->cf_fstate == FSTATE_STAR)
   1368 					cf->cf_unit++;
   1369 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1370 			}
   1371 		}
   1372 	}
   1373 #ifdef __HAVE_DEVICE_REGISTER
   1374 	device_register(dev, aux);
   1375 #endif
   1376 
   1377 	/* Let userland know */
   1378 	devmon_report_device(dev, true);
   1379 
   1380 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1381 	if (splash_progress_state)
   1382 		splash_progress_update(splash_progress_state);
   1383 #endif
   1384 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1385 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1386 	if (splash_progress_state)
   1387 		splash_progress_update(splash_progress_state);
   1388 #endif
   1389 
   1390 	if (!device_pmf_is_registered(dev))
   1391 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
   1392 
   1393 	config_process_deferred(&deferred_config_queue, dev);
   1394 	return (dev);
   1395 }
   1396 
   1397 device_t
   1398 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1399 {
   1400 
   1401 	return (config_attach_loc(parent, cf, NULL, aux, print));
   1402 }
   1403 
   1404 /*
   1405  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1406  * way are silently inserted into the device tree, and their children
   1407  * attached.
   1408  *
   1409  * Note that because pseudo-devices are attached silently, any information
   1410  * the attach routine wishes to print should be prefixed with the device
   1411  * name by the attach routine.
   1412  */
   1413 device_t
   1414 config_attach_pseudo(cfdata_t cf)
   1415 {
   1416 	device_t dev;
   1417 
   1418 	dev = config_devalloc(ROOT, cf, NULL);
   1419 	if (!dev)
   1420 		return (NULL);
   1421 
   1422 	/* XXX mark busy in cfdata */
   1423 
   1424 	config_devlink(dev);
   1425 
   1426 #if 0	/* XXXJRT not yet */
   1427 #ifdef __HAVE_DEVICE_REGISTER
   1428 	device_register(dev, NULL);	/* like a root node */
   1429 #endif
   1430 #endif
   1431 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1432 	config_process_deferred(&deferred_config_queue, dev);
   1433 	return (dev);
   1434 }
   1435 
   1436 /*
   1437  * Detach a device.  Optionally forced (e.g. because of hardware
   1438  * removal) and quiet.  Returns zero if successful, non-zero
   1439  * (an error code) otherwise.
   1440  *
   1441  * Note that this code wants to be run from a process context, so
   1442  * that the detach can sleep to allow processes which have a device
   1443  * open to run and unwind their stacks.
   1444  */
   1445 int
   1446 config_detach(device_t dev, int flags)
   1447 {
   1448 	struct cftable *ct;
   1449 	cfdata_t cf;
   1450 	const struct cfattach *ca;
   1451 	struct cfdriver *cd;
   1452 #ifdef DIAGNOSTIC
   1453 	device_t d;
   1454 #endif
   1455 	int rv = 0;
   1456 
   1457 #ifdef DIAGNOSTIC
   1458 	if (dev->dv_cfdata != NULL &&
   1459 	    dev->dv_cfdata->cf_fstate != FSTATE_FOUND &&
   1460 	    dev->dv_cfdata->cf_fstate != FSTATE_STAR)
   1461 		panic("config_detach: bad device fstate");
   1462 #endif
   1463 	cd = dev->dv_cfdriver;
   1464 	KASSERT(cd != NULL);
   1465 
   1466 	ca = dev->dv_cfattach;
   1467 	KASSERT(ca != NULL);
   1468 
   1469 	KASSERT(curlwp != NULL);
   1470 	mutex_enter(&alldevs_mtx);
   1471 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   1472 		;
   1473 	else while (alldevs_nread != 0 ||
   1474 	       (alldevs_nwrite != 0 && alldevs_writer != curlwp))
   1475 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1476 	if (alldevs_nwrite++ == 0)
   1477 		alldevs_writer = curlwp;
   1478 	mutex_exit(&alldevs_mtx);
   1479 
   1480 	/*
   1481 	 * Ensure the device is deactivated.  If the device doesn't
   1482 	 * have an activation entry point, we allow DVF_ACTIVE to
   1483 	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
   1484 	 * device is busy, and the detach fails.
   1485 	 */
   1486 	if (ca->ca_activate != NULL)
   1487 		rv = config_deactivate(dev);
   1488 
   1489 	/*
   1490 	 * Try to detach the device.  If that's not possible, then
   1491 	 * we either panic() (for the forced but failed case), or
   1492 	 * return an error.
   1493 	 */
   1494 	if (rv == 0) {
   1495 		if (ca->ca_detach != NULL)
   1496 			rv = (*ca->ca_detach)(dev, flags);
   1497 		else
   1498 			rv = EOPNOTSUPP;
   1499 	}
   1500 	if (rv != 0) {
   1501 		if ((flags & DETACH_FORCE) == 0)
   1502 			goto out;
   1503 		else
   1504 			panic("config_detach: forced detach of %s failed (%d)",
   1505 			    device_xname(dev), rv);
   1506 	}
   1507 
   1508 	/*
   1509 	 * The device has now been successfully detached.
