subr_autoconf.c revision 1.171 1 /* $NetBSD: subr_autoconf.c,v 1.171 2009/03/25 21:43:42 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.171 2009/03/25 21:43:42 dyoung Exp $");
81
82 #include "opt_ddb.h"
83 #include "drvctl.h"
84
85 #include <sys/param.h>
86 #include <sys/device.h>
87 #include <sys/disklabel.h>
88 #include <sys/conf.h>
89 #include <sys/kauth.h>
90 #include <sys/malloc.h>
91 #include <sys/kmem.h>
92 #include <sys/systm.h>
93 #include <sys/kernel.h>
94 #include <sys/errno.h>
95 #include <sys/proc.h>
96 #include <sys/reboot.h>
97 #include <sys/kthread.h>
98 #include <sys/buf.h>
99 #include <sys/dirent.h>
100 #include <sys/vnode.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/mutex.h>
108 #include <sys/condvar.h>
109 #include <sys/devmon.h>
110 #include <sys/cpu.h>
111
112 #include <sys/disk.h>
113
114 #include <machine/limits.h>
115
116 #include "opt_userconf.h"
117 #ifdef USERCONF
118 #include <sys/userconf.h>
119 #endif
120
121 #ifdef __i386__
122 #include "opt_splash.h"
123 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
124 #include <dev/splash/splash.h>
125 extern struct splash_progress *splash_progress_state;
126 #endif
127 #endif
128
129 /*
130 * Autoconfiguration subroutines.
131 */
132
133 typedef struct pmf_private {
134 int pp_nwait;
135 int pp_nlock;
136 lwp_t *pp_holder;
137 kmutex_t pp_mtx;
138 kcondvar_t pp_cv;
139 } pmf_private_t;
140
141 /*
142 * ioconf.c exports exactly two names: cfdata and cfroots. All system
143 * devices and drivers are found via these tables.
144 */
145 extern struct cfdata cfdata[];
146 extern const short cfroots[];
147
148 /*
149 * List of all cfdriver structures. We use this to detect duplicates
150 * when other cfdrivers are loaded.
151 */
152 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
153 extern struct cfdriver * const cfdriver_list_initial[];
154
155 /*
156 * Initial list of cfattach's.
157 */
158 extern const struct cfattachinit cfattachinit[];
159
160 /*
161 * List of cfdata tables. We always have one such list -- the one
162 * built statically when the kernel was configured.
163 */
164 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
165 static struct cftable initcftable;
166
167 #define ROOT ((device_t)NULL)
168
169 struct matchinfo {
170 cfsubmatch_t fn;
171 struct device *parent;
172 const int *locs;
173 void *aux;
174 struct cfdata *match;
175 int pri;
176 };
177
178 static char *number(char *, int);
179 static void mapply(struct matchinfo *, cfdata_t);
180 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
181 static void config_devdealloc(device_t);
182 static void config_makeroom(int, struct cfdriver *);
183 static void config_devlink(device_t);
184 static void config_devunlink(device_t);
185
186 static void pmflock_debug(device_t, const char *, int);
187 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
188
189 static device_t deviter_next1(deviter_t *);
190 static void deviter_reinit(deviter_t *);
191
192 struct deferred_config {
193 TAILQ_ENTRY(deferred_config) dc_queue;
194 device_t dc_dev;
195 void (*dc_func)(device_t);
196 };
197
198 TAILQ_HEAD(deferred_config_head, deferred_config);
199
200 struct deferred_config_head deferred_config_queue =
201 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
202 struct deferred_config_head interrupt_config_queue =
203 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
204 int interrupt_config_threads = 8;
205
206 static void config_process_deferred(struct deferred_config_head *, device_t);
207
208 /* Hooks to finalize configuration once all real devices have been found. */
209 struct finalize_hook {
210 TAILQ_ENTRY(finalize_hook) f_list;
211 int (*f_func)(device_t);
212 device_t f_dev;
213 };
214 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
215 TAILQ_HEAD_INITIALIZER(config_finalize_list);
216 static int config_finalize_done;
217
218 /* list of all devices */
219 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
220 kcondvar_t alldevs_cv;
221 kmutex_t alldevs_mtx;
222 static int alldevs_nread = 0;
223 static int alldevs_nwrite = 0;
224 static lwp_t *alldevs_writer = NULL;
225
226 static int config_pending; /* semaphore for mountroot */
227 static kmutex_t config_misc_lock;
228 static kcondvar_t config_misc_cv;
229
230 #define STREQ(s1, s2) \
231 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
232
233 static int config_initialized; /* config_init() has been called. */
234
235 static int config_do_twiddle;
236
237 struct vnode *
238 opendisk(struct device *dv)
239 {
240 int bmajor, bminor;
241 struct vnode *tmpvn;
242 int error;
243 dev_t dev;
244
245 /*
246 * Lookup major number for disk block device.
247 */
248 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
249 if (bmajor == -1)
250 return NULL;
251
252 bminor = minor(device_unit(dv));
253 /*
254 * Fake a temporary vnode for the disk, open it, and read
255 * and hash the sectors.
256 */
257 dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
258 MAKEDISKDEV(bmajor, bminor, RAW_PART);
259 if (bdevvp(dev, &tmpvn))
260 panic("%s: can't alloc vnode for %s", __func__,
261 device_xname(dv));
262 error = VOP_OPEN(tmpvn, FREAD, NOCRED);
263 if (error) {
264 #ifndef DEBUG
265 /*
266 * Ignore errors caused by missing device, partition,
267 * or medium.
268 */
269 if (error != ENXIO && error != ENODEV)
270 #endif
271 printf("%s: can't open dev %s (%d)\n",
272 __func__, device_xname(dv), error);
273 vput(tmpvn);
274 return NULL;
275 }
276
277 return tmpvn;
278 }
279
280 int
281 config_handle_wedges(struct device *dv, int par)
282 {
283 struct dkwedge_list wl;
284 struct dkwedge_info *wi;
285 struct vnode *vn;
286 char diskname[16];
287 int i, error;
288
289 if ((vn = opendisk(dv)) == NULL)
290 return -1;
291
292 wl.dkwl_bufsize = sizeof(*wi) * 16;
293 wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
294
295 error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
296 VOP_CLOSE(vn, FREAD, NOCRED);
297 vput(vn);
298 if (error) {
299 #ifdef DEBUG_WEDGE
300 printf("%s: List wedges returned %d\n",
301 device_xname(dv), error);
302 #endif
303 free(wi, M_TEMP);
304 return -1;
305 }
306
307 #ifdef DEBUG_WEDGE
308 printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
309 wl.dkwl_nwedges, wl.dkwl_ncopied);
310 #endif
311 snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
312 par + 'a');
313
314 for (i = 0; i < wl.dkwl_ncopied; i++) {
315 #ifdef DEBUG_WEDGE
316 printf("%s: Looking for %s in %s\n",
317 device_xname(dv), diskname, wi[i].dkw_wname);
318 #endif
319 if (strcmp(wi[i].dkw_wname, diskname) == 0)
320 break;
321 }
322
323 if (i == wl.dkwl_ncopied) {
324 #ifdef DEBUG_WEDGE
325 printf("%s: Cannot find wedge with parent %s\n",
326 device_xname(dv), diskname);
327 #endif
328 free(wi, M_TEMP);
329 return -1;
330 }
331
332 #ifdef DEBUG_WEDGE
333 printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
334 device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
335 (unsigned long long)wi[i].dkw_offset,
336 (unsigned long long)wi[i].dkw_size);
337 #endif
338 dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
339 free(wi, M_TEMP);
340 return 0;
341 }
342
343 /*
344 * Initialize the autoconfiguration data structures. Normally this
345 * is done by configure(), but some platforms need to do this very
346 * early (to e.g. initialize the console).
347 */
348 void
349 config_init(void)
350 {
351 const struct cfattachinit *cfai;
352 int i, j;
353
354 if (config_initialized)
355 return;
356
357 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
358 cv_init(&alldevs_cv, "alldevs");
359
360 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
361 cv_init(&config_misc_cv, "cfgmisc");
362
363 /* allcfdrivers is statically initialized. */
364 for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
365 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
366 panic("configure: duplicate `%s' drivers",
367 cfdriver_list_initial[i]->cd_name);
368 }
369
370 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
371 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
372 if (config_cfattach_attach(cfai->cfai_name,
373 cfai->cfai_list[j]) != 0)
374 panic("configure: duplicate `%s' attachment "
375 "of `%s' driver",
376 cfai->cfai_list[j]->ca_name,
377 cfai->cfai_name);
378 }
379 }
380
381 initcftable.ct_cfdata = cfdata;
382 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
383
384 config_initialized = 1;
385 }
386
387 void
388 config_deferred(device_t dev)
389 {
390 config_process_deferred(&deferred_config_queue, dev);
391 config_process_deferred(&interrupt_config_queue, dev);
392 }
393
394 static void
395 config_interrupts_thread(void *cookie)
396 {
397 struct deferred_config *dc;
398
399 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
400 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
401 (*dc->dc_func)(dc->dc_dev);
402 kmem_free(dc, sizeof(*dc));
403 config_pending_decr();
404 }
405 kthread_exit(0);
406 }
407
408 /*
409 * Configure the system's hardware.
