subr_autoconf.c revision 1.167.2.2 1 /* $NetBSD: subr_autoconf.c,v 1.167.2.2 2009/07/23 23:32:35 jym Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.167.2.2 2009/07/23 23:32:35 jym Exp $");
81
82 #include "opt_ddb.h"
83 #include "drvctl.h"
84
85 #include <sys/param.h>
86 #include <sys/device.h>
87 #include <sys/disklabel.h>
88 #include <sys/conf.h>
89 #include <sys/kauth.h>
90 #include <sys/malloc.h>
91 #include <sys/kmem.h>
92 #include <sys/systm.h>
93 #include <sys/kernel.h>
94 #include <sys/errno.h>
95 #include <sys/proc.h>
96 #include <sys/reboot.h>
97 #include <sys/kthread.h>
98 #include <sys/buf.h>
99 #include <sys/dirent.h>
100 #include <sys/vnode.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110
111 #include <sys/disk.h>
112
113 #include <machine/limits.h>
114
115 #include "opt_userconf.h"
116 #ifdef USERCONF
117 #include <sys/userconf.h>
118 #endif
119
120 #ifdef __i386__
121 #include "opt_splash.h"
122 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
123 #include <dev/splash/splash.h>
124 extern struct splash_progress *splash_progress_state;
125 #endif
126 #endif
127
128 /*
129 * Autoconfiguration subroutines.
130 */
131
132 /*
133 * ioconf.c exports exactly two names: cfdata and cfroots. All system
134 * devices and drivers are found via these tables.
135 */
136 extern struct cfdata cfdata[];
137 extern const short cfroots[];
138
139 /*
140 * List of all cfdriver structures. We use this to detect duplicates
141 * when other cfdrivers are loaded.
142 */
143 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
144 extern struct cfdriver * const cfdriver_list_initial[];
145
146 /*
147 * Initial list of cfattach's.
148 */
149 extern const struct cfattachinit cfattachinit[];
150
151 /*
152 * List of cfdata tables. We always have one such list -- the one
153 * built statically when the kernel was configured.
154 */
155 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
156 static struct cftable initcftable;
157
158 #define ROOT ((device_t)NULL)
159
160 struct matchinfo {
161 cfsubmatch_t fn;
162 struct device *parent;
163 const int *locs;
164 void *aux;
165 struct cfdata *match;
166 int pri;
167 };
168
169 static char *number(char *, int);
170 static void mapply(struct matchinfo *, cfdata_t);
171 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
172 static void config_devdealloc(device_t);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_devunlink(device_t);
176 static void config_twiddle_fn(void *);
177
178 static void pmflock_debug(device_t, const char *, int);
179 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
180
181 static device_t deviter_next1(deviter_t *);
182 static void deviter_reinit(deviter_t *);
183
184 struct deferred_config {
185 TAILQ_ENTRY(deferred_config) dc_queue;
186 device_t dc_dev;
187 void (*dc_func)(device_t);
188 };
189
190 TAILQ_HEAD(deferred_config_head, deferred_config);
191
192 struct deferred_config_head deferred_config_queue =
193 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
194 struct deferred_config_head interrupt_config_queue =
195 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
196 int interrupt_config_threads = 8;
197
198 static void config_process_deferred(struct deferred_config_head *, device_t);
199
200 /* Hooks to finalize configuration once all real devices have been found. */
201 struct finalize_hook {
202 TAILQ_ENTRY(finalize_hook) f_list;
203 int (*f_func)(device_t);
204 device_t f_dev;
205 };
206 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
207 TAILQ_HEAD_INITIALIZER(config_finalize_list);
208 static int config_finalize_done;
209
210 /* list of all devices */
211 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
212 kcondvar_t alldevs_cv;
213 kmutex_t alldevs_mtx;
214 static int alldevs_nread = 0;
215 static int alldevs_nwrite = 0;
216 static lwp_t *alldevs_writer = NULL;
217
218 static int config_pending; /* semaphore for mountroot */
219 static kmutex_t config_misc_lock;
220 static kcondvar_t config_misc_cv;
221
222 static int detachall = 0;
223
224 #define STREQ(s1, s2) \
225 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
226
227 static int config_initialized; /* config_init() has been called. */
228
229 static int config_do_twiddle;
230 static callout_t config_twiddle_ch;
231
232 struct vnode *
233 opendisk(struct device *dv)
234 {
235 int bmajor, bminor;
236 struct vnode *tmpvn;
237 int error;
238 dev_t dev;
239
240 /*
241 * Lookup major number for disk block device.
242 */
243 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
244 if (bmajor == -1)
245 return NULL;
246
247 bminor = minor(device_unit(dv));
248 /*
249 * Fake a temporary vnode for the disk, open it, and read
250 * and hash the sectors.
251 */
252 dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
253 MAKEDISKDEV(bmajor, bminor, RAW_PART);
254 if (bdevvp(dev, &tmpvn))
255 panic("%s: can't alloc vnode for %s", __func__,
256 device_xname(dv));
257 error = VOP_OPEN(tmpvn, FREAD, NOCRED);
258 if (error) {
259 #ifndef DEBUG
260 /*
261 * Ignore errors caused by missing device, partition,
262 * or medium.
263 */
264 if (error != ENXIO && error != ENODEV)
265 #endif
266 printf("%s: can't open dev %s (%d)\n",
267 __func__, device_xname(dv), error);
268 vput(tmpvn);
269 return NULL;
270 }
271
272 return tmpvn;
273 }
274
275 int
276 config_handle_wedges(struct device *dv, int par)
277 {
278 struct dkwedge_list wl;
279 struct dkwedge_info *wi;
280 struct vnode *vn;
281 char diskname[16];
282 int i, error;
283
284 if ((vn = opendisk(dv)) == NULL)
285 return -1;
286
287 wl.dkwl_bufsize = sizeof(*wi) * 16;
288 wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
289
290 error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
291 VOP_CLOSE(vn, FREAD, NOCRED);
292 vput(vn);
293 if (error) {
294 #ifdef DEBUG_WEDGE
295 printf("%s: List wedges returned %d\n",
296 device_xname(dv), error);
297 #endif
298 free(wi, M_TEMP);
299 return -1;
300 }
301
302 #ifdef DEBUG_WEDGE
303 printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
304 wl.dkwl_nwedges, wl.dkwl_ncopied);
305 #endif
306 snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
307 par + 'a');
308
309 for (i = 0; i < wl.dkwl_ncopied; i++) {
310 #ifdef DEBUG_WEDGE
311 printf("%s: Looking for %s in %s\n",
312 device_xname(dv), diskname, wi[i].dkw_wname);
313 #endif
314 if (strcmp(wi[i].dkw_wname, diskname) == 0)
315 break;
316 }
317
318 if (i == wl.dkwl_ncopied) {
319 #ifdef DEBUG_WEDGE
320 printf("%s: Cannot find wedge with parent %s\n",
321 device_xname(dv), diskname);
322 #endif
323 free(wi, M_TEMP);
324 return -1;
325 }
326
327 #ifdef DEBUG_WEDGE
328 printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
329 device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
330 (unsigned long long)wi[i].dkw_offset,
331 (unsigned long long)wi[i].dkw_size);
332 #endif
333 dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
334 free(wi, M_TEMP);
335 return 0;
336 }
337
338 /*
339 * Initialize the autoconfiguration data structures. Normally this
340 * is done by configure(), but some platforms need to do this very
341 * early (to e.g. initialize the console).
342 */
343 void
344 config_init(void)
345 {
346 const struct cfattachinit *cfai;
347 int i, j;
348
349 if (config_initialized)
350 return;
351
352 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
353 cv_init(&alldevs_cv, "alldevs");
354
355 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
356 cv_init(&config_misc_cv, "cfgmisc");
357
358 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
359
360 /* allcfdrivers is statically initialized. */
361 for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
362 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
363 panic("configure: duplicate `%s' drivers",
364 cfdriver_list_initial[i]->cd_name);
365 }
366
367 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
368 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
369 if (config_cfattach_attach(cfai->cfai_name,
370 cfai->cfai_list[j]) != 0)
371 panic("configure: duplicate `%s' attachment "
372 "of `%s' driver",
373 cfai->cfai_list[j]->ca_name,
374 cfai->cfai_name);
375 }
376 }
377
378 initcftable.ct_cfdata = cfdata;
379 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
380
381 config_initialized = 1;
382 }
383
384 void
385 config_deferred(device_t dev)
386 {
387 config_process_deferred(&deferred_config_queue, dev);
388 config_process_deferred(&interrupt_config_queue, dev);
389 }
390
391 static void
392 config_interrupts_thread(void *cookie)
393 {
394 struct deferred_config *dc;
395
396 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
397 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
398 (*dc->dc_func)(dc->dc_dev);
399 kmem_free(dc, sizeof(*dc));
400 config_pending_decr();
401 }
402 kthread_exit(0);
403 }
404
405 /*
406 * Configure the system's hardware.
407 */
408 void
409 configure(void)
410 {
411 /* Initialize data structures. */
412 config_init();
413 /*
414 * XXX
415 * callout_setfunc() requires mutex(9) so it can't be in config_init()
416 * on amiga and atari which use config_init() and autoconf(9) fucntions
417 * to initialize console devices.
