subr_autoconf.c revision 1.159 1 /* $NetBSD: subr_autoconf.c,v 1.159 2008/08/15 03:08:26 matt Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.159 2008/08/15 03:08:26 matt Exp $");
81
82 #include "opt_ddb.h"
83 #include "drvctl.h"
84
85 #include <sys/param.h>
86 #include <sys/device.h>
87 #include <sys/disklabel.h>
88 #include <sys/conf.h>
89 #include <sys/kauth.h>
90 #include <sys/malloc.h>
91 #include <sys/kmem.h>
92 #include <sys/systm.h>
93 #include <sys/kernel.h>
94 #include <sys/errno.h>
95 #include <sys/proc.h>
96 #include <sys/reboot.h>
97 #include <sys/kthread.h>
98 #include <sys/buf.h>
99 #include <sys/dirent.h>
100 #include <sys/vnode.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/mutex.h>
108 #include <sys/condvar.h>
109 #include <sys/devmon.h>
110 #include <sys/cpu.h>
111
112 #include <sys/disk.h>
113
114 #include <machine/limits.h>
115
116 #include "opt_userconf.h"
117 #ifdef USERCONF
118 #include <sys/userconf.h>
119 #endif
120
121 #ifdef __i386__
122 #include "opt_splash.h"
123 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
124 #include <dev/splash/splash.h>
125 extern struct splash_progress *splash_progress_state;
126 #endif
127 #endif
128
129 /*
130 * Autoconfiguration subroutines.
131 */
132
133 typedef struct pmf_private {
134 int pp_nwait;
135 int pp_nlock;
136 lwp_t *pp_holder;
137 kmutex_t pp_mtx;
138 kcondvar_t pp_cv;
139 } pmf_private_t;
140
141 /*
142 * ioconf.c exports exactly two names: cfdata and cfroots. All system
143 * devices and drivers are found via these tables.
144 */
145 extern struct cfdata cfdata[];
146 extern const short cfroots[];
147
148 /*
149 * List of all cfdriver structures. We use this to detect duplicates
150 * when other cfdrivers are loaded.
151 */
152 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
153 extern struct cfdriver * const cfdriver_list_initial[];
154
155 /*
156 * Initial list of cfattach's.
157 */
158 extern const struct cfattachinit cfattachinit[];
159
160 /*
161 * List of cfdata tables. We always have one such list -- the one
162 * built statically when the kernel was configured.
163 */
164 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
165 static struct cftable initcftable;
166
167 #define ROOT ((device_t)NULL)
168
169 struct matchinfo {
170 cfsubmatch_t fn;
171 struct device *parent;
172 const int *locs;
173 void *aux;
174 struct cfdata *match;
175 int pri;
176 };
177
178 static char *number(char *, int);
179 static void mapply(struct matchinfo *, cfdata_t);
180 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
181 static void config_devdealloc(device_t);
182 static void config_makeroom(int, struct cfdriver *);
183 static void config_devlink(device_t);
184 static void config_devunlink(device_t);
185
186 static void pmflock_debug(device_t, const char *, int);
187 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
188
189 static device_t deviter_next1(deviter_t *);
190 static void deviter_reinit(deviter_t *);
191
192 struct deferred_config {
193 TAILQ_ENTRY(deferred_config) dc_queue;
194 device_t dc_dev;
195 void (*dc_func)(device_t);
196 };
197
198 TAILQ_HEAD(deferred_config_head, deferred_config);
199
200 struct deferred_config_head deferred_config_queue =
201 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
202 struct deferred_config_head interrupt_config_queue =
203 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
204 int interrupt_config_threads = 8;
205
206 static void config_process_deferred(struct deferred_config_head *, device_t);
207
208 /* Hooks to finalize configuration once all real devices have been found. */
209 struct finalize_hook {
210 TAILQ_ENTRY(finalize_hook) f_list;
211 int (*f_func)(device_t);
212 device_t f_dev;
213 };
214 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
215 TAILQ_HEAD_INITIALIZER(config_finalize_list);
216 static int config_finalize_done;
217
218 /* list of all devices */
219 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
220 kcondvar_t alldevs_cv;
221 kmutex_t alldevs_mtx;
222 static int alldevs_nread = 0;
223 static int alldevs_nwrite = 0;
224 static lwp_t *alldevs_writer = NULL;
225
226 static int config_pending; /* semaphore for mountroot */
227 static kmutex_t config_misc_lock;
228 static kcondvar_t config_misc_cv;
229
230 #define STREQ(s1, s2) \
231 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
232
233 static int config_initialized; /* config_init() has been called. */
234
235 static int config_do_twiddle;
236
237 struct vnode *
238 opendisk(struct device *dv)
239 {
240 int bmajor, bminor;
241 struct vnode *tmpvn;
242 int error;
243 dev_t dev;
244
245 /*
246 * Lookup major number for disk block device.
247 */
248 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
249 if (bmajor == -1)
250 return NULL;
251
252 bminor = minor(device_unit(dv));
253 /*
254 * Fake a temporary vnode for the disk, open it, and read
255 * and hash the sectors.
256 */
257 dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
258 MAKEDISKDEV(bmajor, bminor, RAW_PART);
259 if (bdevvp(dev, &tmpvn))
260 panic("%s: can't alloc vnode for %s", __func__,
261 device_xname(dv));
262 error = VOP_OPEN(tmpvn, FREAD, NOCRED);
263 if (error) {
264 #ifndef DEBUG
265 /*
266 * Ignore errors caused by missing device, partition,
267 * or medium.
268 */
269 if (error != ENXIO && error != ENODEV)
270 #endif
271 printf("%s: can't open dev %s (%d)\n",
272 __func__, device_xname(dv), error);
273 vput(tmpvn);
274 return NULL;
275 }
276
277 return tmpvn;
278 }
279
280 int
281 config_handle_wedges(struct device *dv, int par)
282 {
283 struct dkwedge_list wl;
284 struct dkwedge_info *wi;
285 struct vnode *vn;
286 char diskname[16];
287 int i, error;
288
289 if ((vn = opendisk(dv)) == NULL)
290 return -1;
291
292 wl.dkwl_bufsize = sizeof(*wi) * 16;
293 wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
294
295 error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
296 VOP_CLOSE(vn, FREAD, NOCRED);
297 vput(vn);
298 if (error) {
299 #ifdef DEBUG_WEDGE
300 printf("%s: List wedges returned %d\n",
301 device_xname(dv), error);
302 #endif
303 free(wi, M_TEMP);
304 return -1;
305 }
306
307 #ifdef DEBUG_WEDGE
308 printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
309 wl.dkwl_nwedges, wl.dkwl_ncopied);
310 #endif
311 snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
312 par + 'a');
313
314 for (i = 0; i < wl.dkwl_ncopied; i++) {
315 #ifdef DEBUG_WEDGE
316 printf("%s: Looking for %s in %s\n",
317 device_xname(dv), diskname, wi[i].dkw_wname);
318 #endif
319 if (strcmp(wi[i].dkw_wname, diskname) == 0)
320 break;
321 }
322
323 if (i == wl.dkwl_ncopied) {
324 #ifdef DEBUG_WEDGE
325 printf("%s: Cannot find wedge with parent %s\n",
326 device_xname(dv), diskname);
327 #endif
328 free(wi, M_TEMP);
329 return -1;
330 }
331
332 #ifdef DEBUG_WEDGE
333 printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
334 device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
335 (unsigned long long)wi[i].dkw_offset,
336 (unsigned long long)wi[i].dkw_size);
337 #endif
338 dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
339 free(wi, M_TEMP);
340 return 0;
341 }
342
343 /*
344 * Initialize the autoconfiguration data structures. Normally this
345 * is done by configure(), but some platforms need to do this very
346 * early (to e.g. initialize the console).
347 */
348 void
349 config_init(void)
350 {
351 const struct cfattachinit *cfai;
352 int i, j;
353
354 if (config_initialized)
355 return;
356
357 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
358 cv_init(&alldevs_cv, "alldevs");
359
360 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
361 cv_init(&config_misc_cv, "cfgmisc");
362
363 /* allcfdrivers is statically initialized. */
364 for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
365 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
366 panic("configure: duplicate `%s' drivers",
367 cfdriver_list_initial[i]->cd_name);
368 }
369
370 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
371 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
372 if (config_cfattach_attach(cfai->cfai_name,
373 cfai->cfai_list[j]) != 0)
374 panic("configure: duplicate `%s' attachment "
375 "of `%s' driver",
376 cfai->cfai_list[j]->ca_name,
377 cfai->cfai_name);
378 }
379 }
380
381 initcftable.ct_cfdata = cfdata;
382 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
383
384 config_initialized = 1;
385 }
386
387 void
388 config_deferred(device_t dev)
389 {
390 config_process_deferred(&deferred_config_queue, dev);
391 config_process_deferred(&interrupt_config_queue, dev);
392 }
393
394 static void
395 config_interrupts_thread(void *cookie)
396 {
397 struct deferred_config *dc;
398
399 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
400 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
401 (*dc->dc_func)(dc->dc_dev);
402 kmem_free(dc, sizeof(*dc));
403 config_pending_decr();
404 }
405 kthread_exit(0);
406 }
407
408 /*
409 * Configure the system's hardware.