410 */
411 void
412 configure(void)
413 {
414 /* Initialize data structures. */
415 config_init();
416 pmf_init();
417 #if NDRVCTL > 0
418 drvctl_init();
419 #endif
420
421 #ifdef USERCONF
422 if (boothowto & RB_USERCONF)
423 user_config();
424 #endif
425
426 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
427 config_do_twiddle = 1;
428 printf_nolog("Detecting hardware...");
429 }
430
431 /*
432 * Do the machine-dependent portion of autoconfiguration. This
433 * sets the configuration machinery here in motion by "finding"
434 * the root bus. When this function returns, we expect interrupts
435 * to be enabled.
436 */
437 cpu_configure();
438 }
439
440 void
441 configure2(void)
442 {
443 CPU_INFO_ITERATOR cii;
444 struct cpu_info *ci;
445 int i, s;
446
447 /*
448 * Now that we've found all the hardware, start the real time
449 * and statistics clocks.
450 */
451 initclocks();
452
453 cold = 0; /* clocks are running, we're warm now! */
454 s = splsched();
455 curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
456 splx(s);
457
458 /* Boot the secondary processors. */
459 for (CPU_INFO_FOREACH(cii, ci)) {
460 uvm_cpu_attach(ci);
461 }
462 mp_online = true;
463 #if defined(MULTIPROCESSOR)
464 cpu_boot_secondary_processors();
465 #endif
466
467 /* Setup the runqueues and scheduler. */
468 runq_init();
469 sched_init();
470
471 /*
472 * Create threads to call back and finish configuration for
473 * devices that want interrupts enabled.
474 */
475 for (i = 0; i < interrupt_config_threads; i++) {
476 (void)kthread_create(PRI_NONE, 0, NULL,
477 config_interrupts_thread, NULL, NULL, "config");
478 }
479
480 /* Get the threads going and into any sleeps before continuing. */
481 yield();
482 }
483
484 /*
485 * Announce device attach/detach to userland listeners.
486 */
487 static void
488 devmon_report_device(device_t dev, bool isattach)
489 {
490 #if NDRVCTL > 0
491 prop_dictionary_t ev;
492 const char *parent;
493 const char *what;
494 device_t pdev = device_parent(dev);
495
496 ev = prop_dictionary_create();
497 if (ev == NULL)
498 return;
499
500 what = (isattach ? "device-attach" : "device-detach");
501 parent = (pdev == NULL ? "root" : device_xname(pdev));
502 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
503 !prop_dictionary_set_cstring(ev, "parent", parent)) {
504 prop_object_release(ev);
505 return;
506 }
507
508 devmon_insert(what, ev);
509 #endif
510 }
511
512 /*
513 * Add a cfdriver to the system.
514 */
515 int
516 config_cfdriver_attach(struct cfdriver *cd)
517 {
518 struct cfdriver *lcd;
519
520 /* Make sure this driver isn't already in the system. */
521 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
522 if (STREQ(lcd->cd_name, cd->cd_name))
523 return (EEXIST);
524 }
525
526 LIST_INIT(&cd->cd_attach);
527 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
528
529 return (0);
530 }
531
532 /*
533 * Remove a cfdriver from the system.
534 */
535 int
536 config_cfdriver_detach(struct cfdriver *cd)
537 {
538 int i;
539
540 /* Make sure there are no active instances. */
541 for (i = 0; i < cd->cd_ndevs; i++) {
542 if (cd->cd_devs[i] != NULL)
543 return (EBUSY);
544 }
545
546 /* ...and no attachments loaded. */
547 if (LIST_EMPTY(&cd->cd_attach) == 0)
548 return (EBUSY);
549
550 LIST_REMOVE(cd, cd_list);
551
552 KASSERT(cd->cd_devs == NULL);
553
554 return (0);
555 }
556
557 /*
558 * Look up a cfdriver by name.
559 */
560 struct cfdriver *
561 config_cfdriver_lookup(const char *name)
562 {
563 struct cfdriver *cd;
564
565 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
566 if (STREQ(cd->cd_name, name))
567 return (cd);
568 }
569
570 return (NULL);
571 }
572
573 /*
574 * Add a cfattach to the specified driver.
575 */
576 int
577 config_cfattach_attach(const char *driver, struct cfattach *ca)
578 {
579 struct cfattach *lca;
580 struct cfdriver *cd;
581
582 cd = config_cfdriver_lookup(driver);
583 if (cd == NULL)
584 return (ESRCH);
585
586 /* Make sure this attachment isn't already on this driver. */
587 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
588 if (STREQ(lca->ca_name, ca->ca_name))
589 return (EEXIST);
590 }
591
592 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
593
594 return (0);
595 }
596
597 /*
598 * Remove a cfattach from the specified driver.
599 */
600 int
601 config_cfattach_detach(const char *driver, struct cfattach *ca)
602 {
603 struct cfdriver *cd;
604 device_t dev;
605 int i;
606
607 cd = config_cfdriver_lookup(driver);
608 if (cd == NULL)
609 return (ESRCH);
610
611 /* Make sure there are no active instances. */
612 for (i = 0; i < cd->cd_ndevs; i++) {
613 if ((dev = cd->cd_devs[i]) == NULL)
614 continue;
615 if (dev->dv_cfattach == ca)
616 return (EBUSY);
617 }
618
619 LIST_REMOVE(ca, ca_list);
620
621 return (0);
622 }
623
624 /*
625 * Look up a cfattach by name.
626 */
627 static struct cfattach *
628 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
629 {
630 struct cfattach *ca;
631
632 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
633 if (STREQ(ca->ca_name, atname))
634 return (ca);
635 }
636
637 return (NULL);
638 }
639
640 /*
641 * Look up a cfattach by driver/attachment name.
642 */
643 struct cfattach *
644 config_cfattach_lookup(const char *name, const char *atname)
645 {
646 struct cfdriver *cd;
647
648 cd = config_cfdriver_lookup(name);
649 if (cd == NULL)
650 return (NULL);
651
652 return (config_cfattach_lookup_cd(cd, atname));
653 }
654
655 /*
656 * Apply the matching function and choose the best. This is used
657 * a few times and we want to keep the code small.
658 */
659 static void
660 mapply(struct matchinfo *m, cfdata_t cf)
661 {
662 int pri;
663
664 if (m->fn != NULL) {
665 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
666 } else {
667 pri = config_match(m->parent, cf, m->aux);
668 }
669 if (pri > m->pri) {
670 m->match = cf;
671 m->pri = pri;
672 }
673 }
674
675 int
676 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
677 {
678 const struct cfiattrdata *ci;
679 const struct cflocdesc *cl;
680 int nlocs, i;
681
682 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
683 KASSERT(ci);
684 nlocs = ci->ci_loclen;
685 KASSERT(!nlocs || locs);
686 for (i = 0; i < nlocs; i++) {
687 cl = &ci->ci_locdesc[i];
688 /* !cld_defaultstr means no default value */
689 if ((!(cl->cld_defaultstr)
690 || (cf->cf_loc[i] != cl->cld_default))
691 && cf->cf_loc[i] != locs[i])
692 return (0);
693 }
694
695 return (config_match(parent, cf, aux));
696 }
697
698 /*
699 * Helper function: check whether the driver supports the interface attribute
700 * and return its descriptor structure.
701 */
702 static const struct cfiattrdata *
703 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
704 {
705 const struct cfiattrdata * const *cpp;
706
707 if (cd->cd_attrs == NULL)
708 return (0);
709
710 for (cpp = cd->cd_attrs; *cpp; cpp++) {
711 if (STREQ((*cpp)->ci_name, ia)) {
712 /* Match. */
713 return (*cpp);
714 }
715 }
716 return (0);
717 }
718
719 /*
720 * Lookup an interface attribute description by name.
721 * If the driver is given, consider only its supported attributes.
722 */
723 const struct cfiattrdata *
724 cfiattr_lookup(const char *name, const struct cfdriver *cd)
725 {
726 const struct cfdriver *d;
727 const struct cfiattrdata *ia;
728
729 if (cd)
730 return (cfdriver_get_iattr(cd, name));
731
732 LIST_FOREACH(d, &allcfdrivers, cd_list) {
733 ia = cfdriver_get_iattr(d, name);
734 if (ia)
735 return (ia);
736 }
737 return (0);
738 }
739
740 /*
741 * Determine if `parent' is a potential parent for a device spec based
742 * on `cfp'.
743 */
744 static int
745 cfparent_match(const device_t parent, const struct cfparent *cfp)
746 {
747 struct cfdriver *pcd;
748
749 /* We don't match root nodes here. */
750 if (cfp == NULL)
751 return (0);
752
753 pcd = parent->dv_cfdriver;
754 KASSERT(pcd != NULL);
755
756 /*
757 * First, ensure this parent has the correct interface
758 * attribute.
