Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.152
      1 /* $NetBSD: subr_autoconf.c,v 1.152 2008/06/04 12:45:28 ad Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.152 2008/06/04 12:45:28 ad Exp $");
     81 
     82 #include "opt_ddb.h"
     83 #include "drvctl.h"
     84 
     85 #include <sys/param.h>
     86 #include <sys/device.h>
     87 #include <sys/disklabel.h>
     88 #include <sys/conf.h>
     89 #include <sys/kauth.h>
     90 #include <sys/malloc.h>
     91 #include <sys/systm.h>
     92 #include <sys/kernel.h>
     93 #include <sys/errno.h>
     94 #include <sys/proc.h>
     95 #include <sys/reboot.h>
     96 #include <sys/kthread.h>
     97 #include <sys/buf.h>
     98 #include <sys/dirent.h>
     99 #include <sys/vnode.h>
    100 #include <sys/mount.h>
    101 #include <sys/namei.h>
    102 #include <sys/unistd.h>
    103 #include <sys/fcntl.h>
    104 #include <sys/lockf.h>
    105 #include <sys/callout.h>
    106 #include <sys/mutex.h>
    107 #include <sys/condvar.h>
    108 #include <sys/devmon.h>
    109 
    110 #include <sys/disk.h>
    111 
    112 #include <machine/limits.h>
    113 
    114 #include "opt_userconf.h"
    115 #ifdef USERCONF
    116 #include <sys/userconf.h>
    117 #endif
    118 
    119 #ifdef __i386__
    120 #include "opt_splash.h"
    121 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    122 #include <dev/splash/splash.h>
    123 extern struct splash_progress *splash_progress_state;
    124 #endif
    125 #endif
    126 
    127 /*
    128  * Autoconfiguration subroutines.
    129  */
    130 
    131 typedef struct pmf_private {
    132 	int		pp_nwait;
    133 	int		pp_nlock;
    134 	lwp_t		*pp_holder;
    135 	kmutex_t	pp_mtx;
    136 	kcondvar_t	pp_cv;
    137 } pmf_private_t;
    138 
    139 /*
    140  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    141  * devices and drivers are found via these tables.
    142  */
    143 extern struct cfdata cfdata[];
    144 extern const short cfroots[];
    145 
    146 /*
    147  * List of all cfdriver structures.  We use this to detect duplicates
    148  * when other cfdrivers are loaded.
    149  */
    150 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    151 extern struct cfdriver * const cfdriver_list_initial[];
    152 
    153 /*
    154  * Initial list of cfattach's.
    155  */
    156 extern const struct cfattachinit cfattachinit[];
    157 
    158 /*
    159  * List of cfdata tables.  We always have one such list -- the one
    160  * built statically when the kernel was configured.
    161  */
    162 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    163 static struct cftable initcftable;
    164 
    165 #define	ROOT ((device_t)NULL)
    166 
    167 struct matchinfo {
    168 	cfsubmatch_t fn;
    169 	struct	device *parent;
    170 	const int *locs;
    171 	void	*aux;
    172 	struct	cfdata *match;
    173 	int	pri;
    174 };
    175 
    176 static char *number(char *, int);
    177 static void mapply(struct matchinfo *, cfdata_t);
    178 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    179 static void config_devdealloc(device_t);
    180 static void config_makeroom(int, struct cfdriver *);
    181 static void config_devlink(device_t);
    182 static void config_devunlink(device_t);
    183 
    184 static void pmflock_debug(device_t, const char *, int);
    185 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
    186 
    187 static device_t deviter_next1(deviter_t *);
    188 static void deviter_reinit(deviter_t *);
    189 
    190 struct deferred_config {
    191 	TAILQ_ENTRY(deferred_config) dc_queue;
    192 	device_t dc_dev;
    193 	void (*dc_func)(device_t);
    194 };
    195 
    196 TAILQ_HEAD(deferred_config_head, deferred_config);
    197 
    198 struct deferred_config_head deferred_config_queue =
    199 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    200 struct deferred_config_head interrupt_config_queue =
    201 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    202 int interrupt_config_threads = 8;
    203 
    204 static void config_process_deferred(struct deferred_config_head *, device_t);
    205 
    206 /* Hooks to finalize configuration once all real devices have been found. */
    207 struct finalize_hook {
    208 	TAILQ_ENTRY(finalize_hook) f_list;
    209 	int (*f_func)(device_t);
    210 	device_t f_dev;
    211 };
    212 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    213 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    214 static int config_finalize_done;
    215 
    216 /* list of all devices */
    217 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    218 kcondvar_t alldevs_cv;
    219 kmutex_t alldevs_mtx;
    220 static int alldevs_nread = 0;
    221 static int alldevs_nwrite = 0;
    222 static lwp_t *alldevs_writer = NULL;
    223 
    224 static int config_pending;		/* semaphore for mountroot */
    225 static kmutex_t config_misc_lock;
    226 static kcondvar_t config_misc_cv;
    227 
    228 #define	STREQ(s1, s2)			\
    229 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    230 
    231 static int config_initialized;		/* config_init() has been called. */
    232 
    233 static int config_do_twiddle;
    234 
    235 MALLOC_DEFINE(M_PMFPRIV, "pmfpriv", "device pmf private storage");
    236 
    237 struct vnode *
    238 opendisk(struct device *dv)
    239 {
    240 	int bmajor, bminor;
    241 	struct vnode *tmpvn;
    242 	int error;
    243 	dev_t dev;
    244 
    245 	/*
    246 	 * Lookup major number for disk block device.
    247 	 */
    248 	bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
    249 	if (bmajor == -1)
    250 		return NULL;
    251 
    252 	bminor = minor(device_unit(dv));
    253 	/*
    254 	 * Fake a temporary vnode for the disk, open it, and read
    255 	 * and hash the sectors.
    256 	 */
    257 	dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
    258 	    MAKEDISKDEV(bmajor, bminor, RAW_PART);
    259 	if (bdevvp(dev, &tmpvn))
    260 		panic("%s: can't alloc vnode for %s", __func__,
    261 		    device_xname(dv));
    262 	error = VOP_OPEN(tmpvn, FREAD, NOCRED);
    263 	if (error) {
    264 #ifndef DEBUG
    265 		/*
    266 		 * Ignore errors caused by missing device, partition,
    267 		 * or medium.
    268 		 */
    269 		if (error != ENXIO && error != ENODEV)
    270 #endif
    271 			printf("%s: can't open dev %s (%d)\n",
    272 			    __func__, device_xname(dv), error);
    273 		vput(tmpvn);
    274 		return NULL;
    275 	}
    276 
    277 	return tmpvn;
    278 }
    279 
    280 int
    281 config_handle_wedges(struct device *dv, int par)
    282 {
    283 	struct dkwedge_list wl;
    284 	struct dkwedge_info *wi;
    285 	struct vnode *vn;
    286 	char diskname[16];
    287 	int i, error;
    288 
    289 	if ((vn = opendisk(dv)) == NULL)
    290 		return -1;
    291 
    292 	wl.dkwl_bufsize = sizeof(*wi) * 16;
    293 	wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
    294 
    295 	error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
    296 	VOP_CLOSE(vn, FREAD, NOCRED);
    297 	vput(vn);
    298 	if (error) {
    299 #ifdef DEBUG_WEDGE
    300 		printf("%s: List wedges returned %d\n",
    301 		    device_xname(dv), error);
    302 #endif
    303 		free(wi, M_TEMP);
    304 		return -1;
    305 	}
    306 
    307 #ifdef DEBUG_WEDGE
    308 	printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
    309 	    wl.dkwl_nwedges, wl.dkwl_ncopied);
    310 #endif
    311 	snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
    312 	    par + 'a');
    313 
    314 	for (i = 0; i < wl.dkwl_ncopied; i++) {
    315 #ifdef DEBUG_WEDGE
    316 		printf("%s: Looking for %s in %s\n",
    317 		    device_xname(dv), diskname, wi[i].dkw_wname);
    318 #endif
    319 		if (strcmp(wi[i].dkw_wname, diskname) == 0)
    320 			break;
    321 	}
    322 
    323 	if (i == wl.dkwl_ncopied) {
    324 #ifdef DEBUG_WEDGE
    325 		printf("%s: Cannot find wedge with parent %s\n",
    326 		    device_xname(dv), diskname);
    327 #endif
    328 		free(wi, M_TEMP);
    329 		return -1;
    330 	}
    331 
    332 #ifdef DEBUG_WEDGE
    333 	printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
    334 		device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
    335 		(unsigned long long)wi[i].dkw_offset,
    336 		(unsigned long long)wi[i].dkw_size);
    337 #endif
    338 	dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
    339 	free(wi, M_TEMP);
    340 	return 0;
    341 }
    342 
    343 /*
    344  * Initialize the autoconfiguration data structures.  Normally this
    345  * is done by configure(), but some platforms need to do this very
    346  * early (to e.g. initialize the console).
    347  */
    348 void
    349 config_init(void)
    350 {
    351 	const struct cfattachinit *cfai;
    352 	int i, j;
    353 
    354 	if (config_initialized)
    355 		return;
    356 
    357 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
    358 	cv_init(&alldevs_cv, "alldevs");
    359 
    360 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    361 	cv_init(&config_misc_cv, "cfgmisc");
    362 
    363 	/* allcfdrivers is statically initialized. */
    364 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
    365 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
    366 			panic("configure: duplicate `%s' drivers",
    367 			    cfdriver_list_initial[i]->cd_name);
    368 	}
    369 
    370 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
    371 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    372 			if (config_cfattach_attach(cfai->cfai_name,
    373 						   cfai->cfai_list[j]) != 0)
    374 				panic("configure: duplicate `%s' attachment "
    375 				    "of `%s' driver",
    376 				    cfai->cfai_list[j]->ca_name,
    377 				    cfai->cfai_name);
    378 		}
    379 	}
    380 
    381 	initcftable.ct_cfdata = cfdata;
    382 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    383 
    384 	config_initialized = 1;
    385 }
    386 
    387 void
    388 config_deferred(device_t dev)
    389 {
    390 	config_process_deferred(&deferred_config_queue, dev);
    391 	config_process_deferred(&interrupt_config_queue, dev);
    392 }
    393 
    394 static void
    395 config_interrupts_thread(void *cookie)
    396 {
    397 	struct deferred_config *dc;
    398 
    399 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    400 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    401 		(*dc->dc_func)(dc->dc_dev);
    402 		free(dc, M_DEVBUF);
    403 		config_pending_decr();
    404 	}
    405 	kthread_exit(0);
    406 }
    407 
    408 /*
    409  * Configure the system's hardware.