418 */
419 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
420
421 pmf_init();
422 #if NDRVCTL > 0
423 drvctl_init();
424 #endif
425
426 #ifdef USERCONF
427 if (boothowto & RB_USERCONF)
428 user_config();
429 #endif
430
431 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
432 config_do_twiddle = 1;
433 printf_nolog("Detecting hardware...");
434 }
435
436 /*
437 * Do the machine-dependent portion of autoconfiguration. This
438 * sets the configuration machinery here in motion by "finding"
439 * the root bus. When this function returns, we expect interrupts
440 * to be enabled.
441 */
442 cpu_configure();
443 }
444
445 void
446 configure2(void)
447 {
448 CPU_INFO_ITERATOR cii;
449 struct cpu_info *ci;
450 int i, s;
451
452 /*
453 * Now that we've found all the hardware, start the real time
454 * and statistics clocks.
455 */
456 initclocks();
457
458 cold = 0; /* clocks are running, we're warm now! */
459 s = splsched();
460 curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
461 splx(s);
462
463 /* Boot the secondary processors. */
464 for (CPU_INFO_FOREACH(cii, ci)) {
465 uvm_cpu_attach(ci);
466 }
467 mp_online = true;
468 #if defined(MULTIPROCESSOR)
469 cpu_boot_secondary_processors();
470 #endif
471
472 /* Setup the runqueues and scheduler. */
473 runq_init();
474 sched_init();
475
476 /*
477 * Bus scans can make it appear as if the system has paused, so
478 * twiddle constantly while config_interrupts() jobs are running.
479 */
480 config_twiddle_fn(NULL);
481
482 /*
483 * Create threads to call back and finish configuration for
484 * devices that want interrupts enabled.
485 */
486 for (i = 0; i < interrupt_config_threads; i++) {
487 (void)kthread_create(PRI_NONE, 0, NULL,
488 config_interrupts_thread, NULL, NULL, "config");
489 }
490
491 /* Get the threads going and into any sleeps before continuing. */
492 yield();
493 }
494
495 /*
496 * Announce device attach/detach to userland listeners.
497 */
498 static void
499 devmon_report_device(device_t dev, bool isattach)
500 {
501 #if NDRVCTL > 0
502 prop_dictionary_t ev;
503 const char *parent;
504 const char *what;
505 device_t pdev = device_parent(dev);
506
507 ev = prop_dictionary_create();
508 if (ev == NULL)
509 return;
510
511 what = (isattach ? "device-attach" : "device-detach");
512 parent = (pdev == NULL ? "root" : device_xname(pdev));
513 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
514 !prop_dictionary_set_cstring(ev, "parent", parent)) {
515 prop_object_release(ev);
516 return;
517 }
518
519 devmon_insert(what, ev);
520 #endif
521 }
522
523 /*
524 * Add a cfdriver to the system.
525 */
526 int
527 config_cfdriver_attach(struct cfdriver *cd)
528 {
529 struct cfdriver *lcd;
530
531 /* Make sure this driver isn't already in the system. */
532 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
533 if (STREQ(lcd->cd_name, cd->cd_name))
534 return EEXIST;
535 }
536
537 LIST_INIT(&cd->cd_attach);
538 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
539
540 return 0;
541 }
542
543 /*
544 * Remove a cfdriver from the system.
545 */
546 int
547 config_cfdriver_detach(struct cfdriver *cd)
548 {
549 int i;
550
551 /* Make sure there are no active instances. */
552 for (i = 0; i < cd->cd_ndevs; i++) {
553 if (cd->cd_devs[i] != NULL)
554 return EBUSY;
555 }
556
557 /* ...and no attachments loaded. */
558 if (LIST_EMPTY(&cd->cd_attach) == 0)
559 return EBUSY;
560
561 LIST_REMOVE(cd, cd_list);
562
563 KASSERT(cd->cd_devs == NULL);
564
565 return 0;
566 }
567
568 /*
569 * Look up a cfdriver by name.
570 */
571 struct cfdriver *
572 config_cfdriver_lookup(const char *name)
573 {
574 struct cfdriver *cd;
575
576 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
577 if (STREQ(cd->cd_name, name))
578 return cd;
579 }
580
581 return NULL;
582 }
583
584 /*
585 * Add a cfattach to the specified driver.
586 */
587 int
588 config_cfattach_attach(const char *driver, struct cfattach *ca)
589 {
590 struct cfattach *lca;
591 struct cfdriver *cd;
592
593 cd = config_cfdriver_lookup(driver);
594 if (cd == NULL)
595 return ESRCH;
596
597 /* Make sure this attachment isn't already on this driver. */
598 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
599 if (STREQ(lca->ca_name, ca->ca_name))
600 return EEXIST;
601 }
602
603 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
604
605 return 0;
606 }
607
608 /*
609 * Remove a cfattach from the specified driver.
610 */
611 int
612 config_cfattach_detach(const char *driver, struct cfattach *ca)
613 {
614 struct cfdriver *cd;
615 device_t dev;
616 int i;
617
618 cd = config_cfdriver_lookup(driver);
619 if (cd == NULL)
620 return ESRCH;
621
622 /* Make sure there are no active instances. */
623 for (i = 0; i < cd->cd_ndevs; i++) {
624 if ((dev = cd->cd_devs[i]) == NULL)
625 continue;
626 if (dev->dv_cfattach == ca)
627 return EBUSY;
628 }
629
630 LIST_REMOVE(ca, ca_list);
631
632 return 0;
633 }
634
635 /*
636 * Look up a cfattach by name.
637 */
638 static struct cfattach *
639 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
640 {
641 struct cfattach *ca;
642
643 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
644 if (STREQ(ca->ca_name, atname))
645 return ca;
646 }
647
648 return NULL;
649 }
650
651 /*
652 * Look up a cfattach by driver/attachment name.
653 */
654 struct cfattach *
655 config_cfattach_lookup(const char *name, const char *atname)
656 {
657 struct cfdriver *cd;
658
659 cd = config_cfdriver_lookup(name);
660 if (cd == NULL)
661 return NULL;
662
663 return config_cfattach_lookup_cd(cd, atname);
664 }
665
666 /*
667 * Apply the matching function and choose the best. This is used
668 * a few times and we want to keep the code small.
669 */
670 static void
671 mapply(struct matchinfo *m, cfdata_t cf)
672 {
673 int pri;
674
675 if (m->fn != NULL) {
676 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
677 } else {
678 pri = config_match(m->parent, cf, m->aux);
679 }
680 if (pri > m->pri) {
681 m->match = cf;
682 m->pri = pri;
683 }
684 }
685
686 int
687 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
688 {
689 const struct cfiattrdata *ci;
690 const struct cflocdesc *cl;
691 int nlocs, i;
692
693 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
694 KASSERT(ci);
695 nlocs = ci->ci_loclen;
696 KASSERT(!nlocs || locs);
697 for (i = 0; i < nlocs; i++) {
698 cl = &ci->ci_locdesc[i];
699 /* !cld_defaultstr means no default value */
700 if ((!(cl->cld_defaultstr)
701 || (cf->cf_loc[i] != cl->cld_default))
702 && cf->cf_loc[i] != locs[i])
703 return 0;
704 }
705
706 return config_match(parent, cf, aux);
707 }
708
709 /*
710 * Helper function: check whether the driver supports the interface attribute
711 * and return its descriptor structure.
712 */
713 static const struct cfiattrdata *
714 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
715 {
716 const struct cfiattrdata * const *cpp;
717
718 if (cd->cd_attrs == NULL)
719 return 0;
720
721 for (cpp = cd->cd_attrs; *cpp; cpp++) {
722 if (STREQ((*cpp)->ci_name, ia)) {
723 /* Match. */
724 return *cpp;
725 }
726 }
727 return 0;
728 }
729
730 /*
731 * Lookup an interface attribute description by name.
732 * If the driver is given, consider only its supported attributes.
733 */
734 const struct cfiattrdata *
735 cfiattr_lookup(const char *name, const struct cfdriver *cd)
736 {
737 const struct cfdriver *d;
738 const struct cfiattrdata *ia;
739
740 if (cd)
741 return cfdriver_get_iattr(cd, name);
742
743 LIST_FOREACH(d, &allcfdrivers, cd_list) {
744 ia = cfdriver_get_iattr(d, name);
745 if (ia)
746 return ia;
747 }
748 return 0;
749 }
750
751 /*
752 * Determine if `parent' is a potential parent for a device spec based
753 * on `cfp'.
754 */
755 static int
756 cfparent_match(const device_t parent, const struct cfparent *cfp)
757 {
758 struct cfdriver *pcd;
759
760 /* We don't match root nodes here. */
761 if (cfp == NULL)
762 return 0;
763
764 pcd = parent->dv_cfdriver;
765 KASSERT(pcd != NULL);
766
767 /*
768 * First, ensure this parent has the correct interface
769 * attribute.
770 */
771 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
772 return 0;
773
774 /*
775 * If no specific parent device instance was specified (i.e.
776 * we're attaching to the attribute only), we're done!
777 */
778 if (cfp->cfp_parent == NULL)
779 return 1;
780
781 /*
782 * Check the parent device's name.
783 */
784 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
785 return 0; /* not the same parent */
786
787 /*
788 * Make sure the unit number matches.