759 */
760 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
761 return (0);
762
763 /*
764 * If no specific parent device instance was specified (i.e.
765 * we're attaching to the attribute only), we're done!
766 */
767 if (cfp->cfp_parent == NULL)
768 return (1);
769
770 /*
771 * Check the parent device's name.
772 */
773 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
774 return (0); /* not the same parent */
775
776 /*
777 * Make sure the unit number matches.
778 */
779 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
780 cfp->cfp_unit == parent->dv_unit)
781 return (1);
782
783 /* Unit numbers don't match. */
784 return (0);
785 }
786
787 /*
788 * Helper for config_cfdata_attach(): check all devices whether it could be
789 * parent any attachment in the config data table passed, and rescan.
790 */
791 static void
792 rescan_with_cfdata(const struct cfdata *cf)
793 {
794 device_t d;
795 const struct cfdata *cf1;
796 deviter_t di;
797
798
799 /*
800 * "alldevs" is likely longer than a modules's cfdata, so make it
801 * the outer loop.
802 */
803 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
804
805 if (!(d->dv_cfattach->ca_rescan))
806 continue;
807
808 for (cf1 = cf; cf1->cf_name; cf1++) {
809
810 if (!cfparent_match(d, cf1->cf_pspec))
811 continue;
812
813 (*d->dv_cfattach->ca_rescan)(d,
814 cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
815 }
816 }
817 deviter_release(&di);
818 }
819
820 /*
821 * Attach a supplemental config data table and rescan potential
822 * parent devices if required.
823 */
824 int
825 config_cfdata_attach(cfdata_t cf, int scannow)
826 {
827 struct cftable *ct;
828
829 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
830 ct->ct_cfdata = cf;
831 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
832
833 if (scannow)
834 rescan_with_cfdata(cf);
835
836 return (0);
837 }
838
839 /*
840 * Helper for config_cfdata_detach: check whether a device is
841 * found through any attachment in the config data table.
842 */
843 static int
844 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
845 {
846 const struct cfdata *cf1;
847
848 for (cf1 = cf; cf1->cf_name; cf1++)
849 if (d->dv_cfdata == cf1)
850 return (1);
851
852 return (0);
853 }
854
855 /*
856 * Detach a supplemental config data table. Detach all devices found
857 * through that table (and thus keeping references to it) before.
858 */
859 int
860 config_cfdata_detach(cfdata_t cf)
861 {
862 device_t d;
863 int error = 0;
864 struct cftable *ct;
865 deviter_t di;
866
867 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
868 d = deviter_next(&di)) {
869 if (!dev_in_cfdata(d, cf))
870 continue;
871 if ((error = config_detach(d, 0)) != 0)
872 break;
873 }
874 deviter_release(&di);
875 if (error) {
876 aprint_error_dev(d, "unable to detach instance\n");
877 return error;
878 }
879
880 TAILQ_FOREACH(ct, &allcftables, ct_list) {
881 if (ct->ct_cfdata == cf) {
882 TAILQ_REMOVE(&allcftables, ct, ct_list);
883 kmem_free(ct, sizeof(*ct));
884 return (0);
885 }
886 }
887
888 /* not found -- shouldn't happen */
889 return (EINVAL);
890 }
891
892 /*
893 * Invoke the "match" routine for a cfdata entry on behalf of
894 * an external caller, usually a "submatch" routine.
895 */
896 int
897 config_match(device_t parent, cfdata_t cf, void *aux)
898 {
899 struct cfattach *ca;
900
901 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
902 if (ca == NULL) {
903 /* No attachment for this entry, oh well. */
904 return (0);
905 }
906
907 return ((*ca->ca_match)(parent, cf, aux));
908 }
909
910 /*
911 * Iterate over all potential children of some device, calling the given
912 * function (default being the child's match function) for each one.
913 * Nonzero returns are matches; the highest value returned is considered
914 * the best match. Return the `found child' if we got a match, or NULL
915 * otherwise. The `aux' pointer is simply passed on through.
916 *
917 * Note that this function is designed so that it can be used to apply
918 * an arbitrary function to all potential children (its return value
919 * can be ignored).
920 */
921 cfdata_t
922 config_search_loc(cfsubmatch_t fn, device_t parent,
923 const char *ifattr, const int *locs, void *aux)
924 {
925 struct cftable *ct;
926 cfdata_t cf;
927 struct matchinfo m;
928
929 KASSERT(config_initialized);
930 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
931
932 m.fn = fn;
933 m.parent = parent;
934 m.locs = locs;
935 m.aux = aux;
936 m.match = NULL;
937 m.pri = 0;
938
939 TAILQ_FOREACH(ct, &allcftables, ct_list) {
940 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
941
942 /* We don't match root nodes here. */
943 if (!cf->cf_pspec)
944 continue;
945
946 /*
947 * Skip cf if no longer eligible, otherwise scan
948 * through parents for one matching `parent', and
949 * try match function.
950 */
951 if (cf->cf_fstate == FSTATE_FOUND)
952 continue;
953 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
954 cf->cf_fstate == FSTATE_DSTAR)
955 continue;
956
957 /*
958 * If an interface attribute was specified,
959 * consider only children which attach to
960 * that attribute.
961 */
962 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
963 continue;
964
965 if (cfparent_match(parent, cf->cf_pspec))
966 mapply(&m, cf);
967 }
968 }
969 return (m.match);
970 }
971
972 cfdata_t
973 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
974 void *aux)
975 {
976
977 return (config_search_loc(fn, parent, ifattr, NULL, aux));
978 }
979
980 /*
981 * Find the given root device.
982 * This is much like config_search, but there is no parent.
983 * Don't bother with multiple cfdata tables; the root node
984 * must always be in the initial table.
985 */
986 cfdata_t
987 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
988 {
989 cfdata_t cf;
990 const short *p;
991 struct matchinfo m;
992
993 m.fn = fn;
994 m.parent = ROOT;
995 m.aux = aux;
996 m.match = NULL;
997 m.pri = 0;
998 m.locs = 0;
999 /*
1000 * Look at root entries for matching name. We do not bother
1001 * with found-state here since only one root should ever be
1002 * searched (and it must be done first).
1003 */
1004 for (p = cfroots; *p >= 0; p++) {
1005 cf = &cfdata[*p];
1006 if (strcmp(cf->cf_name, rootname) == 0)
1007 mapply(&m, cf);
1008 }
1009 return (m.match);
1010 }
1011
1012 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1013
1014 /*
1015 * The given `aux' argument describes a device that has been found
1016 * on the given parent, but not necessarily configured. Locate the
1017 * configuration data for that device (using the submatch function
1018 * provided, or using candidates' cd_match configuration driver
1019 * functions) and attach it, and return true. If the device was
1020 * not configured, call the given `print' function and return 0.
1021 */
1022 device_t
1023 config_found_sm_loc(device_t parent,
1024 const char *ifattr, const int *locs, void *aux,
1025 cfprint_t print, cfsubmatch_t submatch)
1026 {
1027 cfdata_t cf;
1028
1029 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1030 if (splash_progress_state)
1031 splash_progress_update(splash_progress_state);
1032 #endif
1033
1034 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1035 return(config_attach_loc(parent, cf, locs, aux, print));
1036 if (print) {
1037 if (config_do_twiddle)
1038 twiddle();
1039 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1040 }
1041
1042 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1043 if (splash_progress_state)
1044 splash_progress_update(splash_progress_state);
1045 #endif
1046
1047 return (NULL);
1048 }
1049
1050 device_t
1051 config_found_ia(device_t parent, const char *ifattr, void *aux,
1052 cfprint_t print)
1053 {
1054
1055 return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
1056 }
1057
1058 device_t
1059 config_found(device_t parent, void *aux, cfprint_t print)
1060 {
1061
1062 return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
1063 }
1064
1065 /*
1066 * As above, but for root devices.
1067 */
1068 device_t
1069 config_rootfound(const char *rootname, void *aux)
1070 {
1071 cfdata_t cf;
1072
1073 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1074 return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
1075 aprint_error("root device %s not configured\n", rootname);
1076 return (NULL);
1077 }
1078
1079 /* just like sprintf(buf, "%d") except that it works from the end */
1080 static char *
1081 number(char *ep, int n)
1082 {
1083
1084 *--ep = 0;
1085 while (n >= 10) {
1086 *--ep = (n % 10) + '0';
1087 n /= 10;
1088 }
1089 *--ep = n + '0';
1090 return (ep);
1091 }
1092
1093 /*
1094 * Expand the size of the cd_devs array if necessary.
1095 */
1096 static void
1097 config_makeroom(int n, struct cfdriver *cd)
1098 {
1099 int old, new;
1100 device_t *nsp;
1101
1102 if (n < cd->cd_ndevs)
1103 return;
1104
1105 /*
1106 * Need to expand the array.