   1510 	 */
   1511 
   1512 	/* Let userland know */
   1513 	devmon_report_device(dev, false);
   1514 
   1515 #ifdef DIAGNOSTIC
   1516 	/*
   1517 	 * Sanity: If you're successfully detached, you should have no
   1518 	 * children.  (Note that because children must be attached
   1519 	 * after parents, we only need to search the latter part of
   1520 	 * the list.)
   1521 	 */
   1522 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1523 	    d = TAILQ_NEXT(d, dv_list)) {
   1524 		if (d->dv_parent == dev) {
   1525 			printf("config_detach: detached device %s"
   1526 			    " has children %s\n", device_xname(dev), device_xname(d));
   1527 			panic("config_detach");
   1528 		}
   1529 	}
   1530 #endif
   1531 
   1532 	/* notify the parent that the child is gone */
   1533 	if (dev->dv_parent) {
   1534 		device_t p = dev->dv_parent;
   1535 		if (p->dv_cfattach->ca_childdetached)
   1536 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1537 	}
   1538 
   1539 	/*
   1540 	 * Mark cfdata to show that the unit can be reused, if possible.
   1541 	 */
   1542 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1543 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1544 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1545 				if (cf->cf_fstate == FSTATE_FOUND &&
   1546 				    cf->cf_unit == dev->dv_unit)
   1547 					cf->cf_fstate = FSTATE_NOTFOUND;
   1548 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1549 				/*
   1550 				 * Note that we can only re-use a starred
   1551 				 * unit number if the unit being detached
   1552 				 * had the last assigned unit number.
   1553 				 */
   1554 				if (cf->cf_fstate == FSTATE_STAR &&
   1555 				    cf->cf_unit == dev->dv_unit + 1)
   1556 					cf->cf_unit--;
   1557 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1558 			}
   1559 		}
   1560 	}
   1561 
   1562 	config_devunlink(dev);
   1563 
   1564 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1565 		aprint_normal_dev(dev, "detached\n");
   1566 
   1567 	config_devdealloc(dev);
   1568 
   1569 out:
   1570 	mutex_enter(&alldevs_mtx);
   1571 	if (--alldevs_nwrite == 0)
   1572 		alldevs_writer = NULL;
   1573 	cv_signal(&alldevs_cv);
   1574 	mutex_exit(&alldevs_mtx);
   1575 	return rv;
   1576 }
   1577 
   1578 int
   1579 config_detach_children(device_t parent, int flags)
   1580 {
   1581 	device_t dv;
   1582 	deviter_t di;
   1583 	int error = 0;
   1584 
   1585 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1586 	     dv = deviter_next(&di)) {
   1587 		if (device_parent(dv) != parent)
   1588 			continue;
   1589 		if ((error = config_detach(dv, flags)) != 0)
   1590 			break;
   1591 	}
   1592 	deviter_release(&di);
   1593 	return error;
   1594 }
   1595 
   1596 int
   1597 config_activate(device_t dev)
   1598 {
   1599 	const struct cfattach *ca = dev->dv_cfattach;
   1600 	int rv = 0, oflags = dev->dv_flags;
   1601 
   1602 	if (ca->ca_activate == NULL)
   1603 		return (EOPNOTSUPP);
   1604 
   1605 	if ((dev->dv_flags & DVF_ACTIVE) == 0) {
   1606 		dev->dv_flags |= DVF_ACTIVE;
   1607 		rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
   1608 		if (rv)
   1609 			dev->dv_flags = oflags;
   1610 	}
   1611 	return (rv);
   1612 }
   1613 
   1614 int
   1615 config_deactivate(device_t dev)
   1616 {
   1617 	const struct cfattach *ca = dev->dv_cfattach;
   1618 	int rv = 0, oflags = dev->dv_flags;
   1619 
   1620 	if (ca->ca_activate == NULL)
   1621 		return (EOPNOTSUPP);
   1622 
   1623 	if (dev->dv_flags & DVF_ACTIVE) {
   1624 		dev->dv_flags &= ~DVF_ACTIVE;
   1625 		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
   1626 		if (rv)
   1627 			dev->dv_flags = oflags;
   1628 	}
   1629 	return (rv);
   1630 }
   1631 
   1632 /*
   1633  * Defer the configuration of the specified device until all
   1634  * of its parent's devices have been attached.
   1635  */
   1636 void
   1637 config_defer(device_t dev, void (*func)(device_t))
   1638 {
   1639 	struct deferred_config *dc;
   1640 
   1641 	if (dev->dv_parent == NULL)
   1642 		panic("config_defer: can't defer config of a root device");
   1643 
   1644 #ifdef DIAGNOSTIC
   1645 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
   1646 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1647 		if (dc->dc_dev == dev)
   1648 			panic("config_defer: deferred twice");
   1649 	}
   1650 #endif
   1651 
   1652 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1653 	if (dc == NULL)
   1654 		panic("config_defer: unable to allocate callback");
   1655 
   1656 	dc->dc_dev = dev;
   1657 	dc->dc_func = func;
   1658 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1659 	config_pending_incr();
   1660 }
   1661 
   1662 /*
   1663  * Defer some autoconfiguration for a device until after interrupts
   1664  * are enabled.
