Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.174
      1 /* $NetBSD: subr_autoconf.c,v 1.174 2009/04/02 00:09:34 dyoung Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.174 2009/04/02 00:09:34 dyoung Exp $");
     81 
     82 #include "opt_ddb.h"
     83 #include "drvctl.h"
     84 
     85 #include <sys/param.h>
     86 #include <sys/device.h>
     87 #include <sys/disklabel.h>
     88 #include <sys/conf.h>
     89 #include <sys/kauth.h>
     90 #include <sys/malloc.h>
     91 #include <sys/kmem.h>
     92 #include <sys/systm.h>
     93 #include <sys/kernel.h>
     94 #include <sys/errno.h>
     95 #include <sys/proc.h>
     96 #include <sys/reboot.h>
     97 #include <sys/kthread.h>
     98 #include <sys/buf.h>
     99 #include <sys/dirent.h>
    100 #include <sys/vnode.h>
    101 #include <sys/mount.h>
    102 #include <sys/namei.h>
    103 #include <sys/unistd.h>
    104 #include <sys/fcntl.h>
    105 #include <sys/lockf.h>
    106 #include <sys/callout.h>
    107 #include <sys/devmon.h>
    108 #include <sys/cpu.h>
    109 #include <sys/sysctl.h>
    110 
    111 #include <sys/disk.h>
    112 
    113 #include <machine/limits.h>
    114 
    115 #include "opt_userconf.h"
    116 #ifdef USERCONF
    117 #include <sys/userconf.h>
    118 #endif
    119 
    120 #ifdef __i386__
    121 #include "opt_splash.h"
    122 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    123 #include <dev/splash/splash.h>
    124 extern struct splash_progress *splash_progress_state;
    125 #endif
    126 #endif
    127 
    128 /*
    129  * Autoconfiguration subroutines.
    130  */
    131 
    132 /*
    133  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    134  * devices and drivers are found via these tables.
    135  */
    136 extern struct cfdata cfdata[];
    137 extern const short cfroots[];
    138 
    139 /*
    140  * List of all cfdriver structures.  We use this to detect duplicates
    141  * when other cfdrivers are loaded.
    142  */
    143 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    144 extern struct cfdriver * const cfdriver_list_initial[];
    145 
    146 /*
    147  * Initial list of cfattach's.
    148  */
    149 extern const struct cfattachinit cfattachinit[];
    150 
    151 /*
    152  * List of cfdata tables.  We always have one such list -- the one
    153  * built statically when the kernel was configured.
    154  */
    155 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    156 static struct cftable initcftable;
    157 
    158 #define	ROOT ((device_t)NULL)
    159 
    160 struct matchinfo {
    161 	cfsubmatch_t fn;
    162 	struct	device *parent;
    163 	const int *locs;
    164 	void	*aux;
    165 	struct	cfdata *match;
    166 	int	pri;
    167 };
    168 
    169 static char *number(char *, int);
    170 static void mapply(struct matchinfo *, cfdata_t);
    171 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    172 static void config_devdealloc(device_t);
    173 static void config_makeroom(int, struct cfdriver *);
    174 static void config_devlink(device_t);
    175 static void config_devunlink(device_t);
    176 
    177 static void pmflock_debug(device_t, const char *, int);
    178 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
    179 
    180 static device_t deviter_next1(deviter_t *);
    181 static void deviter_reinit(deviter_t *);
    182 
    183 struct deferred_config {
    184 	TAILQ_ENTRY(deferred_config) dc_queue;
    185 	device_t dc_dev;
    186 	void (*dc_func)(device_t);
    187 };
    188 
    189 TAILQ_HEAD(deferred_config_head, deferred_config);
    190 
    191 struct deferred_config_head deferred_config_queue =
    192 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    193 struct deferred_config_head interrupt_config_queue =
    194 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    195 int interrupt_config_threads = 8;
    196 
    197 static void config_process_deferred(struct deferred_config_head *, device_t);
    198 
    199 /* Hooks to finalize configuration once all real devices have been found. */
    200 struct finalize_hook {
    201 	TAILQ_ENTRY(finalize_hook) f_list;
    202 	int (*f_func)(device_t);
    203 	device_t f_dev;
    204 };
    205 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    206 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    207 static int config_finalize_done;
    208 
    209 /* list of all devices */
    210 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    211 kcondvar_t alldevs_cv;
    212 kmutex_t alldevs_mtx;
    213 static int alldevs_nread = 0;
    214 static int alldevs_nwrite = 0;
    215 static lwp_t *alldevs_writer = NULL;
    216 
    217 static int config_pending;		/* semaphore for mountroot */
    218 static kmutex_t config_misc_lock;
    219 static kcondvar_t config_misc_cv;
    220 
    221 static int detachall = 0;
    222 
    223 #define	STREQ(s1, s2)			\
    224 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    225 
    226 static int config_initialized;		/* config_init() has been called. */
    227 
    228 static int config_do_twiddle;
    229 
    230 struct vnode *
    231 opendisk(struct device *dv)
    232 {
    233 	int bmajor, bminor;
    234 	struct vnode *tmpvn;
    235 	int error;
    236 	dev_t dev;
    237 
    238 	/*
    239 	 * Lookup major number for disk block device.
    240 	 */
    241 	bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
    242 	if (bmajor == -1)
    243 		return NULL;
    244 
    245 	bminor = minor(device_unit(dv));
    246 	/*
    247 	 * Fake a temporary vnode for the disk, open it, and read
    248 	 * and hash the sectors.
    249 	 */
    250 	dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
    251 	    MAKEDISKDEV(bmajor, bminor, RAW_PART);
    252 	if (bdevvp(dev, &tmpvn))
    253 		panic("%s: can't alloc vnode for %s", __func__,
    254 		    device_xname(dv));
    255 	error = VOP_OPEN(tmpvn, FREAD, NOCRED);
    256 	if (error) {
    257 #ifndef DEBUG
    258 		/*
    259 		 * Ignore errors caused by missing device, partition,
    260 		 * or medium.
    261 		 */
    262 		if (error != ENXIO && error != ENODEV)
    263 #endif
    264 			printf("%s: can't open dev %s (%d)\n",
    265 			    __func__, device_xname(dv), error);
    266 		vput(tmpvn);
    267 		return NULL;
    268 	}
    269 
    270 	return tmpvn;
    271 }
    272 
    273 int
    274 config_handle_wedges(struct device *dv, int par)
    275 {
    276 	struct dkwedge_list wl;
    277 	struct dkwedge_info *wi;
    278 	struct vnode *vn;
    279 	char diskname[16];
    280 	int i, error;
    281 
    282 	if ((vn = opendisk(dv)) == NULL)
    283 		return -1;
    284 
    285 	wl.dkwl_bufsize = sizeof(*wi) * 16;
    286 	wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
    287 
    288 	error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
    289 	VOP_CLOSE(vn, FREAD, NOCRED);
    290 	vput(vn);
    291 	if (error) {
    292 #ifdef DEBUG_WEDGE
    293 		printf("%s: List wedges returned %d\n",
    294 		    device_xname(dv), error);
    295 #endif
    296 		free(wi, M_TEMP);
    297 		return -1;
    298 	}
    299 
    300 #ifdef DEBUG_WEDGE
    301 	printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
    302 	    wl.dkwl_nwedges, wl.dkwl_ncopied);
    303 #endif
    304 	snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
    305 	    par + 'a');
    306 
    307 	for (i = 0; i < wl.dkwl_ncopied; i++) {
    308 #ifdef DEBUG_WEDGE
    309 		printf("%s: Looking for %s in %s\n",
    310 		    device_xname(dv), diskname, wi[i].dkw_wname);
    311 #endif
    312 		if (strcmp(wi[i].dkw_wname, diskname) == 0)
    313 			break;
    314 	}
    315 
    316 	if (i == wl.dkwl_ncopied) {
    317 #ifdef DEBUG_WEDGE
    318 		printf("%s: Cannot find wedge with parent %s\n",
    319 		    device_xname(dv), diskname);
    320 #endif
    321 		free(wi, M_TEMP);
    322 		return -1;
    323 	}
    324 
    325 #ifdef DEBUG_WEDGE
    326 	printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
    327 		device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
    328 		(unsigned long long)wi[i].dkw_offset,
    329 		(unsigned long long)wi[i].dkw_size);
    330 #endif
    331 	dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
    332 	free(wi, M_TEMP);
    333 	return 0;
    334 }
    335 
    336 /*
    337  * Initialize the autoconfiguration data structures.  Normally this
    338  * is done by configure(), but some platforms need to do this very
    339  * early (to e.g. initialize the console).
    340  */
    341 void
    342 config_init(void)
    343 {
    344 	const struct cfattachinit *cfai;
    345 	int i, j;
    346 
    347 	if (config_initialized)
    348 		return;
    349 
    350 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
    351 	cv_init(&alldevs_cv, "alldevs");
    352 
    353 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    354 	cv_init(&config_misc_cv, "cfgmisc");
    355 
    356 	/* allcfdrivers is statically initialized. */
    357 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
    358 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
    359 			panic("configure: duplicate `%s' drivers",
    360 			    cfdriver_list_initial[i]->cd_name);
    361 	}
    362 
    363 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
    364 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    365 			if (config_cfattach_attach(cfai->cfai_name,
    366 						   cfai->cfai_list[j]) != 0)
    367 				panic("configure: duplicate `%s' attachment "
    368 				    "of `%s' driver",
    369 				    cfai->cfai_list[j]->ca_name,
    370 				    cfai->cfai_name);
    371 		}
    372 	}
    373 
    374 	initcftable.ct_cfdata = cfdata;
    375 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    376 
    377 	config_initialized = 1;
    378 }
    379 
    380 void
    381 config_deferred(device_t dev)
    382 {
    383 	config_process_deferred(&deferred_config_queue, dev);
    384 	config_process_deferred(&interrupt_config_queue, dev);
    385 }
    386 
    387 static void
    388 config_interrupts_thread(void *cookie)
    389 {
    390 	struct deferred_config *dc;
    391 
    392 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    393 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    394 		(*dc->dc_func)(dc->dc_dev);
    395 		kmem_free(dc, sizeof(*dc));
    396 		config_pending_decr();
    397 	}
    398 	kthread_exit(0);
    399 }
    400 
    401 /*
    402  * Configure the system's hardware.