1107 */
1108 old = cd->cd_ndevs;
1109 if (old == 0)
1110 new = 4;
1111 else
1112 new = old * 2;
1113 while (new <= n)
1114 new *= 2;
1115 cd->cd_ndevs = new;
1116 nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP);
1117 if (nsp == NULL)
1118 panic("config_attach: %sing dev array",
1119 old != 0 ? "expand" : "creat");
1120 memset(nsp + old, 0, sizeof(device_t [new - old]));
1121 if (old != 0) {
1122 memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
1123 kmem_free(cd->cd_devs, sizeof(device_t [old]));
1124 }
1125 cd->cd_devs = nsp;
1126 }
1127
1128 static void
1129 config_devlink(device_t dev)
1130 {
1131 struct cfdriver *cd = dev->dv_cfdriver;
1132
1133 /* put this device in the devices array */
1134 config_makeroom(dev->dv_unit, cd);
1135 if (cd->cd_devs[dev->dv_unit])
1136 panic("config_attach: duplicate %s", device_xname(dev));
1137 cd->cd_devs[dev->dv_unit] = dev;
1138
1139 /* It is safe to add a device to the tail of the list while
1140 * readers are in the list, but not while a writer is in
1141 * the list. Wait for any writer to complete.
1142 */
1143 mutex_enter(&alldevs_mtx);
1144 while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1145 cv_wait(&alldevs_cv, &alldevs_mtx);
1146 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
1147 cv_signal(&alldevs_cv);
1148 mutex_exit(&alldevs_mtx);
1149 }
1150
1151 static void
1152 config_devunlink(device_t dev)
1153 {
1154 struct cfdriver *cd = dev->dv_cfdriver;
1155 int i;
1156
1157 /* Unlink from device list. */
1158 TAILQ_REMOVE(&alldevs, dev, dv_list);
1159
1160 /* Remove from cfdriver's array. */
1161 cd->cd_devs[dev->dv_unit] = NULL;
1162
1163 /*
1164 * If the device now has no units in use, deallocate its softc array.
1165 */
1166 for (i = 0; i < cd->cd_ndevs; i++) {
1167 if (cd->cd_devs[i] != NULL)
1168 return;
1169 }
1170 /* nothing found; deallocate */
1171 kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
1172 cd->cd_devs = NULL;
1173 cd->cd_ndevs = 0;
1174 }
1175
1176 static device_t
1177 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1178 {
1179 struct cfdriver *cd;
1180 struct cfattach *ca;
1181 size_t lname, lunit;
1182 const char *xunit;
1183 int myunit;
1184 char num[10];
1185 device_t dev;
1186 void *dev_private;
1187 const struct cfiattrdata *ia;
1188
1189 cd = config_cfdriver_lookup(cf->cf_name);
1190 if (cd == NULL)
1191 return (NULL);
1192
1193 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1194 if (ca == NULL)
1195 return (NULL);
1196
1197 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1198 ca->ca_devsize < sizeof(struct device))
1199 panic("config_devalloc: %s", cf->cf_atname);
1200
1201 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1202 if (cf->cf_fstate == FSTATE_STAR) {
1203 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1204 if (cd->cd_devs[myunit] == NULL)
1205 break;
1206 /*
1207 * myunit is now the unit of the first NULL device pointer,
1208 * or max(cd->cd_ndevs,cf->cf_unit).
1209 */
1210 } else {
1211 myunit = cf->cf_unit;
1212 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1213 return (NULL);
1214 }
1215 #else
1216 myunit = cf->cf_unit;
1217 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1218
1219 /* compute length of name and decimal expansion of unit number */
1220 lname = strlen(cd->cd_name);
1221 xunit = number(&num[sizeof(num)], myunit);
1222 lunit = &num[sizeof(num)] - xunit;
1223 if (lname + lunit > sizeof(dev->dv_xname))
1224 panic("config_devalloc: device name too long");
1225
1226 /* get memory for all device vars */
1227 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1228 if (ca->ca_devsize > 0) {
1229 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1230 if (dev_private == NULL)
1231 panic("config_devalloc: memory allocation for device softc failed");
1232 } else {
1233 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1234 dev_private = NULL;
1235 }
1236
1237 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1238 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1239 } else {
1240 dev = dev_private;
1241 }
1242 if (dev == NULL)
1243 panic("config_devalloc: memory allocation for device_t failed");
1244
1245 dev->dv_class = cd->cd_class;
1246 dev->dv_cfdata = cf;
1247 dev->dv_cfdriver = cd;
1248 dev->dv_cfattach = ca;
1249 dev->dv_unit = myunit;
1250 dev->dv_activity_count = 0;
1251 dev->dv_activity_handlers = NULL;
1252 dev->dv_private = dev_private;
1253 memcpy(dev->dv_xname, cd->cd_name, lname);
1254 memcpy(dev->dv_xname + lname, xunit, lunit);
1255 dev->dv_parent = parent;
1256 if (parent != NULL)
1257 dev->dv_depth = parent->dv_depth + 1;
1258 else
1259 dev->dv_depth = 0;
1260 dev->dv_flags = DVF_ACTIVE; /* always initially active */
1261 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
1262 if (locs) {
1263 KASSERT(parent); /* no locators at root */
1264 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1265 parent->dv_cfdriver);
1266 dev->dv_locators =
1267 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1268 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1269 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1270 }
1271 dev->dv_properties = prop_dictionary_create();
1272 KASSERT(dev->dv_properties != NULL);
1273
1274 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1275 "device-driver", dev->dv_cfdriver->cd_name);
1276 prop_dictionary_set_uint16(dev->dv_properties,
1277 "device-unit", dev->dv_unit);
1278
1279 return (dev);
1280 }
1281
1282 static void
1283 config_devdealloc(device_t dev)
1284 {
1285 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1286
1287 KASSERT(dev->dv_properties != NULL);
1288 prop_object_release(dev->dv_properties);
1289
1290 if (dev->dv_activity_handlers)
1291 panic("config_devdealloc with registered handlers");
1292
1293 if (dev->dv_locators) {
1294 size_t amount = *--dev->dv_locators;
1295 kmem_free(dev->dv_locators, amount);
1296 }
1297
1298 if (dev->dv_cfattach->ca_devsize > 0)
1299 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1300 if (priv)
1301 kmem_free(dev, sizeof(*dev));
1302 }
1303
1304 /*
1305 * Attach a found device.
1306 */
1307 device_t
1308 config_attach_loc(device_t parent, cfdata_t cf,
1309 const int *locs, void *aux, cfprint_t print)
1310 {
1311 device_t dev;
1312 struct cftable *ct;
1313 const char *drvname;
1314
1315 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1316 if (splash_progress_state)
1317 splash_progress_update(splash_progress_state);
1318 #endif
1319
1320 dev = config_devalloc(parent, cf, locs);
1321 if (!dev)
1322 panic("config_attach: allocation of device softc failed");
1323
1324 /* XXX redundant - see below? */
1325 if (cf->cf_fstate != FSTATE_STAR) {
1326 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1327 cf->cf_fstate = FSTATE_FOUND;
1328 }
1329 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1330 else
1331 cf->cf_unit++;
1332 #endif
1333
1334 config_devlink(dev);
1335
1336 if (config_do_twiddle)
1337 twiddle();
1338 else
1339 aprint_naive("Found ");
1340 /*
1341 * We want the next two printfs for normal, verbose, and quiet,
1342 * but not silent (in which case, we're twiddling, instead).
1343 */
1344 if (parent == ROOT) {
1345 aprint_naive("%s (root)", device_xname(dev));
1346 aprint_normal("%s (root)", device_xname(dev));
1347 } else {
1348 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1349 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1350 if (print)
1351 (void) (*print)(aux, NULL);
1352 }
1353
1354 /*
1355 * Before attaching, clobber any unfound devices that are
1356 * otherwise identical.
1357 * XXX code above is redundant?
1358 */
1359 drvname = dev->dv_cfdriver->cd_name;
1360 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1361 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1362 if (STREQ(cf->cf_name, drvname) &&
1363 cf->cf_unit == dev->dv_unit) {
1364 if (cf->cf_fstate == FSTATE_NOTFOUND)
1365 cf->cf_fstate = FSTATE_FOUND;
1366 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1367 /*
1368 * Bump the unit number on all starred cfdata
1369 * entries for this device.
1370 */
1371 if (cf->cf_fstate == FSTATE_STAR)
1372 cf->cf_unit++;
1373 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1374 }
1375 }
1376 }
1377 #ifdef __HAVE_DEVICE_REGISTER
1378 device_register(dev, aux);
1379 #endif
1380
1381 /* Let userland know */
1382 devmon_report_device(dev, true);
1383
1384 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1385 if (splash_progress_state)
1386 splash_progress_update(splash_progress_state);
1387 #endif
1388 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1389 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1390 if (splash_progress_state)
1391 splash_progress_update(splash_progress_state);
1392 #endif
1393
1394 if (!device_pmf_is_registered(dev))
1395 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1396
1397 config_process_deferred(&deferred_config_queue, dev);
1398 return (dev);
1399 }
1400
1401 device_t
1402 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1403 {
1404
1405 return (config_attach_loc(parent, cf, NULL, aux, print));
1406 }
1407
1408 /*
1409 * As above, but for pseudo-devices. Pseudo-devices attached in this
1410 * way are silently inserted into the device tree, and their children
1411 * attached.