   1665  */
   1666 void
   1667 config_interrupts(device_t dev, void (*func)(device_t))
   1668 {
   1669 	struct deferred_config *dc;
   1670 
   1671 	/*
   1672 	 * If interrupts are enabled, callback now.
   1673 	 */
   1674 	if (cold == 0) {
   1675 		(*func)(dev);
   1676 		return;
   1677 	}
   1678 
   1679 #ifdef DIAGNOSTIC
   1680 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
   1681 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1682 		if (dc->dc_dev == dev)
   1683 			panic("config_interrupts: deferred twice");
   1684 	}
   1685 #endif
   1686 
   1687 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1688 	if (dc == NULL)
   1689 		panic("config_interrupts: unable to allocate callback");
   1690 
   1691 	dc->dc_dev = dev;
   1692 	dc->dc_func = func;
   1693 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   1694 	config_pending_incr();
   1695 }
   1696 
   1697 /*
   1698  * Process a deferred configuration queue.
   1699  */
   1700 static void
   1701 config_process_deferred(struct deferred_config_head *queue,
   1702     device_t parent)
   1703 {
   1704 	struct deferred_config *dc, *ndc;
   1705 
   1706 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   1707 		ndc = TAILQ_NEXT(dc, dc_queue);
   1708 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   1709 			TAILQ_REMOVE(queue, dc, dc_queue);
   1710 			(*dc->dc_func)(dc->dc_dev);
   1711 			free(dc, M_DEVBUF);
   1712 			config_pending_decr();
   1713 		}
   1714 	}
   1715 }
   1716 
   1717 /*
   1718  * Manipulate the config_pending semaphore.
   1719  */
   1720 void
   1721 config_pending_incr(void)
   1722 {
   1723 
   1724 	mutex_enter(&config_misc_lock);
   1725 	config_pending++;
   1726 	mutex_exit(&config_misc_lock);
   1727 }
   1728 
   1729 void
   1730 config_pending_decr(void)
   1731 {
   1732 
   1733 #ifdef DIAGNOSTIC
   1734 	if (config_pending == 0)
   1735 		panic("config_pending_decr: config_pending == 0");
   1736 #endif
   1737 	mutex_enter(&config_misc_lock);
   1738 	config_pending--;
   1739 	if (config_pending == 0)
   1740 		cv_broadcast(&config_misc_cv);
   1741 	mutex_exit(&config_misc_lock);
   1742 }
   1743 
   1744 /*
   1745  * Register a "finalization" routine.  Finalization routines are
   1746  * called iteratively once all real devices have been found during
   1747  * autoconfiguration, for as long as any one finalizer has done
   1748  * any work.
   1749  */
   1750 int
   1751 config_finalize_register(device_t dev, int (*fn)(device_t))
   1752 {
   1753 	struct finalize_hook *f;
   1754 
   1755 	/*
   1756 	 * If finalization has already been done, invoke the
   1757 	 * callback function now.
   1758 	 */
   1759 	if (config_finalize_done) {
   1760 		while ((*fn)(dev) != 0)
   1761 			/* loop */ ;
   1762 	}
   1763 
   1764 	/* Ensure this isn't already on the list. */
   1765 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   1766 		if (f->f_func == fn && f->f_dev == dev)
   1767 			return (EEXIST);
   1768 	}
   1769 
   1770 	f = malloc(sizeof(*f), M_TEMP, M_WAITOK);
   1771 	f->f_func = fn;
   1772 	f->f_dev = dev;
   1773 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   1774 
   1775 	return (0);
   1776 }
   1777 
   1778 void
   1779 config_finalize(void)
   1780 {
   1781 	struct finalize_hook *f;
   1782 	struct pdevinit *pdev;
   1783 	extern struct pdevinit pdevinit[];
   1784 	int errcnt, rv;
   1785 
   1786 	/*
   1787 	 * Now that device driver threads have been created, wait for
   1788 	 * them to finish any deferred autoconfiguration.
   1789 	 */
   1790 	mutex_enter(&config_misc_lock);
   1791 	while (config_pending != 0)
   1792 		cv_wait(&config_misc_cv, &config_misc_lock);
   1793 	mutex_exit(&config_misc_lock);
   1794 
   1795 	/* Attach pseudo-devices. */
   1796 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   1797 		(*pdev->pdev_attach)(pdev->pdev_count);
   1798 
   1799 	/* Run the hooks until none of them does any work. */
   1800 	do {
   1801 		rv = 0;
   1802 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   1803 			rv |= (*f->f_func)(f->f_dev);
   1804 	} while (rv != 0);
   1805 
   1806 	config_finalize_done = 1;
   1807 
   1808 	/* Now free all the hooks. */
   1809 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   1810 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   1811 		free(f, M_TEMP);
   1812 	}
   1813 
   1814 	errcnt = aprint_get_error_count();
   1815 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   1816 	    (boothowto & AB_VERBOSE) == 0) {
   1817 		if (config_do_twiddle) {
   1818 			config_do_twiddle = 0;
   1819 			printf_nolog("done.\n");
   1820 		}
   1821 		if (errcnt != 0) {
   1822 			printf("WARNING: %d error%s while detecting hardware; "
   1823 			    "check system log.\n", errcnt,
   1824 			    errcnt == 1 ? "" : "s");
   1825 		}
   1826 	}
   1827 }
   1828 
   1829 /*
   1830  * device_lookup:
   1831  *
   1832  *	Look up a device instance for a given driver.
