subr_autoconf.c revision 1.180 1 /* $NetBSD: subr_autoconf.c,v 1.180 2009/09/03 15:20:08 pooka Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.180 2009/09/03 15:20:08 pooka Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/malloc.h>
93 #include <sys/kmem.h>
94 #include <sys/systm.h>
95 #include <sys/kernel.h>
96 #include <sys/errno.h>
97 #include <sys/proc.h>
98 #include <sys/reboot.h>
99 #include <sys/kthread.h>
100 #include <sys/buf.h>
101 #include <sys/dirent.h>
102 #include <sys/vnode.h>
103 #include <sys/mount.h>
104 #include <sys/namei.h>
105 #include <sys/unistd.h>
106 #include <sys/fcntl.h>
107 #include <sys/lockf.h>
108 #include <sys/callout.h>
109 #include <sys/devmon.h>
110 #include <sys/cpu.h>
111 #include <sys/sysctl.h>
112
113 #include <sys/disk.h>
114
115 #include <machine/limits.h>
116
117 #if defined(__i386__) && defined(_KERNEL_OPT)
118 #include "opt_splash.h"
119 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
120 #include <dev/splash/splash.h>
121 extern struct splash_progress *splash_progress_state;
122 #endif
123 #endif
124
125 /*
126 * Autoconfiguration subroutines.
127 */
128
129 /*
130 * ioconf.c exports exactly two names: cfdata and cfroots. All system
131 * devices and drivers are found via these tables.
132 */
133 extern struct cfdata cfdata[];
134 extern const short cfroots[];
135
136 /*
137 * List of all cfdriver structures. We use this to detect duplicates
138 * when other cfdrivers are loaded.
139 */
140 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
141 extern struct cfdriver * const cfdriver_list_initial[];
142
143 /*
144 * Initial list of cfattach's.
145 */
146 extern const struct cfattachinit cfattachinit[];
147
148 /*
149 * List of cfdata tables. We always have one such list -- the one
150 * built statically when the kernel was configured.
151 */
152 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
153 static struct cftable initcftable;
154
155 #define ROOT ((device_t)NULL)
156
157 struct matchinfo {
158 cfsubmatch_t fn;
159 struct device *parent;
160 const int *locs;
161 void *aux;
162 struct cfdata *match;
163 int pri;
164 };
165
166 static char *number(char *, int);
167 static void mapply(struct matchinfo *, cfdata_t);
168 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
169 static void config_devdealloc(device_t);
170 static void config_makeroom(int, struct cfdriver *);
171 static void config_devlink(device_t);
172 static void config_devunlink(device_t);
173
174 static void pmflock_debug(device_t, const char *, int);
175 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
176
177 static device_t deviter_next1(deviter_t *);
178 static void deviter_reinit(deviter_t *);
179
180 struct deferred_config {
181 TAILQ_ENTRY(deferred_config) dc_queue;
182 device_t dc_dev;
183 void (*dc_func)(device_t);
184 };
185
186 TAILQ_HEAD(deferred_config_head, deferred_config);
187
188 struct deferred_config_head deferred_config_queue =
189 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
190 struct deferred_config_head interrupt_config_queue =
191 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
192 int interrupt_config_threads = 8;
193
194 static void config_process_deferred(struct deferred_config_head *, device_t);
195
196 /* Hooks to finalize configuration once all real devices have been found. */
197 struct finalize_hook {
198 TAILQ_ENTRY(finalize_hook) f_list;
199 int (*f_func)(device_t);
200 device_t f_dev;
201 };
202 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
203 TAILQ_HEAD_INITIALIZER(config_finalize_list);
204 static int config_finalize_done;
205
206 /* list of all devices */
207 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
208 kcondvar_t alldevs_cv;
209 kmutex_t alldevs_mtx;
210 static int alldevs_nread = 0;
211 static int alldevs_nwrite = 0;
212 static lwp_t *alldevs_writer = NULL;
213
214 static int config_pending; /* semaphore for mountroot */
215 static kmutex_t config_misc_lock;
216 static kcondvar_t config_misc_cv;
217
218 static int detachall = 0;
219
220 #define STREQ(s1, s2) \
221 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
222
223 static int config_initialized; /* config_init() has been called. */
224
225 static int config_do_twiddle;
226 static callout_t config_twiddle_ch;
227
228 struct vnode *
229 opendisk(struct device *dv)
230 {
231 int bmajor, bminor;
232 struct vnode *tmpvn;
233 int error;
234 dev_t dev;
235
236 /*
237 * Lookup major number for disk block device.