1412 *
1413 * Note that because pseudo-devices are attached silently, any information
1414 * the attach routine wishes to print should be prefixed with the device
1415 * name by the attach routine.
1416 */
1417 device_t
1418 config_attach_pseudo(cfdata_t cf)
1419 {
1420 device_t dev;
1421
1422 dev = config_devalloc(ROOT, cf, NULL);
1423 if (!dev)
1424 return (NULL);
1425
1426 /* XXX mark busy in cfdata */
1427
1428 if (cf->cf_fstate != FSTATE_STAR) {
1429 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1430 cf->cf_fstate = FSTATE_FOUND;
1431 }
1432
1433 config_devlink(dev);
1434
1435 #if 0 /* XXXJRT not yet */
1436 #ifdef __HAVE_DEVICE_REGISTER
1437 device_register(dev, NULL); /* like a root node */
1438 #endif
1439 #endif
1440 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1441 config_process_deferred(&deferred_config_queue, dev);
1442 return (dev);
1443 }
1444
1445 /*
1446 * Detach a device. Optionally forced (e.g. because of hardware
1447 * removal) and quiet. Returns zero if successful, non-zero
1448 * (an error code) otherwise.
1449 *
1450 * Note that this code wants to be run from a process context, so
1451 * that the detach can sleep to allow processes which have a device
1452 * open to run and unwind their stacks.
1453 */
1454 int
1455 config_detach(device_t dev, int flags)
1456 {
1457 struct cftable *ct;
1458 cfdata_t cf;
1459 const struct cfattach *ca;
1460 struct cfdriver *cd;
1461 #ifdef DIAGNOSTIC
1462 device_t d;
1463 #endif
1464 int rv = 0;
1465
1466 #ifdef DIAGNOSTIC
1467 cf = dev->dv_cfdata;
1468 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1469 cf->cf_fstate != FSTATE_STAR)
1470 panic("config_detach: %s: bad device fstate %d",
1471 device_xname(dev), cf ? cf->cf_fstate : -1);
1472 #endif
1473 cd = dev->dv_cfdriver;
1474 KASSERT(cd != NULL);
1475
1476 ca = dev->dv_cfattach;
1477 KASSERT(ca != NULL);
1478
1479 KASSERT(curlwp != NULL);
1480 mutex_enter(&alldevs_mtx);
1481 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1482 ;
1483 else while (alldevs_nread != 0 ||
1484 (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1485 cv_wait(&alldevs_cv, &alldevs_mtx);
1486 if (alldevs_nwrite++ == 0)
1487 alldevs_writer = curlwp;
1488 mutex_exit(&alldevs_mtx);
1489
1490 /*
1491 * Ensure the device is deactivated. If the device doesn't
1492 * have an activation entry point, we allow DVF_ACTIVE to
1493 * remain set. Otherwise, if DVF_ACTIVE is still set, the
1494 * device is busy, and the detach fails.
1495 */
1496 if (ca->ca_activate != NULL)
1497 rv = config_deactivate(dev);
1498
1499 /*
1500 * Try to detach the device. If that's not possible, then
1501 * we either panic() (for the forced but failed case), or
1502 * return an error.
1503 */
1504 if (rv == 0) {
1505 if (ca->ca_detach != NULL)
1506 rv = (*ca->ca_detach)(dev, flags);
1507 else
1508 rv = EOPNOTSUPP;
1509 }
1510 if (rv != 0) {
1511 if ((flags & DETACH_FORCE) == 0)
1512 goto out;
1513 else
1514 panic("config_detach: forced detach of %s failed (%d)",
1515 device_xname(dev), rv);
1516 }
1517
1518 dev->dv_flags &= ~DVF_ACTIVE;
1519
1520 /*
1521 * The device has now been successfully detached.
1522 */
1523
1524 /* Let userland know */
1525 devmon_report_device(dev, false);
1526
1527 #ifdef DIAGNOSTIC
1528 /*
1529 * Sanity: If you're successfully detached, you should have no
1530 * children. (Note that because children must be attached
1531 * after parents, we only need to search the latter part of
1532 * the list.)
1533 */
1534 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1535 d = TAILQ_NEXT(d, dv_list)) {
1536 if (d->dv_parent == dev) {
1537 printf("config_detach: detached device %s"
1538 " has children %s\n", device_xname(dev), device_xname(d));
1539 panic("config_detach");
1540 }
1541 }
1542 #endif
1543
1544 /* notify the parent that the child is gone */
1545 if (dev->dv_parent) {
1546 device_t p = dev->dv_parent;
1547 if (p->dv_cfattach->ca_childdetached)
1548 (*p->dv_cfattach->ca_childdetached)(p, dev);
1549 }
1550
1551 /*
1552 * Mark cfdata to show that the unit can be reused, if possible.
1553 */
1554 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1555 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1556 if (STREQ(cf->cf_name, cd->cd_name)) {
1557 if (cf->cf_fstate == FSTATE_FOUND &&
1558 cf->cf_unit == dev->dv_unit)
1559 cf->cf_fstate = FSTATE_NOTFOUND;
1560 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1561 /*
1562 * Note that we can only re-use a starred
1563 * unit number if the unit being detached
1564 * had the last assigned unit number.
1565 */
1566 if (cf->cf_fstate == FSTATE_STAR &&
1567 cf->cf_unit == dev->dv_unit + 1)
1568 cf->cf_unit--;
1569 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1570 }
1571 }
1572 }
1573
1574 config_devunlink(dev);
1575
1576 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1577 aprint_normal_dev(dev, "detached\n");
1578
1579 config_devdealloc(dev);
1580
1581 out:
1582 mutex_enter(&alldevs_mtx);
1583 if (--alldevs_nwrite == 0)
1584 alldevs_writer = NULL;
1585 cv_signal(&alldevs_cv);
1586 mutex_exit(&alldevs_mtx);
1587 return rv;
1588 }
1589
1590 int
1591 config_detach_children(device_t parent, int flags)
1592 {
1593 device_t dv;
1594 deviter_t di;
1595 int error = 0;
1596
1597 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1598 dv = deviter_next(&di)) {
1599 if (device_parent(dv) != parent)
1600 continue;
1601 if ((error = config_detach(dv, flags)) != 0)
1602 break;
1603 }
1604 deviter_release(&di);
1605 return error;
1606 }
1607
1608 int
1609 config_activate(device_t dev)
1610 {
1611 const struct cfattach *ca = dev->dv_cfattach;
1612 int rv = 0, oflags = dev->dv_flags;
1613
1614 if (ca->ca_activate == NULL)
1615 return (EOPNOTSUPP);
1616
1617 if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1618 dev->dv_flags |= DVF_ACTIVE;
1619 rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1620 if (rv)
1621 dev->dv_flags = oflags;
1622 }
1623 return (rv);
1624 }
1625
1626 int
1627 config_deactivate(device_t dev)
1628 {
1629 const struct cfattach *ca = dev->dv_cfattach;
1630 int rv = 0, oflags = dev->dv_flags;
1631
1632 if (ca->ca_activate == NULL)
1633 return (EOPNOTSUPP);
1634
1635 if (dev->dv_flags & DVF_ACTIVE) {
1636 dev->dv_flags &= ~DVF_ACTIVE;
1637 rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1638 if (rv)
1639 dev->dv_flags = oflags;
1640 }
1641 return (rv);
1642 }
1643
1644 /*
1645 * Defer the configuration of the specified device until all
1646 * of its parent's devices have been attached.
1647 */
1648 void
1649 config_defer(device_t dev, void (*func)(device_t))
1650 {
1651 struct deferred_config *dc;
1652
1653 if (dev->dv_parent == NULL)
1654 panic("config_defer: can't defer config of a root device");
1655
1656 #ifdef DIAGNOSTIC
1657 for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1658 dc = TAILQ_NEXT(dc, dc_queue)) {
1659 if (dc->dc_dev == dev)
1660 panic("config_defer: deferred twice");
1661 }
1662 #endif
1663
1664 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1665 if (dc == NULL)
1666 panic("config_defer: unable to allocate callback");
1667
1668 dc->dc_dev = dev;
1669 dc->dc_func = func;
1670 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1671 config_pending_incr();
1672 }
1673
1674 /*
1675 * Defer some autoconfiguration for a device until after interrupts
1676 * are enabled.
1677 */
1678 void
1679 config_interrupts(device_t dev, void (*func)(device_t))
1680 {
1681 struct deferred_config *dc;
1682
1683 /*
1684 * If interrupts are enabled, callback now.