    410  */
    411 void
    412 configure(void)
    413 {
    414 	extern void ssp_init(void);
    415 	CPU_INFO_ITERATOR cii;
    416 	struct cpu_info *ci;
    417 	int i, s;
    418 
    419 	/* Initialize data structures. */
    420 	config_init();
    421 	pmf_init();
    422 #if NDRVCTL > 0
    423 	drvctl_init();
    424 #endif
    425 
    426 #ifdef USERCONF
    427 	if (boothowto & RB_USERCONF)
    428 		user_config();
    429 #endif
    430 
    431 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
    432 		config_do_twiddle = 1;
    433 		printf_nolog("Detecting hardware...");
    434 	}
    435 
    436 	/*
    437 	 * Do the machine-dependent portion of autoconfiguration.  This
    438 	 * sets the configuration machinery here in motion by "finding"
    439 	 * the root bus.  When this function returns, we expect interrupts
    440 	 * to be enabled.
    441 	 */
    442 	cpu_configure();
    443 
    444 	/* Initialize SSP. */
    445 	ssp_init();
    446 
    447 	/*
    448 	 * Now that we've found all the hardware, start the real time
    449 	 * and statistics clocks.
    450 	 */
    451 	initclocks();
    452 
    453 	cold = 0;	/* clocks are running, we're warm now! */
    454 	s = splsched();
    455 	curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
    456 	splx(s);
    457 
    458 	/* Boot the secondary processors. */
    459 	for (CPU_INFO_FOREACH(cii, ci)) {
    460 		uvm_cpu_attach(ci);
    461 	}
    462 	mp_online = true;
    463 #if defined(MULTIPROCESSOR)
    464 	cpu_boot_secondary_processors();
    465 #endif
    466 
    467 	/* Setup the runqueues and scheduler. */
    468 	runq_init();
    469 	sched_init();
    470 
    471 	/*
    472 	 * Create threads to call back and finish configuration for
    473 	 * devices that want interrupts enabled.
    474 	 */
    475 	for (i = 0; i < interrupt_config_threads; i++) {
    476 		(void)kthread_create(PRI_NONE, 0, NULL,
    477 		    config_interrupts_thread, NULL, NULL, "config");
    478 	}
    479 
    480 	/* Get the threads going and into any sleeps before continuing. */
    481 	yield();
    482 
    483 	/* Lock the kernel on behalf of lwp0. */
    484 	KERNEL_LOCK(1, NULL);
    485 }
    486 
    487 /*
    488  * Announce device attach/detach to userland listeners.
    489  */
    490 static void
    491 devmon_report_device(device_t dev, bool isattach)
    492 {
    493 #if NDRVCTL > 0
    494 	prop_dictionary_t ev;
    495 	const char *parent;
    496 	const char *what;
    497 	device_t pdev = device_parent(dev);
    498 
    499 	ev = prop_dictionary_create();
    500 	if (ev == NULL)
    501 		return;
    502 
    503 	what = (isattach ? "device-attach" : "device-detach");
    504 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    505 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
    506 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
    507 		prop_object_release(ev);
    508 		return;
    509 	}
    510 
    511 	devmon_insert(what, ev);
    512 #endif
    513 }
    514 
    515 /*
    516  * Add a cfdriver to the system.
    517  */
    518 int
    519 config_cfdriver_attach(struct cfdriver *cd)
    520 {
    521 	struct cfdriver *lcd;
    522 
    523 	/* Make sure this driver isn't already in the system. */
    524 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    525 		if (STREQ(lcd->cd_name, cd->cd_name))
    526 			return (EEXIST);
    527 	}
    528 
    529 	LIST_INIT(&cd->cd_attach);
    530 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    531 
    532 	return (0);
    533 }
    534 
    535 /*
    536  * Remove a cfdriver from the system.
    537  */
    538 int
    539 config_cfdriver_detach(struct cfdriver *cd)
    540 {
    541 	int i;
    542 
    543 	/* Make sure there are no active instances. */
    544 	for (i = 0; i < cd->cd_ndevs; i++) {
    545 		if (cd->cd_devs[i] != NULL)
    546 			return (EBUSY);
    547 	}
    548 
    549 	/* ...and no attachments loaded. */
    550 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    551 		return (EBUSY);
    552 
    553 	LIST_REMOVE(cd, cd_list);
    554 
    555 	KASSERT(cd->cd_devs == NULL);
    556 
    557 	return (0);
    558 }
    559 
    560 /*
    561  * Look up a cfdriver by name.
    562  */
    563 struct cfdriver *
    564 config_cfdriver_lookup(const char *name)
    565 {
    566 	struct cfdriver *cd;
    567 
    568 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    569 		if (STREQ(cd->cd_name, name))
    570 			return (cd);
    571 	}
    572 
    573 	return (NULL);
    574 }
    575 
    576 /*
    577  * Add a cfattach to the specified driver.
    578  */
    579 int
    580 config_cfattach_attach(const char *driver, struct cfattach *ca)
    581 {
    582 	struct cfattach *lca;
    583 	struct cfdriver *cd;
    584 
    585 	cd = config_cfdriver_lookup(driver);
    586 	if (cd == NULL)
    587 		return (ESRCH);
    588 
    589 	/* Make sure this attachment isn't already on this driver. */
    590 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    591 		if (STREQ(lca->ca_name, ca->ca_name))
    592 			return (EEXIST);
    593 	}
    594 
    595 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    596 
    597 	return (0);
    598 }
    599 
    600 /*
    601  * Remove a cfattach from the specified driver.
    602  */
    603 int
    604 config_cfattach_detach(const char *driver, struct cfattach *ca)
    605 {
    606 	struct cfdriver *cd;
    607 	device_t dev;
    608 	int i;
    609 
    610 	cd = config_cfdriver_lookup(driver);
    611 	if (cd == NULL)
    612 		return (ESRCH);
    613 
    614 	/* Make sure there are no active instances. */
    615 	for (i = 0; i < cd->cd_ndevs; i++) {
    616 		if ((dev = cd->cd_devs[i]) == NULL)
    617 			continue;
    618 		if (dev->dv_cfattach == ca)
    619 			return (EBUSY);
    620 	}
    621 
    622 	LIST_REMOVE(ca, ca_list);
    623 
    624 	return (0);
    625 }
    626 
    627 /*
    628  * Look up a cfattach by name.
    629  */
    630 static struct cfattach *
    631 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    632 {
    633 	struct cfattach *ca;
    634 
    635 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    636 		if (STREQ(ca->ca_name, atname))
    637 			return (ca);
    638 	}
    639 
    640 	return (NULL);
    641 }
    642 
    643 /*
    644  * Look up a cfattach by driver/attachment name.
    645  */
    646 struct cfattach *
    647 config_cfattach_lookup(const char *name, const char *atname)
    648 {
    649 	struct cfdriver *cd;
    650 
    651 	cd = config_cfdriver_lookup(name);
    652 	if (cd == NULL)
    653 		return (NULL);
    654 
    655 	return (config_cfattach_lookup_cd(cd, atname));
    656 }
    657 
    658 /*
    659  * Apply the matching function and choose the best.  This is used
    660  * a few times and we want to keep the code small.
    661  */
    662 static void
    663 mapply(struct matchinfo *m, cfdata_t cf)
    664 {
    665 	int pri;
    666 
    667 	if (m->fn != NULL) {
    668 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    669 	} else {
    670 		pri = config_match(m->parent, cf, m->aux);
    671 	}
    672 	if (pri > m->pri) {
    673 		m->match = cf;
    674 		m->pri = pri;
    675 	}
    676 }
    677 
    678 int
    679 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    680 {
    681 	const struct cfiattrdata *ci;
    682 	const struct cflocdesc *cl;
    683 	int nlocs, i;
    684 
    685 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
    686 	KASSERT(ci);
    687 	nlocs = ci->ci_loclen;
    688 	for (i = 0; i < nlocs; i++) {
    689 		cl = &ci->ci_locdesc[i];
    690 		/* !cld_defaultstr means no default value */
    691 		if ((!(cl->cld_defaultstr)
    692 		     || (cf->cf_loc[i] != cl->cld_default))
    693 		    && cf->cf_loc[i] != locs[i])
    694 			return (0);
    695 	}
    696 
    697 	return (config_match(parent, cf, aux));
    698 }
    699 
    700 /*
    701  * Helper function: check whether the driver supports the interface attribute
    702  * and return its descriptor structure.
    703  */
    704 static const struct cfiattrdata *
    705 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    706 {
    707 	const struct cfiattrdata * const *cpp;
    708 
    709 	if (cd->cd_attrs == NULL)
    710 		return (0);
    711 
    712 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    713 		if (STREQ((*cpp)->ci_name, ia)) {
    714 			/* Match. */
    715 			return (*cpp);
    716 		}
    717 	}
    718 	return (0);
    719 }
    720 
    721 /*
    722  * Lookup an interface attribute description by name.
    723  * If the driver is given, consider only its supported attributes.
    724  */
    725 const struct cfiattrdata *
    726 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    727 {
    728 	const struct cfdriver *d;
    729 	const struct cfiattrdata *ia;
    730 
    731 	if (cd)
    732 		return (cfdriver_get_iattr(cd, name));
    733 
    734 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    735 		ia = cfdriver_get_iattr(d, name);
    736 		if (ia)
    737 			return (ia);
    738 	}
    739 	return (0);
    740 }
    741 
    742 /*
    743  * Determine if `parent' is a potential parent for a device spec based
    744  * on `cfp'.