410 */
411 void
412 configure(void)
413 {
414 extern void ssp_init(void);
415 CPU_INFO_ITERATOR cii;
416 struct cpu_info *ci;
417 int i, s;
418
419 /* Initialize data structures. */
420 config_init();
421 pmf_init();
422 #if NDRVCTL > 0
423 drvctl_init();
424 #endif
425
426 #ifdef USERCONF
427 if (boothowto & RB_USERCONF)
428 user_config();
429 #endif
430
431 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
432 config_do_twiddle = 1;
433 printf_nolog("Detecting hardware...");
434 }
435
436 /*
437 * Do the machine-dependent portion of autoconfiguration. This
438 * sets the configuration machinery here in motion by "finding"
439 * the root bus. When this function returns, we expect interrupts
440 * to be enabled.
441 */
442 cpu_configure();
443
444 /* Initialize SSP. */
445 ssp_init();
446
447 /*
448 * Now that we've found all the hardware, start the real time
449 * and statistics clocks.
450 */
451 initclocks();
452
453 cold = 0; /* clocks are running, we're warm now! */
454 s = splsched();
455 curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
456 splx(s);
457
458 /* Boot the secondary processors. */
459 for (CPU_INFO_FOREACH(cii, ci)) {
460 uvm_cpu_attach(ci);
461 }
462 mp_online = true;
463 #if defined(MULTIPROCESSOR)
464 cpu_boot_secondary_processors();
465 #endif
466
467 /* Setup the runqueues and scheduler. */
468 runq_init();
469 sched_init();
470
471 /*
472 * Create threads to call back and finish configuration for
473 * devices that want interrupts enabled.
474 */
475 for (i = 0; i < interrupt_config_threads; i++) {
476 (void)kthread_create(PRI_NONE, 0, NULL,
477 config_interrupts_thread, NULL, NULL, "config");
478 }
479
480 /* Get the threads going and into any sleeps before continuing. */
481 yield();
482
483 /* Lock the kernel on behalf of lwp0. */
484 KERNEL_LOCK(1, NULL);
485 }
486
487 /*
488 * Announce device attach/detach to userland listeners.
489 */
490 static void
491 devmon_report_device(device_t dev, bool isattach)
492 {
493 #if NDRVCTL > 0
494 prop_dictionary_t ev;
495 const char *parent;
496 const char *what;
497 device_t pdev = device_parent(dev);
498
499 ev = prop_dictionary_create();
500 if (ev == NULL)
501 return;
502
503 what = (isattach ? "device-attach" : "device-detach");
504 parent = (pdev == NULL ? "root" : device_xname(pdev));
505 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
506 !prop_dictionary_set_cstring(ev, "parent", parent)) {
507 prop_object_release(ev);
508 return;
509 }
510
511 devmon_insert(what, ev);
512 #endif
513 }
514
515 /*
516 * Add a cfdriver to the system.
517 */
518 int
519 config_cfdriver_attach(struct cfdriver *cd)
520 {
521 struct cfdriver *lcd;
522
523 /* Make sure this driver isn't already in the system. */
524 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
525 if (STREQ(lcd->cd_name, cd->cd_name))
526 return (EEXIST);
527 }
528
529 LIST_INIT(&cd->cd_attach);
530 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
531
532 return (0);
533 }
534
535 /*
536 * Remove a cfdriver from the system.
537 */
538 int
539 config_cfdriver_detach(struct cfdriver *cd)
540 {
541 int i;
542
543 /* Make sure there are no active instances. */
544 for (i = 0; i < cd->cd_ndevs; i++) {
545 if (cd->cd_devs[i] != NULL)
546 return (EBUSY);
547 }
548
549 /* ...and no attachments loaded. */
550 if (LIST_EMPTY(&cd->cd_attach) == 0)
551 return (EBUSY);
552
553 LIST_REMOVE(cd, cd_list);
554
555 KASSERT(cd->cd_devs == NULL);
556
557 return (0);
558 }
559
560 /*
561 * Look up a cfdriver by name.
562 */
563 struct cfdriver *
564 config_cfdriver_lookup(const char *name)
565 {
566 struct cfdriver *cd;
567
568 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
569 if (STREQ(cd->cd_name, name))
570 return (cd);
571 }
572
573 return (NULL);
574 }
575
576 /*
577 * Add a cfattach to the specified driver.
578 */
579 int
580 config_cfattach_attach(const char *driver, struct cfattach *ca)
581 {
582 struct cfattach *lca;
583 struct cfdriver *cd;
584
585 cd = config_cfdriver_lookup(driver);
586 if (cd == NULL)
587 return (ESRCH);
588
589 /* Make sure this attachment isn't already on this driver. */
590 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
591 if (STREQ(lca->ca_name, ca->ca_name))
592 return (EEXIST);
593 }
594
595 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
596
597 return (0);
598 }
599
600 /*
601 * Remove a cfattach from the specified driver.
602 */
603 int
604 config_cfattach_detach(const char *driver, struct cfattach *ca)
605 {
606 struct cfdriver *cd;
607 device_t dev;
608 int i;
609
610 cd = config_cfdriver_lookup(driver);
611 if (cd == NULL)
612 return (ESRCH);
613
614 /* Make sure there are no active instances. */
615 for (i = 0; i < cd->cd_ndevs; i++) {
616 if ((dev = cd->cd_devs[i]) == NULL)
617 continue;
618 if (dev->dv_cfattach == ca)
619 return (EBUSY);
620 }
621
622 LIST_REMOVE(ca, ca_list);
623
624 return (0);
625 }
626
627 /*
628 * Look up a cfattach by name.
629 */
630 static struct cfattach *
631 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
632 {
633 struct cfattach *ca;
634
635 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
636 if (STREQ(ca->ca_name, atname))
637 return (ca);
638 }
639
640 return (NULL);
641 }
642
643 /*
644 * Look up a cfattach by driver/attachment name.
645 */
646 struct cfattach *
647 config_cfattach_lookup(const char *name, const char *atname)
648 {
649 struct cfdriver *cd;
650
651 cd = config_cfdriver_lookup(name);
652 if (cd == NULL)
653 return (NULL);
654
655 return (config_cfattach_lookup_cd(cd, atname));
656 }
657
658 /*
659 * Apply the matching function and choose the best. This is used
660 * a few times and we want to keep the code small.
661 */
662 static void
663 mapply(struct matchinfo *m, cfdata_t cf)
664 {
665 int pri;
666
667 if (m->fn != NULL) {
668 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
669 } else {
670 pri = config_match(m->parent, cf, m->aux);
671 }
672 if (pri > m->pri) {
673 m->match = cf;
674 m->pri = pri;
675 }
676 }
677
678 int
679 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
680 {
681 const struct cfiattrdata *ci;
682 const struct cflocdesc *cl;
683 int nlocs, i;
684
685 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
686 KASSERT(ci);
687 nlocs = ci->ci_loclen;
688 KASSERT(!nlocs || locs);
689 for (i = 0; i < nlocs; i++) {
690 cl = &ci->ci_locdesc[i];
691 /* !cld_defaultstr means no default value */
692 if ((!(cl->cld_defaultstr)
693 || (cf->cf_loc[i] != cl->cld_default))
694 && cf->cf_loc[i] != locs[i])
695 return (0);
696 }
697
698 return (config_match(parent, cf, aux));
699 }
700
701 /*
702 * Helper function: check whether the driver supports the interface attribute
703 * and return its descriptor structure.
704 */
705 static const struct cfiattrdata *
706 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
707 {
708 const struct cfiattrdata * const *cpp;
709
710 if (cd->cd_attrs == NULL)
711 return (0);
712
713 for (cpp = cd->cd_attrs; *cpp; cpp++) {
714 if (STREQ((*cpp)->ci_name, ia)) {
715 /* Match. */
716 return (*cpp);
717 }
718 }
719 return (0);
720 }
721
722 /*
723 * Lookup an interface attribute description by name.
724 * If the driver is given, consider only its supported attributes.
725 */
726 const struct cfiattrdata *
727 cfiattr_lookup(const char *name, const struct cfdriver *cd)
728 {
729 const struct cfdriver *d;
730 const struct cfiattrdata *ia;
731
732 if (cd)
733 return (cfdriver_get_iattr(cd, name));
734
735 LIST_FOREACH(d, &allcfdrivers, cd_list) {
736 ia = cfdriver_get_iattr(d, name);
737 if (ia)
738 return (ia);
739 }
740 return (0);
741 }
742
743 /*
744 * Determine if `parent' is a potential parent for a device spec based
745 * on `cfp'.
746 */
747 static int
748 cfparent_match(const device_t parent, const struct cfparent *cfp)
749 {
750 struct cfdriver *pcd;
751
752 /* We don't match root nodes here. */
753 if (cfp == NULL)
754 return (0);
755
756 pcd = parent->dv_cfdriver;
757 KASSERT(pcd != NULL);
758
759 /*
760 * First, ensure this parent has the correct interface
761 * attribute.