    403  */
    404 void
    405 configure(void)
    406 {
    407 	/* Initialize data structures. */
    408 	config_init();
    409 	pmf_init();
    410 #if NDRVCTL > 0
    411 	drvctl_init();
    412 #endif
    413 
    414 #ifdef USERCONF
    415 	if (boothowto & RB_USERCONF)
    416 		user_config();
    417 #endif
    418 
    419 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
    420 		config_do_twiddle = 1;
    421 		printf_nolog("Detecting hardware...");
    422 	}
    423 
    424 	/*
    425 	 * Do the machine-dependent portion of autoconfiguration.  This
    426 	 * sets the configuration machinery here in motion by "finding"
    427 	 * the root bus.  When this function returns, we expect interrupts
    428 	 * to be enabled.
    429 	 */
    430 	cpu_configure();
    431 }
    432 
    433 void
    434 configure2(void)
    435 {
    436 	CPU_INFO_ITERATOR cii;
    437 	struct cpu_info *ci;
    438 	int i, s;
    439 
    440 	/*
    441 	 * Now that we've found all the hardware, start the real time
    442 	 * and statistics clocks.
    443 	 */
    444 	initclocks();
    445 
    446 	cold = 0;	/* clocks are running, we're warm now! */
    447 	s = splsched();
    448 	curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
    449 	splx(s);
    450 
    451 	/* Boot the secondary processors. */
    452 	for (CPU_INFO_FOREACH(cii, ci)) {
    453 		uvm_cpu_attach(ci);
    454 	}
    455 	mp_online = true;
    456 #if defined(MULTIPROCESSOR)
    457 	cpu_boot_secondary_processors();
    458 #endif
    459 
    460 	/* Setup the runqueues and scheduler. */
    461 	runq_init();
    462 	sched_init();
    463 
    464 	/*
    465 	 * Create threads to call back and finish configuration for
    466 	 * devices that want interrupts enabled.
    467 	 */
    468 	for (i = 0; i < interrupt_config_threads; i++) {
    469 		(void)kthread_create(PRI_NONE, 0, NULL,
    470 		    config_interrupts_thread, NULL, NULL, "config");
    471 	}
    472 
    473 	/* Get the threads going and into any sleeps before continuing. */
    474 	yield();
    475 }
    476 
    477 /*
    478  * Announce device attach/detach to userland listeners.
    479  */
    480 static void
    481 devmon_report_device(device_t dev, bool isattach)
    482 {
    483 #if NDRVCTL > 0
    484 	prop_dictionary_t ev;
    485 	const char *parent;
    486 	const char *what;
    487 	device_t pdev = device_parent(dev);
    488 
    489 	ev = prop_dictionary_create();
    490 	if (ev == NULL)
    491 		return;
    492 
    493 	what = (isattach ? "device-attach" : "device-detach");
    494 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    495 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
    496 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
    497 		prop_object_release(ev);
    498 		return;
    499 	}
    500 
    501 	devmon_insert(what, ev);
    502 #endif
    503 }
    504 
    505 /*
    506  * Add a cfdriver to the system.
    507  */
    508 int
    509 config_cfdriver_attach(struct cfdriver *cd)
    510 {
    511 	struct cfdriver *lcd;
    512 
    513 	/* Make sure this driver isn't already in the system. */
    514 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    515 		if (STREQ(lcd->cd_name, cd->cd_name))
    516 			return (EEXIST);
    517 	}
    518 
    519 	LIST_INIT(&cd->cd_attach);
    520 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    521 
    522 	return (0);
    523 }
    524 
    525 /*
    526  * Remove a cfdriver from the system.
    527  */
    528 int
    529 config_cfdriver_detach(struct cfdriver *cd)
    530 {
    531 	int i;
    532 
    533 	/* Make sure there are no active instances. */
    534 	for (i = 0; i < cd->cd_ndevs; i++) {
    535 		if (cd->cd_devs[i] != NULL)
    536 			return (EBUSY);
    537 	}
    538 
    539 	/* ...and no attachments loaded. */
    540 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    541 		return (EBUSY);
    542 
    543 	LIST_REMOVE(cd, cd_list);
    544 
    545 	KASSERT(cd->cd_devs == NULL);
    546 
    547 	return (0);
    548 }
    549 
    550 /*
    551  * Look up a cfdriver by name.
    552  */
    553 struct cfdriver *
    554 config_cfdriver_lookup(const char *name)
    555 {
    556 	struct cfdriver *cd;
    557 
    558 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    559 		if (STREQ(cd->cd_name, name))
    560 			return (cd);
    561 	}
    562 
    563 	return (NULL);
    564 }
    565 
    566 /*
    567  * Add a cfattach to the specified driver.
    568  */
    569 int
    570 config_cfattach_attach(const char *driver, struct cfattach *ca)
    571 {
    572 	struct cfattach *lca;
    573 	struct cfdriver *cd;
    574 
    575 	cd = config_cfdriver_lookup(driver);
    576 	if (cd == NULL)
    577 		return (ESRCH);
    578 
    579 	/* Make sure this attachment isn't already on this driver. */
    580 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    581 		if (STREQ(lca->ca_name, ca->ca_name))
    582 			return (EEXIST);
    583 	}
    584 
    585 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    586 
    587 	return (0);
    588 }
    589 
    590 /*
    591  * Remove a cfattach from the specified driver.
    592  */
    593 int
    594 config_cfattach_detach(const char *driver, struct cfattach *ca)
    595 {
    596 	struct cfdriver *cd;
    597 	device_t dev;
    598 	int i;
    599 
    600 	cd = config_cfdriver_lookup(driver);
    601 	if (cd == NULL)
    602 		return (ESRCH);
    603 
    604 	/* Make sure there are no active instances. */
    605 	for (i = 0; i < cd->cd_ndevs; i++) {
    606 		if ((dev = cd->cd_devs[i]) == NULL)
    607 			continue;
    608 		if (dev->dv_cfattach == ca)
    609 			return (EBUSY);
    610 	}
    611 
    612 	LIST_REMOVE(ca, ca_list);
    613 
    614 	return (0);
    615 }
    616 
    617 /*
    618  * Look up a cfattach by name.
    619  */
    620 static struct cfattach *
    621 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    622 {
    623 	struct cfattach *ca;
    624 
    625 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    626 		if (STREQ(ca->ca_name, atname))
    627 			return (ca);
    628 	}
    629 
    630 	return (NULL);
    631 }
    632 
    633 /*
    634  * Look up a cfattach by driver/attachment name.
    635  */
    636 struct cfattach *
    637 config_cfattach_lookup(const char *name, const char *atname)
    638 {
    639 	struct cfdriver *cd;
    640 
    641 	cd = config_cfdriver_lookup(name);
    642 	if (cd == NULL)
    643 		return (NULL);
    644 
    645 	return (config_cfattach_lookup_cd(cd, atname));
    646 }
    647 
    648 /*
    649  * Apply the matching function and choose the best.  This is used
    650  * a few times and we want to keep the code small.
    651  */
    652 static void
    653 mapply(struct matchinfo *m, cfdata_t cf)
    654 {
    655 	int pri;
    656 
    657 	if (m->fn != NULL) {
    658 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    659 	} else {
    660 		pri = config_match(m->parent, cf, m->aux);
    661 	}
    662 	if (pri > m->pri) {
    663 		m->match = cf;
    664 		m->pri = pri;
    665 	}
    666 }
    667 
    668 int
    669 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    670 {
    671 	const struct cfiattrdata *ci;
    672 	const struct cflocdesc *cl;
    673 	int nlocs, i;
    674 
    675 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
    676 	KASSERT(ci);
    677 	nlocs = ci->ci_loclen;
    678 	KASSERT(!nlocs || locs);
    679 	for (i = 0; i < nlocs; i++) {
    680 		cl = &ci->ci_locdesc[i];
    681 		/* !cld_defaultstr means no default value */
    682 		if ((!(cl->cld_defaultstr)
    683 		     || (cf->cf_loc[i] != cl->cld_default))
    684 		    && cf->cf_loc[i] != locs[i])
    685 			return (0);
    686 	}
    687 
    688 	return (config_match(parent, cf, aux));
    689 }
    690 
    691 /*
    692  * Helper function: check whether the driver supports the interface attribute
    693  * and return its descriptor structure.
    694  */
    695 static const struct cfiattrdata *
    696 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    697 {
    698 	const struct cfiattrdata * const *cpp;
    699 
    700 	if (cd->cd_attrs == NULL)
    701 		return (0);
    702 
    703 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    704 		if (STREQ((*cpp)->ci_name, ia)) {
    705 			/* Match. */
    706 			return (*cpp);
    707 		}
    708 	}
    709 	return (0);
    710 }
    711 
    712 /*
    713  * Lookup an interface attribute description by name.
    714  * If the driver is given, consider only its supported attributes.
    715  */
    716 const struct cfiattrdata *
    717 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    718 {
    719 	const struct cfdriver *d;
    720 	const struct cfiattrdata *ia;
    721 
    722 	if (cd)
    723 		return (cfdriver_get_iattr(cd, name));
    724 
    725 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    726 		ia = cfdriver_get_iattr(d, name);
    727 		if (ia)
    728 			return (ia);
    729 	}
    730 	return (0);
    731 }
    732 
    733 /*
    734  * Determine if `parent' is a potential parent for a device spec based
    735  * on `cfp'.
    736  */
    737 static int
    738 cfparent_match(const device_t parent, const struct cfparent *cfp)
    739 {
    740 	struct cfdriver *pcd;
    741 
    742 	/* We don't match root nodes here. */
    743 	if (cfp == NULL)
    744 		return (0);
    745 
    746 	pcd = parent->dv_cfdriver;
    747 	KASSERT(pcd != NULL);
    748 
    749 	/*
    750 	 * First, ensure this parent has the correct interface
    751 	 * attribute.
