Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.180
      1 /* $NetBSD: subr_autoconf.c,v 1.180 2009/09/03 15:20:08 pooka Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.180 2009/09/03 15:20:08 pooka Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/disklabel.h>
     90 #include <sys/conf.h>
     91 #include <sys/kauth.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kmem.h>
     94 #include <sys/systm.h>
     95 #include <sys/kernel.h>
     96 #include <sys/errno.h>
     97 #include <sys/proc.h>
     98 #include <sys/reboot.h>
     99 #include <sys/kthread.h>
    100 #include <sys/buf.h>
    101 #include <sys/dirent.h>
    102 #include <sys/vnode.h>
    103 #include <sys/mount.h>
    104 #include <sys/namei.h>
    105 #include <sys/unistd.h>
    106 #include <sys/fcntl.h>
    107 #include <sys/lockf.h>
    108 #include <sys/callout.h>
    109 #include <sys/devmon.h>
    110 #include <sys/cpu.h>
    111 #include <sys/sysctl.h>
    112 
    113 #include <sys/disk.h>
    114 
    115 #include <machine/limits.h>
    116 
    117 #if defined(__i386__) && defined(_KERNEL_OPT)
    118 #include "opt_splash.h"
    119 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    120 #include <dev/splash/splash.h>
    121 extern struct splash_progress *splash_progress_state;
    122 #endif
    123 #endif
    124 
    125 /*
    126  * Autoconfiguration subroutines.
    127  */
    128 
    129 /*
    130  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    131  * devices and drivers are found via these tables.
    132  */
    133 extern struct cfdata cfdata[];
    134 extern const short cfroots[];
    135 
    136 /*
    137  * List of all cfdriver structures.  We use this to detect duplicates
    138  * when other cfdrivers are loaded.
    139  */
    140 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    141 extern struct cfdriver * const cfdriver_list_initial[];
    142 
    143 /*
    144  * Initial list of cfattach's.
    145  */
    146 extern const struct cfattachinit cfattachinit[];
    147 
    148 /*
    149  * List of cfdata tables.  We always have one such list -- the one
    150  * built statically when the kernel was configured.
    151  */
    152 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    153 static struct cftable initcftable;
    154 
    155 #define	ROOT ((device_t)NULL)
    156 
    157 struct matchinfo {
    158 	cfsubmatch_t fn;
    159 	struct	device *parent;
    160 	const int *locs;
    161 	void	*aux;
    162 	struct	cfdata *match;
    163 	int	pri;
    164 };
    165 
    166 static char *number(char *, int);
    167 static void mapply(struct matchinfo *, cfdata_t);
    168 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    169 static void config_devdealloc(device_t);
    170 static void config_makeroom(int, struct cfdriver *);
    171 static void config_devlink(device_t);
    172 static void config_devunlink(device_t);
    173 
    174 static void pmflock_debug(device_t, const char *, int);
    175 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
    176 
    177 static device_t deviter_next1(deviter_t *);
    178 static void deviter_reinit(deviter_t *);
    179 
    180 struct deferred_config {
    181 	TAILQ_ENTRY(deferred_config) dc_queue;
    182 	device_t dc_dev;
    183 	void (*dc_func)(device_t);
    184 };
    185 
    186 TAILQ_HEAD(deferred_config_head, deferred_config);
    187 
    188 struct deferred_config_head deferred_config_queue =
    189 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    190 struct deferred_config_head interrupt_config_queue =
    191 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    192 int interrupt_config_threads = 8;
    193 
    194 static void config_process_deferred(struct deferred_config_head *, device_t);
    195 
    196 /* Hooks to finalize configuration once all real devices have been found. */
    197 struct finalize_hook {
    198 	TAILQ_ENTRY(finalize_hook) f_list;
    199 	int (*f_func)(device_t);
    200 	device_t f_dev;
    201 };
    202 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    203 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    204 static int config_finalize_done;
    205 
    206 /* list of all devices */
    207 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    208 kcondvar_t alldevs_cv;
    209 kmutex_t alldevs_mtx;
    210 static int alldevs_nread = 0;
    211 static int alldevs_nwrite = 0;
    212 static lwp_t *alldevs_writer = NULL;
    213 
    214 static int config_pending;		/* semaphore for mountroot */
    215 static kmutex_t config_misc_lock;
    216 static kcondvar_t config_misc_cv;
    217 
    218 static int detachall = 0;
    219 
    220 #define	STREQ(s1, s2)			\
    221 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    222 
    223 static int config_initialized;		/* config_init() has been called. */
    224 
    225 static int config_do_twiddle;
    226 static callout_t config_twiddle_ch;
    227 
    228 struct vnode *
    229 opendisk(struct device *dv)
    230 {
    231 	int bmajor, bminor;
    232 	struct vnode *tmpvn;
    233 	int error;
    234 	dev_t dev;
    235 
    236 	/*
    237 	 * Lookup major number for disk block device.
    238 	 */
    239 	bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
    240 	if (bmajor == -1)
    241 		return NULL;
    242 
    243 	bminor = minor(device_unit(dv));
    244 	/*
    245 	 * Fake a temporary vnode for the disk, open it, and read
    246 	 * and hash the sectors.
    247 	 */
    248 	dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
    249 	    MAKEDISKDEV(bmajor, bminor, RAW_PART);
    250 	if (bdevvp(dev, &tmpvn))
    251 		panic("%s: can't alloc vnode for %s", __func__,
    252 		    device_xname(dv));
    253 	error = VOP_OPEN(tmpvn, FREAD, NOCRED);
    254 	if (error) {
    255 #ifndef DEBUG
    256 		/*
    257 		 * Ignore errors caused by missing device, partition,
    258 		 * or medium.
    259 		 */
    260 		if (error != ENXIO && error != ENODEV)
    261 #endif
    262 			printf("%s: can't open dev %s (%d)\n",
    263 			    __func__, device_xname(dv), error);
    264 		vput(tmpvn);
    265 		return NULL;
    266 	}
    267 
    268 	return tmpvn;
    269 }
    270 
    271 int
    272 config_handle_wedges(struct device *dv, int par)
    273 {
    274 	struct dkwedge_list wl;
    275 	struct dkwedge_info *wi;
    276 	struct vnode *vn;
    277 	char diskname[16];
    278 	int i, error;
    279 
    280 	if ((vn = opendisk(dv)) == NULL)
    281 		return -1;
    282 
    283 	wl.dkwl_bufsize = sizeof(*wi) * 16;
    284 	wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
    285 
    286 	error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
    287 	VOP_CLOSE(vn, FREAD, NOCRED);
    288 	vput(vn);
    289 	if (error) {
    290 #ifdef DEBUG_WEDGE
    291 		printf("%s: List wedges returned %d\n",
    292 		    device_xname(dv), error);
    293 #endif
    294 		free(wi, M_TEMP);
    295 		return -1;
    296 	}
    297 
    298 #ifdef DEBUG_WEDGE
    299 	printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
    300 	    wl.dkwl_nwedges, wl.dkwl_ncopied);
    301 #endif
    302 	snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
    303 	    par + 'a');
    304 
    305 	for (i = 0; i < wl.dkwl_ncopied; i++) {
    306 #ifdef DEBUG_WEDGE
    307 		printf("%s: Looking for %s in %s\n",
    308 		    device_xname(dv), diskname, wi[i].dkw_wname);
    309 #endif
    310 		if (strcmp(wi[i].dkw_wname, diskname) == 0)
    311 			break;
    312 	}
    313 
    314 	if (i == wl.dkwl_ncopied) {
    315 #ifdef DEBUG_WEDGE
    316 		printf("%s: Cannot find wedge with parent %s\n",
    317 		    device_xname(dv), diskname);
    318 #endif
    319 		free(wi, M_TEMP);
    320 		return -1;
    321 	}
    322 
    323 #ifdef DEBUG_WEDGE
    324 	printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
    325 		device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
    326 		(unsigned long long)wi[i].dkw_offset,
    327 		(unsigned long long)wi[i].dkw_size);
    328 #endif
    329 	dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
    330 	free(wi, M_TEMP);
    331 	return 0;
    332 }
    333 
    334 /*
    335  * Initialize the autoconfiguration data structures.  Normally this
    336  * is done by configure(), but some platforms need to do this very
    337  * early (to e.g. initialize the console).
    338  */
    339 void
    340 config_init(void)
    341 {
    342 	const struct cfattachinit *cfai;
    343 	int i, j;
    344 
    345 	if (config_initialized)
    346 		return;
    347 
    348 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
    349 	cv_init(&alldevs_cv, "alldevs");
    350 
    351 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    352 	cv_init(&config_misc_cv, "cfgmisc");
    353 
    354 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    355 
    356 	/* allcfdrivers is statically initialized. */
    357 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
    358 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
    359 			panic("configure: duplicate `%s' drivers",
    360 			    cfdriver_list_initial[i]->cd_name);
    361 	}
    362 
    363 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
    364 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    365 			if (config_cfattach_attach(cfai->cfai_name,
    366 						   cfai->cfai_list[j]) != 0)
    367 				panic("configure: duplicate `%s' attachment "
    368 				    "of `%s' driver",
    369 				    cfai->cfai_list[j]->ca_name,
    370 				    cfai->cfai_name);
    371 		}
    372 	}
    373 
    374 	initcftable.ct_cfdata = cfdata;
    375 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    376 
    377 	config_initialized = 1;
    378 }
    379 
    380 void
    381 config_deferred(device_t dev)
    382 {
    383 	config_process_deferred(&deferred_config_queue, dev);
    384 	config_process_deferred(&interrupt_config_queue, dev);
    385 }
    386 
    387 static void
    388 config_interrupts_thread(void *cookie)
    389 {
    390 	struct deferred_config *dc;
    391 
    392 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    393 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    394 		(*dc->dc_func)(dc->dc_dev);
    395 		kmem_free(dc, sizeof(*dc));
    396 		config_pending_decr();
    397 	}
    398 	kthread_exit(0);
    399 }
    400 
    401 void
    402 config_create_interruptthreads()
    403 {
    404 	int i;
    405 
    406 	for (i = 0; i < interrupt_config_threads; i++) {
    407 		(void)kthread_create(PRI_NONE, 0, NULL,
    408 		    config_interrupts_thread, NULL, NULL, "config");
    409 	}
    410 }
    411 
    412 /*
    413  * Announce device attach/detach to userland listeners.