238 */
239 bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
240 if (bmajor == -1)
241 return NULL;
242
243 bminor = minor(device_unit(dv));
244 /*
245 * Fake a temporary vnode for the disk, open it, and read
246 * and hash the sectors.
247 */
248 dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
249 MAKEDISKDEV(bmajor, bminor, RAW_PART);
250 if (bdevvp(dev, &tmpvn))
251 panic("%s: can't alloc vnode for %s", __func__,
252 device_xname(dv));
253 error = VOP_OPEN(tmpvn, FREAD, NOCRED);
254 if (error) {
255 #ifndef DEBUG
256 /*
257 * Ignore errors caused by missing device, partition,
258 * or medium.
259 */
260 if (error != ENXIO && error != ENODEV)
261 #endif
262 printf("%s: can't open dev %s (%d)\n",
263 __func__, device_xname(dv), error);
264 vput(tmpvn);
265 return NULL;
266 }
267
268 return tmpvn;
269 }
270
271 int
272 config_handle_wedges(struct device *dv, int par)
273 {
274 struct dkwedge_list wl;
275 struct dkwedge_info *wi;
276 struct vnode *vn;
277 char diskname[16];
278 int i, error;
279
280 if ((vn = opendisk(dv)) == NULL)
281 return -1;
282
283 wl.dkwl_bufsize = sizeof(*wi) * 16;
284 wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
285
286 error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
287 VOP_CLOSE(vn, FREAD, NOCRED);
288 vput(vn);
289 if (error) {
290 #ifdef DEBUG_WEDGE
291 printf("%s: List wedges returned %d\n",
292 device_xname(dv), error);
293 #endif
294 free(wi, M_TEMP);
295 return -1;
296 }
297
298 #ifdef DEBUG_WEDGE
299 printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
300 wl.dkwl_nwedges, wl.dkwl_ncopied);
301 #endif
302 snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
303 par + 'a');
304
305 for (i = 0; i < wl.dkwl_ncopied; i++) {
306 #ifdef DEBUG_WEDGE
307 printf("%s: Looking for %s in %s\n",
308 device_xname(dv), diskname, wi[i].dkw_wname);
309 #endif
310 if (strcmp(wi[i].dkw_wname, diskname) == 0)
311 break;
312 }
313
314 if (i == wl.dkwl_ncopied) {
315 #ifdef DEBUG_WEDGE
316 printf("%s: Cannot find wedge with parent %s\n",
317 device_xname(dv), diskname);
318 #endif
319 free(wi, M_TEMP);
320 return -1;
321 }
322
323 #ifdef DEBUG_WEDGE
324 printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
325 device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
326 (unsigned long long)wi[i].dkw_offset,
327 (unsigned long long)wi[i].dkw_size);
328 #endif
329 dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
330 free(wi, M_TEMP);
331 return 0;
332 }
333
334 /*
335 * Initialize the autoconfiguration data structures. Normally this
336 * is done by configure(), but some platforms need to do this very
337 * early (to e.g. initialize the console).