    752 	 */
    753 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    754 		return (0);
    755 
    756 	/*
    757 	 * If no specific parent device instance was specified (i.e.
    758 	 * we're attaching to the attribute only), we're done!
    759 	 */
    760 	if (cfp->cfp_parent == NULL)
    761 		return (1);
    762 
    763 	/*
    764 	 * Check the parent device's name.
    765 	 */
    766 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    767 		return (0);	/* not the same parent */
    768 
    769 	/*
    770 	 * Make sure the unit number matches.
    771 	 */
    772 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    773 	    cfp->cfp_unit == parent->dv_unit)
    774 		return (1);
    775 
    776 	/* Unit numbers don't match. */
    777 	return (0);
    778 }
    779 
    780 /*
    781  * Helper for config_cfdata_attach(): check all devices whether it could be
    782  * parent any attachment in the config data table passed, and rescan.
    783  */
    784 static void
    785 rescan_with_cfdata(const struct cfdata *cf)
    786 {
    787 	device_t d;
    788 	const struct cfdata *cf1;
    789 	deviter_t di;
    790 
    791 
    792 	/*
    793 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    794 	 * the outer loop.
    795 	 */
    796 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    797 
    798 		if (!(d->dv_cfattach->ca_rescan))
    799 			continue;
    800 
    801 		for (cf1 = cf; cf1->cf_name; cf1++) {
    802 
    803 			if (!cfparent_match(d, cf1->cf_pspec))
    804 				continue;
    805 
    806 			(*d->dv_cfattach->ca_rescan)(d,
    807 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
    808 		}
    809 	}
    810 	deviter_release(&di);
    811 }
    812 
    813 /*
    814  * Attach a supplemental config data table and rescan potential
    815  * parent devices if required.
    816  */
    817 int
    818 config_cfdata_attach(cfdata_t cf, int scannow)
    819 {
    820 	struct cftable *ct;
    821 
    822 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    823 	ct->ct_cfdata = cf;
    824 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    825 
    826 	if (scannow)
    827 		rescan_with_cfdata(cf);
    828 
    829 	return (0);
    830 }
    831 
    832 /*
    833  * Helper for config_cfdata_detach: check whether a device is
    834  * found through any attachment in the config data table.
    835  */
    836 static int
    837 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
    838 {
    839 	const struct cfdata *cf1;
    840 
    841 	for (cf1 = cf; cf1->cf_name; cf1++)
    842 		if (d->dv_cfdata == cf1)
    843 			return (1);
    844 
    845 	return (0);
    846 }
    847 
    848 /*
    849  * Detach a supplemental config data table. Detach all devices found
    850  * through that table (and thus keeping references to it) before.
    851  */
    852 int
    853 config_cfdata_detach(cfdata_t cf)
    854 {
    855 	device_t d;
    856 	int error = 0;
    857 	struct cftable *ct;
    858 	deviter_t di;
    859 
    860 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    861 	     d = deviter_next(&di)) {
    862 		if (!dev_in_cfdata(d, cf))
    863 			continue;
    864 		if ((error = config_detach(d, 0)) != 0)
    865 			break;
    866 	}
    867 	deviter_release(&di);
    868 	if (error) {
    869 		aprint_error_dev(d, "unable to detach instance\n");
    870 		return error;
    871 	}
    872 
    873 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    874 		if (ct->ct_cfdata == cf) {
    875 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    876 			kmem_free(ct, sizeof(*ct));
    877 			return (0);
    878 		}
    879 	}
    880 
    881 	/* not found -- shouldn't happen */
    882 	return (EINVAL);
    883 }
    884 
    885 /*
    886  * Invoke the "match" routine for a cfdata entry on behalf of
    887  * an external caller, usually a "submatch" routine.
    888  */
    889 int
    890 config_match(device_t parent, cfdata_t cf, void *aux)
    891 {
    892 	struct cfattach *ca;
    893 
    894 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    895 	if (ca == NULL) {
    896 		/* No attachment for this entry, oh well. */
    897 		return (0);
    898 	}
    899 
    900 	return ((*ca->ca_match)(parent, cf, aux));
    901 }
    902 
    903 /*
    904  * Iterate over all potential children of some device, calling the given
    905  * function (default being the child's match function) for each one.
    906  * Nonzero returns are matches; the highest value returned is considered
    907  * the best match.  Return the `found child' if we got a match, or NULL
    908  * otherwise.  The `aux' pointer is simply passed on through.
    909  *
    910  * Note that this function is designed so that it can be used to apply
    911  * an arbitrary function to all potential children (its return value
    912  * can be ignored).
    913  */
    914 cfdata_t
    915 config_search_loc(cfsubmatch_t fn, device_t parent,
    916 		  const char *ifattr, const int *locs, void *aux)
    917 {
    918 	struct cftable *ct;
    919 	cfdata_t cf;
    920 	struct matchinfo m;
    921 
    922 	KASSERT(config_initialized);
    923 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
    924 
    925 	m.fn = fn;
    926 	m.parent = parent;
    927 	m.locs = locs;
    928 	m.aux = aux;
    929 	m.match = NULL;
    930 	m.pri = 0;
    931 
    932 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    933 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
    934 
    935 			/* We don't match root nodes here. */
    936 			if (!cf->cf_pspec)
    937 				continue;
    938 
    939 			/*
    940 			 * Skip cf if no longer eligible, otherwise scan
    941 			 * through parents for one matching `parent', and
    942 			 * try match function.
    943 			 */
    944 			if (cf->cf_fstate == FSTATE_FOUND)
    945 				continue;
    946 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
    947 			    cf->cf_fstate == FSTATE_DSTAR)
    948 				continue;
    949 
    950 			/*
    951 			 * If an interface attribute was specified,
    952 			 * consider only children which attach to
    953 			 * that attribute.
    954 			 */
    955 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
    956 				continue;
    957 
    958 			if (cfparent_match(parent, cf->cf_pspec))
    959 				mapply(&m, cf);
    960 		}
    961 	}
    962 	return (m.match);
    963 }
    964 
    965 cfdata_t
    966 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
    967     void *aux)
    968 {
    969 
    970 	return (config_search_loc(fn, parent, ifattr, NULL, aux));
    971 }
    972 
    973 /*
    974  * Find the given root device.
    975  * This is much like config_search, but there is no parent.
    976  * Don't bother with multiple cfdata tables; the root node
    977  * must always be in the initial table.
    978  */
    979 cfdata_t
    980 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
    981 {
    982 	cfdata_t cf;
    983 	const short *p;
    984 	struct matchinfo m;
    985 
    986 	m.fn = fn;
    987 	m.parent = ROOT;
    988 	m.aux = aux;
    989 	m.match = NULL;
    990 	m.pri = 0;
    991 	m.locs = 0;
    992 	/*
    993 	 * Look at root entries for matching name.  We do not bother
    994 	 * with found-state here since only one root should ever be
    995 	 * searched (and it must be done first).
    996 	 */
    997 	for (p = cfroots; *p >= 0; p++) {
    998 		cf = &cfdata[*p];
    999 		if (strcmp(cf->cf_name, rootname) == 0)
   1000 			mapply(&m, cf);
   1001 	}
   1002 	return (m.match);
   1003 }
   1004 
   1005 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1006 
   1007 /*
   1008  * The given `aux' argument describes a device that has been found
   1009  * on the given parent, but not necessarily configured.  Locate the
   1010  * configuration data for that device (using the submatch function
   1011  * provided, or using candidates' cd_match configuration driver
   1012  * functions) and attach it, and return true.  If the device was
   1013  * not configured, call the given `print' function and return 0.
   1014  */
   1015 device_t
   1016 config_found_sm_loc(device_t parent,
   1017 		const char *ifattr, const int *locs, void *aux,
   1018 		cfprint_t print, cfsubmatch_t submatch)
   1019 {
   1020 	cfdata_t cf;
   1021 
   1022 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1023 	if (splash_progress_state)
   1024 		splash_progress_update(splash_progress_state);
   1025 #endif
   1026 
   1027 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
   1028 		return(config_attach_loc(parent, cf, locs, aux, print));
   1029 	if (print) {
   1030 		if (config_do_twiddle)
   1031 			twiddle();
   1032 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1033 	}
   1034 
   1035 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1036 	if (splash_progress_state)
   1037 		splash_progress_update(splash_progress_state);
   1038 #endif
   1039 
   1040 	return (NULL);
   1041 }
   1042 
   1043 device_t
   1044 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1045     cfprint_t print)
   1046 {
   1047 
   1048 	return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
   1049 }
   1050 
   1051 device_t
   1052 config_found(device_t parent, void *aux, cfprint_t print)
   1053 {
   1054 
   1055 	return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
   1056 }
   1057 
   1058 /*
   1059  * As above, but for root devices.
   1060  */
   1061 device_t
   1062 config_rootfound(const char *rootname, void *aux)
   1063 {
   1064 	cfdata_t cf;
   1065 
   1066 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
   1067 		return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
   1068 	aprint_error("root device %s not configured\n", rootname);
   1069 	return (NULL);
   1070 }
   1071 
   1072 /* just like sprintf(buf, "%d") except that it works from the end */
   1073 static char *
   1074 number(char *ep, int n)
   1075 {
   1076 
   1077 	*--ep = 0;
   1078 	while (n >= 10) {
   1079 		*--ep = (n % 10) + '0';
   1080 		n /= 10;
   1081 	}
   1082 	*--ep = n + '0';
   1083 	return (ep);
   1084 }
   1085 
   1086 /*
   1087  * Expand the size of the cd_devs array if necessary.
   1088  */
   1089 static void
   1090 config_makeroom(int n, struct cfdriver *cd)
   1091 {
   1092 	int old, new;
   1093 	device_t *nsp;
   1094 
   1095 	if (n < cd->cd_ndevs)
   1096 		return;
   1097 
   1098 	/*
   1099 	 * Need to expand the array.
