subr_autoconf.c revision 1.174 1 /* $NetBSD: subr_autoconf.c,v 1.174 2009/04/02 00:09:34 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.174 2009/04/02 00:09:34 dyoung Exp $");
81
82 #include "opt_ddb.h"
83 #include "drvctl.h"
84
85 #include <sys/param.h>
86 #include <sys/device.h>
87 #include <sys/disklabel.h>
88 #include <sys/conf.h>
89 #include <sys/kauth.h>
90 #include <sys/malloc.h>
91 #include <sys/kmem.h>
92 #include <sys/systm.h>
93 #include <sys/kernel.h>
94 #include <sys/errno.h>
95 #include <sys/proc.h>
96 #include <sys/reboot.h>
97 #include <sys/kthread.h>
98 #include <sys/buf.h>
99 #include <sys/dirent.h>
100 #include <sys/vnode.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110
111 #include <sys/disk.h>
112
113 #include <machine/limits.h>
114
115 #include "opt_userconf.h"
116 #ifdef USERCONF
117 #include <sys/userconf.h>
118 #endif
119
120 #ifdef __i386__
121 #include "opt_splash.h"
122 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
123 #include <dev/splash/splash.h>
124 extern struct splash_progress *splash_progress_state;
125 #endif
126 #endif
127
128 /*
129 * Autoconfiguration subroutines.
130 */
131
132 /*
133 * ioconf.c exports exactly two names: cfdata and cfroots. All system
134 * devices and drivers are found via these tables.
135 */
136 extern struct cfdata cfdata[];
137 extern const short cfroots[];
138
139 /*
140 * List of all cfdriver structures. We use this to detect duplicates
141 * when other cfdrivers are loaded.
142 */
143 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
144 extern struct cfdriver * const cfdriver_list_initial[];
145
146 /*
147 * Initial list of cfattach's.
148 */
149 extern const struct cfattachinit cfattachinit[];
150
151 /*
152 * List of cfdata tables. We always have one such list -- the one
153 * built statically when the kernel was configured.
154 */
155 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
156 static struct cftable initcftable;
157
158 #define ROOT ((device_t)NULL)
159
160 struct matchinfo {
161 cfsubmatch_t fn;
162 struct device *parent;
163 const int *locs;
164 void *aux;
165 struct cfdata *match;
166 int pri;
167 };
168
169 static char *number(char *, int);
170 static void mapply(struct matchinfo *, cfdata_t);
171 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
172 static void config_devdealloc(device_t);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_devunlink(device_t);
176
177 static void pmflock_debug(device_t, const char *, int);
178 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
179
180 static device_t deviter_next1(deviter_t *);
181 static void deviter_reinit(deviter_t *);
182
183 struct deferred_config {
184 TAILQ_ENTRY(deferred_config) dc_queue;
185 device_t dc_dev;
186 void (*dc_func)(device_t);
187 };
188
189 TAILQ_HEAD(deferred_config_head, deferred_config);
190
191 struct deferred_config_head deferred_config_queue =
192 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
193 struct deferred_config_head interrupt_config_queue =
194 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
195 int interrupt_config_threads = 8;
196
197 static void config_process_deferred(struct deferred_config_head *, device_t);
198
199 /* Hooks to finalize configuration once all real devices have been found. */
200 struct finalize_hook {
201 TAILQ_ENTRY(finalize_hook) f_list;
202 int (*f_func)(device_t);
203 device_t f_dev;
204 };
205 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
206 TAILQ_HEAD_INITIALIZER(config_finalize_list);
207 static int config_finalize_done;
208
209 /* list of all devices */
210 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
211 kcondvar_t alldevs_cv;
212 kmutex_t alldevs_mtx;
213 static int alldevs_nread = 0;
214 static int alldevs_nwrite = 0;
215 static lwp_t *alldevs_writer = NULL;
216
217 static int config_pending; /* semaphore for mountroot */
218 static kmutex_t config_misc_lock;
219 static kcondvar_t config_misc_cv;
220
221 static int detachall = 0;
222
223 #define STREQ(s1, s2) \
224 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
225
226 static int config_initialized; /* config_init() has been called. */
227
228 static int config_do_twiddle;
229
230 struct vnode *
231 opendisk(struct device *dv)
232 {
233 int bmajor, bminor;
234 struct vnode *tmpvn;
235 int error;
236 dev_t dev;
237
238 /*
239 * Lookup major number for disk block device.
240 */
241 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
242 if (bmajor == -1)
243 return NULL;
244
245 bminor = minor(device_unit(dv));
246 /*
247 * Fake a temporary vnode for the disk, open it, and read
248 * and hash the sectors.
249 */
250 dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
251 MAKEDISKDEV(bmajor, bminor, RAW_PART);
252 if (bdevvp(dev, &tmpvn))
253 panic("%s: can't alloc vnode for %s", __func__,
254 device_xname(dv));
255 error = VOP_OPEN(tmpvn, FREAD, NOCRED);
256 if (error) {
257 #ifndef DEBUG
258 /*
259 * Ignore errors caused by missing device, partition,
260 * or medium.
261 */
262 if (error != ENXIO && error != ENODEV)
263 #endif
264 printf("%s: can't open dev %s (%d)\n",
265 __func__, device_xname(dv), error);
266 vput(tmpvn);
267 return NULL;
268 }
269
270 return tmpvn;
271 }
272
273 int
274 config_handle_wedges(struct device *dv, int par)
275 {
276 struct dkwedge_list wl;
277 struct dkwedge_info *wi;
278 struct vnode *vn;
279 char diskname[16];
280 int i, error;
281
282 if ((vn = opendisk(dv)) == NULL)
283 return -1;
284
285 wl.dkwl_bufsize = sizeof(*wi) * 16;
286 wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
287
288 error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
289 VOP_CLOSE(vn, FREAD, NOCRED);
290 vput(vn);
291 if (error) {
292 #ifdef DEBUG_WEDGE
293 printf("%s: List wedges returned %d\n",
294 device_xname(dv), error);
295 #endif
296 free(wi, M_TEMP);
297 return -1;
298 }
299
300 #ifdef DEBUG_WEDGE
301 printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
302 wl.dkwl_nwedges, wl.dkwl_ncopied);
303 #endif
304 snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
305 par + 'a');
306
307 for (i = 0; i < wl.dkwl_ncopied; i++) {
308 #ifdef DEBUG_WEDGE
309 printf("%s: Looking for %s in %s\n",
310 device_xname(dv), diskname, wi[i].dkw_wname);
311 #endif
312 if (strcmp(wi[i].dkw_wname, diskname) == 0)
313 break;
314 }
315
316 if (i == wl.dkwl_ncopied) {
317 #ifdef DEBUG_WEDGE
318 printf("%s: Cannot find wedge with parent %s\n",
319 device_xname(dv), diskname);
320 #endif
321 free(wi, M_TEMP);
322 return -1;
323 }
324
325 #ifdef DEBUG_WEDGE
326 printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
327 device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
328 (unsigned long long)wi[i].dkw_offset,
329 (unsigned long long)wi[i].dkw_size);
330 #endif
331 dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
332 free(wi, M_TEMP);
333 return 0;
334 }
335
336 /*
337 * Initialize the autoconfiguration data structures. Normally this
338 * is done by configure(), but some platforms need to do this very
339 * early (to e.g. initialize the console).
340 */
341 void
342 config_init(void)
343 {
344 const struct cfattachinit *cfai;
345 int i, j;
346
347 if (config_initialized)
348 return;
349
350 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
351 cv_init(&alldevs_cv, "alldevs");
352
353 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
354 cv_init(&config_misc_cv, "cfgmisc");
355
356 /* allcfdrivers is statically initialized. */
357 for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
358 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
359 panic("configure: duplicate `%s' drivers",
360 cfdriver_list_initial[i]->cd_name);
361 }
362
363 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
364 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
365 if (config_cfattach_attach(cfai->cfai_name,
366 cfai->cfai_list[j]) != 0)
367 panic("configure: duplicate `%s' attachment "
368 "of `%s' driver",
369 cfai->cfai_list[j]->ca_name,
370 cfai->cfai_name);
371 }
372 }
373
374 initcftable.ct_cfdata = cfdata;
375 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
376
377 config_initialized = 1;
378 }
379
380 void
381 config_deferred(device_t dev)
382 {
383 config_process_deferred(&deferred_config_queue, dev);
384 config_process_deferred(&interrupt_config_queue, dev);
385 }
386
387 static void
388 config_interrupts_thread(void *cookie)
389 {
390 struct deferred_config *dc;
391
392 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
393 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
394 (*dc->dc_func)(dc->dc_dev);
395 kmem_free(dc, sizeof(*dc));
396 config_pending_decr();
397 }
398 kthread_exit(0);
399 }
400
401 /*
402 * Configure the system's hardware.