    745  */
    746 static int
    747 cfparent_match(const device_t parent, const struct cfparent *cfp)
    748 {
    749 	struct cfdriver *pcd;
    750 
    751 	/* We don't match root nodes here. */
    752 	if (cfp == NULL)
    753 		return (0);
    754 
    755 	pcd = parent->dv_cfdriver;
    756 	KASSERT(pcd != NULL);
    757 
    758 	/*
    759 	 * First, ensure this parent has the correct interface
    760 	 * attribute.
    761 	 */
    762 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    763 		return (0);
    764 
    765 	/*
    766 	 * If no specific parent device instance was specified (i.e.
    767 	 * we're attaching to the attribute only), we're done!
    768 	 */
    769 	if (cfp->cfp_parent == NULL)
    770 		return (1);
    771 
    772 	/*
    773 	 * Check the parent device's name.
    774 	 */
    775 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    776 		return (0);	/* not the same parent */
    777 
    778 	/*
    779 	 * Make sure the unit number matches.
    780 	 */
    781 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    782 	    cfp->cfp_unit == parent->dv_unit)
    783 		return (1);
    784 
    785 	/* Unit numbers don't match. */
    786 	return (0);
    787 }
    788 
    789 /*
    790  * Helper for config_cfdata_attach(): check all devices whether it could be
    791  * parent any attachment in the config data table passed, and rescan.
    792  */
    793 static void
    794 rescan_with_cfdata(const struct cfdata *cf)
    795 {
    796 	device_t d;
    797 	const struct cfdata *cf1;
    798 	deviter_t di;
    799 
    800 
    801 	/*
    802 	 * "alldevs" is likely longer than an LKM's cfdata, so make it
    803 	 * the outer loop.
    804 	 */
    805 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    806 
    807 		if (!(d->dv_cfattach->ca_rescan))
    808 			continue;
    809 
    810 		for (cf1 = cf; cf1->cf_name; cf1++) {
    811 
    812 			if (!cfparent_match(d, cf1->cf_pspec))
    813 				continue;
    814 
    815 			(*d->dv_cfattach->ca_rescan)(d,
    816 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
    817 		}
    818 	}
    819 	deviter_release(&di);
    820 }
    821 
    822 /*
    823  * Attach a supplemental config data table and rescan potential
    824  * parent devices if required.
    825  */
    826 int
    827 config_cfdata_attach(cfdata_t cf, int scannow)
    828 {
    829 	struct cftable *ct;
    830 
    831 	ct = malloc(sizeof(struct cftable), M_DEVBUF, M_WAITOK);
    832 	ct->ct_cfdata = cf;
    833 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    834 
    835 	if (scannow)
    836 		rescan_with_cfdata(cf);
    837 
    838 	return (0);
    839 }
    840 
    841 /*
    842  * Helper for config_cfdata_detach: check whether a device is
    843  * found through any attachment in the config data table.
    844  */
    845 static int
    846 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
    847 {
    848 	const struct cfdata *cf1;
    849 
    850 	for (cf1 = cf; cf1->cf_name; cf1++)
    851 		if (d->dv_cfdata == cf1)
    852 			return (1);
    853 
    854 	return (0);
    855 }
    856 
    857 /*
    858  * Detach a supplemental config data table. Detach all devices found
    859  * through that table (and thus keeping references to it) before.
    860  */
    861 int
    862 config_cfdata_detach(cfdata_t cf)
    863 {
    864 	device_t d;
    865 	int error = 0;
    866 	struct cftable *ct;
    867 	deviter_t di;
    868 
    869 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    870 	     d = deviter_next(&di)) {
    871 		if (!dev_in_cfdata(d, cf))
    872 			continue;
    873 		if ((error = config_detach(d, 0)) != 0)
    874 			break;
    875 	}
    876 	deviter_release(&di);
    877 	if (error) {
    878 		aprint_error_dev(d, "unable to detach instance\n");
    879 		return error;
    880 	}
    881 
    882 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    883 		if (ct->ct_cfdata == cf) {
    884 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    885 			free(ct, M_DEVBUF);
    886 			return (0);
    887 		}
    888 	}
    889 
    890 	/* not found -- shouldn't happen */
    891 	return (EINVAL);
    892 }
    893 
    894 /*
    895  * Invoke the "match" routine for a cfdata entry on behalf of
    896  * an external caller, usually a "submatch" routine.
    897  */
    898 int
    899 config_match(device_t parent, cfdata_t cf, void *aux)
    900 {
    901 	struct cfattach *ca;
    902 
    903 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    904 	if (ca == NULL) {
    905 		/* No attachment for this entry, oh well. */
    906 		return (0);
    907 	}
    908 
    909 	return ((*ca->ca_match)(parent, cf, aux));
    910 }
    911 
    912 /*
    913  * Iterate over all potential children of some device, calling the given
    914  * function (default being the child's match function) for each one.
    915  * Nonzero returns are matches; the highest value returned is considered
    916  * the best match.  Return the `found child' if we got a match, or NULL
    917  * otherwise.  The `aux' pointer is simply passed on through.
    918  *
    919  * Note that this function is designed so that it can be used to apply
    920  * an arbitrary function to all potential children (its return value
    921  * can be ignored).
    922  */
    923 cfdata_t
    924 config_search_loc(cfsubmatch_t fn, device_t parent,
    925 		  const char *ifattr, const int *locs, void *aux)
    926 {
    927 	struct cftable *ct;
    928 	cfdata_t cf;
    929 	struct matchinfo m;
    930 
    931 	KASSERT(config_initialized);
    932 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
    933 
    934 	m.fn = fn;
    935 	m.parent = parent;
    936 	m.locs = locs;
    937 	m.aux = aux;
    938 	m.match = NULL;
    939 	m.pri = 0;
    940 
    941 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    942 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
    943 
    944 			/* We don't match root nodes here. */
    945 			if (!cf->cf_pspec)
    946 				continue;
    947 
    948 			/*
    949 			 * Skip cf if no longer eligible, otherwise scan
    950 			 * through parents for one matching `parent', and
    951 			 * try match function.
    952 			 */
    953 			if (cf->cf_fstate == FSTATE_FOUND)
    954 				continue;
    955 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
    956 			    cf->cf_fstate == FSTATE_DSTAR)
    957 				continue;
    958 
    959 			/*
    960 			 * If an interface attribute was specified,
    961 			 * consider only children which attach to
    962 			 * that attribute.
    963 			 */
    964 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
    965 				continue;
    966 
    967 			if (cfparent_match(parent, cf->cf_pspec))
    968 				mapply(&m, cf);
    969 		}
    970 	}
    971 	return (m.match);
    972 }
    973 
    974 cfdata_t
    975 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
    976     void *aux)
    977 {
    978 
    979 	return (config_search_loc(fn, parent, ifattr, NULL, aux));
    980 }
    981 
    982 /*
    983  * Find the given root device.
    984  * This is much like config_search, but there is no parent.
    985  * Don't bother with multiple cfdata tables; the root node
    986  * must always be in the initial table.
    987  */
    988 cfdata_t
    989 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
    990 {
    991 	cfdata_t cf;
    992 	const short *p;
    993 	struct matchinfo m;
    994 
    995 	m.fn = fn;
    996 	m.parent = ROOT;
    997 	m.aux = aux;
    998 	m.match = NULL;
    999 	m.pri = 0;
   1000 	m.locs = 0;
   1001 	/*
   1002 	 * Look at root entries for matching name.  We do not bother
   1003 	 * with found-state here since only one root should ever be
   1004 	 * searched (and it must be done first).
   1005 	 */
   1006 	for (p = cfroots; *p >= 0; p++) {
   1007 		cf = &cfdata[*p];
   1008 		if (strcmp(cf->cf_name, rootname) == 0)
   1009 			mapply(&m, cf);
   1010 	}
   1011 	return (m.match);
   1012 }
   1013 
   1014 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1015 
   1016 /*
   1017  * The given `aux' argument describes a device that has been found
   1018  * on the given parent, but not necessarily configured.  Locate the
   1019  * configuration data for that device (using the submatch function
   1020  * provided, or using candidates' cd_match configuration driver
   1021  * functions) and attach it, and return true.  If the device was
   1022  * not configured, call the given `print' function and return 0.
   1023  */
   1024 device_t
   1025 config_found_sm_loc(device_t parent,
   1026 		const char *ifattr, const int *locs, void *aux,
   1027 		cfprint_t print, cfsubmatch_t submatch)
   1028 {
   1029 	cfdata_t cf;
   1030 
   1031 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1032 	if (splash_progress_state)
   1033 		splash_progress_update(splash_progress_state);
   1034 #endif
   1035 
   1036 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
   1037 		return(config_attach_loc(parent, cf, locs, aux, print));
   1038 	if (print) {
   1039 		if (config_do_twiddle)
   1040 			twiddle();
   1041 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1042 	}
   1043 
   1044 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1045 	if (splash_progress_state)
   1046 		splash_progress_update(splash_progress_state);
   1047 #endif
   1048 
   1049 	return (NULL);
   1050 }
   1051 
   1052 device_t
   1053 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1054     cfprint_t print)
   1055 {
   1056 
   1057 	return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
   1058 }
   1059 
   1060 device_t
   1061 config_found(device_t parent, void *aux, cfprint_t print)
   1062 {
   1063 
   1064 	return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
   1065 }
   1066 
   1067 /*
   1068  * As above, but for root devices.
   1069  */
   1070 device_t
   1071 config_rootfound(const char *rootname, void *aux)
   1072 {
   1073 	cfdata_t cf;
   1074 
   1075 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
   1076 		return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
   1077 	aprint_error("root device %s not configured\n", rootname);
   1078 	return (NULL);
   1079 }
   1080 
   1081 /* just like sprintf(buf, "%d") except that it works from the end */
   1082 static char *
   1083 number(char *ep, int n)
   1084 {
   1085 
   1086 	*--ep = 0;
   1087 	while (n >= 10) {
   1088 		*--ep = (n % 10) + '0';
   1089 		n /= 10;
   1090 	}
   1091 	*--ep = n + '0';
   1092 	return (ep);
   1093 }
   1094 
   1095 /*
   1096  * Expand the size of the cd_devs array if necessary.
