subr_autoconf.c revision 1.163.4.2.4.1 1 /* $NetBSD: subr_autoconf.c,v 1.163.4.2.4.1 2011/02/05 06:00:14 cliff Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.163.4.2.4.1 2011/02/05 06:00:14 cliff Exp $");
81
82 #include "opt_multiprocessor.h"
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85
86 #include <sys/param.h>
87 #include <sys/device.h>
88 #include <sys/disklabel.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91 #include <sys/malloc.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/vnode.h>
102 #include <sys/mount.h>
103 #include <sys/namei.h>
104 #include <sys/unistd.h>
105 #include <sys/fcntl.h>
106 #include <sys/lockf.h>
107 #include <sys/callout.h>
108 #include <sys/mutex.h>
109 #include <sys/condvar.h>
110 #include <sys/devmon.h>
111 #include <sys/cpu.h>
112
113 #include <sys/disk.h>
114
115 #include <machine/limits.h>
116
117 #include "opt_userconf.h"
118 #ifdef USERCONF
119 #include <sys/userconf.h>
120 #endif
121
122 #ifdef __i386__
123 #include "opt_splash.h"
124 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
125 #include <dev/splash/splash.h>
126 extern struct splash_progress *splash_progress_state;
127 #endif
128 #endif
129
130 /*
131 * Autoconfiguration subroutines.
132 */
133
134 typedef struct pmf_private {
135 int pp_nwait;
136 int pp_nlock;
137 lwp_t *pp_holder;
138 kmutex_t pp_mtx;
139 kcondvar_t pp_cv;
140 } pmf_private_t;
141
142 /*
143 * ioconf.c exports exactly two names: cfdata and cfroots. All system
144 * devices and drivers are found via these tables.
145 */
146 extern struct cfdata cfdata[];
147 extern const short cfroots[];
148
149 /*
150 * List of all cfdriver structures. We use this to detect duplicates
151 * when other cfdrivers are loaded.
152 */
153 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
154 extern struct cfdriver * const cfdriver_list_initial[];
155
156 /*
157 * Initial list of cfattach's.
158 */
159 extern const struct cfattachinit cfattachinit[];
160
161 /*
162 * List of cfdata tables. We always have one such list -- the one
163 * built statically when the kernel was configured.
164 */
165 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
166 static struct cftable initcftable;
167
168 #define ROOT ((device_t)NULL)
169
170 struct matchinfo {
171 cfsubmatch_t fn;
172 struct device *parent;
173 const int *locs;
174 void *aux;
175 struct cfdata *match;
176 int pri;
177 };
178
179 static char *number(char *, int);
180 static void mapply(struct matchinfo *, cfdata_t);
181 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
182 static void config_devdealloc(device_t);
183 static void config_makeroom(int, struct cfdriver *);
184 static void config_devlink(device_t);
185 static void config_devunlink(device_t);
186
187 static void pmflock_debug(device_t, const char *, int);
188 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
189
190 static device_t deviter_next1(deviter_t *);
191 static void deviter_reinit(deviter_t *);
192
193 struct deferred_config {
194 TAILQ_ENTRY(deferred_config) dc_queue;
195 device_t dc_dev;
196 void (*dc_func)(device_t);
197 };
198
199 TAILQ_HEAD(deferred_config_head, deferred_config);
200
201 struct deferred_config_head deferred_config_queue =
202 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
203 struct deferred_config_head interrupt_config_queue =
204 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
205 int interrupt_config_threads = 8;
206
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 TAILQ_ENTRY(finalize_hook) f_list;
212 int (*f_func)(device_t);
213 device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218
219 /* list of all devices */
220 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
221 kcondvar_t alldevs_cv;
222 kmutex_t alldevs_mtx;
223 static int alldevs_nread = 0;
224 static int alldevs_nwrite = 0;
225 static lwp_t *alldevs_writer = NULL;
226
227 static int config_pending; /* semaphore for mountroot */
228 static kmutex_t config_misc_lock;
229 static kcondvar_t config_misc_cv;
230
231 #define STREQ(s1, s2) \
232 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
233
234 static int config_initialized; /* config_init() has been called. */
235
236 static int config_do_twiddle;
237
238 struct vnode *
239 opendisk(struct device *dv)
240 {
241 int bmajor, bminor;
242 struct vnode *tmpvn;
243 int error;
244 dev_t dev;
245
246 /*
247 * Lookup major number for disk block device.
248 */
249 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
250 if (bmajor == -1)
251 return NULL;
252
253 bminor = minor(device_unit(dv));
254 /*
255 * Fake a temporary vnode for the disk, open it, and read
256 * and hash the sectors.
257 */
258 dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
259 MAKEDISKDEV(bmajor, bminor, RAW_PART);
260 if (bdevvp(dev, &tmpvn))
261 panic("%s: can't alloc vnode for %s", __func__,
262 device_xname(dv));
263 error = VOP_OPEN(tmpvn, FREAD, NOCRED);
264 if (error) {
265 #ifndef DEBUG
266 /*
267 * Ignore errors caused by missing device, partition,
268 * or medium.
269 */
270 if (error != ENXIO && error != ENODEV)
271 #endif
272 printf("%s: can't open dev %s (%d)\n",
273 __func__, device_xname(dv), error);
274 vput(tmpvn);
275 return NULL;
276 }
277
278 return tmpvn;
279 }
280
281 int
282 config_handle_wedges(struct device *dv, int par)
283 {
284 struct dkwedge_list wl;
285 struct dkwedge_info *wi;
286 struct vnode *vn;
287 char diskname[16];
288 int i, error;
289
290 if ((vn = opendisk(dv)) == NULL)
291 return -1;
292
293 wl.dkwl_bufsize = sizeof(*wi) * 16;
294 wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
295
296 error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
297 VOP_CLOSE(vn, FREAD, NOCRED);
298 vput(vn);
299 if (error) {
300 #ifdef DEBUG_WEDGE
301 printf("%s: List wedges returned %d\n",
302 device_xname(dv), error);
303 #endif
304 free(wi, M_TEMP);
305 return -1;
306 }
307
308 #ifdef DEBUG_WEDGE
309 printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
310 wl.dkwl_nwedges, wl.dkwl_ncopied);
311 #endif
312 snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
313 par + 'a');
314
315 for (i = 0; i < wl.dkwl_ncopied; i++) {
316 #ifdef DEBUG_WEDGE
317 printf("%s: Looking for %s in %s\n",
318 device_xname(dv), diskname, wi[i].dkw_wname);
319 #endif
320 if (strcmp(wi[i].dkw_wname, diskname) == 0)
321 break;
322 }
323
324 if (i == wl.dkwl_ncopied) {
325 #ifdef DEBUG_WEDGE
326 printf("%s: Cannot find wedge with parent %s\n",
327 device_xname(dv), diskname);
328 #endif
329 free(wi, M_TEMP);
330 return -1;
331 }
332
333 #ifdef DEBUG_WEDGE
334 printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
335 device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
336 (unsigned long long)wi[i].dkw_offset,
337 (unsigned long long)wi[i].dkw_size);
338 #endif
339 dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
340 free(wi, M_TEMP);
341 return 0;
342 }
343
344 /*
345 * Initialize the autoconfiguration data structures. Normally this
346 * is done by configure(), but some platforms need to do this very
347 * early (to e.g. initialize the console).
348 */
349 void
350 config_init(void)
351 {
352 const struct cfattachinit *cfai;
353 int i, j;
354
355 if (config_initialized)
356 return;
357
358 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
359 cv_init(&alldevs_cv, "alldevs");
360
361 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
362 cv_init(&config_misc_cv, "cfgmisc");
363
364 /* allcfdrivers is statically initialized. */
365 for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
366 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
367 panic("configure: duplicate `%s' drivers",
368 cfdriver_list_initial[i]->cd_name);
369 }
370
371 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
372 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
373 if (config_cfattach_attach(cfai->cfai_name,
374 cfai->cfai_list[j]) != 0)
375 panic("configure: duplicate `%s' attachment "
376 "of `%s' driver",
377 cfai->cfai_list[j]->ca_name,
378 cfai->cfai_name);
379 }
380 }
381
382 initcftable.ct_cfdata = cfdata;
383 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
384
385 config_initialized = 1;
386 }
387
388 void
389 config_deferred(device_t dev)
390 {
391 config_process_deferred(&deferred_config_queue, dev);
392 config_process_deferred(&interrupt_config_queue, dev);
393 }
394
395 static void
396 config_interrupts_thread(void *cookie)
397 {
398 struct deferred_config *dc;
399
400 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
401 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
402 (*dc->dc_func)(dc->dc_dev);
403 kmem_free(dc, sizeof(*dc));
404 config_pending_decr();
405 }
406 kthread_exit(0);
407 }
408
409 /*
410 * Configure the system's hardware.