   1100 	 */
   1101 	old = cd->cd_ndevs;
   1102 	if (old == 0)
   1103 		new = 4;
   1104 	else
   1105 		new = old * 2;
   1106 	while (new <= n)
   1107 		new *= 2;
   1108 	cd->cd_ndevs = new;
   1109 	nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP);
   1110 	if (nsp == NULL)
   1111 		panic("config_attach: %sing dev array",
   1112 		    old != 0 ? "expand" : "creat");
   1113 	memset(nsp + old, 0, sizeof(device_t [new - old]));
   1114 	if (old != 0) {
   1115 		memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
   1116 		kmem_free(cd->cd_devs, sizeof(device_t [old]));
   1117 	}
   1118 	cd->cd_devs = nsp;
   1119 }
   1120 
   1121 static void
   1122 config_devlink(device_t dev)
   1123 {
   1124 	struct cfdriver *cd = dev->dv_cfdriver;
   1125 
   1126 	/* put this device in the devices array */
   1127 	config_makeroom(dev->dv_unit, cd);
   1128 	if (cd->cd_devs[dev->dv_unit])
   1129 		panic("config_attach: duplicate %s", device_xname(dev));
   1130 	cd->cd_devs[dev->dv_unit] = dev;
   1131 
   1132 	/* It is safe to add a device to the tail of the list while
   1133 	 * readers are in the list, but not while a writer is in
   1134 	 * the list.  Wait for any writer to complete.
   1135 	 */
   1136 	mutex_enter(&alldevs_mtx);
   1137 	while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
   1138 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1139 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
   1140 	cv_signal(&alldevs_cv);
   1141 	mutex_exit(&alldevs_mtx);
   1142 }
   1143 
   1144 static void
   1145 config_devunlink(device_t dev)
   1146 {
   1147 	struct cfdriver *cd = dev->dv_cfdriver;
   1148 	int i;
   1149 
   1150 	/* Unlink from device list. */
   1151 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1152 
   1153 	/* Remove from cfdriver's array. */
   1154 	cd->cd_devs[dev->dv_unit] = NULL;
   1155 
   1156 	/*
   1157 	 * If the device now has no units in use, deallocate its softc array.
   1158 	 */
   1159 	for (i = 0; i < cd->cd_ndevs; i++) {
   1160 		if (cd->cd_devs[i] != NULL)
   1161 			return;
   1162 	}
   1163 	/* nothing found; deallocate */
   1164 	kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
   1165 	cd->cd_devs = NULL;
   1166 	cd->cd_ndevs = 0;
   1167 }
   1168 
   1169 static device_t
   1170 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1171 {
   1172 	struct cfdriver *cd;
   1173 	struct cfattach *ca;
   1174 	size_t lname, lunit;
   1175 	const char *xunit;
   1176 	int myunit;
   1177 	char num[10];
   1178 	device_t dev;
   1179 	void *dev_private;
   1180 	const struct cfiattrdata *ia;
   1181 	device_lock_t dvl;
   1182 
   1183 	cd = config_cfdriver_lookup(cf->cf_name);
   1184 	if (cd == NULL)
   1185 		return (NULL);
   1186 
   1187 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1188 	if (ca == NULL)
   1189 		return (NULL);
   1190 
   1191 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
   1192 	    ca->ca_devsize < sizeof(struct device))
   1193 		panic("config_devalloc: %s", cf->cf_atname);
   1194 
   1195 #ifndef __BROKEN_CONFIG_UNIT_USAGE
   1196 	if (cf->cf_fstate == FSTATE_STAR) {
   1197 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
   1198 			if (cd->cd_devs[myunit] == NULL)
   1199 				break;
   1200 		/*
   1201 		 * myunit is now the unit of the first NULL device pointer,
   1202 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1203 		 */
   1204 	} else {
   1205 		myunit = cf->cf_unit;
   1206 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
   1207 			return (NULL);
   1208 	}
   1209 #else
   1210 	myunit = cf->cf_unit;
   1211 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
   1212 
   1213 	/* compute length of name and decimal expansion of unit number */
   1214 	lname = strlen(cd->cd_name);
   1215 	xunit = number(&num[sizeof(num)], myunit);
   1216 	lunit = &num[sizeof(num)] - xunit;
   1217 	if (lname + lunit > sizeof(dev->dv_xname))
   1218 		panic("config_devalloc: device name too long");
   1219 
   1220 	/* get memory for all device vars */
   1221 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
   1222 	if (ca->ca_devsize > 0) {
   1223 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1224 		if (dev_private == NULL)
   1225 			panic("config_devalloc: memory allocation for device softc failed");
   1226 	} else {
   1227 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1228 		dev_private = NULL;
   1229 	}
   1230 
   1231 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1232 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1233 	} else {
   1234 		dev = dev_private;
   1235 	}
   1236 	if (dev == NULL)
   1237 		panic("config_devalloc: memory allocation for device_t failed");
   1238 
   1239 	dvl = device_getlock(dev);
   1240 
   1241 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1242 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1243 
   1244 	dev->dv_class = cd->cd_class;
   1245 	dev->dv_cfdata = cf;
   1246 	dev->dv_cfdriver = cd;
   1247 	dev->dv_cfattach = ca;
   1248 	dev->dv_unit = myunit;
   1249 	dev->dv_activity_count = 0;
   1250 	dev->dv_activity_handlers = NULL;
   1251 	dev->dv_private = dev_private;
   1252 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1253 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1254 	dev->dv_parent = parent;
   1255 	if (parent != NULL)
   1256 		dev->dv_depth = parent->dv_depth + 1;
   1257 	else
   1258 		dev->dv_depth = 0;
   1259 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
   1260 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
   1261 	if (locs) {
   1262 		KASSERT(parent); /* no locators at root */
   1263 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
   1264 				    parent->dv_cfdriver);
   1265 		dev->dv_locators =
   1266 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
   1267 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
   1268 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
   1269 	}
   1270 	dev->dv_properties = prop_dictionary_create();
   1271 	KASSERT(dev->dv_properties != NULL);
   1272 
   1273 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
   1274 	    "device-driver", dev->dv_cfdriver->cd_name);
   1275 	prop_dictionary_set_uint16(dev->dv_properties,
   1276 	    "device-unit", dev->dv_unit);
   1277 
   1278 	return (dev);
   1279 }
   1280 
   1281 static void
   1282 config_devdealloc(device_t dev)
   1283 {
   1284 	device_lock_t dvl = device_getlock(dev);
   1285 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
   1286 
   1287 	cv_destroy(&dvl->dvl_cv);
   1288 	mutex_destroy(&dvl->dvl_mtx);
   1289 
   1290 	KASSERT(dev->dv_properties != NULL);
   1291 	prop_object_release(dev->dv_properties);
   1292 
   1293 	if (dev->dv_activity_handlers)
   1294 		panic("config_devdealloc with registered handlers");
   1295 
   1296 	if (dev->dv_locators) {
   1297 		size_t amount = *--dev->dv_locators;
   1298 		kmem_free(dev->dv_locators, amount);
   1299 	}
   1300 
   1301 	if (dev->dv_cfattach->ca_devsize > 0)
   1302 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1303 	if (priv)
   1304 		kmem_free(dev, sizeof(*dev));
   1305 }
   1306 
   1307 /*
   1308  * Attach a found device.
   1309  */
   1310 device_t
   1311 config_attach_loc(device_t parent, cfdata_t cf,
   1312 	const int *locs, void *aux, cfprint_t print)
   1313 {
   1314 	device_t dev;
   1315 	struct cftable *ct;
   1316 	const char *drvname;
   1317 
   1318 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1319 	if (splash_progress_state)
   1320 		splash_progress_update(splash_progress_state);
   1321 #endif
   1322 
   1323 	dev = config_devalloc(parent, cf, locs);
   1324 	if (!dev)
   1325 		panic("config_attach: allocation of device softc failed");
   1326 
   1327 	/* XXX redundant - see below? */
   1328 	if (cf->cf_fstate != FSTATE_STAR) {
   1329 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1330 		cf->cf_fstate = FSTATE_FOUND;
   1331 	}
   1332 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1333 	  else
   1334 		cf->cf_unit++;
   1335 #endif
   1336 
   1337 	config_devlink(dev);
   1338 
   1339 	if (config_do_twiddle)
   1340 		twiddle();
   1341 	else
   1342 		aprint_naive("Found ");
   1343 	/*
   1344 	 * We want the next two printfs for normal, verbose, and quiet,
   1345 	 * but not silent (in which case, we're twiddling, instead).
   1346 	 */
   1347 	if (parent == ROOT) {
   1348 		aprint_naive("%s (root)", device_xname(dev));
   1349 		aprint_normal("%s (root)", device_xname(dev));
   1350 	} else {
   1351 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
   1352 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
   1353 		if (print)
   1354 			(void) (*print)(aux, NULL);
   1355 	}
   1356 
   1357 	/*
   1358 	 * Before attaching, clobber any unfound devices that are
   1359 	 * otherwise identical.
   1360 	 * XXX code above is redundant?
   1361 	 */
   1362 	drvname = dev->dv_cfdriver->cd_name;
   1363 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1364 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1365 			if (STREQ(cf->cf_name, drvname) &&
   1366 			    cf->cf_unit == dev->dv_unit) {
   1367 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1368 					cf->cf_fstate = FSTATE_FOUND;
   1369 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1370 				/*
   1371 				 * Bump the unit number on all starred cfdata
   1372 				 * entries for this device.
   1373 				 */
   1374 				if (cf->cf_fstate == FSTATE_STAR)
   1375 					cf->cf_unit++;
   1376 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1377 			}
   1378 		}
   1379 	}
   1380 #ifdef __HAVE_DEVICE_REGISTER
   1381 	device_register(dev, aux);
   1382 #endif
   1383 
   1384 	/* Let userland know */
   1385 	devmon_report_device(dev, true);
   1386 
   1387 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1388 	if (splash_progress_state)
   1389 		splash_progress_update(splash_progress_state);
   1390 #endif
   1391 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1392 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1393 	if (splash_progress_state)
   1394 		splash_progress_update(splash_progress_state);
   1395 #endif
   1396 
   1397 	if (!device_pmf_is_registered(dev))
   1398 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
   1399 
   1400 	config_process_deferred(&deferred_config_queue, dev);
   1401 	return (dev);
   1402 }
   1403 
   1404 device_t
   1405 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1406 {
   1407 
   1408 	return (config_attach_loc(parent, cf, NULL, aux, print));
   1409 }
   1410 
   1411 /*
   1412  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1413  * way are silently inserted into the device tree, and their children
   1414  * attached.