403 */
404 void
405 configure(void)
406 {
407 /* Initialize data structures. */
408 config_init();
409 pmf_init();
410 #if NDRVCTL > 0
411 drvctl_init();
412 #endif
413
414 #ifdef USERCONF
415 if (boothowto & RB_USERCONF)
416 user_config();
417 #endif
418
419 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
420 config_do_twiddle = 1;
421 printf_nolog("Detecting hardware...");
422 }
423
424 /*
425 * Do the machine-dependent portion of autoconfiguration. This
426 * sets the configuration machinery here in motion by "finding"
427 * the root bus. When this function returns, we expect interrupts
428 * to be enabled.
429 */
430 cpu_configure();
431 }
432
433 void
434 configure2(void)
435 {
436 CPU_INFO_ITERATOR cii;
437 struct cpu_info *ci;
438 int i, s;
439
440 /*
441 * Now that we've found all the hardware, start the real time
442 * and statistics clocks.
443 */
444 initclocks();
445
446 cold = 0; /* clocks are running, we're warm now! */
447 s = splsched();
448 curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
449 splx(s);
450
451 /* Boot the secondary processors. */
452 for (CPU_INFO_FOREACH(cii, ci)) {
453 uvm_cpu_attach(ci);
454 }
455 mp_online = true;
456 #if defined(MULTIPROCESSOR)
457 cpu_boot_secondary_processors();
458 #endif
459
460 /* Setup the runqueues and scheduler. */
461 runq_init();
462 sched_init();
463
464 /*
465 * Create threads to call back and finish configuration for
466 * devices that want interrupts enabled.
467 */
468 for (i = 0; i < interrupt_config_threads; i++) {
469 (void)kthread_create(PRI_NONE, 0, NULL,
470 config_interrupts_thread, NULL, NULL, "config");
471 }
472
473 /* Get the threads going and into any sleeps before continuing. */
474 yield();
475 }
476
477 /*
478 * Announce device attach/detach to userland listeners.
479 */
480 static void
481 devmon_report_device(device_t dev, bool isattach)
482 {
483 #if NDRVCTL > 0
484 prop_dictionary_t ev;
485 const char *parent;
486 const char *what;
487 device_t pdev = device_parent(dev);
488
489 ev = prop_dictionary_create();
490 if (ev == NULL)
491 return;
492
493 what = (isattach ? "device-attach" : "device-detach");
494 parent = (pdev == NULL ? "root" : device_xname(pdev));
495 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
496 !prop_dictionary_set_cstring(ev, "parent", parent)) {
497 prop_object_release(ev);
498 return;
499 }
500
501 devmon_insert(what, ev);
502 #endif
503 }
504
505 /*
506 * Add a cfdriver to the system.
507 */
508 int
509 config_cfdriver_attach(struct cfdriver *cd)
510 {
511 struct cfdriver *lcd;
512
513 /* Make sure this driver isn't already in the system. */
514 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
515 if (STREQ(lcd->cd_name, cd->cd_name))
516 return (EEXIST);
517 }
518
519 LIST_INIT(&cd->cd_attach);
520 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
521
522 return (0);
523 }
524
525 /*
526 * Remove a cfdriver from the system.
527 */
528 int
529 config_cfdriver_detach(struct cfdriver *cd)
530 {
531 int i;
532
533 /* Make sure there are no active instances. */
534 for (i = 0; i < cd->cd_ndevs; i++) {
535 if (cd->cd_devs[i] != NULL)
536 return (EBUSY);
537 }
538
539 /* ...and no attachments loaded. */
540 if (LIST_EMPTY(&cd->cd_attach) == 0)
541 return (EBUSY);
542
543 LIST_REMOVE(cd, cd_list);
544
545 KASSERT(cd->cd_devs == NULL);
546
547 return (0);
548 }
549
550 /*
551 * Look up a cfdriver by name.
552 */
553 struct cfdriver *
554 config_cfdriver_lookup(const char *name)
555 {
556 struct cfdriver *cd;
557
558 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
559 if (STREQ(cd->cd_name, name))
560 return (cd);
561 }
562
563 return (NULL);
564 }
565
566 /*
567 * Add a cfattach to the specified driver.
568 */
569 int
570 config_cfattach_attach(const char *driver, struct cfattach *ca)
571 {
572 struct cfattach *lca;
573 struct cfdriver *cd;
574
575 cd = config_cfdriver_lookup(driver);
576 if (cd == NULL)
577 return (ESRCH);
578
579 /* Make sure this attachment isn't already on this driver. */
580 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
581 if (STREQ(lca->ca_name, ca->ca_name))
582 return (EEXIST);
583 }
584
585 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
586
587 return (0);
588 }
589
590 /*
591 * Remove a cfattach from the specified driver.
592 */
593 int
594 config_cfattach_detach(const char *driver, struct cfattach *ca)
595 {
596 struct cfdriver *cd;
597 device_t dev;
598 int i;
599
600 cd = config_cfdriver_lookup(driver);
601 if (cd == NULL)
602 return (ESRCH);
603
604 /* Make sure there are no active instances. */
605 for (i = 0; i < cd->cd_ndevs; i++) {
606 if ((dev = cd->cd_devs[i]) == NULL)
607 continue;
608 if (dev->dv_cfattach == ca)
609 return (EBUSY);
610 }
611
612 LIST_REMOVE(ca, ca_list);
613
614 return (0);
615 }
616
617 /*
618 * Look up a cfattach by name.
619 */
620 static struct cfattach *
621 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
622 {
623 struct cfattach *ca;
624
625 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
626 if (STREQ(ca->ca_name, atname))
627 return (ca);
628 }
629
630 return (NULL);
631 }
632
633 /*
634 * Look up a cfattach by driver/attachment name.
635 */
636 struct cfattach *
637 config_cfattach_lookup(const char *name, const char *atname)
638 {
639 struct cfdriver *cd;
640
641 cd = config_cfdriver_lookup(name);
642 if (cd == NULL)
643 return (NULL);
644
645 return (config_cfattach_lookup_cd(cd, atname));
646 }
647
648 /*
649 * Apply the matching function and choose the best. This is used
650 * a few times and we want to keep the code small.
651 */
652 static void
653 mapply(struct matchinfo *m, cfdata_t cf)
654 {
655 int pri;
656
657 if (m->fn != NULL) {
658 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
659 } else {
660 pri = config_match(m->parent, cf, m->aux);
661 }
662 if (pri > m->pri) {
663 m->match = cf;
664 m->pri = pri;
665 }
666 }
667
668 int
669 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
670 {
671 const struct cfiattrdata *ci;
672 const struct cflocdesc *cl;
673 int nlocs, i;
674
675 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
676 KASSERT(ci);
677 nlocs = ci->ci_loclen;
678 KASSERT(!nlocs || locs);
679 for (i = 0; i < nlocs; i++) {
680 cl = &ci->ci_locdesc[i];
681 /* !cld_defaultstr means no default value */
682 if ((!(cl->cld_defaultstr)
683 || (cf->cf_loc[i] != cl->cld_default))
684 && cf->cf_loc[i] != locs[i])
685 return (0);
686 }
687
688 return (config_match(parent, cf, aux));
689 }
690
691 /*
692 * Helper function: check whether the driver supports the interface attribute
693 * and return its descriptor structure.
694 */
695 static const struct cfiattrdata *
696 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
697 {
698 const struct cfiattrdata * const *cpp;
699
700 if (cd->cd_attrs == NULL)
701 return (0);
702
703 for (cpp = cd->cd_attrs; *cpp; cpp++) {
704 if (STREQ((*cpp)->ci_name, ia)) {
705 /* Match. */
706 return (*cpp);
707 }
708 }
709 return (0);
710 }
711
712 /*
713 * Lookup an interface attribute description by name.
714 * If the driver is given, consider only its supported attributes.
715 */
716 const struct cfiattrdata *
717 cfiattr_lookup(const char *name, const struct cfdriver *cd)
718 {
719 const struct cfdriver *d;
720 const struct cfiattrdata *ia;
721
722 if (cd)
723 return (cfdriver_get_iattr(cd, name));
724
725 LIST_FOREACH(d, &allcfdrivers, cd_list) {
726 ia = cfdriver_get_iattr(d, name);
727 if (ia)
728 return (ia);
729 }
730 return (0);
731 }
732
733 /*
734 * Determine if `parent' is a potential parent for a device spec based
735 * on `cfp'.
736 */
737 static int
738 cfparent_match(const device_t parent, const struct cfparent *cfp)
739 {
740 struct cfdriver *pcd;
741
742 /* We don't match root nodes here. */
743 if (cfp == NULL)
744 return (0);
745
746 pcd = parent->dv_cfdriver;
747 KASSERT(pcd != NULL);
748
749 /*
750 * First, ensure this parent has the correct interface
751 * attribute.
752 */
753 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
754 return (0);
755
756 /*
757 * If no specific parent device instance was specified (i.e.
758 * we're attaching to the attribute only), we're done!
759 */
760 if (cfp->cfp_parent == NULL)
761 return (1);
762
763 /*
764 * Check the parent device's name.
765 */
766 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
767 return (0); /* not the same parent */
768
769 /*
770 * Make sure the unit number matches.