    414  */
    415 static void
    416 devmon_report_device(device_t dev, bool isattach)
    417 {
    418 #if NDRVCTL > 0
    419 	prop_dictionary_t ev;
    420 	const char *parent;
    421 	const char *what;
    422 	device_t pdev = device_parent(dev);
    423 
    424 	ev = prop_dictionary_create();
    425 	if (ev == NULL)
    426 		return;
    427 
    428 	what = (isattach ? "device-attach" : "device-detach");
    429 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    430 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
    431 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
    432 		prop_object_release(ev);
    433 		return;
    434 	}
    435 
    436 	devmon_insert(what, ev);
    437 #endif
    438 }
    439 
    440 /*
    441  * Add a cfdriver to the system.
    442  */
    443 int
    444 config_cfdriver_attach(struct cfdriver *cd)
    445 {
    446 	struct cfdriver *lcd;
    447 
    448 	/* Make sure this driver isn't already in the system. */
    449 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    450 		if (STREQ(lcd->cd_name, cd->cd_name))
    451 			return EEXIST;
    452 	}
    453 
    454 	LIST_INIT(&cd->cd_attach);
    455 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    456 
    457 	return 0;
    458 }
    459 
    460 /*
    461  * Remove a cfdriver from the system.
    462  */
    463 int
    464 config_cfdriver_detach(struct cfdriver *cd)
    465 {
    466 	int i;
    467 
    468 	/* Make sure there are no active instances. */
    469 	for (i = 0; i < cd->cd_ndevs; i++) {
    470 		if (cd->cd_devs[i] != NULL)
    471 			return EBUSY;
    472 	}
    473 
    474 	/* ...and no attachments loaded. */
    475 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    476 		return EBUSY;
    477 
    478 	LIST_REMOVE(cd, cd_list);
    479 
    480 	KASSERT(cd->cd_devs == NULL);
    481 
    482 	return 0;
    483 }
    484 
    485 /*
    486  * Look up a cfdriver by name.
    487  */
    488 struct cfdriver *
    489 config_cfdriver_lookup(const char *name)
    490 {
    491 	struct cfdriver *cd;
    492 
    493 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    494 		if (STREQ(cd->cd_name, name))
    495 			return cd;
    496 	}
    497 
    498 	return NULL;
    499 }
    500 
    501 /*
    502  * Add a cfattach to the specified driver.
    503  */
    504 int
    505 config_cfattach_attach(const char *driver, struct cfattach *ca)
    506 {
    507 	struct cfattach *lca;
    508 	struct cfdriver *cd;
    509 
    510 	cd = config_cfdriver_lookup(driver);
    511 	if (cd == NULL)
    512 		return ESRCH;
    513 
    514 	/* Make sure this attachment isn't already on this driver. */
    515 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    516 		if (STREQ(lca->ca_name, ca->ca_name))
    517 			return EEXIST;
    518 	}
    519 
    520 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    521 
    522 	return 0;
    523 }
    524 
    525 /*
    526  * Remove a cfattach from the specified driver.
    527  */
    528 int
    529 config_cfattach_detach(const char *driver, struct cfattach *ca)
    530 {
    531 	struct cfdriver *cd;
    532 	device_t dev;
    533 	int i;
    534 
    535 	cd = config_cfdriver_lookup(driver);
    536 	if (cd == NULL)
    537 		return ESRCH;
    538 
    539 	/* Make sure there are no active instances. */
    540 	for (i = 0; i < cd->cd_ndevs; i++) {
    541 		if ((dev = cd->cd_devs[i]) == NULL)
    542 			continue;
    543 		if (dev->dv_cfattach == ca)
    544 			return EBUSY;
    545 	}
    546 
    547 	LIST_REMOVE(ca, ca_list);
    548 
    549 	return 0;
    550 }
    551 
    552 /*
    553  * Look up a cfattach by name.
    554  */
    555 static struct cfattach *
    556 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    557 {
    558 	struct cfattach *ca;
    559 
    560 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    561 		if (STREQ(ca->ca_name, atname))
    562 			return ca;
    563 	}
    564 
    565 	return NULL;
    566 }
    567 
    568 /*
    569  * Look up a cfattach by driver/attachment name.
    570  */
    571 struct cfattach *
    572 config_cfattach_lookup(const char *name, const char *atname)
    573 {
    574 	struct cfdriver *cd;
    575 
    576 	cd = config_cfdriver_lookup(name);
    577 	if (cd == NULL)
    578 		return NULL;
    579 
    580 	return config_cfattach_lookup_cd(cd, atname);
    581 }
    582 
    583 /*
    584  * Apply the matching function and choose the best.  This is used
    585  * a few times and we want to keep the code small.
    586  */
    587 static void
    588 mapply(struct matchinfo *m, cfdata_t cf)
    589 {
    590 	int pri;
    591 
    592 	if (m->fn != NULL) {
    593 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    594 	} else {
    595 		pri = config_match(m->parent, cf, m->aux);
    596 	}
    597 	if (pri > m->pri) {
    598 		m->match = cf;
    599 		m->pri = pri;
    600 	}
    601 }
    602 
    603 int
    604 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    605 {
    606 	const struct cfiattrdata *ci;
    607 	const struct cflocdesc *cl;
    608 	int nlocs, i;
    609 
    610 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
    611 	KASSERT(ci);
    612 	nlocs = ci->ci_loclen;
    613 	KASSERT(!nlocs || locs);
    614 	for (i = 0; i < nlocs; i++) {
    615 		cl = &ci->ci_locdesc[i];
    616 		/* !cld_defaultstr means no default value */
    617 		if ((!(cl->cld_defaultstr)
    618 		     || (cf->cf_loc[i] != cl->cld_default))
    619 		    && cf->cf_loc[i] != locs[i])
    620 			return 0;
    621 	}
    622 
    623 	return config_match(parent, cf, aux);
    624 }
    625 
    626 /*
    627  * Helper function: check whether the driver supports the interface attribute
    628  * and return its descriptor structure.
    629  */
    630 static const struct cfiattrdata *
    631 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    632 {
    633 	const struct cfiattrdata * const *cpp;
    634 
    635 	if (cd->cd_attrs == NULL)
    636 		return 0;
    637 
    638 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    639 		if (STREQ((*cpp)->ci_name, ia)) {
    640 			/* Match. */
    641 			return *cpp;
    642 		}
    643 	}
    644 	return 0;
    645 }
    646 
    647 /*
    648  * Lookup an interface attribute description by name.
    649  * If the driver is given, consider only its supported attributes.
    650  */
    651 const struct cfiattrdata *
    652 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    653 {
    654 	const struct cfdriver *d;
    655 	const struct cfiattrdata *ia;
    656 
    657 	if (cd)
    658 		return cfdriver_get_iattr(cd, name);
    659 
    660 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    661 		ia = cfdriver_get_iattr(d, name);
    662 		if (ia)
    663 			return ia;
    664 	}
    665 	return 0;
    666 }
    667 
    668 /*
    669  * Determine if `parent' is a potential parent for a device spec based
    670  * on `cfp'.
    671  */
    672 static int
    673 cfparent_match(const device_t parent, const struct cfparent *cfp)
    674 {
    675 	struct cfdriver *pcd;
    676 
    677 	/* We don't match root nodes here. */
    678 	if (cfp == NULL)
    679 		return 0;
    680 
    681 	pcd = parent->dv_cfdriver;
    682 	KASSERT(pcd != NULL);
    683 
    684 	/*
    685 	 * First, ensure this parent has the correct interface
    686 	 * attribute.
    687 	 */
    688 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    689 		return 0;
    690 
    691 	/*
    692 	 * If no specific parent device instance was specified (i.e.
    693 	 * we're attaching to the attribute only), we're done!
    694 	 */
    695 	if (cfp->cfp_parent == NULL)
    696 		return 1;
    697 
    698 	/*
    699 	 * Check the parent device's name.
    700 	 */
    701 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    702 		return 0;	/* not the same parent */
    703 
    704 	/*
    705 	 * Make sure the unit number matches.
    706 	 */
    707 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    708 	    cfp->cfp_unit == parent->dv_unit)
    709 		return 1;
    710 
    711 	/* Unit numbers don't match. */
    712 	return 0;
    713 }
    714 
    715 /*
    716  * Helper for config_cfdata_attach(): check all devices whether it could be
    717  * parent any attachment in the config data table passed, and rescan.
    718  */
    719 static void
    720 rescan_with_cfdata(const struct cfdata *cf)
    721 {
    722 	device_t d;
    723 	const struct cfdata *cf1;
    724 	deviter_t di;
    725 
    726 
    727 	/*
    728 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    729 	 * the outer loop.
    730 	 */
    731 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    732 
    733 		if (!(d->dv_cfattach->ca_rescan))
    734 			continue;
    735 
    736 		for (cf1 = cf; cf1->cf_name; cf1++) {
    737 
    738 			if (!cfparent_match(d, cf1->cf_pspec))
    739 				continue;
    740 
    741 			(*d->dv_cfattach->ca_rescan)(d,
    742 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
    743 		}
    744 	}
    745 	deviter_release(&di);
    746 }
    747 
    748 /*
    749  * Attach a supplemental config data table and rescan potential
    750  * parent devices if required.
    751  */
    752 int
    753 config_cfdata_attach(cfdata_t cf, int scannow)
    754 {
    755 	struct cftable *ct;
    756 
    757 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    758 	ct->ct_cfdata = cf;
    759 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    760 
    761 	if (scannow)
    762 		rescan_with_cfdata(cf);
    763 
    764 	return 0;
    765 }
    766 
    767 /*
    768  * Helper for config_cfdata_detach: check whether a device is
    769  * found through any attachment in the config data table.