   1415  *
   1416  * Note that because pseudo-devices are attached silently, any information
   1417  * the attach routine wishes to print should be prefixed with the device
   1418  * name by the attach routine.
   1419  */
   1420 device_t
   1421 config_attach_pseudo(cfdata_t cf)
   1422 {
   1423 	device_t dev;
   1424 
   1425 	dev = config_devalloc(ROOT, cf, NULL);
   1426 	if (!dev)
   1427 		return (NULL);
   1428 
   1429 	/* XXX mark busy in cfdata */
   1430 
   1431 	if (cf->cf_fstate != FSTATE_STAR) {
   1432 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1433 		cf->cf_fstate = FSTATE_FOUND;
   1434 	}
   1435 
   1436 	config_devlink(dev);
   1437 
   1438 #if 0	/* XXXJRT not yet */
   1439 #ifdef __HAVE_DEVICE_REGISTER
   1440 	device_register(dev, NULL);	/* like a root node */
   1441 #endif
   1442 #endif
   1443 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1444 	config_process_deferred(&deferred_config_queue, dev);
   1445 	return (dev);
   1446 }
   1447 
   1448 /*
   1449  * Detach a device.  Optionally forced (e.g. because of hardware
   1450  * removal) and quiet.  Returns zero if successful, non-zero
   1451  * (an error code) otherwise.
   1452  *
   1453  * Note that this code wants to be run from a process context, so
   1454  * that the detach can sleep to allow processes which have a device
   1455  * open to run and unwind their stacks.
   1456  */
   1457 int
   1458 config_detach(device_t dev, int flags)
   1459 {
   1460 	struct cftable *ct;
   1461 	cfdata_t cf;
   1462 	const struct cfattach *ca;
   1463 	struct cfdriver *cd;
   1464 #ifdef DIAGNOSTIC
   1465 	device_t d;
   1466 #endif
   1467 	int rv = 0;
   1468 
   1469 #ifdef DIAGNOSTIC
   1470 	cf = dev->dv_cfdata;
   1471 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
   1472 	    cf->cf_fstate != FSTATE_STAR)
   1473 		panic("config_detach: %s: bad device fstate %d",
   1474 		    device_xname(dev), cf ? cf->cf_fstate : -1);
   1475 #endif
   1476 	cd = dev->dv_cfdriver;
   1477 	KASSERT(cd != NULL);
   1478 
   1479 	ca = dev->dv_cfattach;
   1480 	KASSERT(ca != NULL);
   1481 
   1482 	KASSERT(curlwp != NULL);
   1483 	mutex_enter(&alldevs_mtx);
   1484 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   1485 		;
   1486 	else while (alldevs_nread != 0 ||
   1487 	       (alldevs_nwrite != 0 && alldevs_writer != curlwp))
   1488 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1489 	if (alldevs_nwrite++ == 0)
   1490 		alldevs_writer = curlwp;
   1491 	mutex_exit(&alldevs_mtx);
   1492 
   1493 	/*
   1494 	 * Ensure the device is deactivated.  If the device doesn't
   1495 	 * have an activation entry point, we allow DVF_ACTIVE to
   1496 	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
   1497 	 * device is busy, and the detach fails.
   1498 	 */
   1499 	if (!detachall &&
   1500 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1501 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1502 		rv = EBUSY;	/* XXX EOPNOTSUPP? */
   1503 	} else if (ca->ca_activate != NULL)
   1504 		rv = config_deactivate(dev);
   1505 
   1506 	/*
   1507 	 * Try to detach the device.  If that's not possible, then
   1508 	 * we either panic() (for the forced but failed case), or
   1509 	 * return an error.
   1510 	 */
   1511 	if (rv == 0) {
   1512 		if (ca->ca_detach != NULL)
   1513 			rv = (*ca->ca_detach)(dev, flags);
   1514 		else
   1515 			rv = EOPNOTSUPP;
   1516 	}
   1517 	if (rv != 0) {
   1518 		if ((flags & DETACH_FORCE) == 0)
   1519 			goto out;
   1520 		else
   1521 			panic("config_detach: forced detach of %s failed (%d)",
   1522 			    device_xname(dev), rv);
   1523 	}
   1524 
   1525 	dev->dv_flags &= ~DVF_ACTIVE;
   1526 
   1527 	/*
   1528 	 * The device has now been successfully detached.
   1529 	 */
   1530 
   1531 	/* Let userland know */
   1532 	devmon_report_device(dev, false);
   1533 
   1534 #ifdef DIAGNOSTIC
   1535 	/*
   1536 	 * Sanity: If you're successfully detached, you should have no
   1537 	 * children.  (Note that because children must be attached
   1538 	 * after parents, we only need to search the latter part of
   1539 	 * the list.)
   1540 	 */
   1541 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1542 	    d = TAILQ_NEXT(d, dv_list)) {
   1543 		if (d->dv_parent == dev) {
   1544 			printf("config_detach: detached device %s"
   1545 			    " has children %s\n", device_xname(dev), device_xname(d));
   1546 			panic("config_detach");
   1547 		}
   1548 	}
   1549 #endif
   1550 
   1551 	/* notify the parent that the child is gone */
   1552 	if (dev->dv_parent) {
   1553 		device_t p = dev->dv_parent;
   1554 		if (p->dv_cfattach->ca_childdetached)
   1555 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1556 	}
   1557 
   1558 	/*
   1559 	 * Mark cfdata to show that the unit can be reused, if possible.
   1560 	 */
   1561 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1562 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1563 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1564 				if (cf->cf_fstate == FSTATE_FOUND &&
   1565 				    cf->cf_unit == dev->dv_unit)
   1566 					cf->cf_fstate = FSTATE_NOTFOUND;
   1567 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1568 				/*
   1569 				 * Note that we can only re-use a starred
   1570 				 * unit number if the unit being detached
   1571 				 * had the last assigned unit number.
   1572 				 */
   1573 				if (cf->cf_fstate == FSTATE_STAR &&
   1574 				    cf->cf_unit == dev->dv_unit + 1)
   1575 					cf->cf_unit--;
   1576 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1577 			}
   1578 		}
   1579 	}
   1580 
   1581 	config_devunlink(dev);
   1582 
   1583 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1584 		aprint_normal_dev(dev, "detached\n");
   1585 
   1586 	config_devdealloc(dev);
   1587 
   1588 out:
   1589 	mutex_enter(&alldevs_mtx);
   1590 	if (--alldevs_nwrite == 0)
   1591 		alldevs_writer = NULL;
   1592 	cv_signal(&alldevs_cv);
   1593 	mutex_exit(&alldevs_mtx);
   1594 	return rv;
   1595 }
   1596 
   1597 int
   1598 config_detach_children(device_t parent, int flags)
   1599 {
   1600 	device_t dv;
   1601 	deviter_t di;
   1602 	int error = 0;
   1603 
   1604 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1605 	     dv = deviter_next(&di)) {
   1606 		if (device_parent(dv) != parent)
   1607 			continue;
   1608 		if ((error = config_detach(dv, flags)) != 0)
   1609 			break;
   1610 	}
   1611 	deviter_release(&di);
   1612 	return error;
   1613 }
   1614 
   1615 int
   1616 config_activate(device_t dev)
   1617 {
   1618 	const struct cfattach *ca = dev->dv_cfattach;
   1619 	int rv = 0, oflags = dev->dv_flags;
   1620 
   1621 	if (ca->ca_activate == NULL)
   1622 		return (EOPNOTSUPP);
   1623 
   1624 	if ((dev->dv_flags & DVF_ACTIVE) == 0) {
   1625 		dev->dv_flags |= DVF_ACTIVE;
   1626 		rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
   1627 		if (rv)
   1628 			dev->dv_flags = oflags;
   1629 	}
   1630 	return (rv);
   1631 }
   1632 
   1633 int
   1634 config_deactivate(device_t dev)
   1635 {
   1636 	const struct cfattach *ca = dev->dv_cfattach;
   1637 	int rv = 0, oflags = dev->dv_flags;
   1638 
   1639 	if (ca->ca_activate == NULL)
   1640 		return (EOPNOTSUPP);
   1641 
   1642 	if (dev->dv_flags & DVF_ACTIVE) {
   1643 		dev->dv_flags &= ~DVF_ACTIVE;
   1644 		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
   1645 		if (rv)
   1646 			dev->dv_flags = oflags;
   1647 	}
   1648 	return (rv);
   1649 }
   1650 
   1651 /*
   1652  * Defer the configuration of the specified device until all
   1653  * of its parent's devices have been attached.
   1654  */
   1655 void
   1656 config_defer(device_t dev, void (*func)(device_t))
   1657 {
   1658 	struct deferred_config *dc;
   1659 
   1660 	if (dev->dv_parent == NULL)
   1661 		panic("config_defer: can't defer config of a root device");
   1662 
   1663 #ifdef DIAGNOSTIC
   1664 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
   1665 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1666 		if (dc->dc_dev == dev)
   1667 			panic("config_defer: deferred twice");
   1668 	}
   1669 #endif
   1670 
   1671 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1672 	if (dc == NULL)
   1673 		panic("config_defer: unable to allocate callback");
   1674 
   1675 	dc->dc_dev = dev;
   1676 	dc->dc_func = func;
   1677 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1678 	config_pending_incr();
   1679 }
   1680 
   1681 /*
   1682  * Defer some autoconfiguration for a device until after interrupts
   1683  * are enabled.
   1684  */
   1685 void
   1686 config_interrupts(device_t dev, void (*func)(device_t))
   1687 {
   1688 	struct deferred_config *dc;
   1689 
   1690 	/*
   1691 	 * If interrupts are enabled, callback now.
