Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.177
      1 /* $NetBSD: subr_autoconf.c,v 1.177 2009/05/29 23:27:08 dyoung Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.177 2009/05/29 23:27:08 dyoung Exp $");
     81 
     82 #include "opt_ddb.h"
     83 #include "drvctl.h"
     84 
     85 #include <sys/param.h>
     86 #include <sys/device.h>
     87 #include <sys/disklabel.h>
     88 #include <sys/conf.h>
     89 #include <sys/kauth.h>
     90 #include <sys/malloc.h>
     91 #include <sys/kmem.h>
     92 #include <sys/systm.h>
     93 #include <sys/kernel.h>
     94 #include <sys/errno.h>
     95 #include <sys/proc.h>
     96 #include <sys/reboot.h>
     97 #include <sys/kthread.h>
     98 #include <sys/buf.h>
     99 #include <sys/dirent.h>
    100 #include <sys/vnode.h>
    101 #include <sys/mount.h>
    102 #include <sys/namei.h>
    103 #include <sys/unistd.h>
    104 #include <sys/fcntl.h>
    105 #include <sys/lockf.h>
    106 #include <sys/callout.h>
    107 #include <sys/devmon.h>
    108 #include <sys/cpu.h>
    109 #include <sys/sysctl.h>
    110 
    111 #include <sys/disk.h>
    112 
    113 #include <machine/limits.h>
    114 
    115 #include "opt_userconf.h"
    116 #ifdef USERCONF
    117 #include <sys/userconf.h>
    118 #endif
    119 
    120 #ifdef __i386__
    121 #include "opt_splash.h"
    122 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    123 #include <dev/splash/splash.h>
    124 extern struct splash_progress *splash_progress_state;
    125 #endif
    126 #endif
    127 
    128 /*
    129  * Autoconfiguration subroutines.
    130  */
    131 
    132 /*
    133  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    134  * devices and drivers are found via these tables.
    135  */
    136 extern struct cfdata cfdata[];
    137 extern const short cfroots[];
    138 
    139 /*
    140  * List of all cfdriver structures.  We use this to detect duplicates
    141  * when other cfdrivers are loaded.
    142  */
    143 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    144 extern struct cfdriver * const cfdriver_list_initial[];
    145 
    146 /*
    147  * Initial list of cfattach's.
    148  */
    149 extern const struct cfattachinit cfattachinit[];
    150 
    151 /*
    152  * List of cfdata tables.  We always have one such list -- the one
    153  * built statically when the kernel was configured.
    154  */
    155 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    156 static struct cftable initcftable;
    157 
    158 #define	ROOT ((device_t)NULL)
    159 
    160 struct matchinfo {
    161 	cfsubmatch_t fn;
    162 	struct	device *parent;
    163 	const int *locs;
    164 	void	*aux;
    165 	struct	cfdata *match;
    166 	int	pri;
    167 };
    168 
    169 static char *number(char *, int);
    170 static void mapply(struct matchinfo *, cfdata_t);
    171 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    172 static void config_devdealloc(device_t);
    173 static void config_makeroom(int, struct cfdriver *);
    174 static void config_devlink(device_t);
    175 static void config_devunlink(device_t);
    176 static void config_twiddle_fn(void *);
    177 
    178 static void pmflock_debug(device_t, const char *, int);
    179 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
    180 
    181 static device_t deviter_next1(deviter_t *);
    182 static void deviter_reinit(deviter_t *);
    183 
    184 struct deferred_config {
    185 	TAILQ_ENTRY(deferred_config) dc_queue;
    186 	device_t dc_dev;
    187 	void (*dc_func)(device_t);
    188 };
    189 
    190 TAILQ_HEAD(deferred_config_head, deferred_config);
    191 
    192 struct deferred_config_head deferred_config_queue =
    193 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    194 struct deferred_config_head interrupt_config_queue =
    195 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    196 int interrupt_config_threads = 8;
    197 
    198 static void config_process_deferred(struct deferred_config_head *, device_t);
    199 
    200 /* Hooks to finalize configuration once all real devices have been found. */
    201 struct finalize_hook {
    202 	TAILQ_ENTRY(finalize_hook) f_list;
    203 	int (*f_func)(device_t);
    204 	device_t f_dev;
    205 };
    206 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    207 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    208 static int config_finalize_done;
    209 
    210 /* list of all devices */
    211 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    212 kcondvar_t alldevs_cv;
    213 kmutex_t alldevs_mtx;
    214 static int alldevs_nread = 0;
    215 static int alldevs_nwrite = 0;
    216 static lwp_t *alldevs_writer = NULL;
    217 
    218 static int config_pending;		/* semaphore for mountroot */
    219 static kmutex_t config_misc_lock;
    220 static kcondvar_t config_misc_cv;
    221 
    222 static int detachall = 0;
    223 
    224 #define	STREQ(s1, s2)			\
    225 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    226 
    227 static int config_initialized;		/* config_init() has been called. */
    228 
    229 static int config_do_twiddle;
    230 static callout_t config_twiddle_ch;
    231 
    232 struct vnode *
    233 opendisk(struct device *dv)
    234 {
    235 	int bmajor, bminor;
    236 	struct vnode *tmpvn;
    237 	int error;
    238 	dev_t dev;
    239 
    240 	/*
    241 	 * Lookup major number for disk block device.
    242 	 */
    243 	bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
    244 	if (bmajor == -1)
    245 		return NULL;
    246 
    247 	bminor = minor(device_unit(dv));
    248 	/*
    249 	 * Fake a temporary vnode for the disk, open it, and read
    250 	 * and hash the sectors.
    251 	 */
    252 	dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
    253 	    MAKEDISKDEV(bmajor, bminor, RAW_PART);
    254 	if (bdevvp(dev, &tmpvn))
    255 		panic("%s: can't alloc vnode for %s", __func__,
    256 		    device_xname(dv));
    257 	error = VOP_OPEN(tmpvn, FREAD, NOCRED);
    258 	if (error) {
    259 #ifndef DEBUG
    260 		/*
    261 		 * Ignore errors caused by missing device, partition,
    262 		 * or medium.
    263 		 */
    264 		if (error != ENXIO && error != ENODEV)
    265 #endif
    266 			printf("%s: can't open dev %s (%d)\n",
    267 			    __func__, device_xname(dv), error);
    268 		vput(tmpvn);
    269 		return NULL;
    270 	}
    271 
    272 	return tmpvn;
    273 }
    274 
    275 int
    276 config_handle_wedges(struct device *dv, int par)
    277 {
    278 	struct dkwedge_list wl;
    279 	struct dkwedge_info *wi;
    280 	struct vnode *vn;
    281 	char diskname[16];
    282 	int i, error;
    283 
    284 	if ((vn = opendisk(dv)) == NULL)
    285 		return -1;
    286 
    287 	wl.dkwl_bufsize = sizeof(*wi) * 16;
    288 	wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
    289 
    290 	error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
    291 	VOP_CLOSE(vn, FREAD, NOCRED);
    292 	vput(vn);
    293 	if (error) {
    294 #ifdef DEBUG_WEDGE
    295 		printf("%s: List wedges returned %d\n",
    296 		    device_xname(dv), error);
    297 #endif
    298 		free(wi, M_TEMP);
    299 		return -1;
    300 	}
    301 
    302 #ifdef DEBUG_WEDGE
    303 	printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
    304 	    wl.dkwl_nwedges, wl.dkwl_ncopied);
    305 #endif
    306 	snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
    307 	    par + 'a');
    308 
    309 	for (i = 0; i < wl.dkwl_ncopied; i++) {
    310 #ifdef DEBUG_WEDGE
    311 		printf("%s: Looking for %s in %s\n",
    312 		    device_xname(dv), diskname, wi[i].dkw_wname);
    313 #endif
    314 		if (strcmp(wi[i].dkw_wname, diskname) == 0)
    315 			break;
    316 	}
    317 
    318 	if (i == wl.dkwl_ncopied) {
    319 #ifdef DEBUG_WEDGE
    320 		printf("%s: Cannot find wedge with parent %s\n",
    321 		    device_xname(dv), diskname);
    322 #endif
    323 		free(wi, M_TEMP);
    324 		return -1;
    325 	}
    326 
    327 #ifdef DEBUG_WEDGE
    328 	printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
    329 		device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
    330 		(unsigned long long)wi[i].dkw_offset,
    331 		(unsigned long long)wi[i].dkw_size);
    332 #endif
    333 	dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
    334 	free(wi, M_TEMP);
    335 	return 0;
    336 }
    337 
    338 /*
    339  * Initialize the autoconfiguration data structures.  Normally this
    340  * is done by configure(), but some platforms need to do this very
    341  * early (to e.g. initialize the console).
    342  */
    343 void
    344 config_init(void)
    345 {
    346 	const struct cfattachinit *cfai;
    347 	int i, j;
    348 
    349 	if (config_initialized)
    350 		return;
    351 
    352 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
    353 	cv_init(&alldevs_cv, "alldevs");
    354 
    355 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    356 	cv_init(&config_misc_cv, "cfgmisc");
    357 
    358 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    359 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
    360 
    361 	/* allcfdrivers is statically initialized. */
    362 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
    363 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
    364 			panic("configure: duplicate `%s' drivers",
    365 			    cfdriver_list_initial[i]->cd_name);
    366 	}
    367 
    368 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
    369 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    370 			if (config_cfattach_attach(cfai->cfai_name,
    371 						   cfai->cfai_list[j]) != 0)
    372 				panic("configure: duplicate `%s' attachment "
    373 				    "of `%s' driver",
    374 				    cfai->cfai_list[j]->ca_name,
    375 				    cfai->cfai_name);
    376 		}
    377 	}
    378 
    379 	initcftable.ct_cfdata = cfdata;
    380 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    381 
    382 	config_initialized = 1;
    383 }
    384 
    385 void
    386 config_deferred(device_t dev)
    387 {
    388 	config_process_deferred(&deferred_config_queue, dev);
    389 	config_process_deferred(&interrupt_config_queue, dev);
    390 }
    391 
    392 static void
    393 config_interrupts_thread(void *cookie)
    394 {
    395 	struct deferred_config *dc;
    396 
    397 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    398 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    399 		(*dc->dc_func)(dc->dc_dev);
    400 		kmem_free(dc, sizeof(*dc));
    401 		config_pending_decr();
    402 	}
    403 	kthread_exit(0);
    404 }
    405 
    406 /*
    407  * Configure the system's hardware.