771 */
772 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
773 cfp->cfp_unit == parent->dv_unit)
774 return (1);
775
776 /* Unit numbers don't match. */
777 return (0);
778 }
779
780 /*
781 * Helper for config_cfdata_attach(): check all devices whether it could be
782 * parent any attachment in the config data table passed, and rescan.
783 */
784 static void
785 rescan_with_cfdata(const struct cfdata *cf)
786 {
787 device_t d;
788 const struct cfdata *cf1;
789 deviter_t di;
790
791
792 /*
793 * "alldevs" is likely longer than a modules's cfdata, so make it
794 * the outer loop.
795 */
796 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
797
798 if (!(d->dv_cfattach->ca_rescan))
799 continue;
800
801 for (cf1 = cf; cf1->cf_name; cf1++) {
802
803 if (!cfparent_match(d, cf1->cf_pspec))
804 continue;
805
806 (*d->dv_cfattach->ca_rescan)(d,
807 cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
808 }
809 }
810 deviter_release(&di);
811 }
812
813 /*
814 * Attach a supplemental config data table and rescan potential
815 * parent devices if required.
816 */
817 int
818 config_cfdata_attach(cfdata_t cf, int scannow)
819 {
820 struct cftable *ct;
821
822 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
823 ct->ct_cfdata = cf;
824 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
825
826 if (scannow)
827 rescan_with_cfdata(cf);
828
829 return (0);
830 }
831
832 /*
833 * Helper for config_cfdata_detach: check whether a device is
834 * found through any attachment in the config data table.
835 */
836 static int
837 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
838 {
839 const struct cfdata *cf1;
840
841 for (cf1 = cf; cf1->cf_name; cf1++)
842 if (d->dv_cfdata == cf1)
843 return (1);
844
845 return (0);
846 }
847
848 /*
849 * Detach a supplemental config data table. Detach all devices found
850 * through that table (and thus keeping references to it) before.
851 */
852 int
853 config_cfdata_detach(cfdata_t cf)
854 {
855 device_t d;
856 int error = 0;
857 struct cftable *ct;
858 deviter_t di;
859
860 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
861 d = deviter_next(&di)) {
862 if (!dev_in_cfdata(d, cf))
863 continue;
864 if ((error = config_detach(d, 0)) != 0)
865 break;
866 }
867 deviter_release(&di);
868 if (error) {
869 aprint_error_dev(d, "unable to detach instance\n");
870 return error;
871 }
872
873 TAILQ_FOREACH(ct, &allcftables, ct_list) {
874 if (ct->ct_cfdata == cf) {
875 TAILQ_REMOVE(&allcftables, ct, ct_list);
876 kmem_free(ct, sizeof(*ct));
877 return (0);
878 }
879 }
880
881 /* not found -- shouldn't happen */
882 return (EINVAL);
883 }
884
885 /*
886 * Invoke the "match" routine for a cfdata entry on behalf of
887 * an external caller, usually a "submatch" routine.
888 */
889 int
890 config_match(device_t parent, cfdata_t cf, void *aux)
891 {
892 struct cfattach *ca;
893
894 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
895 if (ca == NULL) {
896 /* No attachment for this entry, oh well. */
897 return (0);
898 }
899
900 return ((*ca->ca_match)(parent, cf, aux));
901 }
902
903 /*
904 * Iterate over all potential children of some device, calling the given
905 * function (default being the child's match function) for each one.
906 * Nonzero returns are matches; the highest value returned is considered
907 * the best match. Return the `found child' if we got a match, or NULL
908 * otherwise. The `aux' pointer is simply passed on through.
909 *
910 * Note that this function is designed so that it can be used to apply
911 * an arbitrary function to all potential children (its return value
912 * can be ignored).
913 */
914 cfdata_t
915 config_search_loc(cfsubmatch_t fn, device_t parent,
916 const char *ifattr, const int *locs, void *aux)
917 {
918 struct cftable *ct;
919 cfdata_t cf;
920 struct matchinfo m;
921
922 KASSERT(config_initialized);
923 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
924
925 m.fn = fn;
926 m.parent = parent;
927 m.locs = locs;
928 m.aux = aux;
929 m.match = NULL;
930 m.pri = 0;
931
932 TAILQ_FOREACH(ct, &allcftables, ct_list) {
933 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
934
935 /* We don't match root nodes here. */
936 if (!cf->cf_pspec)
937 continue;
938
939 /*
940 * Skip cf if no longer eligible, otherwise scan
941 * through parents for one matching `parent', and
942 * try match function.
943 */
944 if (cf->cf_fstate == FSTATE_FOUND)
945 continue;
946 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
947 cf->cf_fstate == FSTATE_DSTAR)
948 continue;
949
950 /*
951 * If an interface attribute was specified,
952 * consider only children which attach to
953 * that attribute.
954 */
955 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
956 continue;
957
958 if (cfparent_match(parent, cf->cf_pspec))
959 mapply(&m, cf);
960 }
961 }
962 return (m.match);
963 }
964
965 cfdata_t
966 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
967 void *aux)
968 {
969
970 return (config_search_loc(fn, parent, ifattr, NULL, aux));
971 }
972
973 /*
974 * Find the given root device.
975 * This is much like config_search, but there is no parent.
976 * Don't bother with multiple cfdata tables; the root node
977 * must always be in the initial table.
978 */
979 cfdata_t
980 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
981 {
982 cfdata_t cf;
983 const short *p;
984 struct matchinfo m;
985
986 m.fn = fn;
987 m.parent = ROOT;
988 m.aux = aux;
989 m.match = NULL;
990 m.pri = 0;
991 m.locs = 0;
992 /*
993 * Look at root entries for matching name. We do not bother
994 * with found-state here since only one root should ever be
995 * searched (and it must be done first).
996 */
997 for (p = cfroots; *p >= 0; p++) {
998 cf = &cfdata[*p];
999 if (strcmp(cf->cf_name, rootname) == 0)
1000 mapply(&m, cf);
1001 }
1002 return (m.match);
1003 }
1004
1005 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1006
1007 /*
1008 * The given `aux' argument describes a device that has been found
1009 * on the given parent, but not necessarily configured. Locate the
1010 * configuration data for that device (using the submatch function
1011 * provided, or using candidates' cd_match configuration driver
1012 * functions) and attach it, and return true. If the device was
1013 * not configured, call the given `print' function and return 0.
1014 */
1015 device_t
1016 config_found_sm_loc(device_t parent,
1017 const char *ifattr, const int *locs, void *aux,
1018 cfprint_t print, cfsubmatch_t submatch)
1019 {
1020 cfdata_t cf;
1021
1022 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1023 if (splash_progress_state)
1024 splash_progress_update(splash_progress_state);
1025 #endif
1026
1027 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1028 return(config_attach_loc(parent, cf, locs, aux, print));
1029 if (print) {
1030 if (config_do_twiddle)
1031 twiddle();
1032 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1033 }
1034
1035 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1036 if (splash_progress_state)
1037 splash_progress_update(splash_progress_state);
1038 #endif
1039
1040 return (NULL);
1041 }
1042
1043 device_t
1044 config_found_ia(device_t parent, const char *ifattr, void *aux,
1045 cfprint_t print)
1046 {
1047
1048 return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
1049 }
1050
1051 device_t
1052 config_found(device_t parent, void *aux, cfprint_t print)
1053 {
1054
1055 return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
1056 }
1057
1058 /*
1059 * As above, but for root devices.
1060 */
1061 device_t
1062 config_rootfound(const char *rootname, void *aux)
1063 {
1064 cfdata_t cf;
1065
1066 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1067 return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
1068 aprint_error("root device %s not configured\n", rootname);
1069 return (NULL);
1070 }
1071
1072 /* just like sprintf(buf, "%d") except that it works from the end */
1073 static char *
1074 number(char *ep, int n)
1075 {
1076
1077 *--ep = 0;
1078 while (n >= 10) {
1079 *--ep = (n % 10) + '0';
1080 n /= 10;
1081 }
1082 *--ep = n + '0';
1083 return (ep);
1084 }
1085
1086 /*
1087 * Expand the size of the cd_devs array if necessary.
1088 */
1089 static void
1090 config_makeroom(int n, struct cfdriver *cd)
1091 {
1092 int old, new;
1093 device_t *nsp;
1094
1095 if (n < cd->cd_ndevs)
1096 return;
1097
1098 /*
1099 * Need to expand the array.
1100 */
1101 old = cd->cd_ndevs;
1102 if (old == 0)
1103 new = 4;
1104 else
1105 new = old * 2;
1106 while (new <= n)
1107 new *= 2;
1108 cd->cd_ndevs = new;
1109 nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP);
1110 if (nsp == NULL)
1111 panic("config_attach: %sing dev array",
1112 old != 0 ? "expand" : "creat");
1113 memset(nsp + old, 0, sizeof(device_t [new - old]));
1114 if (old != 0) {
1115 memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
1116 kmem_free(cd->cd_devs, sizeof(device_t [old]));
1117 }
1118 cd->cd_devs = nsp;
1119 }
1120
1121 static void
1122 config_devlink(device_t dev)
1123 {
1124 struct cfdriver *cd = dev->dv_cfdriver;
1125
1126 /* put this device in the devices array */
1127 config_makeroom(dev->dv_unit, cd);
1128 if (cd->cd_devs[dev->dv_unit])
1129 panic("config_attach: duplicate %s", device_xname(dev));
1130 cd->cd_devs[dev->dv_unit] = dev;
1131
1132 /* It is safe to add a device to the tail of the list while
1133 * readers are in the list, but not while a writer is in
1134 * the list. Wait for any writer to complete.
