subr_autoconf.c revision 1.170 1 /* $NetBSD: subr_autoconf.c,v 1.170 2009/03/25 21:28:50 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.170 2009/03/25 21:28:50 dyoung Exp $");
81
82 #include "opt_ddb.h"
83 #include "drvctl.h"
84
85 #include <sys/param.h>
86 #include <sys/device.h>
87 #include <sys/disklabel.h>
88 #include <sys/conf.h>
89 #include <sys/kauth.h>
90 #include <sys/malloc.h>
91 #include <sys/kmem.h>
92 #include <sys/systm.h>
93 #include <sys/kernel.h>
94 #include <sys/errno.h>
95 #include <sys/proc.h>
96 #include <sys/reboot.h>
97 #include <sys/kthread.h>
98 #include <sys/buf.h>
99 #include <sys/dirent.h>
100 #include <sys/vnode.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/mutex.h>
108 #include <sys/condvar.h>
109 #include <sys/devmon.h>
110 #include <sys/cpu.h>
111
112 #include <sys/disk.h>
113
114 #include <machine/limits.h>
115
116 #include "opt_userconf.h"
117 #ifdef USERCONF
118 #include <sys/userconf.h>
119 #endif
120
121 #ifdef __i386__
122 #include "opt_splash.h"
123 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
124 #include <dev/splash/splash.h>
125 extern struct splash_progress *splash_progress_state;
126 #endif
127 #endif
128
129 /*
130 * Autoconfiguration subroutines.
131 */
132
133 typedef struct pmf_private {
134 int pp_nwait;
135 int pp_nlock;
136 lwp_t *pp_holder;
137 kmutex_t pp_mtx;
138 kcondvar_t pp_cv;
139 } pmf_private_t;
140
141 /*
142 * ioconf.c exports exactly two names: cfdata and cfroots. All system
143 * devices and drivers are found via these tables.
144 */
145 extern struct cfdata cfdata[];
146 extern const short cfroots[];
147
148 /*
149 * List of all cfdriver structures. We use this to detect duplicates
150 * when other cfdrivers are loaded.
151 */
152 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
153 extern struct cfdriver * const cfdriver_list_initial[];
154
155 /*
156 * Initial list of cfattach's.
157 */
158 extern const struct cfattachinit cfattachinit[];
159
160 /*
161 * List of cfdata tables. We always have one such list -- the one
162 * built statically when the kernel was configured.
163 */
164 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
165 static struct cftable initcftable;
166
167 #define ROOT ((device_t)NULL)
168
169 struct matchinfo {
170 cfsubmatch_t fn;
171 struct device *parent;
172 const int *locs;
173 void *aux;
174 struct cfdata *match;
175 int pri;
176 };
177
178 static char *number(char *, int);
179 static void mapply(struct matchinfo *, cfdata_t);
180 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
181 static void config_devdealloc(device_t);
182 static void config_makeroom(int, struct cfdriver *);
183 static void config_devlink(device_t);
184 static void config_devunlink(device_t);
185
186 static void pmflock_debug(device_t, const char *, int);
187 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
188
189 static device_t deviter_next1(deviter_t *);
190 static void deviter_reinit(deviter_t *);
191
192 struct deferred_config {
193 TAILQ_ENTRY(deferred_config) dc_queue;
194 device_t dc_dev;
195 void (*dc_func)(device_t);
196 };
197
198 TAILQ_HEAD(deferred_config_head, deferred_config);
199
200 struct deferred_config_head deferred_config_queue =
201 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
202 struct deferred_config_head interrupt_config_queue =
203 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
204 int interrupt_config_threads = 8;
205
206 static void config_process_deferred(struct deferred_config_head *, device_t);
207
208 /* Hooks to finalize configuration once all real devices have been found. */
209 struct finalize_hook {
210 TAILQ_ENTRY(finalize_hook) f_list;
211 int (*f_func)(device_t);
212 device_t f_dev;
213 };
214 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
215 TAILQ_HEAD_INITIALIZER(config_finalize_list);
216 static int config_finalize_done;
217
218 /* list of all devices */
219 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
220 kcondvar_t alldevs_cv;
221 kmutex_t alldevs_mtx;
222 static int alldevs_nread = 0;
223 static int alldevs_nwrite = 0;
224 static lwp_t *alldevs_writer = NULL;
225
226 static int config_pending; /* semaphore for mountroot */
227 static kmutex_t config_misc_lock;
228 static kcondvar_t config_misc_cv;
229
230 #define STREQ(s1, s2) \
231 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
232
233 static int config_initialized; /* config_init() has been called. */
234
235 static int config_do_twiddle;
236
237 struct vnode *
238 opendisk(struct device *dv)
239 {
240 int bmajor, bminor;
241 struct vnode *tmpvn;
242 int error;
243 dev_t dev;
244
245 /*
246 * Lookup major number for disk block device.
247 */
248 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
249 if (bmajor == -1)
250 return NULL;
251
252 bminor = minor(device_unit(dv));
253 /*
254 * Fake a temporary vnode for the disk, open it, and read
255 * and hash the sectors.
256 */
257 dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
258 MAKEDISKDEV(bmajor, bminor, RAW_PART);
259 if (bdevvp(dev, &tmpvn))
260 panic("%s: can't alloc vnode for %s", __func__,
261 device_xname(dv));
262 error = VOP_OPEN(tmpvn, FREAD, NOCRED);
263 if (error) {
264 #ifndef DEBUG
265 /*
266 * Ignore errors caused by missing device, partition,
267 * or medium.
268 */
269 if (error != ENXIO && error != ENODEV)
270 #endif
271 printf("%s: can't open dev %s (%d)\n",
272 __func__, device_xname(dv), error);
273 vput(tmpvn);
274 return NULL;
275 }
276
277 return tmpvn;
278 }
279
280 int
281 config_handle_wedges(struct device *dv, int par)
282 {
283 struct dkwedge_list wl;
284 struct dkwedge_info *wi;
285 struct vnode *vn;
286 char diskname[16];
287 int i, error;
288
289 if ((vn = opendisk(dv)) == NULL)
290 return -1;
291
292 wl.dkwl_bufsize = sizeof(*wi) * 16;
293 wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
294
295 error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
296 VOP_CLOSE(vn, FREAD, NOCRED);
297 vput(vn);
298 if (error) {
299 #ifdef DEBUG_WEDGE
300 printf("%s: List wedges returned %d\n",
301 device_xname(dv), error);
302 #endif
303 free(wi, M_TEMP);
304 return -1;
305 }
306
307 #ifdef DEBUG_WEDGE
308 printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
309 wl.dkwl_nwedges, wl.dkwl_ncopied);
310 #endif
311 snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
312 par + 'a');
313
314 for (i = 0; i < wl.dkwl_ncopied; i++) {
315 #ifdef DEBUG_WEDGE
316 printf("%s: Looking for %s in %s\n",
317 device_xname(dv), diskname, wi[i].dkw_wname);
318 #endif
319 if (strcmp(wi[i].dkw_wname, diskname) == 0)
320 break;
321 }
322
323 if (i == wl.dkwl_ncopied) {
324 #ifdef DEBUG_WEDGE
325 printf("%s: Cannot find wedge with parent %s\n",
326 device_xname(dv), diskname);
327 #endif
328 free(wi, M_TEMP);
329 return -1;
330 }
331
332 #ifdef DEBUG_WEDGE
333 printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
334 device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
335 (unsigned long long)wi[i].dkw_offset,
336 (unsigned long long)wi[i].dkw_size);
337 #endif
338 dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
339 free(wi, M_TEMP);
340 return 0;
341 }
342
343 /*
344 * Initialize the autoconfiguration data structures. Normally this
345 * is done by configure(), but some platforms need to do this very
346 * early (to e.g. initialize the console).
347 */
348 void
349 config_init(void)
350 {
351 const struct cfattachinit *cfai;
352 int i, j;
353
354 if (config_initialized)
355 return;
356
357 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
358 cv_init(&alldevs_cv, "alldevs");
359
360 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
361 cv_init(&config_misc_cv, "cfgmisc");
362
363 /* allcfdrivers is statically initialized. */
364 for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
365 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
366 panic("configure: duplicate `%s' drivers",
367 cfdriver_list_initial[i]->cd_name);
368 }
369
370 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
371 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
372 if (config_cfattach_attach(cfai->cfai_name,
373 cfai->cfai_list[j]) != 0)
374 panic("configure: duplicate `%s' attachment "
375 "of `%s' driver",
376 cfai->cfai_list[j]->ca_name,
377 cfai->cfai_name);
378 }
379 }
380
381 initcftable.ct_cfdata = cfdata;
382 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
383
384 config_initialized = 1;
385 }
386
387 void
388 config_deferred(device_t dev)
389 {
390 config_process_deferred(&deferred_config_queue, dev);
391 config_process_deferred(&interrupt_config_queue, dev);
392 }
393
394 static void
395 config_interrupts_thread(void *cookie)
396 {
397 struct deferred_config *dc;
398
399 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
400 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
401 (*dc->dc_func)(dc->dc_dev);
402 kmem_free(dc, sizeof(*dc));
403 config_pending_decr();
404 }
405 kthread_exit(0);
406 }
407
408 /*
409 * Configure the system's hardware.