   1833  */
   1834 void *
   1835 device_lookup(cfdriver_t cd, int unit)
   1836 {
   1837 
   1838 	if (unit < 0 || unit >= cd->cd_ndevs)
   1839 		return (NULL);
   1840 
   1841 	return (cd->cd_devs[unit]);
   1842 }
   1843 
   1844 /*
   1845  * device_lookup:
   1846  *
   1847  *	Look up a device instance for a given driver.
   1848  */
   1849 void *
   1850 device_lookup_private(cfdriver_t cd, int unit)
   1851 {
   1852 	device_t dv;
   1853 
   1854 	if (unit < 0 || unit >= cd->cd_ndevs)
   1855 		return NULL;
   1856 
   1857 	if ((dv = cd->cd_devs[unit]) == NULL)
   1858 		return NULL;
   1859 
   1860 	return dv->dv_private;
   1861 }
   1862 
   1863 /*
   1864  * Accessor functions for the device_t type.
   1865  */
   1866 devclass_t
   1867 device_class(device_t dev)
   1868 {
   1869 
   1870 	return (dev->dv_class);
   1871 }
   1872 
   1873 cfdata_t
   1874 device_cfdata(device_t dev)
   1875 {
   1876 
   1877 	return (dev->dv_cfdata);
   1878 }
   1879 
   1880 cfdriver_t
   1881 device_cfdriver(device_t dev)
   1882 {
   1883 
   1884 	return (dev->dv_cfdriver);
   1885 }
   1886 
   1887 cfattach_t
   1888 device_cfattach(device_t dev)
   1889 {
   1890 
   1891 	return (dev->dv_cfattach);
   1892 }
   1893 
   1894 int
   1895 device_unit(device_t dev)
   1896 {
   1897 
   1898 	return (dev->dv_unit);
   1899 }
   1900 
   1901 const char *
   1902 device_xname(device_t dev)
   1903 {
   1904 
   1905 	return (dev->dv_xname);
   1906 }
   1907 
   1908 device_t
   1909 device_parent(device_t dev)
   1910 {
   1911 
   1912 	return (dev->dv_parent);
   1913 }
   1914 
   1915 bool
   1916 device_is_active(device_t dev)
   1917 {
   1918 	int active_flags;
   1919 
   1920 	active_flags = DVF_ACTIVE;
   1921 	active_flags |= DVF_CLASS_SUSPENDED;
   1922 	active_flags |= DVF_DRIVER_SUSPENDED;
   1923 	active_flags |= DVF_BUS_SUSPENDED;
   1924 
   1925 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
   1926 }
   1927 
   1928 bool
   1929 device_is_enabled(device_t dev)
   1930 {
   1931 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
   1932 }
   1933 
   1934 bool
   1935 device_has_power(device_t dev)
   1936 {
   1937 	int active_flags;
   1938 
   1939 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
   1940 
   1941 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
   1942 }
   1943 
   1944 int
   1945 device_locator(device_t dev, u_int locnum)
   1946 {
   1947 
   1948 	KASSERT(dev->dv_locators != NULL);
   1949 	return (dev->dv_locators[locnum]);
   1950 }
   1951 
   1952 void *
   1953 device_private(device_t dev)
   1954 {
   1955 
   1956 	/*
   1957 	 * The reason why device_private(NULL) is allowed is to simplify the
   1958 	 * work of a lot of userspace request handlers (i.e., c/bdev
   1959 	 * handlers) which grab cfdriver_t->cd_units[n].
   1960 	 * It avoids having them test for it to be NULL and only then calling
   1961 	 * device_private.
   1962 	 */
   1963 	return dev == NULL ? NULL : dev->dv_private;
   1964 }
   1965 
   1966 prop_dictionary_t
   1967 device_properties(device_t dev)
   1968 {
   1969 
   1970 	return (dev->dv_properties);
   1971 }
   1972 
   1973 /*
   1974  * device_is_a:
   1975  *
   1976  *	Returns true if the device is an instance of the specified
   1977  *	driver.
   1978  */
   1979 bool
   1980 device_is_a(device_t dev, const char *dname)
   1981 {
   1982 
   1983 	return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
   1984 }
   1985 
   1986 /*
   1987  * device_find_by_xname:
   1988  *
   1989  *	Returns the device of the given name or NULL if it doesn't exist.
   1990  */
   1991 device_t
   1992 device_find_by_xname(const char *name)
   1993 {
   1994 	device_t dv;
   1995 	deviter_t di;
   1996 
   1997 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   1998 		if (strcmp(device_xname(dv), name) == 0)
   1999 			break;
   2000 	}
   2001 	deviter_release(&di);
   2002 
   2003 	return dv;
   2004 }
   2005 
   2006 /*
   2007  * device_find_by_driver_unit:
   2008  *
   2009  *	Returns the device of the given driver name and unit or
   2010  *	NULL if it doesn't exist.