338 */
339 void
340 config_init(void)
341 {
342 const struct cfattachinit *cfai;
343 int i, j;
344
345 if (config_initialized)
346 return;
347
348 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
349 cv_init(&alldevs_cv, "alldevs");
350
351 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
352 cv_init(&config_misc_cv, "cfgmisc");
353
354 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
355
356 /* allcfdrivers is statically initialized. */
357 for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
358 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
359 panic("configure: duplicate `%s' drivers",
360 cfdriver_list_initial[i]->cd_name);
361 }
362
363 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
364 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
365 if (config_cfattach_attach(cfai->cfai_name,
366 cfai->cfai_list[j]) != 0)
367 panic("configure: duplicate `%s' attachment "
368 "of `%s' driver",
369 cfai->cfai_list[j]->ca_name,
370 cfai->cfai_name);
371 }
372 }
373
374 initcftable.ct_cfdata = cfdata;
375 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
376
377 config_initialized = 1;
378 }
379
380 void
381 config_deferred(device_t dev)
382 {
383 config_process_deferred(&deferred_config_queue, dev);
384 config_process_deferred(&interrupt_config_queue, dev);
385 }
386
387 static void
388 config_interrupts_thread(void *cookie)
389 {
390 struct deferred_config *dc;
391
392 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
393 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
394 (*dc->dc_func)(dc->dc_dev);
395 kmem_free(dc, sizeof(*dc));
396 config_pending_decr();
397 }
398 kthread_exit(0);
399 }
400
401 void
402 config_create_interruptthreads()
403 {
404 int i;
405
406 for (i = 0; i < interrupt_config_threads; i++) {
407 (void)kthread_create(PRI_NONE, 0, NULL,
408 config_interrupts_thread, NULL, NULL, "config");
409 }
410 }
411
412 /*
413 * Announce device attach/detach to userland listeners.
414 */
415 static void
416 devmon_report_device(device_t dev, bool isattach)
417 {
418 #if NDRVCTL > 0
419 prop_dictionary_t ev;
420 const char *parent;
421 const char *what;
422 device_t pdev = device_parent(dev);
423
424 ev = prop_dictionary_create();
425 if (ev == NULL)
426 return;
427
428 what = (isattach ? "device-attach" : "device-detach");
429 parent = (pdev == NULL ? "root" : device_xname(pdev));
430 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
431 !prop_dictionary_set_cstring(ev, "parent", parent)) {
432 prop_object_release(ev);
433 return;
434 }
435
436 devmon_insert(what, ev);
437 #endif
438 }
439
440 /*
441 * Add a cfdriver to the system.
442 */
443 int
444 config_cfdriver_attach(struct cfdriver *cd)
445 {
446 struct cfdriver *lcd;
447
448 /* Make sure this driver isn't already in the system. */
449 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
450 if (STREQ(lcd->cd_name, cd->cd_name))
451 return EEXIST;
452 }
453
454 LIST_INIT(&cd->cd_attach);
455 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
456
457 return 0;
458 }
459
460 /*
461 * Remove a cfdriver from the system.
462 */
463 int
464 config_cfdriver_detach(struct cfdriver *cd)
465 {
466 int i;
467
468 /* Make sure there are no active instances. */
469 for (i = 0; i < cd->cd_ndevs; i++) {
470 if (cd->cd_devs[i] != NULL)
471 return EBUSY;
472 }
473
474 /* ...and no attachments loaded. */
475 if (LIST_EMPTY(&cd->cd_attach) == 0)
476 return EBUSY;
477
478 LIST_REMOVE(cd, cd_list);
479
480 KASSERT(cd->cd_devs == NULL);
481
482 return 0;
483 }
484
485 /*
486 * Look up a cfdriver by name.
487 */
488 struct cfdriver *
489 config_cfdriver_lookup(const char *name)
490 {
491 struct cfdriver *cd;
492
493 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
494 if (STREQ(cd->cd_name, name))
495 return cd;
496 }
497
498 return NULL;
499 }
500
501 /*
502 * Add a cfattach to the specified driver.
503 */
504 int
505 config_cfattach_attach(const char *driver, struct cfattach *ca)
506 {
507 struct cfattach *lca;
508 struct cfdriver *cd;
509
510 cd = config_cfdriver_lookup(driver);
511 if (cd == NULL)
512 return ESRCH;
513
514 /* Make sure this attachment isn't already on this driver. */
515 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
516 if (STREQ(lca->ca_name, ca->ca_name))
517 return EEXIST;
518 }
519
520 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
521
522 return 0;
523 }
524
525 /*
526 * Remove a cfattach from the specified driver.