789 */
790 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
791 cfp->cfp_unit == parent->dv_unit)
792 return 1;
793
794 /* Unit numbers don't match. */
795 return 0;
796 }
797
798 /*
799 * Helper for config_cfdata_attach(): check all devices whether it could be
800 * parent any attachment in the config data table passed, and rescan.
801 */
802 static void
803 rescan_with_cfdata(const struct cfdata *cf)
804 {
805 device_t d;
806 const struct cfdata *cf1;
807 deviter_t di;
808
809
810 /*
811 * "alldevs" is likely longer than a modules's cfdata, so make it
812 * the outer loop.
813 */
814 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
815
816 if (!(d->dv_cfattach->ca_rescan))
817 continue;
818
819 for (cf1 = cf; cf1->cf_name; cf1++) {
820
821 if (!cfparent_match(d, cf1->cf_pspec))
822 continue;
823
824 (*d->dv_cfattach->ca_rescan)(d,
825 cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
826 }
827 }
828 deviter_release(&di);
829 }
830
831 /*
832 * Attach a supplemental config data table and rescan potential
833 * parent devices if required.
834 */
835 int
836 config_cfdata_attach(cfdata_t cf, int scannow)
837 {
838 struct cftable *ct;
839
840 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
841 ct->ct_cfdata = cf;
842 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
843
844 if (scannow)
845 rescan_with_cfdata(cf);
846
847 return 0;
848 }
849
850 /*
851 * Helper for config_cfdata_detach: check whether a device is
852 * found through any attachment in the config data table.
853 */
854 static int
855 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
856 {
857 const struct cfdata *cf1;
858
859 for (cf1 = cf; cf1->cf_name; cf1++)
860 if (d->dv_cfdata == cf1)
861 return 1;
862
863 return 0;
864 }
865
866 /*
867 * Detach a supplemental config data table. Detach all devices found
868 * through that table (and thus keeping references to it) before.
869 */
870 int
871 config_cfdata_detach(cfdata_t cf)
872 {
873 device_t d;
874 int error = 0;
875 struct cftable *ct;
876 deviter_t di;
877
878 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
879 d = deviter_next(&di)) {
880 if (!dev_in_cfdata(d, cf))
881 continue;
882 if ((error = config_detach(d, 0)) != 0)
883 break;
884 }
885 deviter_release(&di);
886 if (error) {
887 aprint_error_dev(d, "unable to detach instance\n");
888 return error;
889 }
890
891 TAILQ_FOREACH(ct, &allcftables, ct_list) {
892 if (ct->ct_cfdata == cf) {
893 TAILQ_REMOVE(&allcftables, ct, ct_list);
894 kmem_free(ct, sizeof(*ct));
895 return 0;
896 }
897 }
898
899 /* not found -- shouldn't happen */
900 return EINVAL;
901 }
902
903 /*
904 * Invoke the "match" routine for a cfdata entry on behalf of
905 * an external caller, usually a "submatch" routine.
906 */
907 int
908 config_match(device_t parent, cfdata_t cf, void *aux)
909 {
910 struct cfattach *ca;
911
912 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
913 if (ca == NULL) {
914 /* No attachment for this entry, oh well. */
915 return 0;
916 }
917
918 return (*ca->ca_match)(parent, cf, aux);
919 }
920
921 /*
922 * Iterate over all potential children of some device, calling the given
923 * function (default being the child's match function) for each one.
924 * Nonzero returns are matches; the highest value returned is considered
925 * the best match. Return the `found child' if we got a match, or NULL
926 * otherwise. The `aux' pointer is simply passed on through.
927 *
928 * Note that this function is designed so that it can be used to apply
929 * an arbitrary function to all potential children (its return value
930 * can be ignored).
931 */
932 cfdata_t
933 config_search_loc(cfsubmatch_t fn, device_t parent,
934 const char *ifattr, const int *locs, void *aux)
935 {
936 struct cftable *ct;
937 cfdata_t cf;
938 struct matchinfo m;
939
940 KASSERT(config_initialized);
941 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
942
943 m.fn = fn;
944 m.parent = parent;
945 m.locs = locs;
946 m.aux = aux;
947 m.match = NULL;
948 m.pri = 0;
949
950 TAILQ_FOREACH(ct, &allcftables, ct_list) {
951 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
952
953 /* We don't match root nodes here. */
954 if (!cf->cf_pspec)
955 continue;
956
957 /*
958 * Skip cf if no longer eligible, otherwise scan
959 * through parents for one matching `parent', and
960 * try match function.
961 */
962 if (cf->cf_fstate == FSTATE_FOUND)
963 continue;
964 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
965 cf->cf_fstate == FSTATE_DSTAR)
966 continue;
967
968 /*
969 * If an interface attribute was specified,
970 * consider only children which attach to
971 * that attribute.
972 */
973 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
974 continue;
975
976 if (cfparent_match(parent, cf->cf_pspec))
977 mapply(&m, cf);
978 }
979 }
980 return m.match;
981 }
982
983 cfdata_t
984 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
985 void *aux)
986 {
987
988 return config_search_loc(fn, parent, ifattr, NULL, aux);
989 }
990
991 /*
992 * Find the given root device.
993 * This is much like config_search, but there is no parent.
994 * Don't bother with multiple cfdata tables; the root node
995 * must always be in the initial table.
996 */
997 cfdata_t
998 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
999 {
1000 cfdata_t cf;
1001 const short *p;
1002 struct matchinfo m;
1003
1004 m.fn = fn;
1005 m.parent = ROOT;
1006 m.aux = aux;
1007 m.match = NULL;
1008 m.pri = 0;
1009 m.locs = 0;
1010 /*
1011 * Look at root entries for matching name. We do not bother
1012 * with found-state here since only one root should ever be
1013 * searched (and it must be done first).
1014 */
1015 for (p = cfroots; *p >= 0; p++) {
1016 cf = &cfdata[*p];
1017 if (strcmp(cf->cf_name, rootname) == 0)
1018 mapply(&m, cf);
1019 }
1020 return m.match;
1021 }
1022
1023 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1024
1025 /*
1026 * The given `aux' argument describes a device that has been found
1027 * on the given parent, but not necessarily configured. Locate the
1028 * configuration data for that device (using the submatch function
1029 * provided, or using candidates' cd_match configuration driver
1030 * functions) and attach it, and return true. If the device was
1031 * not configured, call the given `print' function and return 0.
1032 */
1033 device_t
1034 config_found_sm_loc(device_t parent,
1035 const char *ifattr, const int *locs, void *aux,
1036 cfprint_t print, cfsubmatch_t submatch)
1037 {
1038 cfdata_t cf;
1039
1040 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1041 if (splash_progress_state)
1042 splash_progress_update(splash_progress_state);
1043 #endif
1044
1045 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1046 return(config_attach_loc(parent, cf, locs, aux, print));
1047 if (print) {
1048 if (config_do_twiddle && cold)
1049 twiddle();
1050 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1051 }
1052
1053 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1054 if (splash_progress_state)
1055 splash_progress_update(splash_progress_state);
1056 #endif
1057
1058 return NULL;
1059 }
1060
1061 device_t
1062 config_found_ia(device_t parent, const char *ifattr, void *aux,
1063 cfprint_t print)
1064 {
1065
1066 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1067 }
1068
1069 device_t
1070 config_found(device_t parent, void *aux, cfprint_t print)
1071 {
1072
1073 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1074 }
1075
1076 /*
1077 * As above, but for root devices.
1078 */
1079 device_t
1080 config_rootfound(const char *rootname, void *aux)
1081 {
1082 cfdata_t cf;
1083
1084 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1085 return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
1086 aprint_error("root device %s not configured\n", rootname);
1087 return NULL;
1088 }
1089
1090 /* just like sprintf(buf, "%d") except that it works from the end */
1091 static char *
1092 number(char *ep, int n)
1093 {
1094
1095 *--ep = 0;
1096 while (n >= 10) {
1097 *--ep = (n % 10) + '0';
1098 n /= 10;
1099 }
1100 *--ep = n + '0';
1101 return ep;
1102 }
1103
1104 /*
1105 * Expand the size of the cd_devs array if necessary.
1106 */
1107 static void
1108 config_makeroom(int n, struct cfdriver *cd)
1109 {
1110 int old, new;
1111 device_t *nsp;
1112
1113 if (n < cd->cd_ndevs)
1114 return;
1115
1116 /*
1117 * Need to expand the array.
1118 */
1119 old = cd->cd_ndevs;
1120 if (old == 0)
1121 new = 4;
1122 else
1123 new = old * 2;
1124 while (new <= n)
1125 new *= 2;
1126 cd->cd_ndevs = new;
1127 nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP);
1128 if (nsp == NULL)
1129 panic("config_attach: %sing dev array",
1130 old != 0 ? "expand" : "creat");
1131 memset(nsp + old, 0, sizeof(device_t [new - old]));
1132 if (old != 0) {
1133 memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
1134 kmem_free(cd->cd_devs, sizeof(device_t [old]));
1135 }
1136 cd->cd_devs = nsp;
1137 }
1138
1139 static void
1140 config_devlink(device_t dev)
1141 {
1142 struct cfdriver *cd = dev->dv_cfdriver;
1143
1144 /* put this device in the devices array */
1145 config_makeroom(dev->dv_unit, cd);
1146 if (cd->cd_devs[dev->dv_unit])
1147 panic("config_attach: duplicate %s", device_xname(dev));
1148 cd->cd_devs[dev->dv_unit] = dev;
1149
1150 /* It is safe to add a device to the tail of the list while
1151 * readers are in the list, but not while a writer is in
1152 * the list. Wait for any writer to complete.