   1692 	 */
   1693 	if (cold == 0) {
   1694 		(*func)(dev);
   1695 		return;
   1696 	}
   1697 
   1698 #ifdef DIAGNOSTIC
   1699 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
   1700 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1701 		if (dc->dc_dev == dev)
   1702 			panic("config_interrupts: deferred twice");
   1703 	}
   1704 #endif
   1705 
   1706 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1707 	if (dc == NULL)
   1708 		panic("config_interrupts: unable to allocate callback");
   1709 
   1710 	dc->dc_dev = dev;
   1711 	dc->dc_func = func;
   1712 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   1713 	config_pending_incr();
   1714 }
   1715 
   1716 /*
   1717  * Process a deferred configuration queue.
   1718  */
   1719 static void
   1720 config_process_deferred(struct deferred_config_head *queue,
   1721     device_t parent)
   1722 {
   1723 	struct deferred_config *dc, *ndc;
   1724 
   1725 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   1726 		ndc = TAILQ_NEXT(dc, dc_queue);
   1727 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   1728 			TAILQ_REMOVE(queue, dc, dc_queue);
   1729 			(*dc->dc_func)(dc->dc_dev);
   1730 			kmem_free(dc, sizeof(*dc));
   1731 			config_pending_decr();
   1732 		}
   1733 	}
   1734 }
   1735 
   1736 /*
   1737  * Manipulate the config_pending semaphore.
   1738  */
   1739 void
   1740 config_pending_incr(void)
   1741 {
   1742 
   1743 	mutex_enter(&config_misc_lock);
   1744 	config_pending++;
   1745 	mutex_exit(&config_misc_lock);
   1746 }
   1747 
   1748 void
   1749 config_pending_decr(void)
   1750 {
   1751 
   1752 #ifdef DIAGNOSTIC
   1753 	if (config_pending == 0)
   1754 		panic("config_pending_decr: config_pending == 0");
   1755 #endif
   1756 	mutex_enter(&config_misc_lock);
   1757 	config_pending--;
   1758 	if (config_pending == 0)
   1759 		cv_broadcast(&config_misc_cv);
   1760 	mutex_exit(&config_misc_lock);
   1761 }
   1762 
   1763 /*
   1764  * Register a "finalization" routine.  Finalization routines are
   1765  * called iteratively once all real devices have been found during
   1766  * autoconfiguration, for as long as any one finalizer has done
   1767  * any work.
   1768  */
   1769 int
   1770 config_finalize_register(device_t dev, int (*fn)(device_t))
   1771 {
   1772 	struct finalize_hook *f;
   1773 
   1774 	/*
   1775 	 * If finalization has already been done, invoke the
   1776 	 * callback function now.
   1777 	 */
   1778 	if (config_finalize_done) {
   1779 		while ((*fn)(dev) != 0)
   1780 			/* loop */ ;
   1781 	}
   1782 
   1783 	/* Ensure this isn't already on the list. */
   1784 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   1785 		if (f->f_func == fn && f->f_dev == dev)
   1786 			return (EEXIST);
   1787 	}
   1788 
   1789 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   1790 	f->f_func = fn;
   1791 	f->f_dev = dev;
   1792 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   1793 
   1794 	return (0);
   1795 }
   1796 
   1797 void
   1798 config_finalize(void)
   1799 {
   1800 	struct finalize_hook *f;
   1801 	struct pdevinit *pdev;
   1802 	extern struct pdevinit pdevinit[];
   1803 	int errcnt, rv;
   1804 
   1805 	/*
   1806 	 * Now that device driver threads have been created, wait for
   1807 	 * them to finish any deferred autoconfiguration.
   1808 	 */
   1809 	mutex_enter(&config_misc_lock);
   1810 	while (config_pending != 0)
   1811 		cv_wait(&config_misc_cv, &config_misc_lock);
   1812 	mutex_exit(&config_misc_lock);
   1813 
   1814 	KERNEL_LOCK(1, NULL);
   1815 
   1816 	/* Attach pseudo-devices. */
   1817 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   1818 		(*pdev->pdev_attach)(pdev->pdev_count);
   1819 
   1820 	/* Run the hooks until none of them does any work. */
   1821 	do {
   1822 		rv = 0;
   1823 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   1824 			rv |= (*f->f_func)(f->f_dev);
   1825 	} while (rv != 0);
   1826 
   1827 	config_finalize_done = 1;
   1828 
   1829 	/* Now free all the hooks. */
   1830 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   1831 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   1832 		kmem_free(f, sizeof(*f));
   1833 	}
   1834 
   1835 	KERNEL_UNLOCK_ONE(NULL);
   1836 
   1837 	errcnt = aprint_get_error_count();
   1838 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   1839 	    (boothowto & AB_VERBOSE) == 0) {
   1840 		if (config_do_twiddle) {
   1841 			config_do_twiddle = 0;
   1842 			printf_nolog(" done.\n");
   1843 		}
   1844 		if (errcnt != 0) {
   1845 			printf("WARNING: %d error%s while detecting hardware; "
   1846 			    "check system log.\n", errcnt,
   1847 			    errcnt == 1 ? "" : "s");
   1848 		}
   1849 	}
   1850 }
   1851 
   1852 /*
   1853  * device_lookup:
   1854  *
   1855  *	Look up a device instance for a given driver.
   1856  */
   1857 device_t
   1858 device_lookup(cfdriver_t cd, int unit)
   1859 {
   1860 
   1861 	if (unit < 0 || unit >= cd->cd_ndevs)
   1862 		return (NULL);
   1863 
   1864 	return (cd->cd_devs[unit]);
   1865 }
   1866 
   1867 /*
   1868  * device_lookup:
   1869  *
   1870  *	Look up a device instance for a given driver.
   1871  */
   1872 void *
   1873 device_lookup_private(cfdriver_t cd, int unit)
   1874 {
   1875 	device_t dv;
   1876 
   1877 	if (unit < 0 || unit >= cd->cd_ndevs)
   1878 		return NULL;
   1879 
   1880 	if ((dv = cd->cd_devs[unit]) == NULL)
   1881 		return NULL;
   1882 
   1883 	return dv->dv_private;
   1884 }
   1885 
   1886 /*
   1887  * Accessor functions for the device_t type.
   1888  */
   1889 devclass_t
   1890 device_class(device_t dev)
   1891 {
   1892 
   1893 	return (dev->dv_class);
   1894 }
   1895 
   1896 cfdata_t
   1897 device_cfdata(device_t dev)
   1898 {
   1899 
   1900 	return (dev->dv_cfdata);
   1901 }
   1902 
   1903 cfdriver_t
   1904 device_cfdriver(device_t dev)
   1905 {
   1906 
   1907 	return (dev->dv_cfdriver);
   1908 }
   1909 
   1910 cfattach_t
   1911 device_cfattach(device_t dev)
   1912 {
   1913 
   1914 	return (dev->dv_cfattach);
   1915 }
   1916 
   1917 int
   1918 device_unit(device_t dev)
   1919 {
   1920 
   1921 	return (dev->dv_unit);
   1922 }
   1923 
   1924 const char *
   1925 device_xname(device_t dev)
   1926 {
   1927 
   1928 	return (dev->dv_xname);
   1929 }
   1930 
   1931 device_t
   1932 device_parent(device_t dev)
   1933 {
   1934 
   1935 	return (dev->dv_parent);
   1936 }
   1937 
   1938 bool
   1939 device_is_active(device_t dev)
   1940 {
   1941 	int active_flags;
   1942 
   1943 	active_flags = DVF_ACTIVE;
   1944 	active_flags |= DVF_CLASS_SUSPENDED;
   1945 	active_flags |= DVF_DRIVER_SUSPENDED;
   1946 	active_flags |= DVF_BUS_SUSPENDED;
   1947 
   1948 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
   1949 }
   1950 
   1951 bool
   1952 device_is_enabled(device_t dev)
   1953 {
   1954 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
   1955 }
   1956 
   1957 bool
   1958 device_has_power(device_t dev)
   1959 {
   1960 	int active_flags;
   1961 
   1962 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
   1963 
   1964 	return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
   1965 }
   1966 
   1967 int
   1968 device_locator(device_t dev, u_int locnum)
   1969 {
   1970 
   1971 	KASSERT(dev->dv_locators != NULL);
   1972 	return (dev->dv_locators[locnum]);
   1973 }
   1974 
   1975 void *
   1976 device_private(device_t dev)
   1977 {
   1978 
   1979 	/*
   1980 	 * The reason why device_private(NULL) is allowed is to simplify the
   1981 	 * work of a lot of userspace request handlers (i.e., c/bdev
   1982 	 * handlers) which grab cfdriver_t->cd_units[n].
   1983 	 * It avoids having them test for it to be NULL and only then calling
   1984 	 * device_private.
   1985 	 */
   1986 	return dev == NULL ? NULL : dev->dv_private;
   1987 }
   1988 
   1989 prop_dictionary_t
   1990 device_properties(device_t dev)
   1991 {
   1992 
   1993 	return (dev->dv_properties);
   1994 }
   1995 
   1996 /*
   1997  * device_is_a:
   1998  *
   1999  *	Returns true if the device is an instance of the specified
   2000  *	driver.
   2001  */
   2002 bool
   2003 device_is_a(device_t dev, const char *dname)
   2004 {
   2005 
   2006 	return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
   2007 }
   2008 
   2009 /*
   2010  * device_find_by_xname:
   2011  *
   2012  *	Returns the device of the given name or NULL if it doesn't exist.
   2013  */
   2014 device_t
   2015 device_find_by_xname(const char *name)
   2016 {
   2017 	device_t dv;
   2018 	deviter_t di;
   2019 
   2020 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2021 		if (strcmp(device_xname(dv), name) == 0)
   2022 			break;
   2023 	}
   2024 	deviter_release(&di);
   2025 
   2026 	return dv;
   2027 }
   2028 
   2029 /*
   2030  * device_find_by_driver_unit:
   2031  *
   2032  *	Returns the device of the given driver name and unit or
   2033  *	NULL if it doesn't exist.
   2034  */
   2035 device_t
   2036 device_find_by_driver_unit(const char *name, int unit)
   2037 {
   2038 	struct cfdriver *cd;
   2039 
   2040 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2041 		return NULL;
   2042 	return device_lookup(cd, unit);
   2043 }
   2044 
   2045 /*
   2046  * Power management related functions.