411 */
412 void
413 configure(void)
414 {
415 /* Initialize data structures. */
416 config_init();
417 pmf_init();
418 #if NDRVCTL > 0
419 drvctl_init();
420 #endif
421
422 #ifdef USERCONF
423 if (boothowto & RB_USERCONF)
424 user_config();
425 #endif
426
427 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
428 config_do_twiddle = 1;
429 printf_nolog("Detecting hardware...");
430 }
431
432 /*
433 * Do the machine-dependent portion of autoconfiguration. This
434 * sets the configuration machinery here in motion by "finding"
435 * the root bus. When this function returns, we expect interrupts
436 * to be enabled.
437 */
438 cpu_configure();
439 }
440
441 void
442 configure2(void)
443 {
444 CPU_INFO_ITERATOR cii;
445 struct cpu_info *ci;
446 int i, s;
447
448 /*
449 * Now that we've found all the hardware, start the real time
450 * and statistics clocks.
451 */
452 initclocks();
453
454 cold = 0; /* clocks are running, we're warm now! */
455 s = splsched();
456 curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
457 splx(s);
458
459 /* Boot the secondary processors. */
460 for (CPU_INFO_FOREACH(cii, ci)) {
461 uvm_cpu_attach(ci);
462 }
463 mp_online = true;
464 #if defined(MULTIPROCESSOR)
465 cpu_boot_secondary_processors();
466 #endif
467
468 /* Setup the runqueues and scheduler. */
469 runq_init();
470 sched_init();
471
472 /*
473 * Create threads to call back and finish configuration for
474 * devices that want interrupts enabled.
475 */
476 for (i = 0; i < interrupt_config_threads; i++) {
477 (void)kthread_create(PRI_NONE, 0, NULL,
478 config_interrupts_thread, NULL, NULL, "config");
479 }
480
481 /* Get the threads going and into any sleeps before continuing. */
482 yield();
483 }
484
485 /*
486 * Announce device attach/detach to userland listeners.
487 */
488 static void
489 devmon_report_device(device_t dev, bool isattach)
490 {
491 #if NDRVCTL > 0
492 prop_dictionary_t ev;
493 const char *parent;
494 const char *what;
495 device_t pdev = device_parent(dev);
496
497 ev = prop_dictionary_create();
498 if (ev == NULL)
499 return;
500
501 what = (isattach ? "device-attach" : "device-detach");
502 parent = (pdev == NULL ? "root" : device_xname(pdev));
503 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
504 !prop_dictionary_set_cstring(ev, "parent", parent)) {
505 prop_object_release(ev);
506 return;
507 }
508
509 devmon_insert(what, ev);
510 #endif
511 }
512
513 /*
514 * Add a cfdriver to the system.
515 */
516 int
517 config_cfdriver_attach(struct cfdriver *cd)
518 {
519 struct cfdriver *lcd;
520
521 /* Make sure this driver isn't already in the system. */
522 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
523 if (STREQ(lcd->cd_name, cd->cd_name))
524 return (EEXIST);
525 }
526
527 LIST_INIT(&cd->cd_attach);
528 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
529
530 return (0);
531 }
532
533 /*
534 * Remove a cfdriver from the system.
535 */
536 int
537 config_cfdriver_detach(struct cfdriver *cd)
538 {
539 int i;
540
541 /* Make sure there are no active instances. */
542 for (i = 0; i < cd->cd_ndevs; i++) {
543 if (cd->cd_devs[i] != NULL)
544 return (EBUSY);
545 }
546
547 /* ...and no attachments loaded. */
548 if (LIST_EMPTY(&cd->cd_attach) == 0)
549 return (EBUSY);
550
551 LIST_REMOVE(cd, cd_list);
552
553 KASSERT(cd->cd_devs == NULL);
554
555 return (0);
556 }
557
558 /*
559 * Look up a cfdriver by name.
560 */
561 struct cfdriver *
562 config_cfdriver_lookup(const char *name)
563 {
564 struct cfdriver *cd;
565
566 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
567 if (STREQ(cd->cd_name, name))
568 return (cd);
569 }
570
571 return (NULL);
572 }
573
574 /*
575 * Add a cfattach to the specified driver.
576 */
577 int
578 config_cfattach_attach(const char *driver, struct cfattach *ca)
579 {
580 struct cfattach *lca;
581 struct cfdriver *cd;
582
583 cd = config_cfdriver_lookup(driver);
584 if (cd == NULL)
585 return (ESRCH);
586
587 /* Make sure this attachment isn't already on this driver. */
588 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
589 if (STREQ(lca->ca_name, ca->ca_name))
590 return (EEXIST);
591 }
592
593 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
594
595 return (0);
596 }
597
598 /*
599 * Remove a cfattach from the specified driver.
600 */
601 int
602 config_cfattach_detach(const char *driver, struct cfattach *ca)
603 {
604 struct cfdriver *cd;
605 device_t dev;
606 int i;
607
608 cd = config_cfdriver_lookup(driver);
609 if (cd == NULL)
610 return (ESRCH);
611
612 /* Make sure there are no active instances. */
613 for (i = 0; i < cd->cd_ndevs; i++) {
614 if ((dev = cd->cd_devs[i]) == NULL)
615 continue;
616 if (dev->dv_cfattach == ca)
617 return (EBUSY);
618 }
619
620 LIST_REMOVE(ca, ca_list);
621
622 return (0);
623 }
624
625 /*
626 * Look up a cfattach by name.
627 */
628 static struct cfattach *
629 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
630 {
631 struct cfattach *ca;
632
633 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
634 if (STREQ(ca->ca_name, atname))
635 return (ca);
636 }
637
638 return (NULL);
639 }
640
641 /*
642 * Look up a cfattach by driver/attachment name.
643 */
644 struct cfattach *
645 config_cfattach_lookup(const char *name, const char *atname)
646 {
647 struct cfdriver *cd;
648
649 cd = config_cfdriver_lookup(name);
650 if (cd == NULL)
651 return (NULL);
652
653 return (config_cfattach_lookup_cd(cd, atname));
654 }
655
656 /*
657 * Apply the matching function and choose the best. This is used
658 * a few times and we want to keep the code small.
659 */
660 static void
661 mapply(struct matchinfo *m, cfdata_t cf)
662 {
663 int pri;
664
665 if (m->fn != NULL) {
666 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
667 } else {
668 pri = config_match(m->parent, cf, m->aux);
669 }
670 if (pri > m->pri) {
671 m->match = cf;
672 m->pri = pri;
673 }
674 }
675
676 int
677 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
678 {
679 const struct cfiattrdata *ci;
680 const struct cflocdesc *cl;
681 int nlocs, i;
682
683 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
684 KASSERT(ci);
685 nlocs = ci->ci_loclen;
686 KASSERT(!nlocs || locs);
687 for (i = 0; i < nlocs; i++) {
688 cl = &ci->ci_locdesc[i];
689 /* !cld_defaultstr means no default value */
690 if ((!(cl->cld_defaultstr)
691 || (cf->cf_loc[i] != cl->cld_default))
692 && cf->cf_loc[i] != locs[i])
693 return (0);
694 }
695
696 return (config_match(parent, cf, aux));
697 }
698
699 /*
700 * Helper function: check whether the driver supports the interface attribute
701 * and return its descriptor structure.
702 */
703 static const struct cfiattrdata *
704 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
705 {
706 const struct cfiattrdata * const *cpp;
707
708 if (cd->cd_attrs == NULL)
709 return (0);
710
711 for (cpp = cd->cd_attrs; *cpp; cpp++) {
712 if (STREQ((*cpp)->ci_name, ia)) {
713 /* Match. */
714 return (*cpp);
715 }
716 }
717 return (0);
718 }
719
720 /*
721 * Lookup an interface attribute description by name.
722 * If the driver is given, consider only its supported attributes.
723 */
724 const struct cfiattrdata *
725 cfiattr_lookup(const char *name, const struct cfdriver *cd)
726 {
727 const struct cfdriver *d;
728 const struct cfiattrdata *ia;
729
730 if (cd)
731 return (cfdriver_get_iattr(cd, name));
732
733 LIST_FOREACH(d, &allcfdrivers, cd_list) {
734 ia = cfdriver_get_iattr(d, name);
735 if (ia)
736 return (ia);
737 }
738 return (0);
739 }
740
741 /*
742 * Determine if `parent' is a potential parent for a device spec based
743 * on `cfp'.
744 */
745 static int
746 cfparent_match(const device_t parent, const struct cfparent *cfp)
747 {
748 struct cfdriver *pcd;
749
750 /* We don't match root nodes here. */
751 if (cfp == NULL)
752 return (0);
753
754 pcd = parent->dv_cfdriver;
755 KASSERT(pcd != NULL);
756
757 /*
758 * First, ensure this parent has the correct interface
759 * attribute.
760 */
761 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
762 return (0);
763
764 /*
765 * If no specific parent device instance was specified (i.e.
766 * we're attaching to the attribute only), we're done!
767 */
768 if (cfp->cfp_parent == NULL)
769 return (1);
770
771 /*
772 * Check the parent device's name.
773 */
774 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
775 return (0); /* not the same parent */
776
777 /*
778 * Make sure the unit number matches.