   1097  */
   1098 static void
   1099 config_makeroom(int n, struct cfdriver *cd)
   1100 {
   1101 	int old, new;
   1102 	void **nsp;
   1103 
   1104 	if (n < cd->cd_ndevs)
   1105 		return;
   1106 
   1107 	/*
   1108 	 * Need to expand the array.
   1109 	 */
   1110 	old = cd->cd_ndevs;
   1111 	if (old == 0)
   1112 		new = 4;
   1113 	else
   1114 		new = old * 2;
   1115 	while (new <= n)
   1116 		new *= 2;
   1117 	cd->cd_ndevs = new;
   1118 	nsp = malloc(new * sizeof(void *), M_DEVBUF,
   1119 	    cold ? M_NOWAIT : M_WAITOK);
   1120 	if (nsp == NULL)
   1121 		panic("config_attach: %sing dev array",
   1122 		    old != 0 ? "expand" : "creat");
   1123 	memset(nsp + old, 0, (new - old) * sizeof(void *));
   1124 	if (old != 0) {
   1125 		memcpy(nsp, cd->cd_devs, old * sizeof(void *));
   1126 		free(cd->cd_devs, M_DEVBUF);
   1127 	}
   1128 	cd->cd_devs = nsp;
   1129 }
   1130 
   1131 static void
   1132 config_devlink(device_t dev)
   1133 {
   1134 	struct cfdriver *cd = dev->dv_cfdriver;
   1135 
   1136 	/* put this device in the devices array */
   1137 	config_makeroom(dev->dv_unit, cd);
   1138 	if (cd->cd_devs[dev->dv_unit])
   1139 		panic("config_attach: duplicate %s", device_xname(dev));
   1140 	cd->cd_devs[dev->dv_unit] = dev;
   1141 
   1142 	/* It is safe to add a device to the tail of the list while
   1143 	 * readers are in the list, but not while a writer is in
   1144 	 * the list.  Wait for any writer to complete.
   1145 	 */
   1146 	mutex_enter(&alldevs_mtx);
   1147 	while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
   1148 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1149 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
   1150 	cv_signal(&alldevs_cv);
   1151 	mutex_exit(&alldevs_mtx);
   1152 }
   1153 
   1154 static void
   1155 config_devunlink(device_t dev)
   1156 {
   1157 	struct cfdriver *cd = dev->dv_cfdriver;
   1158 	int i;
   1159 
   1160 	/* Unlink from device list. */
   1161 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1162 
   1163 	/* Remove from cfdriver's array. */
   1164 	cd->cd_devs[dev->dv_unit] = NULL;
   1165 
   1166 	/*
   1167 	 * If the device now has no units in use, deallocate its softc array.
   1168 	 */
   1169 	for (i = 0; i < cd->cd_ndevs; i++)
   1170 		if (cd->cd_devs[i] != NULL)
   1171 			break;
   1172 	if (i == cd->cd_ndevs) {		/* nothing found; deallocate */
   1173 		free(cd->cd_devs, M_DEVBUF);
   1174 		cd->cd_devs = NULL;
   1175 		cd->cd_ndevs = 0;
   1176 	}
   1177 }
   1178 
   1179 static device_t
   1180 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1181 {
   1182 	struct cfdriver *cd;
   1183 	struct cfattach *ca;
   1184 	size_t lname, lunit;
   1185 	const char *xunit;
   1186 	int myunit;
   1187 	char num[10];
   1188 	device_t dev;
   1189 	void *dev_private;
   1190 	const struct cfiattrdata *ia;
   1191 
   1192 	cd = config_cfdriver_lookup(cf->cf_name);
   1193 	if (cd == NULL)
   1194 		return (NULL);
   1195 
   1196 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1197 	if (ca == NULL)
   1198 		return (NULL);
   1199 
   1200 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
   1201 	    ca->ca_devsize < sizeof(struct device))
   1202 		panic("config_devalloc: %s", cf->cf_atname);
   1203 
   1204 #ifndef __BROKEN_CONFIG_UNIT_USAGE
   1205 	if (cf->cf_fstate == FSTATE_STAR) {
   1206 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
   1207 			if (cd->cd_devs[myunit] == NULL)
   1208 				break;
   1209 		/*
   1210 		 * myunit is now the unit of the first NULL device pointer,
   1211 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1212 		 */
   1213 	} else {
   1214 		myunit = cf->cf_unit;
   1215 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
   1216 			return (NULL);
   1217 	}
   1218 #else
   1219 	myunit = cf->cf_unit;
   1220 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
   1221 
   1222 	/* compute length of name and decimal expansion of unit number */
   1223 	lname = strlen(cd->cd_name);
   1224 	xunit = number(&num[sizeof(num)], myunit);
   1225 	lunit = &num[sizeof(num)] - xunit;
   1226 	if (lname + lunit > sizeof(dev->dv_xname))
   1227 		panic("config_devalloc: device name too long");
   1228 
   1229 	/* get memory for all device vars */
   1230 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
   1231 	if (ca->ca_devsize > 0) {
   1232 		dev_private = malloc(ca->ca_devsize, M_DEVBUF,
   1233 				     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
   1234 		if (dev_private == NULL)
   1235 			panic("config_devalloc: memory allocation for device softc failed");
   1236 	} else {
   1237 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1238 		dev_private = NULL;
   1239 	}
   1240 
   1241 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1242 		dev = malloc(sizeof(struct device), M_DEVBUF,
   1243 			     M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
   1244 	} else {
   1245 		dev = dev_private;
   1246 	}
   1247 	if (dev == NULL)
   1248 		panic("config_devalloc: memory allocation for device_t failed");
   1249 
   1250 	dev->dv_class = cd->cd_class;
   1251 	dev->dv_cfdata = cf;
   1252 	dev->dv_cfdriver = cd;
   1253 	dev->dv_cfattach = ca;
   1254 	dev->dv_unit = myunit;
   1255 	dev->dv_activity_count = 0;
   1256 	dev->dv_activity_handlers = NULL;
   1257 	dev->dv_private = dev_private;
   1258 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1259 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1260 	dev->dv_parent = parent;
   1261 	if (parent != NULL)
   1262 		dev->dv_depth = parent->dv_depth + 1;
   1263 	else
   1264 		dev->dv_depth = 0;
   1265 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
   1266 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
   1267 	if (locs) {
   1268 		KASSERT(parent); /* no locators at root */
   1269 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
   1270 				    parent->dv_cfdriver);
   1271 		dev->dv_locators = malloc(ia->ci_loclen * sizeof(int),
   1272 					  M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1273 		memcpy(dev->dv_locators, locs, ia->ci_loclen * sizeof(int));
   1274 	}
   1275 	dev->dv_properties = prop_dictionary_create();
   1276 	KASSERT(dev->dv_properties != NULL);
   1277 
   1278 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
   1279 	    "device-driver", dev->dv_cfdriver->cd_name);
   1280 	prop_dictionary_set_uint16(dev->dv_properties,
   1281 	    "device-unit", dev->dv_unit);
   1282 
   1283 	return (dev);
   1284 }
   1285 
   1286 static void
   1287 config_devdealloc(device_t dev)
   1288 {
   1289 
   1290 	KASSERT(dev->dv_properties != NULL);
   1291 	prop_object_release(dev->dv_properties);
   1292 
   1293 	if (dev->dv_activity_handlers)
   1294 		panic("config_devdealloc with registered handlers");
   1295 
   1296 	if (dev->dv_locators)
   1297 		free(dev->dv_locators, M_DEVBUF);
   1298 
   1299 	if ((dev->dv_flags & DVF_PRIV_ALLOC) != 0 && dev->dv_private != NULL)
   1300 		free(dev->dv_private, M_DEVBUF);
   1301 
   1302 	free(dev, M_DEVBUF);
   1303 }
   1304 
   1305 /*
   1306  * Attach a found device.
   1307  */
   1308 device_t
   1309 config_attach_loc(device_t parent, cfdata_t cf,
   1310 	const int *locs, void *aux, cfprint_t print)
   1311 {
   1312 	device_t dev;
   1313 	struct cftable *ct;
   1314 	const char *drvname;
   1315 
   1316 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1317 	if (splash_progress_state)
   1318 		splash_progress_update(splash_progress_state);
   1319 #endif
   1320 
   1321 	dev = config_devalloc(parent, cf, locs);
   1322 	if (!dev)
   1323 		panic("config_attach: allocation of device softc failed");
   1324 
   1325 	/* XXX redundant - see below? */
   1326 	if (cf->cf_fstate != FSTATE_STAR) {
   1327 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1328 		cf->cf_fstate = FSTATE_FOUND;
   1329 	}
   1330 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1331 	  else
   1332 		cf->cf_unit++;
   1333 #endif
   1334 
   1335 	config_devlink(dev);
   1336 
   1337 	if (config_do_twiddle)
   1338 		twiddle();
   1339 	else
   1340 		aprint_naive("Found ");
   1341 	/*
   1342 	 * We want the next two printfs for normal, verbose, and quiet,
   1343 	 * but not silent (in which case, we're twiddling, instead).
   1344 	 */
   1345 	if (parent == ROOT) {
   1346 		aprint_naive("%s (root)", device_xname(dev));
   1347 		aprint_normal("%s (root)", device_xname(dev));
   1348 	} else {
   1349 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
   1350 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
   1351 		if (print)
   1352 			(void) (*print)(aux, NULL);
   1353 	}
   1354 
   1355 	/*
   1356 	 * Before attaching, clobber any unfound devices that are
   1357 	 * otherwise identical.
   1358 	 * XXX code above is redundant?
   1359 	 */
   1360 	drvname = dev->dv_cfdriver->cd_name;
   1361 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1362 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1363 			if (STREQ(cf->cf_name, drvname) &&
   1364 			    cf->cf_unit == dev->dv_unit) {
   1365 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1366 					cf->cf_fstate = FSTATE_FOUND;
   1367 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1368 				/*
   1369 				 * Bump the unit number on all starred cfdata
   1370 				 * entries for this device.