    770  */
    771 static int
    772 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
    773 {
    774 	const struct cfdata *cf1;
    775 
    776 	for (cf1 = cf; cf1->cf_name; cf1++)
    777 		if (d->dv_cfdata == cf1)
    778 			return 1;
    779 
    780 	return 0;
    781 }
    782 
    783 /*
    784  * Detach a supplemental config data table. Detach all devices found
    785  * through that table (and thus keeping references to it) before.
    786  */
    787 int
    788 config_cfdata_detach(cfdata_t cf)
    789 {
    790 	device_t d;
    791 	int error = 0;
    792 	struct cftable *ct;
    793 	deviter_t di;
    794 
    795 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    796 	     d = deviter_next(&di)) {
    797 		if (!dev_in_cfdata(d, cf))
    798 			continue;
    799 		if ((error = config_detach(d, 0)) != 0)
    800 			break;
    801 	}
    802 	deviter_release(&di);
    803 	if (error) {
    804 		aprint_error_dev(d, "unable to detach instance\n");
    805 		return error;
    806 	}
    807 
    808 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    809 		if (ct->ct_cfdata == cf) {
    810 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    811 			kmem_free(ct, sizeof(*ct));
    812 			return 0;
    813 		}
    814 	}
    815 
    816 	/* not found -- shouldn't happen */
    817 	return EINVAL;
    818 }
    819 
    820 /*
    821  * Invoke the "match" routine for a cfdata entry on behalf of
    822  * an external caller, usually a "submatch" routine.
    823  */
    824 int
    825 config_match(device_t parent, cfdata_t cf, void *aux)
    826 {
    827 	struct cfattach *ca;
    828 
    829 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    830 	if (ca == NULL) {
    831 		/* No attachment for this entry, oh well. */
    832 		return 0;
    833 	}
    834 
    835 	return (*ca->ca_match)(parent, cf, aux);
    836 }
    837 
    838 /*
    839  * Iterate over all potential children of some device, calling the given
    840  * function (default being the child's match function) for each one.
    841  * Nonzero returns are matches; the highest value returned is considered
    842  * the best match.  Return the `found child' if we got a match, or NULL
    843  * otherwise.  The `aux' pointer is simply passed on through.
    844  *
    845  * Note that this function is designed so that it can be used to apply
    846  * an arbitrary function to all potential children (its return value
    847  * can be ignored).
    848  */
    849 cfdata_t
    850 config_search_loc(cfsubmatch_t fn, device_t parent,
    851 		  const char *ifattr, const int *locs, void *aux)
    852 {
    853 	struct cftable *ct;
    854 	cfdata_t cf;
    855 	struct matchinfo m;
    856 
    857 	KASSERT(config_initialized);
    858 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
    859 
    860 	m.fn = fn;
    861 	m.parent = parent;
    862 	m.locs = locs;
    863 	m.aux = aux;
    864 	m.match = NULL;
    865 	m.pri = 0;
    866 
    867 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    868 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
    869 
    870 			/* We don't match root nodes here. */
    871 			if (!cf->cf_pspec)
    872 				continue;
    873 
    874 			/*
    875 			 * Skip cf if no longer eligible, otherwise scan
    876 			 * through parents for one matching `parent', and
    877 			 * try match function.
    878 			 */
    879 			if (cf->cf_fstate == FSTATE_FOUND)
    880 				continue;
    881 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
    882 			    cf->cf_fstate == FSTATE_DSTAR)
    883 				continue;
    884 
    885 			/*
    886 			 * If an interface attribute was specified,
    887 			 * consider only children which attach to
    888 			 * that attribute.
    889 			 */
    890 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
    891 				continue;
    892 
    893 			if (cfparent_match(parent, cf->cf_pspec))
    894 				mapply(&m, cf);
    895 		}
    896 	}
    897 	return m.match;
    898 }
    899 
    900 cfdata_t
    901 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
    902     void *aux)
    903 {
    904 
    905 	return config_search_loc(fn, parent, ifattr, NULL, aux);
    906 }
    907 
    908 /*
    909  * Find the given root device.
    910  * This is much like config_search, but there is no parent.
    911  * Don't bother with multiple cfdata tables; the root node
    912  * must always be in the initial table.
    913  */
    914 cfdata_t
    915 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
    916 {
    917 	cfdata_t cf;
    918 	const short *p;
    919 	struct matchinfo m;
    920 
    921 	m.fn = fn;
    922 	m.parent = ROOT;
    923 	m.aux = aux;
    924 	m.match = NULL;
    925 	m.pri = 0;
    926 	m.locs = 0;
    927 	/*
    928 	 * Look at root entries for matching name.  We do not bother
    929 	 * with found-state here since only one root should ever be
    930 	 * searched (and it must be done first).
    931 	 */
    932 	for (p = cfroots; *p >= 0; p++) {
    933 		cf = &cfdata[*p];
    934 		if (strcmp(cf->cf_name, rootname) == 0)
    935 			mapply(&m, cf);
    936 	}
    937 	return m.match;
    938 }
    939 
    940 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
    941 
    942 /*
    943  * The given `aux' argument describes a device that has been found
    944  * on the given parent, but not necessarily configured.  Locate the
    945  * configuration data for that device (using the submatch function
    946  * provided, or using candidates' cd_match configuration driver
    947  * functions) and attach it, and return true.  If the device was
    948  * not configured, call the given `print' function and return 0.
    949  */
    950 device_t
    951 config_found_sm_loc(device_t parent,
    952 		const char *ifattr, const int *locs, void *aux,
    953 		cfprint_t print, cfsubmatch_t submatch)
    954 {
    955 	cfdata_t cf;
    956 
    957 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    958 	if (splash_progress_state)
    959 		splash_progress_update(splash_progress_state);
    960 #endif
    961 
    962 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
    963 		return(config_attach_loc(parent, cf, locs, aux, print));
    964 	if (print) {
    965 		if (config_do_twiddle && cold)
    966 			twiddle();
    967 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
    968 	}
    969 
    970 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    971 	if (splash_progress_state)
    972 		splash_progress_update(splash_progress_state);
    973 #endif
    974 
    975 	return NULL;
    976 }
    977 
    978 device_t
    979 config_found_ia(device_t parent, const char *ifattr, void *aux,
    980     cfprint_t print)
    981 {
    982 
    983 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
    984 }
    985 
    986 device_t
    987 config_found(device_t parent, void *aux, cfprint_t print)
    988 {
    989 
    990 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
    991 }
    992 
    993 /*
    994  * As above, but for root devices.
    995  */
    996 device_t
    997 config_rootfound(const char *rootname, void *aux)
    998 {
    999 	cfdata_t cf;
   1000 
   1001 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
   1002 		return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
   1003 	aprint_error("root device %s not configured\n", rootname);
   1004 	return NULL;
   1005 }
   1006 
   1007 /* just like sprintf(buf, "%d") except that it works from the end */
   1008 static char *
   1009 number(char *ep, int n)
   1010 {
   1011 
   1012 	*--ep = 0;
   1013 	while (n >= 10) {
   1014 		*--ep = (n % 10) + '0';
   1015 		n /= 10;
   1016 	}
   1017 	*--ep = n + '0';
   1018 	return ep;
   1019 }
   1020 
   1021 /*
   1022  * Expand the size of the cd_devs array if necessary.
   1023  */
   1024 static void
   1025 config_makeroom(int n, struct cfdriver *cd)
   1026 {
   1027 	int old, new;
   1028 	device_t *nsp;
   1029 
   1030 	if (n < cd->cd_ndevs)
   1031 		return;
   1032 
   1033 	/*
   1034 	 * Need to expand the array.
   1035 	 */
   1036 	old = cd->cd_ndevs;
   1037 	if (old == 0)
   1038 		new = 4;
   1039 	else
   1040 		new = old * 2;
   1041 	while (new <= n)
   1042 		new *= 2;
   1043 	cd->cd_ndevs = new;
   1044 	nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP);
   1045 	if (nsp == NULL)
   1046 		panic("config_attach: %sing dev array",
   1047 		    old != 0 ? "expand" : "creat");
   1048 	memset(nsp + old, 0, sizeof(device_t [new - old]));
   1049 	if (old != 0) {
   1050 		memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
   1051 		kmem_free(cd->cd_devs, sizeof(device_t [old]));
   1052 	}
   1053 	cd->cd_devs = nsp;
   1054 }
   1055 
   1056 static void
   1057 config_devlink(device_t dev)
   1058 {
   1059 	struct cfdriver *cd = dev->dv_cfdriver;
   1060 
   1061 	/* put this device in the devices array */
   1062 	config_makeroom(dev->dv_unit, cd);
   1063 	if (cd->cd_devs[dev->dv_unit])
   1064 		panic("config_attach: duplicate %s", device_xname(dev));
   1065 	cd->cd_devs[dev->dv_unit] = dev;
   1066 
   1067 	/* It is safe to add a device to the tail of the list while
   1068 	 * readers are in the list, but not while a writer is in
   1069 	 * the list.  Wait for any writer to complete.
   1070 	 */
   1071 	mutex_enter(&alldevs_mtx);
   1072 	while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
   1073 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1074 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
   1075 	cv_signal(&alldevs_cv);
   1076 	mutex_exit(&alldevs_mtx);
   1077 }
   1078 
   1079 static void
   1080 config_devunlink(device_t dev)
   1081 {
   1082 	struct cfdriver *cd = dev->dv_cfdriver;
   1083 	int i;
   1084 
   1085 	/* Unlink from device list. */
   1086 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1087 
   1088 	/* Remove from cfdriver's array. */
   1089 	cd->cd_devs[dev->dv_unit] = NULL;
   1090 
   1091 	/*
   1092 	 * If the device now has no units in use, deallocate its softc array.