    408  */
    409 void
    410 configure(void)
    411 {
    412 	/* Initialize data structures. */
    413 	config_init();
    414 	pmf_init();
    415 #if NDRVCTL > 0
    416 	drvctl_init();
    417 #endif
    418 
    419 #ifdef USERCONF
    420 	if (boothowto & RB_USERCONF)
    421 		user_config();
    422 #endif
    423 
    424 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
    425 		config_do_twiddle = 1;
    426 		printf_nolog("Detecting hardware...");
    427 	}
    428 
    429 	/*
    430 	 * Do the machine-dependent portion of autoconfiguration.  This
    431 	 * sets the configuration machinery here in motion by "finding"
    432 	 * the root bus.  When this function returns, we expect interrupts
    433 	 * to be enabled.
    434 	 */
    435 	cpu_configure();
    436 }
    437 
    438 void
    439 configure2(void)
    440 {
    441 	CPU_INFO_ITERATOR cii;
    442 	struct cpu_info *ci;
    443 	int i, s;
    444 
    445 	/*
    446 	 * Now that we've found all the hardware, start the real time
    447 	 * and statistics clocks.
    448 	 */
    449 	initclocks();
    450 
    451 	cold = 0;	/* clocks are running, we're warm now! */
    452 	s = splsched();
    453 	curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
    454 	splx(s);
    455 
    456 	/* Boot the secondary processors. */
    457 	for (CPU_INFO_FOREACH(cii, ci)) {
    458 		uvm_cpu_attach(ci);
    459 	}
    460 	mp_online = true;
    461 #if defined(MULTIPROCESSOR)
    462 	cpu_boot_secondary_processors();
    463 #endif
    464 
    465 	/* Setup the runqueues and scheduler. */
    466 	runq_init();
    467 	sched_init();
    468 
    469 	/*
    470 	 * Bus scans can make it appear as if the system has paused, so
    471 	 * twiddle constantly while config_interrupts() jobs are running.
    472 	 */
    473 	config_twiddle_fn(NULL);
    474 
    475 	/*
    476 	 * Create threads to call back and finish configuration for
    477 	 * devices that want interrupts enabled.
    478 	 */
    479 	for (i = 0; i < interrupt_config_threads; i++) {
    480 		(void)kthread_create(PRI_NONE, 0, NULL,
    481 		    config_interrupts_thread, NULL, NULL, "config");
    482 	}
    483 
    484 	/* Get the threads going and into any sleeps before continuing. */
    485 	yield();
    486 }
    487 
    488 /*
    489  * Announce device attach/detach to userland listeners.
    490  */
    491 static void
    492 devmon_report_device(device_t dev, bool isattach)
    493 {
    494 #if NDRVCTL > 0
    495 	prop_dictionary_t ev;
    496 	const char *parent;
    497 	const char *what;
    498 	device_t pdev = device_parent(dev);
    499 
    500 	ev = prop_dictionary_create();
    501 	if (ev == NULL)
    502 		return;
    503 
    504 	what = (isattach ? "device-attach" : "device-detach");
    505 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    506 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
    507 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
    508 		prop_object_release(ev);
    509 		return;
    510 	}
    511 
    512 	devmon_insert(what, ev);
    513 #endif
    514 }
    515 
    516 /*
    517  * Add a cfdriver to the system.
    518  */
    519 int
    520 config_cfdriver_attach(struct cfdriver *cd)
    521 {
    522 	struct cfdriver *lcd;
    523 
    524 	/* Make sure this driver isn't already in the system. */
    525 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    526 		if (STREQ(lcd->cd_name, cd->cd_name))
    527 			return EEXIST;
    528 	}
    529 
    530 	LIST_INIT(&cd->cd_attach);
    531 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    532 
    533 	return 0;
    534 }
    535 
    536 /*
    537  * Remove a cfdriver from the system.
    538  */
    539 int
    540 config_cfdriver_detach(struct cfdriver *cd)
    541 {
    542 	int i;
    543 
    544 	/* Make sure there are no active instances. */
    545 	for (i = 0; i < cd->cd_ndevs; i++) {
    546 		if (cd->cd_devs[i] != NULL)
    547 			return EBUSY;
    548 	}
    549 
    550 	/* ...and no attachments loaded. */
    551 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    552 		return EBUSY;
    553 
    554 	LIST_REMOVE(cd, cd_list);
    555 
    556 	KASSERT(cd->cd_devs == NULL);
    557 
    558 	return 0;
    559 }
    560 
    561 /*
    562  * Look up a cfdriver by name.
    563  */
    564 struct cfdriver *
    565 config_cfdriver_lookup(const char *name)
    566 {
    567 	struct cfdriver *cd;
    568 
    569 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    570 		if (STREQ(cd->cd_name, name))
    571 			return cd;
    572 	}
    573 
    574 	return NULL;
    575 }
    576 
    577 /*
    578  * Add a cfattach to the specified driver.
    579  */
    580 int
    581 config_cfattach_attach(const char *driver, struct cfattach *ca)
    582 {
    583 	struct cfattach *lca;
    584 	struct cfdriver *cd;
    585 
    586 	cd = config_cfdriver_lookup(driver);
    587 	if (cd == NULL)
    588 		return ESRCH;
    589 
    590 	/* Make sure this attachment isn't already on this driver. */
    591 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    592 		if (STREQ(lca->ca_name, ca->ca_name))
    593 			return EEXIST;
    594 	}
    595 
    596 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    597 
    598 	return 0;
    599 }
    600 
    601 /*
    602  * Remove a cfattach from the specified driver.
    603  */
    604 int
    605 config_cfattach_detach(const char *driver, struct cfattach *ca)
    606 {
    607 	struct cfdriver *cd;
    608 	device_t dev;
    609 	int i;
    610 
    611 	cd = config_cfdriver_lookup(driver);
    612 	if (cd == NULL)
    613 		return ESRCH;
    614 
    615 	/* Make sure there are no active instances. */
    616 	for (i = 0; i < cd->cd_ndevs; i++) {
    617 		if ((dev = cd->cd_devs[i]) == NULL)
    618 			continue;
    619 		if (dev->dv_cfattach == ca)
    620 			return EBUSY;
    621 	}
    622 
    623 	LIST_REMOVE(ca, ca_list);
    624 
    625 	return 0;
    626 }
    627 
    628 /*
    629  * Look up a cfattach by name.
    630  */
    631 static struct cfattach *
    632 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    633 {
    634 	struct cfattach *ca;
    635 
    636 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    637 		if (STREQ(ca->ca_name, atname))
    638 			return ca;
    639 	}
    640 
    641 	return NULL;
    642 }
    643 
    644 /*
    645  * Look up a cfattach by driver/attachment name.
    646  */
    647 struct cfattach *
    648 config_cfattach_lookup(const char *name, const char *atname)
    649 {
    650 	struct cfdriver *cd;
    651 
    652 	cd = config_cfdriver_lookup(name);
    653 	if (cd == NULL)
    654 		return NULL;
    655 
    656 	return config_cfattach_lookup_cd(cd, atname);
    657 }
    658 
    659 /*
    660  * Apply the matching function and choose the best.  This is used
    661  * a few times and we want to keep the code small.
    662  */
    663 static void
    664 mapply(struct matchinfo *m, cfdata_t cf)
    665 {
    666 	int pri;
    667 
    668 	if (m->fn != NULL) {
    669 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    670 	} else {
    671 		pri = config_match(m->parent, cf, m->aux);
    672 	}
    673 	if (pri > m->pri) {
    674 		m->match = cf;
    675 		m->pri = pri;
    676 	}
    677 }
    678 
    679 int
    680 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    681 {
    682 	const struct cfiattrdata *ci;
    683 	const struct cflocdesc *cl;
    684 	int nlocs, i;
    685 
    686 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
    687 	KASSERT(ci);
    688 	nlocs = ci->ci_loclen;
    689 	KASSERT(!nlocs || locs);
    690 	for (i = 0; i < nlocs; i++) {
    691 		cl = &ci->ci_locdesc[i];
    692 		/* !cld_defaultstr means no default value */
    693 		if ((!(cl->cld_defaultstr)
    694 		     || (cf->cf_loc[i] != cl->cld_default))
    695 		    && cf->cf_loc[i] != locs[i])
    696 			return 0;
    697 	}
    698 
    699 	return config_match(parent, cf, aux);
    700 }
    701 
    702 /*
    703  * Helper function: check whether the driver supports the interface attribute
    704  * and return its descriptor structure.
    705  */
    706 static const struct cfiattrdata *
    707 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    708 {
    709 	const struct cfiattrdata * const *cpp;
    710 
    711 	if (cd->cd_attrs == NULL)
    712 		return 0;
    713 
    714 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    715 		if (STREQ((*cpp)->ci_name, ia)) {
    716 			/* Match. */
    717 			return *cpp;
    718 		}
    719 	}
    720 	return 0;
    721 }
    722 
    723 /*
    724  * Lookup an interface attribute description by name.
    725  * If the driver is given, consider only its supported attributes.
    726  */
    727 const struct cfiattrdata *
    728 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    729 {
    730 	const struct cfdriver *d;
    731 	const struct cfiattrdata *ia;
    732 
    733 	if (cd)
    734 		return cfdriver_get_iattr(cd, name);
    735 
    736 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    737 		ia = cfdriver_get_iattr(d, name);
    738 		if (ia)
    739 			return ia;
    740 	}
    741 	return 0;
    742 }
    743 
    744 /*
    745  * Determine if `parent' is a potential parent for a device spec based
    746  * on `cfp'.
    747  */
    748 static int
    749 cfparent_match(const device_t parent, const struct cfparent *cfp)
    750 {
    751 	struct cfdriver *pcd;
    752 
    753 	/* We don't match root nodes here. */
    754 	if (cfp == NULL)
    755 		return 0;
    756 
    757 	pcd = parent->dv_cfdriver;
    758 	KASSERT(pcd != NULL);
    759 
    760 	/*
    761 	 * First, ensure this parent has the correct interface
    762 	 * attribute.