779 */
780 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
781 cfp->cfp_unit == parent->dv_unit)
782 return (1);
783
784 /* Unit numbers don't match. */
785 return (0);
786 }
787
788 /*
789 * Helper for config_cfdata_attach(): check all devices whether it could be
790 * parent any attachment in the config data table passed, and rescan.
791 */
792 static void
793 rescan_with_cfdata(const struct cfdata *cf)
794 {
795 device_t d;
796 const struct cfdata *cf1;
797 deviter_t di;
798
799
800 /*
801 * "alldevs" is likely longer than an LKM's cfdata, so make it
802 * the outer loop.
803 */
804 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
805
806 if (!(d->dv_cfattach->ca_rescan))
807 continue;
808
809 for (cf1 = cf; cf1->cf_name; cf1++) {
810
811 if (!cfparent_match(d, cf1->cf_pspec))
812 continue;
813
814 (*d->dv_cfattach->ca_rescan)(d,
815 cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
816 }
817 }
818 deviter_release(&di);
819 }
820
821 /*
822 * Attach a supplemental config data table and rescan potential
823 * parent devices if required.
824 */
825 int
826 config_cfdata_attach(cfdata_t cf, int scannow)
827 {
828 struct cftable *ct;
829
830 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
831 ct->ct_cfdata = cf;
832 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
833
834 if (scannow)
835 rescan_with_cfdata(cf);
836
837 return (0);
838 }
839
840 /*
841 * Helper for config_cfdata_detach: check whether a device is
842 * found through any attachment in the config data table.
843 */
844 static int
845 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
846 {
847 const struct cfdata *cf1;
848
849 for (cf1 = cf; cf1->cf_name; cf1++)
850 if (d->dv_cfdata == cf1)
851 return (1);
852
853 return (0);
854 }
855
856 /*
857 * Detach a supplemental config data table. Detach all devices found
858 * through that table (and thus keeping references to it) before.
859 */
860 int
861 config_cfdata_detach(cfdata_t cf)
862 {
863 device_t d;
864 int error = 0;
865 struct cftable *ct;
866 deviter_t di;
867
868 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
869 d = deviter_next(&di)) {
870 if (!dev_in_cfdata(d, cf))
871 continue;
872 if ((error = config_detach(d, 0)) != 0)
873 break;
874 }
875 deviter_release(&di);
876 if (error) {
877 aprint_error_dev(d, "unable to detach instance\n");
878 return error;
879 }
880
881 TAILQ_FOREACH(ct, &allcftables, ct_list) {
882 if (ct->ct_cfdata == cf) {
883 TAILQ_REMOVE(&allcftables, ct, ct_list);
884 kmem_free(ct, sizeof(*ct));
885 return (0);
886 }
887 }
888
889 /* not found -- shouldn't happen */
890 return (EINVAL);
891 }
892
893 /*
894 * Invoke the "match" routine for a cfdata entry on behalf of
895 * an external caller, usually a "submatch" routine.
896 */
897 int
898 config_match(device_t parent, cfdata_t cf, void *aux)
899 {
900 struct cfattach *ca;
901
902 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
903 if (ca == NULL) {
904 /* No attachment for this entry, oh well. */
905 return (0);
906 }
907
908 return ((*ca->ca_match)(parent, cf, aux));
909 }
910
911 /*
912 * Iterate over all potential children of some device, calling the given
913 * function (default being the child's match function) for each one.
914 * Nonzero returns are matches; the highest value returned is considered
915 * the best match. Return the `found child' if we got a match, or NULL
916 * otherwise. The `aux' pointer is simply passed on through.
917 *
918 * Note that this function is designed so that it can be used to apply
919 * an arbitrary function to all potential children (its return value
920 * can be ignored).
921 */
922 cfdata_t
923 config_search_loc(cfsubmatch_t fn, device_t parent,
924 const char *ifattr, const int *locs, void *aux)
925 {
926 struct cftable *ct;
927 cfdata_t cf;
928 struct matchinfo m;
929
930 KASSERT(config_initialized);
931 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
932
933 m.fn = fn;
934 m.parent = parent;
935 m.locs = locs;
936 m.aux = aux;
937 m.match = NULL;
938 m.pri = 0;
939
940 TAILQ_FOREACH(ct, &allcftables, ct_list) {
941 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
942
943 /* We don't match root nodes here. */
944 if (!cf->cf_pspec)
945 continue;
946
947 /*
948 * Skip cf if no longer eligible, otherwise scan
949 * through parents for one matching `parent', and
950 * try match function.
951 */
952 if (cf->cf_fstate == FSTATE_FOUND)
953 continue;
954 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
955 cf->cf_fstate == FSTATE_DSTAR)
956 continue;
957
958 /*
959 * If an interface attribute was specified,
960 * consider only children which attach to
961 * that attribute.
962 */
963 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
964 continue;
965
966 if (cfparent_match(parent, cf->cf_pspec))
967 mapply(&m, cf);
968 }
969 }
970 return (m.match);
971 }
972
973 cfdata_t
974 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
975 void *aux)
976 {
977
978 return (config_search_loc(fn, parent, ifattr, NULL, aux));
979 }
980
981 /*
982 * Find the given root device.
983 * This is much like config_search, but there is no parent.
984 * Don't bother with multiple cfdata tables; the root node
985 * must always be in the initial table.
986 */
987 cfdata_t
988 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
989 {
990 cfdata_t cf;
991 const short *p;
992 struct matchinfo m;
993
994 m.fn = fn;
995 m.parent = ROOT;
996 m.aux = aux;
997 m.match = NULL;
998 m.pri = 0;
999 m.locs = 0;
1000 /*
1001 * Look at root entries for matching name. We do not bother
1002 * with found-state here since only one root should ever be
1003 * searched (and it must be done first).
1004 */
1005 for (p = cfroots; *p >= 0; p++) {
1006 cf = &cfdata[*p];
1007 if (strcmp(cf->cf_name, rootname) == 0)
1008 mapply(&m, cf);
1009 }
1010 return (m.match);
1011 }
1012
1013 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1014
1015 /*
1016 * The given `aux' argument describes a device that has been found
1017 * on the given parent, but not necessarily configured. Locate the
1018 * configuration data for that device (using the submatch function
1019 * provided, or using candidates' cd_match configuration driver
1020 * functions) and attach it, and return true. If the device was
1021 * not configured, call the given `print' function and return 0.
1022 */
1023 device_t
1024 config_found_sm_loc(device_t parent,
1025 const char *ifattr, const int *locs, void *aux,
1026 cfprint_t print, cfsubmatch_t submatch)
1027 {
1028 cfdata_t cf;
1029
1030 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1031 if (splash_progress_state)
1032 splash_progress_update(splash_progress_state);
1033 #endif
1034
1035 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1036 return(config_attach_loc(parent, cf, locs, aux, print));
1037 if (print) {
1038 if (config_do_twiddle)
1039 twiddle();
1040 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1041 }
1042
1043 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1044 if (splash_progress_state)
1045 splash_progress_update(splash_progress_state);
1046 #endif
1047
1048 return (NULL);
1049 }
1050
1051 device_t
1052 config_found_ia(device_t parent, const char *ifattr, void *aux,
1053 cfprint_t print)
1054 {
1055
1056 return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
1057 }
1058
1059 device_t
1060 config_found(device_t parent, void *aux, cfprint_t print)
1061 {
1062
1063 return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
1064 }
1065
1066 /*
1067 * As above, but for root devices.
1068 */
1069 device_t
1070 config_rootfound(const char *rootname, void *aux)
1071 {
1072 cfdata_t cf;
1073
1074 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1075 return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
1076 aprint_error("root device %s not configured\n", rootname);
1077 return (NULL);
1078 }
1079
1080 /* just like sprintf(buf, "%d") except that it works from the end */
1081 static char *
1082 number(char *ep, int n)
1083 {
1084
1085 *--ep = 0;
1086 while (n >= 10) {
1087 *--ep = (n % 10) + '0';
1088 n /= 10;
1089 }
1090 *--ep = n + '0';
1091 return (ep);
1092 }
1093
1094 /*
1095 * Expand the size of the cd_devs array if necessary.
1096 */
1097 static void
1098 config_makeroom(int n, struct cfdriver *cd)
1099 {
1100 const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
1101 int old, new;
1102 device_t *nsp;
1103
1104 if (n < cd->cd_ndevs)
1105 return;
1106
1107 /*
1108 * Need to expand the array.