   2011  */
   2012 device_t
   2013 device_find_by_driver_unit(const char *name, int unit)
   2014 {
   2015 	struct cfdriver *cd;
   2016 
   2017 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2018 		return NULL;
   2019 	return device_lookup(cd, unit);
   2020 }
   2021 
   2022 /*
   2023  * Power management related functions.
   2024  */
   2025 
   2026 bool
   2027 device_pmf_is_registered(device_t dev)
   2028 {
   2029 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2030 }
   2031 
   2032 bool
   2033 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
   2034 {
   2035 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2036 		return true;
   2037 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2038 		return false;
   2039 	if (*dev->dv_driver_suspend != NULL &&
   2040 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
   2041 		return false;
   2042 
   2043 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2044 	return true;
   2045 }
   2046 
   2047 bool
   2048 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
   2049 {
   2050 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2051 		return true;
   2052 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2053 		return false;
   2054 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
   2055 		return false;
   2056 	if (*dev->dv_driver_resume != NULL &&
   2057 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
   2058 		return false;
   2059 
   2060 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2061 	return true;
   2062 }
   2063 
   2064 bool
   2065 device_pmf_driver_shutdown(device_t dev, int how)
   2066 {
   2067 
   2068 	if (*dev->dv_driver_shutdown != NULL &&
   2069 	    !(*dev->dv_driver_shutdown)(dev, how))
   2070 		return false;
   2071 	return true;
   2072 }
   2073 
   2074 bool
   2075 device_pmf_driver_register(device_t dev,
   2076     bool (*suspend)(device_t PMF_FN_PROTO),
   2077     bool (*resume)(device_t PMF_FN_PROTO),
   2078     bool (*shutdown)(device_t, int))
   2079 {
   2080 	pmf_private_t *pp;
   2081 
   2082 	if ((pp = malloc(sizeof(*pp), M_PMFPRIV, M_NOWAIT|M_ZERO)) == NULL)
   2083 		return false;
   2084 	mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
   2085 	cv_init(&pp->pp_cv, "pmfsusp");
   2086 	dev->dv_pmf_private = pp;
   2087 
   2088 	dev->dv_driver_suspend = suspend;
   2089 	dev->dv_driver_resume = resume;
   2090 	dev->dv_driver_shutdown = shutdown;
   2091 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2092 	return true;
   2093 }
   2094 
   2095 static const char *
   2096 curlwp_name(void)
   2097 {
   2098 	if (curlwp->l_name != NULL)
   2099 		return curlwp->l_name;
   2100 	else
   2101 		return curlwp->l_proc->p_comm;
   2102 }
   2103 
   2104 void
   2105 device_pmf_driver_deregister(device_t dev)
   2106 {
   2107 	pmf_private_t *pp = dev->dv_pmf_private;
   2108 
   2109 	dev->dv_driver_suspend = NULL;
   2110 	dev->dv_driver_resume = NULL;
   2111 
   2112 	dev->dv_pmf_private = NULL;
   2113 
   2114 	mutex_enter(&pp->pp_mtx);
   2115 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2116 	while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
   2117 		/* Wake a thread that waits for the lock.  That
   2118 		 * thread will fail to acquire the lock, and then
   2119 		 * it will wake the next thread that waits for the
   2120 		 * lock, or else it will wake us.
   2121 		 */
   2122 		cv_signal(&pp->pp_cv);
   2123 		pmflock_debug(dev, __func__, __LINE__);
   2124 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
   2125 		pmflock_debug(dev, __func__, __LINE__);
   2126 	}
   2127 	mutex_exit(&pp->pp_mtx);
   2128 
   2129 	cv_destroy(&pp->pp_cv);
   2130 	mutex_destroy(&pp->pp_mtx);
   2131 	free(pp, M_PMFPRIV);
   2132 }
   2133 
   2134 bool
   2135 device_pmf_driver_child_register(device_t dev)
   2136 {
   2137 	device_t parent = device_parent(dev);
   2138 
   2139 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2140 		return true;
   2141 	return (*parent->dv_driver_child_register)(dev);
   2142 }
   2143 
   2144 void
   2145 device_pmf_driver_set_child_register(device_t dev,
   2146     bool (*child_register)(device_t))
   2147 {
   2148 	dev->dv_driver_child_register = child_register;
   2149 }
   2150 
   2151 void
   2152 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
   2153 {
   2154 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2155 	if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
   2156 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
   2157 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2158 }
   2159 
   2160 bool
   2161 device_is_self_suspended(device_t dev)
   2162 {
   2163 	return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
   2164 }
   2165 
   2166 void
   2167 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
   2168 {
   2169 	bool self = (flags & PMF_F_SELF) != 0;
   2170 
   2171 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2172 
   2173 	if (!self)
   2174 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
   2175 	else if (device_is_active(dev))
   2176 		dev->dv_flags |= DVF_SELF_SUSPENDED;
   2177 
   2178 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2179 }
   2180 
   2181 static void
   2182 pmflock_debug(device_t dev, const char *func, int line)
   2183 {
   2184 	pmf_private_t *pp = device_pmf_private(dev);
   2185 
   2186 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
   2187 	    func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
   2188 	    dev->dv_flags);
   2189 }
   2190 
   2191 static void
   2192 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
   2193 {
   2194 	pmf_private_t *pp = device_pmf_private(dev);
   2195 
   2196 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
   2197 	    "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
   2198 	    pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
   2199 }
   2200 
   2201 static bool
   2202 device_pmf_lock1(device_t dev PMF_FN_ARGS)
   2203 {
   2204 	pmf_private_t *pp = device_pmf_private(dev);
   2205 
   2206 	while (pp->pp_nlock > 0 && pp->pp_holder != curlwp &&
   2207 	       device_pmf_is_registered(dev)) {
   2208 		pp->pp_nwait++;
   2209 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2210 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
   2211 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2212 		pp->pp_nwait--;
   2213 	}
   2214 	if (!device_pmf_is_registered(dev)) {
   2215 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2216 		/* We could not acquire the lock, but some other thread may
   2217 		 * wait for it, also.  Wake that thread.
