subr_autoconf.c revision 1.163.4.2.4.2 1 /* $NetBSD: subr_autoconf.c,v 1.163.4.2.4.2 2011/02/08 06:04:59 cliff Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.163.4.2.4.2 2011/02/08 06:04:59 cliff Exp $");
81
82 #include "opt_multiprocessor.h"
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85
86 #include <sys/param.h>
87 #include <sys/device.h>
88 #include <sys/disklabel.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91 #include <sys/malloc.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/vnode.h>
102 #include <sys/mount.h>
103 #include <sys/namei.h>
104 #include <sys/unistd.h>
105 #include <sys/fcntl.h>
106 #include <sys/lockf.h>
107 #include <sys/callout.h>
108 #include <sys/mutex.h>
109 #include <sys/condvar.h>
110 #include <sys/devmon.h>
111 #include <sys/cpu.h>
112
113 #include <sys/disk.h>
114
115 #include <machine/limits.h>
116
117 #include "opt_userconf.h"
118 #ifdef USERCONF
119 #include <sys/userconf.h>
120 #endif
121
122 #ifdef __i386__
123 #include "opt_splash.h"
124 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
125 #include <dev/splash/splash.h>
126 extern struct splash_progress *splash_progress_state;
127 #endif
128 #endif
129
130 /*
131 * Autoconfiguration subroutines.
132 */
133
134 typedef struct pmf_private {
135 int pp_nwait;
136 int pp_nlock;
137 lwp_t *pp_holder;
138 kmutex_t pp_mtx;
139 kcondvar_t pp_cv;
140 } pmf_private_t;
141
142 /*
143 * ioconf.c exports exactly two names: cfdata and cfroots. All system
144 * devices and drivers are found via these tables.
145 */
146 extern struct cfdata cfdata[];
147 extern const short cfroots[];
148
149 /*
150 * List of all cfdriver structures. We use this to detect duplicates
151 * when other cfdrivers are loaded.
152 */
153 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
154 extern struct cfdriver * const cfdriver_list_initial[];
155
156 /*
157 * Initial list of cfattach's.
158 */
159 extern const struct cfattachinit cfattachinit[];
160
161 /*
162 * List of cfdata tables. We always have one such list -- the one
163 * built statically when the kernel was configured.
164 */
165 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
166 static struct cftable initcftable;
167
168 #define ROOT ((device_t)NULL)
169
170 struct matchinfo {
171 cfsubmatch_t fn;
172 struct device *parent;
173 const int *locs;
174 void *aux;
175 struct cfdata *match;
176 int pri;
177 };
178
179 static char *number(char *, int);
180 static void mapply(struct matchinfo *, cfdata_t);
181 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
182 static void config_devdealloc(device_t);
183 static void config_makeroom(int, struct cfdriver *);
184 static void config_devlink(device_t);
185 static void config_devunlink(device_t);
186
187 static void pmflock_debug(device_t, const char *, int);
188 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
189
190 static device_t deviter_next1(deviter_t *);
191 static void deviter_reinit(deviter_t *);
192
193 struct deferred_config {
194 TAILQ_ENTRY(deferred_config) dc_queue;
195 device_t dc_dev;
196 void (*dc_func)(device_t);
197 };
198
199 TAILQ_HEAD(deferred_config_head, deferred_config);
200
201 /*
202 * config_queues_lock protects MP access to
203 * - deferred_config_queue
204 * - interrupt_config_queue
205 * is held for short durations, and is initialized to spin
206 */
207 static kmutex_t config_queues_lock;
208
209 /*
210 * dc_funcs_lock ensures the driver dc_func's are not called concurrently
211 * many (most?) are not MP safe
212 * is held for unknown durations, and is initialized to sleep
213 */
214 static kmutex_t dc_funcs_lock;
215
216 struct deferred_config_head deferred_config_queue =
217 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
218 struct deferred_config_head interrupt_config_queue =
219 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
220 int interrupt_config_threads = 8;
221
222 static void config_process_deferred(struct deferred_config_head *, device_t);
223
224 /* Hooks to finalize configuration once all real devices have been found. */
225 struct finalize_hook {
226 TAILQ_ENTRY(finalize_hook) f_list;
227 int (*f_func)(device_t);
228 device_t f_dev;
229 };
230 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
231 TAILQ_HEAD_INITIALIZER(config_finalize_list);
232 static int config_finalize_done;
233
234 /* list of all devices */
235 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
236 kcondvar_t alldevs_cv;
237 kmutex_t alldevs_mtx;
238 static int alldevs_nread = 0;
239 static int alldevs_nwrite = 0;
240 static lwp_t *alldevs_writer = NULL;
241
242 static int config_pending; /* semaphore for mountroot */
243 static kmutex_t config_misc_lock;
244 static kcondvar_t config_misc_cv;
245
246 #define STREQ(s1, s2) \
247 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
248
249 static int config_initialized; /* config_init() has been called. */
250
251 static int config_do_twiddle;
252
253 struct vnode *
254 opendisk(struct device *dv)
255 {
256 int bmajor, bminor;
257 struct vnode *tmpvn;
258 int error;
259 dev_t dev;
260
261 /*
262 * Lookup major number for disk block device.
263 */
264 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
265 if (bmajor == -1)
266 return NULL;
267
268 bminor = minor(device_unit(dv));
269 /*
270 * Fake a temporary vnode for the disk, open it, and read
271 * and hash the sectors.
272 */
273 dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
274 MAKEDISKDEV(bmajor, bminor, RAW_PART);
275 if (bdevvp(dev, &tmpvn))
276 panic("%s: can't alloc vnode for %s", __func__,
277 device_xname(dv));
278 error = VOP_OPEN(tmpvn, FREAD, NOCRED);
279 if (error) {
280 #ifndef DEBUG
281 /*
282 * Ignore errors caused by missing device, partition,
283 * or medium.
284 */
285 if (error != ENXIO && error != ENODEV)
286 #endif
287 printf("%s: can't open dev %s (%d)\n",
288 __func__, device_xname(dv), error);
289 vput(tmpvn);
290 return NULL;
291 }
292
293 return tmpvn;
294 }
295
296 int
297 config_handle_wedges(struct device *dv, int par)
298 {
299 struct dkwedge_list wl;
300 struct dkwedge_info *wi;
301 struct vnode *vn;
302 char diskname[16];
303 int i, error;
304
305 if ((vn = opendisk(dv)) == NULL)
306 return -1;
307
308 wl.dkwl_bufsize = sizeof(*wi) * 16;
309 wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
310
311 error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
312 VOP_CLOSE(vn, FREAD, NOCRED);
313 vput(vn);
314 if (error) {
315 #ifdef DEBUG_WEDGE
316 printf("%s: List wedges returned %d\n",
317 device_xname(dv), error);
318 #endif
319 free(wi, M_TEMP);
320 return -1;
321 }
322
323 #ifdef DEBUG_WEDGE
324 printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
325 wl.dkwl_nwedges, wl.dkwl_ncopied);
326 #endif
327 snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
328 par + 'a');
329
330 for (i = 0; i < wl.dkwl_ncopied; i++) {
331 #ifdef DEBUG_WEDGE
332 printf("%s: Looking for %s in %s\n",
333 device_xname(dv), diskname, wi[i].dkw_wname);
334 #endif
335 if (strcmp(wi[i].dkw_wname, diskname) == 0)
336 break;
337 }
338
339 if (i == wl.dkwl_ncopied) {
340 #ifdef DEBUG_WEDGE
341 printf("%s: Cannot find wedge with parent %s\n",
342 device_xname(dv), diskname);
343 #endif
344 free(wi, M_TEMP);
345 return -1;
346 }
347
348 #ifdef DEBUG_WEDGE
349 printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
350 device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
351 (unsigned long long)wi[i].dkw_offset,
352 (unsigned long long)wi[i].dkw_size);
353 #endif
354 dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
355 free(wi, M_TEMP);
356 return 0;
357 }
358
359 /*
360 * Initialize the autoconfiguration data structures. Normally this
361 * is done by configure(), but some platforms need to do this very
362 * early (to e.g. initialize the console).
363 */
364 void
365 config_init(void)
366 {
367 const struct cfattachinit *cfai;
368 int i, j;
369
370 if (config_initialized)
371 return;
372
373 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
374 cv_init(&alldevs_cv, "alldevs");
375
376 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
377 cv_init(&config_misc_cv, "cfgmisc");
378
379 mutex_init(&dc_funcs_lock, MUTEX_DEFAULT, IPL_SOFTNET);
380
381 mutex_init(&config_queues_lock, MUTEX_DEFAULT, IPL_VM);
382
383 /* allcfdrivers is statically initialized. */
384 for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
385 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
386 panic("configure: duplicate `%s' drivers",
387 cfdriver_list_initial[i]->cd_name);
388 }
389
390 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
391 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
392 if (config_cfattach_attach(cfai->cfai_name,
393 cfai->cfai_list[j]) != 0)
394 panic("configure: duplicate `%s' attachment "
395 "of `%s' driver",
396 cfai->cfai_list[j]->ca_name,
397 cfai->cfai_name);
398 }
399 }
400
401 initcftable.ct_cfdata = cfdata;
402 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
403
404 config_initialized = 1;
405 }
406
407 void
408 config_deferred(device_t dev)
409 {
410 config_process_deferred(&deferred_config_queue, dev);
411 config_process_deferred(&interrupt_config_queue, dev);
412 }
413
414 static void
415 config_interrupts_thread(void *cookie)
416 {
417 struct deferred_config *dc;
418
419 mutex_enter(&config_queues_lock);
420 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
421 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
422 mutex_exit(&config_queues_lock);
423 mutex_enter(&dc_funcs_lock);
424 (*dc->dc_func)(dc->dc_dev);
425 mutex_exit(&dc_funcs_lock);
426 kmem_free(dc, sizeof(*dc));
427 config_pending_decr();
428 mutex_enter(&config_queues_lock);
429 }
430 mutex_exit(&config_queues_lock);
431
432 kthread_exit(0);
433 }
434
435 /*
436 * Configure the system's hardware.