1109 */
1110 old = cd->cd_ndevs;
1111 if (old == 0)
1112 new = 4;
1113 else
1114 new = old * 2;
1115 while (new <= n)
1116 new *= 2;
1117 cd->cd_ndevs = new;
1118 nsp = kmem_alloc(sizeof(device_t [new]), kmflags);
1119 if (nsp == NULL)
1120 panic("config_attach: %sing dev array",
1121 old != 0 ? "expand" : "creat");
1122 memset(nsp + old, 0, sizeof(device_t [new - old]));
1123 if (old != 0) {
1124 memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
1125 kmem_free(cd->cd_devs, sizeof(device_t [old]));
1126 }
1127 cd->cd_devs = nsp;
1128 }
1129
1130 static void
1131 config_devlink(device_t dev)
1132 {
1133 struct cfdriver *cd = dev->dv_cfdriver;
1134
1135 /* put this device in the devices array */
1136 config_makeroom(dev->dv_unit, cd);
1137 if (cd->cd_devs[dev->dv_unit])
1138 panic("config_attach: duplicate %s", device_xname(dev));
1139 cd->cd_devs[dev->dv_unit] = dev;
1140
1141 /* It is safe to add a device to the tail of the list while
1142 * readers are in the list, but not while a writer is in
1143 * the list. Wait for any writer to complete.
1144 */
1145 mutex_enter(&alldevs_mtx);
1146 while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1147 cv_wait(&alldevs_cv, &alldevs_mtx);
1148 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
1149 cv_signal(&alldevs_cv);
1150 mutex_exit(&alldevs_mtx);
1151 }
1152
1153 static void
1154 config_devunlink(device_t dev)
1155 {
1156 struct cfdriver *cd = dev->dv_cfdriver;
1157 int i;
1158
1159 /* Unlink from device list. */
1160 TAILQ_REMOVE(&alldevs, dev, dv_list);
1161
1162 /* Remove from cfdriver's array. */
1163 cd->cd_devs[dev->dv_unit] = NULL;
1164
1165 /*
1166 * If the device now has no units in use, deallocate its softc array.
1167 */
1168 for (i = 0; i < cd->cd_ndevs; i++) {
1169 if (cd->cd_devs[i] != NULL)
1170 return;
1171 }
1172 /* nothing found; deallocate */
1173 kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
1174 cd->cd_devs = NULL;
1175 cd->cd_ndevs = 0;
1176 }
1177
1178 static device_t
1179 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1180 {
1181 struct cfdriver *cd;
1182 struct cfattach *ca;
1183 size_t lname, lunit;
1184 const char *xunit;
1185 int myunit;
1186 char num[10];
1187 device_t dev;
1188 void *dev_private;
1189 const struct cfiattrdata *ia;
1190 const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
1191
1192 cd = config_cfdriver_lookup(cf->cf_name);
1193 if (cd == NULL)
1194 return (NULL);
1195
1196 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1197 if (ca == NULL)
1198 return (NULL);
1199
1200 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1201 ca->ca_devsize < sizeof(struct device))
1202 panic("config_devalloc: %s", cf->cf_atname);
1203
1204 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1205 if (cf->cf_fstate == FSTATE_STAR) {
1206 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1207 if (cd->cd_devs[myunit] == NULL)
1208 break;
1209 /*
1210 * myunit is now the unit of the first NULL device pointer,
1211 * or max(cd->cd_ndevs,cf->cf_unit).
1212 */
1213 } else {
1214 myunit = cf->cf_unit;
1215 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1216 return (NULL);
1217 }
1218 #else
1219 myunit = cf->cf_unit;
1220 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1221
1222 /* compute length of name and decimal expansion of unit number */
1223 lname = strlen(cd->cd_name);
1224 xunit = number(&num[sizeof(num)], myunit);
1225 lunit = &num[sizeof(num)] - xunit;
1226 if (lname + lunit > sizeof(dev->dv_xname))
1227 panic("config_devalloc: device name too long");
1228
1229 /* get memory for all device vars */
1230 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1231 if (ca->ca_devsize > 0) {
1232 dev_private = kmem_zalloc(ca->ca_devsize, kmflags);
1233 if (dev_private == NULL)
1234 panic("config_devalloc: memory allocation for device softc failed");
1235 } else {
1236 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1237 dev_private = NULL;
1238 }
1239
1240 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1241 dev = kmem_zalloc(sizeof(*dev), kmflags);
1242 } else {
1243 dev = dev_private;
1244 }
1245 if (dev == NULL)
1246 panic("config_devalloc: memory allocation for device_t failed");
1247
1248 dev->dv_class = cd->cd_class;
1249 dev->dv_cfdata = cf;
1250 dev->dv_cfdriver = cd;
1251 dev->dv_cfattach = ca;
1252 dev->dv_unit = myunit;
1253 dev->dv_activity_count = 0;
1254 dev->dv_activity_handlers = NULL;
1255 dev->dv_private = dev_private;
1256 memcpy(dev->dv_xname, cd->cd_name, lname);
1257 memcpy(dev->dv_xname + lname, xunit, lunit);
1258 dev->dv_parent = parent;
1259 if (parent != NULL)
1260 dev->dv_depth = parent->dv_depth + 1;
1261 else
1262 dev->dv_depth = 0;
1263 dev->dv_flags = DVF_ACTIVE; /* always initially active */
1264 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
1265 if (locs) {
1266 KASSERT(parent); /* no locators at root */
1267 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1268 parent->dv_cfdriver);
1269 dev->dv_locators =
1270 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), kmflags);
1271 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1272 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1273 }
1274 dev->dv_properties = prop_dictionary_create();
1275 KASSERT(dev->dv_properties != NULL);
1276
1277 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1278 "device-driver", dev->dv_cfdriver->cd_name);
1279 prop_dictionary_set_uint16(dev->dv_properties,
1280 "device-unit", dev->dv_unit);
1281
1282 return (dev);
1283 }
1284
1285 static void
1286 config_devdealloc(device_t dev)
1287 {
1288 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1289
1290 KASSERT(dev->dv_properties != NULL);
1291 prop_object_release(dev->dv_properties);
1292
1293 if (dev->dv_activity_handlers)
1294 panic("config_devdealloc with registered handlers");
1295
1296 if (dev->dv_locators) {
1297 size_t amount = *--dev->dv_locators;
1298 kmem_free(dev->dv_locators, amount);
1299 }
1300
1301 if (dev->dv_cfattach->ca_devsize > 0)
1302 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1303 if (priv)
1304 kmem_free(dev, sizeof(*dev));
1305 }
1306
1307 /*
1308 * Attach a found device.
1309 */
1310 device_t
1311 config_attach_loc(device_t parent, cfdata_t cf,
1312 const int *locs, void *aux, cfprint_t print)
1313 {
1314 device_t dev;
1315 struct cftable *ct;
1316 const char *drvname;
1317
1318 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1319 if (splash_progress_state)
1320 splash_progress_update(splash_progress_state);
1321 #endif
1322
1323 dev = config_devalloc(parent, cf, locs);
1324 if (!dev)
1325 panic("config_attach: allocation of device softc failed");
1326
1327 /* XXX redundant - see below? */
1328 if (cf->cf_fstate != FSTATE_STAR) {
1329 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1330 cf->cf_fstate = FSTATE_FOUND;
1331 }
1332 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1333 else
1334 cf->cf_unit++;
1335 #endif
1336
1337 config_devlink(dev);
1338
1339 if (config_do_twiddle)
1340 twiddle();
1341 else
1342 aprint_naive("Found ");
1343 /*
1344 * We want the next two printfs for normal, verbose, and quiet,
1345 * but not silent (in which case, we're twiddling, instead).
1346 */
1347 if (parent == ROOT) {
1348 aprint_naive("%s (root)", device_xname(dev));
1349 aprint_normal("%s (root)", device_xname(dev));
1350 } else {
1351 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1352 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1353 if (print)
1354 (void) (*print)(aux, NULL);
1355 }
1356
1357 /*
1358 * Before attaching, clobber any unfound devices that are
1359 * otherwise identical.
1360 * XXX code above is redundant?
1361 */
1362 drvname = dev->dv_cfdriver->cd_name;
1363 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1364 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1365 if (STREQ(cf->cf_name, drvname) &&
1366 cf->cf_unit == dev->dv_unit) {
1367 if (cf->cf_fstate == FSTATE_NOTFOUND)
1368 cf->cf_fstate = FSTATE_FOUND;
1369 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1370 /*
1371 * Bump the unit number on all starred cfdata
1372 * entries for this device.
1373 */
1374 if (cf->cf_fstate == FSTATE_STAR)
1375 cf->cf_unit++;
1376 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1377 }
1378 }
1379 }
1380 #ifdef __HAVE_DEVICE_REGISTER
1381 device_register(dev, aux);
1382 #endif
1383
1384 /* Let userland know */
1385 devmon_report_device(dev, true);
1386
1387 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1388 if (splash_progress_state)
1389 splash_progress_update(splash_progress_state);
1390 #endif
1391 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1392 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1393 if (splash_progress_state)
1394 splash_progress_update(splash_progress_state);
1395 #endif
1396
1397 if (!device_pmf_is_registered(dev))
1398 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1399
1400 config_process_deferred(&deferred_config_queue, dev);
1401 return (dev);
1402 }
1403
1404 device_t
1405 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1406 {
1407
1408 return (config_attach_loc(parent, cf, NULL, aux, print));
1409 }
1410
1411 /*
1412 * As above, but for pseudo-devices. Pseudo-devices attached in this
1413 * way are silently inserted into the device tree, and their children
1414 * attached.