   1371 				 */
   1372 				if (cf->cf_fstate == FSTATE_STAR)
   1373 					cf->cf_unit++;
   1374 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1375 			}
   1376 		}
   1377 	}
   1378 #ifdef __HAVE_DEVICE_REGISTER
   1379 	device_register(dev, aux);
   1380 #endif
   1381 
   1382 	/* Let userland know */
   1383 	devmon_report_device(dev, true);
   1384 
   1385 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1386 	if (splash_progress_state)
   1387 		splash_progress_update(splash_progress_state);
   1388 #endif
   1389 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1390 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1391 	if (splash_progress_state)
   1392 		splash_progress_update(splash_progress_state);
   1393 #endif
   1394 
   1395 	if (!device_pmf_is_registered(dev))
   1396 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
   1397 
   1398 	config_process_deferred(&deferred_config_queue, dev);
   1399 	return (dev);
   1400 }
   1401 
   1402 device_t
   1403 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1404 {
   1405 
   1406 	return (config_attach_loc(parent, cf, NULL, aux, print));
   1407 }
   1408 
   1409 /*
   1410  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1411  * way are silently inserted into the device tree, and their children
   1412  * attached.
   1413  *
   1414  * Note that because pseudo-devices are attached silently, any information
   1415  * the attach routine wishes to print should be prefixed with the device
   1416  * name by the attach routine.
   1417  */
   1418 device_t
   1419 config_attach_pseudo(cfdata_t cf)
   1420 {
   1421 	device_t dev;
   1422 
   1423 	dev = config_devalloc(ROOT, cf, NULL);
   1424 	if (!dev)
   1425 		return (NULL);
   1426 
   1427 	/* XXX mark busy in cfdata */
   1428 
   1429 	config_devlink(dev);
   1430 
   1431 #if 0	/* XXXJRT not yet */
   1432 #ifdef __HAVE_DEVICE_REGISTER
   1433 	device_register(dev, NULL);	/* like a root node */
   1434 #endif
   1435 #endif
   1436 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1437 	config_process_deferred(&deferred_config_queue, dev);
   1438 	return (dev);
   1439 }
   1440 
   1441 /*
   1442  * Detach a device.  Optionally forced (e.g. because of hardware
   1443  * removal) and quiet.  Returns zero if successful, non-zero
   1444  * (an error code) otherwise.
   1445  *
   1446  * Note that this code wants to be run from a process context, so
   1447  * that the detach can sleep to allow processes which have a device
   1448  * open to run and unwind their stacks.
   1449  */
   1450 int
   1451 config_detach(device_t dev, int flags)
   1452 {
   1453 	struct cftable *ct;
   1454 	cfdata_t cf;
   1455 	const struct cfattach *ca;
   1456 	struct cfdriver *cd;
   1457 #ifdef DIAGNOSTIC
   1458 	device_t d;
   1459 #endif
   1460 	int rv = 0;
   1461 
   1462 #ifdef DIAGNOSTIC
   1463 	if (dev->dv_cfdata != NULL &&
   1464 	    dev->dv_cfdata->cf_fstate != FSTATE_FOUND &&
   1465 	    dev->dv_cfdata->cf_fstate != FSTATE_STAR)
   1466 		panic("config_detach: bad device fstate");
   1467 #endif
   1468 	cd = dev->dv_cfdriver;
   1469 	KASSERT(cd != NULL);
   1470 
   1471 	ca = dev->dv_cfattach;
   1472 	KASSERT(ca != NULL);
   1473 
   1474 	KASSERT(curlwp != NULL);
   1475 	mutex_enter(&alldevs_mtx);
   1476 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   1477 		;
   1478 	else while (alldevs_nread != 0 ||
   1479 	       (alldevs_nwrite != 0 && alldevs_writer != curlwp))
   1480 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1481 	if (alldevs_nwrite++ == 0)
   1482 		alldevs_writer = curlwp;
   1483 	mutex_exit(&alldevs_mtx);
   1484 
   1485 	/*
   1486 	 * Ensure the device is deactivated.  If the device doesn't
   1487 	 * have an activation entry point, we allow DVF_ACTIVE to
   1488 	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
   1489 	 * device is busy, and the detach fails.
   1490 	 */
   1491 	if (ca->ca_activate != NULL)
   1492 		rv = config_deactivate(dev);
   1493 
   1494 	/*
   1495 	 * Try to detach the device.  If that's not possible, then
   1496 	 * we either panic() (for the forced but failed case), or
   1497 	 * return an error.
   1498 	 */
   1499 	if (rv == 0) {
   1500 		if (ca->ca_detach != NULL)
   1501 			rv = (*ca->ca_detach)(dev, flags);
   1502 		else
   1503 			rv = EOPNOTSUPP;
   1504 	}
   1505 	if (rv != 0) {
   1506 		if ((flags & DETACH_FORCE) == 0)
   1507 			goto out;
   1508 		else
   1509 			panic("config_detach: forced detach of %s failed (%d)",
   1510 			    device_xname(dev), rv);
   1511 	}
   1512 
   1513 	/*
   1514 	 * The device has now been successfully detached.
   1515 	 */
   1516 
   1517 	/* Let userland know */
   1518 	devmon_report_device(dev, false);
   1519 
   1520 #ifdef DIAGNOSTIC
   1521 	/*
   1522 	 * Sanity: If you're successfully detached, you should have no
   1523 	 * children.  (Note that because children must be attached
   1524 	 * after parents, we only need to search the latter part of
   1525 	 * the list.)
   1526 	 */
   1527 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1528 	    d = TAILQ_NEXT(d, dv_list)) {
   1529 		if (d->dv_parent == dev) {
   1530 			printf("config_detach: detached device %s"
   1531 			    " has children %s\n", device_xname(dev), device_xname(d));
   1532 			panic("config_detach");
   1533 		}
   1534 	}
   1535 #endif
   1536 
   1537 	/* notify the parent that the child is gone */
   1538 	if (dev->dv_parent) {
   1539 		device_t p = dev->dv_parent;
   1540 		if (p->dv_cfattach->ca_childdetached)
   1541 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1542 	}
   1543 
   1544 	/*
   1545 	 * Mark cfdata to show that the unit can be reused, if possible.
   1546 	 */
   1547 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1548 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1549 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1550 				if (cf->cf_fstate == FSTATE_FOUND &&
   1551 				    cf->cf_unit == dev->dv_unit)
   1552 					cf->cf_fstate = FSTATE_NOTFOUND;
   1553 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1554 				/*
   1555 				 * Note that we can only re-use a starred
   1556 				 * unit number if the unit being detached
   1557 				 * had the last assigned unit number.
   1558 				 */
   1559 				if (cf->cf_fstate == FSTATE_STAR &&
   1560 				    cf->cf_unit == dev->dv_unit + 1)
   1561 					cf->cf_unit--;
   1562 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1563 			}
   1564 		}
   1565 	}
   1566 
   1567 	config_devunlink(dev);
   1568 
   1569 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1570 		aprint_normal_dev(dev, "detached\n");
   1571 
   1572 	config_devdealloc(dev);
   1573 
   1574 out:
   1575 	mutex_enter(&alldevs_mtx);
   1576 	if (--alldevs_nwrite == 0)
   1577 		alldevs_writer = NULL;
   1578 	cv_signal(&alldevs_cv);
   1579 	mutex_exit(&alldevs_mtx);
   1580 	return rv;
   1581 }
   1582 
   1583 int
   1584 config_detach_children(device_t parent, int flags)
   1585 {
   1586 	device_t dv;
   1587 	deviter_t di;
   1588 	int error = 0;
   1589 
   1590 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1591 	     dv = deviter_next(&di)) {
   1592 		if (device_parent(dv) != parent)
   1593 			continue;
   1594 		if ((error = config_detach(dv, flags)) != 0)
   1595 			break;
   1596 	}
   1597 	deviter_release(&di);
   1598 	return error;
   1599 }
   1600 
   1601 int
   1602 config_activate(device_t dev)
   1603 {
   1604 	const struct cfattach *ca = dev->dv_cfattach;
   1605 	int rv = 0, oflags = dev->dv_flags;
   1606 
   1607 	if (ca->ca_activate == NULL)
   1608 		return (EOPNOTSUPP);
   1609 
   1610 	if ((dev->dv_flags & DVF_ACTIVE) == 0) {
   1611 		dev->dv_flags |= DVF_ACTIVE;
   1612 		rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
   1613 		if (rv)
   1614 			dev->dv_flags = oflags;
   1615 	}
   1616 	return (rv);
   1617 }
   1618 
   1619 int
   1620 config_deactivate(device_t dev)
   1621 {
   1622 	const struct cfattach *ca = dev->dv_cfattach;
   1623 	int rv = 0, oflags = dev->dv_flags;
   1624 
   1625 	if (ca->ca_activate == NULL)
   1626 		return (EOPNOTSUPP);
   1627 
   1628 	if (dev->dv_flags & DVF_ACTIVE) {
   1629 		dev->dv_flags &= ~DVF_ACTIVE;
   1630 		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
   1631 		if (rv)
   1632 			dev->dv_flags = oflags;
   1633 	}
   1634 	return (rv);
   1635 }
   1636 
   1637 /*
   1638  * Defer the configuration of the specified device until all
   1639  * of its parent's devices have been attached.
   1640  */
   1641 void
   1642 config_defer(device_t dev, void (*func)(device_t))
   1643 {
   1644 	struct deferred_config *dc;
   1645 
   1646 	if (dev->dv_parent == NULL)
   1647 		panic("config_defer: can't defer config of a root device");
   1648 
   1649 #ifdef DIAGNOSTIC
   1650 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
   1651 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1652 		if (dc->dc_dev == dev)
   1653 			panic("config_defer: deferred twice");
   1654 	}
   1655 #endif
   1656 
   1657 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1658 	if (dc == NULL)
   1659 		panic("config_defer: unable to allocate callback");
   1660 
   1661 	dc->dc_dev = dev;
   1662 	dc->dc_func = func;
   1663 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1664 	config_pending_incr();
   1665 }
   1666 
   1667 /*
   1668  * Defer some autoconfiguration for a device until after interrupts
   1669  * are enabled.