   1093 	 */
   1094 	for (i = 0; i < cd->cd_ndevs; i++) {
   1095 		if (cd->cd_devs[i] != NULL)
   1096 			return;
   1097 	}
   1098 	/* nothing found; deallocate */
   1099 	kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
   1100 	cd->cd_devs = NULL;
   1101 	cd->cd_ndevs = 0;
   1102 }
   1103 
   1104 static device_t
   1105 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1106 {
   1107 	struct cfdriver *cd;
   1108 	struct cfattach *ca;
   1109 	size_t lname, lunit;
   1110 	const char *xunit;
   1111 	int myunit;
   1112 	char num[10];
   1113 	device_t dev;
   1114 	void *dev_private;
   1115 	const struct cfiattrdata *ia;
   1116 	device_lock_t dvl;
   1117 
   1118 	cd = config_cfdriver_lookup(cf->cf_name);
   1119 	if (cd == NULL)
   1120 		return NULL;
   1121 
   1122 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1123 	if (ca == NULL)
   1124 		return NULL;
   1125 
   1126 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
   1127 	    ca->ca_devsize < sizeof(struct device))
   1128 		panic("config_devalloc: %s", cf->cf_atname);
   1129 
   1130 #ifndef __BROKEN_CONFIG_UNIT_USAGE
   1131 	if (cf->cf_fstate == FSTATE_STAR) {
   1132 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
   1133 			if (cd->cd_devs[myunit] == NULL)
   1134 				break;
   1135 		/*
   1136 		 * myunit is now the unit of the first NULL device pointer,
   1137 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1138 		 */
   1139 	} else {
   1140 		myunit = cf->cf_unit;
   1141 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
   1142 			return NULL;
   1143 	}
   1144 #else
   1145 	myunit = cf->cf_unit;
   1146 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
   1147 
   1148 	/* compute length of name and decimal expansion of unit number */
   1149 	lname = strlen(cd->cd_name);
   1150 	xunit = number(&num[sizeof(num)], myunit);
   1151 	lunit = &num[sizeof(num)] - xunit;
   1152 	if (lname + lunit > sizeof(dev->dv_xname))
   1153 		panic("config_devalloc: device name too long");
   1154 
   1155 	/* get memory for all device vars */
   1156 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
   1157 	if (ca->ca_devsize > 0) {
   1158 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1159 		if (dev_private == NULL)
   1160 			panic("config_devalloc: memory allocation for device softc failed");
   1161 	} else {
   1162 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1163 		dev_private = NULL;
   1164 	}
   1165 
   1166 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1167 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1168 	} else {
   1169 		dev = dev_private;
   1170 	}
   1171 	if (dev == NULL)
   1172 		panic("config_devalloc: memory allocation for device_t failed");
   1173 
   1174 	dvl = device_getlock(dev);
   1175 
   1176 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1177 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1178 
   1179 	dev->dv_class = cd->cd_class;
   1180 	dev->dv_cfdata = cf;
   1181 	dev->dv_cfdriver = cd;
   1182 	dev->dv_cfattach = ca;
   1183 	dev->dv_unit = myunit;
   1184 	dev->dv_activity_count = 0;
   1185 	dev->dv_activity_handlers = NULL;
   1186 	dev->dv_private = dev_private;
   1187 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1188 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1189 	dev->dv_parent = parent;
   1190 	if (parent != NULL)
   1191 		dev->dv_depth = parent->dv_depth + 1;
   1192 	else
   1193 		dev->dv_depth = 0;
   1194 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
   1195 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
   1196 	if (locs) {
   1197 		KASSERT(parent); /* no locators at root */
   1198 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
   1199 				    parent->dv_cfdriver);
   1200 		dev->dv_locators =
   1201 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
   1202 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
   1203 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
   1204 	}
   1205 	dev->dv_properties = prop_dictionary_create();
   1206 	KASSERT(dev->dv_properties != NULL);
   1207 
   1208 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
   1209 	    "device-driver", dev->dv_cfdriver->cd_name);
   1210 	prop_dictionary_set_uint16(dev->dv_properties,
   1211 	    "device-unit", dev->dv_unit);
   1212 
   1213 	return dev;
   1214 }
   1215 
   1216 static void
   1217 config_devdealloc(device_t dev)
   1218 {
   1219 	device_lock_t dvl = device_getlock(dev);
   1220 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
   1221 
   1222 	cv_destroy(&dvl->dvl_cv);
   1223 	mutex_destroy(&dvl->dvl_mtx);
   1224 
   1225 	KASSERT(dev->dv_properties != NULL);
   1226 	prop_object_release(dev->dv_properties);
   1227 
   1228 	if (dev->dv_activity_handlers)
   1229 		panic("config_devdealloc with registered handlers");
   1230 
   1231 	if (dev->dv_locators) {
   1232 		size_t amount = *--dev->dv_locators;
   1233 		kmem_free(dev->dv_locators, amount);
   1234 	}
   1235 
   1236 	if (dev->dv_cfattach->ca_devsize > 0)
   1237 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1238 	if (priv)
   1239 		kmem_free(dev, sizeof(*dev));
   1240 }
   1241 
   1242 /*
   1243  * Attach a found device.
   1244  */
   1245 device_t
   1246 config_attach_loc(device_t parent, cfdata_t cf,
   1247 	const int *locs, void *aux, cfprint_t print)
   1248 {
   1249 	device_t dev;
   1250 	struct cftable *ct;
   1251 	const char *drvname;
   1252 
   1253 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1254 	if (splash_progress_state)
   1255 		splash_progress_update(splash_progress_state);
   1256 #endif
   1257 
   1258 	dev = config_devalloc(parent, cf, locs);
   1259 	if (!dev)
   1260 		panic("config_attach: allocation of device softc failed");
   1261 
   1262 	/* XXX redundant - see below? */
   1263 	if (cf->cf_fstate != FSTATE_STAR) {
   1264 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1265 		cf->cf_fstate = FSTATE_FOUND;
   1266 	}
   1267 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1268 	  else
   1269 		cf->cf_unit++;
   1270 #endif
   1271 
   1272 	config_devlink(dev);
   1273 
   1274 	if (config_do_twiddle && cold)
   1275 		twiddle();
   1276 	else
   1277 		aprint_naive("Found ");
   1278 	/*
   1279 	 * We want the next two printfs for normal, verbose, and quiet,
   1280 	 * but not silent (in which case, we're twiddling, instead).
   1281 	 */
   1282 	if (parent == ROOT) {
   1283 		aprint_naive("%s (root)", device_xname(dev));
   1284 		aprint_normal("%s (root)", device_xname(dev));
   1285 	} else {
   1286 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
   1287 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
   1288 		if (print)
   1289 			(void) (*print)(aux, NULL);
   1290 	}
   1291 
   1292 	/*
   1293 	 * Before attaching, clobber any unfound devices that are
   1294 	 * otherwise identical.
   1295 	 * XXX code above is redundant?
   1296 	 */
   1297 	drvname = dev->dv_cfdriver->cd_name;
   1298 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1299 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1300 			if (STREQ(cf->cf_name, drvname) &&
   1301 			    cf->cf_unit == dev->dv_unit) {
   1302 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1303 					cf->cf_fstate = FSTATE_FOUND;
   1304 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1305 				/*
   1306 				 * Bump the unit number on all starred cfdata
   1307 				 * entries for this device.
   1308 				 */
   1309 				if (cf->cf_fstate == FSTATE_STAR)
   1310 					cf->cf_unit++;
   1311 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1312 			}
   1313 		}
   1314 	}
   1315 #ifdef __HAVE_DEVICE_REGISTER
   1316 	device_register(dev, aux);
   1317 #endif
   1318 
   1319 	/* Let userland know */
   1320 	devmon_report_device(dev, true);
   1321 
   1322 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1323 	if (splash_progress_state)
   1324 		splash_progress_update(splash_progress_state);
   1325 #endif
   1326 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1327 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1328 	if (splash_progress_state)
   1329 		splash_progress_update(splash_progress_state);
   1330 #endif
   1331 
   1332 	if (!device_pmf_is_registered(dev))
   1333 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
   1334 
   1335 	config_process_deferred(&deferred_config_queue, dev);
   1336 	return dev;
   1337 }
   1338 
   1339 device_t
   1340 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1341 {
   1342 
   1343 	return config_attach_loc(parent, cf, NULL, aux, print);
   1344 }
   1345 
   1346 /*
   1347  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1348  * way are silently inserted into the device tree, and their children
   1349  * attached.
   1350  *
   1351  * Note that because pseudo-devices are attached silently, any information
   1352  * the attach routine wishes to print should be prefixed with the device
   1353  * name by the attach routine.
   1354  */
   1355 device_t
   1356 config_attach_pseudo(cfdata_t cf)
   1357 {
   1358 	device_t dev;
   1359 
   1360 	dev = config_devalloc(ROOT, cf, NULL);
   1361 	if (!dev)
   1362 		return NULL;
   1363 
   1364 	/* XXX mark busy in cfdata */
   1365 
   1366 	if (cf->cf_fstate != FSTATE_STAR) {
   1367 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1368 		cf->cf_fstate = FSTATE_FOUND;
   1369 	}
   1370 
   1371 	config_devlink(dev);
   1372 
   1373 #if 0	/* XXXJRT not yet */
   1374 #ifdef __HAVE_DEVICE_REGISTER
   1375 	device_register(dev, NULL);	/* like a root node */
   1376 #endif
   1377 #endif
   1378 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1379 	config_process_deferred(&deferred_config_queue, dev);
   1380 	return dev;
   1381 }
   1382 
   1383 /*
   1384  * Detach a device.  Optionally forced (e.g. because of hardware
   1385  * removal) and quiet.  Returns zero if successful, non-zero
   1386  * (an error code) otherwise.
   1387  *
   1388  * Note that this code wants to be run from a process context, so
   1389  * that the detach can sleep to allow processes which have a device
   1390  * open to run and unwind their stacks.
