subr_autoconf.c revision 1.166 1 /* $NetBSD: subr_autoconf.c,v 1.166 2008/12/29 12:52:50 ad Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.166 2008/12/29 12:52:50 ad Exp $");
81
82 #include "opt_ddb.h"
83 #include "drvctl.h"
84
85 #include <sys/param.h>
86 #include <sys/device.h>
87 #include <sys/disklabel.h>
88 #include <sys/conf.h>
89 #include <sys/kauth.h>
90 #include <sys/malloc.h>
91 #include <sys/kmem.h>
92 #include <sys/systm.h>
93 #include <sys/kernel.h>
94 #include <sys/errno.h>
95 #include <sys/proc.h>
96 #include <sys/reboot.h>
97 #include <sys/kthread.h>
98 #include <sys/buf.h>
99 #include <sys/dirent.h>
100 #include <sys/vnode.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/mutex.h>
108 #include <sys/condvar.h>
109 #include <sys/devmon.h>
110 #include <sys/cpu.h>
111
112 #include <sys/disk.h>
113
114 #include <machine/limits.h>
115
116 #include "opt_userconf.h"
117 #ifdef USERCONF
118 #include <sys/userconf.h>
119 #endif
120
121 #ifdef __i386__
122 #include "opt_splash.h"
123 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
124 #include <dev/splash/splash.h>
125 extern struct splash_progress *splash_progress_state;
126 #endif
127 #endif
128
129 /*
130 * Autoconfiguration subroutines.
131 */
132
133 typedef struct pmf_private {
134 int pp_nwait;
135 int pp_nlock;
136 lwp_t *pp_holder;
137 kmutex_t pp_mtx;
138 kcondvar_t pp_cv;
139 } pmf_private_t;
140
141 /*
142 * ioconf.c exports exactly two names: cfdata and cfroots. All system
143 * devices and drivers are found via these tables.
144 */
145 extern struct cfdata cfdata[];
146 extern const short cfroots[];
147
148 /*
149 * List of all cfdriver structures. We use this to detect duplicates
150 * when other cfdrivers are loaded.
151 */
152 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
153 extern struct cfdriver * const cfdriver_list_initial[];
154
155 /*
156 * Initial list of cfattach's.
157 */
158 extern const struct cfattachinit cfattachinit[];
159
160 /*
161 * List of cfdata tables. We always have one such list -- the one
162 * built statically when the kernel was configured.
163 */
164 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
165 static struct cftable initcftable;
166
167 #define ROOT ((device_t)NULL)
168
169 struct matchinfo {
170 cfsubmatch_t fn;
171 struct device *parent;
172 const int *locs;
173 void *aux;
174 struct cfdata *match;
175 int pri;
176 };
177
178 static char *number(char *, int);
179 static void mapply(struct matchinfo *, cfdata_t);
180 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
181 static void config_devdealloc(device_t);
182 static void config_makeroom(int, struct cfdriver *);
183 static void config_devlink(device_t);
184 static void config_devunlink(device_t);
185
186 static void pmflock_debug(device_t, const char *, int);
187 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
188
189 static device_t deviter_next1(deviter_t *);
190 static void deviter_reinit(deviter_t *);
191
192 struct deferred_config {
193 TAILQ_ENTRY(deferred_config) dc_queue;
194 device_t dc_dev;
195 void (*dc_func)(device_t);
196 };
197
198 TAILQ_HEAD(deferred_config_head, deferred_config);
199
200 struct deferred_config_head deferred_config_queue =
201 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
202 struct deferred_config_head interrupt_config_queue =
203 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
204 int interrupt_config_threads = 8;
205
206 static void config_process_deferred(struct deferred_config_head *, device_t);
207
208 /* Hooks to finalize configuration once all real devices have been found. */
209 struct finalize_hook {
210 TAILQ_ENTRY(finalize_hook) f_list;
211 int (*f_func)(device_t);
212 device_t f_dev;
213 };
214 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
215 TAILQ_HEAD_INITIALIZER(config_finalize_list);
216 static int config_finalize_done;
217
218 /* list of all devices */
219 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
220 kcondvar_t alldevs_cv;
221 kmutex_t alldevs_mtx;
222 static int alldevs_nread = 0;
223 static int alldevs_nwrite = 0;
224 static lwp_t *alldevs_writer = NULL;
225
226 static int config_pending; /* semaphore for mountroot */
227 static kmutex_t config_misc_lock;
228 static kcondvar_t config_misc_cv;
229
230 #define STREQ(s1, s2) \
231 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
232
233 static int config_initialized; /* config_init() has been called. */
234
235 static int config_do_twiddle;
236
237 struct vnode *
238 opendisk(struct device *dv)
239 {
240 int bmajor, bminor;
241 struct vnode *tmpvn;
242 int error;
243 dev_t dev;
244
245 /*
246 * Lookup major number for disk block device.
247 */
248 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
249 if (bmajor == -1)
250 return NULL;
251
252 bminor = minor(device_unit(dv));
253 /*
254 * Fake a temporary vnode for the disk, open it, and read
255 * and hash the sectors.
256 */
257 dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
258 MAKEDISKDEV(bmajor, bminor, RAW_PART);
259 if (bdevvp(dev, &tmpvn))
260 panic("%s: can't alloc vnode for %s", __func__,
261 device_xname(dv));
262 error = VOP_OPEN(tmpvn, FREAD, NOCRED);
263 if (error) {
264 #ifndef DEBUG
265 /*
266 * Ignore errors caused by missing device, partition,
267 * or medium.
268 */
269 if (error != ENXIO && error != ENODEV)
270 #endif
271 printf("%s: can't open dev %s (%d)\n",
272 __func__, device_xname(dv), error);
273 vput(tmpvn);
274 return NULL;
275 }
276
277 return tmpvn;
278 }
279
280 int
281 config_handle_wedges(struct device *dv, int par)
282 {
283 struct dkwedge_list wl;
284 struct dkwedge_info *wi;
285 struct vnode *vn;
286 char diskname[16];
287 int i, error;
288
289 if ((vn = opendisk(dv)) == NULL)
290 return -1;
291
292 wl.dkwl_bufsize = sizeof(*wi) * 16;
293 wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
294
295 error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
296 VOP_CLOSE(vn, FREAD, NOCRED);
297 vput(vn);
298 if (error) {
299 #ifdef DEBUG_WEDGE
300 printf("%s: List wedges returned %d\n",
301 device_xname(dv), error);
302 #endif
303 free(wi, M_TEMP);
304 return -1;
305 }
306
307 #ifdef DEBUG_WEDGE
308 printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
309 wl.dkwl_nwedges, wl.dkwl_ncopied);
310 #endif
311 snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
312 par + 'a');
313
314 for (i = 0; i < wl.dkwl_ncopied; i++) {
315 #ifdef DEBUG_WEDGE
316 printf("%s: Looking for %s in %s\n",
317 device_xname(dv), diskname, wi[i].dkw_wname);
318 #endif
319 if (strcmp(wi[i].dkw_wname, diskname) == 0)
320 break;
321 }
322
323 if (i == wl.dkwl_ncopied) {
324 #ifdef DEBUG_WEDGE
325 printf("%s: Cannot find wedge with parent %s\n",
326 device_xname(dv), diskname);
327 #endif
328 free(wi, M_TEMP);
329 return -1;
330 }
331
332 #ifdef DEBUG_WEDGE
333 printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
334 device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
335 (unsigned long long)wi[i].dkw_offset,
336 (unsigned long long)wi[i].dkw_size);
337 #endif
338 dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
339 free(wi, M_TEMP);
340 return 0;
341 }
342
343 /*
344 * Initialize the autoconfiguration data structures. Normally this
345 * is done by configure(), but some platforms need to do this very
346 * early (to e.g. initialize the console).
347 */
348 void
349 config_init(void)
350 {
351 const struct cfattachinit *cfai;
352 int i, j;
353
354 if (config_initialized)
355 return;
356
357 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
358 cv_init(&alldevs_cv, "alldevs");
359
360 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
361 cv_init(&config_misc_cv, "cfgmisc");
362
363 /* allcfdrivers is statically initialized. */
364 for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
365 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
366 panic("configure: duplicate `%s' drivers",
367 cfdriver_list_initial[i]->cd_name);
368 }
369
370 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
371 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
372 if (config_cfattach_attach(cfai->cfai_name,
373 cfai->cfai_list[j]) != 0)
374 panic("configure: duplicate `%s' attachment "
375 "of `%s' driver",
376 cfai->cfai_list[j]->ca_name,
377 cfai->cfai_name);
378 }
379 }
380
381 initcftable.ct_cfdata = cfdata;
382 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
383
384 config_initialized = 1;
385 }
386
387 void
388 config_deferred(device_t dev)
389 {
390 config_process_deferred(&deferred_config_queue, dev);
391 config_process_deferred(&interrupt_config_queue, dev);
392 }
393
394 static void
395 config_interrupts_thread(void *cookie)
396 {
397 struct deferred_config *dc;
398
399 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
400 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
401 (*dc->dc_func)(dc->dc_dev);
402 kmem_free(dc, sizeof(*dc));
403 config_pending_decr();
404 }
405 kthread_exit(0);
406 }
407
408 /*
409 * Configure the system's hardware.