    763 	 */
    764 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    765 		return 0;
    766 
    767 	/*
    768 	 * If no specific parent device instance was specified (i.e.
    769 	 * we're attaching to the attribute only), we're done!
    770 	 */
    771 	if (cfp->cfp_parent == NULL)
    772 		return 1;
    773 
    774 	/*
    775 	 * Check the parent device's name.
    776 	 */
    777 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    778 		return 0;	/* not the same parent */
    779 
    780 	/*
    781 	 * Make sure the unit number matches.
    782 	 */
    783 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    784 	    cfp->cfp_unit == parent->dv_unit)
    785 		return 1;
    786 
    787 	/* Unit numbers don't match. */
    788 	return 0;
    789 }
    790 
    791 /*
    792  * Helper for config_cfdata_attach(): check all devices whether it could be
    793  * parent any attachment in the config data table passed, and rescan.
    794  */
    795 static void
    796 rescan_with_cfdata(const struct cfdata *cf)
    797 {
    798 	device_t d;
    799 	const struct cfdata *cf1;
    800 	deviter_t di;
    801 
    802 
    803 	/*
    804 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    805 	 * the outer loop.
    806 	 */
    807 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    808 
    809 		if (!(d->dv_cfattach->ca_rescan))
    810 			continue;
    811 
    812 		for (cf1 = cf; cf1->cf_name; cf1++) {
    813 
    814 			if (!cfparent_match(d, cf1->cf_pspec))
    815 				continue;
    816 
    817 			(*d->dv_cfattach->ca_rescan)(d,
    818 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
    819 		}
    820 	}
    821 	deviter_release(&di);
    822 }
    823 
    824 /*
    825  * Attach a supplemental config data table and rescan potential
    826  * parent devices if required.
    827  */
    828 int
    829 config_cfdata_attach(cfdata_t cf, int scannow)
    830 {
    831 	struct cftable *ct;
    832 
    833 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    834 	ct->ct_cfdata = cf;
    835 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    836 
    837 	if (scannow)
    838 		rescan_with_cfdata(cf);
    839 
    840 	return 0;
    841 }
    842 
    843 /*
    844  * Helper for config_cfdata_detach: check whether a device is
    845  * found through any attachment in the config data table.
    846  */
    847 static int
    848 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
    849 {
    850 	const struct cfdata *cf1;
    851 
    852 	for (cf1 = cf; cf1->cf_name; cf1++)
    853 		if (d->dv_cfdata == cf1)
    854 			return 1;
    855 
    856 	return 0;
    857 }
    858 
    859 /*
    860  * Detach a supplemental config data table. Detach all devices found
    861  * through that table (and thus keeping references to it) before.
    862  */
    863 int
    864 config_cfdata_detach(cfdata_t cf)
    865 {
    866 	device_t d;
    867 	int error = 0;
    868 	struct cftable *ct;
    869 	deviter_t di;
    870 
    871 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    872 	     d = deviter_next(&di)) {
    873 		if (!dev_in_cfdata(d, cf))
    874 			continue;
    875 		if ((error = config_detach(d, 0)) != 0)
    876 			break;
    877 	}
    878 	deviter_release(&di);
    879 	if (error) {
    880 		aprint_error_dev(d, "unable to detach instance\n");
    881 		return error;
    882 	}
    883 
    884 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    885 		if (ct->ct_cfdata == cf) {
    886 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    887 			kmem_free(ct, sizeof(*ct));
    888 			return 0;
    889 		}
    890 	}
    891 
    892 	/* not found -- shouldn't happen */
    893 	return EINVAL;
    894 }
    895 
    896 /*
    897  * Invoke the "match" routine for a cfdata entry on behalf of
    898  * an external caller, usually a "submatch" routine.
    899  */
    900 int
    901 config_match(device_t parent, cfdata_t cf, void *aux)
    902 {
    903 	struct cfattach *ca;
    904 
    905 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    906 	if (ca == NULL) {
    907 		/* No attachment for this entry, oh well. */
    908 		return 0;
    909 	}
    910 
    911 	return (*ca->ca_match)(parent, cf, aux);
    912 }
    913 
    914 /*
    915  * Iterate over all potential children of some device, calling the given
    916  * function (default being the child's match function) for each one.
    917  * Nonzero returns are matches; the highest value returned is considered
    918  * the best match.  Return the `found child' if we got a match, or NULL
    919  * otherwise.  The `aux' pointer is simply passed on through.
    920  *
    921  * Note that this function is designed so that it can be used to apply
    922  * an arbitrary function to all potential children (its return value
    923  * can be ignored).
    924  */
    925 cfdata_t
    926 config_search_loc(cfsubmatch_t fn, device_t parent,
    927 		  const char *ifattr, const int *locs, void *aux)
    928 {
    929 	struct cftable *ct;
    930 	cfdata_t cf;
    931 	struct matchinfo m;
    932 
    933 	KASSERT(config_initialized);
    934 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
    935 
    936 	m.fn = fn;
    937 	m.parent = parent;
    938 	m.locs = locs;
    939 	m.aux = aux;
    940 	m.match = NULL;
    941 	m.pri = 0;
    942 
    943 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    944 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
    945 
    946 			/* We don't match root nodes here. */
    947 			if (!cf->cf_pspec)
    948 				continue;
    949 
    950 			/*
    951 			 * Skip cf if no longer eligible, otherwise scan
    952 			 * through parents for one matching `parent', and
    953 			 * try match function.
    954 			 */
    955 			if (cf->cf_fstate == FSTATE_FOUND)
    956 				continue;
    957 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
    958 			    cf->cf_fstate == FSTATE_DSTAR)
    959 				continue;
    960 
    961 			/*
    962 			 * If an interface attribute was specified,
    963 			 * consider only children which attach to
    964 			 * that attribute.
    965 			 */
    966 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
    967 				continue;
    968 
    969 			if (cfparent_match(parent, cf->cf_pspec))
    970 				mapply(&m, cf);
    971 		}
    972 	}
    973 	return m.match;
    974 }
    975 
    976 cfdata_t
    977 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
    978     void *aux)
    979 {
    980 
    981 	return config_search_loc(fn, parent, ifattr, NULL, aux);
    982 }
    983 
    984 /*
    985  * Find the given root device.
    986  * This is much like config_search, but there is no parent.
    987  * Don't bother with multiple cfdata tables; the root node
    988  * must always be in the initial table.
    989  */
    990 cfdata_t
    991 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
    992 {
    993 	cfdata_t cf;
    994 	const short *p;
    995 	struct matchinfo m;
    996 
    997 	m.fn = fn;
    998 	m.parent = ROOT;
    999 	m.aux = aux;
   1000 	m.match = NULL;
   1001 	m.pri = 0;
   1002 	m.locs = 0;
   1003 	/*
   1004 	 * Look at root entries for matching name.  We do not bother
   1005 	 * with found-state here since only one root should ever be
   1006 	 * searched (and it must be done first).
   1007 	 */
   1008 	for (p = cfroots; *p >= 0; p++) {
   1009 		cf = &cfdata[*p];
   1010 		if (strcmp(cf->cf_name, rootname) == 0)
   1011 			mapply(&m, cf);
   1012 	}
   1013 	return m.match;
   1014 }
   1015 
   1016 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1017 
   1018 /*
   1019  * The given `aux' argument describes a device that has been found
   1020  * on the given parent, but not necessarily configured.  Locate the
   1021  * configuration data for that device (using the submatch function
   1022  * provided, or using candidates' cd_match configuration driver
   1023  * functions) and attach it, and return true.  If the device was
   1024  * not configured, call the given `print' function and return 0.
   1025  */
   1026 device_t
   1027 config_found_sm_loc(device_t parent,
   1028 		const char *ifattr, const int *locs, void *aux,
   1029 		cfprint_t print, cfsubmatch_t submatch)
   1030 {
   1031 	cfdata_t cf;
   1032 
   1033 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1034 	if (splash_progress_state)
   1035 		splash_progress_update(splash_progress_state);
   1036 #endif
   1037 
   1038 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
   1039 		return(config_attach_loc(parent, cf, locs, aux, print));
   1040 	if (print) {
   1041 		if (config_do_twiddle && cold)
   1042 			twiddle();
   1043 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1044 	}
   1045 
   1046 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1047 	if (splash_progress_state)
   1048 		splash_progress_update(splash_progress_state);
   1049 #endif
   1050 
   1051 	return NULL;
   1052 }
   1053 
   1054 device_t
   1055 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1056     cfprint_t print)
   1057 {
   1058 
   1059 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
   1060 }
   1061 
   1062 device_t
   1063 config_found(device_t parent, void *aux, cfprint_t print)
   1064 {
   1065 
   1066 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
   1067 }
   1068 
   1069 /*
   1070  * As above, but for root devices.
   1071  */
   1072 device_t
   1073 config_rootfound(const char *rootname, void *aux)
   1074 {
   1075 	cfdata_t cf;
   1076 
   1077 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
   1078 		return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
   1079 	aprint_error("root device %s not configured\n", rootname);
   1080 	return NULL;
   1081 }
   1082 
   1083 /* just like sprintf(buf, "%d") except that it works from the end */
   1084 static char *
   1085 number(char *ep, int n)
   1086 {
   1087 
   1088 	*--ep = 0;
   1089 	while (n >= 10) {
   1090 		*--ep = (n % 10) + '0';
   1091 		n /= 10;
   1092 	}
   1093 	*--ep = n + '0';
   1094 	return ep;
   1095 }
   1096 
   1097 /*
   1098  * Expand the size of the cd_devs array if necessary.
   1099  */
   1100 static void
   1101 config_makeroom(int n, struct cfdriver *cd)
   1102 {
   1103 	int old, new;
   1104 	device_t *nsp;
   1105 
   1106 	if (n < cd->cd_ndevs)
   1107 		return;
   1108 
   1109 	/*
   1110 	 * Need to expand the array.