1135 */
1136 mutex_enter(&alldevs_mtx);
1137 while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1138 cv_wait(&alldevs_cv, &alldevs_mtx);
1139 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
1140 cv_signal(&alldevs_cv);
1141 mutex_exit(&alldevs_mtx);
1142 }
1143
1144 static void
1145 config_devunlink(device_t dev)
1146 {
1147 struct cfdriver *cd = dev->dv_cfdriver;
1148 int i;
1149
1150 /* Unlink from device list. */
1151 TAILQ_REMOVE(&alldevs, dev, dv_list);
1152
1153 /* Remove from cfdriver's array. */
1154 cd->cd_devs[dev->dv_unit] = NULL;
1155
1156 /*
1157 * If the device now has no units in use, deallocate its softc array.
1158 */
1159 for (i = 0; i < cd->cd_ndevs; i++) {
1160 if (cd->cd_devs[i] != NULL)
1161 return;
1162 }
1163 /* nothing found; deallocate */
1164 kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
1165 cd->cd_devs = NULL;
1166 cd->cd_ndevs = 0;
1167 }
1168
1169 static device_t
1170 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1171 {
1172 struct cfdriver *cd;
1173 struct cfattach *ca;
1174 size_t lname, lunit;
1175 const char *xunit;
1176 int myunit;
1177 char num[10];
1178 device_t dev;
1179 void *dev_private;
1180 const struct cfiattrdata *ia;
1181 device_lock_t dvl;
1182
1183 cd = config_cfdriver_lookup(cf->cf_name);
1184 if (cd == NULL)
1185 return (NULL);
1186
1187 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1188 if (ca == NULL)
1189 return (NULL);
1190
1191 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1192 ca->ca_devsize < sizeof(struct device))
1193 panic("config_devalloc: %s", cf->cf_atname);
1194
1195 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1196 if (cf->cf_fstate == FSTATE_STAR) {
1197 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1198 if (cd->cd_devs[myunit] == NULL)
1199 break;
1200 /*
1201 * myunit is now the unit of the first NULL device pointer,
1202 * or max(cd->cd_ndevs,cf->cf_unit).
1203 */
1204 } else {
1205 myunit = cf->cf_unit;
1206 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1207 return (NULL);
1208 }
1209 #else
1210 myunit = cf->cf_unit;
1211 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1212
1213 /* compute length of name and decimal expansion of unit number */
1214 lname = strlen(cd->cd_name);
1215 xunit = number(&num[sizeof(num)], myunit);
1216 lunit = &num[sizeof(num)] - xunit;
1217 if (lname + lunit > sizeof(dev->dv_xname))
1218 panic("config_devalloc: device name too long");
1219
1220 /* get memory for all device vars */
1221 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1222 if (ca->ca_devsize > 0) {
1223 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1224 if (dev_private == NULL)
1225 panic("config_devalloc: memory allocation for device softc failed");
1226 } else {
1227 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1228 dev_private = NULL;
1229 }
1230
1231 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1232 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1233 } else {
1234 dev = dev_private;
1235 }
1236 if (dev == NULL)
1237 panic("config_devalloc: memory allocation for device_t failed");
1238
1239 dvl = device_getlock(dev);
1240
1241 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1242 cv_init(&dvl->dvl_cv, "pmfsusp");
1243
1244 dev->dv_class = cd->cd_class;
1245 dev->dv_cfdata = cf;
1246 dev->dv_cfdriver = cd;
1247 dev->dv_cfattach = ca;
1248 dev->dv_unit = myunit;
1249 dev->dv_activity_count = 0;
1250 dev->dv_activity_handlers = NULL;
1251 dev->dv_private = dev_private;
1252 memcpy(dev->dv_xname, cd->cd_name, lname);
1253 memcpy(dev->dv_xname + lname, xunit, lunit);
1254 dev->dv_parent = parent;
1255 if (parent != NULL)
1256 dev->dv_depth = parent->dv_depth + 1;
1257 else
1258 dev->dv_depth = 0;
1259 dev->dv_flags = DVF_ACTIVE; /* always initially active */
1260 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
1261 if (locs) {
1262 KASSERT(parent); /* no locators at root */
1263 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1264 parent->dv_cfdriver);
1265 dev->dv_locators =
1266 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1267 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1268 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1269 }
1270 dev->dv_properties = prop_dictionary_create();
1271 KASSERT(dev->dv_properties != NULL);
1272
1273 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1274 "device-driver", dev->dv_cfdriver->cd_name);
1275 prop_dictionary_set_uint16(dev->dv_properties,
1276 "device-unit", dev->dv_unit);
1277
1278 return (dev);
1279 }
1280
1281 static void
1282 config_devdealloc(device_t dev)
1283 {
1284 device_lock_t dvl = device_getlock(dev);
1285 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1286
1287 cv_destroy(&dvl->dvl_cv);
1288 mutex_destroy(&dvl->dvl_mtx);
1289
1290 KASSERT(dev->dv_properties != NULL);
1291 prop_object_release(dev->dv_properties);
1292
1293 if (dev->dv_activity_handlers)
1294 panic("config_devdealloc with registered handlers");
1295
1296 if (dev->dv_locators) {
1297 size_t amount = *--dev->dv_locators;
1298 kmem_free(dev->dv_locators, amount);
1299 }
1300
1301 if (dev->dv_cfattach->ca_devsize > 0)
1302 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1303 if (priv)
1304 kmem_free(dev, sizeof(*dev));
1305 }
1306
1307 /*
1308 * Attach a found device.
1309 */
1310 device_t
1311 config_attach_loc(device_t parent, cfdata_t cf,
1312 const int *locs, void *aux, cfprint_t print)
1313 {
1314 device_t dev;
1315 struct cftable *ct;
1316 const char *drvname;
1317
1318 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1319 if (splash_progress_state)
1320 splash_progress_update(splash_progress_state);
1321 #endif
1322
1323 dev = config_devalloc(parent, cf, locs);
1324 if (!dev)
1325 panic("config_attach: allocation of device softc failed");
1326
1327 /* XXX redundant - see below? */
1328 if (cf->cf_fstate != FSTATE_STAR) {
1329 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1330 cf->cf_fstate = FSTATE_FOUND;
1331 }
1332 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1333 else
1334 cf->cf_unit++;
1335 #endif
1336
1337 config_devlink(dev);
1338
1339 if (config_do_twiddle)
1340 twiddle();
1341 else
1342 aprint_naive("Found ");
1343 /*
1344 * We want the next two printfs for normal, verbose, and quiet,
1345 * but not silent (in which case, we're twiddling, instead).
1346 */
1347 if (parent == ROOT) {
1348 aprint_naive("%s (root)", device_xname(dev));
1349 aprint_normal("%s (root)", device_xname(dev));
1350 } else {
1351 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1352 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1353 if (print)
1354 (void) (*print)(aux, NULL);
1355 }
1356
1357 /*
1358 * Before attaching, clobber any unfound devices that are
1359 * otherwise identical.
1360 * XXX code above is redundant?
1361 */
1362 drvname = dev->dv_cfdriver->cd_name;
1363 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1364 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1365 if (STREQ(cf->cf_name, drvname) &&
1366 cf->cf_unit == dev->dv_unit) {
1367 if (cf->cf_fstate == FSTATE_NOTFOUND)
1368 cf->cf_fstate = FSTATE_FOUND;
1369 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1370 /*
1371 * Bump the unit number on all starred cfdata
1372 * entries for this device.
1373 */
1374 if (cf->cf_fstate == FSTATE_STAR)
1375 cf->cf_unit++;
1376 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1377 }
1378 }
1379 }
1380 #ifdef __HAVE_DEVICE_REGISTER
1381 device_register(dev, aux);
1382 #endif
1383
1384 /* Let userland know */
1385 devmon_report_device(dev, true);
1386
1387 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1388 if (splash_progress_state)
1389 splash_progress_update(splash_progress_state);
1390 #endif
1391 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1392 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1393 if (splash_progress_state)
1394 splash_progress_update(splash_progress_state);
1395 #endif
1396
1397 if (!device_pmf_is_registered(dev))
1398 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1399
1400 config_process_deferred(&deferred_config_queue, dev);
1401 return (dev);
1402 }
1403
1404 device_t
1405 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1406 {
1407
1408 return (config_attach_loc(parent, cf, NULL, aux, print));
1409 }
1410
1411 /*
1412 * As above, but for pseudo-devices. Pseudo-devices attached in this
1413 * way are silently inserted into the device tree, and their children
1414 * attached.