1685 */
1686 if (cold == 0) {
1687 (*func)(dev);
1688 return;
1689 }
1690
1691 #ifdef DIAGNOSTIC
1692 for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1693 dc = TAILQ_NEXT(dc, dc_queue)) {
1694 if (dc->dc_dev == dev)
1695 panic("config_interrupts: deferred twice");
1696 }
1697 #endif
1698
1699 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1700 if (dc == NULL)
1701 panic("config_interrupts: unable to allocate callback");
1702
1703 dc->dc_dev = dev;
1704 dc->dc_func = func;
1705 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1706 config_pending_incr();
1707 }
1708
1709 /*
1710 * Process a deferred configuration queue.
1711 */
1712 static void
1713 config_process_deferred(struct deferred_config_head *queue,
1714 device_t parent)
1715 {
1716 struct deferred_config *dc, *ndc;
1717
1718 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1719 ndc = TAILQ_NEXT(dc, dc_queue);
1720 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1721 TAILQ_REMOVE(queue, dc, dc_queue);
1722 (*dc->dc_func)(dc->dc_dev);
1723 kmem_free(dc, sizeof(*dc));
1724 config_pending_decr();
1725 }
1726 }
1727 }
1728
1729 /*
1730 * Manipulate the config_pending semaphore.
1731 */
1732 void
1733 config_pending_incr(void)
1734 {
1735
1736 mutex_enter(&config_misc_lock);
1737 config_pending++;
1738 mutex_exit(&config_misc_lock);
1739 }
1740
1741 void
1742 config_pending_decr(void)
1743 {
1744
1745 #ifdef DIAGNOSTIC
1746 if (config_pending == 0)
1747 panic("config_pending_decr: config_pending == 0");
1748 #endif
1749 mutex_enter(&config_misc_lock);
1750 config_pending--;
1751 if (config_pending == 0)
1752 cv_broadcast(&config_misc_cv);
1753 mutex_exit(&config_misc_lock);
1754 }
1755
1756 /*
1757 * Register a "finalization" routine. Finalization routines are
1758 * called iteratively once all real devices have been found during
1759 * autoconfiguration, for as long as any one finalizer has done
1760 * any work.
1761 */
1762 int
1763 config_finalize_register(device_t dev, int (*fn)(device_t))
1764 {
1765 struct finalize_hook *f;
1766
1767 /*
1768 * If finalization has already been done, invoke the
1769 * callback function now.
1770 */
1771 if (config_finalize_done) {
1772 while ((*fn)(dev) != 0)
1773 /* loop */ ;
1774 }
1775
1776 /* Ensure this isn't already on the list. */
1777 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1778 if (f->f_func == fn && f->f_dev == dev)
1779 return (EEXIST);
1780 }
1781
1782 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1783 f->f_func = fn;
1784 f->f_dev = dev;
1785 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1786
1787 return (0);
1788 }
1789
1790 void
1791 config_finalize(void)
1792 {
1793 struct finalize_hook *f;
1794 struct pdevinit *pdev;
1795 extern struct pdevinit pdevinit[];
1796 int errcnt, rv;
1797
1798 /*
1799 * Now that device driver threads have been created, wait for
1800 * them to finish any deferred autoconfiguration.
1801 */
1802 mutex_enter(&config_misc_lock);
1803 while (config_pending != 0)
1804 cv_wait(&config_misc_cv, &config_misc_lock);
1805 mutex_exit(&config_misc_lock);
1806
1807 KERNEL_LOCK(1, NULL);
1808
1809 /* Attach pseudo-devices. */
1810 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1811 (*pdev->pdev_attach)(pdev->pdev_count);
1812
1813 /* Run the hooks until none of them does any work. */
1814 do {
1815 rv = 0;
1816 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1817 rv |= (*f->f_func)(f->f_dev);
1818 } while (rv != 0);
1819
1820 config_finalize_done = 1;
1821
1822 /* Now free all the hooks. */
1823 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1824 TAILQ_REMOVE(&config_finalize_list, f, f_list);
1825 kmem_free(f, sizeof(*f));
1826 }
1827
1828 KERNEL_UNLOCK_ONE(NULL);
1829
1830 errcnt = aprint_get_error_count();
1831 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1832 (boothowto & AB_VERBOSE) == 0) {
1833 if (config_do_twiddle) {
1834 config_do_twiddle = 0;
1835 printf_nolog(" done.\n");
1836 }
1837 if (errcnt != 0) {
1838 printf("WARNING: %d error%s while detecting hardware; "
1839 "check system log.\n", errcnt,
1840 errcnt == 1 ? "" : "s");
1841 }
1842 }
1843 }
1844
1845 /*
1846 * device_lookup:
1847 *
1848 * Look up a device instance for a given driver.
1849 */
1850 device_t
1851 device_lookup(cfdriver_t cd, int unit)
1852 {
1853
1854 if (unit < 0 || unit >= cd->cd_ndevs)
1855 return (NULL);
1856
1857 return (cd->cd_devs[unit]);
1858 }
1859
1860 /*
1861 * device_lookup:
1862 *
1863 * Look up a device instance for a given driver.
1864 */
1865 void *
1866 device_lookup_private(cfdriver_t cd, int unit)
1867 {
1868 device_t dv;
1869
1870 if (unit < 0 || unit >= cd->cd_ndevs)
1871 return NULL;
1872
1873 if ((dv = cd->cd_devs[unit]) == NULL)
1874 return NULL;
1875
1876 return dv->dv_private;
1877 }
1878
1879 /*
1880 * Accessor functions for the device_t type.
1881 */
1882 devclass_t
1883 device_class(device_t dev)
1884 {
1885
1886 return (dev->dv_class);
1887 }
1888
1889 cfdata_t
1890 device_cfdata(device_t dev)
1891 {
1892
1893 return (dev->dv_cfdata);
1894 }
1895
1896 cfdriver_t
1897 device_cfdriver(device_t dev)
1898 {
1899
1900 return (dev->dv_cfdriver);
1901 }
1902
1903 cfattach_t
1904 device_cfattach(device_t dev)
1905 {
1906
1907 return (dev->dv_cfattach);
1908 }
1909
1910 int
1911 device_unit(device_t dev)
1912 {
1913
1914 return (dev->dv_unit);
1915 }
1916
1917 const char *
1918 device_xname(device_t dev)
1919 {
1920
1921 return (dev->dv_xname);
1922 }
1923
1924 device_t
1925 device_parent(device_t dev)
1926 {
1927
1928 return (dev->dv_parent);
1929 }
1930
1931 bool
1932 device_is_active(device_t dev)
1933 {
1934 int active_flags;
1935
1936 active_flags = DVF_ACTIVE;
1937 active_flags |= DVF_CLASS_SUSPENDED;
1938 active_flags |= DVF_DRIVER_SUSPENDED;
1939 active_flags |= DVF_BUS_SUSPENDED;
1940
1941 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1942 }
1943
1944 bool
1945 device_is_enabled(device_t dev)
1946 {
1947 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1948 }
1949
1950 bool
1951 device_has_power(device_t dev)
1952 {
1953 int active_flags;
1954
1955 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1956
1957 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1958 }
1959
1960 int
1961 device_locator(device_t dev, u_int locnum)
1962 {
1963
1964 KASSERT(dev->dv_locators != NULL);
1965 return (dev->dv_locators[locnum]);
1966 }
1967
1968 void *
1969 device_private(device_t dev)
1970 {
1971
1972 /*
1973 * The reason why device_private(NULL) is allowed is to simplify the
1974 * work of a lot of userspace request handlers (i.e., c/bdev
1975 * handlers) which grab cfdriver_t->cd_units[n].
1976 * It avoids having them test for it to be NULL and only then calling
1977 * device_private.
1978 */
1979 return dev == NULL ? NULL : dev->dv_private;
1980 }
1981
1982 prop_dictionary_t
1983 device_properties(device_t dev)
1984 {
1985
1986 return (dev->dv_properties);
1987 }
1988
1989 /*
1990 * device_is_a:
1991 *
1992 * Returns true if the device is an instance of the specified
1993 * driver.
1994 */
1995 bool
1996 device_is_a(device_t dev, const char *dname)
1997 {
1998
1999 return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
2000 }
2001
2002 /*
2003 * device_find_by_xname:
2004 *
2005 * Returns the device of the given name or NULL if it doesn't exist.
2006 */
2007 device_t
2008 device_find_by_xname(const char *name)
2009 {
2010 device_t dv;
2011 deviter_t di;
2012
2013 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2014 if (strcmp(device_xname(dv), name) == 0)
2015 break;
2016 }
2017 deviter_release(&di);
2018
2019 return dv;
2020 }
2021
2022 /*
2023 * device_find_by_driver_unit:
2024 *
2025 * Returns the device of the given driver name and unit or
2026 * NULL if it doesn't exist.
2027 */
2028 device_t
2029 device_find_by_driver_unit(const char *name, int unit)
2030 {
2031 struct cfdriver *cd;
2032
2033 if ((cd = config_cfdriver_lookup(name)) == NULL)
2034 return NULL;
2035 return device_lookup(cd, unit);
2036 }
2037
2038 /*
2039 * Power management related functions.