410 */
411 void
412 configure(void)
413 {
414 /* Initialize data structures. */
415 config_init();
416 pmf_init();
417 #if NDRVCTL > 0
418 drvctl_init();
419 #endif
420
421 #ifdef USERCONF
422 if (boothowto & RB_USERCONF)
423 user_config();
424 #endif
425
426 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
427 config_do_twiddle = 1;
428 printf_nolog("Detecting hardware...");
429 }
430
431 /*
432 * Do the machine-dependent portion of autoconfiguration. This
433 * sets the configuration machinery here in motion by "finding"
434 * the root bus. When this function returns, we expect interrupts
435 * to be enabled.
436 */
437 cpu_configure();
438 }
439
440 void
441 configure2(void)
442 {
443 CPU_INFO_ITERATOR cii;
444 struct cpu_info *ci;
445 int i, s;
446
447 /*
448 * Now that we've found all the hardware, start the real time
449 * and statistics clocks.
450 */
451 initclocks();
452
453 cold = 0; /* clocks are running, we're warm now! */
454 s = splsched();
455 curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
456 splx(s);
457
458 /* Boot the secondary processors. */
459 for (CPU_INFO_FOREACH(cii, ci)) {
460 uvm_cpu_attach(ci);
461 }
462 mp_online = true;
463 #if defined(MULTIPROCESSOR)
464 cpu_boot_secondary_processors();
465 #endif
466
467 /* Setup the runqueues and scheduler. */
468 runq_init();
469 sched_init();
470
471 /*
472 * Create threads to call back and finish configuration for
473 * devices that want interrupts enabled.
474 */
475 for (i = 0; i < interrupt_config_threads; i++) {
476 (void)kthread_create(PRI_NONE, 0, NULL,
477 config_interrupts_thread, NULL, NULL, "config");
478 }
479
480 /* Get the threads going and into any sleeps before continuing. */
481 yield();
482 }
483
484 /*
485 * Announce device attach/detach to userland listeners.
486 */
487 static void
488 devmon_report_device(device_t dev, bool isattach)
489 {
490 #if NDRVCTL > 0
491 prop_dictionary_t ev;
492 const char *parent;
493 const char *what;
494 device_t pdev = device_parent(dev);
495
496 ev = prop_dictionary_create();
497 if (ev == NULL)
498 return;
499
500 what = (isattach ? "device-attach" : "device-detach");
501 parent = (pdev == NULL ? "root" : device_xname(pdev));
502 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
503 !prop_dictionary_set_cstring(ev, "parent", parent)) {
504 prop_object_release(ev);
505 return;
506 }
507
508 devmon_insert(what, ev);
509 #endif
510 }
511
512 /*
513 * Add a cfdriver to the system.
514 */
515 int
516 config_cfdriver_attach(struct cfdriver *cd)
517 {
518 struct cfdriver *lcd;
519
520 /* Make sure this driver isn't already in the system. */
521 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
522 if (STREQ(lcd->cd_name, cd->cd_name))
523 return (EEXIST);
524 }
525
526 LIST_INIT(&cd->cd_attach);
527 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
528
529 return (0);
530 }
531
532 /*
533 * Remove a cfdriver from the system.
534 */
535 int
536 config_cfdriver_detach(struct cfdriver *cd)
537 {
538 int i;
539
540 /* Make sure there are no active instances. */
541 for (i = 0; i < cd->cd_ndevs; i++) {
542 if (cd->cd_devs[i] != NULL)
543 return (EBUSY);
544 }
545
546 /* ...and no attachments loaded. */
547 if (LIST_EMPTY(&cd->cd_attach) == 0)
548 return (EBUSY);
549
550 LIST_REMOVE(cd, cd_list);
551
552 KASSERT(cd->cd_devs == NULL);
553
554 return (0);
555 }
556
557 /*
558 * Look up a cfdriver by name.
559 */
560 struct cfdriver *
561 config_cfdriver_lookup(const char *name)
562 {
563 struct cfdriver *cd;
564
565 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
566 if (STREQ(cd->cd_name, name))
567 return (cd);
568 }
569
570 return (NULL);
571 }
572
573 /*
574 * Add a cfattach to the specified driver.
575 */
576 int
577 config_cfattach_attach(const char *driver, struct cfattach *ca)
578 {
579 struct cfattach *lca;
580 struct cfdriver *cd;
581
582 cd = config_cfdriver_lookup(driver);
583 if (cd == NULL)
584 return (ESRCH);
585
586 /* Make sure this attachment isn't already on this driver. */
587 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
588 if (STREQ(lca->ca_name, ca->ca_name))
589 return (EEXIST);
590 }
591
592 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
593
594 return (0);
595 }
596
597 /*
598 * Remove a cfattach from the specified driver.
599 */
600 int
601 config_cfattach_detach(const char *driver, struct cfattach *ca)
602 {
603 struct cfdriver *cd;
604 device_t dev;
605 int i;
606
607 cd = config_cfdriver_lookup(driver);
608 if (cd == NULL)
609 return (ESRCH);
610
611 /* Make sure there are no active instances. */
612 for (i = 0; i < cd->cd_ndevs; i++) {
613 if ((dev = cd->cd_devs[i]) == NULL)
614 continue;
615 if (dev->dv_cfattach == ca)
616 return (EBUSY);
617 }
618
619 LIST_REMOVE(ca, ca_list);
620
621 return (0);
622 }
623
624 /*
625 * Look up a cfattach by name.
626 */
627 static struct cfattach *
628 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
629 {
630 struct cfattach *ca;
631
632 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
633 if (STREQ(ca->ca_name, atname))
634 return (ca);
635 }
636
637 return (NULL);
638 }
639
640 /*
641 * Look up a cfattach by driver/attachment name.
642 */
643 struct cfattach *
644 config_cfattach_lookup(const char *name, const char *atname)
645 {
646 struct cfdriver *cd;
647
648 cd = config_cfdriver_lookup(name);
649 if (cd == NULL)
650 return (NULL);
651
652 return (config_cfattach_lookup_cd(cd, atname));
653 }
654
655 /*
656 * Apply the matching function and choose the best. This is used
657 * a few times and we want to keep the code small.
658 */
659 static void
660 mapply(struct matchinfo *m, cfdata_t cf)
661 {
662 int pri;
663
664 if (m->fn != NULL) {
665 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
666 } else {
667 pri = config_match(m->parent, cf, m->aux);
668 }
669 if (pri > m->pri) {
670 m->match = cf;
671 m->pri = pri;
672 }
673 }
674
675 int
676 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
677 {
678 const struct cfiattrdata *ci;
679 const struct cflocdesc *cl;
680 int nlocs, i;
681
682 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
683 KASSERT(ci);
684 nlocs = ci->ci_loclen;
685 KASSERT(!nlocs || locs);
686 for (i = 0; i < nlocs; i++) {
687 cl = &ci->ci_locdesc[i];
688 /* !cld_defaultstr means no default value */
689 if ((!(cl->cld_defaultstr)
690 || (cf->cf_loc[i] != cl->cld_default))
691 && cf->cf_loc[i] != locs[i])
692 return (0);
693 }
694
695 return (config_match(parent, cf, aux));
696 }
697
698 /*
699 * Helper function: check whether the driver supports the interface attribute
700 * and return its descriptor structure.
701 */
702 static const struct cfiattrdata *
703 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
704 {
705 const struct cfiattrdata * const *cpp;
706
707 if (cd->cd_attrs == NULL)
708 return (0);
709
710 for (cpp = cd->cd_attrs; *cpp; cpp++) {
711 if (STREQ((*cpp)->ci_name, ia)) {
712 /* Match. */
713 return (*cpp);
714 }
715 }
716 return (0);
717 }
718
719 /*
720 * Lookup an interface attribute description by name.
721 * If the driver is given, consider only its supported attributes.
722 */
723 const struct cfiattrdata *
724 cfiattr_lookup(const char *name, const struct cfdriver *cd)
725 {
726 const struct cfdriver *d;
727 const struct cfiattrdata *ia;
728
729 if (cd)
730 return (cfdriver_get_iattr(cd, name));
731
732 LIST_FOREACH(d, &allcfdrivers, cd_list) {
733 ia = cfdriver_get_iattr(d, name);
734 if (ia)
735 return (ia);
736 }
737 return (0);
738 }
739
740 /*
741 * Determine if `parent' is a potential parent for a device spec based
742 * on `cfp'.
743 */
744 static int
745 cfparent_match(const device_t parent, const struct cfparent *cfp)
746 {
747 struct cfdriver *pcd;
748
749 /* We don't match root nodes here. */
750 if (cfp == NULL)
751 return (0);
752
753 pcd = parent->dv_cfdriver;
754 KASSERT(pcd != NULL);
755
756 /*
757 * First, ensure this parent has the correct interface
758 * attribute.