437 */
438 void
439 configure(void)
440 {
441 /* Initialize data structures. */
442 config_init();
443 pmf_init();
444 #if NDRVCTL > 0
445 drvctl_init();
446 #endif
447
448 #ifdef USERCONF
449 if (boothowto & RB_USERCONF)
450 user_config();
451 #endif
452
453 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
454 config_do_twiddle = 1;
455 printf_nolog("Detecting hardware...");
456 }
457
458 /*
459 * Do the machine-dependent portion of autoconfiguration. This
460 * sets the configuration machinery here in motion by "finding"
461 * the root bus. When this function returns, we expect interrupts
462 * to be enabled.
463 */
464 cpu_configure();
465 }
466
467 void
468 configure2(void)
469 {
470 CPU_INFO_ITERATOR cii;
471 struct cpu_info *ci;
472 int i, s;
473
474 /*
475 * Now that we've found all the hardware, start the real time
476 * and statistics clocks.
477 */
478 initclocks();
479
480 cold = 0; /* clocks are running, we're warm now! */
481 s = splsched();
482 curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
483 splx(s);
484
485 /* Boot the secondary processors. */
486 for (CPU_INFO_FOREACH(cii, ci)) {
487 uvm_cpu_attach(ci);
488 }
489 mp_online = true;
490 #if defined(MULTIPROCESSOR)
491 cpu_boot_secondary_processors();
492 #endif
493
494 /* Setup the runqueues and scheduler. */
495 runq_init();
496 sched_init();
497
498 /*
499 * Create threads to call back and finish configuration for
500 * devices that want interrupts enabled.
501 */
502 for (i = 0; i < interrupt_config_threads; i++) {
503 (void)kthread_create(PRI_NONE, 0, NULL,
504 config_interrupts_thread, NULL, NULL, "config");
505 }
506
507 /* Get the threads going and into any sleeps before continuing. */
508 yield();
509 }
510
511 /*
512 * Announce device attach/detach to userland listeners.
513 */
514 static void
515 devmon_report_device(device_t dev, bool isattach)
516 {
517 #if NDRVCTL > 0
518 prop_dictionary_t ev;
519 const char *parent;
520 const char *what;
521 device_t pdev = device_parent(dev);
522
523 ev = prop_dictionary_create();
524 if (ev == NULL)
525 return;
526
527 what = (isattach ? "device-attach" : "device-detach");
528 parent = (pdev == NULL ? "root" : device_xname(pdev));
529 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
530 !prop_dictionary_set_cstring(ev, "parent", parent)) {
531 prop_object_release(ev);
532 return;
533 }
534
535 devmon_insert(what, ev);
536 #endif
537 }
538
539 /*
540 * Add a cfdriver to the system.
541 */
542 int
543 config_cfdriver_attach(struct cfdriver *cd)
544 {
545 struct cfdriver *lcd;
546
547 /* Make sure this driver isn't already in the system. */
548 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
549 if (STREQ(lcd->cd_name, cd->cd_name))
550 return (EEXIST);
551 }
552
553 LIST_INIT(&cd->cd_attach);
554 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
555
556 return (0);
557 }
558
559 /*
560 * Remove a cfdriver from the system.
561 */
562 int
563 config_cfdriver_detach(struct cfdriver *cd)
564 {
565 int i;
566
567 /* Make sure there are no active instances. */
568 for (i = 0; i < cd->cd_ndevs; i++) {
569 if (cd->cd_devs[i] != NULL)
570 return (EBUSY);
571 }
572
573 /* ...and no attachments loaded. */
574 if (LIST_EMPTY(&cd->cd_attach) == 0)
575 return (EBUSY);
576
577 LIST_REMOVE(cd, cd_list);
578
579 KASSERT(cd->cd_devs == NULL);
580
581 return (0);
582 }
583
584 /*
585 * Look up a cfdriver by name.
586 */
587 struct cfdriver *
588 config_cfdriver_lookup(const char *name)
589 {
590 struct cfdriver *cd;
591
592 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
593 if (STREQ(cd->cd_name, name))
594 return (cd);
595 }
596
597 return (NULL);
598 }
599
600 /*
601 * Add a cfattach to the specified driver.
602 */
603 int
604 config_cfattach_attach(const char *driver, struct cfattach *ca)
605 {
606 struct cfattach *lca;
607 struct cfdriver *cd;
608
609 cd = config_cfdriver_lookup(driver);
610 if (cd == NULL)
611 return (ESRCH);
612
613 /* Make sure this attachment isn't already on this driver. */
614 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
615 if (STREQ(lca->ca_name, ca->ca_name))
616 return (EEXIST);
617 }
618
619 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
620
621 return (0);
622 }
623
624 /*
625 * Remove a cfattach from the specified driver.
626 */
627 int
628 config_cfattach_detach(const char *driver, struct cfattach *ca)
629 {
630 struct cfdriver *cd;
631 device_t dev;
632 int i;
633
634 cd = config_cfdriver_lookup(driver);
635 if (cd == NULL)
636 return (ESRCH);
637
638 /* Make sure there are no active instances. */
639 for (i = 0; i < cd->cd_ndevs; i++) {
640 if ((dev = cd->cd_devs[i]) == NULL)
641 continue;
642 if (dev->dv_cfattach == ca)
643 return (EBUSY);
644 }
645
646 LIST_REMOVE(ca, ca_list);
647
648 return (0);
649 }
650
651 /*
652 * Look up a cfattach by name.
653 */
654 static struct cfattach *
655 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
656 {
657 struct cfattach *ca;
658
659 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
660 if (STREQ(ca->ca_name, atname))
661 return (ca);
662 }
663
664 return (NULL);
665 }
666
667 /*
668 * Look up a cfattach by driver/attachment name.
669 */
670 struct cfattach *
671 config_cfattach_lookup(const char *name, const char *atname)
672 {
673 struct cfdriver *cd;
674
675 cd = config_cfdriver_lookup(name);
676 if (cd == NULL)
677 return (NULL);
678
679 return (config_cfattach_lookup_cd(cd, atname));
680 }
681
682 /*
683 * Apply the matching function and choose the best. This is used
684 * a few times and we want to keep the code small.
685 */
686 static void
687 mapply(struct matchinfo *m, cfdata_t cf)
688 {
689 int pri;
690
691 if (m->fn != NULL) {
692 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
693 } else {
694 pri = config_match(m->parent, cf, m->aux);
695 }
696 if (pri > m->pri) {
697 m->match = cf;
698 m->pri = pri;
699 }
700 }
701
702 int
703 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
704 {
705 const struct cfiattrdata *ci;
706 const struct cflocdesc *cl;
707 int nlocs, i;
708
709 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
710 KASSERT(ci);
711 nlocs = ci->ci_loclen;
712 KASSERT(!nlocs || locs);
713 for (i = 0; i < nlocs; i++) {
714 cl = &ci->ci_locdesc[i];
715 /* !cld_defaultstr means no default value */
716 if ((!(cl->cld_defaultstr)
717 || (cf->cf_loc[i] != cl->cld_default))
718 && cf->cf_loc[i] != locs[i])
719 return (0);
720 }
721
722 return (config_match(parent, cf, aux));
723 }
724
725 /*
726 * Helper function: check whether the driver supports the interface attribute
727 * and return its descriptor structure.
728 */
729 static const struct cfiattrdata *
730 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
731 {
732 const struct cfiattrdata * const *cpp;
733
734 if (cd->cd_attrs == NULL)
735 return (0);
736
737 for (cpp = cd->cd_attrs; *cpp; cpp++) {
738 if (STREQ((*cpp)->ci_name, ia)) {
739 /* Match. */
740 return (*cpp);
741 }
742 }
743 return (0);
744 }
745
746 /*
747 * Lookup an interface attribute description by name.
748 * If the driver is given, consider only its supported attributes.
749 */
750 const struct cfiattrdata *
751 cfiattr_lookup(const char *name, const struct cfdriver *cd)
752 {
753 const struct cfdriver *d;
754 const struct cfiattrdata *ia;
755
756 if (cd)
757 return (cfdriver_get_iattr(cd, name));
758
759 LIST_FOREACH(d, &allcfdrivers, cd_list) {
760 ia = cfdriver_get_iattr(d, name);
761 if (ia)
762 return (ia);
763 }
764 return (0);
765 }
766
767 /*
768 * Determine if `parent' is a potential parent for a device spec based
769 * on `cfp'.