   1670  */
   1671 void
   1672 config_interrupts(device_t dev, void (*func)(device_t))
   1673 {
   1674 	struct deferred_config *dc;
   1675 
   1676 	/*
   1677 	 * If interrupts are enabled, callback now.
   1678 	 */
   1679 	if (cold == 0) {
   1680 		(*func)(dev);
   1681 		return;
   1682 	}
   1683 
   1684 #ifdef DIAGNOSTIC
   1685 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
   1686 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1687 		if (dc->dc_dev == dev)
   1688 			panic("config_interrupts: deferred twice");
   1689 	}
   1690 #endif
   1691 
   1692 	dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
   1693 	if (dc == NULL)
   1694 		panic("config_interrupts: unable to allocate callback");
   1695 
   1696 	dc->dc_dev = dev;
   1697 	dc->dc_func = func;
   1698 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   1699 	config_pending_incr();
   1700 }
   1701 
   1702 /*
   1703  * Process a deferred configuration queue.
   1704  */
   1705 static void
   1706 config_process_deferred(struct deferred_config_head *queue,
   1707     device_t parent)
   1708 {
   1709 	struct deferred_config *dc, *ndc;
   1710 
   1711 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   1712 		ndc = TAILQ_NEXT(dc, dc_queue);
   1713 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   1714 			TAILQ_REMOVE(queue, dc, dc_queue);
   1715 			(*dc->dc_func)(dc->dc_dev);
   1716 			free(dc, M_DEVBUF);
   1717 			config_pending_decr();
   1718 		}
   1719 	}
   1720 }
   1721 
   1722 /*
   1723  * Manipulate the config_pending semaphore.
   1724  */
   1725 void
   1726 config_pending_incr(void)
   1727 {
   1728 
   1729 	mutex_enter(&config_misc_lock);
   1730 	config_pending++;
   1731 	mutex_exit(&config_misc_lock);
   1732 }
   1733 
   1734 void
   1735 config_pending_decr(void)
   1736 {
   1737 
   1738 #ifdef DIAGNOSTIC
   1739 	if (config_pending == 0)
   1740 		panic("config_pending_decr: config_pending == 0");
   1741 #endif
   1742 	mutex_enter(&config_misc_lock);
   1743 	config_pending--;
   1744 	if (config_pending == 0)
   1745 		cv_broadcast(&config_misc_cv);
   1746 	mutex_exit(&config_misc_lock);
   1747 }
   1748 
   1749 /*
   1750  * Register a "finalization" routine.  Finalization routines are
   1751  * called iteratively once all real devices have been found during
   1752  * autoconfiguration, for as long as any one finalizer has done
   1753  * any work.
   1754  */
   1755 int
   1756 config_finalize_register(device_t dev, int (*fn)(device_t))
   1757 {
   1758 	struct finalize_hook *f;
   1759 
   1760 	/*
   1761 	 * If finalization has already been done, invoke the
   1762 	 * callback function now.
   1763 	 */
   1764 	if (config_finalize_done) {
   1765 		while ((*fn)(dev) != 0)
   1766 			/* loop */ ;
   1767 	}
   1768 
   1769 	/* Ensure this isn't already on the list. */
   1770 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   1771 		if (f->f_func == fn && f->f_dev == dev)
   1772 			return (EEXIST);
   1773 	}
   1774 
   1775 	f = malloc(sizeof(*f), M_TEMP, M_WAITOK);
   1776 	f->f_func = fn;
   1777 	f->f_dev = dev;
   1778 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   1779 
   1780 	return (0);
   1781 }
   1782 
   1783 void
   1784 config_finalize(void)
   1785 {
   1786 	struct finalize_hook *f;
   1787 	struct pdevinit *pdev;
   1788 	extern struct pdevinit pdevinit[];
   1789 	int errcnt, rv;
   1790 
   1791 	/*
   1792 	 * Now that device driver threads have been created, wait for
   1793 	 * them to finish any deferred autoconfiguration.
   1794 	 */
   1795 	mutex_enter(&config_misc_lock);
   1796 	while (config_pending != 0)
   1797 		cv_wait(&config_misc_cv, &config_misc_lock);
   1798 	mutex_exit(&config_misc_lock);
   1799 
   1800 	/* Attach pseudo-devices. */
   1801 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   1802 		(*pdev->pdev_attach)(pdev->pdev_count);
   1803 
   1804 	/* Run the hooks until none of them does any work. */
   1805 	do {
   1806 		rv = 0;
   1807 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   1808 			rv |= (*f->f_func)(f->f_dev);
   1809 	} while (rv != 0);
   1810 
   1811 	config_finalize_done = 1;
   1812 
   1813 	/* Now free all the hooks. */
   1814 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   1815 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   1816 		free(f, M_TEMP);
   1817 	}
   1818 
   1819 	errcnt = aprint_get_error_count();
   1820 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   1821 	    (boothowto & AB_VERBOSE) == 0) {
   1822 		if (config_do_twiddle) {
   1823 			config_do_twiddle = 0;
   1824 			printf_nolog("done.\n");
   1825 		}
   1826 		if (errcnt != 0) {
   1827 			printf("WARNING: %d error%s while detecting hardware; "
   1828 			    "check system log.\n", errcnt,
   1829 			    errcnt == 1 ? "" : "s");
   1830 		}
   1831 	}
   1832 }
   1833 
   1834 /*
   1835  * device_lookup:
   1836  *
   1837  *	Look up a device instance for a given driver.
   1838  */
   1839 void *
   1840 device_lookup(cfdriver_t cd, int unit)
   1841 {
   1842 
   1843 	if (unit < 0 || unit >= cd->cd_ndevs)
   1844 		return (NULL);
   1845 
   1846 	return (cd->cd_devs[unit]);
   1847 }
   1848 
   1849 /*
   1850  * device_lookup:
   1851  *
   1852  *	Look up a device instance for a given driver.
   1853  */
   1854 void *
   1855 device_lookup_private(cfdriver_t cd, int unit)
   1856 {
   1857 	device_t dv;
   1858 
   1859 	if (unit < 0 || unit >= cd->cd_ndevs)
   1860 		return NULL;
   1861 
   1862 	if ((dv = cd->cd_devs[unit]) == NULL)
   1863 		return NULL;
   1864 
   1865 	return dv->dv_private;
   1866 }
   1867 
   1868 /*
   1869  * Accessor functions for the device_t type.
   1870  */
   1871 devclass_t
   1872 device_class(device_t dev)
   1873 {
   1874 
   1875 	return (dev->dv_class);
   1876 }
   1877 
   1878 cfdata_t
   1879 device_cfdata(device_t dev)
   1880 {
   1881 
   1882 	return (dev->dv_cfdata);
   1883 }
   1884 
   1885 cfdriver_t
   1886 device_cfdriver(device_t dev)
   1887 {
   1888 
   1889 	return (dev->dv_cfdriver);
   1890 }
   1891 
   1892 cfattach_t
   1893 device_cfattach(device_t dev)
   1894 {
   1895 
   1896 	return (dev->dv_cfattach);
   1897 }
   1898 
   1899 int
   1900 device_unit(device_t dev)
   1901 {
   1902 
   1903 	return (dev->dv_unit);
   1904 }
   1905 
   1906 const char *
   1907 device_xname(device_t dev)
   1908 {
   1909 
   1910 	return (dev->dv_xname);
   1911 }
   1912 
   1913 device_t
   1914 device_parent(device_t dev)
   1915 {
   1916 
   1917 	return (dev->dv_parent);
   1918 }
   1919 
   1920 bool
   1921 device_is_active(device_t dev)
   1922 {
   1923 	int active_flags;
   1924 
   1925 	active_flags = DVF_ACTIVE;
   1926 	active_flags |= DVF_CLASS_SUSPENDED;
   1927 	active_flags |= DVF_DRIVER_SUSPENDED;
   1928 	active_flags |= DVF_BUS_SUSPENDED;
   1929 
   1930 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
   1931 }
   1932 
   1933 bool
   1934 device_is_enabled(device_t dev)
   1935 {
   1936 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
   1937 }
   1938 
   1939 bool
   1940 device_has_power(device_t dev)
   1941 {
   1942 	int active_flags;
   1943 
   1944 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
   1945 
   1946 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
   1947 }
   1948 
   1949 int
   1950 device_locator(device_t dev, u_int locnum)
   1951 {
   1952 
   1953 	KASSERT(dev->dv_locators != NULL);
   1954 	return (dev->dv_locators[locnum]);
   1955 }
   1956 
   1957 void *
   1958 device_private(device_t dev)
   1959 {
   1960 
   1961 	/*
   1962 	 * The reason why device_private(NULL) is allowed is to simplify the
   1963 	 * work of a lot of userspace request handlers (i.e., c/bdev
   1964 	 * handlers) which grab cfdriver_t->cd_units[n].
   1965 	 * It avoids having them test for it to be NULL and only then calling
   1966 	 * device_private.
   1967 	 */
   1968 	return dev == NULL ? NULL : dev->dv_private;
   1969 }
   1970 
   1971 prop_dictionary_t
   1972 device_properties(device_t dev)
   1973 {
   1974 
   1975 	return (dev->dv_properties);
   1976 }
   1977 
   1978 /*
   1979  * device_is_a:
   1980  *
   1981  *	Returns true if the device is an instance of the specified
   1982  *	driver.
   1983  */
   1984 bool
   1985 device_is_a(device_t dev, const char *dname)
   1986 {
   1987 
   1988 	return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
   1989 }
   1990 
   1991 /*
   1992  * device_find_by_xname:
   1993  *
   1994  *	Returns the device of the given name or NULL if it doesn't exist.
   1995  */
   1996 device_t
   1997 device_find_by_xname(const char *name)
   1998 {
   1999 	device_t dv;
   2000 	deviter_t di;
   2001 
   2002 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2003 		if (strcmp(device_xname(dv), name) == 0)
   2004 			break;
   2005 	}
   2006 	deviter_release(&di);
   2007 
   2008 	return dv;
   2009 }
   2010 
   2011 /*
   2012  * device_find_by_driver_unit:
   2013  *
   2014  *	Returns the device of the given driver name and unit or
   2015  *	NULL if it doesn't exist.