1415 *
1416 * Note that because pseudo-devices are attached silently, any information
1417 * the attach routine wishes to print should be prefixed with the device
1418 * name by the attach routine.
1419 */
1420 device_t
1421 config_attach_pseudo(cfdata_t cf)
1422 {
1423 device_t dev;
1424
1425 dev = config_devalloc(ROOT, cf, NULL);
1426 if (!dev)
1427 return (NULL);
1428
1429 /* XXX mark busy in cfdata */
1430
1431 config_devlink(dev);
1432
1433 #if 0 /* XXXJRT not yet */
1434 #ifdef __HAVE_DEVICE_REGISTER
1435 device_register(dev, NULL); /* like a root node */
1436 #endif
1437 #endif
1438 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1439 config_process_deferred(&deferred_config_queue, dev);
1440 return (dev);
1441 }
1442
1443 /*
1444 * Detach a device. Optionally forced (e.g. because of hardware
1445 * removal) and quiet. Returns zero if successful, non-zero
1446 * (an error code) otherwise.
1447 *
1448 * Note that this code wants to be run from a process context, so
1449 * that the detach can sleep to allow processes which have a device
1450 * open to run and unwind their stacks.
1451 */
1452 int
1453 config_detach(device_t dev, int flags)
1454 {
1455 struct cftable *ct;
1456 cfdata_t cf;
1457 const struct cfattach *ca;
1458 struct cfdriver *cd;
1459 #ifdef DIAGNOSTIC
1460 device_t d;
1461 #endif
1462 int rv = 0;
1463
1464 #ifdef DIAGNOSTIC
1465 cf = dev->dv_cfdata;
1466 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1467 cf->cf_fstate != FSTATE_STAR)
1468 panic("config_detach: %s: bad device fstate %d",
1469 device_xname(dev), cf ? cf->cf_fstate : -1);
1470 #endif
1471 cd = dev->dv_cfdriver;
1472 KASSERT(cd != NULL);
1473
1474 ca = dev->dv_cfattach;
1475 KASSERT(ca != NULL);
1476
1477 KASSERT(curlwp != NULL);
1478 mutex_enter(&alldevs_mtx);
1479 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1480 ;
1481 else while (alldevs_nread != 0 ||
1482 (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1483 cv_wait(&alldevs_cv, &alldevs_mtx);
1484 if (alldevs_nwrite++ == 0)
1485 alldevs_writer = curlwp;
1486 mutex_exit(&alldevs_mtx);
1487
1488 /*
1489 * Ensure the device is deactivated. If the device doesn't
1490 * have an activation entry point, we allow DVF_ACTIVE to
1491 * remain set. Otherwise, if DVF_ACTIVE is still set, the
1492 * device is busy, and the detach fails.
1493 */
1494 if (ca->ca_activate != NULL)
1495 rv = config_deactivate(dev);
1496
1497 /*
1498 * Try to detach the device. If that's not possible, then
1499 * we either panic() (for the forced but failed case), or
1500 * return an error.
1501 */
1502 if (rv == 0) {
1503 if (ca->ca_detach != NULL)
1504 rv = (*ca->ca_detach)(dev, flags);
1505 else
1506 rv = EOPNOTSUPP;
1507 }
1508 if (rv != 0) {
1509 if ((flags & DETACH_FORCE) == 0)
1510 goto out;
1511 else
1512 panic("config_detach: forced detach of %s failed (%d)",
1513 device_xname(dev), rv);
1514 }
1515
1516 /*
1517 * The device has now been successfully detached.
1518 */
1519
1520 /* Let userland know */
1521 devmon_report_device(dev, false);
1522
1523 #ifdef DIAGNOSTIC
1524 /*
1525 * Sanity: If you're successfully detached, you should have no
1526 * children. (Note that because children must be attached
1527 * after parents, we only need to search the latter part of
1528 * the list.)
1529 */
1530 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1531 d = TAILQ_NEXT(d, dv_list)) {
1532 if (d->dv_parent == dev) {
1533 printf("config_detach: detached device %s"
1534 " has children %s\n", device_xname(dev), device_xname(d));
1535 panic("config_detach");
1536 }
1537 }
1538 #endif
1539
1540 /* notify the parent that the child is gone */
1541 if (dev->dv_parent) {
1542 device_t p = dev->dv_parent;
1543 if (p->dv_cfattach->ca_childdetached)
1544 (*p->dv_cfattach->ca_childdetached)(p, dev);
1545 }
1546
1547 /*
1548 * Mark cfdata to show that the unit can be reused, if possible.
1549 */
1550 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1551 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1552 if (STREQ(cf->cf_name, cd->cd_name)) {
1553 if (cf->cf_fstate == FSTATE_FOUND &&
1554 cf->cf_unit == dev->dv_unit)
1555 cf->cf_fstate = FSTATE_NOTFOUND;
1556 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1557 /*
1558 * Note that we can only re-use a starred
1559 * unit number if the unit being detached
1560 * had the last assigned unit number.
1561 */
1562 if (cf->cf_fstate == FSTATE_STAR &&
1563 cf->cf_unit == dev->dv_unit + 1)
1564 cf->cf_unit--;
1565 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1566 }
1567 }
1568 }
1569
1570 config_devunlink(dev);
1571
1572 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1573 aprint_normal_dev(dev, "detached\n");
1574
1575 config_devdealloc(dev);
1576
1577 out:
1578 mutex_enter(&alldevs_mtx);
1579 if (--alldevs_nwrite == 0)
1580 alldevs_writer = NULL;
1581 cv_signal(&alldevs_cv);
1582 mutex_exit(&alldevs_mtx);
1583 return rv;
1584 }
1585
1586 int
1587 config_detach_children(device_t parent, int flags)
1588 {
1589 device_t dv;
1590 deviter_t di;
1591 int error = 0;
1592
1593 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1594 dv = deviter_next(&di)) {
1595 if (device_parent(dv) != parent)
1596 continue;
1597 if ((error = config_detach(dv, flags)) != 0)
1598 break;
1599 }
1600 deviter_release(&di);
1601 return error;
1602 }
1603
1604 int
1605 config_activate(device_t dev)
1606 {
1607 const struct cfattach *ca = dev->dv_cfattach;
1608 int rv = 0, oflags = dev->dv_flags;
1609
1610 if (ca->ca_activate == NULL)
1611 return (EOPNOTSUPP);
1612
1613 if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1614 dev->dv_flags |= DVF_ACTIVE;
1615 rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1616 if (rv)
1617 dev->dv_flags = oflags;
1618 }
1619 return (rv);
1620 }
1621
1622 int
1623 config_deactivate(device_t dev)
1624 {
1625 const struct cfattach *ca = dev->dv_cfattach;
1626 int rv = 0, oflags = dev->dv_flags;
1627
1628 if (ca->ca_activate == NULL)
1629 return (EOPNOTSUPP);
1630
1631 if (dev->dv_flags & DVF_ACTIVE) {
1632 dev->dv_flags &= ~DVF_ACTIVE;
1633 rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1634 if (rv)
1635 dev->dv_flags = oflags;
1636 }
1637 return (rv);
1638 }
1639
1640 /*
1641 * Defer the configuration of the specified device until all
1642 * of its parent's devices have been attached.
1643 */
1644 void
1645 config_defer(device_t dev, void (*func)(device_t))
1646 {
1647 const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
1648 struct deferred_config *dc;
1649
1650 if (dev->dv_parent == NULL)
1651 panic("config_defer: can't defer config of a root device");
1652
1653 #ifdef DIAGNOSTIC
1654 for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1655 dc = TAILQ_NEXT(dc, dc_queue)) {
1656 if (dc->dc_dev == dev)
1657 panic("config_defer: deferred twice");
1658 }
1659 #endif
1660
1661 dc = kmem_alloc(sizeof(*dc), kmflags);
1662 if (dc == NULL)
1663 panic("config_defer: unable to allocate callback");
1664
1665 dc->dc_dev = dev;
1666 dc->dc_func = func;
1667 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1668 config_pending_incr();
1669 }
1670
1671 /*
1672 * Defer some autoconfiguration for a device until after interrupts
1673 * are enabled.
1674 */
1675 void
1676 config_interrupts(device_t dev, void (*func)(device_t))
1677 {
1678 const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
1679 struct deferred_config *dc;
1680
1681 /*
1682 * If interrupts are enabled, callback now.
1683 */
1684 if (cold == 0) {
1685 (*func)(dev);
1686 return;
1687 }
1688
1689 #ifdef DIAGNOSTIC
1690 for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1691 dc = TAILQ_NEXT(dc, dc_queue)) {
1692 if (dc->dc_dev == dev)
1693 panic("config_interrupts: deferred twice");
1694 }
1695 #endif
1696
1697 dc = kmem_alloc(sizeof(*dc), kmflags);
1698 if (dc == NULL)
1699 panic("config_interrupts: unable to allocate callback");
1700
1701 dc->dc_dev = dev;
1702 dc->dc_func = func;
1703 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1704 config_pending_incr();
1705 }
1706
1707 /*
1708 * Process a deferred configuration queue.