   2218 		 */
   2219 		cv_signal(&pp->pp_cv);
   2220 		return false;
   2221 	}
   2222 	pp->pp_nlock++;
   2223 	pp->pp_holder = curlwp;
   2224 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2225 	return true;
   2226 }
   2227 
   2228 bool
   2229 device_pmf_lock(device_t dev PMF_FN_ARGS)
   2230 {
   2231 	bool rc;
   2232 	pmf_private_t *pp = device_pmf_private(dev);
   2233 
   2234 	mutex_enter(&pp->pp_mtx);
   2235 	rc = device_pmf_lock1(dev PMF_FN_CALL);
   2236 	mutex_exit(&pp->pp_mtx);
   2237 
   2238 	return rc;
   2239 }
   2240 
   2241 void
   2242 device_pmf_unlock(device_t dev PMF_FN_ARGS)
   2243 {
   2244 	pmf_private_t *pp = device_pmf_private(dev);
   2245 
   2246 	KASSERT(pp->pp_nlock > 0);
   2247 	mutex_enter(&pp->pp_mtx);
   2248 	if (--pp->pp_nlock == 0)
   2249 		pp->pp_holder = NULL;
   2250 	cv_signal(&pp->pp_cv);
   2251 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2252 	mutex_exit(&pp->pp_mtx);
   2253 }
   2254 
   2255 void *
   2256 device_pmf_private(device_t dev)
   2257 {
   2258 	return dev->dv_pmf_private;
   2259 }
   2260 
   2261 void *
   2262 device_pmf_bus_private(device_t dev)
   2263 {
   2264 	return dev->dv_bus_private;
   2265 }
   2266 
   2267 bool
   2268 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
   2269 {
   2270 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2271 		return true;
   2272 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2273 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2274 		return false;
   2275 	if (*dev->dv_bus_suspend != NULL &&
   2276 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
   2277 		return false;
   2278 
   2279 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2280 	return true;
   2281 }
   2282 
   2283 bool
   2284 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
   2285 {
   2286 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2287 		return true;
   2288 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
   2289 		return false;
   2290 	if (*dev->dv_bus_resume != NULL &&
   2291 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
   2292 		return false;
   2293 
   2294 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2295 	return true;
   2296 }
   2297 
   2298 bool
   2299 device_pmf_bus_shutdown(device_t dev, int how)
   2300 {
   2301 
   2302 	if (*dev->dv_bus_shutdown != NULL &&
   2303 	    !(*dev->dv_bus_shutdown)(dev, how))
   2304 		return false;
   2305 	return true;
   2306 }
   2307 
   2308 void
   2309 device_pmf_bus_register(device_t dev, void *priv,
   2310     bool (*suspend)(device_t PMF_FN_PROTO),
   2311     bool (*resume)(device_t PMF_FN_PROTO),
   2312     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2313 {
   2314 	dev->dv_bus_private = priv;
   2315 	dev->dv_bus_resume = resume;
   2316 	dev->dv_bus_suspend = suspend;
   2317 	dev->dv_bus_shutdown = shutdown;
   2318 	dev->dv_bus_deregister = deregister;
   2319 }
   2320 
   2321 void
   2322 device_pmf_bus_deregister(device_t dev)
   2323 {
   2324 	if (dev->dv_bus_deregister == NULL)
   2325 		return;
   2326 	(*dev->dv_bus_deregister)(dev);
   2327 	dev->dv_bus_private = NULL;
   2328 	dev->dv_bus_suspend = NULL;
   2329 	dev->dv_bus_resume = NULL;
   2330 	dev->dv_bus_deregister = NULL;
   2331 }
   2332 
   2333 void *
   2334 device_pmf_class_private(device_t dev)
   2335 {
   2336 	return dev->dv_class_private;
   2337 }
   2338 
   2339 bool
   2340 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
   2341 {
   2342 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2343 		return true;
   2344 	if (*dev->dv_class_suspend != NULL &&
   2345 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
   2346 		return false;
   2347 
   2348 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2349 	return true;
   2350 }
   2351 
   2352 bool
   2353 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
   2354 {
   2355 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2356 		return true;
   2357 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2358 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2359 		return false;
   2360 	if (*dev->dv_class_resume != NULL &&
   2361 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
   2362 		return false;
   2363 
   2364 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2365 	return true;
   2366 }
   2367 
   2368 void
   2369 device_pmf_class_register(device_t dev, void *priv,