410 */
411 void
412 configure(void)
413 {
414 extern void ssp_init(void);
415 CPU_INFO_ITERATOR cii;
416 struct cpu_info *ci;
417 int i, s;
418
419 /* Initialize data structures. */
420 config_init();
421 pmf_init();
422 #if NDRVCTL > 0
423 drvctl_init();
424 #endif
425
426 #ifdef USERCONF
427 if (boothowto & RB_USERCONF)
428 user_config();
429 #endif
430
431 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
432 config_do_twiddle = 1;
433 printf_nolog("Detecting hardware...");
434 }
435
436 /*
437 * Do the machine-dependent portion of autoconfiguration. This
438 * sets the configuration machinery here in motion by "finding"
439 * the root bus. When this function returns, we expect interrupts
440 * to be enabled.
441 */
442 cpu_configure();
443
444 /* Initialize SSP. */
445 ssp_init();
446
447 /*
448 * Now that we've found all the hardware, start the real time
449 * and statistics clocks.
450 */
451 initclocks();
452
453 cold = 0; /* clocks are running, we're warm now! */
454 s = splsched();
455 curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
456 splx(s);
457
458 /* Boot the secondary processors. */
459 for (CPU_INFO_FOREACH(cii, ci)) {
460 uvm_cpu_attach(ci);
461 }
462 mp_online = true;
463 #if defined(MULTIPROCESSOR)
464 cpu_boot_secondary_processors();
465 #endif
466
467 /* Setup the runqueues and scheduler. */
468 runq_init();
469 sched_init();
470
471 /*
472 * Create threads to call back and finish configuration for
473 * devices that want interrupts enabled.
474 */
475 for (i = 0; i < interrupt_config_threads; i++) {
476 (void)kthread_create(PRI_NONE, 0, NULL,
477 config_interrupts_thread, NULL, NULL, "config");
478 }
479
480 /* Get the threads going and into any sleeps before continuing. */
481 yield();
482
483 /* Lock the kernel on behalf of lwp0. */
484 KERNEL_LOCK(1, NULL);
485 }
486
487 /*
488 * Announce device attach/detach to userland listeners.
489 */
490 static void
491 devmon_report_device(device_t dev, bool isattach)
492 {
493 #if NDRVCTL > 0
494 prop_dictionary_t ev;
495 const char *parent;
496 const char *what;
497 device_t pdev = device_parent(dev);
498
499 ev = prop_dictionary_create();
500 if (ev == NULL)
501 return;
502
503 what = (isattach ? "device-attach" : "device-detach");
504 parent = (pdev == NULL ? "root" : device_xname(pdev));
505 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
506 !prop_dictionary_set_cstring(ev, "parent", parent)) {
507 prop_object_release(ev);
508 return;
509 }
510
511 devmon_insert(what, ev);
512 #endif
513 }
514
515 /*
516 * Add a cfdriver to the system.
517 */
518 int
519 config_cfdriver_attach(struct cfdriver *cd)
520 {
521 struct cfdriver *lcd;
522
523 /* Make sure this driver isn't already in the system. */
524 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
525 if (STREQ(lcd->cd_name, cd->cd_name))
526 return (EEXIST);
527 }
528
529 LIST_INIT(&cd->cd_attach);
530 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
531
532 return (0);
533 }
534
535 /*
536 * Remove a cfdriver from the system.
537 */
538 int
539 config_cfdriver_detach(struct cfdriver *cd)
540 {
541 int i;
542
543 /* Make sure there are no active instances. */
544 for (i = 0; i < cd->cd_ndevs; i++) {
545 if (cd->cd_devs[i] != NULL)
546 return (EBUSY);
547 }
548
549 /* ...and no attachments loaded. */
550 if (LIST_EMPTY(&cd->cd_attach) == 0)
551 return (EBUSY);
552
553 LIST_REMOVE(cd, cd_list);
554
555 KASSERT(cd->cd_devs == NULL);
556
557 return (0);
558 }
559
560 /*
561 * Look up a cfdriver by name.
562 */
563 struct cfdriver *
564 config_cfdriver_lookup(const char *name)
565 {
566 struct cfdriver *cd;
567
568 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
569 if (STREQ(cd->cd_name, name))
570 return (cd);
571 }
572
573 return (NULL);
574 }
575
576 /*
577 * Add a cfattach to the specified driver.
578 */
579 int
580 config_cfattach_attach(const char *driver, struct cfattach *ca)
581 {
582 struct cfattach *lca;
583 struct cfdriver *cd;
584
585 cd = config_cfdriver_lookup(driver);
586 if (cd == NULL)
587 return (ESRCH);
588
589 /* Make sure this attachment isn't already on this driver. */
590 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
591 if (STREQ(lca->ca_name, ca->ca_name))
592 return (EEXIST);
593 }
594
595 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
596
597 return (0);
598 }
599
600 /*
601 * Remove a cfattach from the specified driver.
602 */
603 int
604 config_cfattach_detach(const char *driver, struct cfattach *ca)
605 {
606 struct cfdriver *cd;
607 device_t dev;
608 int i;
609
610 cd = config_cfdriver_lookup(driver);
611 if (cd == NULL)
612 return (ESRCH);
613
614 /* Make sure there are no active instances. */
615 for (i = 0; i < cd->cd_ndevs; i++) {
616 if ((dev = cd->cd_devs[i]) == NULL)
617 continue;
618 if (dev->dv_cfattach == ca)
619 return (EBUSY);
620 }
621
622 LIST_REMOVE(ca, ca_list);
623
624 return (0);
625 }
626
627 /*
628 * Look up a cfattach by name.
629 */
630 static struct cfattach *
631 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
632 {
633 struct cfattach *ca;
634
635 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
636 if (STREQ(ca->ca_name, atname))
637 return (ca);
638 }
639
640 return (NULL);
641 }
642
643 /*
644 * Look up a cfattach by driver/attachment name.
645 */
646 struct cfattach *
647 config_cfattach_lookup(const char *name, const char *atname)
648 {
649 struct cfdriver *cd;
650
651 cd = config_cfdriver_lookup(name);
652 if (cd == NULL)
653 return (NULL);
654
655 return (config_cfattach_lookup_cd(cd, atname));
656 }
657
658 /*
659 * Apply the matching function and choose the best. This is used
660 * a few times and we want to keep the code small.
661 */
662 static void
663 mapply(struct matchinfo *m, cfdata_t cf)
664 {
665 int pri;
666
667 if (m->fn != NULL) {
668 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
669 } else {
670 pri = config_match(m->parent, cf, m->aux);
671 }
672 if (pri > m->pri) {
673 m->match = cf;
674 m->pri = pri;
675 }
676 }
677
678 int
679 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
680 {
681 const struct cfiattrdata *ci;
682 const struct cflocdesc *cl;
683 int nlocs, i;
684
685 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
686 KASSERT(ci);
687 nlocs = ci->ci_loclen;
688 KASSERT(!nlocs || locs);
689 for (i = 0; i < nlocs; i++) {
690 cl = &ci->ci_locdesc[i];
691 /* !cld_defaultstr means no default value */
692 if ((!(cl->cld_defaultstr)
693 || (cf->cf_loc[i] != cl->cld_default))
694 && cf->cf_loc[i] != locs[i])
695 return (0);
696 }
697
698 return (config_match(parent, cf, aux));
699 }
700
701 /*
702 * Helper function: check whether the driver supports the interface attribute
703 * and return its descriptor structure.
704 */
705 static const struct cfiattrdata *
706 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
707 {
708 const struct cfiattrdata * const *cpp;
709
710 if (cd->cd_attrs == NULL)
711 return (0);
712
713 for (cpp = cd->cd_attrs; *cpp; cpp++) {
714 if (STREQ((*cpp)->ci_name, ia)) {
715 /* Match. */
716 return (*cpp);
717 }
718 }
719 return (0);
720 }
721
722 /*
723 * Lookup an interface attribute description by name.
724 * If the driver is given, consider only its supported attributes.
725 */
726 const struct cfiattrdata *
727 cfiattr_lookup(const char *name, const struct cfdriver *cd)
728 {
729 const struct cfdriver *d;
730 const struct cfiattrdata *ia;
731
732 if (cd)
733 return (cfdriver_get_iattr(cd, name));
734
735 LIST_FOREACH(d, &allcfdrivers, cd_list) {
736 ia = cfdriver_get_iattr(d, name);
737 if (ia)
738 return (ia);
739 }
740 return (0);
741 }
742
743 /*
744 * Determine if `parent' is a potential parent for a device spec based
745 * on `cfp'.