   1111 	 */
   1112 	old = cd->cd_ndevs;
   1113 	if (old == 0)
   1114 		new = 4;
   1115 	else
   1116 		new = old * 2;
   1117 	while (new <= n)
   1118 		new *= 2;
   1119 	cd->cd_ndevs = new;
   1120 	nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP);
   1121 	if (nsp == NULL)
   1122 		panic("config_attach: %sing dev array",
   1123 		    old != 0 ? "expand" : "creat");
   1124 	memset(nsp + old, 0, sizeof(device_t [new - old]));
   1125 	if (old != 0) {
   1126 		memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
   1127 		kmem_free(cd->cd_devs, sizeof(device_t [old]));
   1128 	}
   1129 	cd->cd_devs = nsp;
   1130 }
   1131 
   1132 static void
   1133 config_devlink(device_t dev)
   1134 {
   1135 	struct cfdriver *cd = dev->dv_cfdriver;
   1136 
   1137 	/* put this device in the devices array */
   1138 	config_makeroom(dev->dv_unit, cd);
   1139 	if (cd->cd_devs[dev->dv_unit])
   1140 		panic("config_attach: duplicate %s", device_xname(dev));
   1141 	cd->cd_devs[dev->dv_unit] = dev;
   1142 
   1143 	/* It is safe to add a device to the tail of the list while
   1144 	 * readers are in the list, but not while a writer is in
   1145 	 * the list.  Wait for any writer to complete.
   1146 	 */
   1147 	mutex_enter(&alldevs_mtx);
   1148 	while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
   1149 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1150 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
   1151 	cv_signal(&alldevs_cv);
   1152 	mutex_exit(&alldevs_mtx);
   1153 }
   1154 
   1155 static void
   1156 config_devunlink(device_t dev)
   1157 {
   1158 	struct cfdriver *cd = dev->dv_cfdriver;
   1159 	int i;
   1160 
   1161 	/* Unlink from device list. */
   1162 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1163 
   1164 	/* Remove from cfdriver's array. */
   1165 	cd->cd_devs[dev->dv_unit] = NULL;
   1166 
   1167 	/*
   1168 	 * If the device now has no units in use, deallocate its softc array.
   1169 	 */
   1170 	for (i = 0; i < cd->cd_ndevs; i++) {
   1171 		if (cd->cd_devs[i] != NULL)
   1172 			return;
   1173 	}
   1174 	/* nothing found; deallocate */
   1175 	kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
   1176 	cd->cd_devs = NULL;
   1177 	cd->cd_ndevs = 0;
   1178 }
   1179 
   1180 static device_t
   1181 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1182 {
   1183 	struct cfdriver *cd;
   1184 	struct cfattach *ca;
   1185 	size_t lname, lunit;
   1186 	const char *xunit;
   1187 	int myunit;
   1188 	char num[10];
   1189 	device_t dev;
   1190 	void *dev_private;
   1191 	const struct cfiattrdata *ia;
   1192 	device_lock_t dvl;
   1193 
   1194 	cd = config_cfdriver_lookup(cf->cf_name);
   1195 	if (cd == NULL)
   1196 		return NULL;
   1197 
   1198 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1199 	if (ca == NULL)
   1200 		return NULL;
   1201 
   1202 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
   1203 	    ca->ca_devsize < sizeof(struct device))
   1204 		panic("config_devalloc: %s", cf->cf_atname);
   1205 
   1206 #ifndef __BROKEN_CONFIG_UNIT_USAGE
   1207 	if (cf->cf_fstate == FSTATE_STAR) {
   1208 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
   1209 			if (cd->cd_devs[myunit] == NULL)
   1210 				break;
   1211 		/*
   1212 		 * myunit is now the unit of the first NULL device pointer,
   1213 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1214 		 */
   1215 	} else {
   1216 		myunit = cf->cf_unit;
   1217 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
   1218 			return NULL;
   1219 	}
   1220 #else
   1221 	myunit = cf->cf_unit;
   1222 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
   1223 
   1224 	/* compute length of name and decimal expansion of unit number */
   1225 	lname = strlen(cd->cd_name);
   1226 	xunit = number(&num[sizeof(num)], myunit);
   1227 	lunit = &num[sizeof(num)] - xunit;
   1228 	if (lname + lunit > sizeof(dev->dv_xname))
   1229 		panic("config_devalloc: device name too long");
   1230 
   1231 	/* get memory for all device vars */
   1232 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
   1233 	if (ca->ca_devsize > 0) {
   1234 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1235 		if (dev_private == NULL)
   1236 			panic("config_devalloc: memory allocation for device softc failed");
   1237 	} else {
   1238 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1239 		dev_private = NULL;
   1240 	}
   1241 
   1242 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1243 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1244 	} else {
   1245 		dev = dev_private;
   1246 	}
   1247 	if (dev == NULL)
   1248 		panic("config_devalloc: memory allocation for device_t failed");
   1249 
   1250 	dvl = device_getlock(dev);
   1251 
   1252 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1253 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1254 
   1255 	dev->dv_class = cd->cd_class;
   1256 	dev->dv_cfdata = cf;
   1257 	dev->dv_cfdriver = cd;
   1258 	dev->dv_cfattach = ca;
   1259 	dev->dv_unit = myunit;
   1260 	dev->dv_activity_count = 0;
   1261 	dev->dv_activity_handlers = NULL;
   1262 	dev->dv_private = dev_private;
   1263 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1264 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1265 	dev->dv_parent = parent;
   1266 	if (parent != NULL)
   1267 		dev->dv_depth = parent->dv_depth + 1;
   1268 	else
   1269 		dev->dv_depth = 0;
   1270 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
   1271 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
   1272 	if (locs) {
   1273 		KASSERT(parent); /* no locators at root */
   1274 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
   1275 				    parent->dv_cfdriver);
   1276 		dev->dv_locators =
   1277 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
   1278 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
   1279 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
   1280 	}
   1281 	dev->dv_properties = prop_dictionary_create();
   1282 	KASSERT(dev->dv_properties != NULL);
   1283 
   1284 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
   1285 	    "device-driver", dev->dv_cfdriver->cd_name);
   1286 	prop_dictionary_set_uint16(dev->dv_properties,
   1287 	    "device-unit", dev->dv_unit);
   1288 
   1289 	return dev;
   1290 }
   1291 
   1292 static void
   1293 config_devdealloc(device_t dev)
   1294 {
   1295 	device_lock_t dvl = device_getlock(dev);
   1296 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
   1297 
   1298 	cv_destroy(&dvl->dvl_cv);
   1299 	mutex_destroy(&dvl->dvl_mtx);
   1300 
   1301 	KASSERT(dev->dv_properties != NULL);
   1302 	prop_object_release(dev->dv_properties);
   1303 
   1304 	if (dev->dv_activity_handlers)
   1305 		panic("config_devdealloc with registered handlers");
   1306 
   1307 	if (dev->dv_locators) {
   1308 		size_t amount = *--dev->dv_locators;
   1309 		kmem_free(dev->dv_locators, amount);
   1310 	}
   1311 
   1312 	if (dev->dv_cfattach->ca_devsize > 0)
   1313 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1314 	if (priv)
   1315 		kmem_free(dev, sizeof(*dev));
   1316 }
   1317 
   1318 /*
   1319  * Attach a found device.
   1320  */
   1321 device_t
   1322 config_attach_loc(device_t parent, cfdata_t cf,
   1323 	const int *locs, void *aux, cfprint_t print)
   1324 {
   1325 	device_t dev;
   1326 	struct cftable *ct;
   1327 	const char *drvname;
   1328 
   1329 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1330 	if (splash_progress_state)
   1331 		splash_progress_update(splash_progress_state);
   1332 #endif
   1333 
   1334 	dev = config_devalloc(parent, cf, locs);
   1335 	if (!dev)
   1336 		panic("config_attach: allocation of device softc failed");
   1337 
   1338 	/* XXX redundant - see below? */
   1339 	if (cf->cf_fstate != FSTATE_STAR) {
   1340 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1341 		cf->cf_fstate = FSTATE_FOUND;
   1342 	}
   1343 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1344 	  else
   1345 		cf->cf_unit++;
   1346 #endif
   1347 
   1348 	config_devlink(dev);
   1349 
   1350 	if (config_do_twiddle && cold)
   1351 		twiddle();
   1352 	else
   1353 		aprint_naive("Found ");
   1354 	/*
   1355 	 * We want the next two printfs for normal, verbose, and quiet,
   1356 	 * but not silent (in which case, we're twiddling, instead).
   1357 	 */
   1358 	if (parent == ROOT) {
   1359 		aprint_naive("%s (root)", device_xname(dev));
   1360 		aprint_normal("%s (root)", device_xname(dev));
   1361 	} else {
   1362 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
   1363 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
   1364 		if (print)
   1365 			(void) (*print)(aux, NULL);
   1366 	}
   1367 
   1368 	/*
   1369 	 * Before attaching, clobber any unfound devices that are
   1370 	 * otherwise identical.
   1371 	 * XXX code above is redundant?
   1372 	 */
   1373 	drvname = dev->dv_cfdriver->cd_name;
   1374 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1375 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1376 			if (STREQ(cf->cf_name, drvname) &&
   1377 			    cf->cf_unit == dev->dv_unit) {
   1378 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1379 					cf->cf_fstate = FSTATE_FOUND;
   1380 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1381 				/*
   1382 				 * Bump the unit number on all starred cfdata
   1383 				 * entries for this device.
   1384 				 */
   1385 				if (cf->cf_fstate == FSTATE_STAR)
   1386 					cf->cf_unit++;
   1387 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1388 			}
   1389 		}
   1390 	}
   1391 #ifdef __HAVE_DEVICE_REGISTER
   1392 	device_register(dev, aux);
   1393 #endif
   1394 
   1395 	/* Let userland know */
   1396 	devmon_report_device(dev, true);
   1397 
   1398 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1399 	if (splash_progress_state)
   1400 		splash_progress_update(splash_progress_state);
   1401 #endif
   1402 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1403 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1404 	if (splash_progress_state)
   1405 		splash_progress_update(splash_progress_state);
   1406 #endif
   1407 
   1408 	if (!device_pmf_is_registered(dev))
   1409 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
   1410 
   1411 	config_process_deferred(&deferred_config_queue, dev);
   1412 	return dev;
   1413 }
   1414 
   1415 device_t
   1416 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1417 {
   1418 
   1419 	return config_attach_loc(parent, cf, NULL, aux, print);
   1420 }
   1421 
   1422 /*
   1423  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1424  * way are silently inserted into the device tree, and their children
   1425  * attached.