1709 */
1710 static void
1711 config_process_deferred(struct deferred_config_head *queue,
1712 device_t parent)
1713 {
1714 struct deferred_config *dc, *ndc;
1715
1716 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1717 ndc = TAILQ_NEXT(dc, dc_queue);
1718 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1719 TAILQ_REMOVE(queue, dc, dc_queue);
1720 (*dc->dc_func)(dc->dc_dev);
1721 kmem_free(dc, sizeof(*dc));
1722 config_pending_decr();
1723 }
1724 }
1725 }
1726
1727 /*
1728 * Manipulate the config_pending semaphore.
1729 */
1730 void
1731 config_pending_incr(void)
1732 {
1733
1734 mutex_enter(&config_misc_lock);
1735 config_pending++;
1736 mutex_exit(&config_misc_lock);
1737 }
1738
1739 void
1740 config_pending_decr(void)
1741 {
1742
1743 #ifdef DIAGNOSTIC
1744 if (config_pending == 0)
1745 panic("config_pending_decr: config_pending == 0");
1746 #endif
1747 mutex_enter(&config_misc_lock);
1748 config_pending--;
1749 if (config_pending == 0)
1750 cv_broadcast(&config_misc_cv);
1751 mutex_exit(&config_misc_lock);
1752 }
1753
1754 /*
1755 * Register a "finalization" routine. Finalization routines are
1756 * called iteratively once all real devices have been found during
1757 * autoconfiguration, for as long as any one finalizer has done
1758 * any work.
1759 */
1760 int
1761 config_finalize_register(device_t dev, int (*fn)(device_t))
1762 {
1763 struct finalize_hook *f;
1764
1765 /*
1766 * If finalization has already been done, invoke the
1767 * callback function now.
1768 */
1769 if (config_finalize_done) {
1770 while ((*fn)(dev) != 0)
1771 /* loop */ ;
1772 }
1773
1774 /* Ensure this isn't already on the list. */
1775 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1776 if (f->f_func == fn && f->f_dev == dev)
1777 return (EEXIST);
1778 }
1779
1780 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1781 f->f_func = fn;
1782 f->f_dev = dev;
1783 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1784
1785 return (0);
1786 }
1787
1788 void
1789 config_finalize(void)
1790 {
1791 struct finalize_hook *f;
1792 struct pdevinit *pdev;
1793 extern struct pdevinit pdevinit[];
1794 int errcnt, rv;
1795
1796 /*
1797 * Now that device driver threads have been created, wait for
1798 * them to finish any deferred autoconfiguration.
1799 */
1800 mutex_enter(&config_misc_lock);
1801 while (config_pending != 0)
1802 cv_wait(&config_misc_cv, &config_misc_lock);
1803 mutex_exit(&config_misc_lock);
1804
1805 KERNEL_LOCK(1, NULL);
1806
1807 /* Attach pseudo-devices. */
1808 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1809 (*pdev->pdev_attach)(pdev->pdev_count);
1810
1811 /* Run the hooks until none of them does any work. */
1812 do {
1813 rv = 0;
1814 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1815 rv |= (*f->f_func)(f->f_dev);
1816 } while (rv != 0);
1817
1818 config_finalize_done = 1;
1819
1820 /* Now free all the hooks. */
1821 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1822 TAILQ_REMOVE(&config_finalize_list, f, f_list);
1823 kmem_free(f, sizeof(*f));
1824 }
1825
1826 KERNEL_UNLOCK_ONE(NULL);
1827
1828 errcnt = aprint_get_error_count();
1829 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1830 (boothowto & AB_VERBOSE) == 0) {
1831 if (config_do_twiddle) {
1832 config_do_twiddle = 0;
1833 printf_nolog("done.\n");
1834 }
1835 if (errcnt != 0) {
1836 printf("WARNING: %d error%s while detecting hardware; "
1837 "check system log.\n", errcnt,
1838 errcnt == 1 ? "" : "s");
1839 }
1840 }
1841 }
1842
1843 /*
1844 * device_lookup:
1845 *
1846 * Look up a device instance for a given driver.
1847 */
1848 device_t
1849 device_lookup(cfdriver_t cd, int unit)
1850 {
1851
1852 if (unit < 0 || unit >= cd->cd_ndevs)
1853 return (NULL);
1854
1855 return (cd->cd_devs[unit]);
1856 }
1857
1858 /*
1859 * device_lookup:
1860 *
1861 * Look up a device instance for a given driver.
1862 */
1863 void *
1864 device_lookup_private(cfdriver_t cd, int unit)
1865 {
1866 device_t dv;
1867
1868 if (unit < 0 || unit >= cd->cd_ndevs)
1869 return NULL;
1870
1871 if ((dv = cd->cd_devs[unit]) == NULL)
1872 return NULL;
1873
1874 return dv->dv_private;
1875 }
1876
1877 /*
1878 * Accessor functions for the device_t type.
1879 */
1880 devclass_t
1881 device_class(device_t dev)
1882 {
1883
1884 return (dev->dv_class);
1885 }
1886
1887 cfdata_t
1888 device_cfdata(device_t dev)
1889 {
1890
1891 return (dev->dv_cfdata);
1892 }
1893
1894 cfdriver_t
1895 device_cfdriver(device_t dev)
1896 {
1897
1898 return (dev->dv_cfdriver);
1899 }
1900
1901 cfattach_t
1902 device_cfattach(device_t dev)
1903 {
1904
1905 return (dev->dv_cfattach);
1906 }
1907
1908 int
1909 device_unit(device_t dev)
1910 {
1911
1912 return (dev->dv_unit);
1913 }
1914
1915 const char *
1916 device_xname(device_t dev)
1917 {
1918
1919 return (dev->dv_xname);
1920 }
1921
1922 device_t
1923 device_parent(device_t dev)
1924 {
1925
1926 return (dev->dv_parent);
1927 }
1928
1929 bool
1930 device_is_active(device_t dev)
1931 {
1932 int active_flags;
1933
1934 active_flags = DVF_ACTIVE;
1935 active_flags |= DVF_CLASS_SUSPENDED;
1936 active_flags |= DVF_DRIVER_SUSPENDED;
1937 active_flags |= DVF_BUS_SUSPENDED;
1938
1939 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1940 }
1941
1942 bool
1943 device_is_enabled(device_t dev)
1944 {
1945 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1946 }
1947
1948 bool
1949 device_has_power(device_t dev)
1950 {
1951 int active_flags;
1952
1953 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1954
1955 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1956 }
1957
1958 int
1959 device_locator(device_t dev, u_int locnum)
1960 {
1961
1962 KASSERT(dev->dv_locators != NULL);
1963 return (dev->dv_locators[locnum]);
1964 }
1965
1966 void *
1967 device_private(device_t dev)
1968 {
1969
1970 /*
1971 * The reason why device_private(NULL) is allowed is to simplify the
1972 * work of a lot of userspace request handlers (i.e., c/bdev
1973 * handlers) which grab cfdriver_t->cd_units[n].
1974 * It avoids having them test for it to be NULL and only then calling
1975 * device_private.
1976 */
1977 return dev == NULL ? NULL : dev->dv_private;
1978 }
1979
1980 prop_dictionary_t
1981 device_properties(device_t dev)
1982 {
1983
1984 return (dev->dv_properties);
1985 }
1986
1987 /*
1988 * device_is_a:
1989 *
1990 * Returns true if the device is an instance of the specified
1991 * driver.
1992 */
1993 bool
1994 device_is_a(device_t dev, const char *dname)
1995 {
1996
1997 return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
1998 }
1999
2000 /*
2001 * device_find_by_xname:
2002 *
2003 * Returns the device of the given name or NULL if it doesn't exist.
2004 */
2005 device_t
2006 device_find_by_xname(const char *name)
2007 {
2008 device_t dv;
2009 deviter_t di;
2010
2011 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2012 if (strcmp(device_xname(dv), name) == 0)
2013 break;
2014 }
2015 deviter_release(&di);
2016
2017 return dv;
2018 }
2019
2020 /*
2021 * device_find_by_driver_unit:
2022 *
2023 * Returns the device of the given driver name and unit or
2024 * NULL if it doesn't exist.
2025 */
2026 device_t
2027 device_find_by_driver_unit(const char *name, int unit)
2028 {
2029 struct cfdriver *cd;
2030
2031 if ((cd = config_cfdriver_lookup(name)) == NULL)
2032 return NULL;
2033 return device_lookup(cd, unit);
2034 }
2035
2036 /*
2037 * Power management related functions.