746 */
747 static int
748 cfparent_match(const device_t parent, const struct cfparent *cfp)
749 {
750 struct cfdriver *pcd;
751
752 /* We don't match root nodes here. */
753 if (cfp == NULL)
754 return (0);
755
756 pcd = parent->dv_cfdriver;
757 KASSERT(pcd != NULL);
758
759 /*
760 * First, ensure this parent has the correct interface
761 * attribute.
762 */
763 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
764 return (0);
765
766 /*
767 * If no specific parent device instance was specified (i.e.
768 * we're attaching to the attribute only), we're done!
769 */
770 if (cfp->cfp_parent == NULL)
771 return (1);
772
773 /*
774 * Check the parent device's name.
775 */
776 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
777 return (0); /* not the same parent */
778
779 /*
780 * Make sure the unit number matches.
781 */
782 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
783 cfp->cfp_unit == parent->dv_unit)
784 return (1);
785
786 /* Unit numbers don't match. */
787 return (0);
788 }
789
790 /*
791 * Helper for config_cfdata_attach(): check all devices whether it could be
792 * parent any attachment in the config data table passed, and rescan.
793 */
794 static void
795 rescan_with_cfdata(const struct cfdata *cf)
796 {
797 device_t d;
798 const struct cfdata *cf1;
799 deviter_t di;
800
801
802 /*
803 * "alldevs" is likely longer than a modules's cfdata, so make it
804 * the outer loop.
805 */
806 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
807
808 if (!(d->dv_cfattach->ca_rescan))
809 continue;
810
811 for (cf1 = cf; cf1->cf_name; cf1++) {
812
813 if (!cfparent_match(d, cf1->cf_pspec))
814 continue;
815
816 (*d->dv_cfattach->ca_rescan)(d,
817 cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
818 }
819 }
820 deviter_release(&di);
821 }
822
823 /*
824 * Attach a supplemental config data table and rescan potential
825 * parent devices if required.
826 */
827 int
828 config_cfdata_attach(cfdata_t cf, int scannow)
829 {
830 struct cftable *ct;
831
832 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
833 ct->ct_cfdata = cf;
834 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
835
836 if (scannow)
837 rescan_with_cfdata(cf);
838
839 return (0);
840 }
841
842 /*
843 * Helper for config_cfdata_detach: check whether a device is
844 * found through any attachment in the config data table.
845 */
846 static int
847 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
848 {
849 const struct cfdata *cf1;
850
851 for (cf1 = cf; cf1->cf_name; cf1++)
852 if (d->dv_cfdata == cf1)
853 return (1);
854
855 return (0);
856 }
857
858 /*
859 * Detach a supplemental config data table. Detach all devices found
860 * through that table (and thus keeping references to it) before.
861 */
862 int
863 config_cfdata_detach(cfdata_t cf)
864 {
865 device_t d;
866 int error = 0;
867 struct cftable *ct;
868 deviter_t di;
869
870 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
871 d = deviter_next(&di)) {
872 if (!dev_in_cfdata(d, cf))
873 continue;
874 if ((error = config_detach(d, 0)) != 0)
875 break;
876 }
877 deviter_release(&di);
878 if (error) {
879 aprint_error_dev(d, "unable to detach instance\n");
880 return error;
881 }
882
883 TAILQ_FOREACH(ct, &allcftables, ct_list) {
884 if (ct->ct_cfdata == cf) {
885 TAILQ_REMOVE(&allcftables, ct, ct_list);
886 kmem_free(ct, sizeof(*ct));
887 return (0);
888 }
889 }
890
891 /* not found -- shouldn't happen */
892 return (EINVAL);
893 }
894
895 /*
896 * Invoke the "match" routine for a cfdata entry on behalf of
897 * an external caller, usually a "submatch" routine.
898 */
899 int
900 config_match(device_t parent, cfdata_t cf, void *aux)
901 {
902 struct cfattach *ca;
903
904 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
905 if (ca == NULL) {
906 /* No attachment for this entry, oh well. */
907 return (0);
908 }
909
910 return ((*ca->ca_match)(parent, cf, aux));
911 }
912
913 /*
914 * Iterate over all potential children of some device, calling the given
915 * function (default being the child's match function) for each one.
916 * Nonzero returns are matches; the highest value returned is considered
917 * the best match. Return the `found child' if we got a match, or NULL
918 * otherwise. The `aux' pointer is simply passed on through.
919 *
920 * Note that this function is designed so that it can be used to apply
921 * an arbitrary function to all potential children (its return value
922 * can be ignored).
923 */
924 cfdata_t
925 config_search_loc(cfsubmatch_t fn, device_t parent,
926 const char *ifattr, const int *locs, void *aux)
927 {
928 struct cftable *ct;
929 cfdata_t cf;
930 struct matchinfo m;
931
932 KASSERT(config_initialized);
933 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
934
935 m.fn = fn;
936 m.parent = parent;
937 m.locs = locs;
938 m.aux = aux;
939 m.match = NULL;
940 m.pri = 0;
941
942 TAILQ_FOREACH(ct, &allcftables, ct_list) {
943 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
944
945 /* We don't match root nodes here. */
946 if (!cf->cf_pspec)
947 continue;
948
949 /*
950 * Skip cf if no longer eligible, otherwise scan
951 * through parents for one matching `parent', and
952 * try match function.
953 */
954 if (cf->cf_fstate == FSTATE_FOUND)
955 continue;
956 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
957 cf->cf_fstate == FSTATE_DSTAR)
958 continue;
959
960 /*
961 * If an interface attribute was specified,
962 * consider only children which attach to
963 * that attribute.
964 */
965 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
966 continue;
967
968 if (cfparent_match(parent, cf->cf_pspec))
969 mapply(&m, cf);
970 }
971 }
972 return (m.match);
973 }
974
975 cfdata_t
976 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
977 void *aux)
978 {
979
980 return (config_search_loc(fn, parent, ifattr, NULL, aux));
981 }
982
983 /*
984 * Find the given root device.
985 * This is much like config_search, but there is no parent.
986 * Don't bother with multiple cfdata tables; the root node
987 * must always be in the initial table.
988 */
989 cfdata_t
990 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
991 {
992 cfdata_t cf;
993 const short *p;
994 struct matchinfo m;
995
996 m.fn = fn;
997 m.parent = ROOT;
998 m.aux = aux;
999 m.match = NULL;
1000 m.pri = 0;
1001 m.locs = 0;
1002 /*
1003 * Look at root entries for matching name. We do not bother
1004 * with found-state here since only one root should ever be
1005 * searched (and it must be done first).
1006 */
1007 for (p = cfroots; *p >= 0; p++) {
1008 cf = &cfdata[*p];
1009 if (strcmp(cf->cf_name, rootname) == 0)
1010 mapply(&m, cf);
1011 }
1012 return (m.match);
1013 }
1014
1015 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1016
1017 /*
1018 * The given `aux' argument describes a device that has been found
1019 * on the given parent, but not necessarily configured. Locate the
1020 * configuration data for that device (using the submatch function
1021 * provided, or using candidates' cd_match configuration driver
1022 * functions) and attach it, and return true. If the device was
1023 * not configured, call the given `print' function and return 0.
1024 */
1025 device_t
1026 config_found_sm_loc(device_t parent,
1027 const char *ifattr, const int *locs, void *aux,
1028 cfprint_t print, cfsubmatch_t submatch)
1029 {
1030 cfdata_t cf;
1031
1032 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1033 if (splash_progress_state)
1034 splash_progress_update(splash_progress_state);
1035 #endif
1036
1037 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1038 return(config_attach_loc(parent, cf, locs, aux, print));
1039 if (print) {
1040 if (config_do_twiddle)
1041 twiddle();
1042 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1043 }
1044
1045 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1046 if (splash_progress_state)
1047 splash_progress_update(splash_progress_state);
1048 #endif
1049
1050 return (NULL);
1051 }
1052
1053 device_t
1054 config_found_ia(device_t parent, const char *ifattr, void *aux,
1055 cfprint_t print)
1056 {
1057
1058 return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
1059 }
1060
1061 device_t
1062 config_found(device_t parent, void *aux, cfprint_t print)
1063 {
1064
1065 return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
1066 }
1067
1068 /*
1069 * As above, but for root devices.
1070 */
1071 device_t
1072 config_rootfound(const char *rootname, void *aux)
1073 {
1074 cfdata_t cf;
1075
1076 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1077 return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
1078 aprint_error("root device %s not configured\n", rootname);
1079 return (NULL);
1080 }
1081
1082 /* just like sprintf(buf, "%d") except that it works from the end */
1083 static char *
1084 number(char *ep, int n)
1085 {
1086
1087 *--ep = 0;
1088 while (n >= 10) {
1089 *--ep = (n % 10) + '0';
1090 n /= 10;
1091 }
1092 *--ep = n + '0';
1093 return (ep);
1094 }
1095
1096 /*
1097 * Expand the size of the cd_devs array if necessary.
1098 */
1099 static void
1100 config_makeroom(int n, struct cfdriver *cd)
1101 {
1102 int old, new;
1103 device_t *nsp;
1104
1105 if (n < cd->cd_ndevs)
1106 return;
1107
1108 /*
1109 * Need to expand the array.