759 */
760 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
761 return (0);
762
763 /*
764 * If no specific parent device instance was specified (i.e.
765 * we're attaching to the attribute only), we're done!
766 */
767 if (cfp->cfp_parent == NULL)
768 return (1);
769
770 /*
771 * Check the parent device's name.
772 */
773 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
774 return (0); /* not the same parent */
775
776 /*
777 * Make sure the unit number matches.
778 */
779 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
780 cfp->cfp_unit == parent->dv_unit)
781 return (1);
782
783 /* Unit numbers don't match. */
784 return (0);
785 }
786
787 /*
788 * Helper for config_cfdata_attach(): check all devices whether it could be
789 * parent any attachment in the config data table passed, and rescan.
790 */
791 static void
792 rescan_with_cfdata(const struct cfdata *cf)
793 {
794 device_t d;
795 const struct cfdata *cf1;
796 deviter_t di;
797
798
799 /*
800 * "alldevs" is likely longer than a modules's cfdata, so make it
801 * the outer loop.
802 */
803 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
804
805 if (!(d->dv_cfattach->ca_rescan))
806 continue;
807
808 for (cf1 = cf; cf1->cf_name; cf1++) {
809
810 if (!cfparent_match(d, cf1->cf_pspec))
811 continue;
812
813 (*d->dv_cfattach->ca_rescan)(d,
814 cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
815 }
816 }
817 deviter_release(&di);
818 }
819
820 /*
821 * Attach a supplemental config data table and rescan potential
822 * parent devices if required.
823 */
824 int
825 config_cfdata_attach(cfdata_t cf, int scannow)
826 {
827 struct cftable *ct;
828
829 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
830 ct->ct_cfdata = cf;
831 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
832
833 if (scannow)
834 rescan_with_cfdata(cf);
835
836 return (0);
837 }
838
839 /*
840 * Helper for config_cfdata_detach: check whether a device is
841 * found through any attachment in the config data table.
842 */
843 static int
844 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
845 {
846 const struct cfdata *cf1;
847
848 for (cf1 = cf; cf1->cf_name; cf1++)
849 if (d->dv_cfdata == cf1)
850 return (1);
851
852 return (0);
853 }
854
855 /*
856 * Detach a supplemental config data table. Detach all devices found
857 * through that table (and thus keeping references to it) before.
858 */
859 int
860 config_cfdata_detach(cfdata_t cf)
861 {
862 device_t d;
863 int error = 0;
864 struct cftable *ct;
865 deviter_t di;
866
867 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
868 d = deviter_next(&di)) {
869 if (!dev_in_cfdata(d, cf))
870 continue;
871 if ((error = config_detach(d, 0)) != 0)
872 break;
873 }
874 deviter_release(&di);
875 if (error) {
876 aprint_error_dev(d, "unable to detach instance\n");
877 return error;
878 }
879
880 TAILQ_FOREACH(ct, &allcftables, ct_list) {
881 if (ct->ct_cfdata == cf) {
882 TAILQ_REMOVE(&allcftables, ct, ct_list);
883 kmem_free(ct, sizeof(*ct));
884 return (0);
885 }
886 }
887
888 /* not found -- shouldn't happen */
889 return (EINVAL);
890 }
891
892 /*
893 * Invoke the "match" routine for a cfdata entry on behalf of
894 * an external caller, usually a "submatch" routine.
895 */
896 int
897 config_match(device_t parent, cfdata_t cf, void *aux)
898 {
899 struct cfattach *ca;
900
901 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
902 if (ca == NULL) {
903 /* No attachment for this entry, oh well. */
904 return (0);
905 }
906
907 return ((*ca->ca_match)(parent, cf, aux));
908 }
909
910 /*
911 * Iterate over all potential children of some device, calling the given
912 * function (default being the child's match function) for each one.
913 * Nonzero returns are matches; the highest value returned is considered
914 * the best match. Return the `found child' if we got a match, or NULL
915 * otherwise. The `aux' pointer is simply passed on through.
916 *
917 * Note that this function is designed so that it can be used to apply
918 * an arbitrary function to all potential children (its return value
919 * can be ignored).
920 */
921 cfdata_t
922 config_search_loc(cfsubmatch_t fn, device_t parent,
923 const char *ifattr, const int *locs, void *aux)
924 {
925 struct cftable *ct;
926 cfdata_t cf;
927 struct matchinfo m;
928
929 KASSERT(config_initialized);
930 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
931
932 m.fn = fn;
933 m.parent = parent;
934 m.locs = locs;
935 m.aux = aux;
936 m.match = NULL;
937 m.pri = 0;
938
939 TAILQ_FOREACH(ct, &allcftables, ct_list) {
940 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
941
942 /* We don't match root nodes here. */
943 if (!cf->cf_pspec)
944 continue;
945
946 /*
947 * Skip cf if no longer eligible, otherwise scan
948 * through parents for one matching `parent', and
949 * try match function.
950 */
951 if (cf->cf_fstate == FSTATE_FOUND)
952 continue;
953 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
954 cf->cf_fstate == FSTATE_DSTAR)
955 continue;
956
957 /*
958 * If an interface attribute was specified,
959 * consider only children which attach to
960 * that attribute.
961 */
962 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
963 continue;
964
965 if (cfparent_match(parent, cf->cf_pspec))
966 mapply(&m, cf);
967 }
968 }
969 return (m.match);
970 }
971
972 cfdata_t
973 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
974 void *aux)
975 {
976
977 return (config_search_loc(fn, parent, ifattr, NULL, aux));
978 }
979
980 /*
981 * Find the given root device.
982 * This is much like config_search, but there is no parent.
983 * Don't bother with multiple cfdata tables; the root node
984 * must always be in the initial table.
985 */
986 cfdata_t
987 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
988 {
989 cfdata_t cf;
990 const short *p;
991 struct matchinfo m;
992
993 m.fn = fn;
994 m.parent = ROOT;
995 m.aux = aux;
996 m.match = NULL;
997 m.pri = 0;
998 m.locs = 0;
999 /*
1000 * Look at root entries for matching name. We do not bother
1001 * with found-state here since only one root should ever be
1002 * searched (and it must be done first).
1003 */
1004 for (p = cfroots; *p >= 0; p++) {
1005 cf = &cfdata[*p];
1006 if (strcmp(cf->cf_name, rootname) == 0)
1007 mapply(&m, cf);
1008 }
1009 return (m.match);
1010 }
1011
1012 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1013
1014 /*
1015 * The given `aux' argument describes a device that has been found
1016 * on the given parent, but not necessarily configured. Locate the
1017 * configuration data for that device (using the submatch function
1018 * provided, or using candidates' cd_match configuration driver
1019 * functions) and attach it, and return true. If the device was
1020 * not configured, call the given `print' function and return 0.
1021 */
1022 device_t
1023 config_found_sm_loc(device_t parent,
1024 const char *ifattr, const int *locs, void *aux,
1025 cfprint_t print, cfsubmatch_t submatch)
1026 {
1027 cfdata_t cf;
1028
1029 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1030 if (splash_progress_state)
1031 splash_progress_update(splash_progress_state);
1032 #endif
1033
1034 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1035 return(config_attach_loc(parent, cf, locs, aux, print));
1036 if (print) {
1037 if (config_do_twiddle)
1038 twiddle();
1039 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1040 }
1041
1042 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1043 if (splash_progress_state)
1044 splash_progress_update(splash_progress_state);
1045 #endif
1046
1047 return (NULL);
1048 }
1049
1050 device_t
1051 config_found_ia(device_t parent, const char *ifattr, void *aux,
1052 cfprint_t print)
1053 {
1054
1055 return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
1056 }
1057
1058 device_t
1059 config_found(device_t parent, void *aux, cfprint_t print)
1060 {
1061
1062 return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
1063 }
1064
1065 /*
1066 * As above, but for root devices.
1067 */
1068 device_t
1069 config_rootfound(const char *rootname, void *aux)
1070 {
1071 cfdata_t cf;
1072
1073 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1074 return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
1075 aprint_error("root device %s not configured\n", rootname);
1076 return (NULL);
1077 }
1078
1079 /* just like sprintf(buf, "%d") except that it works from the end */
1080 static char *
1081 number(char *ep, int n)
1082 {
1083
1084 *--ep = 0;
1085 while (n >= 10) {
1086 *--ep = (n % 10) + '0';
1087 n /= 10;
1088 }
1089 *--ep = n + '0';
1090 return (ep);
1091 }
1092
1093 /*
1094 * Expand the size of the cd_devs array if necessary.
1095 */
1096 static void
1097 config_makeroom(int n, struct cfdriver *cd)
1098 {
1099 int old, new;
1100 device_t *nsp;
1101
1102 if (n < cd->cd_ndevs)
1103 return;
1104
1105 /*
1106 * Need to expand the array.