770 */
771 static int
772 cfparent_match(const device_t parent, const struct cfparent *cfp)
773 {
774 struct cfdriver *pcd;
775
776 /* We don't match root nodes here. */
777 if (cfp == NULL)
778 return (0);
779
780 pcd = parent->dv_cfdriver;
781 KASSERT(pcd != NULL);
782
783 /*
784 * First, ensure this parent has the correct interface
785 * attribute.
786 */
787 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
788 return (0);
789
790 /*
791 * If no specific parent device instance was specified (i.e.
792 * we're attaching to the attribute only), we're done!
793 */
794 if (cfp->cfp_parent == NULL)
795 return (1);
796
797 /*
798 * Check the parent device's name.
799 */
800 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
801 return (0); /* not the same parent */
802
803 /*
804 * Make sure the unit number matches.
805 */
806 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
807 cfp->cfp_unit == parent->dv_unit)
808 return (1);
809
810 /* Unit numbers don't match. */
811 return (0);
812 }
813
814 /*
815 * Helper for config_cfdata_attach(): check all devices whether it could be
816 * parent any attachment in the config data table passed, and rescan.
817 */
818 static void
819 rescan_with_cfdata(const struct cfdata *cf)
820 {
821 device_t d;
822 const struct cfdata *cf1;
823 deviter_t di;
824
825
826 /*
827 * "alldevs" is likely longer than an LKM's cfdata, so make it
828 * the outer loop.
829 */
830 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
831
832 if (!(d->dv_cfattach->ca_rescan))
833 continue;
834
835 for (cf1 = cf; cf1->cf_name; cf1++) {
836
837 if (!cfparent_match(d, cf1->cf_pspec))
838 continue;
839
840 (*d->dv_cfattach->ca_rescan)(d,
841 cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
842 }
843 }
844 deviter_release(&di);
845 }
846
847 /*
848 * Attach a supplemental config data table and rescan potential
849 * parent devices if required.
850 */
851 int
852 config_cfdata_attach(cfdata_t cf, int scannow)
853 {
854 struct cftable *ct;
855
856 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
857 ct->ct_cfdata = cf;
858 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
859
860 if (scannow)
861 rescan_with_cfdata(cf);
862
863 return (0);
864 }
865
866 /*
867 * Helper for config_cfdata_detach: check whether a device is
868 * found through any attachment in the config data table.
869 */
870 static int
871 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
872 {
873 const struct cfdata *cf1;
874
875 for (cf1 = cf; cf1->cf_name; cf1++)
876 if (d->dv_cfdata == cf1)
877 return (1);
878
879 return (0);
880 }
881
882 /*
883 * Detach a supplemental config data table. Detach all devices found
884 * through that table (and thus keeping references to it) before.
885 */
886 int
887 config_cfdata_detach(cfdata_t cf)
888 {
889 device_t d;
890 int error = 0;
891 struct cftable *ct;
892 deviter_t di;
893
894 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
895 d = deviter_next(&di)) {
896 if (!dev_in_cfdata(d, cf))
897 continue;
898 if ((error = config_detach(d, 0)) != 0)
899 break;
900 }
901 deviter_release(&di);
902 if (error) {
903 aprint_error_dev(d, "unable to detach instance\n");
904 return error;
905 }
906
907 TAILQ_FOREACH(ct, &allcftables, ct_list) {
908 if (ct->ct_cfdata == cf) {
909 TAILQ_REMOVE(&allcftables, ct, ct_list);
910 kmem_free(ct, sizeof(*ct));
911 return (0);
912 }
913 }
914
915 /* not found -- shouldn't happen */
916 return (EINVAL);
917 }
918
919 /*
920 * Invoke the "match" routine for a cfdata entry on behalf of
921 * an external caller, usually a "submatch" routine.
922 */
923 int
924 config_match(device_t parent, cfdata_t cf, void *aux)
925 {
926 struct cfattach *ca;
927
928 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
929 if (ca == NULL) {
930 /* No attachment for this entry, oh well. */
931 return (0);
932 }
933
934 return ((*ca->ca_match)(parent, cf, aux));
935 }
936
937 /*
938 * Iterate over all potential children of some device, calling the given
939 * function (default being the child's match function) for each one.
940 * Nonzero returns are matches; the highest value returned is considered
941 * the best match. Return the `found child' if we got a match, or NULL
942 * otherwise. The `aux' pointer is simply passed on through.
943 *
944 * Note that this function is designed so that it can be used to apply
945 * an arbitrary function to all potential children (its return value
946 * can be ignored).
947 */
948 cfdata_t
949 config_search_loc(cfsubmatch_t fn, device_t parent,
950 const char *ifattr, const int *locs, void *aux)
951 {
952 struct cftable *ct;
953 cfdata_t cf;
954 struct matchinfo m;
955
956 KASSERT(config_initialized);
957 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
958
959 m.fn = fn;
960 m.parent = parent;
961 m.locs = locs;
962 m.aux = aux;
963 m.match = NULL;
964 m.pri = 0;
965
966 TAILQ_FOREACH(ct, &allcftables, ct_list) {
967 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
968
969 /* We don't match root nodes here. */
970 if (!cf->cf_pspec)
971 continue;
972
973 /*
974 * Skip cf if no longer eligible, otherwise scan
975 * through parents for one matching `parent', and
976 * try match function.
977 */
978 if (cf->cf_fstate == FSTATE_FOUND)
979 continue;
980 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
981 cf->cf_fstate == FSTATE_DSTAR)
982 continue;
983
984 /*
985 * If an interface attribute was specified,
986 * consider only children which attach to
987 * that attribute.
988 */
989 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
990 continue;
991
992 if (cfparent_match(parent, cf->cf_pspec))
993 mapply(&m, cf);
994 }
995 }
996 return (m.match);
997 }
998
999 cfdata_t
1000 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
1001 void *aux)
1002 {
1003
1004 return (config_search_loc(fn, parent, ifattr, NULL, aux));
1005 }
1006
1007 /*
1008 * Find the given root device.
1009 * This is much like config_search, but there is no parent.
1010 * Don't bother with multiple cfdata tables; the root node
1011 * must always be in the initial table.
1012 */
1013 cfdata_t
1014 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1015 {
1016 cfdata_t cf;
1017 const short *p;
1018 struct matchinfo m;
1019
1020 m.fn = fn;
1021 m.parent = ROOT;
1022 m.aux = aux;
1023 m.match = NULL;
1024 m.pri = 0;
1025 m.locs = 0;
1026 /*
1027 * Look at root entries for matching name. We do not bother
1028 * with found-state here since only one root should ever be
1029 * searched (and it must be done first).
1030 */
1031 for (p = cfroots; *p >= 0; p++) {
1032 cf = &cfdata[*p];
1033 if (strcmp(cf->cf_name, rootname) == 0)
1034 mapply(&m, cf);
1035 }
1036 return (m.match);
1037 }
1038
1039 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1040
1041 /*
1042 * The given `aux' argument describes a device that has been found
1043 * on the given parent, but not necessarily configured. Locate the
1044 * configuration data for that device (using the submatch function
1045 * provided, or using candidates' cd_match configuration driver
1046 * functions) and attach it, and return true. If the device was
1047 * not configured, call the given `print' function and return 0.
1048 */
1049 device_t
1050 config_found_sm_loc(device_t parent,
1051 const char *ifattr, const int *locs, void *aux,
1052 cfprint_t print, cfsubmatch_t submatch)
1053 {
1054 cfdata_t cf;
1055
1056 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1057 if (splash_progress_state)
1058 splash_progress_update(splash_progress_state);
1059 #endif
1060
1061 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1062 return(config_attach_loc(parent, cf, locs, aux, print));
1063 if (print) {
1064 if (config_do_twiddle)
1065 twiddle();
1066 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1067 }
1068
1069 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1070 if (splash_progress_state)
1071 splash_progress_update(splash_progress_state);
1072 #endif
1073
1074 return (NULL);
1075 }
1076
1077 device_t
1078 config_found_ia(device_t parent, const char *ifattr, void *aux,
1079 cfprint_t print)
1080 {
1081
1082 return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
1083 }
1084
1085 device_t
1086 config_found(device_t parent, void *aux, cfprint_t print)
1087 {
1088
1089 return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
1090 }
1091
1092 /*
1093 * As above, but for root devices.
1094 */
1095 device_t
1096 config_rootfound(const char *rootname, void *aux)
1097 {
1098 cfdata_t cf;
1099
1100 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1101 return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
1102 aprint_error("root device %s not configured\n", rootname);
1103 return (NULL);
1104 }
1105
1106 /* just like sprintf(buf, "%d") except that it works from the end */
1107 static char *
1108 number(char *ep, int n)
1109 {
1110
1111 *--ep = 0;
1112 while (n >= 10) {
1113 *--ep = (n % 10) + '0';
1114 n /= 10;
1115 }
1116 *--ep = n + '0';
1117 return (ep);
1118 }
1119
1120 /*
1121 * Expand the size of the cd_devs array if necessary.
1122 */
1123 static void
1124 config_makeroom(int n, struct cfdriver *cd)
1125 {
1126 const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
1127 int old, new;
1128 device_t *nsp;
1129
1130 if (n < cd->cd_ndevs)
1131 return;
1132
1133 /*
1134 * Need to expand the array.