762 */
763 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
764 return (0);
765
766 /*
767 * If no specific parent device instance was specified (i.e.
768 * we're attaching to the attribute only), we're done!
769 */
770 if (cfp->cfp_parent == NULL)
771 return (1);
772
773 /*
774 * Check the parent device's name.
775 */
776 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
777 return (0); /* not the same parent */
778
779 /*
780 * Make sure the unit number matches.
781 */
782 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
783 cfp->cfp_unit == parent->dv_unit)
784 return (1);
785
786 /* Unit numbers don't match. */
787 return (0);
788 }
789
790 /*
791 * Helper for config_cfdata_attach(): check all devices whether it could be
792 * parent any attachment in the config data table passed, and rescan.
793 */
794 static void
795 rescan_with_cfdata(const struct cfdata *cf)
796 {
797 device_t d;
798 const struct cfdata *cf1;
799 deviter_t di;
800
801
802 /*
803 * "alldevs" is likely longer than an LKM's cfdata, so make it
804 * the outer loop.
805 */
806 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
807
808 if (!(d->dv_cfattach->ca_rescan))
809 continue;
810
811 for (cf1 = cf; cf1->cf_name; cf1++) {
812
813 if (!cfparent_match(d, cf1->cf_pspec))
814 continue;
815
816 (*d->dv_cfattach->ca_rescan)(d,
817 cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
818 }
819 }
820 deviter_release(&di);
821 }
822
823 /*
824 * Attach a supplemental config data table and rescan potential
825 * parent devices if required.
826 */
827 int
828 config_cfdata_attach(cfdata_t cf, int scannow)
829 {
830 struct cftable *ct;
831
832 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
833 ct->ct_cfdata = cf;
834 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
835
836 if (scannow)
837 rescan_with_cfdata(cf);
838
839 return (0);
840 }
841
842 /*
843 * Helper for config_cfdata_detach: check whether a device is
844 * found through any attachment in the config data table.
845 */
846 static int
847 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
848 {
849 const struct cfdata *cf1;
850
851 for (cf1 = cf; cf1->cf_name; cf1++)
852 if (d->dv_cfdata == cf1)
853 return (1);
854
855 return (0);
856 }
857
858 /*
859 * Detach a supplemental config data table. Detach all devices found
860 * through that table (and thus keeping references to it) before.
861 */
862 int
863 config_cfdata_detach(cfdata_t cf)
864 {
865 device_t d;
866 int error = 0;
867 struct cftable *ct;
868 deviter_t di;
869
870 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
871 d = deviter_next(&di)) {
872 if (!dev_in_cfdata(d, cf))
873 continue;
874 if ((error = config_detach(d, 0)) != 0)
875 break;
876 }
877 deviter_release(&di);
878 if (error) {
879 aprint_error_dev(d, "unable to detach instance\n");
880 return error;
881 }
882
883 TAILQ_FOREACH(ct, &allcftables, ct_list) {
884 if (ct->ct_cfdata == cf) {
885 TAILQ_REMOVE(&allcftables, ct, ct_list);
886 kmem_free(ct, sizeof(*ct));
887 return (0);
888 }
889 }
890
891 /* not found -- shouldn't happen */
892 return (EINVAL);
893 }
894
895 /*
896 * Invoke the "match" routine for a cfdata entry on behalf of
897 * an external caller, usually a "submatch" routine.
898 */
899 int
900 config_match(device_t parent, cfdata_t cf, void *aux)
901 {
902 struct cfattach *ca;
903
904 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
905 if (ca == NULL) {
906 /* No attachment for this entry, oh well. */
907 return (0);
908 }
909
910 return ((*ca->ca_match)(parent, cf, aux));
911 }
912
913 /*
914 * Iterate over all potential children of some device, calling the given
915 * function (default being the child's match function) for each one.
916 * Nonzero returns are matches; the highest value returned is considered
917 * the best match. Return the `found child' if we got a match, or NULL
918 * otherwise. The `aux' pointer is simply passed on through.
919 *
920 * Note that this function is designed so that it can be used to apply
921 * an arbitrary function to all potential children (its return value
922 * can be ignored).
923 */
924 cfdata_t
925 config_search_loc(cfsubmatch_t fn, device_t parent,
926 const char *ifattr, const int *locs, void *aux)
927 {
928 struct cftable *ct;
929 cfdata_t cf;
930 struct matchinfo m;
931
932 KASSERT(config_initialized);
933 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
934
935 m.fn = fn;
936 m.parent = parent;
937 m.locs = locs;
938 m.aux = aux;
939 m.match = NULL;
940 m.pri = 0;
941
942 TAILQ_FOREACH(ct, &allcftables, ct_list) {
943 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
944
945 /* We don't match root nodes here. */
946 if (!cf->cf_pspec)
947 continue;
948
949 /*
950 * Skip cf if no longer eligible, otherwise scan
951 * through parents for one matching `parent', and
952 * try match function.
953 */
954 if (cf->cf_fstate == FSTATE_FOUND)
955 continue;
956 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
957 cf->cf_fstate == FSTATE_DSTAR)
958 continue;
959
960 /*
961 * If an interface attribute was specified,
962 * consider only children which attach to
963 * that attribute.
964 */
965 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
966 continue;
967
968 if (cfparent_match(parent, cf->cf_pspec))
969 mapply(&m, cf);
970 }
971 }
972 return (m.match);
973 }
974
975 cfdata_t
976 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
977 void *aux)
978 {
979
980 return (config_search_loc(fn, parent, ifattr, NULL, aux));
981 }
982
983 /*
984 * Find the given root device.
985 * This is much like config_search, but there is no parent.
986 * Don't bother with multiple cfdata tables; the root node
987 * must always be in the initial table.
988 */
989 cfdata_t
990 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
991 {
992 cfdata_t cf;
993 const short *p;
994 struct matchinfo m;
995
996 m.fn = fn;
997 m.parent = ROOT;
998 m.aux = aux;
999 m.match = NULL;
1000 m.pri = 0;
1001 m.locs = 0;
1002 /*
1003 * Look at root entries for matching name. We do not bother
1004 * with found-state here since only one root should ever be
1005 * searched (and it must be done first).
1006 */
1007 for (p = cfroots; *p >= 0; p++) {
1008 cf = &cfdata[*p];
1009 if (strcmp(cf->cf_name, rootname) == 0)
1010 mapply(&m, cf);
1011 }
1012 return (m.match);
1013 }
1014
1015 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1016
1017 /*
1018 * The given `aux' argument describes a device that has been found
1019 * on the given parent, but not necessarily configured. Locate the
1020 * configuration data for that device (using the submatch function
1021 * provided, or using candidates' cd_match configuration driver
1022 * functions) and attach it, and return true. If the device was
1023 * not configured, call the given `print' function and return 0.
1024 */
1025 device_t
1026 config_found_sm_loc(device_t parent,
1027 const char *ifattr, const int *locs, void *aux,
1028 cfprint_t print, cfsubmatch_t submatch)
1029 {
1030 cfdata_t cf;
1031
1032 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1033 if (splash_progress_state)
1034 splash_progress_update(splash_progress_state);
1035 #endif
1036
1037 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1038 return(config_attach_loc(parent, cf, locs, aux, print));
1039 if (print) {
1040 if (config_do_twiddle)
1041 twiddle();
1042 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1043 }
1044
1045 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1046 if (splash_progress_state)
1047 splash_progress_update(splash_progress_state);
1048 #endif
1049
1050 return (NULL);
1051 }
1052
1053 device_t
1054 config_found_ia(device_t parent, const char *ifattr, void *aux,
1055 cfprint_t print)
1056 {
1057
1058 return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
1059 }
1060
1061 device_t
1062 config_found(device_t parent, void *aux, cfprint_t print)
1063 {
1064
1065 return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
1066 }
1067
1068 /*
1069 * As above, but for root devices.
1070 */
1071 device_t
1072 config_rootfound(const char *rootname, void *aux)
1073 {
1074 cfdata_t cf;
1075
1076 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1077 return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
1078 aprint_error("root device %s not configured\n", rootname);
1079 return (NULL);
1080 }
1081
1082 /* just like sprintf(buf, "%d") except that it works from the end */
1083 static char *
1084 number(char *ep, int n)
1085 {
1086
1087 *--ep = 0;
1088 while (n >= 10) {
1089 *--ep = (n % 10) + '0';
1090 n /= 10;
1091 }
1092 *--ep = n + '0';
1093 return (ep);
1094 }
1095
1096 /*
1097 * Expand the size of the cd_devs array if necessary.
1098 */
1099 static void
1100 config_makeroom(int n, struct cfdriver *cd)
1101 {
1102 const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
1103 int old, new;
1104 device_t *nsp;
1105
1106 if (n < cd->cd_ndevs)
1107 return;
1108
1109 /*
1110 * Need to expand the array.