1107 */
1108 old = cd->cd_ndevs;
1109 if (old == 0)
1110 new = 4;
1111 else
1112 new = old * 2;
1113 while (new <= n)
1114 new *= 2;
1115 cd->cd_ndevs = new;
1116 nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP);
1117 if (nsp == NULL)
1118 panic("config_attach: %sing dev array",
1119 old != 0 ? "expand" : "creat");
1120 memset(nsp + old, 0, sizeof(device_t [new - old]));
1121 if (old != 0) {
1122 memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
1123 kmem_free(cd->cd_devs, sizeof(device_t [old]));
1124 }
1125 cd->cd_devs = nsp;
1126 }
1127
1128 static void
1129 config_devlink(device_t dev)
1130 {
1131 struct cfdriver *cd = dev->dv_cfdriver;
1132
1133 /* put this device in the devices array */
1134 config_makeroom(dev->dv_unit, cd);
1135 if (cd->cd_devs[dev->dv_unit])
1136 panic("config_attach: duplicate %s", device_xname(dev));
1137 cd->cd_devs[dev->dv_unit] = dev;
1138
1139 /* It is safe to add a device to the tail of the list while
1140 * readers are in the list, but not while a writer is in
1141 * the list. Wait for any writer to complete.
1142 */
1143 mutex_enter(&alldevs_mtx);
1144 while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1145 cv_wait(&alldevs_cv, &alldevs_mtx);
1146 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
1147 cv_signal(&alldevs_cv);
1148 mutex_exit(&alldevs_mtx);
1149 }
1150
1151 static void
1152 config_devunlink(device_t dev)
1153 {
1154 struct cfdriver *cd = dev->dv_cfdriver;
1155 int i;
1156
1157 /* Unlink from device list. */
1158 TAILQ_REMOVE(&alldevs, dev, dv_list);
1159
1160 /* Remove from cfdriver's array. */
1161 cd->cd_devs[dev->dv_unit] = NULL;
1162
1163 /*
1164 * If the device now has no units in use, deallocate its softc array.
1165 */
1166 for (i = 0; i < cd->cd_ndevs; i++) {
1167 if (cd->cd_devs[i] != NULL)
1168 return;
1169 }
1170 /* nothing found; deallocate */
1171 kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
1172 cd->cd_devs = NULL;
1173 cd->cd_ndevs = 0;
1174 }
1175
1176 static device_t
1177 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1178 {
1179 struct cfdriver *cd;
1180 struct cfattach *ca;
1181 size_t lname, lunit;
1182 const char *xunit;
1183 int myunit;
1184 char num[10];
1185 device_t dev;
1186 void *dev_private;
1187 const struct cfiattrdata *ia;
1188
1189 cd = config_cfdriver_lookup(cf->cf_name);
1190 if (cd == NULL)
1191 return (NULL);
1192
1193 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1194 if (ca == NULL)
1195 return (NULL);
1196
1197 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1198 ca->ca_devsize < sizeof(struct device))
1199 panic("config_devalloc: %s", cf->cf_atname);
1200
1201 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1202 if (cf->cf_fstate == FSTATE_STAR) {
1203 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1204 if (cd->cd_devs[myunit] == NULL)
1205 break;
1206 /*
1207 * myunit is now the unit of the first NULL device pointer,
1208 * or max(cd->cd_ndevs,cf->cf_unit).
1209 */
1210 } else {
1211 myunit = cf->cf_unit;
1212 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1213 return (NULL);
1214 }
1215 #else
1216 myunit = cf->cf_unit;
1217 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1218
1219 /* compute length of name and decimal expansion of unit number */
1220 lname = strlen(cd->cd_name);
1221 xunit = number(&num[sizeof(num)], myunit);
1222 lunit = &num[sizeof(num)] - xunit;
1223 if (lname + lunit > sizeof(dev->dv_xname))
1224 panic("config_devalloc: device name too long");
1225
1226 /* get memory for all device vars */
1227 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1228 if (ca->ca_devsize > 0) {
1229 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1230 if (dev_private == NULL)
1231 panic("config_devalloc: memory allocation for device softc failed");
1232 } else {
1233 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1234 dev_private = NULL;
1235 }
1236
1237 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1238 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1239 } else {
1240 dev = dev_private;
1241 }
1242 if (dev == NULL)
1243 panic("config_devalloc: memory allocation for device_t failed");
1244
1245 dev->dv_class = cd->cd_class;
1246 dev->dv_cfdata = cf;
1247 dev->dv_cfdriver = cd;
1248 dev->dv_cfattach = ca;
1249 dev->dv_unit = myunit;
1250 dev->dv_activity_count = 0;
1251 dev->dv_activity_handlers = NULL;
1252 dev->dv_private = dev_private;
1253 memcpy(dev->dv_xname, cd->cd_name, lname);
1254 memcpy(dev->dv_xname + lname, xunit, lunit);
1255 dev->dv_parent = parent;
1256 if (parent != NULL)
1257 dev->dv_depth = parent->dv_depth + 1;
1258 else
1259 dev->dv_depth = 0;
1260 dev->dv_flags = DVF_ACTIVE; /* always initially active */
1261 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
1262 if (locs) {
1263 KASSERT(parent); /* no locators at root */
1264 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1265 parent->dv_cfdriver);
1266 dev->dv_locators =
1267 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1268 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1269 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1270 }
1271 dev->dv_properties = prop_dictionary_create();
1272 KASSERT(dev->dv_properties != NULL);
1273
1274 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1275 "device-driver", dev->dv_cfdriver->cd_name);
1276 prop_dictionary_set_uint16(dev->dv_properties,
1277 "device-unit", dev->dv_unit);
1278
1279 return (dev);
1280 }
1281
1282 static void
1283 config_devdealloc(device_t dev)
1284 {
1285 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1286
1287 KASSERT(dev->dv_properties != NULL);
1288 prop_object_release(dev->dv_properties);
1289
1290 if (dev->dv_activity_handlers)
1291 panic("config_devdealloc with registered handlers");
1292
1293 if (dev->dv_locators) {
1294 size_t amount = *--dev->dv_locators;
1295 kmem_free(dev->dv_locators, amount);
1296 }
1297
1298 if (dev->dv_cfattach->ca_devsize > 0)
1299 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1300 if (priv)
1301 kmem_free(dev, sizeof(*dev));
1302 }
1303
1304 /*
1305 * Attach a found device.
1306 */
1307 device_t
1308 config_attach_loc(device_t parent, cfdata_t cf,
1309 const int *locs, void *aux, cfprint_t print)
1310 {
1311 device_t dev;
1312 struct cftable *ct;
1313 const char *drvname;
1314
1315 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1316 if (splash_progress_state)
1317 splash_progress_update(splash_progress_state);
1318 #endif
1319
1320 dev = config_devalloc(parent, cf, locs);
1321 if (!dev)
1322 panic("config_attach: allocation of device softc failed");
1323
1324 /* XXX redundant - see below? */
1325 if (cf->cf_fstate != FSTATE_STAR) {
1326 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1327 cf->cf_fstate = FSTATE_FOUND;
1328 }
1329 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1330 else
1331 cf->cf_unit++;
1332 #endif
1333
1334 config_devlink(dev);
1335
1336 if (config_do_twiddle)
1337 twiddle();
1338 else
1339 aprint_naive("Found ");
1340 /*
1341 * We want the next two printfs for normal, verbose, and quiet,
1342 * but not silent (in which case, we're twiddling, instead).
1343 */
1344 if (parent == ROOT) {
1345 aprint_naive("%s (root)", device_xname(dev));
1346 aprint_normal("%s (root)", device_xname(dev));
1347 } else {
1348 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1349 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1350 if (print)
1351 (void) (*print)(aux, NULL);
1352 }
1353
1354 /*
1355 * Before attaching, clobber any unfound devices that are
1356 * otherwise identical.
1357 * XXX code above is redundant?
1358 */
1359 drvname = dev->dv_cfdriver->cd_name;
1360 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1361 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1362 if (STREQ(cf->cf_name, drvname) &&
1363 cf->cf_unit == dev->dv_unit) {
1364 if (cf->cf_fstate == FSTATE_NOTFOUND)
1365 cf->cf_fstate = FSTATE_FOUND;
1366 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1367 /*
1368 * Bump the unit number on all starred cfdata
1369 * entries for this device.
1370 */
1371 if (cf->cf_fstate == FSTATE_STAR)
1372 cf->cf_unit++;
1373 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1374 }
1375 }
1376 }
1377 #ifdef __HAVE_DEVICE_REGISTER
1378 device_register(dev, aux);
1379 #endif
1380
1381 /* Let userland know */
1382 devmon_report_device(dev, true);
1383
1384 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1385 if (splash_progress_state)
1386 splash_progress_update(splash_progress_state);
1387 #endif
1388 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1389 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1390 if (splash_progress_state)
1391 splash_progress_update(splash_progress_state);
1392 #endif
1393
1394 if (!device_pmf_is_registered(dev))
1395 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1396
1397 config_process_deferred(&deferred_config_queue, dev);
1398 return (dev);
1399 }
1400
1401 device_t
1402 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1403 {
1404
1405 return (config_attach_loc(parent, cf, NULL, aux, print));
1406 }
1407
1408 /*
1409 * As above, but for pseudo-devices. Pseudo-devices attached in this
1410 * way are silently inserted into the device tree, and their children
1411 * attached.