   2370     bool (*suspend)(device_t PMF_FN_PROTO),
   2371     bool (*resume)(device_t PMF_FN_PROTO),
   2372     void (*deregister)(device_t))
   2373 {
   2374 	dev->dv_class_private = priv;
   2375 	dev->dv_class_suspend = suspend;
   2376 	dev->dv_class_resume = resume;
   2377 	dev->dv_class_deregister = deregister;
   2378 }
   2379 
   2380 void
   2381 device_pmf_class_deregister(device_t dev)
   2382 {
   2383 	if (dev->dv_class_deregister == NULL)
   2384 		return;
   2385 	(*dev->dv_class_deregister)(dev);
   2386 	dev->dv_class_private = NULL;
   2387 	dev->dv_class_suspend = NULL;
   2388 	dev->dv_class_resume = NULL;
   2389 	dev->dv_class_deregister = NULL;
   2390 }
   2391 
   2392 bool
   2393 device_active(device_t dev, devactive_t type)
   2394 {
   2395 	size_t i;
   2396 
   2397 	if (dev->dv_activity_count == 0)
   2398 		return false;
   2399 
   2400 	for (i = 0; i < dev->dv_activity_count; ++i)
   2401 		(*dev->dv_activity_handlers[i])(dev, type);
   2402 
   2403 	return true;
   2404 }
   2405 
   2406 bool
   2407 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2408 {
   2409 	void (**new_handlers)(device_t, devactive_t);
   2410 	void (**old_handlers)(device_t, devactive_t);
   2411 	size_t i, new_size;
   2412 	int s;
   2413 
   2414 	old_handlers = dev->dv_activity_handlers;
   2415 
   2416 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2417 		if (old_handlers[i] == handler)
   2418 			panic("Double registering of idle handlers");
   2419 	}
   2420 
   2421 	new_size = dev->dv_activity_count + 1;
   2422 	new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF, M_WAITOK);
   2423 
   2424 	memcpy(new_handlers, old_handlers,
   2425 	    sizeof(void *) * dev->dv_activity_count);
   2426 	new_handlers[new_size - 1] = handler;
   2427 
   2428 	s = splhigh();
   2429 	dev->dv_activity_count = new_size;
   2430 	dev->dv_activity_handlers = new_handlers;
   2431 	splx(s);
   2432 
   2433 	if (old_handlers != NULL)
   2434 		free(old_handlers, M_DEVBUF);
   2435 
   2436 	return true;
   2437 }
   2438 
   2439 void
   2440 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2441 {
   2442 	void (**new_handlers)(device_t, devactive_t);
   2443 	void (**old_handlers)(device_t, devactive_t);
   2444 	size_t i, new_size;
   2445 	int s;
   2446 
   2447 	old_handlers = dev->dv_activity_handlers;
   2448 
   2449 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2450 		if (old_handlers[i] == handler)
   2451 			break;
   2452 	}
   2453 
   2454 	if (i == dev->dv_activity_count)
   2455 		return; /* XXX panic? */
   2456 
   2457 	new_size = dev->dv_activity_count - 1;
   2458 
   2459 	if (new_size == 0) {
   2460 		new_handlers = NULL;
   2461 	} else {
   2462 		new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF,
   2463 		    M_WAITOK);
   2464 		memcpy(new_handlers, old_handlers, sizeof(void *) * i);
   2465 		memcpy(new_handlers + i, old_handlers + i + 1,
   2466 		    sizeof(void *) * (new_size - i));
   2467 	}
   2468 
   2469 	s = splhigh();
   2470 	dev->dv_activity_count = new_size;
   2471 	dev->dv_activity_handlers = new_handlers;
   2472 	splx(s);
   2473 
   2474 	free(old_handlers, M_DEVBUF);
   2475 }
   2476 
   2477 /*
   2478  * Device Iteration
   2479  *
   2480  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2481  *     each device_t's in the device tree.
   2482  *
   2483  * deviter_init(di, flags): initialize the device iterator `di'
   2484  *     to "walk" the device tree.  deviter_next(di) will return
   2485  *     the first device_t in the device tree, or NULL if there are
   2486  *     no devices.
   2487  *
   2488  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2489  *     caller intends to modify the device tree by calling
   2490  *     config_detach(9) on devices in the order that the iterator
   2491  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2492  *     nearest the "root" of the device tree to be returned, first;
   2493  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2494  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2495  *     indicating both that deviter_init() should not respect any
   2496  *     locks on the device tree, and that deviter_next(di) may run
   2497  *     in more than one LWP before the walk has finished.
   2498  *
   2499  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2500  *     once.