1415 *
1416 * Note that because pseudo-devices are attached silently, any information
1417 * the attach routine wishes to print should be prefixed with the device
1418 * name by the attach routine.
1419 */
1420 device_t
1421 config_attach_pseudo(cfdata_t cf)
1422 {
1423 device_t dev;
1424
1425 dev = config_devalloc(ROOT, cf, NULL);
1426 if (!dev)
1427 return (NULL);
1428
1429 /* XXX mark busy in cfdata */
1430
1431 if (cf->cf_fstate != FSTATE_STAR) {
1432 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1433 cf->cf_fstate = FSTATE_FOUND;
1434 }
1435
1436 config_devlink(dev);
1437
1438 #if 0 /* XXXJRT not yet */
1439 #ifdef __HAVE_DEVICE_REGISTER
1440 device_register(dev, NULL); /* like a root node */
1441 #endif
1442 #endif
1443 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1444 config_process_deferred(&deferred_config_queue, dev);
1445 return (dev);
1446 }
1447
1448 /*
1449 * Detach a device. Optionally forced (e.g. because of hardware
1450 * removal) and quiet. Returns zero if successful, non-zero
1451 * (an error code) otherwise.
1452 *
1453 * Note that this code wants to be run from a process context, so
1454 * that the detach can sleep to allow processes which have a device
1455 * open to run and unwind their stacks.
1456 */
1457 int
1458 config_detach(device_t dev, int flags)
1459 {
1460 struct cftable *ct;
1461 cfdata_t cf;
1462 const struct cfattach *ca;
1463 struct cfdriver *cd;
1464 #ifdef DIAGNOSTIC
1465 device_t d;
1466 #endif
1467 int rv = 0;
1468
1469 #ifdef DIAGNOSTIC
1470 cf = dev->dv_cfdata;
1471 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1472 cf->cf_fstate != FSTATE_STAR)
1473 panic("config_detach: %s: bad device fstate %d",
1474 device_xname(dev), cf ? cf->cf_fstate : -1);
1475 #endif
1476 cd = dev->dv_cfdriver;
1477 KASSERT(cd != NULL);
1478
1479 ca = dev->dv_cfattach;
1480 KASSERT(ca != NULL);
1481
1482 KASSERT(curlwp != NULL);
1483 mutex_enter(&alldevs_mtx);
1484 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1485 ;
1486 else while (alldevs_nread != 0 ||
1487 (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1488 cv_wait(&alldevs_cv, &alldevs_mtx);
1489 if (alldevs_nwrite++ == 0)
1490 alldevs_writer = curlwp;
1491 mutex_exit(&alldevs_mtx);
1492
1493 /*
1494 * Ensure the device is deactivated. If the device doesn't
1495 * have an activation entry point, we allow DVF_ACTIVE to
1496 * remain set. Otherwise, if DVF_ACTIVE is still set, the
1497 * device is busy, and the detach fails.
1498 */
1499 if (!detachall &&
1500 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1501 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1502 rv = EBUSY; /* XXX EOPNOTSUPP? */
1503 } else if (ca->ca_activate != NULL)
1504 rv = config_deactivate(dev);
1505
1506 /*
1507 * Try to detach the device. If that's not possible, then
1508 * we either panic() (for the forced but failed case), or
1509 * return an error.
1510 */
1511 if (rv == 0) {
1512 if (ca->ca_detach != NULL)
1513 rv = (*ca->ca_detach)(dev, flags);
1514 else
1515 rv = EOPNOTSUPP;
1516 }
1517 if (rv != 0) {
1518 if ((flags & DETACH_FORCE) == 0)
1519 goto out;
1520 else
1521 panic("config_detach: forced detach of %s failed (%d)",
1522 device_xname(dev), rv);
1523 }
1524
1525 dev->dv_flags &= ~DVF_ACTIVE;
1526
1527 /*
1528 * The device has now been successfully detached.
1529 */
1530
1531 /* Let userland know */
1532 devmon_report_device(dev, false);
1533
1534 #ifdef DIAGNOSTIC
1535 /*
1536 * Sanity: If you're successfully detached, you should have no
1537 * children. (Note that because children must be attached
1538 * after parents, we only need to search the latter part of
1539 * the list.)
1540 */
1541 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1542 d = TAILQ_NEXT(d, dv_list)) {
1543 if (d->dv_parent == dev) {
1544 printf("config_detach: detached device %s"
1545 " has children %s\n", device_xname(dev), device_xname(d));
1546 panic("config_detach");
1547 }
1548 }
1549 #endif
1550
1551 /* notify the parent that the child is gone */
1552 if (dev->dv_parent) {
1553 device_t p = dev->dv_parent;
1554 if (p->dv_cfattach->ca_childdetached)
1555 (*p->dv_cfattach->ca_childdetached)(p, dev);
1556 }
1557
1558 /*
1559 * Mark cfdata to show that the unit can be reused, if possible.
1560 */
1561 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1562 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1563 if (STREQ(cf->cf_name, cd->cd_name)) {
1564 if (cf->cf_fstate == FSTATE_FOUND &&
1565 cf->cf_unit == dev->dv_unit)
1566 cf->cf_fstate = FSTATE_NOTFOUND;
1567 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1568 /*
1569 * Note that we can only re-use a starred
1570 * unit number if the unit being detached
1571 * had the last assigned unit number.
1572 */
1573 if (cf->cf_fstate == FSTATE_STAR &&
1574 cf->cf_unit == dev->dv_unit + 1)
1575 cf->cf_unit--;
1576 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1577 }
1578 }
1579 }
1580
1581 config_devunlink(dev);
1582
1583 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1584 aprint_normal_dev(dev, "detached\n");
1585
1586 config_devdealloc(dev);
1587
1588 out:
1589 mutex_enter(&alldevs_mtx);
1590 if (--alldevs_nwrite == 0)
1591 alldevs_writer = NULL;
1592 cv_signal(&alldevs_cv);
1593 mutex_exit(&alldevs_mtx);
1594 return rv;
1595 }
1596
1597 int
1598 config_detach_children(device_t parent, int flags)
1599 {
1600 device_t dv;
1601 deviter_t di;
1602 int error = 0;
1603
1604 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1605 dv = deviter_next(&di)) {
1606 if (device_parent(dv) != parent)
1607 continue;
1608 if ((error = config_detach(dv, flags)) != 0)
1609 break;
1610 }
1611 deviter_release(&di);
1612 return error;
1613 }
1614
1615 int
1616 config_activate(device_t dev)
1617 {
1618 const struct cfattach *ca = dev->dv_cfattach;
1619 int rv = 0, oflags = dev->dv_flags;
1620
1621 if (ca->ca_activate == NULL)
1622 return (EOPNOTSUPP);
1623
1624 if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1625 dev->dv_flags |= DVF_ACTIVE;
1626 rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1627 if (rv)
1628 dev->dv_flags = oflags;
1629 }
1630 return (rv);
1631 }
1632
1633 int
1634 config_deactivate(device_t dev)
1635 {
1636 const struct cfattach *ca = dev->dv_cfattach;
1637 int rv = 0, oflags = dev->dv_flags;
1638
1639 if (ca->ca_activate == NULL)
1640 return (EOPNOTSUPP);
1641
1642 if (dev->dv_flags & DVF_ACTIVE) {
1643 dev->dv_flags &= ~DVF_ACTIVE;
1644 rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1645 if (rv)
1646 dev->dv_flags = oflags;
1647 }
1648 return (rv);
1649 }
1650
1651 /*
1652 * Defer the configuration of the specified device until all
1653 * of its parent's devices have been attached.
1654 */
1655 void
1656 config_defer(device_t dev, void (*func)(device_t))
1657 {
1658 struct deferred_config *dc;
1659
1660 if (dev->dv_parent == NULL)
1661 panic("config_defer: can't defer config of a root device");
1662
1663 #ifdef DIAGNOSTIC
1664 for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1665 dc = TAILQ_NEXT(dc, dc_queue)) {
1666 if (dc->dc_dev == dev)
1667 panic("config_defer: deferred twice");
1668 }
1669 #endif
1670
1671 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1672 if (dc == NULL)
1673 panic("config_defer: unable to allocate callback");
1674
1675 dc->dc_dev = dev;
1676 dc->dc_func = func;
1677 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1678 config_pending_incr();
1679 }
1680
1681 /*
1682 * Defer some autoconfiguration for a device until after interrupts
1683 * are enabled.
1684 */
1685 void
1686 config_interrupts(device_t dev, void (*func)(device_t))
1687 {
1688 struct deferred_config *dc;
1689
1690 /*
1691 * If interrupts are enabled, callback now.
1692 */
1693 if (cold == 0) {
1694 (*func)(dev);
1695 return;
1696 }
1697
1698 #ifdef DIAGNOSTIC
1699 for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1700 dc = TAILQ_NEXT(dc, dc_queue)) {
1701 if (dc->dc_dev == dev)
1702 panic("config_interrupts: deferred twice");
1703 }
1704 #endif
1705
1706 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1707 if (dc == NULL)
1708 panic("config_interrupts: unable to allocate callback");
1709
1710 dc->dc_dev = dev;
1711 dc->dc_func = func;
1712 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1713 config_pending_incr();
1714 }
1715
1716 /*
1717 * Process a deferred configuration queue.