1111 */
1112 old = cd->cd_ndevs;
1113 if (old == 0)
1114 new = 4;
1115 else
1116 new = old * 2;
1117 while (new <= n)
1118 new *= 2;
1119 cd->cd_ndevs = new;
1120 nsp = kmem_alloc(sizeof(device_t [new]), kmflags);
1121 if (nsp == NULL)
1122 panic("config_attach: %sing dev array",
1123 old != 0 ? "expand" : "creat");
1124 memset(nsp + old, 0, sizeof(device_t [new - old]));
1125 if (old != 0) {
1126 memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
1127 kmem_free(cd->cd_devs, sizeof(device_t [old]));
1128 }
1129 cd->cd_devs = nsp;
1130 }
1131
1132 static void
1133 config_devlink(device_t dev)
1134 {
1135 struct cfdriver *cd = dev->dv_cfdriver;
1136
1137 /* put this device in the devices array */
1138 config_makeroom(dev->dv_unit, cd);
1139 if (cd->cd_devs[dev->dv_unit])
1140 panic("config_attach: duplicate %s", device_xname(dev));
1141 cd->cd_devs[dev->dv_unit] = dev;
1142
1143 /* It is safe to add a device to the tail of the list while
1144 * readers are in the list, but not while a writer is in
1145 * the list. Wait for any writer to complete.
1146 */
1147 mutex_enter(&alldevs_mtx);
1148 while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1149 cv_wait(&alldevs_cv, &alldevs_mtx);
1150 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
1151 cv_signal(&alldevs_cv);
1152 mutex_exit(&alldevs_mtx);
1153 }
1154
1155 static void
1156 config_devunlink(device_t dev)
1157 {
1158 struct cfdriver *cd = dev->dv_cfdriver;
1159 int i;
1160
1161 /* Unlink from device list. */
1162 TAILQ_REMOVE(&alldevs, dev, dv_list);
1163
1164 /* Remove from cfdriver's array. */
1165 cd->cd_devs[dev->dv_unit] = NULL;
1166
1167 /*
1168 * If the device now has no units in use, deallocate its softc array.
1169 */
1170 for (i = 0; i < cd->cd_ndevs; i++) {
1171 if (cd->cd_devs[i] != NULL)
1172 return;
1173 }
1174 /* nothing found; deallocate */
1175 kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
1176 cd->cd_devs = NULL;
1177 cd->cd_ndevs = 0;
1178 }
1179
1180 static device_t
1181 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1182 {
1183 struct cfdriver *cd;
1184 struct cfattach *ca;
1185 size_t lname, lunit;
1186 const char *xunit;
1187 int myunit;
1188 char num[10];
1189 device_t dev;
1190 void *dev_private;
1191 const struct cfiattrdata *ia;
1192 const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
1193
1194 cd = config_cfdriver_lookup(cf->cf_name);
1195 if (cd == NULL)
1196 return (NULL);
1197
1198 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1199 if (ca == NULL)
1200 return (NULL);
1201
1202 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1203 ca->ca_devsize < sizeof(struct device))
1204 panic("config_devalloc: %s", cf->cf_atname);
1205
1206 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1207 if (cf->cf_fstate == FSTATE_STAR) {
1208 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1209 if (cd->cd_devs[myunit] == NULL)
1210 break;
1211 /*
1212 * myunit is now the unit of the first NULL device pointer,
1213 * or max(cd->cd_ndevs,cf->cf_unit).
1214 */
1215 } else {
1216 myunit = cf->cf_unit;
1217 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1218 return (NULL);
1219 }
1220 #else
1221 myunit = cf->cf_unit;
1222 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1223
1224 /* compute length of name and decimal expansion of unit number */
1225 lname = strlen(cd->cd_name);
1226 xunit = number(&num[sizeof(num)], myunit);
1227 lunit = &num[sizeof(num)] - xunit;
1228 if (lname + lunit > sizeof(dev->dv_xname))
1229 panic("config_devalloc: device name too long");
1230
1231 /* get memory for all device vars */
1232 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1233 if (ca->ca_devsize > 0) {
1234 dev_private = kmem_zalloc(ca->ca_devsize, kmflags);
1235 if (dev_private == NULL)
1236 panic("config_devalloc: memory allocation for device softc failed");
1237 } else {
1238 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1239 dev_private = NULL;
1240 }
1241
1242 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1243 dev = kmem_zalloc(sizeof(*dev), kmflags);
1244 } else {
1245 dev = dev_private;
1246 }
1247 if (dev == NULL)
1248 panic("config_devalloc: memory allocation for device_t failed");
1249
1250 dev->dv_class = cd->cd_class;
1251 dev->dv_cfdata = cf;
1252 dev->dv_cfdriver = cd;
1253 dev->dv_cfattach = ca;
1254 dev->dv_unit = myunit;
1255 dev->dv_activity_count = 0;
1256 dev->dv_activity_handlers = NULL;
1257 dev->dv_private = dev_private;
1258 memcpy(dev->dv_xname, cd->cd_name, lname);
1259 memcpy(dev->dv_xname + lname, xunit, lunit);
1260 dev->dv_parent = parent;
1261 if (parent != NULL)
1262 dev->dv_depth = parent->dv_depth + 1;
1263 else
1264 dev->dv_depth = 0;
1265 dev->dv_flags = DVF_ACTIVE; /* always initially active */
1266 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
1267 if (locs) {
1268 KASSERT(parent); /* no locators at root */
1269 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1270 parent->dv_cfdriver);
1271 dev->dv_locators =
1272 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), kmflags);
1273 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1274 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1275 }
1276 dev->dv_properties = prop_dictionary_create();
1277 KASSERT(dev->dv_properties != NULL);
1278
1279 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1280 "device-driver", dev->dv_cfdriver->cd_name);
1281 prop_dictionary_set_uint16(dev->dv_properties,
1282 "device-unit", dev->dv_unit);
1283
1284 return (dev);
1285 }
1286
1287 static void
1288 config_devdealloc(device_t dev)
1289 {
1290
1291 KASSERT(dev->dv_properties != NULL);
1292 prop_object_release(dev->dv_properties);
1293
1294 if (dev->dv_activity_handlers)
1295 panic("config_devdealloc with registered handlers");
1296
1297 if (dev->dv_locators) {
1298 size_t amount = *--dev->dv_locators;
1299 kmem_free(dev->dv_locators, amount);
1300 }
1301
1302 /*
1303 * Only free dv_private if we allocated it. If ca_devsize was 0,
1304 * we didn't allocate it so don't free it either.
1305 */
1306 if ((dev->dv_flags & DVF_PRIV_ALLOC) != 0
1307 && dev->dv_cfattach->ca_devsize > 0)
1308 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1309
1310 kmem_free(dev, sizeof(*dev));
1311 }
1312
1313 /*
1314 * Attach a found device.
1315 */
1316 device_t
1317 config_attach_loc(device_t parent, cfdata_t cf,
1318 const int *locs, void *aux, cfprint_t print)
1319 {
1320 device_t dev;
1321 struct cftable *ct;
1322 const char *drvname;
1323
1324 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1325 if (splash_progress_state)
1326 splash_progress_update(splash_progress_state);
1327 #endif
1328
1329 dev = config_devalloc(parent, cf, locs);
1330 if (!dev)
1331 panic("config_attach: allocation of device softc failed");
1332
1333 /* XXX redundant - see below? */
1334 if (cf->cf_fstate != FSTATE_STAR) {
1335 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1336 cf->cf_fstate = FSTATE_FOUND;
1337 }
1338 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1339 else
1340 cf->cf_unit++;
1341 #endif
1342
1343 config_devlink(dev);
1344
1345 if (config_do_twiddle)
1346 twiddle();
1347 else
1348 aprint_naive("Found ");
1349 /*
1350 * We want the next two printfs for normal, verbose, and quiet,
1351 * but not silent (in which case, we're twiddling, instead).
1352 */
1353 if (parent == ROOT) {
1354 aprint_naive("%s (root)", device_xname(dev));
1355 aprint_normal("%s (root)", device_xname(dev));
1356 } else {
1357 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1358 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1359 if (print)
1360 (void) (*print)(aux, NULL);
1361 }
1362
1363 /*
1364 * Before attaching, clobber any unfound devices that are
1365 * otherwise identical.
1366 * XXX code above is redundant?
1367 */
1368 drvname = dev->dv_cfdriver->cd_name;
1369 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1370 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1371 if (STREQ(cf->cf_name, drvname) &&
1372 cf->cf_unit == dev->dv_unit) {
1373 if (cf->cf_fstate == FSTATE_NOTFOUND)
1374 cf->cf_fstate = FSTATE_FOUND;
1375 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1376 /*
1377 * Bump the unit number on all starred cfdata
1378 * entries for this device.