2040 */
2041
2042 bool
2043 device_pmf_is_registered(device_t dev)
2044 {
2045 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2046 }
2047
2048 bool
2049 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
2050 {
2051 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2052 return true;
2053 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2054 return false;
2055 if (*dev->dv_driver_suspend != NULL &&
2056 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
2057 return false;
2058
2059 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2060 return true;
2061 }
2062
2063 bool
2064 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
2065 {
2066 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2067 return true;
2068 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2069 return false;
2070 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2071 return false;
2072 if (*dev->dv_driver_resume != NULL &&
2073 !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2074 return false;
2075
2076 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2077 return true;
2078 }
2079
2080 bool
2081 device_pmf_driver_shutdown(device_t dev, int how)
2082 {
2083
2084 if (*dev->dv_driver_shutdown != NULL &&
2085 !(*dev->dv_driver_shutdown)(dev, how))
2086 return false;
2087 return true;
2088 }
2089
2090 bool
2091 device_pmf_driver_register(device_t dev,
2092 bool (*suspend)(device_t PMF_FN_PROTO),
2093 bool (*resume)(device_t PMF_FN_PROTO),
2094 bool (*shutdown)(device_t, int))
2095 {
2096 pmf_private_t *pp;
2097
2098 if ((pp = kmem_zalloc(sizeof(*pp), KM_SLEEP)) == NULL)
2099 return false;
2100 mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
2101 cv_init(&pp->pp_cv, "pmfsusp");
2102 dev->dv_pmf_private = pp;
2103
2104 dev->dv_driver_suspend = suspend;
2105 dev->dv_driver_resume = resume;
2106 dev->dv_driver_shutdown = shutdown;
2107 dev->dv_flags |= DVF_POWER_HANDLERS;
2108 return true;
2109 }
2110
2111 static const char *
2112 curlwp_name(void)
2113 {
2114 if (curlwp->l_name != NULL)
2115 return curlwp->l_name;
2116 else
2117 return curlwp->l_proc->p_comm;
2118 }
2119
2120 void
2121 device_pmf_driver_deregister(device_t dev)
2122 {
2123 pmf_private_t *pp = dev->dv_pmf_private;
2124
2125 /* XXX avoid crash in case we are not initialized */
2126 if (!pp)
2127 return;
2128
2129 dev->dv_driver_suspend = NULL;
2130 dev->dv_driver_resume = NULL;
2131
2132 mutex_enter(&pp->pp_mtx);
2133 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2134 while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
2135 /* Wake a thread that waits for the lock. That
2136 * thread will fail to acquire the lock, and then
2137 * it will wake the next thread that waits for the
2138 * lock, or else it will wake us.
2139 */
2140 cv_signal(&pp->pp_cv);
2141 pmflock_debug(dev, __func__, __LINE__);
2142 cv_wait(&pp->pp_cv, &pp->pp_mtx);
2143 pmflock_debug(dev, __func__, __LINE__);
2144 }
2145 dev->dv_pmf_private = NULL;
2146 mutex_exit(&pp->pp_mtx);
2147
2148 cv_destroy(&pp->pp_cv);
2149 mutex_destroy(&pp->pp_mtx);
2150 kmem_free(pp, sizeof(*pp));
2151 }
2152
2153 bool
2154 device_pmf_driver_child_register(device_t dev)
2155 {
2156 device_t parent = device_parent(dev);
2157
2158 if (parent == NULL || parent->dv_driver_child_register == NULL)
2159 return true;
2160 return (*parent->dv_driver_child_register)(dev);
2161 }
2162
2163 void
2164 device_pmf_driver_set_child_register(device_t dev,
2165 bool (*child_register)(device_t))
2166 {
2167 dev->dv_driver_child_register = child_register;
2168 }
2169
2170 void
2171 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2172 {
2173 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2174 if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2175 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2176 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2177 }
2178
2179 bool
2180 device_is_self_suspended(device_t dev)
2181 {
2182 return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2183 }
2184
2185 void
2186 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2187 {
2188 bool self = (flags & PMF_F_SELF) != 0;
2189
2190 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2191
2192 if (!self)
2193 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2194 else if (device_is_active(dev))
2195 dev->dv_flags |= DVF_SELF_SUSPENDED;
2196
2197 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2198 }
2199
2200 static void
2201 pmflock_debug(device_t dev, const char *func, int line)
2202 {
2203 pmf_private_t *pp = device_pmf_private(dev);
2204
2205 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
2206 func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
2207 dev->dv_flags);
2208 }
2209
2210 static void
2211 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2212 {
2213 pmf_private_t *pp = device_pmf_private(dev);
2214
2215 aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
2216 "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2217 pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
2218 }
2219
2220 static bool
2221 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2222 {
2223 pmf_private_t *pp = device_pmf_private(dev);
2224
2225 while (device_pmf_is_registered(dev) &&
2226 pp->pp_nlock > 0 && pp->pp_holder != curlwp) {
2227 pp->pp_nwait++;
2228 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2229 cv_wait(&pp->pp_cv, &pp->pp_mtx);
2230 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2231 pp->pp_nwait--;
2232 }
2233 if (!device_pmf_is_registered(dev)) {
2234 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2235 /* We could not acquire the lock, but some other thread may
2236 * wait for it, also. Wake that thread.
2237 */
2238 cv_signal(&pp->pp_cv);
2239 return false;
2240 }
2241 pp->pp_nlock++;
2242 pp->pp_holder = curlwp;
2243 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2244 return true;
2245 }
2246
2247 bool
2248 device_pmf_lock(device_t dev PMF_FN_ARGS)
2249 {
2250 bool rc;
2251 pmf_private_t *pp = device_pmf_private(dev);
2252
2253 mutex_enter(&pp->pp_mtx);
2254 rc = device_pmf_lock1(dev PMF_FN_CALL);
2255 mutex_exit(&pp->pp_mtx);
2256
2257 return rc;
2258 }
2259
2260 void
2261 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2262 {
2263 pmf_private_t *pp = device_pmf_private(dev);
2264
2265 KASSERT(pp->pp_nlock > 0);
2266 mutex_enter(&pp->pp_mtx);
2267 if (--pp->pp_nlock == 0)
2268 pp->pp_holder = NULL;
2269 cv_signal(&pp->pp_cv);
2270 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2271 mutex_exit(&pp->pp_mtx);
2272 }
2273
2274 void *
2275 device_pmf_private(device_t dev)
2276 {
2277 return dev->dv_pmf_private;
2278 }
2279
2280 void *
2281 device_pmf_bus_private(device_t dev)
2282 {
2283 return dev->dv_bus_private;
2284 }
2285
2286 bool
2287 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2288 {
2289 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2290 return true;
2291 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2292 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2293 return false;
2294 if (*dev->dv_bus_suspend != NULL &&
2295 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2296 return false;
2297
2298 dev->dv_flags |= DVF_BUS_SUSPENDED;
2299 return true;
2300 }
2301
2302 bool
2303 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2304 {
2305 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2306 return true;
2307 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2308 return false;
2309 if (*dev->dv_bus_resume != NULL &&
2310 !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2311 return false;
2312
2313 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2314 return true;
2315 }
2316
2317 bool
2318 device_pmf_bus_shutdown(device_t dev, int how)
2319 {
2320
2321 if (*dev->dv_bus_shutdown != NULL &&
2322 !(*dev->dv_bus_shutdown)(dev, how))
2323 return false;
2324 return true;
2325 }
2326
2327 void
2328 device_pmf_bus_register(device_t dev, void *priv,
2329 bool (*suspend)(device_t PMF_FN_PROTO),
2330 bool (*resume)(device_t PMF_FN_PROTO),
2331 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2332 {
2333 dev->dv_bus_private = priv;
2334 dev->dv_bus_resume = resume;
2335 dev->dv_bus_suspend = suspend;
2336 dev->dv_bus_shutdown = shutdown;
2337 dev->dv_bus_deregister = deregister;
2338 }
2339
2340 void
2341 device_pmf_bus_deregister(device_t dev)
2342 {
2343 if (dev->dv_bus_deregister == NULL)
2344 return;
2345 (*dev->dv_bus_deregister)(dev);
2346 dev->dv_bus_private = NULL;
2347 dev->dv_bus_suspend = NULL;
2348 dev->dv_bus_resume = NULL;
2349 dev->dv_bus_deregister = NULL;
2350 }
2351
2352 void *
2353 device_pmf_class_private(device_t dev)
2354 {
2355 return dev->dv_class_private;
2356 }
2357
2358 bool
2359 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2360 {
2361 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2362 return true;
2363 if (*dev->dv_class_suspend != NULL &&
2364 !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2365 return false;
2366