   1426  *
   1427  * Note that because pseudo-devices are attached silently, any information
   1428  * the attach routine wishes to print should be prefixed with the device
   1429  * name by the attach routine.
   1430  */
   1431 device_t
   1432 config_attach_pseudo(cfdata_t cf)
   1433 {
   1434 	device_t dev;
   1435 
   1436 	dev = config_devalloc(ROOT, cf, NULL);
   1437 	if (!dev)
   1438 		return NULL;
   1439 
   1440 	/* XXX mark busy in cfdata */
   1441 
   1442 	if (cf->cf_fstate != FSTATE_STAR) {
   1443 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1444 		cf->cf_fstate = FSTATE_FOUND;
   1445 	}
   1446 
   1447 	config_devlink(dev);
   1448 
   1449 #if 0	/* XXXJRT not yet */
   1450 #ifdef __HAVE_DEVICE_REGISTER
   1451 	device_register(dev, NULL);	/* like a root node */
   1452 #endif
   1453 #endif
   1454 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1455 	config_process_deferred(&deferred_config_queue, dev);
   1456 	return dev;
   1457 }
   1458 
   1459 /*
   1460  * Detach a device.  Optionally forced (e.g. because of hardware
   1461  * removal) and quiet.  Returns zero if successful, non-zero
   1462  * (an error code) otherwise.
   1463  *
   1464  * Note that this code wants to be run from a process context, so
   1465  * that the detach can sleep to allow processes which have a device
   1466  * open to run and unwind their stacks.
   1467  */
   1468 int
   1469 config_detach(device_t dev, int flags)
   1470 {
   1471 	struct cftable *ct;
   1472 	cfdata_t cf;
   1473 	const struct cfattach *ca;
   1474 	struct cfdriver *cd;
   1475 #ifdef DIAGNOSTIC
   1476 	device_t d;
   1477 #endif
   1478 	int rv = 0;
   1479 
   1480 #ifdef DIAGNOSTIC
   1481 	cf = dev->dv_cfdata;
   1482 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
   1483 	    cf->cf_fstate != FSTATE_STAR)
   1484 		panic("config_detach: %s: bad device fstate %d",
   1485 		    device_xname(dev), cf ? cf->cf_fstate : -1);
   1486 #endif
   1487 	cd = dev->dv_cfdriver;
   1488 	KASSERT(cd != NULL);
   1489 
   1490 	ca = dev->dv_cfattach;
   1491 	KASSERT(ca != NULL);
   1492 
   1493 	KASSERT(curlwp != NULL);
   1494 	mutex_enter(&alldevs_mtx);
   1495 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   1496 		;
   1497 	else while (alldevs_nread != 0 ||
   1498 	       (alldevs_nwrite != 0 && alldevs_writer != curlwp))
   1499 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1500 	if (alldevs_nwrite++ == 0)
   1501 		alldevs_writer = curlwp;
   1502 	mutex_exit(&alldevs_mtx);
   1503 
   1504 	/*
   1505 	 * Ensure the device is deactivated.  If the device doesn't
   1506 	 * have an activation entry point, we allow DVF_ACTIVE to
   1507 	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
   1508 	 * device is busy, and the detach fails.
   1509 	 */
   1510 	if (!detachall &&
   1511 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1512 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1513 		rv = EBUSY;	/* XXX EOPNOTSUPP? */
   1514 	} else if ((rv = config_deactivate(dev)) == EOPNOTSUPP)
   1515 		rv = 0;	/* Do not treat EOPNOTSUPP as an error */
   1516 
   1517 	/*
   1518 	 * Try to detach the device.  If that's not possible, then
   1519 	 * we either panic() (for the forced but failed case), or
   1520 	 * return an error.
   1521 	 */
   1522 	if (rv == 0) {
   1523 		if (ca->ca_detach != NULL)
   1524 			rv = (*ca->ca_detach)(dev, flags);
   1525 		else
   1526 			rv = EOPNOTSUPP;
   1527 	}
   1528 	if (rv != 0) {
   1529 		if ((flags & DETACH_FORCE) == 0)
   1530 			goto out;
   1531 		else
   1532 			panic("config_detach: forced detach of %s failed (%d)",
   1533 			    device_xname(dev), rv);
   1534 	}
   1535 
   1536 	dev->dv_flags &= ~DVF_ACTIVE;
   1537 
   1538 	/*
   1539 	 * The device has now been successfully detached.
   1540 	 */
   1541 
   1542 	/* Let userland know */
   1543 	devmon_report_device(dev, false);
   1544 
   1545 #ifdef DIAGNOSTIC
   1546 	/*
   1547 	 * Sanity: If you're successfully detached, you should have no
   1548 	 * children.  (Note that because children must be attached
   1549 	 * after parents, we only need to search the latter part of
   1550 	 * the list.)
   1551 	 */
   1552 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1553 	    d = TAILQ_NEXT(d, dv_list)) {
   1554 		if (d->dv_parent == dev) {
   1555 			printf("config_detach: detached device %s"
   1556 			    " has children %s\n", device_xname(dev), device_xname(d));
   1557 			panic("config_detach");
   1558 		}
   1559 	}
   1560 #endif
   1561 
   1562 	/* notify the parent that the child is gone */
   1563 	if (dev->dv_parent) {
   1564 		device_t p = dev->dv_parent;
   1565 		if (p->dv_cfattach->ca_childdetached)
   1566 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1567 	}
   1568 
   1569 	/*
   1570 	 * Mark cfdata to show that the unit can be reused, if possible.
   1571 	 */
   1572 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1573 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1574 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1575 				if (cf->cf_fstate == FSTATE_FOUND &&
   1576 				    cf->cf_unit == dev->dv_unit)
   1577 					cf->cf_fstate = FSTATE_NOTFOUND;
   1578 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1579 				/*
   1580 				 * Note that we can only re-use a starred
   1581 				 * unit number if the unit being detached
   1582 				 * had the last assigned unit number.
   1583 				 */
   1584 				if (cf->cf_fstate == FSTATE_STAR &&
   1585 				    cf->cf_unit == dev->dv_unit + 1)
   1586 					cf->cf_unit--;
   1587 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1588 			}
   1589 		}
   1590 	}
   1591 
   1592 	config_devunlink(dev);
   1593 
   1594 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1595 		aprint_normal_dev(dev, "detached\n");
   1596 
   1597 	config_devdealloc(dev);
   1598 
   1599 out:
   1600 	mutex_enter(&alldevs_mtx);
   1601 	if (--alldevs_nwrite == 0)
   1602 		alldevs_writer = NULL;
   1603 	cv_signal(&alldevs_cv);
   1604 	mutex_exit(&alldevs_mtx);
   1605 	return rv;
   1606 }
   1607 
   1608 int
   1609 config_detach_children(device_t parent, int flags)
   1610 {
   1611 	device_t dv;
   1612 	deviter_t di;
   1613 	int error = 0;
   1614 
   1615 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1616 	     dv = deviter_next(&di)) {
   1617 		if (device_parent(dv) != parent)
   1618 			continue;
   1619 		if ((error = config_detach(dv, flags)) != 0)
   1620 			break;
   1621 	}
   1622 	deviter_release(&di);
   1623 	return error;
   1624 }
   1625 
   1626 int
   1627 config_activate(device_t dev)
   1628 {
   1629 	const struct cfattach *ca = dev->dv_cfattach;
   1630 	int rv = 0, oflags = dev->dv_flags;
   1631 
   1632 	if (ca->ca_activate == NULL)
   1633 		return EOPNOTSUPP;
   1634 
   1635 	if ((dev->dv_flags & DVF_ACTIVE) == 0) {
   1636 		dev->dv_flags |= DVF_ACTIVE;
   1637 		rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
   1638 		if (rv)
   1639 			dev->dv_flags = oflags;
   1640 	}
   1641 	return rv;
   1642 }
   1643 
   1644 int
   1645 config_deactivate(device_t dev)
   1646 {
   1647 	const struct cfattach *ca = dev->dv_cfattach;
   1648 	int rv = 0, oflags = dev->dv_flags;
   1649 
   1650 	if (ca->ca_activate == NULL)
   1651 		return EOPNOTSUPP;
   1652 
   1653 	if (dev->dv_flags & DVF_ACTIVE) {
   1654 		dev->dv_flags &= ~DVF_ACTIVE;
   1655 		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
   1656 		if (rv)
   1657 			dev->dv_flags = oflags;
   1658 	}
   1659 	return rv;
   1660 }
   1661 
   1662 /*
   1663  * Defer the configuration of the specified device until all
   1664  * of its parent's devices have been attached.
   1665  */
   1666 void
   1667 config_defer(device_t dev, void (*func)(device_t))
   1668 {
   1669 	struct deferred_config *dc;
   1670 
   1671 	if (dev->dv_parent == NULL)
   1672 		panic("config_defer: can't defer config of a root device");
   1673 
   1674 #ifdef DIAGNOSTIC
   1675 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
   1676 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1677 		if (dc->dc_dev == dev)
   1678 			panic("config_defer: deferred twice");
   1679 	}
   1680 #endif
   1681 
   1682 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1683 	if (dc == NULL)
   1684 		panic("config_defer: unable to allocate callback");
   1685 
   1686 	dc->dc_dev = dev;
   1687 	dc->dc_func = func;
   1688 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1689 	config_pending_incr();
   1690 }
   1691 
   1692 /*
   1693  * Defer some autoconfiguration for a device until after interrupts
   1694  * are enabled.
   1695  */
   1696 void
   1697 config_interrupts(device_t dev, void (*func)(device_t))
   1698 {
   1699 	struct deferred_config *dc;
   1700 
   1701 	/*
   1702 	 * If interrupts are enabled, callback now.
   1703 	 */
   1704 	if (cold == 0) {
   1705 		(*func)(dev);
   1706 		return;
   1707 	}
   1708 
   1709 #ifdef DIAGNOSTIC
   1710 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
   1711 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1712 		if (dc->dc_dev == dev)
   1713 			panic("config_interrupts: deferred twice");
   1714 	}
   1715 #endif
   1716 
   1717 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1718 	if (dc == NULL)
   1719 		panic("config_interrupts: unable to allocate callback");
   1720 
   1721 	dc->dc_dev = dev;
   1722 	dc->dc_func = func;
   1723 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   1724 	config_pending_incr();
   1725 }
   1726 
   1727 /*
   1728  * Process a deferred configuration queue.