1412 *
1413 * Note that because pseudo-devices are attached silently, any information
1414 * the attach routine wishes to print should be prefixed with the device
1415 * name by the attach routine.
1416 */
1417 device_t
1418 config_attach_pseudo(cfdata_t cf)
1419 {
1420 device_t dev;
1421
1422 dev = config_devalloc(ROOT, cf, NULL);
1423 if (!dev)
1424 return (NULL);
1425
1426 /* XXX mark busy in cfdata */
1427
1428 if (cf->cf_fstate != FSTATE_STAR) {
1429 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1430 cf->cf_fstate = FSTATE_FOUND;
1431 }
1432
1433 config_devlink(dev);
1434
1435 #if 0 /* XXXJRT not yet */
1436 #ifdef __HAVE_DEVICE_REGISTER
1437 device_register(dev, NULL); /* like a root node */
1438 #endif
1439 #endif
1440 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1441 config_process_deferred(&deferred_config_queue, dev);
1442 return (dev);
1443 }
1444
1445 /*
1446 * Detach a device. Optionally forced (e.g. because of hardware
1447 * removal) and quiet. Returns zero if successful, non-zero
1448 * (an error code) otherwise.
1449 *
1450 * Note that this code wants to be run from a process context, so
1451 * that the detach can sleep to allow processes which have a device
1452 * open to run and unwind their stacks.
1453 */
1454 int
1455 config_detach(device_t dev, int flags)
1456 {
1457 struct cftable *ct;
1458 cfdata_t cf;
1459 const struct cfattach *ca;
1460 struct cfdriver *cd;
1461 #ifdef DIAGNOSTIC
1462 device_t d;
1463 #endif
1464 int rv = 0;
1465
1466 #ifdef DIAGNOSTIC
1467 cf = dev->dv_cfdata;
1468 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1469 cf->cf_fstate != FSTATE_STAR)
1470 panic("config_detach: %s: bad device fstate %d",
1471 device_xname(dev), cf ? cf->cf_fstate : -1);
1472 #endif
1473 cd = dev->dv_cfdriver;
1474 KASSERT(cd != NULL);
1475
1476 ca = dev->dv_cfattach;
1477 KASSERT(ca != NULL);
1478
1479 KASSERT(curlwp != NULL);
1480 mutex_enter(&alldevs_mtx);
1481 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1482 ;
1483 else while (alldevs_nread != 0 ||
1484 (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1485 cv_wait(&alldevs_cv, &alldevs_mtx);
1486 if (alldevs_nwrite++ == 0)
1487 alldevs_writer = curlwp;
1488 mutex_exit(&alldevs_mtx);
1489
1490 /*
1491 * Ensure the device is deactivated. If the device doesn't
1492 * have an activation entry point, we allow DVF_ACTIVE to
1493 * remain set. Otherwise, if DVF_ACTIVE is still set, the
1494 * device is busy, and the detach fails.
1495 */
1496 if (ca->ca_activate != NULL)
1497 rv = config_deactivate(dev);
1498
1499 /*
1500 * Try to detach the device. If that's not possible, then
1501 * we either panic() (for the forced but failed case), or
1502 * return an error.
1503 */
1504 if (rv == 0) {
1505 if (ca->ca_detach != NULL)
1506 rv = (*ca->ca_detach)(dev, flags);
1507 else
1508 rv = EOPNOTSUPP;
1509 }
1510 if (rv != 0) {
1511 if ((flags & DETACH_FORCE) == 0)
1512 goto out;
1513 else
1514 panic("config_detach: forced detach of %s failed (%d)",
1515 device_xname(dev), rv);
1516 }
1517
1518 /*
1519 * The device has now been successfully detached.
1520 */
1521
1522 /* Let userland know */
1523 devmon_report_device(dev, false);
1524
1525 #ifdef DIAGNOSTIC
1526 /*
1527 * Sanity: If you're successfully detached, you should have no
1528 * children. (Note that because children must be attached
1529 * after parents, we only need to search the latter part of
1530 * the list.)
1531 */
1532 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1533 d = TAILQ_NEXT(d, dv_list)) {
1534 if (d->dv_parent == dev) {
1535 printf("config_detach: detached device %s"
1536 " has children %s\n", device_xname(dev), device_xname(d));
1537 panic("config_detach");
1538 }
1539 }
1540 #endif
1541
1542 /* notify the parent that the child is gone */
1543 if (dev->dv_parent) {
1544 device_t p = dev->dv_parent;
1545 if (p->dv_cfattach->ca_childdetached)
1546 (*p->dv_cfattach->ca_childdetached)(p, dev);
1547 }
1548
1549 /*
1550 * Mark cfdata to show that the unit can be reused, if possible.
1551 */
1552 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1553 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1554 if (STREQ(cf->cf_name, cd->cd_name)) {
1555 if (cf->cf_fstate == FSTATE_FOUND &&
1556 cf->cf_unit == dev->dv_unit)
1557 cf->cf_fstate = FSTATE_NOTFOUND;
1558 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1559 /*
1560 * Note that we can only re-use a starred
1561 * unit number if the unit being detached
1562 * had the last assigned unit number.
1563 */
1564 if (cf->cf_fstate == FSTATE_STAR &&
1565 cf->cf_unit == dev->dv_unit + 1)
1566 cf->cf_unit--;
1567 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1568 }
1569 }
1570 }
1571
1572 config_devunlink(dev);
1573
1574 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1575 aprint_normal_dev(dev, "detached\n");
1576
1577 config_devdealloc(dev);
1578
1579 out:
1580 mutex_enter(&alldevs_mtx);
1581 if (--alldevs_nwrite == 0)
1582 alldevs_writer = NULL;
1583 cv_signal(&alldevs_cv);
1584 mutex_exit(&alldevs_mtx);
1585 return rv;
1586 }
1587
1588 int
1589 config_detach_children(device_t parent, int flags)
1590 {
1591 device_t dv;
1592 deviter_t di;
1593 int error = 0;
1594
1595 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1596 dv = deviter_next(&di)) {
1597 if (device_parent(dv) != parent)
1598 continue;
1599 if ((error = config_detach(dv, flags)) != 0)
1600 break;
1601 }
1602 deviter_release(&di);
1603 return error;
1604 }
1605
1606 int
1607 config_activate(device_t dev)
1608 {
1609 const struct cfattach *ca = dev->dv_cfattach;
1610 int rv = 0, oflags = dev->dv_flags;
1611
1612 if (ca->ca_activate == NULL)
1613 return (EOPNOTSUPP);
1614
1615 if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1616 dev->dv_flags |= DVF_ACTIVE;
1617 rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1618 if (rv)
1619 dev->dv_flags = oflags;
1620 }
1621 return (rv);
1622 }
1623
1624 int
1625 config_deactivate(device_t dev)
1626 {
1627 const struct cfattach *ca = dev->dv_cfattach;
1628 int rv = 0, oflags = dev->dv_flags;
1629
1630 if (ca->ca_activate == NULL)
1631 return (EOPNOTSUPP);
1632
1633 if (dev->dv_flags & DVF_ACTIVE) {
1634 dev->dv_flags &= ~DVF_ACTIVE;
1635 rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1636 if (rv)
1637 dev->dv_flags = oflags;
1638 }
1639 return (rv);
1640 }
1641
1642 /*
1643 * Defer the configuration of the specified device until all
1644 * of its parent's devices have been attached.
1645 */
1646 void
1647 config_defer(device_t dev, void (*func)(device_t))
1648 {
1649 struct deferred_config *dc;
1650
1651 if (dev->dv_parent == NULL)
1652 panic("config_defer: can't defer config of a root device");
1653
1654 #ifdef DIAGNOSTIC
1655 for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1656 dc = TAILQ_NEXT(dc, dc_queue)) {
1657 if (dc->dc_dev == dev)
1658 panic("config_defer: deferred twice");
1659 }
1660 #endif
1661
1662 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1663 if (dc == NULL)
1664 panic("config_defer: unable to allocate callback");
1665
1666 dc->dc_dev = dev;
1667 dc->dc_func = func;
1668 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1669 config_pending_incr();
1670 }
1671
1672 /*
1673 * Defer some autoconfiguration for a device until after interrupts
1674 * are enabled.
1675 */
1676 void
1677 config_interrupts(device_t dev, void (*func)(device_t))
1678 {
1679 struct deferred_config *dc;
1680
1681 /*
1682 * If interrupts are enabled, callback now.
1683 */
1684 if (cold == 0) {
1685 (*func)(dev);
1686 return;
1687 }
1688
1689 #ifdef DIAGNOSTIC
1690 for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1691 dc = TAILQ_NEXT(dc, dc_queue)) {
1692 if (dc->dc_dev == dev)
1693 panic("config_interrupts: deferred twice");
1694 }
1695 #endif
1696
1697 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1698 if (dc == NULL)
1699 panic("config_interrupts: unable to allocate callback");
1700
1701 dc->dc_dev = dev;
1702 dc->dc_func = func;
1703 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1704 config_pending_incr();
1705 }
1706
1707 /*
1708 * Process a deferred configuration queue.