2367 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2368 return true;
2369 }
2370
2371 bool
2372 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2373 {
2374 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2375 return true;
2376 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2377 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2378 return false;
2379 if (*dev->dv_class_resume != NULL &&
2380 !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2381 return false;
2382
2383 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2384 return true;
2385 }
2386
2387 void
2388 device_pmf_class_register(device_t dev, void *priv,
2389 bool (*suspend)(device_t PMF_FN_PROTO),
2390 bool (*resume)(device_t PMF_FN_PROTO),
2391 void (*deregister)(device_t))
2392 {
2393 dev->dv_class_private = priv;
2394 dev->dv_class_suspend = suspend;
2395 dev->dv_class_resume = resume;
2396 dev->dv_class_deregister = deregister;
2397 }
2398
2399 void
2400 device_pmf_class_deregister(device_t dev)
2401 {
2402 if (dev->dv_class_deregister == NULL)
2403 return;
2404 (*dev->dv_class_deregister)(dev);
2405 dev->dv_class_private = NULL;
2406 dev->dv_class_suspend = NULL;
2407 dev->dv_class_resume = NULL;
2408 dev->dv_class_deregister = NULL;
2409 }
2410
2411 bool
2412 device_active(device_t dev, devactive_t type)
2413 {
2414 size_t i;
2415
2416 if (dev->dv_activity_count == 0)
2417 return false;
2418
2419 for (i = 0; i < dev->dv_activity_count; ++i) {
2420 if (dev->dv_activity_handlers[i] == NULL)
2421 break;
2422 (*dev->dv_activity_handlers[i])(dev, type);
2423 }
2424
2425 return true;
2426 }
2427
2428 bool
2429 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2430 {
2431 void (**new_handlers)(device_t, devactive_t);
2432 void (**old_handlers)(device_t, devactive_t);
2433 size_t i, old_size, new_size;
2434 int s;
2435
2436 old_handlers = dev->dv_activity_handlers;
2437 old_size = dev->dv_activity_count;
2438
2439 for (i = 0; i < old_size; ++i) {
2440 KASSERT(old_handlers[i] != handler);
2441 if (old_handlers[i] == NULL) {
2442 old_handlers[i] = handler;
2443 return true;
2444 }
2445 }
2446
2447 new_size = old_size + 4;
2448 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2449
2450 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2451 new_handlers[old_size] = handler;
2452 memset(new_handlers + old_size + 1, 0,
2453 sizeof(int [new_size - (old_size+1)]));
2454
2455 s = splhigh();
2456 dev->dv_activity_count = new_size;
2457 dev->dv_activity_handlers = new_handlers;
2458 splx(s);
2459
2460 if (old_handlers != NULL)
2461 kmem_free(old_handlers, sizeof(void * [old_size]));
2462
2463 return true;
2464 }
2465
2466 void
2467 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2468 {
2469 void (**old_handlers)(device_t, devactive_t);
2470 size_t i, old_size;
2471 int s;
2472
2473 old_handlers = dev->dv_activity_handlers;
2474 old_size = dev->dv_activity_count;
2475
2476 for (i = 0; i < old_size; ++i) {
2477 if (old_handlers[i] == handler)
2478 break;
2479 if (old_handlers[i] == NULL)
2480 return; /* XXX panic? */
2481 }
2482
2483 if (i == old_size)
2484 return; /* XXX panic? */
2485
2486 for (; i < old_size - 1; ++i) {
2487 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2488 continue;
2489
2490 if (i == 0) {
2491 s = splhigh();
2492 dev->dv_activity_count = 0;
2493 dev->dv_activity_handlers = NULL;
2494 splx(s);
2495 kmem_free(old_handlers, sizeof(void *[old_size]));
2496 }
2497 return;
2498 }
2499 old_handlers[i] = NULL;
2500 }
2501
2502 /*
2503 * Device Iteration
2504 *
2505 * deviter_t: a device iterator. Holds state for a "walk" visiting
2506 * each device_t's in the device tree.
2507 *
2508 * deviter_init(di, flags): initialize the device iterator `di'
2509 * to "walk" the device tree. deviter_next(di) will return
2510 * the first device_t in the device tree, or NULL if there are
2511 * no devices.
2512 *
2513 * `flags' is one or more of DEVITER_F_RW, indicating that the
2514 * caller intends to modify the device tree by calling
2515 * config_detach(9) on devices in the order that the iterator
2516 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2517 * nearest the "root" of the device tree to be returned, first;
2518 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2519 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2520 * indicating both that deviter_init() should not respect any
2521 * locks on the device tree, and that deviter_next(di) may run
2522 * in more than one LWP before the walk has finished.
2523 *
2524 * Only one DEVITER_F_RW iterator may be in the device tree at
2525 * once.
2526 *
2527 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2528 *
2529 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2530 * DEVITER_F_LEAVES_FIRST are used in combination.
2531 *
2532 * deviter_first(di, flags): initialize the device iterator `di'
2533 * and return the first device_t in the device tree, or NULL
2534 * if there are no devices. The statement
2535 *
2536 * dv = deviter_first(di);
2537 *
2538 * is shorthand for
2539 *
2540 * deviter_init(di);
2541 * dv = deviter_next(di);
2542 *
2543 * deviter_next(di): return the next device_t in the device tree,
2544 * or NULL if there are no more devices. deviter_next(di)
2545 * is undefined if `di' was not initialized with deviter_init() or
2546 * deviter_first().
2547 *
2548 * deviter_release(di): stops iteration (subsequent calls to
2549 * deviter_next() will return NULL), releases any locks and
2550 * resources held by the device iterator.
2551 *
2552 * Device iteration does not return device_t's in any particular
2553 * order. An iterator will never return the same device_t twice.
2554 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2555 * is called repeatedly on the same `di', it will eventually return
2556 * NULL. It is ok to attach/detach devices during device iteration.
2557 */
2558 void
2559 deviter_init(deviter_t *di, deviter_flags_t flags)
2560 {
2561 device_t dv;
2562 bool rw;
2563
2564 mutex_enter(&alldevs_mtx);
2565 if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2566 flags |= DEVITER_F_RW;
2567 alldevs_nwrite++;
2568 alldevs_writer = NULL;
2569 alldevs_nread = 0;
2570 } else {
2571 rw = (flags & DEVITER_F_RW) != 0;
2572
2573 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2574 ;
2575 else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2576 (rw && alldevs_nread != 0))
2577 cv_wait(&alldevs_cv, &alldevs_mtx);
2578
2579 if (rw) {
2580 if (alldevs_nwrite++ == 0)
2581 alldevs_writer = curlwp;
2582 } else
2583 alldevs_nread++;
2584 }
2585 mutex_exit(&alldevs_mtx);
2586
2587 memset(di, 0, sizeof(*di));
2588
2589 di->di_flags = flags;
2590
2591 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2592 case DEVITER_F_LEAVES_FIRST:
2593 TAILQ_FOREACH(dv, &alldevs, dv_list)
2594 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2595 break;
2596 case DEVITER_F_ROOT_FIRST:
2597 TAILQ_FOREACH(dv, &alldevs, dv_list)
2598 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2599 break;
2600 default:
2601 break;
2602 }
2603
2604 deviter_reinit(di);
2605 }
2606
2607 static void
2608 deviter_reinit(deviter_t *di)
2609 {
2610 if ((di->di_flags & DEVITER_F_RW) != 0)
2611 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2612 else
2613 di->di_prev = TAILQ_FIRST(&alldevs);
2614 }
2615
2616 device_t
2617 deviter_first(deviter_t *di, deviter_flags_t flags)
2618 {
2619 deviter_init(di, flags);
2620 return deviter_next(di);
2621 }
2622
2623 static device_t
2624 deviter_next1(deviter_t *di)
2625 {
2626 device_t dv;
2627
2628 dv = di->di_prev;
2629
2630 if (dv == NULL)
2631 ;
2632 else if ((di->di_flags & DEVITER_F_RW) != 0)
2633 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2634 else
2635 di->di_prev = TAILQ_NEXT(dv, dv_list);
2636
2637 return dv;
2638 }
2639
2640 device_t
2641 deviter_next(deviter_t *di)
2642 {
2643 device_t dv = NULL;
2644
2645 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2646 case 0:
2647 return deviter_next1(di);
2648 case DEVITER_F_LEAVES_FIRST:
2649 while (di->di_curdepth >= 0) {
2650 if ((dv = deviter_next1(di)) == NULL) {
2651 di->di_curdepth--;
2652 deviter_reinit(di);
2653 } else if (dv->dv_depth == di->di_curdepth)
2654 break;
2655 }
2656 return dv;
2657 case DEVITER_F_ROOT_FIRST:
2658 while (di->di_curdepth <= di->di_maxdepth) {
2659 if ((dv = deviter_next1(di)) == NULL) {
2660 di->di_curdepth++;
2661 deviter_reinit(di);
2662 } else if (dv->dv_depth == di->di_curdepth)
2663 break;
2664 }
2665 return dv;
2666 default:
2667 return NULL;
2668 }
2669 }
2670
2671 void
2672 deviter_release(deviter_t *di)
2673 {
2674 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2675
2676 mutex_enter(&alldevs_mtx);
2677 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2678 --alldevs_nwrite;
2679 else {
2680
2681 if (rw) {
2682 if (--alldevs_nwrite == 0)
2683 alldevs_writer = NULL;
2684 } else
2685 --alldevs_nread;
2686
2687 cv_signal(&alldevs_cv);
2688 }
2689 mutex_exit(&alldevs_mtx);
2690 }
2691