   1729  */
   1730 static void
   1731 config_process_deferred(struct deferred_config_head *queue,
   1732     device_t parent)
   1733 {
   1734 	struct deferred_config *dc, *ndc;
   1735 
   1736 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   1737 		ndc = TAILQ_NEXT(dc, dc_queue);
   1738 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   1739 			TAILQ_REMOVE(queue, dc, dc_queue);
   1740 			(*dc->dc_func)(dc->dc_dev);
   1741 			kmem_free(dc, sizeof(*dc));
   1742 			config_pending_decr();
   1743 		}
   1744 	}
   1745 }
   1746 
   1747 /*
   1748  * Manipulate the config_pending semaphore.
   1749  */
   1750 void
   1751 config_pending_incr(void)
   1752 {
   1753 
   1754 	mutex_enter(&config_misc_lock);
   1755 	config_pending++;
   1756 	mutex_exit(&config_misc_lock);
   1757 }
   1758 
   1759 void
   1760 config_pending_decr(void)
   1761 {
   1762 
   1763 #ifdef DIAGNOSTIC
   1764 	if (config_pending == 0)
   1765 		panic("config_pending_decr: config_pending == 0");
   1766 #endif
   1767 	mutex_enter(&config_misc_lock);
   1768 	config_pending--;
   1769 	if (config_pending == 0)
   1770 		cv_broadcast(&config_misc_cv);
   1771 	mutex_exit(&config_misc_lock);
   1772 }
   1773 
   1774 /*
   1775  * Register a "finalization" routine.  Finalization routines are
   1776  * called iteratively once all real devices have been found during
   1777  * autoconfiguration, for as long as any one finalizer has done
   1778  * any work.
   1779  */
   1780 int
   1781 config_finalize_register(device_t dev, int (*fn)(device_t))
   1782 {
   1783 	struct finalize_hook *f;
   1784 
   1785 	/*
   1786 	 * If finalization has already been done, invoke the
   1787 	 * callback function now.
   1788 	 */
   1789 	if (config_finalize_done) {
   1790 		while ((*fn)(dev) != 0)
   1791 			/* loop */ ;
   1792 	}
   1793 
   1794 	/* Ensure this isn't already on the list. */
   1795 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   1796 		if (f->f_func == fn && f->f_dev == dev)
   1797 			return EEXIST;
   1798 	}
   1799 
   1800 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   1801 	f->f_func = fn;
   1802 	f->f_dev = dev;
   1803 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   1804 
   1805 	return 0;
   1806 }
   1807 
   1808 void
   1809 config_finalize(void)
   1810 {
   1811 	struct finalize_hook *f;
   1812 	struct pdevinit *pdev;
   1813 	extern struct pdevinit pdevinit[];
   1814 	int errcnt, rv;
   1815 
   1816 	/*
   1817 	 * Now that device driver threads have been created, wait for
   1818 	 * them to finish any deferred autoconfiguration.
   1819 	 */
   1820 	mutex_enter(&config_misc_lock);
   1821 	while (config_pending != 0)
   1822 		cv_wait(&config_misc_cv, &config_misc_lock);
   1823 	mutex_exit(&config_misc_lock);
   1824 
   1825 	KERNEL_LOCK(1, NULL);
   1826 
   1827 	/* Attach pseudo-devices. */
   1828 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   1829 		(*pdev->pdev_attach)(pdev->pdev_count);
   1830 
   1831 	/* Run the hooks until none of them does any work. */
   1832 	do {
   1833 		rv = 0;
   1834 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   1835 			rv |= (*f->f_func)(f->f_dev);
   1836 	} while (rv != 0);
   1837 
   1838 	config_finalize_done = 1;
   1839 
   1840 	/* Now free all the hooks. */
   1841 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   1842 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   1843 		kmem_free(f, sizeof(*f));
   1844 	}
   1845 
   1846 	KERNEL_UNLOCK_ONE(NULL);
   1847 
   1848 	errcnt = aprint_get_error_count();
   1849 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   1850 	    (boothowto & AB_VERBOSE) == 0) {
   1851 		mutex_enter(&config_misc_lock);
   1852 		if (config_do_twiddle) {
   1853 			config_do_twiddle = 0;
   1854 			printf_nolog(" done.\n");
   1855 		}
   1856 		mutex_exit(&config_misc_lock);
   1857 		if (errcnt != 0) {
   1858 			printf("WARNING: %d error%s while detecting hardware; "
   1859 			    "check system log.\n", errcnt,
   1860 			    errcnt == 1 ? "" : "s");
   1861 		}
   1862 	}
   1863 }
   1864 
   1865 void
   1866 config_twiddle_fn(void *cookie)
   1867 {
   1868 
   1869 	mutex_enter(&config_misc_lock);
   1870 	if (config_do_twiddle) {
   1871 		twiddle();
   1872 		callout_schedule(&config_twiddle_ch, mstohz(100));
   1873 	}
   1874 	mutex_exit(&config_misc_lock);
   1875 }
   1876 
   1877 /*
   1878  * device_lookup:
   1879  *
   1880  *	Look up a device instance for a given driver.
   1881  */
   1882 device_t
   1883 device_lookup(cfdriver_t cd, int unit)
   1884 {
   1885 
   1886 	if (unit < 0 || unit >= cd->cd_ndevs)
   1887 		return NULL;
   1888 
   1889 	return cd->cd_devs[unit];
   1890 }
   1891 
   1892 /*
   1893  * device_lookup:
   1894  *
   1895  *	Look up a device instance for a given driver.
   1896  */
   1897 void *
   1898 device_lookup_private(cfdriver_t cd, int unit)
   1899 {
   1900 	device_t dv;
   1901 
   1902 	if (unit < 0 || unit >= cd->cd_ndevs)
   1903 		return NULL;
   1904 
   1905 	if ((dv = cd->cd_devs[unit]) == NULL)
   1906 		return NULL;
   1907 
   1908 	return dv->dv_private;
   1909 }
   1910 
   1911 /*
   1912  * Accessor functions for the device_t type.
   1913  */
   1914 devclass_t
   1915 device_class(device_t dev)
   1916 {
   1917 
   1918 	return dev->dv_class;
   1919 }
   1920 
   1921 cfdata_t
   1922 device_cfdata(device_t dev)
   1923 {
   1924 
   1925 	return dev->dv_cfdata;
   1926 }
   1927 
   1928 cfdriver_t
   1929 device_cfdriver(device_t dev)
   1930 {
   1931 
   1932 	return dev->dv_cfdriver;
   1933 }
   1934 
   1935 cfattach_t
   1936 device_cfattach(device_t dev)
   1937 {
   1938 
   1939 	return dev->dv_cfattach;
   1940 }
   1941 
   1942 int
   1943 device_unit(device_t dev)
   1944 {
   1945 
   1946 	return dev->dv_unit;
   1947 }
   1948 
   1949 const char *
   1950 device_xname(device_t dev)
   1951 {
   1952 
   1953 	return dev->dv_xname;
   1954 }
   1955 
   1956 device_t
   1957 device_parent(device_t dev)
   1958 {
   1959 
   1960 	return dev->dv_parent;
   1961 }
   1962 
   1963 bool
   1964 device_is_active(device_t dev)
   1965 {
   1966 	int active_flags;
   1967 
   1968 	active_flags = DVF_ACTIVE;
   1969 	active_flags |= DVF_CLASS_SUSPENDED;
   1970 	active_flags |= DVF_DRIVER_SUSPENDED;
   1971 	active_flags |= DVF_BUS_SUSPENDED;
   1972 
   1973 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
   1974 }
   1975 
   1976 bool
   1977 device_is_enabled(device_t dev)
   1978 {
   1979 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
   1980 }
   1981 
   1982 bool
   1983 device_has_power(device_t dev)
   1984 {
   1985 	int active_flags;
   1986 
   1987 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
   1988 
   1989 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
   1990 }
   1991 
   1992 int
   1993 device_locator(device_t dev, u_int locnum)
   1994 {
   1995 
   1996 	KASSERT(dev->dv_locators != NULL);
   1997 	return dev->dv_locators[locnum];
   1998 }
   1999 
   2000 void *
   2001 device_private(device_t dev)
   2002 {
   2003 
   2004 	/*
   2005 	 * The reason why device_private(NULL) is allowed is to simplify the
   2006 	 * work of a lot of userspace request handlers (i.e., c/bdev
   2007 	 * handlers) which grab cfdriver_t->cd_units[n].
   2008 	 * It avoids having them test for it to be NULL and only then calling
   2009 	 * device_private.
   2010 	 */
   2011 	return dev == NULL ? NULL : dev->dv_private;
   2012 }
   2013 
   2014 prop_dictionary_t
   2015 device_properties(device_t dev)
   2016 {
   2017 
   2018 	return dev->dv_properties;
   2019 }
   2020 
   2021 /*
   2022  * device_is_a:
   2023  *
   2024  *	Returns true if the device is an instance of the specified
   2025  *	driver.
   2026  */
   2027 bool
   2028 device_is_a(device_t dev, const char *dname)
   2029 {
   2030 
   2031 	return strcmp(dev->dv_cfdriver->cd_name, dname) == 0;
   2032 }
   2033 
   2034 /*
   2035  * device_find_by_xname:
   2036  *
   2037  *	Returns the device of the given name or NULL if it doesn't exist.
   2038  */
   2039 device_t
   2040 device_find_by_xname(const char *name)
   2041 {
   2042 	device_t dv;
   2043 	deviter_t di;
   2044 
   2045 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2046 		if (strcmp(device_xname(dv), name) == 0)
   2047 			break;
   2048 	}
   2049 	deviter_release(&di);
   2050 
   2051 	return dv;
   2052 }
   2053 
   2054 /*
   2055  * device_find_by_driver_unit:
   2056  *
   2057  *	Returns the device of the given driver name and unit or
   2058  *	NULL if it doesn't exist.