1110 */
1111 old = cd->cd_ndevs;
1112 if (old == 0)
1113 new = 4;
1114 else
1115 new = old * 2;
1116 while (new <= n)
1117 new *= 2;
1118 cd->cd_ndevs = new;
1119 nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP);
1120 if (nsp == NULL)
1121 panic("config_attach: %sing dev array",
1122 old != 0 ? "expand" : "creat");
1123 memset(nsp + old, 0, sizeof(device_t [new - old]));
1124 if (old != 0) {
1125 memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
1126 kmem_free(cd->cd_devs, sizeof(device_t [old]));
1127 }
1128 cd->cd_devs = nsp;
1129 }
1130
1131 static void
1132 config_devlink(device_t dev)
1133 {
1134 struct cfdriver *cd = dev->dv_cfdriver;
1135
1136 /* put this device in the devices array */
1137 config_makeroom(dev->dv_unit, cd);
1138 if (cd->cd_devs[dev->dv_unit])
1139 panic("config_attach: duplicate %s", device_xname(dev));
1140 cd->cd_devs[dev->dv_unit] = dev;
1141
1142 /* It is safe to add a device to the tail of the list while
1143 * readers are in the list, but not while a writer is in
1144 * the list. Wait for any writer to complete.
1145 */
1146 mutex_enter(&alldevs_mtx);
1147 while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1148 cv_wait(&alldevs_cv, &alldevs_mtx);
1149 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
1150 cv_signal(&alldevs_cv);
1151 mutex_exit(&alldevs_mtx);
1152 }
1153
1154 static void
1155 config_devunlink(device_t dev)
1156 {
1157 struct cfdriver *cd = dev->dv_cfdriver;
1158 int i;
1159
1160 /* Unlink from device list. */
1161 TAILQ_REMOVE(&alldevs, dev, dv_list);
1162
1163 /* Remove from cfdriver's array. */
1164 cd->cd_devs[dev->dv_unit] = NULL;
1165
1166 /*
1167 * If the device now has no units in use, deallocate its softc array.
1168 */
1169 for (i = 0; i < cd->cd_ndevs; i++) {
1170 if (cd->cd_devs[i] != NULL)
1171 return;
1172 }
1173 /* nothing found; deallocate */
1174 kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
1175 cd->cd_devs = NULL;
1176 cd->cd_ndevs = 0;
1177 }
1178
1179 static device_t
1180 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1181 {
1182 struct cfdriver *cd;
1183 struct cfattach *ca;
1184 size_t lname, lunit;
1185 const char *xunit;
1186 int myunit;
1187 char num[10];
1188 device_t dev;
1189 void *dev_private;
1190 const struct cfiattrdata *ia;
1191
1192 cd = config_cfdriver_lookup(cf->cf_name);
1193 if (cd == NULL)
1194 return (NULL);
1195
1196 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1197 if (ca == NULL)
1198 return (NULL);
1199
1200 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1201 ca->ca_devsize < sizeof(struct device))
1202 panic("config_devalloc: %s", cf->cf_atname);
1203
1204 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1205 if (cf->cf_fstate == FSTATE_STAR) {
1206 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1207 if (cd->cd_devs[myunit] == NULL)
1208 break;
1209 /*
1210 * myunit is now the unit of the first NULL device pointer,
1211 * or max(cd->cd_ndevs,cf->cf_unit).
1212 */
1213 } else {
1214 myunit = cf->cf_unit;
1215 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1216 return (NULL);
1217 }
1218 #else
1219 myunit = cf->cf_unit;
1220 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1221
1222 /* compute length of name and decimal expansion of unit number */
1223 lname = strlen(cd->cd_name);
1224 xunit = number(&num[sizeof(num)], myunit);
1225 lunit = &num[sizeof(num)] - xunit;
1226 if (lname + lunit > sizeof(dev->dv_xname))
1227 panic("config_devalloc: device name too long");
1228
1229 /* get memory for all device vars */
1230 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1231 if (ca->ca_devsize > 0) {
1232 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1233 if (dev_private == NULL)
1234 panic("config_devalloc: memory allocation for device softc failed");
1235 } else {
1236 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1237 dev_private = NULL;
1238 }
1239
1240 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1241 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1242 } else {
1243 dev = dev_private;
1244 }
1245 if (dev == NULL)
1246 panic("config_devalloc: memory allocation for device_t failed");
1247
1248 dev->dv_class = cd->cd_class;
1249 dev->dv_cfdata = cf;
1250 dev->dv_cfdriver = cd;
1251 dev->dv_cfattach = ca;
1252 dev->dv_unit = myunit;
1253 dev->dv_activity_count = 0;
1254 dev->dv_activity_handlers = NULL;
1255 dev->dv_private = dev_private;
1256 memcpy(dev->dv_xname, cd->cd_name, lname);
1257 memcpy(dev->dv_xname + lname, xunit, lunit);
1258 dev->dv_parent = parent;
1259 if (parent != NULL)
1260 dev->dv_depth = parent->dv_depth + 1;
1261 else
1262 dev->dv_depth = 0;
1263 dev->dv_flags = DVF_ACTIVE; /* always initially active */
1264 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
1265 if (locs) {
1266 KASSERT(parent); /* no locators at root */
1267 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1268 parent->dv_cfdriver);
1269 dev->dv_locators =
1270 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1271 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1272 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1273 }
1274 dev->dv_properties = prop_dictionary_create();
1275 KASSERT(dev->dv_properties != NULL);
1276
1277 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1278 "device-driver", dev->dv_cfdriver->cd_name);
1279 prop_dictionary_set_uint16(dev->dv_properties,
1280 "device-unit", dev->dv_unit);
1281
1282 return (dev);
1283 }
1284
1285 static void
1286 config_devdealloc(device_t dev)
1287 {
1288 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1289
1290 KASSERT(dev->dv_properties != NULL);
1291 prop_object_release(dev->dv_properties);
1292
1293 if (dev->dv_activity_handlers)
1294 panic("config_devdealloc with registered handlers");
1295
1296 if (dev->dv_locators) {
1297 size_t amount = *--dev->dv_locators;
1298 kmem_free(dev->dv_locators, amount);
1299 }
1300
1301 if (dev->dv_cfattach->ca_devsize > 0)
1302 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1303 if (priv)
1304 kmem_free(dev, sizeof(*dev));
1305 }
1306
1307 /*
1308 * Attach a found device.
1309 */
1310 device_t
1311 config_attach_loc(device_t parent, cfdata_t cf,
1312 const int *locs, void *aux, cfprint_t print)
1313 {
1314 device_t dev;
1315 struct cftable *ct;
1316 const char *drvname;
1317
1318 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1319 if (splash_progress_state)
1320 splash_progress_update(splash_progress_state);
1321 #endif
1322
1323 dev = config_devalloc(parent, cf, locs);
1324 if (!dev)
1325 panic("config_attach: allocation of device softc failed");
1326
1327 /* XXX redundant - see below? */
1328 if (cf->cf_fstate != FSTATE_STAR) {
1329 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1330 cf->cf_fstate = FSTATE_FOUND;
1331 }
1332 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1333 else
1334 cf->cf_unit++;
1335 #endif
1336
1337 config_devlink(dev);
1338
1339 if (config_do_twiddle)
1340 twiddle();
1341 else
1342 aprint_naive("Found ");
1343 /*
1344 * We want the next two printfs for normal, verbose, and quiet,
1345 * but not silent (in which case, we're twiddling, instead).
1346 */
1347 if (parent == ROOT) {
1348 aprint_naive("%s (root)", device_xname(dev));
1349 aprint_normal("%s (root)", device_xname(dev));
1350 } else {
1351 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1352 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1353 if (print)
1354 (void) (*print)(aux, NULL);
1355 }
1356
1357 /*
1358 * Before attaching, clobber any unfound devices that are
1359 * otherwise identical.
1360 * XXX code above is redundant?
1361 */
1362 drvname = dev->dv_cfdriver->cd_name;
1363 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1364 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1365 if (STREQ(cf->cf_name, drvname) &&
1366 cf->cf_unit == dev->dv_unit) {
1367 if (cf->cf_fstate == FSTATE_NOTFOUND)
1368 cf->cf_fstate = FSTATE_FOUND;
1369 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1370 /*
1371 * Bump the unit number on all starred cfdata
1372 * entries for this device.
1373 */
1374 if (cf->cf_fstate == FSTATE_STAR)
1375 cf->cf_unit++;
1376 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1377 }
1378 }
1379 }
1380 #ifdef __HAVE_DEVICE_REGISTER
1381 device_register(dev, aux);
1382 #endif
1383
1384 /* Let userland know */
1385 devmon_report_device(dev, true);
1386
1387 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1388 if (splash_progress_state)
1389 splash_progress_update(splash_progress_state);
1390 #endif
1391 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1392 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1393 if (splash_progress_state)
1394 splash_progress_update(splash_progress_state);
1395 #endif
1396
1397 if (!device_pmf_is_registered(dev))
1398 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1399
1400 config_process_deferred(&deferred_config_queue, dev);
1401 return (dev);
1402 }
1403
1404 device_t
1405 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1406 {
1407
1408 return (config_attach_loc(parent, cf, NULL, aux, print));
1409 }
1410
1411 /*
1412 * As above, but for pseudo-devices. Pseudo-devices attached in this
1413 * way are silently inserted into the device tree, and their children
1414 * attached.