1379 */
1380 if (cf->cf_fstate == FSTATE_STAR)
1381 cf->cf_unit++;
1382 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1383 }
1384 }
1385 }
1386 #ifdef __HAVE_DEVICE_REGISTER
1387 device_register(dev, aux);
1388 #endif
1389
1390 /* Let userland know */
1391 devmon_report_device(dev, true);
1392
1393 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1394 if (splash_progress_state)
1395 splash_progress_update(splash_progress_state);
1396 #endif
1397 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1398 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1399 if (splash_progress_state)
1400 splash_progress_update(splash_progress_state);
1401 #endif
1402
1403 if (!device_pmf_is_registered(dev))
1404 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1405
1406 config_process_deferred(&deferred_config_queue, dev);
1407 return (dev);
1408 }
1409
1410 device_t
1411 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1412 {
1413
1414 return (config_attach_loc(parent, cf, NULL, aux, print));
1415 }
1416
1417 /*
1418 * As above, but for pseudo-devices. Pseudo-devices attached in this
1419 * way are silently inserted into the device tree, and their children
1420 * attached.
1421 *
1422 * Note that because pseudo-devices are attached silently, any information
1423 * the attach routine wishes to print should be prefixed with the device
1424 * name by the attach routine.
1425 */
1426 device_t
1427 config_attach_pseudo(cfdata_t cf)
1428 {
1429 device_t dev;
1430
1431 dev = config_devalloc(ROOT, cf, NULL);
1432 if (!dev)
1433 return (NULL);
1434
1435 /* XXX mark busy in cfdata */
1436
1437 config_devlink(dev);
1438
1439 #if 0 /* XXXJRT not yet */
1440 #ifdef __HAVE_DEVICE_REGISTER
1441 device_register(dev, NULL); /* like a root node */
1442 #endif
1443 #endif
1444 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1445 config_process_deferred(&deferred_config_queue, dev);
1446 return (dev);
1447 }
1448
1449 /*
1450 * Detach a device. Optionally forced (e.g. because of hardware
1451 * removal) and quiet. Returns zero if successful, non-zero
1452 * (an error code) otherwise.
1453 *
1454 * Note that this code wants to be run from a process context, so
1455 * that the detach can sleep to allow processes which have a device
1456 * open to run and unwind their stacks.
1457 */
1458 int
1459 config_detach(device_t dev, int flags)
1460 {
1461 struct cftable *ct;
1462 cfdata_t cf;
1463 const struct cfattach *ca;
1464 struct cfdriver *cd;
1465 #ifdef DIAGNOSTIC
1466 device_t d;
1467 #endif
1468 int rv = 0;
1469
1470 #ifdef DIAGNOSTIC
1471 if (dev->dv_cfdata != NULL &&
1472 dev->dv_cfdata->cf_fstate != FSTATE_FOUND &&
1473 dev->dv_cfdata->cf_fstate != FSTATE_STAR)
1474 panic("config_detach: bad device fstate");
1475 #endif
1476 cd = dev->dv_cfdriver;
1477 KASSERT(cd != NULL);
1478
1479 ca = dev->dv_cfattach;
1480 KASSERT(ca != NULL);
1481
1482 KASSERT(curlwp != NULL);
1483 mutex_enter(&alldevs_mtx);
1484 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1485 ;
1486 else while (alldevs_nread != 0 ||
1487 (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1488 cv_wait(&alldevs_cv, &alldevs_mtx);
1489 if (alldevs_nwrite++ == 0)
1490 alldevs_writer = curlwp;
1491 mutex_exit(&alldevs_mtx);
1492
1493 /*
1494 * Ensure the device is deactivated. If the device doesn't
1495 * have an activation entry point, we allow DVF_ACTIVE to
1496 * remain set. Otherwise, if DVF_ACTIVE is still set, the
1497 * device is busy, and the detach fails.
1498 */
1499 if (ca->ca_activate != NULL)
1500 rv = config_deactivate(dev);
1501
1502 /*
1503 * Try to detach the device. If that's not possible, then
1504 * we either panic() (for the forced but failed case), or
1505 * return an error.
1506 */
1507 if (rv == 0) {
1508 if (ca->ca_detach != NULL)
1509 rv = (*ca->ca_detach)(dev, flags);
1510 else
1511 rv = EOPNOTSUPP;
1512 }
1513 if (rv != 0) {
1514 if ((flags & DETACH_FORCE) == 0)
1515 goto out;
1516 else
1517 panic("config_detach: forced detach of %s failed (%d)",
1518 device_xname(dev), rv);
1519 }
1520
1521 /*
1522 * The device has now been successfully detached.
1523 */
1524
1525 /* Let userland know */
1526 devmon_report_device(dev, false);
1527
1528 #ifdef DIAGNOSTIC
1529 /*
1530 * Sanity: If you're successfully detached, you should have no
1531 * children. (Note that because children must be attached
1532 * after parents, we only need to search the latter part of
1533 * the list.)
1534 */
1535 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1536 d = TAILQ_NEXT(d, dv_list)) {
1537 if (d->dv_parent == dev) {
1538 printf("config_detach: detached device %s"
1539 " has children %s\n", device_xname(dev), device_xname(d));
1540 panic("config_detach");
1541 }
1542 }
1543 #endif
1544
1545 /* notify the parent that the child is gone */
1546 if (dev->dv_parent) {
1547 device_t p = dev->dv_parent;
1548 if (p->dv_cfattach->ca_childdetached)
1549 (*p->dv_cfattach->ca_childdetached)(p, dev);
1550 }
1551
1552 /*
1553 * Mark cfdata to show that the unit can be reused, if possible.
1554 */
1555 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1556 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1557 if (STREQ(cf->cf_name, cd->cd_name)) {
1558 if (cf->cf_fstate == FSTATE_FOUND &&
1559 cf->cf_unit == dev->dv_unit)
1560 cf->cf_fstate = FSTATE_NOTFOUND;
1561 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1562 /*
1563 * Note that we can only re-use a starred
1564 * unit number if the unit being detached
1565 * had the last assigned unit number.
1566 */
1567 if (cf->cf_fstate == FSTATE_STAR &&
1568 cf->cf_unit == dev->dv_unit + 1)
1569 cf->cf_unit--;
1570 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1571 }
1572 }
1573 }
1574
1575 config_devunlink(dev);
1576
1577 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1578 aprint_normal_dev(dev, "detached\n");
1579
1580 config_devdealloc(dev);
1581
1582 out:
1583 mutex_enter(&alldevs_mtx);
1584 if (--alldevs_nwrite == 0)
1585 alldevs_writer = NULL;
1586 cv_signal(&alldevs_cv);
1587 mutex_exit(&alldevs_mtx);
1588 return rv;
1589 }
1590
1591 int
1592 config_detach_children(device_t parent, int flags)
1593 {
1594 device_t dv;
1595 deviter_t di;
1596 int error = 0;
1597
1598 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1599 dv = deviter_next(&di)) {
1600 if (device_parent(dv) != parent)
1601 continue;
1602 if ((error = config_detach(dv, flags)) != 0)
1603 break;
1604 }
1605 deviter_release(&di);
1606 return error;
1607 }
1608
1609 int
1610 config_activate(device_t dev)
1611 {
1612 const struct cfattach *ca = dev->dv_cfattach;
1613 int rv = 0, oflags = dev->dv_flags;
1614
1615 if (ca->ca_activate == NULL)
1616 return (EOPNOTSUPP);
1617
1618 if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1619 dev->dv_flags |= DVF_ACTIVE;
1620 rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1621 if (rv)
1622 dev->dv_flags = oflags;
1623 }
1624 return (rv);
1625 }
1626
1627 int
1628 config_deactivate(device_t dev)
1629 {
1630 const struct cfattach *ca = dev->dv_cfattach;
1631 int rv = 0, oflags = dev->dv_flags;
1632
1633 if (ca->ca_activate == NULL)
1634 return (EOPNOTSUPP);
1635
1636 if (dev->dv_flags & DVF_ACTIVE) {
1637 dev->dv_flags &= ~DVF_ACTIVE;
1638 rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1639 if (rv)
1640 dev->dv_flags = oflags;
1641 }
1642 return (rv);
1643 }
1644
1645 /*
1646 * Defer the configuration of the specified device until all
1647 * of its parent's devices have been attached.
1648 */
1649 void
1650 config_defer(device_t dev, void (*func)(device_t))
1651 {
1652 const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
1653 struct deferred_config *dc;
1654
1655 if (dev->dv_parent == NULL)
1656 panic("config_defer: can't defer config of a root device");
1657
1658 #ifdef DIAGNOSTIC
1659 for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1660 dc = TAILQ_NEXT(dc, dc_queue)) {
1661 if (dc->dc_dev == dev)
1662 panic("config_defer: deferred twice");
1663 }
1664 #endif
1665
1666 dc = kmem_alloc(sizeof(*dc), kmflags);
1667 if (dc == NULL)
1668 panic("config_defer: unable to allocate callback");
1669
1670 dc->dc_dev = dev;
1671 dc->dc_func = func;
1672 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1673 config_pending_incr();
1674 }
1675
1676 /*
1677 * Defer some autoconfiguration for a device until after interrupts
1678 * are enabled.
1679 */
1680 void
1681 config_interrupts(device_t dev, void (*func)(device_t))
1682 {
1683 const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
1684 struct deferred_config *dc;
1685
1686 /*
1687 * If interrupts are enabled, callback now.