1135 */
1136 old = cd->cd_ndevs;
1137 if (old == 0)
1138 new = 4;
1139 else
1140 new = old * 2;
1141 while (new <= n)
1142 new *= 2;
1143 cd->cd_ndevs = new;
1144 nsp = kmem_alloc(sizeof(device_t [new]), kmflags);
1145 if (nsp == NULL)
1146 panic("config_attach: %sing dev array",
1147 old != 0 ? "expand" : "creat");
1148 memset(nsp + old, 0, sizeof(device_t [new - old]));
1149 if (old != 0) {
1150 memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
1151 kmem_free(cd->cd_devs, sizeof(device_t [old]));
1152 }
1153 cd->cd_devs = nsp;
1154 }
1155
1156 static void
1157 config_devlink(device_t dev)
1158 {
1159 struct cfdriver *cd = dev->dv_cfdriver;
1160
1161 /* put this device in the devices array */
1162 config_makeroom(dev->dv_unit, cd);
1163 if (cd->cd_devs[dev->dv_unit])
1164 panic("config_attach: duplicate %s", device_xname(dev));
1165 cd->cd_devs[dev->dv_unit] = dev;
1166
1167 /* It is safe to add a device to the tail of the list while
1168 * readers are in the list, but not while a writer is in
1169 * the list. Wait for any writer to complete.
1170 */
1171 mutex_enter(&alldevs_mtx);
1172 while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1173 cv_wait(&alldevs_cv, &alldevs_mtx);
1174 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
1175 cv_signal(&alldevs_cv);
1176 mutex_exit(&alldevs_mtx);
1177 }
1178
1179 static void
1180 config_devunlink(device_t dev)
1181 {
1182 struct cfdriver *cd = dev->dv_cfdriver;
1183 int i;
1184
1185 /* Unlink from device list. */
1186 TAILQ_REMOVE(&alldevs, dev, dv_list);
1187
1188 /* Remove from cfdriver's array. */
1189 cd->cd_devs[dev->dv_unit] = NULL;
1190
1191 /*
1192 * If the device now has no units in use, deallocate its softc array.
1193 */
1194 for (i = 0; i < cd->cd_ndevs; i++) {
1195 if (cd->cd_devs[i] != NULL)
1196 return;
1197 }
1198 /* nothing found; deallocate */
1199 kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
1200 cd->cd_devs = NULL;
1201 cd->cd_ndevs = 0;
1202 }
1203
1204 static device_t
1205 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1206 {
1207 struct cfdriver *cd;
1208 struct cfattach *ca;
1209 size_t lname, lunit;
1210 const char *xunit;
1211 int myunit;
1212 char num[10];
1213 device_t dev;
1214 void *dev_private;
1215 const struct cfiattrdata *ia;
1216 const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
1217
1218 cd = config_cfdriver_lookup(cf->cf_name);
1219 if (cd == NULL)
1220 return (NULL);
1221
1222 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1223 if (ca == NULL)
1224 return (NULL);
1225
1226 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1227 ca->ca_devsize < sizeof(struct device))
1228 panic("config_devalloc: %s", cf->cf_atname);
1229
1230 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1231 if (cf->cf_fstate == FSTATE_STAR) {
1232 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1233 if (cd->cd_devs[myunit] == NULL)
1234 break;
1235 /*
1236 * myunit is now the unit of the first NULL device pointer,
1237 * or max(cd->cd_ndevs,cf->cf_unit).
1238 */
1239 } else {
1240 myunit = cf->cf_unit;
1241 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1242 return (NULL);
1243 }
1244 #else
1245 myunit = cf->cf_unit;
1246 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1247
1248 /* compute length of name and decimal expansion of unit number */
1249 lname = strlen(cd->cd_name);
1250 xunit = number(&num[sizeof(num)], myunit);
1251 lunit = &num[sizeof(num)] - xunit;
1252 if (lname + lunit > sizeof(dev->dv_xname))
1253 panic("config_devalloc: device name too long");
1254
1255 /* get memory for all device vars */
1256 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1257 if (ca->ca_devsize > 0) {
1258 dev_private = kmem_zalloc(ca->ca_devsize, kmflags);
1259 if (dev_private == NULL)
1260 panic("config_devalloc: memory allocation for device softc failed");
1261 } else {
1262 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1263 dev_private = NULL;
1264 }
1265
1266 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1267 dev = kmem_zalloc(sizeof(*dev), kmflags);
1268 } else {
1269 dev = dev_private;
1270 }
1271 if (dev == NULL)
1272 panic("config_devalloc: memory allocation for device_t failed");
1273
1274 dev->dv_class = cd->cd_class;
1275 dev->dv_cfdata = cf;
1276 dev->dv_cfdriver = cd;
1277 dev->dv_cfattach = ca;
1278 dev->dv_unit = myunit;
1279 dev->dv_activity_count = 0;
1280 dev->dv_activity_handlers = NULL;
1281 dev->dv_private = dev_private;
1282 memcpy(dev->dv_xname, cd->cd_name, lname);
1283 memcpy(dev->dv_xname + lname, xunit, lunit);
1284 dev->dv_parent = parent;
1285 if (parent != NULL)
1286 dev->dv_depth = parent->dv_depth + 1;
1287 else
1288 dev->dv_depth = 0;
1289 dev->dv_flags = DVF_ACTIVE; /* always initially active */
1290 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
1291 if (locs) {
1292 KASSERT(parent); /* no locators at root */
1293 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1294 parent->dv_cfdriver);
1295 dev->dv_locators =
1296 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), kmflags);
1297 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1298 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1299 }
1300 dev->dv_properties = prop_dictionary_create();
1301 KASSERT(dev->dv_properties != NULL);
1302
1303 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1304 "device-driver", dev->dv_cfdriver->cd_name);
1305 prop_dictionary_set_uint16(dev->dv_properties,
1306 "device-unit", dev->dv_unit);
1307
1308 return (dev);
1309 }
1310
1311 static void
1312 config_devdealloc(device_t dev)
1313 {
1314 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1315
1316 KASSERT(dev->dv_properties != NULL);
1317 prop_object_release(dev->dv_properties);
1318
1319 if (dev->dv_activity_handlers)
1320 panic("config_devdealloc with registered handlers");
1321
1322 if (dev->dv_locators) {
1323 size_t amount = *--dev->dv_locators;
1324 kmem_free(dev->dv_locators, amount);
1325 }
1326
1327 if (dev->dv_cfattach->ca_devsize > 0)
1328 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1329 if (priv)
1330 kmem_free(dev, sizeof(*dev));
1331 }
1332
1333 /*
1334 * Attach a found device.
1335 */
1336 device_t
1337 config_attach_loc(device_t parent, cfdata_t cf,
1338 const int *locs, void *aux, cfprint_t print)
1339 {
1340 device_t dev;
1341 struct cftable *ct;
1342 const char *drvname;
1343
1344 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1345 if (splash_progress_state)
1346 splash_progress_update(splash_progress_state);
1347 #endif
1348
1349 dev = config_devalloc(parent, cf, locs);
1350 if (!dev)
1351 panic("config_attach: allocation of device softc failed");
1352
1353 /* XXX redundant - see below? */
1354 if (cf->cf_fstate != FSTATE_STAR) {
1355 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1356 cf->cf_fstate = FSTATE_FOUND;
1357 }
1358 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1359 else
1360 cf->cf_unit++;
1361 #endif
1362
1363 config_devlink(dev);
1364
1365 if (config_do_twiddle)
1366 twiddle();
1367 else
1368 aprint_naive("Found ");
1369 /*
1370 * We want the next two printfs for normal, verbose, and quiet,
1371 * but not silent (in which case, we're twiddling, instead).
1372 */
1373 if (parent == ROOT) {
1374 aprint_naive("%s (root)", device_xname(dev));
1375 aprint_normal("%s (root)", device_xname(dev));
1376 } else {
1377 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1378 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1379 if (print)
1380 (void) (*print)(aux, NULL);
1381 }
1382
1383 /*
1384 * Before attaching, clobber any unfound devices that are
1385 * otherwise identical.
1386 * XXX code above is redundant?
1387 */
1388 drvname = dev->dv_cfdriver->cd_name;
1389 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1390 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1391 if (STREQ(cf->cf_name, drvname) &&
1392 cf->cf_unit == dev->dv_unit) {
1393 if (cf->cf_fstate == FSTATE_NOTFOUND)
1394 cf->cf_fstate = FSTATE_FOUND;
1395 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1396 /*
1397 * Bump the unit number on all starred cfdata
1398 * entries for this device.
1399 */
1400 if (cf->cf_fstate == FSTATE_STAR)
1401 cf->cf_unit++;
1402 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1403 }
1404 }
1405 }
1406 #ifdef __HAVE_DEVICE_REGISTER
1407 device_register(dev, aux);
1408 #endif
1409
1410 /* Let userland know */
1411 devmon_report_device(dev, true);
1412
1413 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1414 if (splash_progress_state)
1415 splash_progress_update(splash_progress_state);
1416 #endif
1417 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1418 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1419 if (splash_progress_state)
1420 splash_progress_update(splash_progress_state);
1421 #endif
1422
1423 if (!device_pmf_is_registered(dev))
1424 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1425
1426 config_process_deferred(&deferred_config_queue, dev);
1427 return (dev);
1428 }
1429
1430 device_t
1431 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1432 {
1433
1434 return (config_attach_loc(parent, cf, NULL, aux, print));
1435 }
1436
1437 /*
1438 * As above, but for pseudo-devices. Pseudo-devices attached in this
1439 * way are silently inserted into the device tree, and their children
1440 * attached.