   1391  */
   1392 int
   1393 config_detach(device_t dev, int flags)
   1394 {
   1395 	struct cftable *ct;
   1396 	cfdata_t cf;
   1397 	const struct cfattach *ca;
   1398 	struct cfdriver *cd;
   1399 #ifdef DIAGNOSTIC
   1400 	device_t d;
   1401 #endif
   1402 	int rv = 0;
   1403 
   1404 #ifdef DIAGNOSTIC
   1405 	cf = dev->dv_cfdata;
   1406 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
   1407 	    cf->cf_fstate != FSTATE_STAR)
   1408 		panic("config_detach: %s: bad device fstate %d",
   1409 		    device_xname(dev), cf ? cf->cf_fstate : -1);
   1410 #endif
   1411 	cd = dev->dv_cfdriver;
   1412 	KASSERT(cd != NULL);
   1413 
   1414 	ca = dev->dv_cfattach;
   1415 	KASSERT(ca != NULL);
   1416 
   1417 	KASSERT(curlwp != NULL);
   1418 	mutex_enter(&alldevs_mtx);
   1419 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   1420 		;
   1421 	else while (alldevs_nread != 0 ||
   1422 	       (alldevs_nwrite != 0 && alldevs_writer != curlwp))
   1423 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1424 	if (alldevs_nwrite++ == 0)
   1425 		alldevs_writer = curlwp;
   1426 	mutex_exit(&alldevs_mtx);
   1427 
   1428 	/*
   1429 	 * Ensure the device is deactivated.  If the device doesn't
   1430 	 * have an activation entry point, we allow DVF_ACTIVE to
   1431 	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
   1432 	 * device is busy, and the detach fails.
   1433 	 */
   1434 	if (!detachall &&
   1435 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1436 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1437 		rv = EBUSY;	/* XXX EOPNOTSUPP? */
   1438 	} else if ((rv = config_deactivate(dev)) == EOPNOTSUPP)
   1439 		rv = 0;	/* Do not treat EOPNOTSUPP as an error */
   1440 
   1441 	/*
   1442 	 * Try to detach the device.  If that's not possible, then
   1443 	 * we either panic() (for the forced but failed case), or
   1444 	 * return an error.
   1445 	 */
   1446 	if (rv == 0) {
   1447 		if (ca->ca_detach != NULL)
   1448 			rv = (*ca->ca_detach)(dev, flags);
   1449 		else
   1450 			rv = EOPNOTSUPP;
   1451 	}
   1452 	if (rv != 0) {
   1453 		if ((flags & DETACH_FORCE) == 0)
   1454 			goto out;
   1455 		else
   1456 			panic("config_detach: forced detach of %s failed (%d)",
   1457 			    device_xname(dev), rv);
   1458 	}
   1459 
   1460 	dev->dv_flags &= ~DVF_ACTIVE;
   1461 
   1462 	/*
   1463 	 * The device has now been successfully detached.
   1464 	 */
   1465 
   1466 	/* Let userland know */
   1467 	devmon_report_device(dev, false);
   1468 
   1469 #ifdef DIAGNOSTIC
   1470 	/*
   1471 	 * Sanity: If you're successfully detached, you should have no
   1472 	 * children.  (Note that because children must be attached
   1473 	 * after parents, we only need to search the latter part of
   1474 	 * the list.)
   1475 	 */
   1476 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1477 	    d = TAILQ_NEXT(d, dv_list)) {
   1478 		if (d->dv_parent == dev) {
   1479 			printf("config_detach: detached device %s"
   1480 			    " has children %s\n", device_xname(dev), device_xname(d));
   1481 			panic("config_detach");
   1482 		}
   1483 	}
   1484 #endif
   1485 
   1486 	/* notify the parent that the child is gone */
   1487 	if (dev->dv_parent) {
   1488 		device_t p = dev->dv_parent;
   1489 		if (p->dv_cfattach->ca_childdetached)
   1490 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1491 	}
   1492 
   1493 	/*
   1494 	 * Mark cfdata to show that the unit can be reused, if possible.
   1495 	 */
   1496 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1497 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1498 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1499 				if (cf->cf_fstate == FSTATE_FOUND &&
   1500 				    cf->cf_unit == dev->dv_unit)
   1501 					cf->cf_fstate = FSTATE_NOTFOUND;
   1502 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1503 				/*
   1504 				 * Note that we can only re-use a starred
   1505 				 * unit number if the unit being detached
   1506 				 * had the last assigned unit number.
   1507 				 */
   1508 				if (cf->cf_fstate == FSTATE_STAR &&
   1509 				    cf->cf_unit == dev->dv_unit + 1)
   1510 					cf->cf_unit--;
   1511 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1512 			}
   1513 		}
   1514 	}
   1515 
   1516 	config_devunlink(dev);
   1517 
   1518 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1519 		aprint_normal_dev(dev, "detached\n");
   1520 
   1521 	config_devdealloc(dev);
   1522 
   1523 out:
   1524 	mutex_enter(&alldevs_mtx);
   1525 	KASSERT(alldevs_nwrite != 0);
   1526 	if (--alldevs_nwrite == 0)
   1527 		alldevs_writer = NULL;
   1528 	cv_signal(&alldevs_cv);
   1529 	mutex_exit(&alldevs_mtx);
   1530 	return rv;
   1531 }
   1532 
   1533 int
   1534 config_detach_children(device_t parent, int flags)
   1535 {
   1536 	device_t dv;
   1537 	deviter_t di;
   1538 	int error = 0;
   1539 
   1540 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1541 	     dv = deviter_next(&di)) {
   1542 		if (device_parent(dv) != parent)
   1543 			continue;
   1544 		if ((error = config_detach(dv, flags)) != 0)
   1545 			break;
   1546 	}
   1547 	deviter_release(&di);
   1548 	return error;
   1549 }
   1550 
   1551 device_t
   1552 shutdown_first(struct shutdown_state *s)
   1553 {
   1554 	if (!s->initialized) {
   1555 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1556 		s->initialized = true;
   1557 	}
   1558 	return shutdown_next(s);
   1559 }
   1560 
   1561 device_t
   1562 shutdown_next(struct shutdown_state *s)
   1563 {
   1564 	device_t dv;
   1565 
   1566 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1567 		;
   1568 
   1569 	if (dv == NULL)
   1570 		s->initialized = false;
   1571 
   1572 	return dv;
   1573 }
   1574 
   1575 bool
   1576 config_detach_all(int how)
   1577 {
   1578 	static struct shutdown_state s;
   1579 	device_t curdev;
   1580 	bool progress = false;
   1581 
   1582 	if ((how & RB_NOSYNC) != 0)
   1583 		return false;
   1584 
   1585 	for (curdev = shutdown_first(&s); curdev != NULL;
   1586 	     curdev = shutdown_next(&s)) {
   1587 		aprint_debug(" detaching %s, ", device_xname(curdev));
   1588 		if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
   1589 			progress = true;
   1590 			aprint_debug("success.");
   1591 		} else
   1592 			aprint_debug("failed.");
   1593 	}
   1594 	return progress;
   1595 }
   1596 
   1597 int
   1598 config_activate(device_t dev)
   1599 {
   1600 	const struct cfattach *ca = dev->dv_cfattach;
   1601 	int rv = 0, oflags = dev->dv_flags;
   1602 
   1603 	if (ca->ca_activate == NULL)
   1604 		return EOPNOTSUPP;
   1605 
   1606 	if ((dev->dv_flags & DVF_ACTIVE) == 0) {
   1607 		dev->dv_flags |= DVF_ACTIVE;
   1608 		rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
   1609 		if (rv)
   1610 			dev->dv_flags = oflags;
   1611 	}
   1612 	return rv;
   1613 }
   1614 
   1615 int
   1616 config_deactivate(device_t dev)
   1617 {
   1618 	const struct cfattach *ca = dev->dv_cfattach;
   1619 	int rv = 0, oflags = dev->dv_flags;
   1620 
   1621 	if (ca->ca_activate == NULL)
   1622 		return EOPNOTSUPP;
   1623 
   1624 	if (dev->dv_flags & DVF_ACTIVE) {
   1625 		dev->dv_flags &= ~DVF_ACTIVE;
   1626 		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
   1627 		if (rv)
   1628 			dev->dv_flags = oflags;
   1629 	}
   1630 	return rv;
   1631 }
   1632 
   1633 /*
   1634  * Defer the configuration of the specified device until all
   1635  * of its parent's devices have been attached.
   1636  */
   1637 void
   1638 config_defer(device_t dev, void (*func)(device_t))
   1639 {
   1640 	struct deferred_config *dc;
   1641 
   1642 	if (dev->dv_parent == NULL)
   1643 		panic("config_defer: can't defer config of a root device");
   1644 
   1645 #ifdef DIAGNOSTIC
   1646 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
   1647 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1648 		if (dc->dc_dev == dev)
   1649 			panic("config_defer: deferred twice");
   1650 	}
   1651 #endif
   1652 
   1653 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1654 	if (dc == NULL)
   1655 		panic("config_defer: unable to allocate callback");
   1656 
   1657 	dc->dc_dev = dev;
   1658 	dc->dc_func = func;
   1659 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1660 	config_pending_incr();
   1661 }
   1662 
   1663 /*
   1664  * Defer some autoconfiguration for a device until after interrupts
   1665  * are enabled.
   1666  */
   1667 void
   1668 config_interrupts(device_t dev, void (*func)(device_t))
   1669 {
   1670 	struct deferred_config *dc;
   1671 
   1672 	/*
   1673 	 * If interrupts are enabled, callback now.
   1674 	 */
   1675 	if (cold == 0) {
   1676 		(*func)(dev);
   1677 		return;
   1678 	}
   1679 
   1680 #ifdef DIAGNOSTIC
   1681 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
   1682 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1683 		if (dc->dc_dev == dev)
   1684 			panic("config_interrupts: deferred twice");
   1685 	}
   1686 #endif
   1687 
   1688 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1689 	if (dc == NULL)
   1690 		panic("config_interrupts: unable to allocate callback");
   1691 
   1692 	dc->dc_dev = dev;
   1693 	dc->dc_func = func;
   1694 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   1695 	config_pending_incr();
   1696 }
   1697 
   1698 /*
   1699  * Process a deferred configuration queue.
   1700  */
   1701 static void
   1702 config_process_deferred(struct deferred_config_head *queue,
   1703     device_t parent)
   1704 {
   1705 	struct deferred_config *dc, *ndc;
   1706 
   1707 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   1708 		ndc = TAILQ_NEXT(dc, dc_queue);
   1709 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   1710 			TAILQ_REMOVE(queue, dc, dc_queue);
   1711 			(*dc->dc_func)(dc->dc_dev);
   1712 			kmem_free(dc, sizeof(*dc));
   1713 			config_pending_decr();
   1714 		}
   1715 	}
   1716 }
   1717 
   1718 /*
   1719  * Manipulate the config_pending semaphore.