1153 */
1154 mutex_enter(&alldevs_mtx);
1155 while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1156 cv_wait(&alldevs_cv, &alldevs_mtx);
1157 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
1158 cv_signal(&alldevs_cv);
1159 mutex_exit(&alldevs_mtx);
1160 }
1161
1162 static void
1163 config_devunlink(device_t dev)
1164 {
1165 struct cfdriver *cd = dev->dv_cfdriver;
1166 int i;
1167
1168 /* Unlink from device list. */
1169 TAILQ_REMOVE(&alldevs, dev, dv_list);
1170
1171 /* Remove from cfdriver's array. */
1172 cd->cd_devs[dev->dv_unit] = NULL;
1173
1174 /*
1175 * If the device now has no units in use, deallocate its softc array.
1176 */
1177 for (i = 0; i < cd->cd_ndevs; i++) {
1178 if (cd->cd_devs[i] != NULL)
1179 return;
1180 }
1181 /* nothing found; deallocate */
1182 kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
1183 cd->cd_devs = NULL;
1184 cd->cd_ndevs = 0;
1185 }
1186
1187 static device_t
1188 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1189 {
1190 struct cfdriver *cd;
1191 struct cfattach *ca;
1192 size_t lname, lunit;
1193 const char *xunit;
1194 int myunit;
1195 char num[10];
1196 device_t dev;
1197 void *dev_private;
1198 const struct cfiattrdata *ia;
1199 device_lock_t dvl;
1200
1201 cd = config_cfdriver_lookup(cf->cf_name);
1202 if (cd == NULL)
1203 return NULL;
1204
1205 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1206 if (ca == NULL)
1207 return NULL;
1208
1209 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1210 ca->ca_devsize < sizeof(struct device))
1211 panic("config_devalloc: %s", cf->cf_atname);
1212
1213 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1214 if (cf->cf_fstate == FSTATE_STAR) {
1215 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1216 if (cd->cd_devs[myunit] == NULL)
1217 break;
1218 /*
1219 * myunit is now the unit of the first NULL device pointer,
1220 * or max(cd->cd_ndevs,cf->cf_unit).
1221 */
1222 } else {
1223 myunit = cf->cf_unit;
1224 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1225 return NULL;
1226 }
1227 #else
1228 myunit = cf->cf_unit;
1229 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1230
1231 /* compute length of name and decimal expansion of unit number */
1232 lname = strlen(cd->cd_name);
1233 xunit = number(&num[sizeof(num)], myunit);
1234 lunit = &num[sizeof(num)] - xunit;
1235 if (lname + lunit > sizeof(dev->dv_xname))
1236 panic("config_devalloc: device name too long");
1237
1238 /* get memory for all device vars */
1239 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1240 if (ca->ca_devsize > 0) {
1241 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1242 if (dev_private == NULL)
1243 panic("config_devalloc: memory allocation for device softc failed");
1244 } else {
1245 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1246 dev_private = NULL;
1247 }
1248
1249 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1250 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1251 } else {
1252 dev = dev_private;
1253 }
1254 if (dev == NULL)
1255 panic("config_devalloc: memory allocation for device_t failed");
1256
1257 dvl = device_getlock(dev);
1258
1259 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1260 cv_init(&dvl->dvl_cv, "pmfsusp");
1261
1262 dev->dv_class = cd->cd_class;
1263 dev->dv_cfdata = cf;
1264 dev->dv_cfdriver = cd;
1265 dev->dv_cfattach = ca;
1266 dev->dv_unit = myunit;
1267 dev->dv_activity_count = 0;
1268 dev->dv_activity_handlers = NULL;
1269 dev->dv_private = dev_private;
1270 memcpy(dev->dv_xname, cd->cd_name, lname);
1271 memcpy(dev->dv_xname + lname, xunit, lunit);
1272 dev->dv_parent = parent;
1273 if (parent != NULL)
1274 dev->dv_depth = parent->dv_depth + 1;
1275 else
1276 dev->dv_depth = 0;
1277 dev->dv_flags = DVF_ACTIVE; /* always initially active */
1278 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
1279 if (locs) {
1280 KASSERT(parent); /* no locators at root */
1281 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1282 parent->dv_cfdriver);
1283 dev->dv_locators =
1284 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1285 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1286 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1287 }
1288 dev->dv_properties = prop_dictionary_create();
1289 KASSERT(dev->dv_properties != NULL);
1290
1291 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1292 "device-driver", dev->dv_cfdriver->cd_name);
1293 prop_dictionary_set_uint16(dev->dv_properties,
1294 "device-unit", dev->dv_unit);
1295
1296 return dev;
1297 }
1298
1299 static void
1300 config_devdealloc(device_t dev)
1301 {
1302 device_lock_t dvl = device_getlock(dev);
1303 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1304
1305 cv_destroy(&dvl->dvl_cv);
1306 mutex_destroy(&dvl->dvl_mtx);
1307
1308 KASSERT(dev->dv_properties != NULL);
1309 prop_object_release(dev->dv_properties);
1310
1311 if (dev->dv_activity_handlers)
1312 panic("config_devdealloc with registered handlers");
1313
1314 if (dev->dv_locators) {
1315 size_t amount = *--dev->dv_locators;
1316 kmem_free(dev->dv_locators, amount);
1317 }
1318
1319 if (dev->dv_cfattach->ca_devsize > 0)
1320 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1321 if (priv)
1322 kmem_free(dev, sizeof(*dev));
1323 }
1324
1325 /*
1326 * Attach a found device.
1327 */
1328 device_t
1329 config_attach_loc(device_t parent, cfdata_t cf,
1330 const int *locs, void *aux, cfprint_t print)
1331 {
1332 device_t dev;
1333 struct cftable *ct;
1334 const char *drvname;
1335
1336 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1337 if (splash_progress_state)
1338 splash_progress_update(splash_progress_state);
1339 #endif
1340
1341 dev = config_devalloc(parent, cf, locs);
1342 if (!dev)
1343 panic("config_attach: allocation of device softc failed");
1344
1345 /* XXX redundant - see below? */
1346 if (cf->cf_fstate != FSTATE_STAR) {
1347 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1348 cf->cf_fstate = FSTATE_FOUND;
1349 }
1350 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1351 else
1352 cf->cf_unit++;
1353 #endif
1354
1355 config_devlink(dev);
1356
1357 if (config_do_twiddle && cold)
1358 twiddle();
1359 else
1360 aprint_naive("Found ");
1361 /*
1362 * We want the next two printfs for normal, verbose, and quiet,
1363 * but not silent (in which case, we're twiddling, instead).
1364 */
1365 if (parent == ROOT) {
1366 aprint_naive("%s (root)", device_xname(dev));
1367 aprint_normal("%s (root)", device_xname(dev));
1368 } else {
1369 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1370 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1371 if (print)
1372 (void) (*print)(aux, NULL);
1373 }
1374
1375 /*
1376 * Before attaching, clobber any unfound devices that are
1377 * otherwise identical.
1378 * XXX code above is redundant?
1379 */
1380 drvname = dev->dv_cfdriver->cd_name;
1381 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1382 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1383 if (STREQ(cf->cf_name, drvname) &&
1384 cf->cf_unit == dev->dv_unit) {
1385 if (cf->cf_fstate == FSTATE_NOTFOUND)
1386 cf->cf_fstate = FSTATE_FOUND;
1387 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1388 /*
1389 * Bump the unit number on all starred cfdata
1390 * entries for this device.
1391 */
1392 if (cf->cf_fstate == FSTATE_STAR)
1393 cf->cf_unit++;
1394 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1395 }
1396 }
1397 }
1398 #ifdef __HAVE_DEVICE_REGISTER
1399 device_register(dev, aux);
1400 #endif
1401
1402 /* Let userland know */
1403 devmon_report_device(dev, true);
1404
1405 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1406 if (splash_progress_state)
1407 splash_progress_update(splash_progress_state);
1408 #endif
1409 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1410 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1411 if (splash_progress_state)
1412 splash_progress_update(splash_progress_state);
1413 #endif
1414
1415 if (!device_pmf_is_registered(dev))
1416 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1417
1418 config_process_deferred(&deferred_config_queue, dev);
1419 return dev;
1420 }
1421
1422 device_t
1423 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1424 {
1425
1426 return config_attach_loc(parent, cf, NULL, aux, print);
1427 }
1428
1429 /*
1430 * As above, but for pseudo-devices. Pseudo-devices attached in this
1431 * way are silently inserted into the device tree, and their children
1432 * attached.
1433 *
1434 * Note that because pseudo-devices are attached silently, any information
1435 * the attach routine wishes to print should be prefixed with the device
1436 * name by the attach routine.