   2059  */
   2060 device_t
   2061 device_find_by_driver_unit(const char *name, int unit)
   2062 {
   2063 	struct cfdriver *cd;
   2064 
   2065 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2066 		return NULL;
   2067 	return device_lookup(cd, unit);
   2068 }
   2069 
   2070 /*
   2071  * Power management related functions.
   2072  */
   2073 
   2074 bool
   2075 device_pmf_is_registered(device_t dev)
   2076 {
   2077 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2078 }
   2079 
   2080 bool
   2081 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
   2082 {
   2083 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2084 		return true;
   2085 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2086 		return false;
   2087 	if (*dev->dv_driver_suspend != NULL &&
   2088 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
   2089 		return false;
   2090 
   2091 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2092 	return true;
   2093 }
   2094 
   2095 bool
   2096 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
   2097 {
   2098 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2099 		return true;
   2100 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2101 		return false;
   2102 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
   2103 		return false;
   2104 	if (*dev->dv_driver_resume != NULL &&
   2105 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
   2106 		return false;
   2107 
   2108 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2109 	return true;
   2110 }
   2111 
   2112 bool
   2113 device_pmf_driver_shutdown(device_t dev, int how)
   2114 {
   2115 
   2116 	if (*dev->dv_driver_shutdown != NULL &&
   2117 	    !(*dev->dv_driver_shutdown)(dev, how))
   2118 		return false;
   2119 	return true;
   2120 }
   2121 
   2122 bool
   2123 device_pmf_driver_register(device_t dev,
   2124     bool (*suspend)(device_t PMF_FN_PROTO),
   2125     bool (*resume)(device_t PMF_FN_PROTO),
   2126     bool (*shutdown)(device_t, int))
   2127 {
   2128 	dev->dv_driver_suspend = suspend;
   2129 	dev->dv_driver_resume = resume;
   2130 	dev->dv_driver_shutdown = shutdown;
   2131 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2132 	return true;
   2133 }
   2134 
   2135 static const char *
   2136 curlwp_name(void)
   2137 {
   2138 	if (curlwp->l_name != NULL)
   2139 		return curlwp->l_name;
   2140 	else
   2141 		return curlwp->l_proc->p_comm;
   2142 }
   2143 
   2144 void
   2145 device_pmf_driver_deregister(device_t dev)
   2146 {
   2147 	device_lock_t dvl = device_getlock(dev);
   2148 
   2149 	dev->dv_driver_suspend = NULL;
   2150 	dev->dv_driver_resume = NULL;
   2151 
   2152 	mutex_enter(&dvl->dvl_mtx);
   2153 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2154 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2155 		/* Wake a thread that waits for the lock.  That
   2156 		 * thread will fail to acquire the lock, and then
   2157 		 * it will wake the next thread that waits for the
   2158 		 * lock, or else it will wake us.
   2159 		 */
   2160 		cv_signal(&dvl->dvl_cv);
   2161 		pmflock_debug(dev, __func__, __LINE__);
   2162 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2163 		pmflock_debug(dev, __func__, __LINE__);
   2164 	}
   2165 	mutex_exit(&dvl->dvl_mtx);
   2166 }
   2167 
   2168 bool
   2169 device_pmf_driver_child_register(device_t dev)
   2170 {
   2171 	device_t parent = device_parent(dev);
   2172 
   2173 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2174 		return true;
   2175 	return (*parent->dv_driver_child_register)(dev);
   2176 }
   2177 
   2178 void
   2179 device_pmf_driver_set_child_register(device_t dev,
   2180     bool (*child_register)(device_t))
   2181 {
   2182 	dev->dv_driver_child_register = child_register;
   2183 }
   2184 
   2185 void
   2186 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
   2187 {
   2188 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2189 	if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
   2190 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
   2191 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2192 }
   2193 
   2194 bool
   2195 device_is_self_suspended(device_t dev)
   2196 {
   2197 	return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
   2198 }
   2199 
   2200 void
   2201 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
   2202 {
   2203 	bool self = (flags & PMF_F_SELF) != 0;
   2204 
   2205 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2206 
   2207 	if (!self)
   2208 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
   2209 	else if (device_is_active(dev))
   2210 		dev->dv_flags |= DVF_SELF_SUSPENDED;
   2211 
   2212 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2213 }
   2214 
   2215 static void
   2216 pmflock_debug(device_t dev, const char *func, int line)
   2217 {
   2218 	device_lock_t dvl = device_getlock(dev);
   2219 
   2220 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
   2221 	    func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
   2222 	    dev->dv_flags);
   2223 }
   2224 
   2225 static void
   2226 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
   2227 {
   2228 	device_lock_t dvl = device_getlock(dev);
   2229 
   2230 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x "
   2231 	    "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
   2232 	    dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags PMF_FN_CALL);
   2233 }
   2234 
   2235 static bool
   2236 device_pmf_lock1(device_t dev PMF_FN_ARGS)
   2237 {
   2238 	device_lock_t dvl = device_getlock(dev);
   2239 
   2240 	while (device_pmf_is_registered(dev) &&
   2241 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2242 		dvl->dvl_nwait++;
   2243 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2244 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2245 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2246 		dvl->dvl_nwait--;
   2247 	}
   2248 	if (!device_pmf_is_registered(dev)) {
   2249 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2250 		/* We could not acquire the lock, but some other thread may
   2251 		 * wait for it, also.  Wake that thread.
   2252 		 */
   2253 		cv_signal(&dvl->dvl_cv);
   2254 		return false;
   2255 	}
   2256 	dvl->dvl_nlock++;
   2257 	dvl->dvl_holder = curlwp;
   2258 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2259 	return true;
   2260 }
   2261 
   2262 bool
   2263 device_pmf_lock(device_t dev PMF_FN_ARGS)
   2264 {
   2265 	bool rc;
   2266 	device_lock_t dvl = device_getlock(dev);
   2267 
   2268 	mutex_enter(&dvl->dvl_mtx);
   2269 	rc = device_pmf_lock1(dev PMF_FN_CALL);
   2270 	mutex_exit(&dvl->dvl_mtx);
   2271 
   2272 	return rc;
   2273 }
   2274 
   2275 void
   2276 device_pmf_unlock(device_t dev PMF_FN_ARGS)
   2277 {
   2278 	device_lock_t dvl = device_getlock(dev);
   2279 
   2280 	KASSERT(dvl->dvl_nlock > 0);
   2281 	mutex_enter(&dvl->dvl_mtx);
   2282 	if (--dvl->dvl_nlock == 0)
   2283 		dvl->dvl_holder = NULL;
   2284 	cv_signal(&dvl->dvl_cv);
   2285 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2286 	mutex_exit(&dvl->dvl_mtx);
   2287 }
   2288 
   2289 device_lock_t
   2290 device_getlock(device_t dev)
   2291 {
   2292 	return &dev->dv_lock;
   2293 }
   2294 
   2295 void *
   2296 device_pmf_bus_private(device_t dev)
   2297 {
   2298 	return dev->dv_bus_private;
   2299 }
   2300 
   2301 bool
   2302 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
   2303 {
   2304 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2305 		return true;
   2306 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2307 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2308 		return false;
   2309 	if (*dev->dv_bus_suspend != NULL &&
   2310 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
   2311 		return false;
   2312 
   2313 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2314 	return true;
   2315 }
   2316 
   2317 bool
   2318 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
   2319 {
   2320 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2321 		return true;
   2322 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
   2323 		return false;
   2324 	if (*dev->dv_bus_resume != NULL &&
   2325 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
   2326 		return false;
   2327 
   2328 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2329 	return true;
   2330 }
   2331 
   2332 bool
   2333 device_pmf_bus_shutdown(device_t dev, int how)
   2334 {
   2335 
   2336 	if (*dev->dv_bus_shutdown != NULL &&
   2337 	    !(*dev->dv_bus_shutdown)(dev, how))
   2338 		return false;
   2339 	return true;
   2340 }
   2341 
   2342 void
   2343 device_pmf_bus_register(device_t dev, void *priv,
   2344     bool (*suspend)(device_t PMF_FN_PROTO),
   2345     bool (*resume)(device_t PMF_FN_PROTO),
   2346     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2347 {
   2348 	dev->dv_bus_private = priv;
   2349 	dev->dv_bus_resume = resume;
   2350 	dev->dv_bus_suspend = suspend;
   2351 	dev->dv_bus_shutdown = shutdown;
   2352 	dev->dv_bus_deregister = deregister;
   2353 }
   2354 
   2355 void
   2356 device_pmf_bus_deregister(device_t dev)
   2357 {
   2358 	if (dev->dv_bus_deregister == NULL)
   2359 		return;
   2360 	(*dev->dv_bus_deregister)(dev);
   2361 	dev->dv_bus_private = NULL;
   2362 	dev->dv_bus_suspend = NULL;
   2363 	dev->dv_bus_resume = NULL;
   2364 	dev->dv_bus_deregister = NULL;
   2365 }
   2366 
   2367 void *
   2368 device_pmf_class_private(device_t dev)
   2369 {
   2370 	return dev->dv_class_private;
   2371 }
   2372 
   2373 bool
   2374 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
   2375 {
   2376 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2377 		return true;
   2378 	if (*dev->dv_class_suspend != NULL &&
   2379 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
   2380 		return false;
   2381 
   2382 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2383 	return true;
   2384 }
   2385 
   2386 bool
   2387 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
   2388 {
   2389 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2390 		return true;
   2391 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2392 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2393 		return false;
   2394 	if (*dev->dv_class_resume != NULL &&
   2395 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