1718 */
1719 static void
1720 config_process_deferred(struct deferred_config_head *queue,
1721 device_t parent)
1722 {
1723 struct deferred_config *dc, *ndc;
1724
1725 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1726 ndc = TAILQ_NEXT(dc, dc_queue);
1727 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1728 TAILQ_REMOVE(queue, dc, dc_queue);
1729 (*dc->dc_func)(dc->dc_dev);
1730 kmem_free(dc, sizeof(*dc));
1731 config_pending_decr();
1732 }
1733 }
1734 }
1735
1736 /*
1737 * Manipulate the config_pending semaphore.
1738 */
1739 void
1740 config_pending_incr(void)
1741 {
1742
1743 mutex_enter(&config_misc_lock);
1744 config_pending++;
1745 mutex_exit(&config_misc_lock);
1746 }
1747
1748 void
1749 config_pending_decr(void)
1750 {
1751
1752 #ifdef DIAGNOSTIC
1753 if (config_pending == 0)
1754 panic("config_pending_decr: config_pending == 0");
1755 #endif
1756 mutex_enter(&config_misc_lock);
1757 config_pending--;
1758 if (config_pending == 0)
1759 cv_broadcast(&config_misc_cv);
1760 mutex_exit(&config_misc_lock);
1761 }
1762
1763 /*
1764 * Register a "finalization" routine. Finalization routines are
1765 * called iteratively once all real devices have been found during
1766 * autoconfiguration, for as long as any one finalizer has done
1767 * any work.
1768 */
1769 int
1770 config_finalize_register(device_t dev, int (*fn)(device_t))
1771 {
1772 struct finalize_hook *f;
1773
1774 /*
1775 * If finalization has already been done, invoke the
1776 * callback function now.
1777 */
1778 if (config_finalize_done) {
1779 while ((*fn)(dev) != 0)
1780 /* loop */ ;
1781 }
1782
1783 /* Ensure this isn't already on the list. */
1784 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1785 if (f->f_func == fn && f->f_dev == dev)
1786 return (EEXIST);
1787 }
1788
1789 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1790 f->f_func = fn;
1791 f->f_dev = dev;
1792 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1793
1794 return (0);
1795 }
1796
1797 void
1798 config_finalize(void)
1799 {
1800 struct finalize_hook *f;
1801 struct pdevinit *pdev;
1802 extern struct pdevinit pdevinit[];
1803 int errcnt, rv;
1804
1805 /*
1806 * Now that device driver threads have been created, wait for
1807 * them to finish any deferred autoconfiguration.
1808 */
1809 mutex_enter(&config_misc_lock);
1810 while (config_pending != 0)
1811 cv_wait(&config_misc_cv, &config_misc_lock);
1812 mutex_exit(&config_misc_lock);
1813
1814 KERNEL_LOCK(1, NULL);
1815
1816 /* Attach pseudo-devices. */
1817 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1818 (*pdev->pdev_attach)(pdev->pdev_count);
1819
1820 /* Run the hooks until none of them does any work. */
1821 do {
1822 rv = 0;
1823 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1824 rv |= (*f->f_func)(f->f_dev);
1825 } while (rv != 0);
1826
1827 config_finalize_done = 1;
1828
1829 /* Now free all the hooks. */
1830 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1831 TAILQ_REMOVE(&config_finalize_list, f, f_list);
1832 kmem_free(f, sizeof(*f));
1833 }
1834
1835 KERNEL_UNLOCK_ONE(NULL);
1836
1837 errcnt = aprint_get_error_count();
1838 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1839 (boothowto & AB_VERBOSE) == 0) {
1840 if (config_do_twiddle) {
1841 config_do_twiddle = 0;
1842 printf_nolog(" done.\n");
1843 }
1844 if (errcnt != 0) {
1845 printf("WARNING: %d error%s while detecting hardware; "
1846 "check system log.\n", errcnt,
1847 errcnt == 1 ? "" : "s");
1848 }
1849 }
1850 }
1851
1852 /*
1853 * device_lookup:
1854 *
1855 * Look up a device instance for a given driver.
1856 */
1857 device_t
1858 device_lookup(cfdriver_t cd, int unit)
1859 {
1860
1861 if (unit < 0 || unit >= cd->cd_ndevs)
1862 return (NULL);
1863
1864 return (cd->cd_devs[unit]);
1865 }
1866
1867 /*
1868 * device_lookup:
1869 *
1870 * Look up a device instance for a given driver.
1871 */
1872 void *
1873 device_lookup_private(cfdriver_t cd, int unit)
1874 {
1875 device_t dv;
1876
1877 if (unit < 0 || unit >= cd->cd_ndevs)
1878 return NULL;
1879
1880 if ((dv = cd->cd_devs[unit]) == NULL)
1881 return NULL;
1882
1883 return dv->dv_private;
1884 }
1885
1886 /*
1887 * Accessor functions for the device_t type.
1888 */
1889 devclass_t
1890 device_class(device_t dev)
1891 {
1892
1893 return (dev->dv_class);
1894 }
1895
1896 cfdata_t
1897 device_cfdata(device_t dev)
1898 {
1899
1900 return (dev->dv_cfdata);
1901 }
1902
1903 cfdriver_t
1904 device_cfdriver(device_t dev)
1905 {
1906
1907 return (dev->dv_cfdriver);
1908 }
1909
1910 cfattach_t
1911 device_cfattach(device_t dev)
1912 {
1913
1914 return (dev->dv_cfattach);
1915 }
1916
1917 int
1918 device_unit(device_t dev)
1919 {
1920
1921 return (dev->dv_unit);
1922 }
1923
1924 const char *
1925 device_xname(device_t dev)
1926 {
1927
1928 return (dev->dv_xname);
1929 }
1930
1931 device_t
1932 device_parent(device_t dev)
1933 {
1934
1935 return (dev->dv_parent);
1936 }
1937
1938 bool
1939 device_is_active(device_t dev)
1940 {
1941 int active_flags;
1942
1943 active_flags = DVF_ACTIVE;
1944 active_flags |= DVF_CLASS_SUSPENDED;
1945 active_flags |= DVF_DRIVER_SUSPENDED;
1946 active_flags |= DVF_BUS_SUSPENDED;
1947
1948 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1949 }
1950
1951 bool
1952 device_is_enabled(device_t dev)
1953 {
1954 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1955 }
1956
1957 bool
1958 device_has_power(device_t dev)
1959 {
1960 int active_flags;
1961
1962 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1963
1964 return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
1965 }
1966
1967 int
1968 device_locator(device_t dev, u_int locnum)
1969 {
1970
1971 KASSERT(dev->dv_locators != NULL);
1972 return (dev->dv_locators[locnum]);
1973 }
1974
1975 void *
1976 device_private(device_t dev)
1977 {
1978
1979 /*
1980 * The reason why device_private(NULL) is allowed is to simplify the
1981 * work of a lot of userspace request handlers (i.e., c/bdev
1982 * handlers) which grab cfdriver_t->cd_units[n].
1983 * It avoids having them test for it to be NULL and only then calling
1984 * device_private.
1985 */
1986 return dev == NULL ? NULL : dev->dv_private;
1987 }
1988
1989 prop_dictionary_t
1990 device_properties(device_t dev)
1991 {
1992
1993 return (dev->dv_properties);
1994 }
1995
1996 /*
1997 * device_is_a:
1998 *
1999 * Returns true if the device is an instance of the specified
2000 * driver.
2001 */
2002 bool
2003 device_is_a(device_t dev, const char *dname)
2004 {
2005
2006 return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
2007 }
2008
2009 /*
2010 * device_find_by_xname:
2011 *
2012 * Returns the device of the given name or NULL if it doesn't exist.
2013 */
2014 device_t
2015 device_find_by_xname(const char *name)
2016 {
2017 device_t dv;
2018 deviter_t di;
2019
2020 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2021 if (strcmp(device_xname(dv), name) == 0)
2022 break;
2023 }
2024 deviter_release(&di);
2025
2026 return dv;
2027 }
2028
2029 /*
2030 * device_find_by_driver_unit:
2031 *
2032 * Returns the device of the given driver name and unit or
2033 * NULL if it doesn't exist.
2034 */
2035 device_t
2036 device_find_by_driver_unit(const char *name, int unit)
2037 {
2038 struct cfdriver *cd;
2039
2040 if ((cd = config_cfdriver_lookup(name)) == NULL)
2041 return NULL;
2042 return device_lookup(cd, unit);
2043 }
2044
2045 /*
2046 * Power management related functions.