   2047  */
   2048 
   2049 bool
   2050 device_pmf_is_registered(device_t dev)
   2051 {
   2052 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2053 }
   2054 
   2055 bool
   2056 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
   2057 {
   2058 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2059 		return true;
   2060 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2061 		return false;
   2062 	if (*dev->dv_driver_suspend != NULL &&
   2063 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
   2064 		return false;
   2065 
   2066 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2067 	return true;
   2068 }
   2069 
   2070 bool
   2071 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
   2072 {
   2073 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2074 		return true;
   2075 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2076 		return false;
   2077 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
   2078 		return false;
   2079 	if (*dev->dv_driver_resume != NULL &&
   2080 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
   2081 		return false;
   2082 
   2083 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2084 	return true;
   2085 }
   2086 
   2087 bool
   2088 device_pmf_driver_shutdown(device_t dev, int how)
   2089 {
   2090 
   2091 	if (*dev->dv_driver_shutdown != NULL &&
   2092 	    !(*dev->dv_driver_shutdown)(dev, how))
   2093 		return false;
   2094 	return true;
   2095 }
   2096 
   2097 bool
   2098 device_pmf_driver_register(device_t dev,
   2099     bool (*suspend)(device_t PMF_FN_PROTO),
   2100     bool (*resume)(device_t PMF_FN_PROTO),
   2101     bool (*shutdown)(device_t, int))
   2102 {
   2103 	dev->dv_driver_suspend = suspend;
   2104 	dev->dv_driver_resume = resume;
   2105 	dev->dv_driver_shutdown = shutdown;
   2106 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2107 	return true;
   2108 }
   2109 
   2110 static const char *
   2111 curlwp_name(void)
   2112 {
   2113 	if (curlwp->l_name != NULL)
   2114 		return curlwp->l_name;
   2115 	else
   2116 		return curlwp->l_proc->p_comm;
   2117 }
   2118 
   2119 void
   2120 device_pmf_driver_deregister(device_t dev)
   2121 {
   2122 	device_lock_t dvl = device_getlock(dev);
   2123 
   2124 	dev->dv_driver_suspend = NULL;
   2125 	dev->dv_driver_resume = NULL;
   2126 
   2127 	mutex_enter(&dvl->dvl_mtx);
   2128 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2129 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2130 		/* Wake a thread that waits for the lock.  That
   2131 		 * thread will fail to acquire the lock, and then
   2132 		 * it will wake the next thread that waits for the
   2133 		 * lock, or else it will wake us.
   2134 		 */
   2135 		cv_signal(&dvl->dvl_cv);
   2136 		pmflock_debug(dev, __func__, __LINE__);
   2137 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2138 		pmflock_debug(dev, __func__, __LINE__);
   2139 	}
   2140 	mutex_exit(&dvl->dvl_mtx);
   2141 }
   2142 
   2143 bool
   2144 device_pmf_driver_child_register(device_t dev)
   2145 {
   2146 	device_t parent = device_parent(dev);
   2147 
   2148 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2149 		return true;
   2150 	return (*parent->dv_driver_child_register)(dev);
   2151 }
   2152 
   2153 void
   2154 device_pmf_driver_set_child_register(device_t dev,
   2155     bool (*child_register)(device_t))
   2156 {
   2157 	dev->dv_driver_child_register = child_register;
   2158 }
   2159 
   2160 void
   2161 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
   2162 {
   2163 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2164 	if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
   2165 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
   2166 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2167 }
   2168 
   2169 bool
   2170 device_is_self_suspended(device_t dev)
   2171 {
   2172 	return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
   2173 }
   2174 
   2175 void
   2176 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
   2177 {
   2178 	bool self = (flags & PMF_F_SELF) != 0;
   2179 
   2180 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2181 
   2182 	if (!self)
   2183 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
   2184 	else if (device_is_active(dev))
   2185 		dev->dv_flags |= DVF_SELF_SUSPENDED;
   2186 
   2187 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2188 }
   2189 
   2190 static void
   2191 pmflock_debug(device_t dev, const char *func, int line)
   2192 {
   2193 	device_lock_t dvl = device_getlock(dev);
   2194 
   2195 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
   2196 	    func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
   2197 	    dev->dv_flags);
   2198 }
   2199 
   2200 static void
   2201 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
   2202 {
   2203 	device_lock_t dvl = device_getlock(dev);
   2204 
   2205 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x "
   2206 	    "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
   2207 	    dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags PMF_FN_CALL);
   2208 }
   2209 
   2210 static bool
   2211 device_pmf_lock1(device_t dev PMF_FN_ARGS)
   2212 {
   2213 	device_lock_t dvl = device_getlock(dev);
   2214 
   2215 	while (device_pmf_is_registered(dev) &&
   2216 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2217 		dvl->dvl_nwait++;
   2218 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2219 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2220 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2221 		dvl->dvl_nwait--;
   2222 	}
   2223 	if (!device_pmf_is_registered(dev)) {
   2224 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2225 		/* We could not acquire the lock, but some other thread may
   2226 		 * wait for it, also.  Wake that thread.
   2227 		 */
   2228 		cv_signal(&dvl->dvl_cv);
   2229 		return false;
   2230 	}
   2231 	dvl->dvl_nlock++;
   2232 	dvl->dvl_holder = curlwp;
   2233 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2234 	return true;
   2235 }
   2236 
   2237 bool
   2238 device_pmf_lock(device_t dev PMF_FN_ARGS)
   2239 {
   2240 	bool rc;
   2241 	device_lock_t dvl = device_getlock(dev);
   2242 
   2243 	mutex_enter(&dvl->dvl_mtx);
   2244 	rc = device_pmf_lock1(dev PMF_FN_CALL);
   2245 	mutex_exit(&dvl->dvl_mtx);
   2246 
   2247 	return rc;
   2248 }
   2249 
   2250 void
   2251 device_pmf_unlock(device_t dev PMF_FN_ARGS)
   2252 {
   2253 	device_lock_t dvl = device_getlock(dev);
   2254 
   2255 	KASSERT(dvl->dvl_nlock > 0);
   2256 	mutex_enter(&dvl->dvl_mtx);
   2257 	if (--dvl->dvl_nlock == 0)
   2258 		dvl->dvl_holder = NULL;
   2259 	cv_signal(&dvl->dvl_cv);
   2260 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2261 	mutex_exit(&dvl->dvl_mtx);
   2262 }
   2263 
   2264 device_lock_t
   2265 device_getlock(device_t dev)
   2266 {
   2267 	return &dev->dv_lock;
   2268 }
   2269 
   2270 void *
   2271 device_pmf_bus_private(device_t dev)
   2272 {
   2273 	return dev->dv_bus_private;
   2274 }
   2275 
   2276 bool
   2277 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
   2278 {
   2279 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2280 		return true;
   2281 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2282 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2283 		return false;
   2284 	if (*dev->dv_bus_suspend != NULL &&
   2285 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
   2286 		return false;
   2287 
   2288 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2289 	return true;
   2290 }
   2291 
   2292 bool
   2293 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
   2294 {
   2295 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2296 		return true;
   2297 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
   2298 		return false;
   2299 	if (*dev->dv_bus_resume != NULL &&
   2300 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
   2301 		return false;
   2302 
   2303 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2304 	return true;
   2305 }
   2306 
   2307 bool
   2308 device_pmf_bus_shutdown(device_t dev, int how)
   2309 {
   2310 
   2311 	if (*dev->dv_bus_shutdown != NULL &&
   2312 	    !(*dev->dv_bus_shutdown)(dev, how))
   2313 		return false;
   2314 	return true;
   2315 }
   2316 
   2317 void
   2318 device_pmf_bus_register(device_t dev, void *priv,
   2319     bool (*suspend)(device_t PMF_FN_PROTO),
   2320     bool (*resume)(device_t PMF_FN_PROTO),
   2321     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2322 {
   2323 	dev->dv_bus_private = priv;
   2324 	dev->dv_bus_resume = resume;
   2325 	dev->dv_bus_suspend = suspend;
   2326 	dev->dv_bus_shutdown = shutdown;
   2327 	dev->dv_bus_deregister = deregister;
   2328 }
   2329 
   2330 void
   2331 device_pmf_bus_deregister(device_t dev)
   2332 {
   2333 	if (dev->dv_bus_deregister == NULL)
   2334 		return;
   2335 	(*dev->dv_bus_deregister)(dev);
   2336 	dev->dv_bus_private = NULL;
   2337 	dev->dv_bus_suspend = NULL;
   2338 	dev->dv_bus_resume = NULL;
   2339 	dev->dv_bus_deregister = NULL;
   2340 }
   2341 
   2342 void *
   2343 device_pmf_class_private(device_t dev)
   2344 {
   2345 	return dev->dv_class_private;
   2346 }
   2347 
   2348 bool
   2349 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
   2350 {
   2351 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2352 		return true;
   2353 	if (*dev->dv_class_suspend != NULL &&
   2354 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
   2355 		return false;
   2356 
   2357 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2358 	return true;
   2359 }
   2360 
   2361 bool
   2362 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
   2363 {
   2364 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2365 		return true;
   2366 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2367 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2368 		return false;
   2369 	if (*dev->dv_class_resume != NULL &&
   2370 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
   2371 		return false;
   2372 
   2373 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2374 	return true;
   2375 }
   2376 
   2377 void