   2501  *
   2502  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2503  *
   2504  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2505  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2506  *
   2507  * deviter_first(di, flags): initialize the device iterator `di'
   2508  *     and return the first device_t in the device tree, or NULL
   2509  *     if there are no devices.  The statement
   2510  *
   2511  *         dv = deviter_first(di);
   2512  *
   2513  *     is shorthand for
   2514  *
   2515  *         deviter_init(di);
   2516  *         dv = deviter_next(di);
   2517  *
   2518  * deviter_next(di): return the next device_t in the device tree,
   2519  *     or NULL if there are no more devices.  deviter_next(di)
   2520  *     is undefined if `di' was not initialized with deviter_init() or
   2521  *     deviter_first().
   2522  *
   2523  * deviter_release(di): stops iteration (subsequent calls to
   2524  *     deviter_next() will return NULL), releases any locks and
   2525  *     resources held by the device iterator.
   2526  *
   2527  * Device iteration does not return device_t's in any particular
   2528  * order.  An iterator will never return the same device_t twice.
   2529  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2530  * is called repeatedly on the same `di', it will eventually return
   2531  * NULL.  It is ok to attach/detach devices during device iteration.
   2532  */
   2533 void
   2534 deviter_init(deviter_t *di, deviter_flags_t flags)
   2535 {
   2536 	device_t dv;
   2537 	bool rw;
   2538 
   2539 	mutex_enter(&alldevs_mtx);
   2540 	if ((flags & DEVITER_F_SHUTDOWN) != 0) {
   2541 		flags |= DEVITER_F_RW;
   2542 		alldevs_nwrite++;
   2543 		alldevs_writer = NULL;
   2544 		alldevs_nread = 0;
   2545 	} else {
   2546 		rw = (flags & DEVITER_F_RW) != 0;
   2547 
   2548 		if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   2549 			;
   2550 		else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
   2551 		       (rw && alldevs_nread != 0))
   2552 			cv_wait(&alldevs_cv, &alldevs_mtx);
   2553 
   2554 		if (rw) {
   2555 			if (alldevs_nwrite++ == 0)
   2556 				alldevs_writer = curlwp;
   2557 		} else
   2558 			alldevs_nread++;
   2559 	}
   2560 	mutex_exit(&alldevs_mtx);
   2561 
   2562 	memset(di, 0, sizeof(*di));
   2563 
   2564 	di->di_flags = flags;
   2565 
   2566 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2567 	case DEVITER_F_LEAVES_FIRST:
   2568 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2569 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2570 		break;
   2571 	case DEVITER_F_ROOT_FIRST:
   2572 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2573 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2574 		break;
   2575 	default:
   2576 		break;
   2577 	}
   2578 
   2579 	deviter_reinit(di);
   2580 }
   2581 
   2582 static void
   2583 deviter_reinit(deviter_t *di)
   2584 {
   2585 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2586 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2587 	else
   2588 		di->di_prev = TAILQ_FIRST(&alldevs);
   2589 }
   2590 
   2591 device_t
   2592 deviter_first(deviter_t *di, deviter_flags_t flags)
   2593 {
   2594 	deviter_init(di, flags);
   2595 	return deviter_next(di);
   2596 }
   2597 
   2598 static device_t
   2599 deviter_next1(deviter_t *di)
   2600 {
   2601 	device_t dv;
   2602 
   2603 	dv = di->di_prev;
   2604 
   2605 	if (dv == NULL)
   2606 		;
   2607 	else if ((di->di_flags & DEVITER_F_RW) != 0)
   2608 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2609 	else
   2610 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2611 
   2612 	return dv;
   2613 }
   2614 
   2615 device_t
   2616 deviter_next(deviter_t *di)
   2617 {
   2618 	device_t dv = NULL;
   2619 
   2620 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2621 	case 0:
   2622 		return deviter_next1(di);
   2623 	case DEVITER_F_LEAVES_FIRST:
   2624 		while (di->di_curdepth >= 0) {
   2625 			if ((dv = deviter_next1(di)) == NULL) {
   2626 				di->di_curdepth--;
   2627 				deviter_reinit(di);
   2628 			} else if (dv->dv_depth == di->di_curdepth)
   2629 				break;
   2630 		}
   2631 		return dv;
   2632 	case DEVITER_F_ROOT_FIRST:
   2633 		while (di->di_curdepth <= di->di_maxdepth) {
   2634 			if ((dv = deviter_next1(di)) == NULL) {
   2635 				di->di_curdepth++;
   2636 				deviter_reinit(di);
   2637 			} else if (dv->dv_depth == di->di_curdepth)
   2638 				break;
   2639 		}
   2640 		return dv;
   2641 	default:
   2642 		return NULL;
   2643 	}
   2644 }
   2645 
   2646 void
   2647 deviter_release(deviter_t *di)
   2648 {
   2649 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2650 
   2651 	mutex_enter(&alldevs_mtx);
   2652 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   2653 		--alldevs_nwrite;
   2654 	else {
   2655 
   2656 		if (rw) {
   2657 			if (--alldevs_nwrite == 0)
   2658 				alldevs_writer = NULL;
   2659 		} else
   2660 			--alldevs_nread;
   2661 
   2662 		cv_signal(&alldevs_cv);
   2663 	}
   2664 	mutex_exit(&alldevs_mtx);
   2665 }
   2666