1415 *
1416 * Note that because pseudo-devices are attached silently, any information
1417 * the attach routine wishes to print should be prefixed with the device
1418 * name by the attach routine.
1419 */
1420 device_t
1421 config_attach_pseudo(cfdata_t cf)
1422 {
1423 device_t dev;
1424
1425 dev = config_devalloc(ROOT, cf, NULL);
1426 if (!dev)
1427 return (NULL);
1428
1429 /* XXX mark busy in cfdata */
1430
1431 config_devlink(dev);
1432
1433 #if 0 /* XXXJRT not yet */
1434 #ifdef __HAVE_DEVICE_REGISTER
1435 device_register(dev, NULL); /* like a root node */
1436 #endif
1437 #endif
1438 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1439 config_process_deferred(&deferred_config_queue, dev);
1440 return (dev);
1441 }
1442
1443 /*
1444 * Detach a device. Optionally forced (e.g. because of hardware
1445 * removal) and quiet. Returns zero if successful, non-zero
1446 * (an error code) otherwise.
1447 *
1448 * Note that this code wants to be run from a process context, so
1449 * that the detach can sleep to allow processes which have a device
1450 * open to run and unwind their stacks.
1451 */
1452 int
1453 config_detach(device_t dev, int flags)
1454 {
1455 struct cftable *ct;
1456 cfdata_t cf;
1457 const struct cfattach *ca;
1458 struct cfdriver *cd;
1459 #ifdef DIAGNOSTIC
1460 device_t d;
1461 #endif
1462 int rv = 0;
1463
1464 #ifdef DIAGNOSTIC
1465 cf = dev->dv_cfdata;
1466 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1467 cf->cf_fstate != FSTATE_STAR)
1468 panic("config_detach: %s: bad device fstate %d",
1469 device_xname(dev), cf ? cf->cf_fstate : -1);
1470 #endif
1471 cd = dev->dv_cfdriver;
1472 KASSERT(cd != NULL);
1473
1474 ca = dev->dv_cfattach;
1475 KASSERT(ca != NULL);
1476
1477 KASSERT(curlwp != NULL);
1478 mutex_enter(&alldevs_mtx);
1479 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1480 ;
1481 else while (alldevs_nread != 0 ||
1482 (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1483 cv_wait(&alldevs_cv, &alldevs_mtx);
1484 if (alldevs_nwrite++ == 0)
1485 alldevs_writer = curlwp;
1486 mutex_exit(&alldevs_mtx);
1487
1488 /*
1489 * Ensure the device is deactivated. If the device doesn't
1490 * have an activation entry point, we allow DVF_ACTIVE to
1491 * remain set. Otherwise, if DVF_ACTIVE is still set, the
1492 * device is busy, and the detach fails.
1493 */
1494 if (ca->ca_activate != NULL)
1495 rv = config_deactivate(dev);
1496
1497 /*
1498 * Try to detach the device. If that's not possible, then
1499 * we either panic() (for the forced but failed case), or
1500 * return an error.
1501 */
1502 if (rv == 0) {
1503 if (ca->ca_detach != NULL)
1504 rv = (*ca->ca_detach)(dev, flags);
1505 else
1506 rv = EOPNOTSUPP;
1507 }
1508 if (rv != 0) {
1509 if ((flags & DETACH_FORCE) == 0)
1510 goto out;
1511 else
1512 panic("config_detach: forced detach of %s failed (%d)",
1513 device_xname(dev), rv);
1514 }
1515
1516 /*
1517 * The device has now been successfully detached.
1518 */
1519
1520 /* Let userland know */
1521 devmon_report_device(dev, false);
1522
1523 #ifdef DIAGNOSTIC
1524 /*
1525 * Sanity: If you're successfully detached, you should have no
1526 * children. (Note that because children must be attached
1527 * after parents, we only need to search the latter part of
1528 * the list.)
1529 */
1530 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1531 d = TAILQ_NEXT(d, dv_list)) {
1532 if (d->dv_parent == dev) {
1533 printf("config_detach: detached device %s"
1534 " has children %s\n", device_xname(dev), device_xname(d));
1535 panic("config_detach");
1536 }
1537 }
1538 #endif
1539
1540 /* notify the parent that the child is gone */
1541 if (dev->dv_parent) {
1542 device_t p = dev->dv_parent;
1543 if (p->dv_cfattach->ca_childdetached)
1544 (*p->dv_cfattach->ca_childdetached)(p, dev);
1545 }
1546
1547 /*
1548 * Mark cfdata to show that the unit can be reused, if possible.
1549 */
1550 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1551 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1552 if (STREQ(cf->cf_name, cd->cd_name)) {
1553 if (cf->cf_fstate == FSTATE_FOUND &&
1554 cf->cf_unit == dev->dv_unit)
1555 cf->cf_fstate = FSTATE_NOTFOUND;
1556 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1557 /*
1558 * Note that we can only re-use a starred
1559 * unit number if the unit being detached
1560 * had the last assigned unit number.
1561 */
1562 if (cf->cf_fstate == FSTATE_STAR &&
1563 cf->cf_unit == dev->dv_unit + 1)
1564 cf->cf_unit--;
1565 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1566 }
1567 }
1568 }
1569
1570 config_devunlink(dev);
1571
1572 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1573 aprint_normal_dev(dev, "detached\n");
1574
1575 config_devdealloc(dev);
1576
1577 out:
1578 mutex_enter(&alldevs_mtx);
1579 if (--alldevs_nwrite == 0)
1580 alldevs_writer = NULL;
1581 cv_signal(&alldevs_cv);
1582 mutex_exit(&alldevs_mtx);
1583 return rv;
1584 }
1585
1586 int
1587 config_detach_children(device_t parent, int flags)
1588 {
1589 device_t dv;
1590 deviter_t di;
1591 int error = 0;
1592
1593 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1594 dv = deviter_next(&di)) {
1595 if (device_parent(dv) != parent)
1596 continue;
1597 if ((error = config_detach(dv, flags)) != 0)
1598 break;
1599 }
1600 deviter_release(&di);
1601 return error;
1602 }
1603
1604 int
1605 config_activate(device_t dev)
1606 {
1607 const struct cfattach *ca = dev->dv_cfattach;
1608 int rv = 0, oflags = dev->dv_flags;
1609
1610 if (ca->ca_activate == NULL)
1611 return (EOPNOTSUPP);
1612
1613 if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1614 dev->dv_flags |= DVF_ACTIVE;
1615 rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1616 if (rv)
1617 dev->dv_flags = oflags;
1618 }
1619 return (rv);
1620 }
1621
1622 int
1623 config_deactivate(device_t dev)
1624 {
1625 const struct cfattach *ca = dev->dv_cfattach;
1626 int rv = 0, oflags = dev->dv_flags;
1627
1628 if (ca->ca_activate == NULL)
1629 return (EOPNOTSUPP);
1630
1631 if (dev->dv_flags & DVF_ACTIVE) {
1632 dev->dv_flags &= ~DVF_ACTIVE;
1633 rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1634 if (rv)
1635 dev->dv_flags = oflags;
1636 }
1637 return (rv);
1638 }
1639
1640 /*
1641 * Defer the configuration of the specified device until all
1642 * of its parent's devices have been attached.
1643 */
1644 void
1645 config_defer(device_t dev, void (*func)(device_t))
1646 {
1647 struct deferred_config *dc;
1648
1649 if (dev->dv_parent == NULL)
1650 panic("config_defer: can't defer config of a root device");
1651
1652 #ifdef DIAGNOSTIC
1653 for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1654 dc = TAILQ_NEXT(dc, dc_queue)) {
1655 if (dc->dc_dev == dev)
1656 panic("config_defer: deferred twice");
1657 }
1658 #endif
1659
1660 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1661 if (dc == NULL)
1662 panic("config_defer: unable to allocate callback");
1663
1664 dc->dc_dev = dev;
1665 dc->dc_func = func;
1666 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1667 config_pending_incr();
1668 }
1669
1670 /*
1671 * Defer some autoconfiguration for a device until after interrupts
1672 * are enabled.
1673 */
1674 void
1675 config_interrupts(device_t dev, void (*func)(device_t))
1676 {
1677 struct deferred_config *dc;
1678
1679 /*
1680 * If interrupts are enabled, callback now.