2047 */
2048
2049 bool
2050 device_pmf_is_registered(device_t dev)
2051 {
2052 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2053 }
2054
2055 bool
2056 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
2057 {
2058 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2059 return true;
2060 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2061 return false;
2062 if (*dev->dv_driver_suspend != NULL &&
2063 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
2064 return false;
2065
2066 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2067 return true;
2068 }
2069
2070 bool
2071 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
2072 {
2073 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2074 return true;
2075 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2076 return false;
2077 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2078 return false;
2079 if (*dev->dv_driver_resume != NULL &&
2080 !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2081 return false;
2082
2083 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2084 return true;
2085 }
2086
2087 bool
2088 device_pmf_driver_shutdown(device_t dev, int how)
2089 {
2090
2091 if (*dev->dv_driver_shutdown != NULL &&
2092 !(*dev->dv_driver_shutdown)(dev, how))
2093 return false;
2094 return true;
2095 }
2096
2097 bool
2098 device_pmf_driver_register(device_t dev,
2099 bool (*suspend)(device_t PMF_FN_PROTO),
2100 bool (*resume)(device_t PMF_FN_PROTO),
2101 bool (*shutdown)(device_t, int))
2102 {
2103 dev->dv_driver_suspend = suspend;
2104 dev->dv_driver_resume = resume;
2105 dev->dv_driver_shutdown = shutdown;
2106 dev->dv_flags |= DVF_POWER_HANDLERS;
2107 return true;
2108 }
2109
2110 static const char *
2111 curlwp_name(void)
2112 {
2113 if (curlwp->l_name != NULL)
2114 return curlwp->l_name;
2115 else
2116 return curlwp->l_proc->p_comm;
2117 }
2118
2119 void
2120 device_pmf_driver_deregister(device_t dev)
2121 {
2122 device_lock_t dvl = device_getlock(dev);
2123
2124 dev->dv_driver_suspend = NULL;
2125 dev->dv_driver_resume = NULL;
2126
2127 mutex_enter(&dvl->dvl_mtx);
2128 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2129 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2130 /* Wake a thread that waits for the lock. That
2131 * thread will fail to acquire the lock, and then
2132 * it will wake the next thread that waits for the
2133 * lock, or else it will wake us.
2134 */
2135 cv_signal(&dvl->dvl_cv);
2136 pmflock_debug(dev, __func__, __LINE__);
2137 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2138 pmflock_debug(dev, __func__, __LINE__);
2139 }
2140 mutex_exit(&dvl->dvl_mtx);
2141 }
2142
2143 bool
2144 device_pmf_driver_child_register(device_t dev)
2145 {
2146 device_t parent = device_parent(dev);
2147
2148 if (parent == NULL || parent->dv_driver_child_register == NULL)
2149 return true;
2150 return (*parent->dv_driver_child_register)(dev);
2151 }
2152
2153 void
2154 device_pmf_driver_set_child_register(device_t dev,
2155 bool (*child_register)(device_t))
2156 {
2157 dev->dv_driver_child_register = child_register;
2158 }
2159
2160 void
2161 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2162 {
2163 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2164 if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2165 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2166 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2167 }
2168
2169 bool
2170 device_is_self_suspended(device_t dev)
2171 {
2172 return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2173 }
2174
2175 void
2176 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2177 {
2178 bool self = (flags & PMF_F_SELF) != 0;
2179
2180 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2181
2182 if (!self)
2183 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2184 else if (device_is_active(dev))
2185 dev->dv_flags |= DVF_SELF_SUSPENDED;
2186
2187 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2188 }
2189
2190 static void
2191 pmflock_debug(device_t dev, const char *func, int line)
2192 {
2193 device_lock_t dvl = device_getlock(dev);
2194
2195 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2196 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2197 dev->dv_flags);
2198 }
2199
2200 static void
2201 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2202 {
2203 device_lock_t dvl = device_getlock(dev);
2204
2205 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x "
2206 "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2207 dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags PMF_FN_CALL);
2208 }
2209
2210 static bool
2211 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2212 {
2213 device_lock_t dvl = device_getlock(dev);
2214
2215 while (device_pmf_is_registered(dev) &&
2216 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2217 dvl->dvl_nwait++;
2218 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2219 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2220 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2221 dvl->dvl_nwait--;
2222 }
2223 if (!device_pmf_is_registered(dev)) {
2224 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2225 /* We could not acquire the lock, but some other thread may
2226 * wait for it, also. Wake that thread.
2227 */
2228 cv_signal(&dvl->dvl_cv);
2229 return false;
2230 }
2231 dvl->dvl_nlock++;
2232 dvl->dvl_holder = curlwp;
2233 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2234 return true;
2235 }
2236
2237 bool
2238 device_pmf_lock(device_t dev PMF_FN_ARGS)
2239 {
2240 bool rc;
2241 device_lock_t dvl = device_getlock(dev);
2242
2243 mutex_enter(&dvl->dvl_mtx);
2244 rc = device_pmf_lock1(dev PMF_FN_CALL);
2245 mutex_exit(&dvl->dvl_mtx);
2246
2247 return rc;
2248 }
2249
2250 void
2251 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2252 {
2253 device_lock_t dvl = device_getlock(dev);
2254
2255 KASSERT(dvl->dvl_nlock > 0);
2256 mutex_enter(&dvl->dvl_mtx);
2257 if (--dvl->dvl_nlock == 0)
2258 dvl->dvl_holder = NULL;
2259 cv_signal(&dvl->dvl_cv);
2260 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2261 mutex_exit(&dvl->dvl_mtx);
2262 }
2263
2264 device_lock_t
2265 device_getlock(device_t dev)
2266 {
2267 return &dev->dv_lock;
2268 }
2269
2270 void *
2271 device_pmf_bus_private(device_t dev)
2272 {
2273 return dev->dv_bus_private;
2274 }
2275
2276 bool
2277 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2278 {
2279 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2280 return true;
2281 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2282 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2283 return false;
2284 if (*dev->dv_bus_suspend != NULL &&
2285 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2286 return false;
2287
2288 dev->dv_flags |= DVF_BUS_SUSPENDED;
2289 return true;
2290 }
2291
2292 bool
2293 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2294 {
2295 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2296 return true;
2297 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2298 return false;
2299 if (*dev->dv_bus_resume != NULL &&
2300 !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2301 return false;
2302
2303 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2304 return true;
2305 }
2306
2307 bool
2308 device_pmf_bus_shutdown(device_t dev, int how)
2309 {
2310
2311 if (*dev->dv_bus_shutdown != NULL &&
2312 !(*dev->dv_bus_shutdown)(dev, how))
2313 return false;
2314 return true;
2315 }
2316
2317 void
2318 device_pmf_bus_register(device_t dev, void *priv,
2319 bool (*suspend)(device_t PMF_FN_PROTO),
2320 bool (*resume)(device_t PMF_FN_PROTO),
2321 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2322 {
2323 dev->dv_bus_private = priv;
2324 dev->dv_bus_resume = resume;
2325 dev->dv_bus_suspend = suspend;
2326 dev->dv_bus_shutdown = shutdown;
2327 dev->dv_bus_deregister = deregister;
2328 }
2329
2330 void
2331 device_pmf_bus_deregister(device_t dev)
2332 {
2333 if (dev->dv_bus_deregister == NULL)
2334 return;
2335 (*dev->dv_bus_deregister)(dev);
2336 dev->dv_bus_private = NULL;
2337 dev->dv_bus_suspend = NULL;
2338 dev->dv_bus_resume = NULL;
2339 dev->dv_bus_deregister = NULL;
2340 }
2341
2342 void *
2343 device_pmf_class_private(device_t dev)
2344 {
2345 return dev->dv_class_private;
2346 }
2347
2348 bool
2349 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2350 {
2351 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2352 return true;
2353 if (*dev->dv_class_suspend != NULL &&
2354 !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2355 return false;
2356
2357 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2358 return true;
2359 }
2360
2361 bool
2362 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2363 {
2364 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2365 return true;
2366 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2367 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2368 return false;
2369 if (*dev->dv_class_resume != NULL &&
2370 !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2371 return false;
2372
2373 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2374 return true;
2375 }
2376
2377 void
2378 device_pmf_class_register(device_t dev, void *priv,
2379 bool (*suspend)(device_t PMF_FN_PROTO),
2380 bool (*resume)(device_t PMF_FN_PROTO),
2381 void (*deregister)(device_t))
2382 {
2383 dev->dv_class_private = priv;
2384 dev->dv_class_suspend = suspend;
2385 dev->dv_class_resume = resume;
2386 dev->dv_class_deregister = deregister;
2387 }
2388
2389 void
2390 device_pmf_class_deregister(device_t dev)
2391 {
2392 if (dev->dv_class_deregister == NULL)
2393 return;
2394 (*dev->dv_class_deregister)(dev);
2395 dev->dv_class_private = NULL;
2396 dev->dv_class_suspend = NULL;
2397 dev->dv_class_resume = NULL;
2398 dev->dv_class_deregister = NULL;
2399 }
2400
2401 bool
2402 device_active(device_t dev, devactive_t type)
2403 {
2404 size_t i;
2405
2406 if (dev->dv_activity_count == 0)
2407 return false;
2408
2409 for (i = 0; i < dev->dv_activity_count; ++i) {
2410 if (dev->dv_activity_handlers[i] == NULL)
2411 break;
2412 (*dev->dv_activity_handlers[i])(dev, type);
2413 }
2414
2415 return true;
2416 }
2417
2418 bool
2419 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2420 {
2421 void (**new_handlers)(device_t, devactive_t);
2422 void (**old_handlers)(device_t, devactive_t);
2423 size_t i, old_size, new_size;
2424 int s;
2425
2426 old_handlers = dev->dv_activity_handlers;
2427 old_size = dev->dv_activity_count;
2428
2429 for (i = 0; i < old_size; ++i) {
2430 KASSERT(old_handlers[i] != handler);
2431 if (old_handlers[i] == NULL) {
2432 old_handlers[i] = handler;
2433 return true;
2434 }
2435 }
2436
2437 new_size = old_size + 4;
2438 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2439
2440 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2441 new_handlers[old_size] = handler;
2442 memset(new_handlers + old_size + 1, 0,
2443 sizeof(int [new_size - (old_size+1)]));
2444
2445 s = splhigh();
2446 dev->dv_activity_count = new_size;
2447 dev->dv_activity_handlers = new_handlers;
2448 splx(s);
2449
2450 if (old_handlers != NULL)
2451 kmem_free(old_handlers, sizeof(void * [old_size]));
2452
2453 return true;
2454 }
2455
2456 void
2457 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2458 {
2459 void (**old_handlers)(device_t, devactive_t);
2460 size_t i, old_size;
2461 int s;
2462
2463 old_handlers = dev->dv_activity_handlers;
2464 old_size = dev->dv_activity_count;
2465
2466 for (i = 0; i < old_size; ++i) {
2467 if (old_handlers[i] == handler)
2468 break;
2469 if (old_handlers[i] == NULL)
2470 return; /* XXX panic? */
2471 }
2472
2473 if (i == old_size)
2474 return; /* XXX panic? */
2475
2476 for (; i < old_size - 1; ++i) {
2477 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2478 continue;
2479
2480 if (i == 0) {
2481 s = splhigh();
2482 dev->dv_activity_count = 0;
2483 dev->dv_activity_handlers = NULL;
2484 splx(s);
2485 kmem_free(old_handlers, sizeof(void *[old_size]));
2486 }
2487 return;
2488 }
2489 old_handlers[i] = NULL;
2490 }
2491
2492 /*
2493 * Device Iteration
2494 *
2495 * deviter_t: a device iterator. Holds state for a "walk" visiting
2496 * each device_t's in the device tree.