1437 */
1438 device_t
1439 config_attach_pseudo(cfdata_t cf)
1440 {
1441 device_t dev;
1442
1443 dev = config_devalloc(ROOT, cf, NULL);
1444 if (!dev)
1445 return NULL;
1446
1447 /* XXX mark busy in cfdata */
1448
1449 if (cf->cf_fstate != FSTATE_STAR) {
1450 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1451 cf->cf_fstate = FSTATE_FOUND;
1452 }
1453
1454 config_devlink(dev);
1455
1456 #if 0 /* XXXJRT not yet */
1457 #ifdef __HAVE_DEVICE_REGISTER
1458 device_register(dev, NULL); /* like a root node */
1459 #endif
1460 #endif
1461 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1462 config_process_deferred(&deferred_config_queue, dev);
1463 return dev;
1464 }
1465
1466 /*
1467 * Detach a device. Optionally forced (e.g. because of hardware
1468 * removal) and quiet. Returns zero if successful, non-zero
1469 * (an error code) otherwise.
1470 *
1471 * Note that this code wants to be run from a process context, so
1472 * that the detach can sleep to allow processes which have a device
1473 * open to run and unwind their stacks.
1474 */
1475 int
1476 config_detach(device_t dev, int flags)
1477 {
1478 struct cftable *ct;
1479 cfdata_t cf;
1480 const struct cfattach *ca;
1481 struct cfdriver *cd;
1482 #ifdef DIAGNOSTIC
1483 device_t d;
1484 #endif
1485 int rv = 0;
1486
1487 #ifdef DIAGNOSTIC
1488 cf = dev->dv_cfdata;
1489 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1490 cf->cf_fstate != FSTATE_STAR)
1491 panic("config_detach: %s: bad device fstate %d",
1492 device_xname(dev), cf ? cf->cf_fstate : -1);
1493 #endif
1494 cd = dev->dv_cfdriver;
1495 KASSERT(cd != NULL);
1496
1497 ca = dev->dv_cfattach;
1498 KASSERT(ca != NULL);
1499
1500 KASSERT(curlwp != NULL);
1501 mutex_enter(&alldevs_mtx);
1502 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1503 ;
1504 else while (alldevs_nread != 0 ||
1505 (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1506 cv_wait(&alldevs_cv, &alldevs_mtx);
1507 if (alldevs_nwrite++ == 0)
1508 alldevs_writer = curlwp;
1509 mutex_exit(&alldevs_mtx);
1510
1511 /*
1512 * Ensure the device is deactivated. If the device doesn't
1513 * have an activation entry point, we allow DVF_ACTIVE to
1514 * remain set. Otherwise, if DVF_ACTIVE is still set, the
1515 * device is busy, and the detach fails.
1516 */
1517 if (!detachall &&
1518 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1519 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1520 rv = EBUSY; /* XXX EOPNOTSUPP? */
1521 } else if ((rv = config_deactivate(dev)) == EOPNOTSUPP)
1522 rv = 0; /* Do not treat EOPNOTSUPP as an error */
1523
1524 /*
1525 * Try to detach the device. If that's not possible, then
1526 * we either panic() (for the forced but failed case), or
1527 * return an error.
1528 */
1529 if (rv == 0) {
1530 if (ca->ca_detach != NULL)
1531 rv = (*ca->ca_detach)(dev, flags);
1532 else
1533 rv = EOPNOTSUPP;
1534 }
1535 if (rv != 0) {
1536 if ((flags & DETACH_FORCE) == 0)
1537 goto out;
1538 else
1539 panic("config_detach: forced detach of %s failed (%d)",
1540 device_xname(dev), rv);
1541 }
1542
1543 dev->dv_flags &= ~DVF_ACTIVE;
1544
1545 /*
1546 * The device has now been successfully detached.
1547 */
1548
1549 /* Let userland know */
1550 devmon_report_device(dev, false);
1551
1552 #ifdef DIAGNOSTIC
1553 /*
1554 * Sanity: If you're successfully detached, you should have no
1555 * children. (Note that because children must be attached
1556 * after parents, we only need to search the latter part of
1557 * the list.)
1558 */
1559 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1560 d = TAILQ_NEXT(d, dv_list)) {
1561 if (d->dv_parent == dev) {
1562 printf("config_detach: detached device %s"
1563 " has children %s\n", device_xname(dev), device_xname(d));
1564 panic("config_detach");
1565 }
1566 }
1567 #endif
1568
1569 /* notify the parent that the child is gone */
1570 if (dev->dv_parent) {
1571 device_t p = dev->dv_parent;
1572 if (p->dv_cfattach->ca_childdetached)
1573 (*p->dv_cfattach->ca_childdetached)(p, dev);
1574 }
1575
1576 /*
1577 * Mark cfdata to show that the unit can be reused, if possible.
1578 */
1579 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1580 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1581 if (STREQ(cf->cf_name, cd->cd_name)) {
1582 if (cf->cf_fstate == FSTATE_FOUND &&
1583 cf->cf_unit == dev->dv_unit)
1584 cf->cf_fstate = FSTATE_NOTFOUND;
1585 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1586 /*
1587 * Note that we can only re-use a starred
1588 * unit number if the unit being detached
1589 * had the last assigned unit number.
1590 */
1591 if (cf->cf_fstate == FSTATE_STAR &&
1592 cf->cf_unit == dev->dv_unit + 1)
1593 cf->cf_unit--;
1594 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1595 }
1596 }
1597 }
1598
1599 config_devunlink(dev);
1600
1601 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1602 aprint_normal_dev(dev, "detached\n");
1603
1604 config_devdealloc(dev);
1605
1606 out:
1607 mutex_enter(&alldevs_mtx);
1608 KASSERT(alldevs_nwrite != 0);
1609 if (--alldevs_nwrite == 0)
1610 alldevs_writer = NULL;
1611 cv_signal(&alldevs_cv);
1612 mutex_exit(&alldevs_mtx);
1613 return rv;
1614 }
1615
1616 int
1617 config_detach_children(device_t parent, int flags)
1618 {
1619 device_t dv;
1620 deviter_t di;
1621 int error = 0;
1622
1623 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1624 dv = deviter_next(&di)) {
1625 if (device_parent(dv) != parent)
1626 continue;
1627 if ((error = config_detach(dv, flags)) != 0)
1628 break;
1629 }
1630 deviter_release(&di);
1631 return error;
1632 }
1633
1634 device_t
1635 shutdown_first(struct shutdown_state *s)
1636 {
1637 if (!s->initialized) {
1638 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1639 s->initialized = true;
1640 }
1641 return shutdown_next(s);
1642 }
1643
1644 device_t
1645 shutdown_next(struct shutdown_state *s)
1646 {
1647 device_t dv;
1648
1649 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1650 ;
1651
1652 if (dv == NULL)
1653 s->initialized = false;
1654
1655 return dv;
1656 }
1657
1658 bool
1659 config_detach_all(int how)
1660 {
1661 static struct shutdown_state s;
1662 device_t curdev;
1663 bool progress = false;
1664
1665 if ((how & RB_NOSYNC) != 0)
1666 return false;
1667
1668 for (curdev = shutdown_first(&s); curdev != NULL;
1669 curdev = shutdown_next(&s)) {
1670 aprint_debug(" detaching %s, ", device_xname(curdev));
1671 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1672 progress = true;
1673 aprint_debug("success.");
1674 } else
1675 aprint_debug("failed.");
1676 }
1677 return progress;
1678 }
1679
1680 int
1681 config_activate(device_t dev)
1682 {
1683 const struct cfattach *ca = dev->dv_cfattach;
1684 int rv = 0, oflags = dev->dv_flags;
1685
1686 if (ca->ca_activate == NULL)
1687 return EOPNOTSUPP;
1688
1689 if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1690 dev->dv_flags |= DVF_ACTIVE;
1691 rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1692 if (rv)
1693 dev->dv_flags = oflags;
1694 }
1695 return rv;
1696 }
1697
1698 int
1699 config_deactivate(device_t dev)
1700 {
1701 const struct cfattach *ca = dev->dv_cfattach;
1702 int rv = 0, oflags = dev->dv_flags;
1703
1704 if (ca->ca_activate == NULL)
1705 return EOPNOTSUPP;
1706
1707 if (dev->dv_flags & DVF_ACTIVE) {
1708 dev->dv_flags &= ~DVF_ACTIVE;
1709 rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1710 if (rv)
1711 dev->dv_flags = oflags;
1712 }
1713 return rv;
1714 }
1715
1716 /*
1717 * Defer the configuration of the specified device until all
1718 * of its parent's devices have been attached.
1719 */
1720 void
1721 config_defer(device_t dev, void (*func)(device_t))
1722 {
1723 struct deferred_config *dc;
1724
1725 if (dev->dv_parent == NULL)
1726 panic("config_defer: can't defer config of a root device");
1727
1728 #ifdef DIAGNOSTIC
1729 for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1730 dc = TAILQ_NEXT(dc, dc_queue)) {
1731 if (dc->dc_dev == dev)
1732 panic("config_defer: deferred twice");
1733 }
1734 #endif
1735
1736 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1737 if (dc == NULL)
1738 panic("config_defer: unable to allocate callback");
1739
1740 dc->dc_dev = dev;
1741 dc->dc_func = func;
1742 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1743 config_pending_incr();
1744 }
1745
1746 /*
1747 * Defer some autoconfiguration for a device until after interrupts
1748 * are enabled.
1749 */
1750 void
1751 config_interrupts(device_t dev, void (*func)(device_t))
1752 {
1753 struct deferred_config *dc;
1754
1755 /*
1756 * If interrupts are enabled, callback now.