1709 */
1710 static void
1711 config_process_deferred(struct deferred_config_head *queue,
1712 device_t parent)
1713 {
1714 struct deferred_config *dc, *ndc;
1715
1716 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1717 ndc = TAILQ_NEXT(dc, dc_queue);
1718 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1719 TAILQ_REMOVE(queue, dc, dc_queue);
1720 (*dc->dc_func)(dc->dc_dev);
1721 kmem_free(dc, sizeof(*dc));
1722 config_pending_decr();
1723 }
1724 }
1725 }
1726
1727 /*
1728 * Manipulate the config_pending semaphore.
1729 */
1730 void
1731 config_pending_incr(void)
1732 {
1733
1734 mutex_enter(&config_misc_lock);
1735 config_pending++;
1736 mutex_exit(&config_misc_lock);
1737 }
1738
1739 void
1740 config_pending_decr(void)
1741 {
1742
1743 #ifdef DIAGNOSTIC
1744 if (config_pending == 0)
1745 panic("config_pending_decr: config_pending == 0");
1746 #endif
1747 mutex_enter(&config_misc_lock);
1748 config_pending--;
1749 if (config_pending == 0)
1750 cv_broadcast(&config_misc_cv);
1751 mutex_exit(&config_misc_lock);
1752 }
1753
1754 /*
1755 * Register a "finalization" routine. Finalization routines are
1756 * called iteratively once all real devices have been found during
1757 * autoconfiguration, for as long as any one finalizer has done
1758 * any work.
1759 */
1760 int
1761 config_finalize_register(device_t dev, int (*fn)(device_t))
1762 {
1763 struct finalize_hook *f;
1764
1765 /*
1766 * If finalization has already been done, invoke the
1767 * callback function now.
1768 */
1769 if (config_finalize_done) {
1770 while ((*fn)(dev) != 0)
1771 /* loop */ ;
1772 }
1773
1774 /* Ensure this isn't already on the list. */
1775 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1776 if (f->f_func == fn && f->f_dev == dev)
1777 return (EEXIST);
1778 }
1779
1780 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1781 f->f_func = fn;
1782 f->f_dev = dev;
1783 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1784
1785 return (0);
1786 }
1787
1788 void
1789 config_finalize(void)
1790 {
1791 struct finalize_hook *f;
1792 struct pdevinit *pdev;
1793 extern struct pdevinit pdevinit[];
1794 int errcnt, rv;
1795
1796 /*
1797 * Now that device driver threads have been created, wait for
1798 * them to finish any deferred autoconfiguration.
1799 */
1800 mutex_enter(&config_misc_lock);
1801 while (config_pending != 0)
1802 cv_wait(&config_misc_cv, &config_misc_lock);
1803 mutex_exit(&config_misc_lock);
1804
1805 KERNEL_LOCK(1, NULL);
1806
1807 /* Attach pseudo-devices. */
1808 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1809 (*pdev->pdev_attach)(pdev->pdev_count);
1810
1811 /* Run the hooks until none of them does any work. */
1812 do {
1813 rv = 0;
1814 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1815 rv |= (*f->f_func)(f->f_dev);
1816 } while (rv != 0);
1817
1818 config_finalize_done = 1;
1819
1820 /* Now free all the hooks. */
1821 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1822 TAILQ_REMOVE(&config_finalize_list, f, f_list);
1823 kmem_free(f, sizeof(*f));
1824 }
1825
1826 KERNEL_UNLOCK_ONE(NULL);
1827
1828 errcnt = aprint_get_error_count();
1829 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1830 (boothowto & AB_VERBOSE) == 0) {
1831 if (config_do_twiddle) {
1832 config_do_twiddle = 0;
1833 printf_nolog(" done.\n");
1834 }
1835 if (errcnt != 0) {
1836 printf("WARNING: %d error%s while detecting hardware; "
1837 "check system log.\n", errcnt,
1838 errcnt == 1 ? "" : "s");
1839 }
1840 }
1841 }
1842
1843 /*
1844 * device_lookup:
1845 *
1846 * Look up a device instance for a given driver.
1847 */
1848 device_t
1849 device_lookup(cfdriver_t cd, int unit)
1850 {
1851
1852 if (unit < 0 || unit >= cd->cd_ndevs)
1853 return (NULL);
1854
1855 return (cd->cd_devs[unit]);
1856 }
1857
1858 /*
1859 * device_lookup:
1860 *
1861 * Look up a device instance for a given driver.
1862 */
1863 void *
1864 device_lookup_private(cfdriver_t cd, int unit)
1865 {
1866 device_t dv;
1867
1868 if (unit < 0 || unit >= cd->cd_ndevs)
1869 return NULL;
1870
1871 if ((dv = cd->cd_devs[unit]) == NULL)
1872 return NULL;
1873
1874 return dv->dv_private;
1875 }
1876
1877 /*
1878 * Accessor functions for the device_t type.
1879 */
1880 devclass_t
1881 device_class(device_t dev)
1882 {
1883
1884 return (dev->dv_class);
1885 }
1886
1887 cfdata_t
1888 device_cfdata(device_t dev)
1889 {
1890
1891 return (dev->dv_cfdata);
1892 }
1893
1894 cfdriver_t
1895 device_cfdriver(device_t dev)
1896 {
1897
1898 return (dev->dv_cfdriver);
1899 }
1900
1901 cfattach_t
1902 device_cfattach(device_t dev)
1903 {
1904
1905 return (dev->dv_cfattach);
1906 }
1907
1908 int
1909 device_unit(device_t dev)
1910 {
1911
1912 return (dev->dv_unit);
1913 }
1914
1915 const char *
1916 device_xname(device_t dev)
1917 {
1918
1919 return (dev->dv_xname);
1920 }
1921
1922 device_t
1923 device_parent(device_t dev)
1924 {
1925
1926 return (dev->dv_parent);
1927 }
1928
1929 bool
1930 device_is_active(device_t dev)
1931 {
1932 int active_flags;
1933
1934 active_flags = DVF_ACTIVE;
1935 active_flags |= DVF_CLASS_SUSPENDED;
1936 active_flags |= DVF_DRIVER_SUSPENDED;
1937 active_flags |= DVF_BUS_SUSPENDED;
1938
1939 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1940 }
1941
1942 bool
1943 device_is_enabled(device_t dev)
1944 {
1945 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1946 }
1947
1948 bool
1949 device_has_power(device_t dev)
1950 {
1951 int active_flags;
1952
1953 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1954
1955 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1956 }
1957
1958 int
1959 device_locator(device_t dev, u_int locnum)
1960 {
1961
1962 KASSERT(dev->dv_locators != NULL);
1963 return (dev->dv_locators[locnum]);
1964 }
1965
1966 void *
1967 device_private(device_t dev)
1968 {
1969
1970 /*
1971 * The reason why device_private(NULL) is allowed is to simplify the
1972 * work of a lot of userspace request handlers (i.e., c/bdev
1973 * handlers) which grab cfdriver_t->cd_units[n].
1974 * It avoids having them test for it to be NULL and only then calling
1975 * device_private.
1976 */
1977 return dev == NULL ? NULL : dev->dv_private;
1978 }
1979
1980 prop_dictionary_t
1981 device_properties(device_t dev)
1982 {
1983
1984 return (dev->dv_properties);
1985 }
1986
1987 /*
1988 * device_is_a:
1989 *
1990 * Returns true if the device is an instance of the specified
1991 * driver.
1992 */
1993 bool
1994 device_is_a(device_t dev, const char *dname)
1995 {
1996
1997 return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
1998 }
1999
2000 /*
2001 * device_find_by_xname:
2002 *
2003 * Returns the device of the given name or NULL if it doesn't exist.
2004 */
2005 device_t
2006 device_find_by_xname(const char *name)
2007 {
2008 device_t dv;
2009 deviter_t di;
2010
2011 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2012 if (strcmp(device_xname(dv), name) == 0)
2013 break;
2014 }
2015 deviter_release(&di);
2016
2017 return dv;
2018 }
2019
2020 /*
2021 * device_find_by_driver_unit:
2022 *
2023 * Returns the device of the given driver name and unit or
2024 * NULL if it doesn't exist.
2025 */
2026 device_t
2027 device_find_by_driver_unit(const char *name, int unit)
2028 {
2029 struct cfdriver *cd;
2030
2031 if ((cd = config_cfdriver_lookup(name)) == NULL)
2032 return NULL;
2033 return device_lookup(cd, unit);
2034 }
2035
2036 /*
2037 * Power management related functions.