1441 *
1442 * Note that because pseudo-devices are attached silently, any information
1443 * the attach routine wishes to print should be prefixed with the device
1444 * name by the attach routine.
1445 */
1446 device_t
1447 config_attach_pseudo(cfdata_t cf)
1448 {
1449 device_t dev;
1450
1451 dev = config_devalloc(ROOT, cf, NULL);
1452 if (!dev)
1453 return (NULL);
1454
1455 /* XXX mark busy in cfdata */
1456
1457 config_devlink(dev);
1458
1459 #if 0 /* XXXJRT not yet */
1460 #ifdef __HAVE_DEVICE_REGISTER
1461 device_register(dev, NULL); /* like a root node */
1462 #endif
1463 #endif
1464 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1465 config_process_deferred(&deferred_config_queue, dev);
1466 return (dev);
1467 }
1468
1469 /*
1470 * Detach a device. Optionally forced (e.g. because of hardware
1471 * removal) and quiet. Returns zero if successful, non-zero
1472 * (an error code) otherwise.
1473 *
1474 * Note that this code wants to be run from a process context, so
1475 * that the detach can sleep to allow processes which have a device
1476 * open to run and unwind their stacks.
1477 */
1478 int
1479 config_detach(device_t dev, int flags)
1480 {
1481 struct cftable *ct;
1482 cfdata_t cf;
1483 const struct cfattach *ca;
1484 struct cfdriver *cd;
1485 #ifdef DIAGNOSTIC
1486 device_t d;
1487 #endif
1488 int rv = 0;
1489
1490 #ifdef DIAGNOSTIC
1491 cf = dev->dv_cfdata;
1492 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1493 cf->cf_fstate != FSTATE_STAR)
1494 panic("config_detach: %s: bad device fstate %d",
1495 device_xname(dev), cf ? cf->cf_fstate : -1);
1496 #endif
1497 cd = dev->dv_cfdriver;
1498 KASSERT(cd != NULL);
1499
1500 ca = dev->dv_cfattach;
1501 KASSERT(ca != NULL);
1502
1503 KASSERT(curlwp != NULL);
1504 mutex_enter(&alldevs_mtx);
1505 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1506 ;
1507 else while (alldevs_nread != 0 ||
1508 (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1509 cv_wait(&alldevs_cv, &alldevs_mtx);
1510 if (alldevs_nwrite++ == 0)
1511 alldevs_writer = curlwp;
1512 mutex_exit(&alldevs_mtx);
1513
1514 /*
1515 * Ensure the device is deactivated. If the device doesn't
1516 * have an activation entry point, we allow DVF_ACTIVE to
1517 * remain set. Otherwise, if DVF_ACTIVE is still set, the
1518 * device is busy, and the detach fails.
1519 */
1520 if (ca->ca_activate != NULL)
1521 rv = config_deactivate(dev);
1522
1523 /*
1524 * Try to detach the device. If that's not possible, then
1525 * we either panic() (for the forced but failed case), or
1526 * return an error.
1527 */
1528 if (rv == 0) {
1529 if (ca->ca_detach != NULL)
1530 rv = (*ca->ca_detach)(dev, flags);
1531 else
1532 rv = EOPNOTSUPP;
1533 }
1534 if (rv != 0) {
1535 if ((flags & DETACH_FORCE) == 0)
1536 goto out;
1537 else
1538 panic("config_detach: forced detach of %s failed (%d)",
1539 device_xname(dev), rv);
1540 }
1541
1542 /*
1543 * The device has now been successfully detached.
1544 */
1545
1546 /* Let userland know */
1547 devmon_report_device(dev, false);
1548
1549 #ifdef DIAGNOSTIC
1550 /*
1551 * Sanity: If you're successfully detached, you should have no
1552 * children. (Note that because children must be attached
1553 * after parents, we only need to search the latter part of
1554 * the list.)
1555 */
1556 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1557 d = TAILQ_NEXT(d, dv_list)) {
1558 if (d->dv_parent == dev) {
1559 printf("config_detach: detached device %s"
1560 " has children %s\n", device_xname(dev), device_xname(d));
1561 panic("config_detach");
1562 }
1563 }
1564 #endif
1565
1566 /* notify the parent that the child is gone */
1567 if (dev->dv_parent) {
1568 device_t p = dev->dv_parent;
1569 if (p->dv_cfattach->ca_childdetached)
1570 (*p->dv_cfattach->ca_childdetached)(p, dev);
1571 }
1572
1573 /*
1574 * Mark cfdata to show that the unit can be reused, if possible.
1575 */
1576 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1577 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1578 if (STREQ(cf->cf_name, cd->cd_name)) {
1579 if (cf->cf_fstate == FSTATE_FOUND &&
1580 cf->cf_unit == dev->dv_unit)
1581 cf->cf_fstate = FSTATE_NOTFOUND;
1582 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1583 /*
1584 * Note that we can only re-use a starred
1585 * unit number if the unit being detached
1586 * had the last assigned unit number.
1587 */
1588 if (cf->cf_fstate == FSTATE_STAR &&
1589 cf->cf_unit == dev->dv_unit + 1)
1590 cf->cf_unit--;
1591 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1592 }
1593 }
1594 }
1595
1596 config_devunlink(dev);
1597
1598 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1599 aprint_normal_dev(dev, "detached\n");
1600
1601 config_devdealloc(dev);
1602
1603 out:
1604 mutex_enter(&alldevs_mtx);
1605 if (--alldevs_nwrite == 0)
1606 alldevs_writer = NULL;
1607 cv_signal(&alldevs_cv);
1608 mutex_exit(&alldevs_mtx);
1609 return rv;
1610 }
1611
1612 int
1613 config_detach_children(device_t parent, int flags)
1614 {
1615 device_t dv;
1616 deviter_t di;
1617 int error = 0;
1618
1619 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1620 dv = deviter_next(&di)) {
1621 if (device_parent(dv) != parent)
1622 continue;
1623 if ((error = config_detach(dv, flags)) != 0)
1624 break;
1625 }
1626 deviter_release(&di);
1627 return error;
1628 }
1629
1630 int
1631 config_activate(device_t dev)
1632 {
1633 const struct cfattach *ca = dev->dv_cfattach;
1634 int rv = 0, oflags = dev->dv_flags;
1635
1636 if (ca->ca_activate == NULL)
1637 return (EOPNOTSUPP);
1638
1639 if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1640 dev->dv_flags |= DVF_ACTIVE;
1641 rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1642 if (rv)
1643 dev->dv_flags = oflags;
1644 }
1645 return (rv);
1646 }
1647
1648 int
1649 config_deactivate(device_t dev)
1650 {
1651 const struct cfattach *ca = dev->dv_cfattach;
1652 int rv = 0, oflags = dev->dv_flags;
1653
1654 if (ca->ca_activate == NULL)
1655 return (EOPNOTSUPP);
1656
1657 if (dev->dv_flags & DVF_ACTIVE) {
1658 dev->dv_flags &= ~DVF_ACTIVE;
1659 rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1660 if (rv)
1661 dev->dv_flags = oflags;
1662 }
1663 return (rv);
1664 }
1665
1666 /*
1667 * Defer the configuration of the specified device until all
1668 * of its parent's devices have been attached.
1669 */
1670 void
1671 config_defer(device_t dev, void (*func)(device_t))
1672 {
1673 const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
1674 struct deferred_config *dc;
1675
1676 if (dev->dv_parent == NULL)
1677 panic("config_defer: can't defer config of a root device");
1678
1679 #ifdef DIAGNOSTIC
1680 mutex_enter(&config_queues_lock);
1681 for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1682 dc = TAILQ_NEXT(dc, dc_queue)) {
1683 if (dc->dc_dev == dev)
1684 panic("config_defer: deferred twice");
1685 }
1686 mutex_exit(&config_queues_lock);
1687 #endif
1688
1689 dc = kmem_alloc(sizeof(*dc), kmflags);
1690 if (dc == NULL)
1691 panic("config_defer: unable to allocate callback");
1692
1693 dc->dc_dev = dev;
1694 dc->dc_func = func;
1695
1696 mutex_enter(&config_queues_lock);
1697 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1698 mutex_exit(&config_queues_lock);
1699
1700 config_pending_incr();
1701 }
1702
1703 /*
1704 * Defer some autoconfiguration for a device until after interrupts
1705 * are enabled.
1706 */
1707 void
1708 config_interrupts(device_t dev, void (*func)(device_t))
1709 {
1710 const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
1711 struct deferred_config *dc;
1712
1713 /*
1714 * If interrupts are enabled, callback now.