1681 */
1682 if (cold == 0) {
1683 (*func)(dev);
1684 return;
1685 }
1686
1687 #ifdef DIAGNOSTIC
1688 for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1689 dc = TAILQ_NEXT(dc, dc_queue)) {
1690 if (dc->dc_dev == dev)
1691 panic("config_interrupts: deferred twice");
1692 }
1693 #endif
1694
1695 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1696 if (dc == NULL)
1697 panic("config_interrupts: unable to allocate callback");
1698
1699 dc->dc_dev = dev;
1700 dc->dc_func = func;
1701 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1702 config_pending_incr();
1703 }
1704
1705 /*
1706 * Process a deferred configuration queue.
1707 */
1708 static void
1709 config_process_deferred(struct deferred_config_head *queue,
1710 device_t parent)
1711 {
1712 struct deferred_config *dc, *ndc;
1713
1714 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1715 ndc = TAILQ_NEXT(dc, dc_queue);
1716 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1717 TAILQ_REMOVE(queue, dc, dc_queue);
1718 (*dc->dc_func)(dc->dc_dev);
1719 kmem_free(dc, sizeof(*dc));
1720 config_pending_decr();
1721 }
1722 }
1723 }
1724
1725 /*
1726 * Manipulate the config_pending semaphore.
1727 */
1728 void
1729 config_pending_incr(void)
1730 {
1731
1732 mutex_enter(&config_misc_lock);
1733 config_pending++;
1734 mutex_exit(&config_misc_lock);
1735 }
1736
1737 void
1738 config_pending_decr(void)
1739 {
1740
1741 #ifdef DIAGNOSTIC
1742 if (config_pending == 0)
1743 panic("config_pending_decr: config_pending == 0");
1744 #endif
1745 mutex_enter(&config_misc_lock);
1746 config_pending--;
1747 if (config_pending == 0)
1748 cv_broadcast(&config_misc_cv);
1749 mutex_exit(&config_misc_lock);
1750 }
1751
1752 /*
1753 * Register a "finalization" routine. Finalization routines are
1754 * called iteratively once all real devices have been found during
1755 * autoconfiguration, for as long as any one finalizer has done
1756 * any work.
1757 */
1758 int
1759 config_finalize_register(device_t dev, int (*fn)(device_t))
1760 {
1761 struct finalize_hook *f;
1762
1763 /*
1764 * If finalization has already been done, invoke the
1765 * callback function now.
1766 */
1767 if (config_finalize_done) {
1768 while ((*fn)(dev) != 0)
1769 /* loop */ ;
1770 }
1771
1772 /* Ensure this isn't already on the list. */
1773 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1774 if (f->f_func == fn && f->f_dev == dev)
1775 return (EEXIST);
1776 }
1777
1778 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1779 f->f_func = fn;
1780 f->f_dev = dev;
1781 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1782
1783 return (0);
1784 }
1785
1786 void
1787 config_finalize(void)
1788 {
1789 struct finalize_hook *f;
1790 struct pdevinit *pdev;
1791 extern struct pdevinit pdevinit[];
1792 int errcnt, rv;
1793
1794 /*
1795 * Now that device driver threads have been created, wait for
1796 * them to finish any deferred autoconfiguration.
1797 */
1798 mutex_enter(&config_misc_lock);
1799 while (config_pending != 0)
1800 cv_wait(&config_misc_cv, &config_misc_lock);
1801 mutex_exit(&config_misc_lock);
1802
1803 /* Attach pseudo-devices. */
1804 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1805 (*pdev->pdev_attach)(pdev->pdev_count);
1806
1807 /* Run the hooks until none of them does any work. */
1808 do {
1809 rv = 0;
1810 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1811 rv |= (*f->f_func)(f->f_dev);
1812 } while (rv != 0);
1813
1814 config_finalize_done = 1;
1815
1816 /* Now free all the hooks. */
1817 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1818 TAILQ_REMOVE(&config_finalize_list, f, f_list);
1819 kmem_free(f, sizeof(*f));
1820 }
1821
1822 errcnt = aprint_get_error_count();
1823 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1824 (boothowto & AB_VERBOSE) == 0) {
1825 if (config_do_twiddle) {
1826 config_do_twiddle = 0;
1827 printf_nolog("done.\n");
1828 }
1829 if (errcnt != 0) {
1830 printf("WARNING: %d error%s while detecting hardware; "
1831 "check system log.\n", errcnt,
1832 errcnt == 1 ? "" : "s");
1833 }
1834 }
1835 }
1836
1837 /*
1838 * device_lookup:
1839 *
1840 * Look up a device instance for a given driver.
1841 */
1842 device_t
1843 device_lookup(cfdriver_t cd, int unit)
1844 {
1845
1846 if (unit < 0 || unit >= cd->cd_ndevs)
1847 return (NULL);
1848
1849 return (cd->cd_devs[unit]);
1850 }
1851
1852 /*
1853 * device_lookup:
1854 *
1855 * Look up a device instance for a given driver.
1856 */
1857 void *
1858 device_lookup_private(cfdriver_t cd, int unit)
1859 {
1860 device_t dv;
1861
1862 if (unit < 0 || unit >= cd->cd_ndevs)
1863 return NULL;
1864
1865 if ((dv = cd->cd_devs[unit]) == NULL)
1866 return NULL;
1867
1868 return dv->dv_private;
1869 }
1870
1871 /*
1872 * Accessor functions for the device_t type.
1873 */
1874 devclass_t
1875 device_class(device_t dev)
1876 {
1877
1878 return (dev->dv_class);
1879 }
1880
1881 cfdata_t
1882 device_cfdata(device_t dev)
1883 {
1884
1885 return (dev->dv_cfdata);
1886 }
1887
1888 cfdriver_t
1889 device_cfdriver(device_t dev)
1890 {
1891
1892 return (dev->dv_cfdriver);
1893 }
1894
1895 cfattach_t
1896 device_cfattach(device_t dev)
1897 {
1898
1899 return (dev->dv_cfattach);
1900 }
1901
1902 int
1903 device_unit(device_t dev)
1904 {
1905
1906 return (dev->dv_unit);
1907 }
1908
1909 const char *
1910 device_xname(device_t dev)
1911 {
1912
1913 return (dev->dv_xname);
1914 }
1915
1916 device_t
1917 device_parent(device_t dev)
1918 {
1919
1920 return (dev->dv_parent);
1921 }
1922
1923 bool
1924 device_is_active(device_t dev)
1925 {
1926 int active_flags;
1927
1928 active_flags = DVF_ACTIVE;
1929 active_flags |= DVF_CLASS_SUSPENDED;
1930 active_flags |= DVF_DRIVER_SUSPENDED;
1931 active_flags |= DVF_BUS_SUSPENDED;
1932
1933 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1934 }
1935
1936 bool
1937 device_is_enabled(device_t dev)
1938 {
1939 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1940 }
1941
1942 bool
1943 device_has_power(device_t dev)
1944 {
1945 int active_flags;
1946
1947 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1948
1949 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1950 }
1951
1952 int
1953 device_locator(device_t dev, u_int locnum)
1954 {
1955
1956 KASSERT(dev->dv_locators != NULL);
1957 return (dev->dv_locators[locnum]);
1958 }
1959
1960 void *
1961 device_private(device_t dev)
1962 {
1963
1964 /*
1965 * The reason why device_private(NULL) is allowed is to simplify the
1966 * work of a lot of userspace request handlers (i.e., c/bdev
1967 * handlers) which grab cfdriver_t->cd_units[n].
1968 * It avoids having them test for it to be NULL and only then calling
1969 * device_private.
1970 */
1971 return dev == NULL ? NULL : dev->dv_private;
1972 }
1973
1974 prop_dictionary_t
1975 device_properties(device_t dev)
1976 {
1977
1978 return (dev->dv_properties);
1979 }
1980
1981 /*
1982 * device_is_a:
1983 *
1984 * Returns true if the device is an instance of the specified
1985 * driver.
1986 */
1987 bool
1988 device_is_a(device_t dev, const char *dname)
1989 {
1990
1991 return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
1992 }
1993
1994 /*
1995 * device_find_by_xname:
1996 *
1997 * Returns the device of the given name or NULL if it doesn't exist.
1998 */
1999 device_t
2000 device_find_by_xname(const char *name)
2001 {
2002 device_t dv;
2003 deviter_t di;
2004
2005 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2006 if (strcmp(device_xname(dv), name) == 0)
2007 break;
2008 }
2009 deviter_release(&di);
2010
2011 return dv;
2012 }
2013
2014 /*
2015 * device_find_by_driver_unit:
2016 *
2017 * Returns the device of the given driver name and unit or
2018 * NULL if it doesn't exist.
2019 */
2020 device_t
2021 device_find_by_driver_unit(const char *name, int unit)
2022 {
2023 struct cfdriver *cd;
2024
2025 if ((cd = config_cfdriver_lookup(name)) == NULL)
2026 return NULL;
2027 return device_lookup(cd, unit);
2028 }
2029
2030 /*
2031 * Power management related functions.