   1720  */
   1721 void
   1722 config_pending_incr(void)
   1723 {
   1724 
   1725 	mutex_enter(&config_misc_lock);
   1726 	config_pending++;
   1727 	mutex_exit(&config_misc_lock);
   1728 }
   1729 
   1730 void
   1731 config_pending_decr(void)
   1732 {
   1733 
   1734 #ifdef DIAGNOSTIC
   1735 	if (config_pending == 0)
   1736 		panic("config_pending_decr: config_pending == 0");
   1737 #endif
   1738 	mutex_enter(&config_misc_lock);
   1739 	config_pending--;
   1740 	if (config_pending == 0)
   1741 		cv_broadcast(&config_misc_cv);
   1742 	mutex_exit(&config_misc_lock);
   1743 }
   1744 
   1745 /*
   1746  * Register a "finalization" routine.  Finalization routines are
   1747  * called iteratively once all real devices have been found during
   1748  * autoconfiguration, for as long as any one finalizer has done
   1749  * any work.
   1750  */
   1751 int
   1752 config_finalize_register(device_t dev, int (*fn)(device_t))
   1753 {
   1754 	struct finalize_hook *f;
   1755 
   1756 	/*
   1757 	 * If finalization has already been done, invoke the
   1758 	 * callback function now.
   1759 	 */
   1760 	if (config_finalize_done) {
   1761 		while ((*fn)(dev) != 0)
   1762 			/* loop */ ;
   1763 	}
   1764 
   1765 	/* Ensure this isn't already on the list. */
   1766 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   1767 		if (f->f_func == fn && f->f_dev == dev)
   1768 			return EEXIST;
   1769 	}
   1770 
   1771 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   1772 	f->f_func = fn;
   1773 	f->f_dev = dev;
   1774 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   1775 
   1776 	return 0;
   1777 }
   1778 
   1779 void
   1780 config_finalize(void)
   1781 {
   1782 	struct finalize_hook *f;
   1783 	struct pdevinit *pdev;
   1784 	extern struct pdevinit pdevinit[];
   1785 	int errcnt, rv;
   1786 
   1787 	/*
   1788 	 * Now that device driver threads have been created, wait for
   1789 	 * them to finish any deferred autoconfiguration.
   1790 	 */
   1791 	mutex_enter(&config_misc_lock);
   1792 	while (config_pending != 0)
   1793 		cv_wait(&config_misc_cv, &config_misc_lock);
   1794 	mutex_exit(&config_misc_lock);
   1795 
   1796 	KERNEL_LOCK(1, NULL);
   1797 
   1798 	/* Attach pseudo-devices. */
   1799 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   1800 		(*pdev->pdev_attach)(pdev->pdev_count);
   1801 
   1802 	/* Run the hooks until none of them does any work. */
   1803 	do {
   1804 		rv = 0;
   1805 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   1806 			rv |= (*f->f_func)(f->f_dev);
   1807 	} while (rv != 0);
   1808 
   1809 	config_finalize_done = 1;
   1810 
   1811 	/* Now free all the hooks. */
   1812 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   1813 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   1814 		kmem_free(f, sizeof(*f));
   1815 	}
   1816 
   1817 	KERNEL_UNLOCK_ONE(NULL);
   1818 
   1819 	errcnt = aprint_get_error_count();
   1820 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   1821 	    (boothowto & AB_VERBOSE) == 0) {
   1822 		mutex_enter(&config_misc_lock);
   1823 		if (config_do_twiddle) {
   1824 			config_do_twiddle = 0;
   1825 			printf_nolog(" done.\n");
   1826 		}
   1827 		mutex_exit(&config_misc_lock);
   1828 		if (errcnt != 0) {
   1829 			printf("WARNING: %d error%s while detecting hardware; "
   1830 			    "check system log.\n", errcnt,
   1831 			    errcnt == 1 ? "" : "s");
   1832 		}
   1833 	}
   1834 }
   1835 
   1836 void
   1837 config_twiddle_init()
   1838 {
   1839 
   1840 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   1841 		config_do_twiddle = 1;
   1842 	}
   1843 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   1844 }
   1845 
   1846 void
   1847 config_twiddle_fn(void *cookie)
   1848 {
   1849 
   1850 	mutex_enter(&config_misc_lock);
   1851 	if (config_do_twiddle) {
   1852 		twiddle();
   1853 		callout_schedule(&config_twiddle_ch, mstohz(100));
   1854 	}
   1855 	mutex_exit(&config_misc_lock);
   1856 }
   1857 
   1858 /*
   1859  * device_lookup:
   1860  *
   1861  *	Look up a device instance for a given driver.
   1862  */
   1863 device_t
   1864 device_lookup(cfdriver_t cd, int unit)
   1865 {
   1866 
   1867 	if (unit < 0 || unit >= cd->cd_ndevs)
   1868 		return NULL;
   1869 
   1870 	return cd->cd_devs[unit];
   1871 }
   1872 
   1873 /*
   1874  * device_lookup:
   1875  *
   1876  *	Look up a device instance for a given driver.
   1877  */
   1878 void *
   1879 device_lookup_private(cfdriver_t cd, int unit)
   1880 {
   1881 	device_t dv;
   1882 
   1883 	if (unit < 0 || unit >= cd->cd_ndevs)
   1884 		return NULL;
   1885 
   1886 	if ((dv = cd->cd_devs[unit]) == NULL)
   1887 		return NULL;
   1888 
   1889 	return dv->dv_private;
   1890 }
   1891 
   1892 /*
   1893  * Accessor functions for the device_t type.
   1894  */
   1895 devclass_t
   1896 device_class(device_t dev)
   1897 {
   1898 
   1899 	return dev->dv_class;
   1900 }
   1901 
   1902 cfdata_t
   1903 device_cfdata(device_t dev)
   1904 {
   1905 
   1906 	return dev->dv_cfdata;
   1907 }
   1908 
   1909 cfdriver_t
   1910 device_cfdriver(device_t dev)
   1911 {
   1912 
   1913 	return dev->dv_cfdriver;
   1914 }
   1915 
   1916 cfattach_t
   1917 device_cfattach(device_t dev)
   1918 {
   1919 
   1920 	return dev->dv_cfattach;
   1921 }
   1922 
   1923 int
   1924 device_unit(device_t dev)
   1925 {
   1926 
   1927 	return dev->dv_unit;
   1928 }
   1929 
   1930 const char *
   1931 device_xname(device_t dev)
   1932 {
   1933 
   1934 	return dev->dv_xname;
   1935 }
   1936 
   1937 device_t
   1938 device_parent(device_t dev)
   1939 {
   1940 
   1941 	return dev->dv_parent;
   1942 }
   1943 
   1944 bool
   1945 device_is_active(device_t dev)
   1946 {
   1947 	int active_flags;
   1948 
   1949 	active_flags = DVF_ACTIVE;
   1950 	active_flags |= DVF_CLASS_SUSPENDED;
   1951 	active_flags |= DVF_DRIVER_SUSPENDED;
   1952 	active_flags |= DVF_BUS_SUSPENDED;
   1953 
   1954 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
   1955 }
   1956 
   1957 bool
   1958 device_is_enabled(device_t dev)
   1959 {
   1960 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
   1961 }
   1962 
   1963 bool
   1964 device_has_power(device_t dev)
   1965 {
   1966 	int active_flags;
   1967 
   1968 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
   1969 
   1970 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
   1971 }
   1972 
   1973 int
   1974 device_locator(device_t dev, u_int locnum)
   1975 {
   1976 
   1977 	KASSERT(dev->dv_locators != NULL);
   1978 	return dev->dv_locators[locnum];
   1979 }
   1980 
   1981 void *
   1982 device_private(device_t dev)
   1983 {
   1984 
   1985 	/*
   1986 	 * The reason why device_private(NULL) is allowed is to simplify the
   1987 	 * work of a lot of userspace request handlers (i.e., c/bdev
   1988 	 * handlers) which grab cfdriver_t->cd_units[n].
   1989 	 * It avoids having them test for it to be NULL and only then calling
   1990 	 * device_private.
   1991 	 */
   1992 	return dev == NULL ? NULL : dev->dv_private;
   1993 }
   1994 
   1995 prop_dictionary_t
   1996 device_properties(device_t dev)
   1997 {
   1998 
   1999 	return dev->dv_properties;
   2000 }
   2001 
   2002 /*
   2003  * device_is_a:
   2004  *
   2005  *	Returns true if the device is an instance of the specified
   2006  *	driver.
   2007  */
   2008 bool
   2009 device_is_a(device_t dev, const char *dname)
   2010 {
   2011 
   2012 	return strcmp(dev->dv_cfdriver->cd_name, dname) == 0;
   2013 }
   2014 
   2015 /*
   2016  * device_find_by_xname:
   2017  *
   2018  *	Returns the device of the given name or NULL if it doesn't exist.
   2019  */
   2020 device_t
   2021 device_find_by_xname(const char *name)
   2022 {
   2023 	device_t dv;
   2024 	deviter_t di;
   2025 
   2026 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2027 		if (strcmp(device_xname(dv), name) == 0)
   2028 			break;
   2029 	}
   2030 	deviter_release(&di);
   2031 
   2032 	return dv;
   2033 }
   2034 
   2035 /*
   2036  * device_find_by_driver_unit:
   2037  *
   2038  *	Returns the device of the given driver name and unit or
   2039  *	NULL if it doesn't exist.
   2040  */
   2041 device_t
   2042 device_find_by_driver_unit(const char *name, int unit)
   2043 {
   2044 	struct cfdriver *cd;
   2045 
   2046 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2047 		return NULL;
   2048 	return device_lookup(cd, unit);
   2049 }
   2050 
   2051 /*
   2052  * Power management related functions.