1715 */
1716 if (cold == 0) {
1717 (*func)(dev);
1718 return;
1719 }
1720
1721 #ifdef DIAGNOSTIC
1722 mutex_enter(&config_queues_lock);
1723 for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1724 dc = TAILQ_NEXT(dc, dc_queue)) {
1725 if (dc->dc_dev == dev)
1726 panic("config_interrupts: deferred twice");
1727 }
1728 mutex_exit(&config_queues_lock);
1729 #endif
1730
1731 dc = kmem_alloc(sizeof(*dc), kmflags);
1732 if (dc == NULL)
1733 panic("config_interrupts: unable to allocate callback");
1734
1735 dc->dc_dev = dev;
1736 dc->dc_func = func;
1737 mutex_enter(&config_queues_lock);
1738 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1739 mutex_exit(&config_queues_lock);
1740 config_pending_incr();
1741 }
1742
1743 /*
1744 * Process a deferred configuration queue.
1745 */
1746 static void
1747 config_process_deferred(struct deferred_config_head *queue,
1748 device_t parent)
1749 {
1750 struct deferred_config *dc, *ndc;
1751
1752 mutex_enter(&config_queues_lock);
1753 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1754 ndc = TAILQ_NEXT(dc, dc_queue);
1755 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1756 TAILQ_REMOVE(queue, dc, dc_queue);
1757 mutex_exit(&config_queues_lock);
1758 mutex_enter(&dc_funcs_lock);
1759 (*dc->dc_func)(dc->dc_dev);
1760 mutex_exit(&dc_funcs_lock);
1761 kmem_free(dc, sizeof(*dc));
1762 config_pending_decr();
1763 mutex_enter(&config_queues_lock);
1764 }
1765 }
1766 mutex_exit(&config_queues_lock);
1767 }
1768
1769 /*
1770 * Manipulate the config_pending semaphore.
1771 */
1772 void
1773 config_pending_incr(void)
1774 {
1775
1776 mutex_enter(&config_misc_lock);
1777 config_pending++;
1778 mutex_exit(&config_misc_lock);
1779 }
1780
1781 void
1782 config_pending_decr(void)
1783 {
1784
1785 #ifdef DIAGNOSTIC
1786 if (config_pending == 0)
1787 panic("config_pending_decr: config_pending == 0");
1788 #endif
1789 mutex_enter(&config_misc_lock);
1790 config_pending--;
1791 if (config_pending == 0)
1792 cv_broadcast(&config_misc_cv);
1793 mutex_exit(&config_misc_lock);
1794 }
1795
1796 /*
1797 * Register a "finalization" routine. Finalization routines are
1798 * called iteratively once all real devices have been found during
1799 * autoconfiguration, for as long as any one finalizer has done
1800 * any work.
1801 */
1802 int
1803 config_finalize_register(device_t dev, int (*fn)(device_t))
1804 {
1805 struct finalize_hook *f;
1806
1807 /*
1808 * If finalization has already been done, invoke the
1809 * callback function now.
1810 */
1811 if (config_finalize_done) {
1812 while ((*fn)(dev) != 0)
1813 /* loop */ ;
1814 }
1815
1816 /* Ensure this isn't already on the list. */
1817 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1818 if (f->f_func == fn && f->f_dev == dev)
1819 return (EEXIST);
1820 }
1821
1822 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1823 f->f_func = fn;
1824 f->f_dev = dev;
1825 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1826
1827 return (0);
1828 }
1829
1830 void
1831 config_finalize(void)
1832 {
1833 struct finalize_hook *f;
1834 struct pdevinit *pdev;
1835 extern struct pdevinit pdevinit[];
1836 int errcnt, rv;
1837
1838 /*
1839 * Now that device driver threads have been created, wait for
1840 * them to finish any deferred autoconfiguration.
1841 */
1842 mutex_enter(&config_misc_lock);
1843 while (config_pending != 0)
1844 cv_wait(&config_misc_cv, &config_misc_lock);
1845 mutex_exit(&config_misc_lock);
1846
1847 KERNEL_LOCK(1, NULL);
1848
1849 /* Attach pseudo-devices. */
1850 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1851 (*pdev->pdev_attach)(pdev->pdev_count);
1852
1853 /* Run the hooks until none of them does any work. */
1854 do {
1855 rv = 0;
1856 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1857 rv |= (*f->f_func)(f->f_dev);
1858 } while (rv != 0);
1859
1860 config_finalize_done = 1;
1861
1862 /* Now free all the hooks. */
1863 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1864 TAILQ_REMOVE(&config_finalize_list, f, f_list);
1865 kmem_free(f, sizeof(*f));
1866 }
1867
1868 KERNEL_UNLOCK_ONE(NULL);
1869
1870 errcnt = aprint_get_error_count();
1871 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1872 (boothowto & AB_VERBOSE) == 0) {
1873 if (config_do_twiddle) {
1874 config_do_twiddle = 0;
1875 printf_nolog("done.\n");
1876 }
1877 if (errcnt != 0) {
1878 printf("WARNING: %d error%s while detecting hardware; "
1879 "check system log.\n", errcnt,
1880 errcnt == 1 ? "" : "s");
1881 }
1882 }
1883 }
1884
1885 /*
1886 * device_lookup:
1887 *
1888 * Look up a device instance for a given driver.
1889 */
1890 device_t
1891 device_lookup(cfdriver_t cd, int unit)
1892 {
1893
1894 if (unit < 0 || unit >= cd->cd_ndevs)
1895 return (NULL);
1896
1897 return (cd->cd_devs[unit]);
1898 }
1899
1900 /*
1901 * device_lookup:
1902 *
1903 * Look up a device instance for a given driver.
1904 */
1905 void *
1906 device_lookup_private(cfdriver_t cd, int unit)
1907 {
1908 device_t dv;
1909
1910 if (unit < 0 || unit >= cd->cd_ndevs)
1911 return NULL;
1912
1913 if ((dv = cd->cd_devs[unit]) == NULL)
1914 return NULL;
1915
1916 return dv->dv_private;
1917 }
1918
1919 /*
1920 * Accessor functions for the device_t type.
1921 */
1922 devclass_t
1923 device_class(device_t dev)
1924 {
1925
1926 return (dev->dv_class);
1927 }
1928
1929 cfdata_t
1930 device_cfdata(device_t dev)
1931 {
1932
1933 return (dev->dv_cfdata);
1934 }
1935
1936 cfdriver_t
1937 device_cfdriver(device_t dev)
1938 {
1939
1940 return (dev->dv_cfdriver);
1941 }
1942
1943 cfattach_t
1944 device_cfattach(device_t dev)
1945 {
1946
1947 return (dev->dv_cfattach);
1948 }
1949
1950 int
1951 device_unit(device_t dev)
1952 {
1953
1954 return (dev->dv_unit);
1955 }
1956
1957 const char *
1958 device_xname(device_t dev)
1959 {
1960
1961 return (dev->dv_xname);
1962 }
1963
1964 device_t
1965 device_parent(device_t dev)
1966 {
1967
1968 return (dev->dv_parent);
1969 }
1970
1971 bool
1972 device_is_active(device_t dev)
1973 {
1974 int active_flags;
1975
1976 active_flags = DVF_ACTIVE;
1977 active_flags |= DVF_CLASS_SUSPENDED;
1978 active_flags |= DVF_DRIVER_SUSPENDED;
1979 active_flags |= DVF_BUS_SUSPENDED;
1980
1981 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1982 }
1983
1984 bool
1985 device_is_enabled(device_t dev)
1986 {
1987 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1988 }
1989
1990 bool
1991 device_has_power(device_t dev)
1992 {
1993 int active_flags;
1994
1995 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1996
1997 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1998 }
1999
2000 int
2001 device_locator(device_t dev, u_int locnum)
2002 {
2003
2004 KASSERT(dev->dv_locators != NULL);
2005 return (dev->dv_locators[locnum]);
2006 }
2007
2008 void *
2009 device_private(device_t dev)
2010 {
2011
2012 /*
2013 * The reason why device_private(NULL) is allowed is to simplify the
2014 * work of a lot of userspace request handlers (i.e., c/bdev
2015 * handlers) which grab cfdriver_t->cd_units[n].
2016 * It avoids having them test for it to be NULL and only then calling
2017 * device_private.
2018 */
2019 return dev == NULL ? NULL : dev->dv_private;
2020 }
2021
2022 prop_dictionary_t
2023 device_properties(device_t dev)
2024 {
2025
2026 return (dev->dv_properties);
2027 }
2028
2029 /*
2030 * device_is_a:
2031 *
2032 * Returns true if the device is an instance of the specified
2033 * driver.
2034 */
2035 bool
2036 device_is_a(device_t dev, const char *dname)
2037 {
2038
2039 return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
2040 }
2041
2042 /*
2043 * device_find_by_xname:
2044 *
2045 * Returns the device of the given name or NULL if it doesn't exist.
2046 */
2047 device_t
2048 device_find_by_xname(const char *name)
2049 {
2050 device_t dv;
2051 deviter_t di;
2052
2053 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2054 if (strcmp(device_xname(dv), name) == 0)
2055 break;
2056 }
2057 deviter_release(&di);
2058
2059 return dv;
2060 }
2061
2062 /*
2063 * device_find_by_driver_unit:
2064 *
2065 * Returns the device of the given driver name and unit or
2066 * NULL if it doesn't exist.