1688 */
1689 if (cold == 0) {
1690 (*func)(dev);
1691 return;
1692 }
1693
1694 #ifdef DIAGNOSTIC
1695 for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1696 dc = TAILQ_NEXT(dc, dc_queue)) {
1697 if (dc->dc_dev == dev)
1698 panic("config_interrupts: deferred twice");
1699 }
1700 #endif
1701
1702 dc = kmem_alloc(sizeof(*dc), kmflags);
1703 if (dc == NULL)
1704 panic("config_interrupts: unable to allocate callback");
1705
1706 dc->dc_dev = dev;
1707 dc->dc_func = func;
1708 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1709 config_pending_incr();
1710 }
1711
1712 /*
1713 * Process a deferred configuration queue.
1714 */
1715 static void
1716 config_process_deferred(struct deferred_config_head *queue,
1717 device_t parent)
1718 {
1719 struct deferred_config *dc, *ndc;
1720
1721 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1722 ndc = TAILQ_NEXT(dc, dc_queue);
1723 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1724 TAILQ_REMOVE(queue, dc, dc_queue);
1725 (*dc->dc_func)(dc->dc_dev);
1726 kmem_free(dc, sizeof(*dc));
1727 config_pending_decr();
1728 }
1729 }
1730 }
1731
1732 /*
1733 * Manipulate the config_pending semaphore.
1734 */
1735 void
1736 config_pending_incr(void)
1737 {
1738
1739 mutex_enter(&config_misc_lock);
1740 config_pending++;
1741 mutex_exit(&config_misc_lock);
1742 }
1743
1744 void
1745 config_pending_decr(void)
1746 {
1747
1748 #ifdef DIAGNOSTIC
1749 if (config_pending == 0)
1750 panic("config_pending_decr: config_pending == 0");
1751 #endif
1752 mutex_enter(&config_misc_lock);
1753 config_pending--;
1754 if (config_pending == 0)
1755 cv_broadcast(&config_misc_cv);
1756 mutex_exit(&config_misc_lock);
1757 }
1758
1759 /*
1760 * Register a "finalization" routine. Finalization routines are
1761 * called iteratively once all real devices have been found during
1762 * autoconfiguration, for as long as any one finalizer has done
1763 * any work.
1764 */
1765 int
1766 config_finalize_register(device_t dev, int (*fn)(device_t))
1767 {
1768 struct finalize_hook *f;
1769
1770 /*
1771 * If finalization has already been done, invoke the
1772 * callback function now.
1773 */
1774 if (config_finalize_done) {
1775 while ((*fn)(dev) != 0)
1776 /* loop */ ;
1777 }
1778
1779 /* Ensure this isn't already on the list. */
1780 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1781 if (f->f_func == fn && f->f_dev == dev)
1782 return (EEXIST);
1783 }
1784
1785 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1786 f->f_func = fn;
1787 f->f_dev = dev;
1788 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1789
1790 return (0);
1791 }
1792
1793 void
1794 config_finalize(void)
1795 {
1796 struct finalize_hook *f;
1797 struct pdevinit *pdev;
1798 extern struct pdevinit pdevinit[];
1799 int errcnt, rv;
1800
1801 /*
1802 * Now that device driver threads have been created, wait for
1803 * them to finish any deferred autoconfiguration.
1804 */
1805 mutex_enter(&config_misc_lock);
1806 while (config_pending != 0)
1807 cv_wait(&config_misc_cv, &config_misc_lock);
1808 mutex_exit(&config_misc_lock);
1809
1810 /* Attach pseudo-devices. */
1811 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1812 (*pdev->pdev_attach)(pdev->pdev_count);
1813
1814 /* Run the hooks until none of them does any work. */
1815 do {
1816 rv = 0;
1817 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1818 rv |= (*f->f_func)(f->f_dev);
1819 } while (rv != 0);
1820
1821 config_finalize_done = 1;
1822
1823 /* Now free all the hooks. */
1824 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1825 TAILQ_REMOVE(&config_finalize_list, f, f_list);
1826 kmem_free(f, sizeof(*f));
1827 }
1828
1829 errcnt = aprint_get_error_count();
1830 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1831 (boothowto & AB_VERBOSE) == 0) {
1832 if (config_do_twiddle) {
1833 config_do_twiddle = 0;
1834 printf_nolog("done.\n");
1835 }
1836 if (errcnt != 0) {
1837 printf("WARNING: %d error%s while detecting hardware; "
1838 "check system log.\n", errcnt,
1839 errcnt == 1 ? "" : "s");
1840 }
1841 }
1842 }
1843
1844 /*
1845 * device_lookup:
1846 *
1847 * Look up a device instance for a given driver.
1848 */
1849 device_t
1850 device_lookup(cfdriver_t cd, int unit)
1851 {
1852
1853 if (unit < 0 || unit >= cd->cd_ndevs)
1854 return (NULL);
1855
1856 return (cd->cd_devs[unit]);
1857 }
1858
1859 /*
1860 * device_lookup:
1861 *
1862 * Look up a device instance for a given driver.
1863 */
1864 void *
1865 device_lookup_private(cfdriver_t cd, int unit)
1866 {
1867 device_t dv;
1868
1869 if (unit < 0 || unit >= cd->cd_ndevs)
1870 return NULL;
1871
1872 if ((dv = cd->cd_devs[unit]) == NULL)
1873 return NULL;
1874
1875 return dv->dv_private;
1876 }
1877
1878 /*
1879 * Accessor functions for the device_t type.
1880 */
1881 devclass_t
1882 device_class(device_t dev)
1883 {
1884
1885 return (dev->dv_class);
1886 }
1887
1888 cfdata_t
1889 device_cfdata(device_t dev)
1890 {
1891
1892 return (dev->dv_cfdata);
1893 }
1894
1895 cfdriver_t
1896 device_cfdriver(device_t dev)
1897 {
1898
1899 return (dev->dv_cfdriver);
1900 }
1901
1902 cfattach_t
1903 device_cfattach(device_t dev)
1904 {
1905
1906 return (dev->dv_cfattach);
1907 }
1908
1909 int
1910 device_unit(device_t dev)
1911 {
1912
1913 return (dev->dv_unit);
1914 }
1915
1916 const char *
1917 device_xname(device_t dev)
1918 {
1919
1920 return (dev->dv_xname);
1921 }
1922
1923 device_t
1924 device_parent(device_t dev)
1925 {
1926
1927 return (dev->dv_parent);
1928 }
1929
1930 bool
1931 device_is_active(device_t dev)
1932 {
1933 int active_flags;
1934
1935 active_flags = DVF_ACTIVE;
1936 active_flags |= DVF_CLASS_SUSPENDED;
1937 active_flags |= DVF_DRIVER_SUSPENDED;
1938 active_flags |= DVF_BUS_SUSPENDED;
1939
1940 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1941 }
1942
1943 bool
1944 device_is_enabled(device_t dev)
1945 {
1946 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1947 }
1948
1949 bool
1950 device_has_power(device_t dev)
1951 {
1952 int active_flags;
1953
1954 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1955
1956 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1957 }
1958
1959 int
1960 device_locator(device_t dev, u_int locnum)
1961 {
1962
1963 KASSERT(dev->dv_locators != NULL);
1964 return (dev->dv_locators[locnum]);
1965 }
1966
1967 void *
1968 device_private(device_t dev)
1969 {
1970
1971 /*
1972 * The reason why device_private(NULL) is allowed is to simplify the
1973 * work of a lot of userspace request handlers (i.e., c/bdev
1974 * handlers) which grab cfdriver_t->cd_units[n].
1975 * It avoids having them test for it to be NULL and only then calling
1976 * device_private.
1977 */
1978 return dev == NULL ? NULL : dev->dv_private;
1979 }
1980
1981 prop_dictionary_t
1982 device_properties(device_t dev)
1983 {
1984
1985 return (dev->dv_properties);
1986 }
1987
1988 /*
1989 * device_is_a:
1990 *
1991 * Returns true if the device is an instance of the specified
1992 * driver.
1993 */
1994 bool
1995 device_is_a(device_t dev, const char *dname)
1996 {
1997
1998 return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
1999 }
2000
2001 /*
2002 * device_find_by_xname:
2003 *
2004 * Returns the device of the given name or NULL if it doesn't exist.
2005 */
2006 device_t
2007 device_find_by_xname(const char *name)
2008 {
2009 device_t dv;
2010 deviter_t di;
2011
2012 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2013 if (strcmp(device_xname(dv), name) == 0)
2014 break;
2015 }
2016 deviter_release(&di);
2017
2018 return dv;
2019 }
2020
2021 /*
2022 * device_find_by_driver_unit:
2023 *
2024 * Returns the device of the given driver name and unit or
2025 * NULL if it doesn't exist.
2026 */
2027 device_t
2028 device_find_by_driver_unit(const char *name, int unit)
2029 {
2030 struct cfdriver *cd;
2031
2032 if ((cd = config_cfdriver_lookup(name)) == NULL)
2033 return NULL;
2034 return device_lookup(cd, unit);
2035 }
2036
2037 /*
2038 * Power management related functions.