2038 */
2039
2040 bool
2041 device_pmf_is_registered(device_t dev)
2042 {
2043 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2044 }
2045
2046 bool
2047 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
2048 {
2049 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2050 return true;
2051 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2052 return false;
2053 if (*dev->dv_driver_suspend != NULL &&
2054 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
2055 return false;
2056
2057 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2058 return true;
2059 }
2060
2061 bool
2062 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
2063 {
2064 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2065 return true;
2066 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2067 return false;
2068 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2069 return false;
2070 if (*dev->dv_driver_resume != NULL &&
2071 !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2072 return false;
2073
2074 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2075 return true;
2076 }
2077
2078 bool
2079 device_pmf_driver_shutdown(device_t dev, int how)
2080 {
2081
2082 if (*dev->dv_driver_shutdown != NULL &&
2083 !(*dev->dv_driver_shutdown)(dev, how))
2084 return false;
2085 return true;
2086 }
2087
2088 bool
2089 device_pmf_driver_register(device_t dev,
2090 bool (*suspend)(device_t PMF_FN_PROTO),
2091 bool (*resume)(device_t PMF_FN_PROTO),
2092 bool (*shutdown)(device_t, int))
2093 {
2094 pmf_private_t *pp;
2095
2096 if ((pp = kmem_zalloc(sizeof(*pp), KM_NOSLEEP)) == NULL)
2097 return false;
2098 mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
2099 cv_init(&pp->pp_cv, "pmfsusp");
2100 dev->dv_pmf_private = pp;
2101
2102 dev->dv_driver_suspend = suspend;
2103 dev->dv_driver_resume = resume;
2104 dev->dv_driver_shutdown = shutdown;
2105 dev->dv_flags |= DVF_POWER_HANDLERS;
2106 return true;
2107 }
2108
2109 static const char *
2110 curlwp_name(void)
2111 {
2112 if (curlwp->l_name != NULL)
2113 return curlwp->l_name;
2114 else
2115 return curlwp->l_proc->p_comm;
2116 }
2117
2118 void
2119 device_pmf_driver_deregister(device_t dev)
2120 {
2121 pmf_private_t *pp = dev->dv_pmf_private;
2122
2123 /* XXX avoid crash in case we are not initialized */
2124 if (!pp)
2125 return;
2126
2127 dev->dv_driver_suspend = NULL;
2128 dev->dv_driver_resume = NULL;
2129
2130 mutex_enter(&pp->pp_mtx);
2131 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2132 while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
2133 /* Wake a thread that waits for the lock. That
2134 * thread will fail to acquire the lock, and then
2135 * it will wake the next thread that waits for the
2136 * lock, or else it will wake us.
2137 */
2138 cv_signal(&pp->pp_cv);
2139 pmflock_debug(dev, __func__, __LINE__);
2140 cv_wait(&pp->pp_cv, &pp->pp_mtx);
2141 pmflock_debug(dev, __func__, __LINE__);
2142 }
2143 dev->dv_pmf_private = NULL;
2144 mutex_exit(&pp->pp_mtx);
2145
2146 cv_destroy(&pp->pp_cv);
2147 mutex_destroy(&pp->pp_mtx);
2148 kmem_free(pp, sizeof(*pp));
2149 }
2150
2151 bool
2152 device_pmf_driver_child_register(device_t dev)
2153 {
2154 device_t parent = device_parent(dev);
2155
2156 if (parent == NULL || parent->dv_driver_child_register == NULL)
2157 return true;
2158 return (*parent->dv_driver_child_register)(dev);
2159 }
2160
2161 void
2162 device_pmf_driver_set_child_register(device_t dev,
2163 bool (*child_register)(device_t))
2164 {
2165 dev->dv_driver_child_register = child_register;
2166 }
2167
2168 void
2169 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2170 {
2171 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2172 if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2173 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2174 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2175 }
2176
2177 bool
2178 device_is_self_suspended(device_t dev)
2179 {
2180 return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2181 }
2182
2183 void
2184 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2185 {
2186 bool self = (flags & PMF_F_SELF) != 0;
2187
2188 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2189
2190 if (!self)
2191 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2192 else if (device_is_active(dev))
2193 dev->dv_flags |= DVF_SELF_SUSPENDED;
2194
2195 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2196 }
2197
2198 static void
2199 pmflock_debug(device_t dev, const char *func, int line)
2200 {
2201 pmf_private_t *pp = device_pmf_private(dev);
2202
2203 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
2204 func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
2205 dev->dv_flags);
2206 }
2207
2208 static void
2209 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2210 {
2211 pmf_private_t *pp = device_pmf_private(dev);
2212
2213 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
2214 "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2215 pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
2216 }
2217
2218 static bool
2219 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2220 {
2221 pmf_private_t *pp = device_pmf_private(dev);
2222
2223 while (device_pmf_is_registered(dev) &&
2224 pp->pp_nlock > 0 && pp->pp_holder != curlwp) {
2225 pp->pp_nwait++;
2226 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2227 cv_wait(&pp->pp_cv, &pp->pp_mtx);
2228 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2229 pp->pp_nwait--;
2230 }
2231 if (!device_pmf_is_registered(dev)) {
2232 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2233 /* We could not acquire the lock, but some other thread may
2234 * wait for it, also. Wake that thread.
2235 */
2236 cv_signal(&pp->pp_cv);
2237 return false;
2238 }
2239 pp->pp_nlock++;
2240 pp->pp_holder = curlwp;
2241 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2242 return true;
2243 }
2244
2245 bool
2246 device_pmf_lock(device_t dev PMF_FN_ARGS)
2247 {
2248 bool rc;
2249 pmf_private_t *pp = device_pmf_private(dev);
2250
2251 mutex_enter(&pp->pp_mtx);
2252 rc = device_pmf_lock1(dev PMF_FN_CALL);
2253 mutex_exit(&pp->pp_mtx);
2254
2255 return rc;
2256 }
2257
2258 void
2259 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2260 {
2261 pmf_private_t *pp = device_pmf_private(dev);
2262
2263 KASSERT(pp->pp_nlock > 0);
2264 mutex_enter(&pp->pp_mtx);
2265 if (--pp->pp_nlock == 0)
2266 pp->pp_holder = NULL;
2267 cv_signal(&pp->pp_cv);
2268 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2269 mutex_exit(&pp->pp_mtx);
2270 }
2271
2272 void *
2273 device_pmf_private(device_t dev)
2274 {
2275 return dev->dv_pmf_private;
2276 }
2277
2278 void *
2279 device_pmf_bus_private(device_t dev)
2280 {
2281 return dev->dv_bus_private;
2282 }
2283
2284 bool
2285 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2286 {
2287 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2288 return true;
2289 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2290 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2291 return false;
2292 if (*dev->dv_bus_suspend != NULL &&
2293 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2294 return false;
2295
2296 dev->dv_flags |= DVF_BUS_SUSPENDED;
2297 return true;
2298 }
2299
2300 bool
2301 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2302 {
2303 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2304 return true;
2305 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2306 return false;
2307 if (*dev->dv_bus_resume != NULL &&
2308 !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2309 return false;
2310
2311 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2312 return true;
2313 }
2314
2315 bool
2316 device_pmf_bus_shutdown(device_t dev, int how)
2317 {
2318
2319 if (*dev->dv_bus_shutdown != NULL &&
2320 !(*dev->dv_bus_shutdown)(dev, how))
2321 return false;
2322 return true;
2323 }
2324
2325 void
2326 device_pmf_bus_register(device_t dev, void *priv,
2327 bool (*suspend)(device_t PMF_FN_PROTO),
2328 bool (*resume)(device_t PMF_FN_PROTO),
2329 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2330 {
2331 dev->dv_bus_private = priv;
2332 dev->dv_bus_resume = resume;
2333 dev->dv_bus_suspend = suspend;
2334 dev->dv_bus_shutdown = shutdown;
2335 dev->dv_bus_deregister = deregister;
2336 }
2337
2338 void
2339 device_pmf_bus_deregister(device_t dev)
2340 {
2341 if (dev->dv_bus_deregister == NULL)
2342 return;
2343 (*dev->dv_bus_deregister)(dev);
2344 dev->dv_bus_private = NULL;
2345 dev->dv_bus_suspend = NULL;
2346 dev->dv_bus_resume = NULL;
2347 dev->dv_bus_deregister = NULL;
2348 }
2349
2350 void *
2351 device_pmf_class_private(device_t dev)
2352 {
2353 return dev->dv_class_private;
2354 }
2355
2356 bool
2357 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2358 {
2359 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2360 return true;
2361 if (*dev->dv_class_suspend != NULL &&
2362 !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2363 return false;
2364