   2016  */
   2017 device_t
   2018 device_find_by_driver_unit(const char *name, int unit)
   2019 {
   2020 	struct cfdriver *cd;
   2021 
   2022 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2023 		return NULL;
   2024 	return device_lookup(cd, unit);
   2025 }
   2026 
   2027 /*
   2028  * Power management related functions.
   2029  */
   2030 
   2031 bool
   2032 device_pmf_is_registered(device_t dev)
   2033 {
   2034 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2035 }
   2036 
   2037 bool
   2038 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
   2039 {
   2040 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2041 		return true;
   2042 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2043 		return false;
   2044 	if (*dev->dv_driver_suspend != NULL &&
   2045 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
   2046 		return false;
   2047 
   2048 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2049 	return true;
   2050 }
   2051 
   2052 bool
   2053 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
   2054 {
   2055 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2056 		return true;
   2057 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2058 		return false;
   2059 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
   2060 		return false;
   2061 	if (*dev->dv_driver_resume != NULL &&
   2062 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
   2063 		return false;
   2064 
   2065 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2066 	return true;
   2067 }
   2068 
   2069 bool
   2070 device_pmf_driver_shutdown(device_t dev, int how)
   2071 {
   2072 
   2073 	if (*dev->dv_driver_shutdown != NULL &&
   2074 	    !(*dev->dv_driver_shutdown)(dev, how))
   2075 		return false;
   2076 	return true;
   2077 }
   2078 
   2079 bool
   2080 device_pmf_driver_register(device_t dev,
   2081     bool (*suspend)(device_t PMF_FN_PROTO),
   2082     bool (*resume)(device_t PMF_FN_PROTO),
   2083     bool (*shutdown)(device_t, int))
   2084 {
   2085 	pmf_private_t *pp;
   2086 
   2087 	if ((pp = malloc(sizeof(*pp), M_PMFPRIV, M_NOWAIT|M_ZERO)) == NULL)
   2088 		return false;
   2089 	mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
   2090 	cv_init(&pp->pp_cv, "pmfsusp");
   2091 	dev->dv_pmf_private = pp;
   2092 
   2093 	dev->dv_driver_suspend = suspend;
   2094 	dev->dv_driver_resume = resume;
   2095 	dev->dv_driver_shutdown = shutdown;
   2096 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2097 	return true;
   2098 }
   2099 
   2100 static const char *
   2101 curlwp_name(void)
   2102 {
   2103 	if (curlwp->l_name != NULL)
   2104 		return curlwp->l_name;
   2105 	else
   2106 		return curlwp->l_proc->p_comm;
   2107 }
   2108 
   2109 void
   2110 device_pmf_driver_deregister(device_t dev)
   2111 {
   2112 	pmf_private_t *pp = dev->dv_pmf_private;
   2113 
   2114 	dev->dv_driver_suspend = NULL;
   2115 	dev->dv_driver_resume = NULL;
   2116 
   2117 	dev->dv_pmf_private = NULL;
   2118 
   2119 	mutex_enter(&pp->pp_mtx);
   2120 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2121 	while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
   2122 		/* Wake a thread that waits for the lock.  That
   2123 		 * thread will fail to acquire the lock, and then
   2124 		 * it will wake the next thread that waits for the
   2125 		 * lock, or else it will wake us.
   2126 		 */
   2127 		cv_signal(&pp->pp_cv);
   2128 		pmflock_debug(dev, __func__, __LINE__);
   2129 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
   2130 		pmflock_debug(dev, __func__, __LINE__);
   2131 	}
   2132 	mutex_exit(&pp->pp_mtx);
   2133 
   2134 	cv_destroy(&pp->pp_cv);
   2135 	mutex_destroy(&pp->pp_mtx);
   2136 	free(pp, M_PMFPRIV);
   2137 }
   2138 
   2139 bool
   2140 device_pmf_driver_child_register(device_t dev)
   2141 {
   2142 	device_t parent = device_parent(dev);
   2143 
   2144 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2145 		return true;
   2146 	return (*parent->dv_driver_child_register)(dev);
   2147 }
   2148 
   2149 void
   2150 device_pmf_driver_set_child_register(device_t dev,
   2151     bool (*child_register)(device_t))
   2152 {
   2153 	dev->dv_driver_child_register = child_register;
   2154 }
   2155 
   2156 void
   2157 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
   2158 {
   2159 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2160 	if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
   2161 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
   2162 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2163 }
   2164 
   2165 bool
   2166 device_is_self_suspended(device_t dev)
   2167 {
   2168 	return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
   2169 }
   2170 
   2171 void
   2172 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
   2173 {
   2174 	bool self = (flags & PMF_F_SELF) != 0;
   2175 
   2176 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2177 
   2178 	if (!self)
   2179 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
   2180 	else if (device_is_active(dev))
   2181 		dev->dv_flags |= DVF_SELF_SUSPENDED;
   2182 
   2183 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2184 }
   2185 
   2186 static void
   2187 pmflock_debug(device_t dev, const char *func, int line)
   2188 {
   2189 	pmf_private_t *pp = device_pmf_private(dev);
   2190 
   2191 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
   2192 	    func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
   2193 	    dev->dv_flags);
   2194 }
   2195 
   2196 static void
   2197 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
   2198 {
   2199 	pmf_private_t *pp = device_pmf_private(dev);
   2200 
   2201 	aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
   2202 	    "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
   2203 	    pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
   2204 }
   2205 
   2206 static bool
   2207 device_pmf_lock1(device_t dev PMF_FN_ARGS)
   2208 {
   2209 	pmf_private_t *pp = device_pmf_private(dev);
   2210 
   2211 	while (pp->pp_nlock > 0 && pp->pp_holder != curlwp &&
   2212 	       device_pmf_is_registered(dev)) {
   2213 		pp->pp_nwait++;
   2214 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2215 		cv_wait(&pp->pp_cv, &pp->pp_mtx);
   2216 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2217 		pp->pp_nwait--;
   2218 	}
   2219 	if (!device_pmf_is_registered(dev)) {
   2220 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2221 		/* We could not acquire the lock, but some other thread may
   2222 		 * wait for it, also.  Wake that thread.
   2223 		 */
   2224 		cv_signal(&pp->pp_cv);
   2225 		return false;
   2226 	}
   2227 	pp->pp_nlock++;
   2228 	pp->pp_holder = curlwp;
   2229 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2230 	return true;
   2231 }
   2232 
   2233 bool
   2234 device_pmf_lock(device_t dev PMF_FN_ARGS)
   2235 {
   2236 	bool rc;
   2237 	pmf_private_t *pp = device_pmf_private(dev);
   2238 
   2239 	mutex_enter(&pp->pp_mtx);
   2240 	rc = device_pmf_lock1(dev PMF_FN_CALL);
   2241 	mutex_exit(&pp->pp_mtx);
   2242 
   2243 	return rc;
   2244 }
   2245 
   2246 void
   2247 device_pmf_unlock(device_t dev PMF_FN_ARGS)
   2248 {
   2249 	pmf_private_t *pp = device_pmf_private(dev);
   2250 
   2251 	KASSERT(pp->pp_nlock > 0);
   2252 	mutex_enter(&pp->pp_mtx);
   2253 	if (--pp->pp_nlock == 0)
   2254 		pp->pp_holder = NULL;
   2255 	cv_signal(&pp->pp_cv);
   2256 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2257 	mutex_exit(&pp->pp_mtx);
   2258 }
   2259 
   2260 void *
   2261 device_pmf_private(device_t dev)
   2262 {
   2263 	return dev->dv_pmf_private;
   2264 }
   2265 
   2266 void *
   2267 device_pmf_bus_private(device_t dev)
   2268 {
   2269 	return dev->dv_bus_private;
   2270 }
   2271 
   2272 bool
   2273 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
   2274 {
   2275 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2276 		return true;
   2277 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2278 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2279 		return false;
   2280 	if (*dev->dv_bus_suspend != NULL &&
   2281 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
   2282 		return false;
   2283 
   2284 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2285 	return true;
   2286 }
   2287 
   2288 bool
   2289 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
   2290 {
   2291 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2292 		return true;
   2293 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
   2294 		return false;
   2295 	if (*dev->dv_bus_resume != NULL &&
   2296 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
   2297 		return false;
   2298 
   2299 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2300 	return true;
   2301 }
   2302 
   2303 bool
   2304 device_pmf_bus_shutdown(device_t dev, int how)
   2305 {
   2306 
   2307 	if (*dev->dv_bus_shutdown != NULL &&
   2308 	    !(*dev->dv_bus_shutdown)(dev, how))
   2309 		return false;
   2310 	return true;
   2311 }
   2312 
   2313 void
   2314 device_pmf_bus_register(device_t dev, void *priv,
   2315     bool (*suspend)(device_t PMF_FN_PROTO),
   2316     bool (*resume)(device_t PMF_FN_PROTO),
   2317     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2318 {
   2319 	dev->dv_bus_private = priv;
   2320 	dev->dv_bus_resume = resume;
   2321 	dev->dv_bus_suspend = suspend;
   2322 	dev->dv_bus_shutdown = shutdown;
   2323 	dev->dv_bus_deregister = deregister;
   2324 }
   2325 
   2326 void
   2327 device_pmf_bus_deregister(device_t dev)
   2328 {
   2329 	if (dev->dv_bus_deregister == NULL)
   2330 		return;
   2331 	(*dev->dv_bus_deregister)(dev);
   2332 	dev->dv_bus_private = NULL;
   2333 	dev->dv_bus_suspend = NULL;
   2334 	dev->dv_bus_resume = NULL;
   2335 	dev->dv_bus_deregister = NULL;
   2336 }
   2337 
   2338 void *
   2339 device_pmf_class_private(device_t dev)
   2340 {
   2341 	return dev->dv_class_private;
   2342 }
   2343 
   2344 bool
   2345 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
   2346 {
   2347 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2348 		return true;
   2349 	if (*dev->dv_class_suspend != NULL &&