2039 */
2040
2041 bool
2042 device_pmf_is_registered(device_t dev)
2043 {
2044 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2045 }
2046
2047 bool
2048 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
2049 {
2050 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2051 return true;
2052 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2053 return false;
2054 if (*dev->dv_driver_suspend != NULL &&
2055 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
2056 return false;
2057
2058 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2059 return true;
2060 }
2061
2062 bool
2063 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
2064 {
2065 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2066 return true;
2067 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2068 return false;
2069 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2070 return false;
2071 if (*dev->dv_driver_resume != NULL &&
2072 !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2073 return false;
2074
2075 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2076 return true;
2077 }
2078
2079 bool
2080 device_pmf_driver_shutdown(device_t dev, int how)
2081 {
2082
2083 if (*dev->dv_driver_shutdown != NULL &&
2084 !(*dev->dv_driver_shutdown)(dev, how))
2085 return false;
2086 return true;
2087 }
2088
2089 bool
2090 device_pmf_driver_register(device_t dev,
2091 bool (*suspend)(device_t PMF_FN_PROTO),
2092 bool (*resume)(device_t PMF_FN_PROTO),
2093 bool (*shutdown)(device_t, int))
2094 {
2095 pmf_private_t *pp;
2096
2097 if ((pp = kmem_zalloc(sizeof(*pp), KM_NOSLEEP)) == NULL)
2098 return false;
2099 mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
2100 cv_init(&pp->pp_cv, "pmfsusp");
2101 dev->dv_pmf_private = pp;
2102
2103 dev->dv_driver_suspend = suspend;
2104 dev->dv_driver_resume = resume;
2105 dev->dv_driver_shutdown = shutdown;
2106 dev->dv_flags |= DVF_POWER_HANDLERS;
2107 return true;
2108 }
2109
2110 static const char *
2111 curlwp_name(void)
2112 {
2113 if (curlwp->l_name != NULL)
2114 return curlwp->l_name;
2115 else
2116 return curlwp->l_proc->p_comm;
2117 }
2118
2119 void
2120 device_pmf_driver_deregister(device_t dev)
2121 {
2122 pmf_private_t *pp = dev->dv_pmf_private;
2123
2124 /* XXX avoid crash in case we are not initialized */
2125 if (!pp)
2126 return;
2127
2128 dev->dv_driver_suspend = NULL;
2129 dev->dv_driver_resume = NULL;
2130
2131 mutex_enter(&pp->pp_mtx);
2132 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2133 while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
2134 /* Wake a thread that waits for the lock. That
2135 * thread will fail to acquire the lock, and then
2136 * it will wake the next thread that waits for the
2137 * lock, or else it will wake us.
2138 */
2139 cv_signal(&pp->pp_cv);
2140 pmflock_debug(dev, __func__, __LINE__);
2141 cv_wait(&pp->pp_cv, &pp->pp_mtx);
2142 pmflock_debug(dev, __func__, __LINE__);
2143 }
2144 dev->dv_pmf_private = NULL;
2145 mutex_exit(&pp->pp_mtx);
2146
2147 cv_destroy(&pp->pp_cv);
2148 mutex_destroy(&pp->pp_mtx);
2149 kmem_free(pp, sizeof(*pp));
2150 }
2151
2152 bool
2153 device_pmf_driver_child_register(device_t dev)
2154 {
2155 device_t parent = device_parent(dev);
2156
2157 if (parent == NULL || parent->dv_driver_child_register == NULL)
2158 return true;
2159 return (*parent->dv_driver_child_register)(dev);
2160 }
2161
2162 void
2163 device_pmf_driver_set_child_register(device_t dev,
2164 bool (*child_register)(device_t))
2165 {
2166 dev->dv_driver_child_register = child_register;
2167 }
2168
2169 void
2170 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2171 {
2172 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2173 if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2174 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2175 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2176 }
2177
2178 bool
2179 device_is_self_suspended(device_t dev)
2180 {
2181 return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2182 }
2183
2184 void
2185 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2186 {
2187 bool self = (flags & PMF_F_SELF) != 0;
2188
2189 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2190
2191 if (!self)
2192 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2193 else if (device_is_active(dev))
2194 dev->dv_flags |= DVF_SELF_SUSPENDED;
2195
2196 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2197 }
2198
2199 static void
2200 pmflock_debug(device_t dev, const char *func, int line)
2201 {
2202 pmf_private_t *pp = device_pmf_private(dev);
2203
2204 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
2205 func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
2206 dev->dv_flags);
2207 }
2208
2209 static void
2210 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2211 {
2212 pmf_private_t *pp = device_pmf_private(dev);
2213
2214 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
2215 "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2216 pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
2217 }
2218
2219 static bool
2220 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2221 {
2222 pmf_private_t *pp = device_pmf_private(dev);
2223
2224 while (device_pmf_is_registered(dev) &&
2225 pp->pp_nlock > 0 && pp->pp_holder != curlwp) {
2226 pp->pp_nwait++;
2227 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2228 cv_wait(&pp->pp_cv, &pp->pp_mtx);
2229 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2230 pp->pp_nwait--;
2231 }
2232 if (!device_pmf_is_registered(dev)) {
2233 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2234 /* We could not acquire the lock, but some other thread may
2235 * wait for it, also. Wake that thread.
2236 */
2237 cv_signal(&pp->pp_cv);
2238 return false;
2239 }
2240 pp->pp_nlock++;
2241 pp->pp_holder = curlwp;
2242 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2243 return true;
2244 }
2245
2246 bool
2247 device_pmf_lock(device_t dev PMF_FN_ARGS)
2248 {
2249 bool rc;
2250 pmf_private_t *pp = device_pmf_private(dev);
2251
2252 mutex_enter(&pp->pp_mtx);
2253 rc = device_pmf_lock1(dev PMF_FN_CALL);
2254 mutex_exit(&pp->pp_mtx);
2255
2256 return rc;
2257 }
2258
2259 void
2260 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2261 {
2262 pmf_private_t *pp = device_pmf_private(dev);
2263
2264 KASSERT(pp->pp_nlock > 0);
2265 mutex_enter(&pp->pp_mtx);
2266 if (--pp->pp_nlock == 0)
2267 pp->pp_holder = NULL;
2268 cv_signal(&pp->pp_cv);
2269 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2270 mutex_exit(&pp->pp_mtx);
2271 }
2272
2273 void *
2274 device_pmf_private(device_t dev)
2275 {
2276 return dev->dv_pmf_private;
2277 }
2278
2279 void *
2280 device_pmf_bus_private(device_t dev)
2281 {
2282 return dev->dv_bus_private;
2283 }
2284
2285 bool
2286 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2287 {
2288 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2289 return true;
2290 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2291 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2292 return false;
2293 if (*dev->dv_bus_suspend != NULL &&
2294 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2295 return false;
2296
2297 dev->dv_flags |= DVF_BUS_SUSPENDED;
2298 return true;
2299 }
2300
2301 bool
2302 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2303 {
2304 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2305 return true;
2306 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2307 return false;
2308 if (*dev->dv_bus_resume != NULL &&
2309 !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2310 return false;
2311
2312 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2313 return true;
2314 }
2315
2316 bool
2317 device_pmf_bus_shutdown(device_t dev, int how)
2318 {
2319
2320 if (*dev->dv_bus_shutdown != NULL &&
2321 !(*dev->dv_bus_shutdown)(dev, how))
2322 return false;
2323 return true;
2324 }
2325
2326 void
2327 device_pmf_bus_register(device_t dev, void *priv,
2328 bool (*suspend)(device_t PMF_FN_PROTO),
2329 bool (*resume)(device_t PMF_FN_PROTO),
2330 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2331 {
2332 dev->dv_bus_private = priv;
2333 dev->dv_bus_resume = resume;
2334 dev->dv_bus_suspend = suspend;
2335 dev->dv_bus_shutdown = shutdown;
2336 dev->dv_bus_deregister = deregister;
2337 }
2338
2339 void
2340 device_pmf_bus_deregister(device_t dev)
2341 {
2342 if (dev->dv_bus_deregister == NULL)
2343 return;
2344 (*dev->dv_bus_deregister)(dev);
2345 dev->dv_bus_private = NULL;
2346 dev->dv_bus_suspend = NULL;
2347 dev->dv_bus_resume = NULL;
2348 dev->dv_bus_deregister = NULL;
2349 }
2350
2351 void *
2352 device_pmf_class_private(device_t dev)
2353 {
2354 return dev->dv_class_private;
2355 }
2356
2357 bool
2358 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2359 {
2360 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2361 return true;
2362 if (*dev->dv_class_suspend != NULL &&
2363 !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2364 return false;