   2053  */
   2054 
   2055 bool
   2056 device_pmf_is_registered(device_t dev)
   2057 {
   2058 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2059 }
   2060 
   2061 bool
   2062 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
   2063 {
   2064 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2065 		return true;
   2066 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2067 		return false;
   2068 	if (*dev->dv_driver_suspend != NULL &&
   2069 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
   2070 		return false;
   2071 
   2072 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2073 	return true;
   2074 }
   2075 
   2076 bool
   2077 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
   2078 {
   2079 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2080 		return true;
   2081 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2082 		return false;
   2083 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
   2084 		return false;
   2085 	if (*dev->dv_driver_resume != NULL &&
   2086 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
   2087 		return false;
   2088 
   2089 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2090 	return true;
   2091 }
   2092 
   2093 bool
   2094 device_pmf_driver_shutdown(device_t dev, int how)
   2095 {
   2096 
   2097 	if (*dev->dv_driver_shutdown != NULL &&
   2098 	    !(*dev->dv_driver_shutdown)(dev, how))
   2099 		return false;
   2100 	return true;
   2101 }
   2102 
   2103 bool
   2104 device_pmf_driver_register(device_t dev,
   2105     bool (*suspend)(device_t PMF_FN_PROTO),
   2106     bool (*resume)(device_t PMF_FN_PROTO),
   2107     bool (*shutdown)(device_t, int))
   2108 {
   2109 	dev->dv_driver_suspend = suspend;
   2110 	dev->dv_driver_resume = resume;
   2111 	dev->dv_driver_shutdown = shutdown;
   2112 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2113 	return true;
   2114 }
   2115 
   2116 static const char *
   2117 curlwp_name(void)
   2118 {
   2119 	if (curlwp->l_name != NULL)
   2120 		return curlwp->l_name;
   2121 	else
   2122 		return curlwp->l_proc->p_comm;
   2123 }
   2124 
   2125 void
   2126 device_pmf_driver_deregister(device_t dev)
   2127 {
   2128 	device_lock_t dvl = device_getlock(dev);
   2129 
   2130 	dev->dv_driver_suspend = NULL;
   2131 	dev->dv_driver_resume = NULL;
   2132 
   2133 	mutex_enter(&dvl->dvl_mtx);
   2134 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2135 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2136 		/* Wake a thread that waits for the lock.  That
   2137 		 * thread will fail to acquire the lock, and then
   2138 		 * it will wake the next thread that waits for the
   2139 		 * lock, or else it will wake us.
   2140 		 */
   2141 		cv_signal(&dvl->dvl_cv);
   2142 		pmflock_debug(dev, __func__, __LINE__);
   2143 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2144 		pmflock_debug(dev, __func__, __LINE__);
   2145 	}
   2146 	mutex_exit(&dvl->dvl_mtx);
   2147 }
   2148 
   2149 bool
   2150 device_pmf_driver_child_register(device_t dev)
   2151 {
   2152 	device_t parent = device_parent(dev);
   2153 
   2154 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2155 		return true;
   2156 	return (*parent->dv_driver_child_register)(dev);
   2157 }
   2158 
   2159 void
   2160 device_pmf_driver_set_child_register(device_t dev,
   2161     bool (*child_register)(device_t))
   2162 {
   2163 	dev->dv_driver_child_register = child_register;
   2164 }
   2165 
   2166 void
   2167 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
   2168 {
   2169 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2170 	if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
   2171 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
   2172 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2173 }
   2174 
   2175 bool
   2176 device_is_self_suspended(device_t dev)
   2177 {
   2178 	return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
   2179 }
   2180 
   2181 void
   2182 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
   2183 {
   2184 	bool self = (flags & PMF_F_SELF) != 0;
   2185 
   2186 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2187 
   2188 	if (!self)
   2189 		dev->dv_flags &= ~DVF_SELF_SUSPENDED;
   2190 	else if (device_is_active(dev))
   2191 		dev->dv_flags |= DVF_SELF_SUSPENDED;
   2192 
   2193 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2194 }
   2195 
   2196 static void
   2197 pmflock_debug(device_t dev, const char *func, int line)
   2198 {
   2199 	device_lock_t dvl = device_getlock(dev);
   2200 
   2201 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
   2202 	    func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
   2203 	    dev->dv_flags);
   2204 }
   2205 
   2206 static void
   2207 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
   2208 {
   2209 	device_lock_t dvl = device_getlock(dev);
   2210 
   2211 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x "
   2212 	    "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
   2213 	    dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags PMF_FN_CALL);
   2214 }
   2215 
   2216 static bool
   2217 device_pmf_lock1(device_t dev PMF_FN_ARGS)
   2218 {
   2219 	device_lock_t dvl = device_getlock(dev);
   2220 
   2221 	while (device_pmf_is_registered(dev) &&
   2222 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2223 		dvl->dvl_nwait++;
   2224 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2225 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2226 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2227 		dvl->dvl_nwait--;
   2228 	}
   2229 	if (!device_pmf_is_registered(dev)) {
   2230 		pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2231 		/* We could not acquire the lock, but some other thread may
   2232 		 * wait for it, also.  Wake that thread.
   2233 		 */
   2234 		cv_signal(&dvl->dvl_cv);
   2235 		return false;
   2236 	}
   2237 	dvl->dvl_nlock++;
   2238 	dvl->dvl_holder = curlwp;
   2239 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2240 	return true;
   2241 }
   2242 
   2243 bool
   2244 device_pmf_lock(device_t dev PMF_FN_ARGS)
   2245 {
   2246 	bool rc;
   2247 	device_lock_t dvl = device_getlock(dev);
   2248 
   2249 	mutex_enter(&dvl->dvl_mtx);
   2250 	rc = device_pmf_lock1(dev PMF_FN_CALL);
   2251 	mutex_exit(&dvl->dvl_mtx);
   2252 
   2253 	return rc;
   2254 }
   2255 
   2256 void
   2257 device_pmf_unlock(device_t dev PMF_FN_ARGS)
   2258 {
   2259 	device_lock_t dvl = device_getlock(dev);
   2260 
   2261 	KASSERT(dvl->dvl_nlock > 0);
   2262 	mutex_enter(&dvl->dvl_mtx);
   2263 	if (--dvl->dvl_nlock == 0)
   2264 		dvl->dvl_holder = NULL;
   2265 	cv_signal(&dvl->dvl_cv);
   2266 	pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
   2267 	mutex_exit(&dvl->dvl_mtx);
   2268 }
   2269 
   2270 device_lock_t
   2271 device_getlock(device_t dev)
   2272 {
   2273 	return &dev->dv_lock;
   2274 }
   2275 
   2276 void *
   2277 device_pmf_bus_private(device_t dev)
   2278 {
   2279 	return dev->dv_bus_private;
   2280 }
   2281 
   2282 bool
   2283 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
   2284 {
   2285 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2286 		return true;
   2287 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2288 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2289 		return false;
   2290 	if (*dev->dv_bus_suspend != NULL &&
   2291 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
   2292 		return false;
   2293 
   2294 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2295 	return true;
   2296 }
   2297 
   2298 bool
   2299 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
   2300 {
   2301 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2302 		return true;
   2303 	if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
   2304 		return false;
   2305 	if (*dev->dv_bus_resume != NULL &&
   2306 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
   2307 		return false;
   2308 
   2309 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2310 	return true;
   2311 }
   2312 
   2313 bool
   2314 device_pmf_bus_shutdown(device_t dev, int how)
   2315 {
   2316 
   2317 	if (*dev->dv_bus_shutdown != NULL &&
   2318 	    !(*dev->dv_bus_shutdown)(dev, how))
   2319 		return false;
   2320 	return true;
   2321 }
   2322 
   2323 void
   2324 device_pmf_bus_register(device_t dev, void *priv,
   2325     bool (*suspend)(device_t PMF_FN_PROTO),
   2326     bool (*resume)(device_t PMF_FN_PROTO),
   2327     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2328 {
   2329 	dev->dv_bus_private = priv;
   2330 	dev->dv_bus_resume = resume;
   2331 	dev->dv_bus_suspend = suspend;
   2332 	dev->dv_bus_shutdown = shutdown;
   2333 	dev->dv_bus_deregister = deregister;
   2334 }
   2335 
   2336 void
   2337 device_pmf_bus_deregister(device_t dev)
   2338 {
   2339 	if (dev->dv_bus_deregister == NULL)
   2340 		return;
   2341 	(*dev->dv_bus_deregister)(dev);
   2342 	dev->dv_bus_private = NULL;
   2343 	dev->dv_bus_suspend = NULL;
   2344 	dev->dv_bus_resume = NULL;
   2345 	dev->dv_bus_deregister = NULL;
   2346 }
   2347 
   2348 void *
   2349 device_pmf_class_private(device_t dev)
   2350 {
   2351 	return dev->dv_class_private;
   2352 }
   2353 
   2354 bool
   2355 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
   2356 {
   2357 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2358 		return true;
   2359 	if (*dev->dv_class_suspend != NULL &&
   2360 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
   2361 		return false;
   2362 
   2363 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2364 	return true;
   2365 }
   2366 
   2367 bool
   2368 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
   2369 {
   2370 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2371 		return true;
   2372 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2373 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2374 		return false;
   2375 	if (*dev->dv_class_resume != NULL &&
   2376 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
   2377 		return false;
   2378 
   2379 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2380 	return true;
   2381 }
   2382 
   2383 void
   2384 device_pmf_class_register(device_t dev, void *priv,