2032 */
2033
2034 bool
2035 device_pmf_is_registered(device_t dev)
2036 {
2037 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2038 }
2039
2040 bool
2041 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
2042 {
2043 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2044 return true;
2045 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2046 return false;
2047 if (*dev->dv_driver_suspend != NULL &&
2048 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
2049 return false;
2050
2051 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2052 return true;
2053 }
2054
2055 bool
2056 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
2057 {
2058 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2059 return true;
2060 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2061 return false;
2062 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2063 return false;
2064 if (*dev->dv_driver_resume != NULL &&
2065 !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2066 return false;
2067
2068 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2069 return true;
2070 }
2071
2072 bool
2073 device_pmf_driver_shutdown(device_t dev, int how)
2074 {
2075
2076 if (*dev->dv_driver_shutdown != NULL &&
2077 !(*dev->dv_driver_shutdown)(dev, how))
2078 return false;
2079 return true;
2080 }
2081
2082 bool
2083 device_pmf_driver_register(device_t dev,
2084 bool (*suspend)(device_t PMF_FN_PROTO),
2085 bool (*resume)(device_t PMF_FN_PROTO),
2086 bool (*shutdown)(device_t, int))
2087 {
2088 pmf_private_t *pp;
2089
2090 if ((pp = kmem_zalloc(sizeof(*pp), KM_SLEEP)) == NULL)
2091 return false;
2092 mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
2093 cv_init(&pp->pp_cv, "pmfsusp");
2094 dev->dv_pmf_private = pp;
2095
2096 dev->dv_driver_suspend = suspend;
2097 dev->dv_driver_resume = resume;
2098 dev->dv_driver_shutdown = shutdown;
2099 dev->dv_flags |= DVF_POWER_HANDLERS;
2100 return true;
2101 }
2102
2103 static const char *
2104 curlwp_name(void)
2105 {
2106 if (curlwp->l_name != NULL)
2107 return curlwp->l_name;
2108 else
2109 return curlwp->l_proc->p_comm;
2110 }
2111
2112 void
2113 device_pmf_driver_deregister(device_t dev)
2114 {
2115 pmf_private_t *pp = dev->dv_pmf_private;
2116
2117 /* XXX avoid crash in case we are not initialized */
2118 if (!pp)
2119 return;
2120
2121 dev->dv_driver_suspend = NULL;
2122 dev->dv_driver_resume = NULL;
2123
2124 mutex_enter(&pp->pp_mtx);
2125 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2126 while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
2127 /* Wake a thread that waits for the lock. That
2128 * thread will fail to acquire the lock, and then
2129 * it will wake the next thread that waits for the
2130 * lock, or else it will wake us.
2131 */
2132 cv_signal(&pp->pp_cv);
2133 pmflock_debug(dev, __func__, __LINE__);
2134 cv_wait(&pp->pp_cv, &pp->pp_mtx);
2135 pmflock_debug(dev, __func__, __LINE__);
2136 }
2137 dev->dv_pmf_private = NULL;
2138 mutex_exit(&pp->pp_mtx);
2139
2140 cv_destroy(&pp->pp_cv);
2141 mutex_destroy(&pp->pp_mtx);
2142 kmem_free(pp, sizeof(*pp));
2143 }
2144
2145 bool
2146 device_pmf_driver_child_register(device_t dev)
2147 {
2148 device_t parent = device_parent(dev);
2149
2150 if (parent == NULL || parent->dv_driver_child_register == NULL)
2151 return true;
2152 return (*parent->dv_driver_child_register)(dev);
2153 }
2154
2155 void
2156 device_pmf_driver_set_child_register(device_t dev,
2157 bool (*child_register)(device_t))
2158 {
2159 dev->dv_driver_child_register = child_register;
2160 }
2161
2162 void
2163 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2164 {
2165 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2166 if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2167 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2168 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2169 }
2170
2171 bool
2172 device_is_self_suspended(device_t dev)
2173 {
2174 return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2175 }
2176
2177 void
2178 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2179 {
2180 bool self = (flags & PMF_F_SELF) != 0;
2181
2182 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2183
2184 if (!self)
2185 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2186 else if (device_is_active(dev))
2187 dev->dv_flags |= DVF_SELF_SUSPENDED;
2188
2189 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2190 }
2191
2192 static void
2193 pmflock_debug(device_t dev, const char *func, int line)
2194 {
2195 pmf_private_t *pp = device_pmf_private(dev);
2196
2197 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
2198 func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
2199 dev->dv_flags);
2200 }
2201
2202 static void
2203 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2204 {
2205 pmf_private_t *pp = device_pmf_private(dev);
2206
2207 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
2208 "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2209 pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
2210 }
2211
2212 static bool
2213 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2214 {
2215 pmf_private_t *pp = device_pmf_private(dev);
2216
2217 while (device_pmf_is_registered(dev) &&
2218 pp->pp_nlock > 0 && pp->pp_holder != curlwp) {
2219 pp->pp_nwait++;
2220 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2221 cv_wait(&pp->pp_cv, &pp->pp_mtx);
2222 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2223 pp->pp_nwait--;
2224 }
2225 if (!device_pmf_is_registered(dev)) {
2226 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2227 /* We could not acquire the lock, but some other thread may
2228 * wait for it, also. Wake that thread.
2229 */
2230 cv_signal(&pp->pp_cv);
2231 return false;
2232 }
2233 pp->pp_nlock++;
2234 pp->pp_holder = curlwp;
2235 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2236 return true;
2237 }
2238
2239 bool
2240 device_pmf_lock(device_t dev PMF_FN_ARGS)
2241 {
2242 bool rc;
2243 pmf_private_t *pp = device_pmf_private(dev);
2244
2245 mutex_enter(&pp->pp_mtx);
2246 rc = device_pmf_lock1(dev PMF_FN_CALL);
2247 mutex_exit(&pp->pp_mtx);
2248
2249 return rc;
2250 }
2251
2252 void
2253 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2254 {
2255 pmf_private_t *pp = device_pmf_private(dev);
2256
2257 KASSERT(pp->pp_nlock > 0);
2258 mutex_enter(&pp->pp_mtx);
2259 if (--pp->pp_nlock == 0)
2260 pp->pp_holder = NULL;
2261 cv_signal(&pp->pp_cv);
2262 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2263 mutex_exit(&pp->pp_mtx);
2264 }
2265
2266 void *
2267 device_pmf_private(device_t dev)
2268 {
2269 return dev->dv_pmf_private;
2270 }
2271
2272 void *
2273 device_pmf_bus_private(device_t dev)
2274 {
2275 return dev->dv_bus_private;
2276 }
2277
2278 bool
2279 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2280 {
2281 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2282 return true;
2283 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2284 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2285 return false;
2286 if (*dev->dv_bus_suspend != NULL &&
2287 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2288 return false;
2289
2290 dev->dv_flags |= DVF_BUS_SUSPENDED;
2291 return true;
2292 }
2293
2294 bool
2295 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2296 {
2297 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2298 return true;
2299 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2300 return false;
2301 if (*dev->dv_bus_resume != NULL &&
2302 !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2303 return false;
2304
2305 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2306 return true;
2307 }
2308
2309 bool
2310 device_pmf_bus_shutdown(device_t dev, int how)
2311 {
2312
2313 if (*dev->dv_bus_shutdown != NULL &&
2314 !(*dev->dv_bus_shutdown)(dev, how))
2315 return false;
2316 return true;
2317 }
2318
2319 void
2320 device_pmf_bus_register(device_t dev, void *priv,
2321 bool (*suspend)(device_t PMF_FN_PROTO),
2322 bool (*resume)(device_t PMF_FN_PROTO),
2323 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2324 {
2325 dev->dv_bus_private = priv;
2326 dev->dv_bus_resume = resume;
2327 dev->dv_bus_suspend = suspend;
2328 dev->dv_bus_shutdown = shutdown;
2329 dev->dv_bus_deregister = deregister;
2330 }
2331
2332 void
2333 device_pmf_bus_deregister(device_t dev)
2334 {
2335 if (dev->dv_bus_deregister == NULL)
2336 return;
2337 (*dev->dv_bus_deregister)(dev);
2338 dev->dv_bus_private = NULL;
2339 dev->dv_bus_suspend = NULL;
2340 dev->dv_bus_resume = NULL;
2341 dev->dv_bus_deregister = NULL;
2342 }
2343
2344 void *
2345 device_pmf_class_private(device_t dev)
2346 {
2347 return dev->dv_class_private;
2348 }
2349
2350 bool
2351 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2352 {
2353 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2354 return true;
2355 if (*dev->dv_class_suspend != NULL &&
2356 !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2357 return false;
2358