1757 */
1758 if (cold == 0) {
1759 (*func)(dev);
1760 return;
1761 }
1762
1763 #ifdef DIAGNOSTIC
1764 for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1765 dc = TAILQ_NEXT(dc, dc_queue)) {
1766 if (dc->dc_dev == dev)
1767 panic("config_interrupts: deferred twice");
1768 }
1769 #endif
1770
1771 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1772 if (dc == NULL)
1773 panic("config_interrupts: unable to allocate callback");
1774
1775 dc->dc_dev = dev;
1776 dc->dc_func = func;
1777 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1778 config_pending_incr();
1779 }
1780
1781 /*
1782 * Process a deferred configuration queue.
1783 */
1784 static void
1785 config_process_deferred(struct deferred_config_head *queue,
1786 device_t parent)
1787 {
1788 struct deferred_config *dc, *ndc;
1789
1790 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1791 ndc = TAILQ_NEXT(dc, dc_queue);
1792 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1793 TAILQ_REMOVE(queue, dc, dc_queue);
1794 (*dc->dc_func)(dc->dc_dev);
1795 kmem_free(dc, sizeof(*dc));
1796 config_pending_decr();
1797 }
1798 }
1799 }
1800
1801 /*
1802 * Manipulate the config_pending semaphore.
1803 */
1804 void
1805 config_pending_incr(void)
1806 {
1807
1808 mutex_enter(&config_misc_lock);
1809 config_pending++;
1810 mutex_exit(&config_misc_lock);
1811 }
1812
1813 void
1814 config_pending_decr(void)
1815 {
1816
1817 #ifdef DIAGNOSTIC
1818 if (config_pending == 0)
1819 panic("config_pending_decr: config_pending == 0");
1820 #endif
1821 mutex_enter(&config_misc_lock);
1822 config_pending--;
1823 if (config_pending == 0)
1824 cv_broadcast(&config_misc_cv);
1825 mutex_exit(&config_misc_lock);
1826 }
1827
1828 /*
1829 * Register a "finalization" routine. Finalization routines are
1830 * called iteratively once all real devices have been found during
1831 * autoconfiguration, for as long as any one finalizer has done
1832 * any work.
1833 */
1834 int
1835 config_finalize_register(device_t dev, int (*fn)(device_t))
1836 {
1837 struct finalize_hook *f;
1838
1839 /*
1840 * If finalization has already been done, invoke the
1841 * callback function now.
1842 */
1843 if (config_finalize_done) {
1844 while ((*fn)(dev) != 0)
1845 /* loop */ ;
1846 }
1847
1848 /* Ensure this isn't already on the list. */
1849 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1850 if (f->f_func == fn && f->f_dev == dev)
1851 return EEXIST;
1852 }
1853
1854 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1855 f->f_func = fn;
1856 f->f_dev = dev;
1857 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1858
1859 return 0;
1860 }
1861
1862 void
1863 config_finalize(void)
1864 {
1865 struct finalize_hook *f;
1866 struct pdevinit *pdev;
1867 extern struct pdevinit pdevinit[];
1868 int errcnt, rv;
1869
1870 /*
1871 * Now that device driver threads have been created, wait for
1872 * them to finish any deferred autoconfiguration.
1873 */
1874 mutex_enter(&config_misc_lock);
1875 while (config_pending != 0)
1876 cv_wait(&config_misc_cv, &config_misc_lock);
1877 mutex_exit(&config_misc_lock);
1878
1879 KERNEL_LOCK(1, NULL);
1880
1881 /* Attach pseudo-devices. */
1882 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1883 (*pdev->pdev_attach)(pdev->pdev_count);
1884
1885 /* Run the hooks until none of them does any work. */
1886 do {
1887 rv = 0;
1888 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1889 rv |= (*f->f_func)(f->f_dev);
1890 } while (rv != 0);
1891
1892 config_finalize_done = 1;
1893
1894 /* Now free all the hooks. */
1895 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1896 TAILQ_REMOVE(&config_finalize_list, f, f_list);
1897 kmem_free(f, sizeof(*f));
1898 }
1899
1900 KERNEL_UNLOCK_ONE(NULL);
1901
1902 errcnt = aprint_get_error_count();
1903 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1904 (boothowto & AB_VERBOSE) == 0) {
1905 mutex_enter(&config_misc_lock);
1906 if (config_do_twiddle) {
1907 config_do_twiddle = 0;
1908 printf_nolog(" done.\n");
1909 }
1910 mutex_exit(&config_misc_lock);
1911 if (errcnt != 0) {
1912 printf("WARNING: %d error%s while detecting hardware; "
1913 "check system log.\n", errcnt,
1914 errcnt == 1 ? "" : "s");
1915 }
1916 }
1917 }
1918
1919 void
1920 config_twiddle_fn(void *cookie)
1921 {
1922
1923 mutex_enter(&config_misc_lock);
1924 if (config_do_twiddle) {
1925 twiddle();
1926 callout_schedule(&config_twiddle_ch, mstohz(100));
1927 }
1928 mutex_exit(&config_misc_lock);
1929 }
1930
1931 /*
1932 * device_lookup:
1933 *
1934 * Look up a device instance for a given driver.
1935 */
1936 device_t
1937 device_lookup(cfdriver_t cd, int unit)
1938 {
1939
1940 if (unit < 0 || unit >= cd->cd_ndevs)
1941 return NULL;
1942
1943 return cd->cd_devs[unit];
1944 }
1945
1946 /*
1947 * device_lookup:
1948 *
1949 * Look up a device instance for a given driver.
1950 */
1951 void *
1952 device_lookup_private(cfdriver_t cd, int unit)
1953 {
1954 device_t dv;
1955
1956 if (unit < 0 || unit >= cd->cd_ndevs)
1957 return NULL;
1958
1959 if ((dv = cd->cd_devs[unit]) == NULL)
1960 return NULL;
1961
1962 return dv->dv_private;
1963 }
1964
1965 /*
1966 * Accessor functions for the device_t type.
1967 */
1968 devclass_t
1969 device_class(device_t dev)
1970 {
1971
1972 return dev->dv_class;
1973 }
1974
1975 cfdata_t
1976 device_cfdata(device_t dev)
1977 {
1978
1979 return dev->dv_cfdata;
1980 }
1981
1982 cfdriver_t
1983 device_cfdriver(device_t dev)
1984 {
1985
1986 return dev->dv_cfdriver;
1987 }
1988
1989 cfattach_t
1990 device_cfattach(device_t dev)
1991 {
1992
1993 return dev->dv_cfattach;
1994 }
1995
1996 int
1997 device_unit(device_t dev)
1998 {
1999
2000 return dev->dv_unit;
2001 }
2002
2003 const char *
2004 device_xname(device_t dev)
2005 {
2006
2007 return dev->dv_xname;
2008 }
2009
2010 device_t
2011 device_parent(device_t dev)
2012 {
2013
2014 return dev->dv_parent;
2015 }
2016
2017 bool
2018 device_is_active(device_t dev)
2019 {
2020 int active_flags;
2021
2022 active_flags = DVF_ACTIVE;
2023 active_flags |= DVF_CLASS_SUSPENDED;
2024 active_flags |= DVF_DRIVER_SUSPENDED;
2025 active_flags |= DVF_BUS_SUSPENDED;
2026
2027 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
2028 }
2029
2030 bool
2031 device_is_enabled(device_t dev)
2032 {
2033 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
2034 }
2035
2036 bool
2037 device_has_power(device_t dev)
2038 {
2039 int active_flags;
2040
2041 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
2042
2043 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
2044 }
2045
2046 int
2047 device_locator(device_t dev, u_int locnum)
2048 {
2049
2050 KASSERT(dev->dv_locators != NULL);
2051 return dev->dv_locators[locnum];
2052 }
2053
2054 void *
2055 device_private(device_t dev)
2056 {
2057
2058 /*
2059 * The reason why device_private(NULL) is allowed is to simplify the
2060 * work of a lot of userspace request handlers (i.e., c/bdev
2061 * handlers) which grab cfdriver_t->cd_units[n].
2062 * It avoids having them test for it to be NULL and only then calling
2063 * device_private.
2064 */
2065 return dev == NULL ? NULL : dev->dv_private;
2066 }
2067
2068 prop_dictionary_t
2069 device_properties(device_t dev)
2070 {
2071
2072 return dev->dv_properties;
2073 }
2074
2075 /*
2076 * device_is_a:
2077 *
2078 * Returns true if the device is an instance of the specified
2079 * driver.
2080 */
2081 bool
2082 device_is_a(device_t dev, const char *dname)
2083 {
2084
2085 return strcmp(dev->dv_cfdriver->cd_name, dname) == 0;
2086 }
2087
2088 /*
2089 * device_find_by_xname:
2090 *
2091 * Returns the device of the given name or NULL if it doesn't exist.
2092 */
2093 device_t
2094 device_find_by_xname(const char *name)
2095 {
2096 device_t dv;
2097 deviter_t di;
2098
2099 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2100 if (strcmp(device_xname(dv), name) == 0)
2101 break;
2102 }
2103 deviter_release(&di);
2104
2105 return dv;
2106 }
2107
2108 /*
2109 * device_find_by_driver_unit:
2110 *
2111 * Returns the device of the given driver name and unit or
2112 * NULL if it doesn't exist.