2067 */
2068 device_t
2069 device_find_by_driver_unit(const char *name, int unit)
2070 {
2071 struct cfdriver *cd;
2072
2073 if ((cd = config_cfdriver_lookup(name)) == NULL)
2074 return NULL;
2075 return device_lookup(cd, unit);
2076 }
2077
2078 /*
2079 * Power management related functions.
2080 */
2081
2082 bool
2083 device_pmf_is_registered(device_t dev)
2084 {
2085 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2086 }
2087
2088 bool
2089 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
2090 {
2091 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2092 return true;
2093 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2094 return false;
2095 if (*dev->dv_driver_suspend != NULL &&
2096 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
2097 return false;
2098
2099 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2100 return true;
2101 }
2102
2103 bool
2104 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
2105 {
2106 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2107 return true;
2108 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2109 return false;
2110 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2111 return false;
2112 if (*dev->dv_driver_resume != NULL &&
2113 !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2114 return false;
2115
2116 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2117 return true;
2118 }
2119
2120 bool
2121 device_pmf_driver_shutdown(device_t dev, int how)
2122 {
2123
2124 if (*dev->dv_driver_shutdown != NULL &&
2125 !(*dev->dv_driver_shutdown)(dev, how))
2126 return false;
2127 return true;
2128 }
2129
2130 bool
2131 device_pmf_driver_register(device_t dev,
2132 bool (*suspend)(device_t PMF_FN_PROTO),
2133 bool (*resume)(device_t PMF_FN_PROTO),
2134 bool (*shutdown)(device_t, int))
2135 {
2136 pmf_private_t *pp;
2137
2138 if ((pp = kmem_zalloc(sizeof(*pp), KM_NOSLEEP)) == NULL)
2139 return false;
2140 mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
2141 cv_init(&pp->pp_cv, "pmfsusp");
2142 dev->dv_pmf_private = pp;
2143
2144 dev->dv_driver_suspend = suspend;
2145 dev->dv_driver_resume = resume;
2146 dev->dv_driver_shutdown = shutdown;
2147 dev->dv_flags |= DVF_POWER_HANDLERS;
2148 return true;
2149 }
2150
2151 static const char *
2152 curlwp_name(void)
2153 {
2154 if (curlwp->l_name != NULL)
2155 return curlwp->l_name;
2156 else
2157 return curlwp->l_proc->p_comm;
2158 }
2159
2160 void
2161 device_pmf_driver_deregister(device_t dev)
2162 {
2163 pmf_private_t *pp = dev->dv_pmf_private;
2164
2165 /* XXX avoid crash in case we are not initialized */
2166 if (!pp)
2167 return;
2168
2169 dev->dv_driver_suspend = NULL;
2170 dev->dv_driver_resume = NULL;
2171
2172 mutex_enter(&pp->pp_mtx);
2173 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2174 while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
2175 /* Wake a thread that waits for the lock. That
2176 * thread will fail to acquire the lock, and then
2177 * it will wake the next thread that waits for the
2178 * lock, or else it will wake us.
2179 */
2180 cv_signal(&pp->pp_cv);
2181 pmflock_debug(dev, __func__, __LINE__);
2182 cv_wait(&pp->pp_cv, &pp->pp_mtx);
2183 pmflock_debug(dev, __func__, __LINE__);
2184 }
2185 dev->dv_pmf_private = NULL;
2186 mutex_exit(&pp->pp_mtx);
2187
2188 cv_destroy(&pp->pp_cv);
2189 mutex_destroy(&pp->pp_mtx);
2190 kmem_free(pp, sizeof(*pp));
2191 }
2192
2193 bool
2194 device_pmf_driver_child_register(device_t dev)
2195 {
2196 device_t parent = device_parent(dev);
2197
2198 if (parent == NULL || parent->dv_driver_child_register == NULL)
2199 return true;
2200 return (*parent->dv_driver_child_register)(dev);
2201 }
2202
2203 void
2204 device_pmf_driver_set_child_register(device_t dev,
2205 bool (*child_register)(device_t))
2206 {
2207 dev->dv_driver_child_register = child_register;
2208 }
2209
2210 void
2211 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2212 {
2213 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2214 if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2215 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2216 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2217 }
2218
2219 bool
2220 device_is_self_suspended(device_t dev)
2221 {
2222 return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2223 }
2224
2225 void
2226 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2227 {
2228 bool self = (flags & PMF_F_SELF) != 0;
2229
2230 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2231
2232 if (!self)
2233 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2234 else if (device_is_active(dev))
2235 dev->dv_flags |= DVF_SELF_SUSPENDED;
2236
2237 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2238 }
2239
2240 static void
2241 pmflock_debug(device_t dev, const char *func, int line)
2242 {
2243 pmf_private_t *pp = device_pmf_private(dev);
2244
2245 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
2246 func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
2247 dev->dv_flags);
2248 }
2249
2250 static void
2251 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2252 {
2253 pmf_private_t *pp = device_pmf_private(dev);
2254
2255 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
2256 "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2257 pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
2258 }
2259
2260 static bool
2261 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2262 {
2263 pmf_private_t *pp = device_pmf_private(dev);
2264
2265 while (device_pmf_is_registered(dev) &&
2266 pp->pp_nlock > 0 && pp->pp_holder != curlwp) {
2267 pp->pp_nwait++;
2268 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2269 cv_wait(&pp->pp_cv, &pp->pp_mtx);
2270 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2271 pp->pp_nwait--;
2272 }
2273 if (!device_pmf_is_registered(dev)) {
2274 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2275 /* We could not acquire the lock, but some other thread may
2276 * wait for it, also. Wake that thread.
2277 */
2278 cv_signal(&pp->pp_cv);
2279 return false;
2280 }
2281 pp->pp_nlock++;
2282 pp->pp_holder = curlwp;
2283 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2284 return true;
2285 }
2286
2287 bool
2288 device_pmf_lock(device_t dev PMF_FN_ARGS)
2289 {
2290 bool rc;
2291 pmf_private_t *pp = device_pmf_private(dev);
2292
2293 mutex_enter(&pp->pp_mtx);
2294 rc = device_pmf_lock1(dev PMF_FN_CALL);
2295 mutex_exit(&pp->pp_mtx);
2296
2297 return rc;
2298 }
2299
2300 void
2301 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2302 {
2303 pmf_private_t *pp = device_pmf_private(dev);
2304
2305 KASSERT(pp->pp_nlock > 0);
2306 mutex_enter(&pp->pp_mtx);
2307 if (--pp->pp_nlock == 0)
2308 pp->pp_holder = NULL;
2309 cv_signal(&pp->pp_cv);
2310 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2311 mutex_exit(&pp->pp_mtx);
2312 }
2313
2314 void *
2315 device_pmf_private(device_t dev)
2316 {
2317 return dev->dv_pmf_private;
2318 }
2319
2320 void *
2321 device_pmf_bus_private(device_t dev)
2322 {
2323 return dev->dv_bus_private;
2324 }
2325
2326 bool
2327 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2328 {
2329 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2330 return true;
2331 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2332 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2333 return false;
2334 if (*dev->dv_bus_suspend != NULL &&
2335 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2336 return false;
2337
2338 dev->dv_flags |= DVF_BUS_SUSPENDED;
2339 return true;
2340 }
2341
2342 bool
2343 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2344 {
2345 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2346 return true;
2347 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2348 return false;
2349 if (*dev->dv_bus_resume != NULL &&
2350 !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2351 return false;
2352
2353 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2354 return true;
2355 }
2356
2357 bool
2358 device_pmf_bus_shutdown(device_t dev, int how)
2359 {
2360
2361 if (*dev->dv_bus_shutdown != NULL &&
2362 !(*dev->dv_bus_shutdown)(dev, how))
2363 return false;
2364 return true;
2365 }
2366
2367 void
2368 device_pmf_bus_register(device_t dev, void *priv,
2369 bool (*suspend)(device_t PMF_FN_PROTO),
2370 bool (*resume)(device_t PMF_FN_PROTO),
2371 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2372 {
2373 dev->dv_bus_private = priv;
2374 dev->dv_bus_resume = resume;
2375 dev->dv_bus_suspend = suspend;
2376 dev->dv_bus_shutdown = shutdown;
2377 dev->dv_bus_deregister = deregister;
2378 }
2379
2380 void
2381 device_pmf_bus_deregister(device_t dev)
2382 {
2383 if (dev->dv_bus_deregister == NULL)
2384 return;
2385 (*dev->dv_bus_deregister)(dev);
2386 dev->dv_bus_private = NULL;
2387 dev->dv_bus_suspend = NULL;
2388 dev->dv_bus_resume = NULL;
2389 dev->dv_bus_deregister = NULL;
2390 }
2391
2392 void *
2393 device_pmf_class_private(device_t dev)
2394 {
2395 return dev->dv_class_private;
2396 }
2397
2398 bool
2399 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2400 {
2401 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2402 return true;