2359 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2360 return true;
2361 }
2362
2363 bool
2364 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2365 {
2366 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2367 return true;
2368 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2369 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2370 return false;
2371 if (*dev->dv_class_resume != NULL &&
2372 !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2373 return false;
2374
2375 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2376 return true;
2377 }
2378
2379 void
2380 device_pmf_class_register(device_t dev, void *priv,
2381 bool (*suspend)(device_t PMF_FN_PROTO),
2382 bool (*resume)(device_t PMF_FN_PROTO),
2383 void (*deregister)(device_t))
2384 {
2385 dev->dv_class_private = priv;
2386 dev->dv_class_suspend = suspend;
2387 dev->dv_class_resume = resume;
2388 dev->dv_class_deregister = deregister;
2389 }
2390
2391 void
2392 device_pmf_class_deregister(device_t dev)
2393 {
2394 if (dev->dv_class_deregister == NULL)
2395 return;
2396 (*dev->dv_class_deregister)(dev);
2397 dev->dv_class_private = NULL;
2398 dev->dv_class_suspend = NULL;
2399 dev->dv_class_resume = NULL;
2400 dev->dv_class_deregister = NULL;
2401 }
2402
2403 bool
2404 device_active(device_t dev, devactive_t type)
2405 {
2406 size_t i;
2407
2408 if (dev->dv_activity_count == 0)
2409 return false;
2410
2411 for (i = 0; i < dev->dv_activity_count; ++i) {
2412 if (dev->dv_activity_handlers[i] == NULL)
2413 break;
2414 (*dev->dv_activity_handlers[i])(dev, type);
2415 }
2416
2417 return true;
2418 }
2419
2420 bool
2421 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2422 {
2423 void (**new_handlers)(device_t, devactive_t);
2424 void (**old_handlers)(device_t, devactive_t);
2425 size_t i, old_size, new_size;
2426 int s;
2427
2428 old_handlers = dev->dv_activity_handlers;
2429 old_size = dev->dv_activity_count;
2430
2431 for (i = 0; i < old_size; ++i) {
2432 KASSERT(old_handlers[i] != handler);
2433 if (old_handlers[i] == NULL) {
2434 old_handlers[i] = handler;
2435 return true;
2436 }
2437 }
2438
2439 new_size = old_size + 4;
2440 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2441
2442 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2443 new_handlers[old_size] = handler;
2444 memset(new_handlers + old_size + 1, 0,
2445 sizeof(int [new_size - (old_size+1)]));
2446
2447 s = splhigh();
2448 dev->dv_activity_count = new_size;
2449 dev->dv_activity_handlers = new_handlers;
2450 splx(s);
2451
2452 if (old_handlers != NULL)
2453 kmem_free(old_handlers, sizeof(void * [old_size]));
2454
2455 return true;
2456 }
2457
2458 void
2459 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2460 {
2461 void (**old_handlers)(device_t, devactive_t);
2462 size_t i, old_size;
2463 int s;
2464
2465 old_handlers = dev->dv_activity_handlers;
2466 old_size = dev->dv_activity_count;
2467
2468 for (i = 0; i < old_size; ++i) {
2469 if (old_handlers[i] == handler)
2470 break;
2471 if (old_handlers[i] == NULL)
2472 return; /* XXX panic? */
2473 }
2474
2475 if (i == old_size)
2476 return; /* XXX panic? */
2477
2478 for (; i < old_size - 1; ++i) {
2479 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2480 continue;
2481
2482 if (i == 0) {
2483 s = splhigh();
2484 dev->dv_activity_count = 0;
2485 dev->dv_activity_handlers = NULL;
2486 splx(s);
2487 kmem_free(old_handlers, sizeof(void *[old_size]));
2488 }
2489 return;
2490 }
2491 old_handlers[i] = NULL;
2492 }
2493
2494 /*
2495 * Device Iteration
2496 *
2497 * deviter_t: a device iterator. Holds state for a "walk" visiting
2498 * each device_t's in the device tree.
2499 *
2500 * deviter_init(di, flags): initialize the device iterator `di'
2501 * to "walk" the device tree. deviter_next(di) will return
2502 * the first device_t in the device tree, or NULL if there are
2503 * no devices.
2504 *
2505 * `flags' is one or more of DEVITER_F_RW, indicating that the
2506 * caller intends to modify the device tree by calling
2507 * config_detach(9) on devices in the order that the iterator
2508 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2509 * nearest the "root" of the device tree to be returned, first;
2510 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2511 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2512 * indicating both that deviter_init() should not respect any
2513 * locks on the device tree, and that deviter_next(di) may run
2514 * in more than one LWP before the walk has finished.
2515 *
2516 * Only one DEVITER_F_RW iterator may be in the device tree at
2517 * once.
2518 *
2519 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2520 *
2521 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2522 * DEVITER_F_LEAVES_FIRST are used in combination.
2523 *
2524 * deviter_first(di, flags): initialize the device iterator `di'
2525 * and return the first device_t in the device tree, or NULL
2526 * if there are no devices. The statement
2527 *
2528 * dv = deviter_first(di);
2529 *
2530 * is shorthand for
2531 *
2532 * deviter_init(di);
2533 * dv = deviter_next(di);
2534 *
2535 * deviter_next(di): return the next device_t in the device tree,
2536 * or NULL if there are no more devices. deviter_next(di)
2537 * is undefined if `di' was not initialized with deviter_init() or
2538 * deviter_first().
2539 *
2540 * deviter_release(di): stops iteration (subsequent calls to
2541 * deviter_next() will return NULL), releases any locks and
2542 * resources held by the device iterator.
2543 *
2544 * Device iteration does not return device_t's in any particular
2545 * order. An iterator will never return the same device_t twice.
2546 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2547 * is called repeatedly on the same `di', it will eventually return
2548 * NULL. It is ok to attach/detach devices during device iteration.
2549 */
2550 void
2551 deviter_init(deviter_t *di, deviter_flags_t flags)
2552 {
2553 device_t dv;
2554 bool rw;
2555
2556 mutex_enter(&alldevs_mtx);
2557 if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2558 flags |= DEVITER_F_RW;
2559 alldevs_nwrite++;
2560 alldevs_writer = NULL;
2561 alldevs_nread = 0;
2562 } else {
2563 rw = (flags & DEVITER_F_RW) != 0;
2564
2565 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2566 ;
2567 else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2568 (rw && alldevs_nread != 0))
2569 cv_wait(&alldevs_cv, &alldevs_mtx);
2570
2571 if (rw) {
2572 if (alldevs_nwrite++ == 0)
2573 alldevs_writer = curlwp;
2574 } else
2575 alldevs_nread++;
2576 }
2577 mutex_exit(&alldevs_mtx);
2578
2579 memset(di, 0, sizeof(*di));
2580
2581 di->di_flags = flags;
2582
2583 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2584 case DEVITER_F_LEAVES_FIRST:
2585 TAILQ_FOREACH(dv, &alldevs, dv_list)
2586 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2587 break;
2588 case DEVITER_F_ROOT_FIRST:
2589 TAILQ_FOREACH(dv, &alldevs, dv_list)
2590 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2591 break;
2592 default:
2593 break;
2594 }
2595
2596 deviter_reinit(di);
2597 }
2598
2599 static void
2600 deviter_reinit(deviter_t *di)
2601 {
2602 if ((di->di_flags & DEVITER_F_RW) != 0)
2603 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2604 else
2605 di->di_prev = TAILQ_FIRST(&alldevs);
2606 }
2607
2608 device_t
2609 deviter_first(deviter_t *di, deviter_flags_t flags)
2610 {
2611 deviter_init(di, flags);
2612 return deviter_next(di);
2613 }
2614
2615 static device_t
2616 deviter_next1(deviter_t *di)
2617 {
2618 device_t dv;
2619
2620 dv = di->di_prev;
2621
2622 if (dv == NULL)
2623 ;
2624 else if ((di->di_flags & DEVITER_F_RW) != 0)
2625 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2626 else
2627 di->di_prev = TAILQ_NEXT(dv, dv_list);
2628
2629 return dv;
2630 }
2631
2632 device_t
2633 deviter_next(deviter_t *di)
2634 {
2635 device_t dv = NULL;
2636
2637 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2638 case 0:
2639 return deviter_next1(di);
2640 case DEVITER_F_LEAVES_FIRST:
2641 while (di->di_curdepth >= 0) {
2642 if ((dv = deviter_next1(di)) == NULL) {
2643 di->di_curdepth--;
2644 deviter_reinit(di);
2645 } else if (dv->dv_depth == di->di_curdepth)
2646 break;
2647 }
2648 return dv;
2649 case DEVITER_F_ROOT_FIRST:
2650 while (di->di_curdepth <= di->di_maxdepth) {
2651 if ((dv = deviter_next1(di)) == NULL) {
2652 di->di_curdepth++;
2653 deviter_reinit(di);
2654 } else if (dv->dv_depth == di->di_curdepth)
2655 break;
2656 }
2657 return dv;
2658 default:
2659 return NULL;
2660 }
2661 }
2662
2663 void
2664 deviter_release(deviter_t *di)
2665 {
2666 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2667
2668 mutex_enter(&alldevs_mtx);
2669 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2670 --alldevs_nwrite;
2671 else {
2672
2673 if (rw) {
2674 if (--alldevs_nwrite == 0)
2675 alldevs_writer = NULL;
2676 } else
2677 --alldevs_nread;
2678
2679 cv_signal(&alldevs_cv);
2680 }
2681 mutex_exit(&alldevs_mtx);
2682 }
2683