2365 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2366 return true;
2367 }
2368
2369 bool
2370 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2371 {
2372 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2373 return true;
2374 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2375 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2376 return false;
2377 if (*dev->dv_class_resume != NULL &&
2378 !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2379 return false;
2380
2381 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2382 return true;
2383 }
2384
2385 void
2386 device_pmf_class_register(device_t dev, void *priv,
2387 bool (*suspend)(device_t PMF_FN_PROTO),
2388 bool (*resume)(device_t PMF_FN_PROTO),
2389 void (*deregister)(device_t))
2390 {
2391 dev->dv_class_private = priv;
2392 dev->dv_class_suspend = suspend;
2393 dev->dv_class_resume = resume;
2394 dev->dv_class_deregister = deregister;
2395 }
2396
2397 void
2398 device_pmf_class_deregister(device_t dev)
2399 {
2400 if (dev->dv_class_deregister == NULL)
2401 return;
2402 (*dev->dv_class_deregister)(dev);
2403 dev->dv_class_private = NULL;
2404 dev->dv_class_suspend = NULL;
2405 dev->dv_class_resume = NULL;
2406 dev->dv_class_deregister = NULL;
2407 }
2408
2409 bool
2410 device_active(device_t dev, devactive_t type)
2411 {
2412 size_t i;
2413
2414 if (dev->dv_activity_count == 0)
2415 return false;
2416
2417 for (i = 0; i < dev->dv_activity_count; ++i) {
2418 if (dev->dv_activity_handlers[i] == NULL)
2419 break;
2420 (*dev->dv_activity_handlers[i])(dev, type);
2421 }
2422
2423 return true;
2424 }
2425
2426 bool
2427 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2428 {
2429 void (**new_handlers)(device_t, devactive_t);
2430 void (**old_handlers)(device_t, devactive_t);
2431 size_t i, old_size, new_size;
2432 int s;
2433
2434 old_handlers = dev->dv_activity_handlers;
2435 old_size = dev->dv_activity_count;
2436
2437 for (i = 0; i < old_size; ++i) {
2438 KASSERT(old_handlers[i] != handler);
2439 if (old_handlers[i] == NULL) {
2440 old_handlers[i] = handler;
2441 return true;
2442 }
2443 }
2444
2445 new_size = old_size + 4;
2446 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2447
2448 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2449 new_handlers[old_size] = handler;
2450 memset(new_handlers + old_size + 1, 0,
2451 sizeof(int [new_size - (old_size+1)]));
2452
2453 s = splhigh();
2454 dev->dv_activity_count = new_size;
2455 dev->dv_activity_handlers = new_handlers;
2456 splx(s);
2457
2458 if (old_handlers != NULL)
2459 kmem_free(old_handlers, sizeof(int [old_size]));
2460
2461 return true;
2462 }
2463
2464 void
2465 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2466 {
2467 void (**old_handlers)(device_t, devactive_t);
2468 size_t i, old_size;
2469 int s;
2470
2471 old_handlers = dev->dv_activity_handlers;
2472 old_size = dev->dv_activity_count;
2473
2474 for (i = 0; i < old_size; ++i) {
2475 if (old_handlers[i] == handler)
2476 break;
2477 if (old_handlers[i] == NULL)
2478 return; /* XXX panic? */
2479 }
2480
2481 if (i == old_size)
2482 return; /* XXX panic? */
2483
2484 for (; i < old_size - 1; ++i) {
2485 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2486 continue;
2487
2488 if (i == 0) {
2489 s = splhigh();
2490 dev->dv_activity_count = 0;
2491 dev->dv_activity_handlers = NULL;
2492 splx(s);
2493 kmem_free(old_handlers, sizeof(void *[old_size]));
2494 }
2495 return;
2496 }
2497 old_handlers[i] = NULL;
2498 }
2499
2500 /*
2501 * Device Iteration
2502 *
2503 * deviter_t: a device iterator. Holds state for a "walk" visiting
2504 * each device_t's in the device tree.
2505 *
2506 * deviter_init(di, flags): initialize the device iterator `di'
2507 * to "walk" the device tree. deviter_next(di) will return
2508 * the first device_t in the device tree, or NULL if there are
2509 * no devices.
2510 *
2511 * `flags' is one or more of DEVITER_F_RW, indicating that the
2512 * caller intends to modify the device tree by calling
2513 * config_detach(9) on devices in the order that the iterator
2514 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2515 * nearest the "root" of the device tree to be returned, first;
2516 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2517 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2518 * indicating both that deviter_init() should not respect any
2519 * locks on the device tree, and that deviter_next(di) may run
2520 * in more than one LWP before the walk has finished.
2521 *
2522 * Only one DEVITER_F_RW iterator may be in the device tree at
2523 * once.
2524 *
2525 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2526 *
2527 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2528 * DEVITER_F_LEAVES_FIRST are used in combination.
2529 *
2530 * deviter_first(di, flags): initialize the device iterator `di'
2531 * and return the first device_t in the device tree, or NULL
2532 * if there are no devices. The statement
2533 *
2534 * dv = deviter_first(di);
2535 *
2536 * is shorthand for
2537 *
2538 * deviter_init(di);
2539 * dv = deviter_next(di);
2540 *
2541 * deviter_next(di): return the next device_t in the device tree,
2542 * or NULL if there are no more devices. deviter_next(di)
2543 * is undefined if `di' was not initialized with deviter_init() or
2544 * deviter_first().
2545 *
2546 * deviter_release(di): stops iteration (subsequent calls to
2547 * deviter_next() will return NULL), releases any locks and
2548 * resources held by the device iterator.
2549 *
2550 * Device iteration does not return device_t's in any particular
2551 * order. An iterator will never return the same device_t twice.
2552 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2553 * is called repeatedly on the same `di', it will eventually return
2554 * NULL. It is ok to attach/detach devices during device iteration.
2555 */
2556 void
2557 deviter_init(deviter_t *di, deviter_flags_t flags)
2558 {
2559 device_t dv;
2560 bool rw;
2561
2562 mutex_enter(&alldevs_mtx);
2563 if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2564 flags |= DEVITER_F_RW;
2565 alldevs_nwrite++;
2566 alldevs_writer = NULL;
2567 alldevs_nread = 0;
2568 } else {
2569 rw = (flags & DEVITER_F_RW) != 0;
2570
2571 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2572 ;
2573 else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2574 (rw && alldevs_nread != 0))
2575 cv_wait(&alldevs_cv, &alldevs_mtx);
2576
2577 if (rw) {
2578 if (alldevs_nwrite++ == 0)
2579 alldevs_writer = curlwp;
2580 } else
2581 alldevs_nread++;
2582 }
2583 mutex_exit(&alldevs_mtx);
2584
2585 memset(di, 0, sizeof(*di));
2586
2587 di->di_flags = flags;
2588
2589 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2590 case DEVITER_F_LEAVES_FIRST:
2591 TAILQ_FOREACH(dv, &alldevs, dv_list)
2592 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2593 break;
2594 case DEVITER_F_ROOT_FIRST:
2595 TAILQ_FOREACH(dv, &alldevs, dv_list)
2596 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2597 break;
2598 default:
2599 break;
2600 }
2601
2602 deviter_reinit(di);
2603 }
2604
2605 static void
2606 deviter_reinit(deviter_t *di)
2607 {
2608 if ((di->di_flags & DEVITER_F_RW) != 0)
2609 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2610 else
2611 di->di_prev = TAILQ_FIRST(&alldevs);
2612 }
2613
2614 device_t
2615 deviter_first(deviter_t *di, deviter_flags_t flags)
2616 {
2617 deviter_init(di, flags);
2618 return deviter_next(di);
2619 }
2620
2621 static device_t
2622 deviter_next1(deviter_t *di)
2623 {
2624 device_t dv;
2625
2626 dv = di->di_prev;
2627
2628 if (dv == NULL)
2629 ;
2630 else if ((di->di_flags & DEVITER_F_RW) != 0)
2631 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2632 else
2633 di->di_prev = TAILQ_NEXT(dv, dv_list);
2634
2635 return dv;
2636 }
2637
2638 device_t
2639 deviter_next(deviter_t *di)
2640 {
2641 device_t dv = NULL;
2642
2643 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2644 case 0:
2645 return deviter_next1(di);
2646 case DEVITER_F_LEAVES_FIRST:
2647 while (di->di_curdepth >= 0) {
2648 if ((dv = deviter_next1(di)) == NULL) {
2649 di->di_curdepth--;
2650 deviter_reinit(di);
2651 } else if (dv->dv_depth == di->di_curdepth)
2652 break;
2653 }
2654 return dv;
2655 case DEVITER_F_ROOT_FIRST:
2656 while (di->di_curdepth <= di->di_maxdepth) {
2657 if ((dv = deviter_next1(di)) == NULL) {
2658 di->di_curdepth++;
2659 deviter_reinit(di);
2660 } else if (dv->dv_depth == di->di_curdepth)
2661 break;
2662 }
2663 return dv;
2664 default:
2665 return NULL;
2666 }
2667 }
2668
2669 void
2670 deviter_release(deviter_t *di)
2671 {
2672 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2673
2674 mutex_enter(&alldevs_mtx);
2675 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2676 --alldevs_nwrite;
2677 else {
2678
2679 if (rw) {
2680 if (--alldevs_nwrite == 0)
2681 alldevs_writer = NULL;
2682 } else
2683 --alldevs_nread;
2684
2685 cv_signal(&alldevs_cv);
2686 }
2687 mutex_exit(&alldevs_mtx);
2688 }
2689