2113 */
2114 device_t
2115 device_find_by_driver_unit(const char *name, int unit)
2116 {
2117 struct cfdriver *cd;
2118
2119 if ((cd = config_cfdriver_lookup(name)) == NULL)
2120 return NULL;
2121 return device_lookup(cd, unit);
2122 }
2123
2124 /*
2125 * Power management related functions.
2126 */
2127
2128 bool
2129 device_pmf_is_registered(device_t dev)
2130 {
2131 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2132 }
2133
2134 bool
2135 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
2136 {
2137 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2138 return true;
2139 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2140 return false;
2141 if (*dev->dv_driver_suspend != NULL &&
2142 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
2143 return false;
2144
2145 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2146 return true;
2147 }
2148
2149 bool
2150 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
2151 {
2152 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2153 return true;
2154 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2155 return false;
2156 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2157 return false;
2158 if (*dev->dv_driver_resume != NULL &&
2159 !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2160 return false;
2161
2162 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2163 return true;
2164 }
2165
2166 bool
2167 device_pmf_driver_shutdown(device_t dev, int how)
2168 {
2169
2170 if (*dev->dv_driver_shutdown != NULL &&
2171 !(*dev->dv_driver_shutdown)(dev, how))
2172 return false;
2173 return true;
2174 }
2175
2176 bool
2177 device_pmf_driver_register(device_t dev,
2178 bool (*suspend)(device_t PMF_FN_PROTO),
2179 bool (*resume)(device_t PMF_FN_PROTO),
2180 bool (*shutdown)(device_t, int))
2181 {
2182 dev->dv_driver_suspend = suspend;
2183 dev->dv_driver_resume = resume;
2184 dev->dv_driver_shutdown = shutdown;
2185 dev->dv_flags |= DVF_POWER_HANDLERS;
2186 return true;
2187 }
2188
2189 static const char *
2190 curlwp_name(void)
2191 {
2192 if (curlwp->l_name != NULL)
2193 return curlwp->l_name;
2194 else
2195 return curlwp->l_proc->p_comm;
2196 }
2197
2198 void
2199 device_pmf_driver_deregister(device_t dev)
2200 {
2201 device_lock_t dvl = device_getlock(dev);
2202
2203 dev->dv_driver_suspend = NULL;
2204 dev->dv_driver_resume = NULL;
2205
2206 mutex_enter(&dvl->dvl_mtx);
2207 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2208 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2209 /* Wake a thread that waits for the lock. That
2210 * thread will fail to acquire the lock, and then
2211 * it will wake the next thread that waits for the
2212 * lock, or else it will wake us.
2213 */
2214 cv_signal(&dvl->dvl_cv);
2215 pmflock_debug(dev, __func__, __LINE__);
2216 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2217 pmflock_debug(dev, __func__, __LINE__);
2218 }
2219 mutex_exit(&dvl->dvl_mtx);
2220 }
2221
2222 bool
2223 device_pmf_driver_child_register(device_t dev)
2224 {
2225 device_t parent = device_parent(dev);
2226
2227 if (parent == NULL || parent->dv_driver_child_register == NULL)
2228 return true;
2229 return (*parent->dv_driver_child_register)(dev);
2230 }
2231
2232 void
2233 device_pmf_driver_set_child_register(device_t dev,
2234 bool (*child_register)(device_t))
2235 {
2236 dev->dv_driver_child_register = child_register;
2237 }
2238
2239 void
2240 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2241 {
2242 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2243 if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2244 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2245 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2246 }
2247
2248 bool
2249 device_is_self_suspended(device_t dev)
2250 {
2251 return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2252 }
2253
2254 void
2255 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2256 {
2257 bool self = (flags & PMF_F_SELF) != 0;
2258
2259 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2260
2261 if (!self)
2262 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2263 else if (device_is_active(dev))
2264 dev->dv_flags |= DVF_SELF_SUSPENDED;
2265
2266 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2267 }
2268
2269 static void
2270 pmflock_debug(device_t dev, const char *func, int line)
2271 {
2272 device_lock_t dvl = device_getlock(dev);
2273
2274 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2275 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2276 dev->dv_flags);
2277 }
2278
2279 static void
2280 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2281 {
2282 device_lock_t dvl = device_getlock(dev);
2283
2284 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x "
2285 "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2286 dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags PMF_FN_CALL);
2287 }
2288
2289 static bool
2290 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2291 {
2292 device_lock_t dvl = device_getlock(dev);
2293
2294 while (device_pmf_is_registered(dev) &&
2295 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2296 dvl->dvl_nwait++;
2297 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2298 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2299 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2300 dvl->dvl_nwait--;
2301 }
2302 if (!device_pmf_is_registered(dev)) {
2303 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2304 /* We could not acquire the lock, but some other thread may
2305 * wait for it, also. Wake that thread.
2306 */
2307 cv_signal(&dvl->dvl_cv);
2308 return false;
2309 }
2310 dvl->dvl_nlock++;
2311 dvl->dvl_holder = curlwp;
2312 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2313 return true;
2314 }
2315
2316 bool
2317 device_pmf_lock(device_t dev PMF_FN_ARGS)
2318 {
2319 bool rc;
2320 device_lock_t dvl = device_getlock(dev);
2321
2322 mutex_enter(&dvl->dvl_mtx);
2323 rc = device_pmf_lock1(dev PMF_FN_CALL);
2324 mutex_exit(&dvl->dvl_mtx);
2325
2326 return rc;
2327 }
2328
2329 void
2330 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2331 {
2332 device_lock_t dvl = device_getlock(dev);
2333
2334 KASSERT(dvl->dvl_nlock > 0);
2335 mutex_enter(&dvl->dvl_mtx);
2336 if (--dvl->dvl_nlock == 0)
2337 dvl->dvl_holder = NULL;
2338 cv_signal(&dvl->dvl_cv);
2339 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2340 mutex_exit(&dvl->dvl_mtx);
2341 }
2342
2343 device_lock_t
2344 device_getlock(device_t dev)
2345 {
2346 return &dev->dv_lock;
2347 }
2348
2349 void *
2350 device_pmf_bus_private(device_t dev)
2351 {
2352 return dev->dv_bus_private;
2353 }
2354
2355 bool
2356 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2357 {
2358 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2359 return true;
2360 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2361 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2362 return false;
2363 if (*dev->dv_bus_suspend != NULL &&
2364 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2365 return false;
2366
2367 dev->dv_flags |= DVF_BUS_SUSPENDED;
2368 return true;
2369 }
2370
2371 bool
2372 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2373 {
2374 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2375 return true;
2376 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2377 return false;
2378 if (*dev->dv_bus_resume != NULL &&
2379 !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2380 return false;
2381
2382 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2383 return true;
2384 }
2385
2386 bool
2387 device_pmf_bus_shutdown(device_t dev, int how)
2388 {
2389
2390 if (*dev->dv_bus_shutdown != NULL &&
2391 !(*dev->dv_bus_shutdown)(dev, how))
2392 return false;
2393 return true;
2394 }
2395
2396 void
2397 device_pmf_bus_register(device_t dev, void *priv,
2398 bool (*suspend)(device_t PMF_FN_PROTO),
2399 bool (*resume)(device_t PMF_FN_PROTO),
2400 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2401 {
2402 dev->dv_bus_private = priv;
2403 dev->dv_bus_resume = resume;
2404 dev->dv_bus_suspend = suspend;
2405 dev->dv_bus_shutdown = shutdown;
2406 dev->dv_bus_deregister = deregister;
2407 }
2408
2409 void
2410 device_pmf_bus_deregister(device_t dev)
2411 {
2412 if (dev->dv_bus_deregister == NULL)
2413 return;
2414 (*dev->dv_bus_deregister)(dev);
2415 dev->dv_bus_private = NULL;
2416 dev->dv_bus_suspend = NULL;
2417 dev->dv_bus_resume = NULL;
2418 dev->dv_bus_deregister = NULL;
2419 }
2420
2421 void *
2422 device_pmf_class_private(device_t dev)
2423 {
2424 return dev->dv_class_private;
2425 }
2426
2427 bool
2428 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2429 {
2430 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2431 return true;
2432 if (*dev->dv_class_suspend != NULL &&
2433 !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2434 return false;
2435
2436 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2437 return true;
2438 }
2439
2440 bool
2441 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2442 {
2443 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2444 return true;
2445 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2446 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2447 return false;
2448 if (*dev->dv_class_resume != NULL &&
2449 !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2450 return false;
2451
2452 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2453 return true;
2454 }
2455
2456 void
2457 device_pmf_class_register(device_t dev, void *priv,
2458 bool (*suspend)(device_t PMF_FN_PROTO),
2459 bool (*resume)(device_t PMF_FN_PROTO),
2460 void (*deregister)(device_t))
2461 {
2462 dev->dv_class_private = priv;
2463 dev->dv_class_suspend = suspend;
2464 dev->dv_class_resume = resume;
2465 dev->dv_class_deregister = deregister;
2466 }
2467
2468 void
2469 device_pmf_class_deregister(device_t dev)
2470 {
2471 if (dev->dv_class_deregister == NULL)
2472 return;
2473 (*dev->dv_class_deregister)(dev);
2474 dev->dv_class_private = NULL;
2475 dev->dv_class_suspend = NULL;
2476 dev->dv_class_resume = NULL;
2477 dev->dv_class_deregister = NULL;
2478 }
2479
2480 bool
2481 device_active(device_t dev, devactive_t type)
2482 {
2483 size_t i;
2484
2485 if (dev->dv_activity_count == 0)
2486 return false;
2487
2488 for (i = 0; i < dev->dv_activity_count; ++i) {
2489 if (dev->dv_activity_handlers[i] == NULL)
2490 break;
2491 (*dev->dv_activity_handlers[i])(dev, type);
2492 }
2493
2494 return true;
2495 }
2496
2497 bool
2498 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2499 {
2500 void (**new_handlers)(device_t, devactive_t);
2501 void (**old_handlers)(device_t, devactive_t);
2502 size_t i, old_size, new_size;
2503 int s;
2504
2505 old_handlers = dev->dv_activity_handlers;
2506 old_size = dev->dv_activity_count;
2507
2508 for (i = 0; i < old_size; ++i) {
2509 KASSERT(old_handlers[i] != handler);
2510 if (old_handlers[i] == NULL) {
2511 old_handlers[i] = handler;
2512 return true;
2513 }
2514 }
2515
2516 new_size = old_size + 4;
2517 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2518
2519 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2520 new_handlers[old_size] = handler;
2521 memset(new_handlers + old_size + 1, 0,
2522 sizeof(int [new_size - (old_size+1)]));
2523
2524 s = splhigh();
2525 dev->dv_activity_count = new_size;
2526 dev->dv_activity_handlers = new_handlers;
2527 splx(s);
2528
2529 if (old_handlers != NULL)
2530 kmem_free(old_handlers, sizeof(void * [old_size]));
2531
2532 return true;
2533 }
2534
2535 void
2536 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2537 {
2538 void (**old_handlers)(device_t, devactive_t);
2539 size_t i, old_size;
2540 int s;
2541
2542 old_handlers = dev->dv_activity_handlers;
2543 old_size = dev->dv_activity_count;
2544
2545 for (i = 0; i < old_size; ++i) {
2546 if (old_handlers[i] == handler)
2547 break;
2548 if (old_handlers[i] == NULL)
2549 return; /* XXX panic? */
2550 }
2551
2552 if (i == old_size)
2553 return; /* XXX panic? */
2554
2555 for (; i < old_size - 1; ++i) {
2556 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2557 continue;
2558
2559 if (i == 0) {
2560 s = splhigh();
2561 dev->dv_activity_count = 0;
2562 dev->dv_activity_handlers = NULL;
2563 splx(s);
2564 kmem_free(old_handlers, sizeof(void *[old_size]));
2565 }
2566 return;
2567 }
2568 old_handlers[i] = NULL;
2569 }
2570
2571 /*
2572 * Device Iteration
2573 *
2574 * deviter_t: a device iterator. Holds state for a "walk" visiting
2575 * each device_t's in the device tree.