   2378 device_pmf_class_register(device_t dev, void *priv,
   2379     bool (*suspend)(device_t PMF_FN_PROTO),
   2380     bool (*resume)(device_t PMF_FN_PROTO),
   2381     void (*deregister)(device_t))
   2382 {
   2383 	dev->dv_class_private = priv;
   2384 	dev->dv_class_suspend = suspend;
   2385 	dev->dv_class_resume = resume;
   2386 	dev->dv_class_deregister = deregister;
   2387 }
   2388 
   2389 void
   2390 device_pmf_class_deregister(device_t dev)
   2391 {
   2392 	if (dev->dv_class_deregister == NULL)
   2393 		return;
   2394 	(*dev->dv_class_deregister)(dev);
   2395 	dev->dv_class_private = NULL;
   2396 	dev->dv_class_suspend = NULL;
   2397 	dev->dv_class_resume = NULL;
   2398 	dev->dv_class_deregister = NULL;
   2399 }
   2400 
   2401 bool
   2402 device_active(device_t dev, devactive_t type)
   2403 {
   2404 	size_t i;
   2405 
   2406 	if (dev->dv_activity_count == 0)
   2407 		return false;
   2408 
   2409 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2410 		if (dev->dv_activity_handlers[i] == NULL)
   2411 			break;
   2412 		(*dev->dv_activity_handlers[i])(dev, type);
   2413 	}
   2414 
   2415 	return true;
   2416 }
   2417 
   2418 bool
   2419 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2420 {
   2421 	void (**new_handlers)(device_t, devactive_t);
   2422 	void (**old_handlers)(device_t, devactive_t);
   2423 	size_t i, old_size, new_size;
   2424 	int s;
   2425 
   2426 	old_handlers = dev->dv_activity_handlers;
   2427 	old_size = dev->dv_activity_count;
   2428 
   2429 	for (i = 0; i < old_size; ++i) {
   2430 		KASSERT(old_handlers[i] != handler);
   2431 		if (old_handlers[i] == NULL) {
   2432 			old_handlers[i] = handler;
   2433 			return true;
   2434 		}
   2435 	}
   2436 
   2437 	new_size = old_size + 4;
   2438 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
   2439 
   2440 	memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
   2441 	new_handlers[old_size] = handler;
   2442 	memset(new_handlers + old_size + 1, 0,
   2443 	    sizeof(int [new_size - (old_size+1)]));
   2444 
   2445 	s = splhigh();
   2446 	dev->dv_activity_count = new_size;
   2447 	dev->dv_activity_handlers = new_handlers;
   2448 	splx(s);
   2449 
   2450 	if (old_handlers != NULL)
   2451 		kmem_free(old_handlers, sizeof(void * [old_size]));
   2452 
   2453 	return true;
   2454 }
   2455 
   2456 void
   2457 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2458 {
   2459 	void (**old_handlers)(device_t, devactive_t);
   2460 	size_t i, old_size;
   2461 	int s;
   2462 
   2463 	old_handlers = dev->dv_activity_handlers;
   2464 	old_size = dev->dv_activity_count;
   2465 
   2466 	for (i = 0; i < old_size; ++i) {
   2467 		if (old_handlers[i] == handler)
   2468 			break;
   2469 		if (old_handlers[i] == NULL)
   2470 			return; /* XXX panic? */
   2471 	}
   2472 
   2473 	if (i == old_size)
   2474 		return; /* XXX panic? */
   2475 
   2476 	for (; i < old_size - 1; ++i) {
   2477 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   2478 			continue;
   2479 
   2480 		if (i == 0) {
   2481 			s = splhigh();
   2482 			dev->dv_activity_count = 0;
   2483 			dev->dv_activity_handlers = NULL;
   2484 			splx(s);
   2485 			kmem_free(old_handlers, sizeof(void *[old_size]));
   2486 		}
   2487 		return;
   2488 	}
   2489 	old_handlers[i] = NULL;
   2490 }
   2491 
   2492 /*
   2493  * Device Iteration
   2494  *
   2495  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2496  *     each device_t's in the device tree.
   2497  *
   2498  * deviter_init(di, flags): initialize the device iterator `di'
   2499  *     to "walk" the device tree.  deviter_next(di) will return
   2500  *     the first device_t in the device tree, or NULL if there are
   2501  *     no devices.
   2502  *
   2503  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2504  *     caller intends to modify the device tree by calling
   2505  *     config_detach(9) on devices in the order that the iterator
   2506  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2507  *     nearest the "root" of the device tree to be returned, first;
   2508  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2509  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2510  *     indicating both that deviter_init() should not respect any
   2511  *     locks on the device tree, and that deviter_next(di) may run
   2512  *     in more than one LWP before the walk has finished.
   2513  *
   2514  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2515  *     once.
   2516  *
   2517  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2518  *
   2519  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2520  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2521  *
   2522  * deviter_first(di, flags): initialize the device iterator `di'
   2523  *     and return the first device_t in the device tree, or NULL
   2524  *     if there are no devices.  The statement
   2525  *
   2526  *         dv = deviter_first(di);
   2527  *
   2528  *     is shorthand for
   2529  *
   2530  *         deviter_init(di);
   2531  *         dv = deviter_next(di);
   2532  *
   2533  * deviter_next(di): return the next device_t in the device tree,
   2534  *     or NULL if there are no more devices.  deviter_next(di)
   2535  *     is undefined if `di' was not initialized with deviter_init() or
   2536  *     deviter_first().
   2537  *
   2538  * deviter_release(di): stops iteration (subsequent calls to
   2539  *     deviter_next() will return NULL), releases any locks and
   2540  *     resources held by the device iterator.
   2541  *
   2542  * Device iteration does not return device_t's in any particular
   2543  * order.  An iterator will never return the same device_t twice.
   2544  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2545  * is called repeatedly on the same `di', it will eventually return
   2546  * NULL.  It is ok to attach/detach devices during device iteration.
   2547  */
   2548 void
   2549 deviter_init(deviter_t *di, deviter_flags_t flags)
   2550 {
   2551 	device_t dv;
   2552 	bool rw;
   2553 
   2554 	mutex_enter(&alldevs_mtx);
   2555 	if ((flags & DEVITER_F_SHUTDOWN) != 0) {
   2556 		flags |= DEVITER_F_RW;
   2557 		alldevs_nwrite++;
   2558 		alldevs_writer = NULL;
   2559 		alldevs_nread = 0;
   2560 	} else {
   2561 		rw = (flags & DEVITER_F_RW) != 0;
   2562 
   2563 		if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   2564 			;
   2565 		else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
   2566 		       (rw && alldevs_nread != 0))
   2567 			cv_wait(&alldevs_cv, &alldevs_mtx);
   2568 
   2569 		if (rw) {
   2570 			if (alldevs_nwrite++ == 0)
   2571 				alldevs_writer = curlwp;
   2572 		} else
   2573 			alldevs_nread++;
   2574 	}
   2575 	mutex_exit(&alldevs_mtx);
   2576 
   2577 	memset(di, 0, sizeof(*di));
   2578 
   2579 	di->di_flags = flags;
   2580 
   2581 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2582 	case DEVITER_F_LEAVES_FIRST:
   2583 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2584 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2585 		break;
   2586 	case DEVITER_F_ROOT_FIRST:
   2587 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2588 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2589 		break;
   2590 	default:
   2591 		break;
   2592 	}
   2593 
   2594 	deviter_reinit(di);
   2595 }
   2596 
   2597 static void
   2598 deviter_reinit(deviter_t *di)
   2599 {
   2600 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2601 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2602 	else
   2603 		di->di_prev = TAILQ_FIRST(&alldevs);
   2604 }
   2605 
   2606 device_t
   2607 deviter_first(deviter_t *di, deviter_flags_t flags)
   2608 {
   2609 	deviter_init(di, flags);
   2610 	return deviter_next(di);
   2611 }
   2612 
   2613 static device_t
   2614 deviter_next1(deviter_t *di)
   2615 {
   2616 	device_t dv;
   2617 
   2618 	dv = di->di_prev;
   2619 
   2620 	if (dv == NULL)
   2621 		;
   2622 	else if ((di->di_flags & DEVITER_F_RW) != 0)
   2623 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2624 	else
   2625 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2626 
   2627 	return dv;
   2628 }
   2629 
   2630 device_t
   2631 deviter_next(deviter_t *di)
   2632 {
   2633 	device_t dv = NULL;
   2634 
   2635 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2636 	case 0:
   2637 		return deviter_next1(di);
   2638 	case DEVITER_F_LEAVES_FIRST:
   2639 		while (di->di_curdepth >= 0) {
   2640 			if ((dv = deviter_next1(di)) == NULL) {
   2641 				di->di_curdepth--;
   2642 				deviter_reinit(di);
   2643 			} else if (dv->dv_depth == di->di_curdepth)
   2644 				break;
   2645 		}
   2646 		return dv;
   2647 	case DEVITER_F_ROOT_FIRST:
   2648 		while (di->di_curdepth <= di->di_maxdepth) {
   2649 			if ((dv = deviter_next1(di)) == NULL) {
   2650 				di->di_curdepth++;
   2651 				deviter_reinit(di);
   2652 			} else if (dv->dv_depth == di->di_curdepth)
   2653 				break;
   2654 		}
   2655 		return dv;
   2656 	default:
   2657 		return NULL;
   2658 	}
   2659 }
   2660 
   2661 void
   2662 deviter_release(deviter_t *di)
   2663 {
   2664 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2665 
   2666 	mutex_enter(&alldevs_mtx);
   2667 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   2668 		--alldevs_nwrite;
   2669 	else {
   2670 
   2671 		if (rw) {
   2672 			if (--alldevs_nwrite == 0)
   2673 				alldevs_writer = NULL;
   2674 		} else
   2675 			--alldevs_nread;
   2676 
   2677 		cv_signal(&alldevs_cv);
   2678 	}
   2679 	mutex_exit(&alldevs_mtx);
   2680 }
   2681 
   2682 SYSCTL_SETUP(sysctl_detach_setup, "sysctl detach setup")
   2683 {
   2684 	const struct sysctlnode *node = NULL;
   2685 
   2686 	sysctl_createv(clog, 0, NULL, &node,
   2687 		CTLFLAG_PERMANENT,
   2688 		CTLTYPE_NODE, "kern", NULL,
   2689 		NULL, 0, NULL, 0,
   2690 		CTL_KERN, CTL_EOL);
   2691 
   2692 	if (node == NULL)
   2693 		return;
   2694 
   2695 	sysctl_createv(clog, 0, &node, NULL,
   2696 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   2697 		CTLTYPE_INT, "detachall",
   2698 		SYSCTL_DESCR("Detach all devices at shutdown"),
   2699 		NULL, 0, &detachall, 0,
   2700 		CTL_CREATE, CTL_EOL);
   2701 }
   2702