2038 */
2039
2040 bool
2041 device_pmf_is_registered(device_t dev)
2042 {
2043 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2044 }
2045
2046 bool
2047 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
2048 {
2049 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2050 return true;
2051 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2052 return false;
2053 if (*dev->dv_driver_suspend != NULL &&
2054 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
2055 return false;
2056
2057 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2058 return true;
2059 }
2060
2061 bool
2062 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
2063 {
2064 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2065 return true;
2066 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2067 return false;
2068 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2069 return false;
2070 if (*dev->dv_driver_resume != NULL &&
2071 !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2072 return false;
2073
2074 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2075 return true;
2076 }
2077
2078 bool
2079 device_pmf_driver_shutdown(device_t dev, int how)
2080 {
2081
2082 if (*dev->dv_driver_shutdown != NULL &&
2083 !(*dev->dv_driver_shutdown)(dev, how))
2084 return false;
2085 return true;
2086 }
2087
2088 bool
2089 device_pmf_driver_register(device_t dev,
2090 bool (*suspend)(device_t PMF_FN_PROTO),
2091 bool (*resume)(device_t PMF_FN_PROTO),
2092 bool (*shutdown)(device_t, int))
2093 {
2094 pmf_private_t *pp;
2095
2096 if ((pp = kmem_zalloc(sizeof(*pp), KM_SLEEP)) == NULL)
2097 return false;
2098 mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
2099 cv_init(&pp->pp_cv, "pmfsusp");
2100 dev->dv_pmf_private = pp;
2101
2102 dev->dv_driver_suspend = suspend;
2103 dev->dv_driver_resume = resume;
2104 dev->dv_driver_shutdown = shutdown;
2105 dev->dv_flags |= DVF_POWER_HANDLERS;
2106 return true;
2107 }
2108
2109 static const char *
2110 curlwp_name(void)
2111 {
2112 if (curlwp->l_name != NULL)
2113 return curlwp->l_name;
2114 else
2115 return curlwp->l_proc->p_comm;
2116 }
2117
2118 void
2119 device_pmf_driver_deregister(device_t dev)
2120 {
2121 pmf_private_t *pp = dev->dv_pmf_private;
2122
2123 /* XXX avoid crash in case we are not initialized */
2124 if (!pp)
2125 return;
2126
2127 dev->dv_driver_suspend = NULL;
2128 dev->dv_driver_resume = NULL;
2129
2130 mutex_enter(&pp->pp_mtx);
2131 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2132 while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
2133 /* Wake a thread that waits for the lock. That
2134 * thread will fail to acquire the lock, and then
2135 * it will wake the next thread that waits for the
2136 * lock, or else it will wake us.
2137 */
2138 cv_signal(&pp->pp_cv);
2139 pmflock_debug(dev, __func__, __LINE__);
2140 cv_wait(&pp->pp_cv, &pp->pp_mtx);
2141 pmflock_debug(dev, __func__, __LINE__);
2142 }
2143 dev->dv_pmf_private = NULL;
2144 mutex_exit(&pp->pp_mtx);
2145
2146 cv_destroy(&pp->pp_cv);
2147 mutex_destroy(&pp->pp_mtx);
2148 kmem_free(pp, sizeof(*pp));
2149 }
2150
2151 bool
2152 device_pmf_driver_child_register(device_t dev)
2153 {
2154 device_t parent = device_parent(dev);
2155
2156 if (parent == NULL || parent->dv_driver_child_register == NULL)
2157 return true;
2158 return (*parent->dv_driver_child_register)(dev);
2159 }
2160
2161 void
2162 device_pmf_driver_set_child_register(device_t dev,
2163 bool (*child_register)(device_t))
2164 {
2165 dev->dv_driver_child_register = child_register;
2166 }
2167
2168 void
2169 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2170 {
2171 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2172 if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2173 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2174 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2175 }
2176
2177 bool
2178 device_is_self_suspended(device_t dev)
2179 {
2180 return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2181 }
2182
2183 void
2184 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2185 {
2186 bool self = (flags & PMF_F_SELF) != 0;
2187
2188 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2189
2190 if (!self)
2191 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2192 else if (device_is_active(dev))
2193 dev->dv_flags |= DVF_SELF_SUSPENDED;
2194
2195 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2196 }
2197
2198 static void
2199 pmflock_debug(device_t dev, const char *func, int line)
2200 {
2201 pmf_private_t *pp = device_pmf_private(dev);
2202
2203 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
2204 func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
2205 dev->dv_flags);
2206 }
2207
2208 static void
2209 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2210 {
2211 pmf_private_t *pp = device_pmf_private(dev);
2212
2213 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
2214 "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2215 pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
2216 }
2217
2218 static bool
2219 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2220 {
2221 pmf_private_t *pp = device_pmf_private(dev);
2222
2223 while (device_pmf_is_registered(dev) &&
2224 pp->pp_nlock > 0 && pp->pp_holder != curlwp) {
2225 pp->pp_nwait++;
2226 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2227 cv_wait(&pp->pp_cv, &pp->pp_mtx);
2228 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2229 pp->pp_nwait--;
2230 }
2231 if (!device_pmf_is_registered(dev)) {
2232 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2233 /* We could not acquire the lock, but some other thread may
2234 * wait for it, also. Wake that thread.
2235 */
2236 cv_signal(&pp->pp_cv);
2237 return false;
2238 }
2239 pp->pp_nlock++;
2240 pp->pp_holder = curlwp;
2241 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2242 return true;
2243 }
2244
2245 bool
2246 device_pmf_lock(device_t dev PMF_FN_ARGS)
2247 {
2248 bool rc;
2249 pmf_private_t *pp = device_pmf_private(dev);
2250
2251 mutex_enter(&pp->pp_mtx);
2252 rc = device_pmf_lock1(dev PMF_FN_CALL);
2253 mutex_exit(&pp->pp_mtx);
2254
2255 return rc;
2256 }
2257
2258 void
2259 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2260 {
2261 pmf_private_t *pp = device_pmf_private(dev);
2262
2263 KASSERT(pp->pp_nlock > 0);
2264 mutex_enter(&pp->pp_mtx);
2265 if (--pp->pp_nlock == 0)
2266 pp->pp_holder = NULL;
2267 cv_signal(&pp->pp_cv);
2268 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2269 mutex_exit(&pp->pp_mtx);
2270 }
2271
2272 void *
2273 device_pmf_private(device_t dev)
2274 {
2275 return dev->dv_pmf_private;
2276 }
2277
2278 void *
2279 device_pmf_bus_private(device_t dev)
2280 {
2281 return dev->dv_bus_private;
2282 }
2283
2284 bool
2285 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2286 {
2287 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2288 return true;
2289 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2290 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2291 return false;
2292 if (*dev->dv_bus_suspend != NULL &&
2293 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2294 return false;
2295
2296 dev->dv_flags |= DVF_BUS_SUSPENDED;
2297 return true;
2298 }
2299
2300 bool
2301 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2302 {
2303 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2304 return true;
2305 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2306 return false;
2307 if (*dev->dv_bus_resume != NULL &&
2308 !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2309 return false;
2310
2311 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2312 return true;
2313 }
2314
2315 bool
2316 device_pmf_bus_shutdown(device_t dev, int how)
2317 {
2318
2319 if (*dev->dv_bus_shutdown != NULL &&
2320 !(*dev->dv_bus_shutdown)(dev, how))
2321 return false;
2322 return true;
2323 }
2324
2325 void
2326 device_pmf_bus_register(device_t dev, void *priv,
2327 bool (*suspend)(device_t PMF_FN_PROTO),
2328 bool (*resume)(device_t PMF_FN_PROTO),
2329 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2330 {
2331 dev->dv_bus_private = priv;
2332 dev->dv_bus_resume = resume;
2333 dev->dv_bus_suspend = suspend;
2334 dev->dv_bus_shutdown = shutdown;
2335 dev->dv_bus_deregister = deregister;
2336 }
2337
2338 void
2339 device_pmf_bus_deregister(device_t dev)
2340 {
2341 if (dev->dv_bus_deregister == NULL)
2342 return;
2343 (*dev->dv_bus_deregister)(dev);
2344 dev->dv_bus_private = NULL;
2345 dev->dv_bus_suspend = NULL;
2346 dev->dv_bus_resume = NULL;
2347 dev->dv_bus_deregister = NULL;
2348 }
2349
2350 void *
2351 device_pmf_class_private(device_t dev)
2352 {
2353 return dev->dv_class_private;
2354 }
2355
2356 bool
2357 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2358 {
2359 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2360 return true;
2361 if (*dev->dv_class_suspend != NULL &&
2362 !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2363 return false;
2364