2576 *
2577 * deviter_init(di, flags): initialize the device iterator `di'
2578 * to "walk" the device tree. deviter_next(di) will return
2579 * the first device_t in the device tree, or NULL if there are
2580 * no devices.
2581 *
2582 * `flags' is one or more of DEVITER_F_RW, indicating that the
2583 * caller intends to modify the device tree by calling
2584 * config_detach(9) on devices in the order that the iterator
2585 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2586 * nearest the "root" of the device tree to be returned, first;
2587 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2588 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2589 * indicating both that deviter_init() should not respect any
2590 * locks on the device tree, and that deviter_next(di) may run
2591 * in more than one LWP before the walk has finished.
2592 *
2593 * Only one DEVITER_F_RW iterator may be in the device tree at
2594 * once.
2595 *
2596 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2597 *
2598 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2599 * DEVITER_F_LEAVES_FIRST are used in combination.
2600 *
2601 * deviter_first(di, flags): initialize the device iterator `di'
2602 * and return the first device_t in the device tree, or NULL
2603 * if there are no devices. The statement
2604 *
2605 * dv = deviter_first(di);
2606 *
2607 * is shorthand for
2608 *
2609 * deviter_init(di);
2610 * dv = deviter_next(di);
2611 *
2612 * deviter_next(di): return the next device_t in the device tree,
2613 * or NULL if there are no more devices. deviter_next(di)
2614 * is undefined if `di' was not initialized with deviter_init() or
2615 * deviter_first().
2616 *
2617 * deviter_release(di): stops iteration (subsequent calls to
2618 * deviter_next() will return NULL), releases any locks and
2619 * resources held by the device iterator.
2620 *
2621 * Device iteration does not return device_t's in any particular
2622 * order. An iterator will never return the same device_t twice.
2623 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2624 * is called repeatedly on the same `di', it will eventually return
2625 * NULL. It is ok to attach/detach devices during device iteration.
2626 */
2627 void
2628 deviter_init(deviter_t *di, deviter_flags_t flags)
2629 {
2630 device_t dv;
2631 bool rw;
2632
2633 mutex_enter(&alldevs_mtx);
2634 if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2635 flags |= DEVITER_F_RW;
2636 alldevs_nwrite++;
2637 alldevs_writer = NULL;
2638 alldevs_nread = 0;
2639 } else {
2640 rw = (flags & DEVITER_F_RW) != 0;
2641
2642 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2643 ;
2644 else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2645 (rw && alldevs_nread != 0))
2646 cv_wait(&alldevs_cv, &alldevs_mtx);
2647
2648 if (rw) {
2649 if (alldevs_nwrite++ == 0)
2650 alldevs_writer = curlwp;
2651 } else
2652 alldevs_nread++;
2653 }
2654 mutex_exit(&alldevs_mtx);
2655
2656 memset(di, 0, sizeof(*di));
2657
2658 di->di_flags = flags;
2659
2660 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2661 case DEVITER_F_LEAVES_FIRST:
2662 TAILQ_FOREACH(dv, &alldevs, dv_list)
2663 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2664 break;
2665 case DEVITER_F_ROOT_FIRST:
2666 TAILQ_FOREACH(dv, &alldevs, dv_list)
2667 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2668 break;
2669 default:
2670 break;
2671 }
2672
2673 deviter_reinit(di);
2674 }
2675
2676 static void
2677 deviter_reinit(deviter_t *di)
2678 {
2679 if ((di->di_flags & DEVITER_F_RW) != 0)
2680 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2681 else
2682 di->di_prev = TAILQ_FIRST(&alldevs);
2683 }
2684
2685 device_t
2686 deviter_first(deviter_t *di, deviter_flags_t flags)
2687 {
2688 deviter_init(di, flags);
2689 return deviter_next(di);
2690 }
2691
2692 static device_t
2693 deviter_next1(deviter_t *di)
2694 {
2695 device_t dv;
2696
2697 dv = di->di_prev;
2698
2699 if (dv == NULL)
2700 ;
2701 else if ((di->di_flags & DEVITER_F_RW) != 0)
2702 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2703 else
2704 di->di_prev = TAILQ_NEXT(dv, dv_list);
2705
2706 return dv;
2707 }
2708
2709 device_t
2710 deviter_next(deviter_t *di)
2711 {
2712 device_t dv = NULL;
2713
2714 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2715 case 0:
2716 return deviter_next1(di);
2717 case DEVITER_F_LEAVES_FIRST:
2718 while (di->di_curdepth >= 0) {
2719 if ((dv = deviter_next1(di)) == NULL) {
2720 di->di_curdepth--;
2721 deviter_reinit(di);
2722 } else if (dv->dv_depth == di->di_curdepth)
2723 break;
2724 }
2725 return dv;
2726 case DEVITER_F_ROOT_FIRST:
2727 while (di->di_curdepth <= di->di_maxdepth) {
2728 if ((dv = deviter_next1(di)) == NULL) {
2729 di->di_curdepth++;
2730 deviter_reinit(di);
2731 } else if (dv->dv_depth == di->di_curdepth)
2732 break;
2733 }
2734 return dv;
2735 default:
2736 return NULL;
2737 }
2738 }
2739
2740 void
2741 deviter_release(deviter_t *di)
2742 {
2743 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2744
2745 mutex_enter(&alldevs_mtx);
2746 if (!rw) {
2747 --alldevs_nread;
2748 cv_signal(&alldevs_cv);
2749 } else if (alldevs_nwrite > 0 && alldevs_writer == NULL) {
2750 --alldevs_nwrite; /* shutting down: do not signal */
2751 } else {
2752 KASSERT(alldevs_nwrite != 0);
2753 if (--alldevs_nwrite == 0)
2754 alldevs_writer = NULL;
2755 cv_signal(&alldevs_cv);
2756 }
2757 mutex_exit(&alldevs_mtx);
2758 }
2759
2760 SYSCTL_SETUP(sysctl_detach_setup, "sysctl detach setup")
2761 {
2762 const struct sysctlnode *node = NULL;
2763
2764 sysctl_createv(clog, 0, NULL, &node,
2765 CTLFLAG_PERMANENT,
2766 CTLTYPE_NODE, "kern", NULL,
2767 NULL, 0, NULL, 0,
2768 CTL_KERN, CTL_EOL);
2769
2770 if (node == NULL)
2771 return;
2772
2773 sysctl_createv(clog, 0, &node, NULL,
2774 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2775 CTLTYPE_INT, "detachall",
2776 SYSCTL_DESCR("Detach all devices at shutdown"),
2777 NULL, 0, &detachall, 0,
2778 CTL_CREATE, CTL_EOL);
2779 }
2780