2497 *
2498 * deviter_init(di, flags): initialize the device iterator `di'
2499 * to "walk" the device tree. deviter_next(di) will return
2500 * the first device_t in the device tree, or NULL if there are
2501 * no devices.
2502 *
2503 * `flags' is one or more of DEVITER_F_RW, indicating that the
2504 * caller intends to modify the device tree by calling
2505 * config_detach(9) on devices in the order that the iterator
2506 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2507 * nearest the "root" of the device tree to be returned, first;
2508 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2509 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2510 * indicating both that deviter_init() should not respect any
2511 * locks on the device tree, and that deviter_next(di) may run
2512 * in more than one LWP before the walk has finished.
2513 *
2514 * Only one DEVITER_F_RW iterator may be in the device tree at
2515 * once.
2516 *
2517 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2518 *
2519 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2520 * DEVITER_F_LEAVES_FIRST are used in combination.
2521 *
2522 * deviter_first(di, flags): initialize the device iterator `di'
2523 * and return the first device_t in the device tree, or NULL
2524 * if there are no devices. The statement
2525 *
2526 * dv = deviter_first(di);
2527 *
2528 * is shorthand for
2529 *
2530 * deviter_init(di);
2531 * dv = deviter_next(di);
2532 *
2533 * deviter_next(di): return the next device_t in the device tree,
2534 * or NULL if there are no more devices. deviter_next(di)
2535 * is undefined if `di' was not initialized with deviter_init() or
2536 * deviter_first().
2537 *
2538 * deviter_release(di): stops iteration (subsequent calls to
2539 * deviter_next() will return NULL), releases any locks and
2540 * resources held by the device iterator.
2541 *
2542 * Device iteration does not return device_t's in any particular
2543 * order. An iterator will never return the same device_t twice.
2544 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2545 * is called repeatedly on the same `di', it will eventually return
2546 * NULL. It is ok to attach/detach devices during device iteration.
2547 */
2548 void
2549 deviter_init(deviter_t *di, deviter_flags_t flags)
2550 {
2551 device_t dv;
2552 bool rw;
2553
2554 mutex_enter(&alldevs_mtx);
2555 if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2556 flags |= DEVITER_F_RW;
2557 alldevs_nwrite++;
2558 alldevs_writer = NULL;
2559 alldevs_nread = 0;
2560 } else {
2561 rw = (flags & DEVITER_F_RW) != 0;
2562
2563 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2564 ;
2565 else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2566 (rw && alldevs_nread != 0))
2567 cv_wait(&alldevs_cv, &alldevs_mtx);
2568
2569 if (rw) {
2570 if (alldevs_nwrite++ == 0)
2571 alldevs_writer = curlwp;
2572 } else
2573 alldevs_nread++;
2574 }
2575 mutex_exit(&alldevs_mtx);
2576
2577 memset(di, 0, sizeof(*di));
2578
2579 di->di_flags = flags;
2580
2581 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2582 case DEVITER_F_LEAVES_FIRST:
2583 TAILQ_FOREACH(dv, &alldevs, dv_list)
2584 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2585 break;
2586 case DEVITER_F_ROOT_FIRST:
2587 TAILQ_FOREACH(dv, &alldevs, dv_list)
2588 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2589 break;
2590 default:
2591 break;
2592 }
2593
2594 deviter_reinit(di);
2595 }
2596
2597 static void
2598 deviter_reinit(deviter_t *di)
2599 {
2600 if ((di->di_flags & DEVITER_F_RW) != 0)
2601 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2602 else
2603 di->di_prev = TAILQ_FIRST(&alldevs);
2604 }
2605
2606 device_t
2607 deviter_first(deviter_t *di, deviter_flags_t flags)
2608 {
2609 deviter_init(di, flags);
2610 return deviter_next(di);
2611 }
2612
2613 static device_t
2614 deviter_next1(deviter_t *di)
2615 {
2616 device_t dv;
2617
2618 dv = di->di_prev;
2619
2620 if (dv == NULL)
2621 ;
2622 else if ((di->di_flags & DEVITER_F_RW) != 0)
2623 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2624 else
2625 di->di_prev = TAILQ_NEXT(dv, dv_list);
2626
2627 return dv;
2628 }
2629
2630 device_t
2631 deviter_next(deviter_t *di)
2632 {
2633 device_t dv = NULL;
2634
2635 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2636 case 0:
2637 return deviter_next1(di);
2638 case DEVITER_F_LEAVES_FIRST:
2639 while (di->di_curdepth >= 0) {
2640 if ((dv = deviter_next1(di)) == NULL) {
2641 di->di_curdepth--;
2642 deviter_reinit(di);
2643 } else if (dv->dv_depth == di->di_curdepth)
2644 break;
2645 }
2646 return dv;
2647 case DEVITER_F_ROOT_FIRST:
2648 while (di->di_curdepth <= di->di_maxdepth) {
2649 if ((dv = deviter_next1(di)) == NULL) {
2650 di->di_curdepth++;
2651 deviter_reinit(di);
2652 } else if (dv->dv_depth == di->di_curdepth)
2653 break;
2654 }
2655 return dv;
2656 default:
2657 return NULL;
2658 }
2659 }
2660
2661 void
2662 deviter_release(deviter_t *di)
2663 {
2664 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2665
2666 mutex_enter(&alldevs_mtx);
2667 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2668 --alldevs_nwrite;
2669 else {
2670
2671 if (rw) {
2672 if (--alldevs_nwrite == 0)
2673 alldevs_writer = NULL;
2674 } else
2675 --alldevs_nread;
2676
2677 cv_signal(&alldevs_cv);
2678 }
2679 mutex_exit(&alldevs_mtx);
2680 }
2681
2682 SYSCTL_SETUP(sysctl_detach_setup, "sysctl detach setup")
2683 {
2684 const struct sysctlnode *node = NULL;
2685
2686 sysctl_createv(clog, 0, NULL, &node,
2687 CTLFLAG_PERMANENT,
2688 CTLTYPE_NODE, "kern", NULL,
2689 NULL, 0, NULL, 0,
2690 CTL_KERN, CTL_EOL);
2691
2692 if (node == NULL)
2693 return;
2694
2695 sysctl_createv(clog, 0, &node, NULL,
2696 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2697 CTLTYPE_INT, "detachall",
2698 SYSCTL_DESCR("Detach all devices at shutdown"),
2699 NULL, 0, &detachall, 0,
2700 CTL_CREATE, CTL_EOL);
2701 }
2702