2403 if (*dev->dv_class_suspend != NULL &&
2404 !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2405 return false;
2406
2407 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2408 return true;
2409 }
2410
2411 bool
2412 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2413 {
2414 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2415 return true;
2416 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2417 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2418 return false;
2419 if (*dev->dv_class_resume != NULL &&
2420 !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2421 return false;
2422
2423 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2424 return true;
2425 }
2426
2427 void
2428 device_pmf_class_register(device_t dev, void *priv,
2429 bool (*suspend)(device_t PMF_FN_PROTO),
2430 bool (*resume)(device_t PMF_FN_PROTO),
2431 void (*deregister)(device_t))
2432 {
2433 dev->dv_class_private = priv;
2434 dev->dv_class_suspend = suspend;
2435 dev->dv_class_resume = resume;
2436 dev->dv_class_deregister = deregister;
2437 }
2438
2439 void
2440 device_pmf_class_deregister(device_t dev)
2441 {
2442 if (dev->dv_class_deregister == NULL)
2443 return;
2444 (*dev->dv_class_deregister)(dev);
2445 dev->dv_class_private = NULL;
2446 dev->dv_class_suspend = NULL;
2447 dev->dv_class_resume = NULL;
2448 dev->dv_class_deregister = NULL;
2449 }
2450
2451 bool
2452 device_active(device_t dev, devactive_t type)
2453 {
2454 size_t i;
2455
2456 if (dev->dv_activity_count == 0)
2457 return false;
2458
2459 for (i = 0; i < dev->dv_activity_count; ++i) {
2460 if (dev->dv_activity_handlers[i] == NULL)
2461 break;
2462 (*dev->dv_activity_handlers[i])(dev, type);
2463 }
2464
2465 return true;
2466 }
2467
2468 bool
2469 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2470 {
2471 void (**new_handlers)(device_t, devactive_t);
2472 void (**old_handlers)(device_t, devactive_t);
2473 size_t i, old_size, new_size;
2474 int s;
2475
2476 old_handlers = dev->dv_activity_handlers;
2477 old_size = dev->dv_activity_count;
2478
2479 for (i = 0; i < old_size; ++i) {
2480 KASSERT(old_handlers[i] != handler);
2481 if (old_handlers[i] == NULL) {
2482 old_handlers[i] = handler;
2483 return true;
2484 }
2485 }
2486
2487 new_size = old_size + 4;
2488 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2489
2490 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2491 new_handlers[old_size] = handler;
2492 memset(new_handlers + old_size + 1, 0,
2493 sizeof(int [new_size - (old_size+1)]));
2494
2495 s = splhigh();
2496 dev->dv_activity_count = new_size;
2497 dev->dv_activity_handlers = new_handlers;
2498 splx(s);
2499
2500 if (old_handlers != NULL)
2501 kmem_free(old_handlers, sizeof(int [old_size]));
2502
2503 return true;
2504 }
2505
2506 void
2507 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2508 {
2509 void (**old_handlers)(device_t, devactive_t);
2510 size_t i, old_size;
2511 int s;
2512
2513 old_handlers = dev->dv_activity_handlers;
2514 old_size = dev->dv_activity_count;
2515
2516 for (i = 0; i < old_size; ++i) {
2517 if (old_handlers[i] == handler)
2518 break;
2519 if (old_handlers[i] == NULL)
2520 return; /* XXX panic? */
2521 }
2522
2523 if (i == old_size)
2524 return; /* XXX panic? */
2525
2526 for (; i < old_size - 1; ++i) {
2527 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2528 continue;
2529
2530 if (i == 0) {
2531 s = splhigh();
2532 dev->dv_activity_count = 0;
2533 dev->dv_activity_handlers = NULL;
2534 splx(s);
2535 kmem_free(old_handlers, sizeof(void *[old_size]));
2536 }
2537 return;
2538 }
2539 old_handlers[i] = NULL;
2540 }
2541
2542 /*
2543 * Device Iteration
2544 *
2545 * deviter_t: a device iterator. Holds state for a "walk" visiting
2546 * each device_t's in the device tree.
2547 *
2548 * deviter_init(di, flags): initialize the device iterator `di'
2549 * to "walk" the device tree. deviter_next(di) will return
2550 * the first device_t in the device tree, or NULL if there are
2551 * no devices.
2552 *
2553 * `flags' is one or more of DEVITER_F_RW, indicating that the
2554 * caller intends to modify the device tree by calling
2555 * config_detach(9) on devices in the order that the iterator
2556 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2557 * nearest the "root" of the device tree to be returned, first;
2558 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2559 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2560 * indicating both that deviter_init() should not respect any
2561 * locks on the device tree, and that deviter_next(di) may run
2562 * in more than one LWP before the walk has finished.
2563 *
2564 * Only one DEVITER_F_RW iterator may be in the device tree at
2565 * once.
2566 *
2567 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2568 *
2569 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2570 * DEVITER_F_LEAVES_FIRST are used in combination.
2571 *
2572 * deviter_first(di, flags): initialize the device iterator `di'
2573 * and return the first device_t in the device tree, or NULL
2574 * if there are no devices. The statement
2575 *
2576 * dv = deviter_first(di);
2577 *
2578 * is shorthand for
2579 *
2580 * deviter_init(di);
2581 * dv = deviter_next(di);
2582 *
2583 * deviter_next(di): return the next device_t in the device tree,
2584 * or NULL if there are no more devices. deviter_next(di)
2585 * is undefined if `di' was not initialized with deviter_init() or
2586 * deviter_first().
2587 *
2588 * deviter_release(di): stops iteration (subsequent calls to
2589 * deviter_next() will return NULL), releases any locks and
2590 * resources held by the device iterator.
2591 *
2592 * Device iteration does not return device_t's in any particular
2593 * order. An iterator will never return the same device_t twice.
2594 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2595 * is called repeatedly on the same `di', it will eventually return
2596 * NULL. It is ok to attach/detach devices during device iteration.
2597 */
2598 void
2599 deviter_init(deviter_t *di, deviter_flags_t flags)
2600 {
2601 device_t dv;
2602 bool rw;
2603
2604 mutex_enter(&alldevs_mtx);
2605 if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2606 flags |= DEVITER_F_RW;
2607 alldevs_nwrite++;
2608 alldevs_writer = NULL;
2609 alldevs_nread = 0;
2610 } else {
2611 rw = (flags & DEVITER_F_RW) != 0;
2612
2613 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2614 ;
2615 else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2616 (rw && alldevs_nread != 0))
2617 cv_wait(&alldevs_cv, &alldevs_mtx);
2618
2619 if (rw) {
2620 if (alldevs_nwrite++ == 0)
2621 alldevs_writer = curlwp;
2622 } else
2623 alldevs_nread++;
2624 }
2625 mutex_exit(&alldevs_mtx);
2626
2627 memset(di, 0, sizeof(*di));
2628
2629 di->di_flags = flags;
2630
2631 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2632 case DEVITER_F_LEAVES_FIRST:
2633 TAILQ_FOREACH(dv, &alldevs, dv_list)
2634 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2635 break;
2636 case DEVITER_F_ROOT_FIRST:
2637 TAILQ_FOREACH(dv, &alldevs, dv_list)
2638 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2639 break;
2640 default:
2641 break;
2642 }
2643
2644 deviter_reinit(di);
2645 }
2646
2647 static void
2648 deviter_reinit(deviter_t *di)
2649 {
2650 if ((di->di_flags & DEVITER_F_RW) != 0)
2651 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2652 else
2653 di->di_prev = TAILQ_FIRST(&alldevs);
2654 }
2655
2656 device_t
2657 deviter_first(deviter_t *di, deviter_flags_t flags)
2658 {
2659 deviter_init(di, flags);
2660 return deviter_next(di);
2661 }
2662
2663 static device_t
2664 deviter_next1(deviter_t *di)
2665 {
2666 device_t dv;
2667
2668 dv = di->di_prev;
2669
2670 if (dv == NULL)
2671 ;
2672 else if ((di->di_flags & DEVITER_F_RW) != 0)
2673 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2674 else
2675 di->di_prev = TAILQ_NEXT(dv, dv_list);
2676
2677 return dv;
2678 }
2679
2680 device_t
2681 deviter_next(deviter_t *di)
2682 {
2683 device_t dv = NULL;
2684
2685 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2686 case 0:
2687 return deviter_next1(di);
2688 case DEVITER_F_LEAVES_FIRST:
2689 while (di->di_curdepth >= 0) {
2690 if ((dv = deviter_next1(di)) == NULL) {
2691 di->di_curdepth--;
2692 deviter_reinit(di);
2693 } else if (dv->dv_depth == di->di_curdepth)
2694 break;
2695 }
2696 return dv;
2697 case DEVITER_F_ROOT_FIRST:
2698 while (di->di_curdepth <= di->di_maxdepth) {
2699 if ((dv = deviter_next1(di)) == NULL) {
2700 di->di_curdepth++;
2701 deviter_reinit(di);
2702 } else if (dv->dv_depth == di->di_curdepth)
2703 break;
2704 }
2705 return dv;
2706 default:
2707 return NULL;
2708 }
2709 }
2710
2711 void
2712 deviter_release(deviter_t *di)
2713 {
2714 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2715
2716 mutex_enter(&alldevs_mtx);
2717 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2718 --alldevs_nwrite;
2719 else {
2720
2721 if (rw) {
2722 if (--alldevs_nwrite == 0)
2723 alldevs_writer = NULL;
2724 } else
2725 --alldevs_nread;
2726
2727 cv_signal(&alldevs_cv);
2728 }
2729 mutex_exit(&alldevs_mtx);
2730 }
2731