2365 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2366 return true;
2367 }
2368
2369 bool
2370 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2371 {
2372 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2373 return true;
2374 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2375 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2376 return false;
2377 if (*dev->dv_class_resume != NULL &&
2378 !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2379 return false;
2380
2381 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2382 return true;
2383 }
2384
2385 void
2386 device_pmf_class_register(device_t dev, void *priv,
2387 bool (*suspend)(device_t PMF_FN_PROTO),
2388 bool (*resume)(device_t PMF_FN_PROTO),
2389 void (*deregister)(device_t))
2390 {
2391 dev->dv_class_private = priv;
2392 dev->dv_class_suspend = suspend;
2393 dev->dv_class_resume = resume;
2394 dev->dv_class_deregister = deregister;
2395 }
2396
2397 void
2398 device_pmf_class_deregister(device_t dev)
2399 {
2400 if (dev->dv_class_deregister == NULL)
2401 return;
2402 (*dev->dv_class_deregister)(dev);
2403 dev->dv_class_private = NULL;
2404 dev->dv_class_suspend = NULL;
2405 dev->dv_class_resume = NULL;
2406 dev->dv_class_deregister = NULL;
2407 }
2408
2409 bool
2410 device_active(device_t dev, devactive_t type)
2411 {
2412 size_t i;
2413
2414 if (dev->dv_activity_count == 0)
2415 return false;
2416
2417 for (i = 0; i < dev->dv_activity_count; ++i) {
2418 if (dev->dv_activity_handlers[i] == NULL)
2419 break;
2420 (*dev->dv_activity_handlers[i])(dev, type);
2421 }
2422
2423 return true;
2424 }
2425
2426 bool
2427 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2428 {
2429 void (**new_handlers)(device_t, devactive_t);
2430 void (**old_handlers)(device_t, devactive_t);
2431 size_t i, old_size, new_size;
2432 int s;
2433
2434 old_handlers = dev->dv_activity_handlers;
2435 old_size = dev->dv_activity_count;
2436
2437 for (i = 0; i < old_size; ++i) {
2438 KASSERT(old_handlers[i] != handler);
2439 if (old_handlers[i] == NULL) {
2440 old_handlers[i] = handler;
2441 return true;
2442 }
2443 }
2444
2445 new_size = old_size + 4;
2446 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2447
2448 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2449 new_handlers[old_size] = handler;
2450 memset(new_handlers + old_size + 1, 0,
2451 sizeof(int [new_size - (old_size+1)]));
2452
2453 s = splhigh();
2454 dev->dv_activity_count = new_size;
2455 dev->dv_activity_handlers = new_handlers;
2456 splx(s);
2457
2458 if (old_handlers != NULL)
2459 kmem_free(old_handlers, sizeof(void * [old_size]));
2460
2461 return true;
2462 }
2463
2464 void
2465 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2466 {
2467 void (**old_handlers)(device_t, devactive_t);
2468 size_t i, old_size;
2469 int s;
2470
2471 old_handlers = dev->dv_activity_handlers;
2472 old_size = dev->dv_activity_count;
2473
2474 for (i = 0; i < old_size; ++i) {
2475 if (old_handlers[i] == handler)
2476 break;
2477 if (old_handlers[i] == NULL)
2478 return; /* XXX panic? */
2479 }
2480
2481 if (i == old_size)
2482 return; /* XXX panic? */
2483
2484 for (; i < old_size - 1; ++i) {
2485 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2486 continue;
2487
2488 if (i == 0) {
2489 s = splhigh();
2490 dev->dv_activity_count = 0;
2491 dev->dv_activity_handlers = NULL;
2492 splx(s);
2493 kmem_free(old_handlers, sizeof(void *[old_size]));
2494 }
2495 return;
2496 }
2497 old_handlers[i] = NULL;
2498 }
2499
2500 /*
2501 * Device Iteration
2502 *
2503 * deviter_t: a device iterator. Holds state for a "walk" visiting
2504 * each device_t's in the device tree.
2505 *
2506 * deviter_init(di, flags): initialize the device iterator `di'
2507 * to "walk" the device tree. deviter_next(di) will return
2508 * the first device_t in the device tree, or NULL if there are
2509 * no devices.
2510 *
2511 * `flags' is one or more of DEVITER_F_RW, indicating that the
2512 * caller intends to modify the device tree by calling
2513 * config_detach(9) on devices in the order that the iterator
2514 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2515 * nearest the "root" of the device tree to be returned, first;
2516 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2517 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2518 * indicating both that deviter_init() should not respect any
2519 * locks on the device tree, and that deviter_next(di) may run
2520 * in more than one LWP before the walk has finished.
2521 *
2522 * Only one DEVITER_F_RW iterator may be in the device tree at
2523 * once.
2524 *
2525 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2526 *
2527 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2528 * DEVITER_F_LEAVES_FIRST are used in combination.
2529 *
2530 * deviter_first(di, flags): initialize the device iterator `di'
2531 * and return the first device_t in the device tree, or NULL
2532 * if there are no devices. The statement
2533 *
2534 * dv = deviter_first(di);
2535 *
2536 * is shorthand for
2537 *
2538 * deviter_init(di);
2539 * dv = deviter_next(di);
2540 *
2541 * deviter_next(di): return the next device_t in the device tree,
2542 * or NULL if there are no more devices. deviter_next(di)
2543 * is undefined if `di' was not initialized with deviter_init() or
2544 * deviter_first().
2545 *
2546 * deviter_release(di): stops iteration (subsequent calls to
2547 * deviter_next() will return NULL), releases any locks and
2548 * resources held by the device iterator.
2549 *
2550 * Device iteration does not return device_t's in any particular
2551 * order. An iterator will never return the same device_t twice.
2552 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2553 * is called repeatedly on the same `di', it will eventually return
2554 * NULL. It is ok to attach/detach devices during device iteration.
2555 */
2556 void
2557 deviter_init(deviter_t *di, deviter_flags_t flags)
2558 {
2559 device_t dv;
2560 bool rw;
2561
2562 mutex_enter(&alldevs_mtx);
2563 if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2564 flags |= DEVITER_F_RW;
2565 alldevs_nwrite++;
2566 alldevs_writer = NULL;
2567 alldevs_nread = 0;
2568 } else {
2569 rw = (flags & DEVITER_F_RW) != 0;
2570
2571 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2572 ;
2573 else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2574 (rw && alldevs_nread != 0))
2575 cv_wait(&alldevs_cv, &alldevs_mtx);
2576
2577 if (rw) {
2578 if (alldevs_nwrite++ == 0)
2579 alldevs_writer = curlwp;
2580 } else
2581 alldevs_nread++;
2582 }
2583 mutex_exit(&alldevs_mtx);
2584
2585 memset(di, 0, sizeof(*di));
2586
2587 di->di_flags = flags;
2588
2589 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2590 case DEVITER_F_LEAVES_FIRST:
2591 TAILQ_FOREACH(dv, &alldevs, dv_list)
2592 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2593 break;
2594 case DEVITER_F_ROOT_FIRST:
2595 TAILQ_FOREACH(dv, &alldevs, dv_list)
2596 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2597 break;
2598 default:
2599 break;
2600 }
2601
2602 deviter_reinit(di);
2603 }
2604
2605 static void
2606 deviter_reinit(deviter_t *di)
2607 {
2608 if ((di->di_flags & DEVITER_F_RW) != 0)
2609 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2610 else
2611 di->di_prev = TAILQ_FIRST(&alldevs);
2612 }
2613
2614 device_t
2615 deviter_first(deviter_t *di, deviter_flags_t flags)
2616 {
2617 deviter_init(di, flags);
2618 return deviter_next(di);
2619 }
2620
2621 static device_t
2622 deviter_next1(deviter_t *di)
2623 {
2624 device_t dv;
2625
2626 dv = di->di_prev;
2627
2628 if (dv == NULL)
2629 ;
2630 else if ((di->di_flags & DEVITER_F_RW) != 0)
2631 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2632 else
2633 di->di_prev = TAILQ_NEXT(dv, dv_list);
2634
2635 return dv;
2636 }
2637
2638 device_t
2639 deviter_next(deviter_t *di)
2640 {
2641 device_t dv = NULL;
2642
2643 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2644 case 0:
2645 return deviter_next1(di);
2646 case DEVITER_F_LEAVES_FIRST:
2647 while (di->di_curdepth >= 0) {
2648 if ((dv = deviter_next1(di)) == NULL) {
2649 di->di_curdepth--;
2650 deviter_reinit(di);
2651 } else if (dv->dv_depth == di->di_curdepth)
2652 break;
2653 }
2654 return dv;
2655 case DEVITER_F_ROOT_FIRST:
2656 while (di->di_curdepth <= di->di_maxdepth) {
2657 if ((dv = deviter_next1(di)) == NULL) {
2658 di->di_curdepth++;
2659 deviter_reinit(di);
2660 } else if (dv->dv_depth == di->di_curdepth)
2661 break;
2662 }
2663 return dv;
2664 default:
2665 return NULL;
2666 }
2667 }
2668
2669 void
2670 deviter_release(deviter_t *di)
2671 {
2672 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2673
2674 mutex_enter(&alldevs_mtx);
2675 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2676 --alldevs_nwrite;
2677 else {
2678
2679 if (rw) {
2680 if (--alldevs_nwrite == 0)
2681 alldevs_writer = NULL;
2682 } else
2683 --alldevs_nread;
2684
2685 cv_signal(&alldevs_cv);
2686 }
2687 mutex_exit(&alldevs_mtx);
2688 }
2689