2365
2366 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2367 return true;
2368 }
2369
2370 bool
2371 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2372 {
2373 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2374 return true;
2375 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2376 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2377 return false;
2378 if (*dev->dv_class_resume != NULL &&
2379 !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2380 return false;
2381
2382 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2383 return true;
2384 }
2385
2386 void
2387 device_pmf_class_register(device_t dev, void *priv,
2388 bool (*suspend)(device_t PMF_FN_PROTO),
2389 bool (*resume)(device_t PMF_FN_PROTO),
2390 void (*deregister)(device_t))
2391 {
2392 dev->dv_class_private = priv;
2393 dev->dv_class_suspend = suspend;
2394 dev->dv_class_resume = resume;
2395 dev->dv_class_deregister = deregister;
2396 }
2397
2398 void
2399 device_pmf_class_deregister(device_t dev)
2400 {
2401 if (dev->dv_class_deregister == NULL)
2402 return;
2403 (*dev->dv_class_deregister)(dev);
2404 dev->dv_class_private = NULL;
2405 dev->dv_class_suspend = NULL;
2406 dev->dv_class_resume = NULL;
2407 dev->dv_class_deregister = NULL;
2408 }
2409
2410 bool
2411 device_active(device_t dev, devactive_t type)
2412 {
2413 size_t i;
2414
2415 if (dev->dv_activity_count == 0)
2416 return false;
2417
2418 for (i = 0; i < dev->dv_activity_count; ++i)
2419 (*dev->dv_activity_handlers[i])(dev, type);
2420
2421 return true;
2422 }
2423
2424 bool
2425 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2426 {
2427 void (**new_handlers)(device_t, devactive_t);
2428 void (**old_handlers)(device_t, devactive_t);
2429 size_t i, old_size, new_size;
2430 int s;
2431
2432 old_handlers = dev->dv_activity_handlers;
2433 old_size = dev->dv_activity_count;
2434
2435 for (i = 0; i < old_size; ++i) {
2436 KASSERT(old_handlers[i] != handler);
2437 if (old_handlers[i] == NULL) {
2438 old_handlers[i] = handler;
2439 return true;
2440 }
2441 }
2442
2443 new_size = old_size + 4;
2444 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2445
2446 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2447 new_handlers[old_size] = handler;
2448 memset(new_handlers + old_size + 1, 0,
2449 sizeof(int [new_size - (old_size+1)]));
2450
2451 s = splhigh();
2452 dev->dv_activity_count = new_size;
2453 dev->dv_activity_handlers = new_handlers;
2454 splx(s);
2455
2456 if (old_handlers != NULL)
2457 kmem_free(old_handlers, sizeof(int [old_size]));
2458
2459 return true;
2460 }
2461
2462 void
2463 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2464 {
2465 void (**old_handlers)(device_t, devactive_t);
2466 size_t i, old_size;
2467 int s;
2468
2469 old_handlers = dev->dv_activity_handlers;
2470 old_size = dev->dv_activity_count;
2471
2472 for (i = 0; i < old_size; ++i) {
2473 if (old_handlers[i] == handler)
2474 break;
2475 if (old_handlers[i] == NULL)
2476 return; /* XXX panic? */
2477 }
2478
2479 if (i == old_size)
2480 return; /* XXX panic? */
2481
2482 for (; i < old_size - 1; ++i) {
2483 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2484 continue;
2485
2486 if (i == 0) {
2487 s = splhigh();
2488 dev->dv_activity_count = 0;
2489 dev->dv_activity_handlers = NULL;
2490 splx(s);
2491 kmem_free(old_handlers, sizeof(void *[old_size]));
2492 }
2493 return;
2494 }
2495 old_handlers[i] = NULL;
2496 }
2497
2498 /*
2499 * Device Iteration
2500 *
2501 * deviter_t: a device iterator. Holds state for a "walk" visiting
2502 * each device_t's in the device tree.
2503 *
2504 * deviter_init(di, flags): initialize the device iterator `di'
2505 * to "walk" the device tree. deviter_next(di) will return
2506 * the first device_t in the device tree, or NULL if there are
2507 * no devices.
2508 *
2509 * `flags' is one or more of DEVITER_F_RW, indicating that the
2510 * caller intends to modify the device tree by calling
2511 * config_detach(9) on devices in the order that the iterator
2512 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2513 * nearest the "root" of the device tree to be returned, first;
2514 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2515 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2516 * indicating both that deviter_init() should not respect any
2517 * locks on the device tree, and that deviter_next(di) may run
2518 * in more than one LWP before the walk has finished.
2519 *
2520 * Only one DEVITER_F_RW iterator may be in the device tree at
2521 * once.
2522 *
2523 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2524 *
2525 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2526 * DEVITER_F_LEAVES_FIRST are used in combination.
2527 *
2528 * deviter_first(di, flags): initialize the device iterator `di'
2529 * and return the first device_t in the device tree, or NULL
2530 * if there are no devices. The statement
2531 *
2532 * dv = deviter_first(di);
2533 *
2534 * is shorthand for
2535 *
2536 * deviter_init(di);
2537 * dv = deviter_next(di);
2538 *
2539 * deviter_next(di): return the next device_t in the device tree,
2540 * or NULL if there are no more devices. deviter_next(di)
2541 * is undefined if `di' was not initialized with deviter_init() or
2542 * deviter_first().
2543 *
2544 * deviter_release(di): stops iteration (subsequent calls to
2545 * deviter_next() will return NULL), releases any locks and
2546 * resources held by the device iterator.
2547 *
2548 * Device iteration does not return device_t's in any particular
2549 * order. An iterator will never return the same device_t twice.
2550 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2551 * is called repeatedly on the same `di', it will eventually return
2552 * NULL. It is ok to attach/detach devices during device iteration.
2553 */
2554 void
2555 deviter_init(deviter_t *di, deviter_flags_t flags)
2556 {
2557 device_t dv;
2558 bool rw;
2559
2560 mutex_enter(&alldevs_mtx);
2561 if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2562 flags |= DEVITER_F_RW;
2563 alldevs_nwrite++;
2564 alldevs_writer = NULL;
2565 alldevs_nread = 0;
2566 } else {
2567 rw = (flags & DEVITER_F_RW) != 0;
2568
2569 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2570 ;
2571 else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2572 (rw && alldevs_nread != 0))
2573 cv_wait(&alldevs_cv, &alldevs_mtx);
2574
2575 if (rw) {
2576 if (alldevs_nwrite++ == 0)
2577 alldevs_writer = curlwp;
2578 } else
2579 alldevs_nread++;
2580 }
2581 mutex_exit(&alldevs_mtx);
2582
2583 memset(di, 0, sizeof(*di));
2584
2585 di->di_flags = flags;
2586
2587 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2588 case DEVITER_F_LEAVES_FIRST:
2589 TAILQ_FOREACH(dv, &alldevs, dv_list)
2590 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2591 break;
2592 case DEVITER_F_ROOT_FIRST:
2593 TAILQ_FOREACH(dv, &alldevs, dv_list)
2594 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2595 break;
2596 default:
2597 break;
2598 }
2599
2600 deviter_reinit(di);
2601 }
2602
2603 static void
2604 deviter_reinit(deviter_t *di)
2605 {
2606 if ((di->di_flags & DEVITER_F_RW) != 0)
2607 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2608 else
2609 di->di_prev = TAILQ_FIRST(&alldevs);
2610 }
2611
2612 device_t
2613 deviter_first(deviter_t *di, deviter_flags_t flags)
2614 {
2615 deviter_init(di, flags);
2616 return deviter_next(di);
2617 }
2618
2619 static device_t
2620 deviter_next1(deviter_t *di)
2621 {
2622 device_t dv;
2623
2624 dv = di->di_prev;
2625
2626 if (dv == NULL)
2627 ;
2628 else if ((di->di_flags & DEVITER_F_RW) != 0)
2629 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2630 else
2631 di->di_prev = TAILQ_NEXT(dv, dv_list);
2632
2633 return dv;
2634 }
2635
2636 device_t
2637 deviter_next(deviter_t *di)
2638 {
2639 device_t dv = NULL;
2640
2641 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2642 case 0:
2643 return deviter_next1(di);
2644 case DEVITER_F_LEAVES_FIRST:
2645 while (di->di_curdepth >= 0) {
2646 if ((dv = deviter_next1(di)) == NULL) {
2647 di->di_curdepth--;
2648 deviter_reinit(di);
2649 } else if (dv->dv_depth == di->di_curdepth)
2650 break;
2651 }
2652 return dv;
2653 case DEVITER_F_ROOT_FIRST:
2654 while (di->di_curdepth <= di->di_maxdepth) {
2655 if ((dv = deviter_next1(di)) == NULL) {
2656 di->di_curdepth++;
2657 deviter_reinit(di);
2658 } else if (dv->dv_depth == di->di_curdepth)
2659 break;
2660 }
2661 return dv;
2662 default:
2663 return NULL;
2664 }
2665 }
2666
2667 void
2668 deviter_release(deviter_t *di)
2669 {
2670 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2671
2672 mutex_enter(&alldevs_mtx);
2673 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2674 --alldevs_nwrite;
2675 else {
2676
2677 if (rw) {
2678 if (--alldevs_nwrite == 0)
2679 alldevs_writer = NULL;
2680 } else
2681 --alldevs_nread;
2682
2683 cv_signal(&alldevs_cv);
2684 }
2685 mutex_exit(&alldevs_mtx);
2686 }
2687