   2385     bool (*suspend)(device_t PMF_FN_PROTO),
   2386     bool (*resume)(device_t PMF_FN_PROTO),
   2387     void (*deregister)(device_t))
   2388 {
   2389 	dev->dv_class_private = priv;
   2390 	dev->dv_class_suspend = suspend;
   2391 	dev->dv_class_resume = resume;
   2392 	dev->dv_class_deregister = deregister;
   2393 }
   2394 
   2395 void
   2396 device_pmf_class_deregister(device_t dev)
   2397 {
   2398 	if (dev->dv_class_deregister == NULL)
   2399 		return;
   2400 	(*dev->dv_class_deregister)(dev);
   2401 	dev->dv_class_private = NULL;
   2402 	dev->dv_class_suspend = NULL;
   2403 	dev->dv_class_resume = NULL;
   2404 	dev->dv_class_deregister = NULL;
   2405 }
   2406 
   2407 bool
   2408 device_active(device_t dev, devactive_t type)
   2409 {
   2410 	size_t i;
   2411 
   2412 	if (dev->dv_activity_count == 0)
   2413 		return false;
   2414 
   2415 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2416 		if (dev->dv_activity_handlers[i] == NULL)
   2417 			break;
   2418 		(*dev->dv_activity_handlers[i])(dev, type);
   2419 	}
   2420 
   2421 	return true;
   2422 }
   2423 
   2424 bool
   2425 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2426 {
   2427 	void (**new_handlers)(device_t, devactive_t);
   2428 	void (**old_handlers)(device_t, devactive_t);
   2429 	size_t i, old_size, new_size;
   2430 	int s;
   2431 
   2432 	old_handlers = dev->dv_activity_handlers;
   2433 	old_size = dev->dv_activity_count;
   2434 
   2435 	for (i = 0; i < old_size; ++i) {
   2436 		KASSERT(old_handlers[i] != handler);
   2437 		if (old_handlers[i] == NULL) {
   2438 			old_handlers[i] = handler;
   2439 			return true;
   2440 		}
   2441 	}
   2442 
   2443 	new_size = old_size + 4;
   2444 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
   2445 
   2446 	memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
   2447 	new_handlers[old_size] = handler;
   2448 	memset(new_handlers + old_size + 1, 0,
   2449 	    sizeof(int [new_size - (old_size+1)]));
   2450 
   2451 	s = splhigh();
   2452 	dev->dv_activity_count = new_size;
   2453 	dev->dv_activity_handlers = new_handlers;
   2454 	splx(s);
   2455 
   2456 	if (old_handlers != NULL)
   2457 		kmem_free(old_handlers, sizeof(void * [old_size]));
   2458 
   2459 	return true;
   2460 }
   2461 
   2462 void
   2463 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2464 {
   2465 	void (**old_handlers)(device_t, devactive_t);
   2466 	size_t i, old_size;
   2467 	int s;
   2468 
   2469 	old_handlers = dev->dv_activity_handlers;
   2470 	old_size = dev->dv_activity_count;
   2471 
   2472 	for (i = 0; i < old_size; ++i) {
   2473 		if (old_handlers[i] == handler)
   2474 			break;
   2475 		if (old_handlers[i] == NULL)
   2476 			return; /* XXX panic? */
   2477 	}
   2478 
   2479 	if (i == old_size)
   2480 		return; /* XXX panic? */
   2481 
   2482 	for (; i < old_size - 1; ++i) {
   2483 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   2484 			continue;
   2485 
   2486 		if (i == 0) {
   2487 			s = splhigh();
   2488 			dev->dv_activity_count = 0;
   2489 			dev->dv_activity_handlers = NULL;
   2490 			splx(s);
   2491 			kmem_free(old_handlers, sizeof(void *[old_size]));
   2492 		}
   2493 		return;
   2494 	}
   2495 	old_handlers[i] = NULL;
   2496 }
   2497 
   2498 /*
   2499  * Device Iteration
   2500  *
   2501  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2502  *     each device_t's in the device tree.
   2503  *
   2504  * deviter_init(di, flags): initialize the device iterator `di'
   2505  *     to "walk" the device tree.  deviter_next(di) will return
   2506  *     the first device_t in the device tree, or NULL if there are
   2507  *     no devices.
   2508  *
   2509  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2510  *     caller intends to modify the device tree by calling
   2511  *     config_detach(9) on devices in the order that the iterator
   2512  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2513  *     nearest the "root" of the device tree to be returned, first;
   2514  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2515  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2516  *     indicating both that deviter_init() should not respect any
   2517  *     locks on the device tree, and that deviter_next(di) may run
   2518  *     in more than one LWP before the walk has finished.
   2519  *
   2520  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2521  *     once.
   2522  *
   2523  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2524  *
   2525  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2526  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2527  *
   2528  * deviter_first(di, flags): initialize the device iterator `di'
   2529  *     and return the first device_t in the device tree, or NULL
   2530  *     if there are no devices.  The statement
   2531  *
   2532  *         dv = deviter_first(di);
   2533  *
   2534  *     is shorthand for
   2535  *
   2536  *         deviter_init(di);
   2537  *         dv = deviter_next(di);
   2538  *
   2539  * deviter_next(di): return the next device_t in the device tree,
   2540  *     or NULL if there are no more devices.  deviter_next(di)
   2541  *     is undefined if `di' was not initialized with deviter_init() or
   2542  *     deviter_first().
   2543  *
   2544  * deviter_release(di): stops iteration (subsequent calls to
   2545  *     deviter_next() will return NULL), releases any locks and
   2546  *     resources held by the device iterator.
   2547  *
   2548  * Device iteration does not return device_t's in any particular
   2549  * order.  An iterator will never return the same device_t twice.
   2550  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2551  * is called repeatedly on the same `di', it will eventually return
   2552  * NULL.  It is ok to attach/detach devices during device iteration.
   2553  */
   2554 void
   2555 deviter_init(deviter_t *di, deviter_flags_t flags)
   2556 {
   2557 	device_t dv;
   2558 	bool rw;
   2559 
   2560 	mutex_enter(&alldevs_mtx);
   2561 	if ((flags & DEVITER_F_SHUTDOWN) != 0) {
   2562 		flags |= DEVITER_F_RW;
   2563 		alldevs_nwrite++;
   2564 		alldevs_writer = NULL;
   2565 		alldevs_nread = 0;
   2566 	} else {
   2567 		rw = (flags & DEVITER_F_RW) != 0;
   2568 
   2569 		if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   2570 			;
   2571 		else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
   2572 		       (rw && alldevs_nread != 0))
   2573 			cv_wait(&alldevs_cv, &alldevs_mtx);
   2574 
   2575 		if (rw) {
   2576 			if (alldevs_nwrite++ == 0)
   2577 				alldevs_writer = curlwp;
   2578 		} else
   2579 			alldevs_nread++;
   2580 	}
   2581 	mutex_exit(&alldevs_mtx);
   2582 
   2583 	memset(di, 0, sizeof(*di));
   2584 
   2585 	di->di_flags = flags;
   2586 
   2587 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2588 	case DEVITER_F_LEAVES_FIRST:
   2589 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2590 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2591 		break;
   2592 	case DEVITER_F_ROOT_FIRST:
   2593 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2594 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2595 		break;
   2596 	default:
   2597 		break;
   2598 	}
   2599 
   2600 	deviter_reinit(di);
   2601 }
   2602 
   2603 static void
   2604 deviter_reinit(deviter_t *di)
   2605 {
   2606 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2607 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2608 	else
   2609 		di->di_prev = TAILQ_FIRST(&alldevs);
   2610 }
   2611 
   2612 device_t
   2613 deviter_first(deviter_t *di, deviter_flags_t flags)
   2614 {
   2615 	deviter_init(di, flags);
   2616 	return deviter_next(di);
   2617 }
   2618 
   2619 static device_t
   2620 deviter_next1(deviter_t *di)
   2621 {
   2622 	device_t dv;
   2623 
   2624 	dv = di->di_prev;
   2625 
   2626 	if (dv == NULL)
   2627 		;
   2628 	else if ((di->di_flags & DEVITER_F_RW) != 0)
   2629 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2630 	else
   2631 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2632 
   2633 	return dv;
   2634 }
   2635 
   2636 device_t
   2637 deviter_next(deviter_t *di)
   2638 {
   2639 	device_t dv = NULL;
   2640 
   2641 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2642 	case 0:
   2643 		return deviter_next1(di);
   2644 	case DEVITER_F_LEAVES_FIRST:
   2645 		while (di->di_curdepth >= 0) {
   2646 			if ((dv = deviter_next1(di)) == NULL) {
   2647 				di->di_curdepth--;
   2648 				deviter_reinit(di);
   2649 			} else if (dv->dv_depth == di->di_curdepth)
   2650 				break;
   2651 		}
   2652 		return dv;
   2653 	case DEVITER_F_ROOT_FIRST:
   2654 		while (di->di_curdepth <= di->di_maxdepth) {
   2655 			if ((dv = deviter_next1(di)) == NULL) {
   2656 				di->di_curdepth++;
   2657 				deviter_reinit(di);
   2658 			} else if (dv->dv_depth == di->di_curdepth)
   2659 				break;
   2660 		}
   2661 		return dv;
   2662 	default:
   2663 		return NULL;
   2664 	}
   2665 }
   2666 
   2667 void
   2668 deviter_release(deviter_t *di)
   2669 {
   2670 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2671 
   2672 	mutex_enter(&alldevs_mtx);
   2673 	if (!rw) {
   2674 		--alldevs_nread;
   2675 		cv_signal(&alldevs_cv);
   2676 	} else if (alldevs_nwrite > 0 && alldevs_writer == NULL) {
   2677 		--alldevs_nwrite;	/* shutting down: do not signal */
   2678 	} else {
   2679 		KASSERT(alldevs_nwrite != 0);
   2680 		if (--alldevs_nwrite == 0)
   2681 			alldevs_writer = NULL;
   2682 		cv_signal(&alldevs_cv);
   2683 	}
   2684 	mutex_exit(&alldevs_mtx);
   2685 }
   2686 
   2687 SYSCTL_SETUP(sysctl_detach_setup, "sysctl detach setup")
   2688 {
   2689 	const struct sysctlnode *node = NULL;
   2690 
   2691 	sysctl_createv(clog, 0, NULL, &node,
   2692 		CTLFLAG_PERMANENT,
   2693 		CTLTYPE_NODE, "kern", NULL,
   2694 		NULL, 0, NULL, 0,
   2695 		CTL_KERN, CTL_EOL);
   2696 
   2697 	if (node == NULL)
   2698 		return;
   2699 
   2700 	sysctl_createv(clog, 0, &node, NULL,
   2701 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   2702 		CTLTYPE_INT, "detachall",
   2703 		SYSCTL_DESCR("Detach all devices at shutdown"),
   2704 		NULL, 0, &detachall, 0,
   2705 		CTL_CREATE, CTL_EOL);
   2706 }
   2707