   2350 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
   2351 		return false;
   2352 
   2353 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2354 	return true;
   2355 }
   2356 
   2357 bool
   2358 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
   2359 {
   2360 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2361 		return true;
   2362 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2363 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2364 		return false;
   2365 	if (*dev->dv_class_resume != NULL &&
   2366 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
   2367 		return false;
   2368 
   2369 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2370 	return true;
   2371 }
   2372 
   2373 void
   2374 device_pmf_class_register(device_t dev, void *priv,
   2375     bool (*suspend)(device_t PMF_FN_PROTO),
   2376     bool (*resume)(device_t PMF_FN_PROTO),
   2377     void (*deregister)(device_t))
   2378 {
   2379 	dev->dv_class_private = priv;
   2380 	dev->dv_class_suspend = suspend;
   2381 	dev->dv_class_resume = resume;
   2382 	dev->dv_class_deregister = deregister;
   2383 }
   2384 
   2385 void
   2386 device_pmf_class_deregister(device_t dev)
   2387 {
   2388 	if (dev->dv_class_deregister == NULL)
   2389 		return;
   2390 	(*dev->dv_class_deregister)(dev);
   2391 	dev->dv_class_private = NULL;
   2392 	dev->dv_class_suspend = NULL;
   2393 	dev->dv_class_resume = NULL;
   2394 	dev->dv_class_deregister = NULL;
   2395 }
   2396 
   2397 bool
   2398 device_active(device_t dev, devactive_t type)
   2399 {
   2400 	size_t i;
   2401 
   2402 	if (dev->dv_activity_count == 0)
   2403 		return false;
   2404 
   2405 	for (i = 0; i < dev->dv_activity_count; ++i)
   2406 		(*dev->dv_activity_handlers[i])(dev, type);
   2407 
   2408 	return true;
   2409 }
   2410 
   2411 bool
   2412 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2413 {
   2414 	void (**new_handlers)(device_t, devactive_t);
   2415 	void (**old_handlers)(device_t, devactive_t);
   2416 	size_t i, new_size;
   2417 	int s;
   2418 
   2419 	old_handlers = dev->dv_activity_handlers;
   2420 
   2421 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2422 		if (old_handlers[i] == handler)
   2423 			panic("Double registering of idle handlers");
   2424 	}
   2425 
   2426 	new_size = dev->dv_activity_count + 1;
   2427 	new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF, M_WAITOK);
   2428 
   2429 	memcpy(new_handlers, old_handlers,
   2430 	    sizeof(void *) * dev->dv_activity_count);
   2431 	new_handlers[new_size - 1] = handler;
   2432 
   2433 	s = splhigh();
   2434 	dev->dv_activity_count = new_size;
   2435 	dev->dv_activity_handlers = new_handlers;
   2436 	splx(s);
   2437 
   2438 	if (old_handlers != NULL)
   2439 		free(old_handlers, M_DEVBUF);
   2440 
   2441 	return true;
   2442 }
   2443 
   2444 void
   2445 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2446 {
   2447 	void (**new_handlers)(device_t, devactive_t);
   2448 	void (**old_handlers)(device_t, devactive_t);
   2449 	size_t i, new_size;
   2450 	int s;
   2451 
   2452 	old_handlers = dev->dv_activity_handlers;
   2453 
   2454 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2455 		if (old_handlers[i] == handler)
   2456 			break;
   2457 	}
   2458 
   2459 	if (i == dev->dv_activity_count)
   2460 		return; /* XXX panic? */
   2461 
   2462 	new_size = dev->dv_activity_count - 1;
   2463 
   2464 	if (new_size == 0) {
   2465 		new_handlers = NULL;
   2466 	} else {
   2467 		new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF,
   2468 		    M_WAITOK);
   2469 		memcpy(new_handlers, old_handlers, sizeof(void *) * i);
   2470 		memcpy(new_handlers + i, old_handlers + i + 1,
   2471 		    sizeof(void *) * (new_size - i));
   2472 	}
   2473 
   2474 	s = splhigh();
   2475 	dev->dv_activity_count = new_size;
   2476 	dev->dv_activity_handlers = new_handlers;
   2477 	splx(s);
   2478 
   2479 	free(old_handlers, M_DEVBUF);
   2480 }
   2481 
   2482 /*
   2483  * Device Iteration
   2484  *
   2485  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2486  *     each device_t's in the device tree.
   2487  *
   2488  * deviter_init(di, flags): initialize the device iterator `di'
   2489  *     to "walk" the device tree.  deviter_next(di) will return
   2490  *     the first device_t in the device tree, or NULL if there are
   2491  *     no devices.
   2492  *
   2493  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2494  *     caller intends to modify the device tree by calling
   2495  *     config_detach(9) on devices in the order that the iterator
   2496  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2497  *     nearest the "root" of the device tree to be returned, first;
   2498  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2499  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2500  *     indicating both that deviter_init() should not respect any
   2501  *     locks on the device tree, and that deviter_next(di) may run
   2502  *     in more than one LWP before the walk has finished.
   2503  *
   2504  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2505  *     once.
   2506  *
   2507  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2508  *
   2509  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2510  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2511  *
   2512  * deviter_first(di, flags): initialize the device iterator `di'
   2513  *     and return the first device_t in the device tree, or NULL
   2514  *     if there are no devices.  The statement
   2515  *
   2516  *         dv = deviter_first(di);
   2517  *
   2518  *     is shorthand for
   2519  *
   2520  *         deviter_init(di);
   2521  *         dv = deviter_next(di);
   2522  *
   2523  * deviter_next(di): return the next device_t in the device tree,
   2524  *     or NULL if there are no more devices.  deviter_next(di)
   2525  *     is undefined if `di' was not initialized with deviter_init() or
   2526  *     deviter_first().
   2527  *
   2528  * deviter_release(di): stops iteration (subsequent calls to
   2529  *     deviter_next() will return NULL), releases any locks and
   2530  *     resources held by the device iterator.
   2531  *
   2532  * Device iteration does not return device_t's in any particular
   2533  * order.  An iterator will never return the same device_t twice.
   2534  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2535  * is called repeatedly on the same `di', it will eventually return
   2536  * NULL.  It is ok to attach/detach devices during device iteration.
   2537  */
   2538 void
   2539 deviter_init(deviter_t *di, deviter_flags_t flags)
   2540 {
   2541 	device_t dv;
   2542 	bool rw;
   2543 
   2544 	mutex_enter(&alldevs_mtx);
   2545 	if ((flags & DEVITER_F_SHUTDOWN) != 0) {
   2546 		flags |= DEVITER_F_RW;
   2547 		alldevs_nwrite++;
   2548 		alldevs_writer = NULL;
   2549 		alldevs_nread = 0;
   2550 	} else {
   2551 		rw = (flags & DEVITER_F_RW) != 0;
   2552 
   2553 		if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   2554 			;
   2555 		else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
   2556 		       (rw && alldevs_nread != 0))
   2557 			cv_wait(&alldevs_cv, &alldevs_mtx);
   2558 
   2559 		if (rw) {
   2560 			if (alldevs_nwrite++ == 0)
   2561 				alldevs_writer = curlwp;
   2562 		} else
   2563 			alldevs_nread++;
   2564 	}
   2565 	mutex_exit(&alldevs_mtx);
   2566 
   2567 	memset(di, 0, sizeof(*di));
   2568 
   2569 	di->di_flags = flags;
   2570 
   2571 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2572 	case DEVITER_F_LEAVES_FIRST:
   2573 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2574 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2575 		break;
   2576 	case DEVITER_F_ROOT_FIRST:
   2577 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2578 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2579 		break;
   2580 	default:
   2581 		break;
   2582 	}
   2583 
   2584 	deviter_reinit(di);
   2585 }
   2586 
   2587 static void
   2588 deviter_reinit(deviter_t *di)
   2589 {
   2590 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2591 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2592 	else
   2593 		di->di_prev = TAILQ_FIRST(&alldevs);
   2594 }
   2595 
   2596 device_t
   2597 deviter_first(deviter_t *di, deviter_flags_t flags)
   2598 {
   2599 	deviter_init(di, flags);
   2600 	return deviter_next(di);
   2601 }
   2602 
   2603 static device_t
   2604 deviter_next1(deviter_t *di)
   2605 {
   2606 	device_t dv;
   2607 
   2608 	dv = di->di_prev;
   2609 
   2610 	if (dv == NULL)
   2611 		;
   2612 	else if ((di->di_flags & DEVITER_F_RW) != 0)
   2613 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2614 	else
   2615 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2616 
   2617 	return dv;
   2618 }
   2619 
   2620 device_t
   2621 deviter_next(deviter_t *di)
   2622 {
   2623 	device_t dv = NULL;
   2624 
   2625 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2626 	case 0:
   2627 		return deviter_next1(di);
   2628 	case DEVITER_F_LEAVES_FIRST:
   2629 		while (di->di_curdepth >= 0) {
   2630 			if ((dv = deviter_next1(di)) == NULL) {
   2631 				di->di_curdepth--;
   2632 				deviter_reinit(di);
   2633 			} else if (dv->dv_depth == di->di_curdepth)
   2634 				break;
   2635 		}
   2636 		return dv;
   2637 	case DEVITER_F_ROOT_FIRST:
   2638 		while (di->di_curdepth <= di->di_maxdepth) {
   2639 			if ((dv = deviter_next1(di)) == NULL) {
   2640 				di->di_curdepth++;
   2641 				deviter_reinit(di);
   2642 			} else if (dv->dv_depth == di->di_curdepth)
   2643 				break;
   2644 		}
   2645 		return dv;
   2646 	default:
   2647 		return NULL;
   2648 	}
   2649 }
   2650 
   2651 void
   2652 deviter_release(deviter_t *di)
   2653 {
   2654 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2655 
   2656 	mutex_enter(&alldevs_mtx);
   2657 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   2658 		--alldevs_nwrite;
   2659 	else {
   2660 
   2661 		if (rw) {
   2662 			if (--alldevs_nwrite == 0)
   2663 				alldevs_writer = NULL;
   2664 		} else
   2665 			--alldevs_nread;
   2666 
   2667 		cv_signal(&alldevs_cv);
   2668 	}
   2669 	mutex_exit(&alldevs_mtx);
   2670 }
   2671