   2396 		return false;
   2397 
   2398 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2399 	return true;
   2400 }
   2401 
   2402 void
   2403 device_pmf_class_register(device_t dev, void *priv,
   2404     bool (*suspend)(device_t PMF_FN_PROTO),
   2405     bool (*resume)(device_t PMF_FN_PROTO),
   2406     void (*deregister)(device_t))
   2407 {
   2408 	dev->dv_class_private = priv;
   2409 	dev->dv_class_suspend = suspend;
   2410 	dev->dv_class_resume = resume;
   2411 	dev->dv_class_deregister = deregister;
   2412 }
   2413 
   2414 void
   2415 device_pmf_class_deregister(device_t dev)
   2416 {
   2417 	if (dev->dv_class_deregister == NULL)
   2418 		return;
   2419 	(*dev->dv_class_deregister)(dev);
   2420 	dev->dv_class_private = NULL;
   2421 	dev->dv_class_suspend = NULL;
   2422 	dev->dv_class_resume = NULL;
   2423 	dev->dv_class_deregister = NULL;
   2424 }
   2425 
   2426 bool
   2427 device_active(device_t dev, devactive_t type)
   2428 {
   2429 	size_t i;
   2430 
   2431 	if (dev->dv_activity_count == 0)
   2432 		return false;
   2433 
   2434 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2435 		if (dev->dv_activity_handlers[i] == NULL)
   2436 			break;
   2437 		(*dev->dv_activity_handlers[i])(dev, type);
   2438 	}
   2439 
   2440 	return true;
   2441 }
   2442 
   2443 bool
   2444 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2445 {
   2446 	void (**new_handlers)(device_t, devactive_t);
   2447 	void (**old_handlers)(device_t, devactive_t);
   2448 	size_t i, old_size, new_size;
   2449 	int s;
   2450 
   2451 	old_handlers = dev->dv_activity_handlers;
   2452 	old_size = dev->dv_activity_count;
   2453 
   2454 	for (i = 0; i < old_size; ++i) {
   2455 		KASSERT(old_handlers[i] != handler);
   2456 		if (old_handlers[i] == NULL) {
   2457 			old_handlers[i] = handler;
   2458 			return true;
   2459 		}
   2460 	}
   2461 
   2462 	new_size = old_size + 4;
   2463 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
   2464 
   2465 	memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
   2466 	new_handlers[old_size] = handler;
   2467 	memset(new_handlers + old_size + 1, 0,
   2468 	    sizeof(int [new_size - (old_size+1)]));
   2469 
   2470 	s = splhigh();
   2471 	dev->dv_activity_count = new_size;
   2472 	dev->dv_activity_handlers = new_handlers;
   2473 	splx(s);
   2474 
   2475 	if (old_handlers != NULL)
   2476 		kmem_free(old_handlers, sizeof(void * [old_size]));
   2477 
   2478 	return true;
   2479 }
   2480 
   2481 void
   2482 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2483 {
   2484 	void (**old_handlers)(device_t, devactive_t);
   2485 	size_t i, old_size;
   2486 	int s;
   2487 
   2488 	old_handlers = dev->dv_activity_handlers;
   2489 	old_size = dev->dv_activity_count;
   2490 
   2491 	for (i = 0; i < old_size; ++i) {
   2492 		if (old_handlers[i] == handler)
   2493 			break;
   2494 		if (old_handlers[i] == NULL)
   2495 			return; /* XXX panic? */
   2496 	}
   2497 
   2498 	if (i == old_size)
   2499 		return; /* XXX panic? */
   2500 
   2501 	for (; i < old_size - 1; ++i) {
   2502 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   2503 			continue;
   2504 
   2505 		if (i == 0) {
   2506 			s = splhigh();
   2507 			dev->dv_activity_count = 0;
   2508 			dev->dv_activity_handlers = NULL;
   2509 			splx(s);
   2510 			kmem_free(old_handlers, sizeof(void *[old_size]));
   2511 		}
   2512 		return;
   2513 	}
   2514 	old_handlers[i] = NULL;
   2515 }
   2516 
   2517 /*
   2518  * Device Iteration
   2519  *
   2520  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2521  *     each device_t's in the device tree.
   2522  *
   2523  * deviter_init(di, flags): initialize the device iterator `di'
   2524  *     to "walk" the device tree.  deviter_next(di) will return
   2525  *     the first device_t in the device tree, or NULL if there are
   2526  *     no devices.
   2527  *
   2528  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2529  *     caller intends to modify the device tree by calling
   2530  *     config_detach(9) on devices in the order that the iterator
   2531  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2532  *     nearest the "root" of the device tree to be returned, first;
   2533  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2534  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2535  *     indicating both that deviter_init() should not respect any
   2536  *     locks on the device tree, and that deviter_next(di) may run
   2537  *     in more than one LWP before the walk has finished.
   2538  *
   2539  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2540  *     once.
   2541  *
   2542  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2543  *
   2544  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2545  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2546  *
   2547  * deviter_first(di, flags): initialize the device iterator `di'
   2548  *     and return the first device_t in the device tree, or NULL
   2549  *     if there are no devices.  The statement
   2550  *
   2551  *         dv = deviter_first(di);
   2552  *
   2553  *     is shorthand for
   2554  *
   2555  *         deviter_init(di);
   2556  *         dv = deviter_next(di);
   2557  *
   2558  * deviter_next(di): return the next device_t in the device tree,
   2559  *     or NULL if there are no more devices.  deviter_next(di)
   2560  *     is undefined if `di' was not initialized with deviter_init() or
   2561  *     deviter_first().
   2562  *
   2563  * deviter_release(di): stops iteration (subsequent calls to
   2564  *     deviter_next() will return NULL), releases any locks and
   2565  *     resources held by the device iterator.
   2566  *
   2567  * Device iteration does not return device_t's in any particular
   2568  * order.  An iterator will never return the same device_t twice.
   2569  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2570  * is called repeatedly on the same `di', it will eventually return
   2571  * NULL.  It is ok to attach/detach devices during device iteration.
   2572  */
   2573 void
   2574 deviter_init(deviter_t *di, deviter_flags_t flags)
   2575 {
   2576 	device_t dv;
   2577 	bool rw;
   2578 
   2579 	mutex_enter(&alldevs_mtx);
   2580 	if ((flags & DEVITER_F_SHUTDOWN) != 0) {
   2581 		flags |= DEVITER_F_RW;
   2582 		alldevs_nwrite++;
   2583 		alldevs_writer = NULL;
   2584 		alldevs_nread = 0;
   2585 	} else {
   2586 		rw = (flags & DEVITER_F_RW) != 0;
   2587 
   2588 		if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   2589 			;
   2590 		else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
   2591 		       (rw && alldevs_nread != 0))
   2592 			cv_wait(&alldevs_cv, &alldevs_mtx);
   2593 
   2594 		if (rw) {
   2595 			if (alldevs_nwrite++ == 0)
   2596 				alldevs_writer = curlwp;
   2597 		} else
   2598 			alldevs_nread++;
   2599 	}
   2600 	mutex_exit(&alldevs_mtx);
   2601 
   2602 	memset(di, 0, sizeof(*di));
   2603 
   2604 	di->di_flags = flags;
   2605 
   2606 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2607 	case DEVITER_F_LEAVES_FIRST:
   2608 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2609 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2610 		break;
   2611 	case DEVITER_F_ROOT_FIRST:
   2612 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2613 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2614 		break;
   2615 	default:
   2616 		break;
   2617 	}
   2618 
   2619 	deviter_reinit(di);
   2620 }
   2621 
   2622 static void
   2623 deviter_reinit(deviter_t *di)
   2624 {
   2625 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2626 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2627 	else
   2628 		di->di_prev = TAILQ_FIRST(&alldevs);
   2629 }
   2630 
   2631 device_t
   2632 deviter_first(deviter_t *di, deviter_flags_t flags)
   2633 {
   2634 	deviter_init(di, flags);
   2635 	return deviter_next(di);
   2636 }
   2637 
   2638 static device_t
   2639 deviter_next1(deviter_t *di)
   2640 {
   2641 	device_t dv;
   2642 
   2643 	dv = di->di_prev;
   2644 
   2645 	if (dv == NULL)
   2646 		;
   2647 	else if ((di->di_flags & DEVITER_F_RW) != 0)
   2648 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2649 	else
   2650 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2651 
   2652 	return dv;
   2653 }
   2654 
   2655 device_t
   2656 deviter_next(deviter_t *di)
   2657 {
   2658 	device_t dv = NULL;
   2659 
   2660 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2661 	case 0:
   2662 		return deviter_next1(di);
   2663 	case DEVITER_F_LEAVES_FIRST:
   2664 		while (di->di_curdepth >= 0) {
   2665 			if ((dv = deviter_next1(di)) == NULL) {
   2666 				di->di_curdepth--;
   2667 				deviter_reinit(di);
   2668 			} else if (dv->dv_depth == di->di_curdepth)
   2669 				break;
   2670 		}
   2671 		return dv;
   2672 	case DEVITER_F_ROOT_FIRST:
   2673 		while (di->di_curdepth <= di->di_maxdepth) {
   2674 			if ((dv = deviter_next1(di)) == NULL) {
   2675 				di->di_curdepth++;
   2676 				deviter_reinit(di);
   2677 			} else if (dv->dv_depth == di->di_curdepth)
   2678 				break;
   2679 		}
   2680 		return dv;
   2681 	default:
   2682 		return NULL;
   2683 	}
   2684 }
   2685 
   2686 void
   2687 deviter_release(deviter_t *di)
   2688 {
   2689 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2690 
   2691 	mutex_enter(&alldevs_mtx);
   2692 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   2693 		--alldevs_nwrite;
   2694 	else {
   2695 
   2696 		if (rw) {
   2697 			if (--alldevs_nwrite == 0)
   2698 				alldevs_writer = NULL;
   2699 		} else
   2700 			--alldevs_nread;
   2701 
   2702 		cv_signal(&alldevs_cv);
   2703 	}
   2704 	mutex_exit(&alldevs_mtx);
   2705 }
   2706 
   2707 SYSCTL_SETUP(sysctl_detach_setup, "sysctl detach setup")
   2708 {
   2709 	const struct sysctlnode *node = NULL;
   2710 
   2711 	sysctl_createv(clog, 0, NULL, &node,
   2712 		CTLFLAG_PERMANENT,
   2713 		CTLTYPE_NODE, "kern", NULL,
   2714 		NULL, 0, NULL, 0,
   2715 		CTL_KERN, CTL_EOL);
   2716 
   2717 	if (node == NULL)
   2718 		return;
   2719 
   2720 	sysctl_createv(clog, 0, &node, NULL,
   2721 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   2722 		CTLTYPE_INT, "detachall",
   2723 		SYSCTL_DESCR("Detach all devices at shutdown"),
   2724 		NULL, 0, &detachall, 0,
   2725 		CTL_CREATE, CTL_EOL);
   2726 }
   2727