527 */
528 int
529 config_cfattach_detach(const char *driver, struct cfattach *ca)
530 {
531 struct cfdriver *cd;
532 device_t dev;
533 int i;
534
535 cd = config_cfdriver_lookup(driver);
536 if (cd == NULL)
537 return ESRCH;
538
539 /* Make sure there are no active instances. */
540 for (i = 0; i < cd->cd_ndevs; i++) {
541 if ((dev = cd->cd_devs[i]) == NULL)
542 continue;
543 if (dev->dv_cfattach == ca)
544 return EBUSY;
545 }
546
547 LIST_REMOVE(ca, ca_list);
548
549 return 0;
550 }
551
552 /*
553 * Look up a cfattach by name.
554 */
555 static struct cfattach *
556 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
557 {
558 struct cfattach *ca;
559
560 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
561 if (STREQ(ca->ca_name, atname))
562 return ca;
563 }
564
565 return NULL;
566 }
567
568 /*
569 * Look up a cfattach by driver/attachment name.
570 */
571 struct cfattach *
572 config_cfattach_lookup(const char *name, const char *atname)
573 {
574 struct cfdriver *cd;
575
576 cd = config_cfdriver_lookup(name);
577 if (cd == NULL)
578 return NULL;
579
580 return config_cfattach_lookup_cd(cd, atname);
581 }
582
583 /*
584 * Apply the matching function and choose the best. This is used
585 * a few times and we want to keep the code small.
586 */
587 static void
588 mapply(struct matchinfo *m, cfdata_t cf)
589 {
590 int pri;
591
592 if (m->fn != NULL) {
593 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
594 } else {
595 pri = config_match(m->parent, cf, m->aux);
596 }
597 if (pri > m->pri) {
598 m->match = cf;
599 m->pri = pri;
600 }
601 }
602
603 int
604 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
605 {
606 const struct cfiattrdata *ci;
607 const struct cflocdesc *cl;
608 int nlocs, i;
609
610 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
611 KASSERT(ci);
612 nlocs = ci->ci_loclen;
613 KASSERT(!nlocs || locs);
614 for (i = 0; i < nlocs; i++) {
615 cl = &ci->ci_locdesc[i];
616 /* !cld_defaultstr means no default value */
617 if ((!(cl->cld_defaultstr)
618 || (cf->cf_loc[i] != cl->cld_default))
619 && cf->cf_loc[i] != locs[i])
620 return 0;
621 }
622
623 return config_match(parent, cf, aux);
624 }
625
626 /*
627 * Helper function: check whether the driver supports the interface attribute
628 * and return its descriptor structure.
629 */
630 static const struct cfiattrdata *
631 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
632 {
633 const struct cfiattrdata * const *cpp;
634
635 if (cd->cd_attrs == NULL)
636 return 0;
637
638 for (cpp = cd->cd_attrs; *cpp; cpp++) {
639 if (STREQ((*cpp)->ci_name, ia)) {
640 /* Match. */
641 return *cpp;
642 }
643 }
644 return 0;
645 }
646
647 /*
648 * Lookup an interface attribute description by name.
649 * If the driver is given, consider only its supported attributes.
650 */
651 const struct cfiattrdata *
652 cfiattr_lookup(const char *name, const struct cfdriver *cd)
653 {
654 const struct cfdriver *d;
655 const struct cfiattrdata *ia;
656
657 if (cd)
658 return cfdriver_get_iattr(cd, name);
659
660 LIST_FOREACH(d, &allcfdrivers, cd_list) {
661 ia = cfdriver_get_iattr(d, name);
662 if (ia)
663 return ia;
664 }
665 return 0;
666 }
667
668 /*
669 * Determine if `parent' is a potential parent for a device spec based
670 * on `cfp'.
671 */
672 static int
673 cfparent_match(const device_t parent, const struct cfparent *cfp)
674 {
675 struct cfdriver *pcd;
676
677 /* We don't match root nodes here. */
678 if (cfp == NULL)
679 return 0;
680
681 pcd = parent->dv_cfdriver;
682 KASSERT(pcd != NULL);
683
684 /*
685 * First, ensure this parent has the correct interface
686 * attribute.
687 */
688 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
689 return 0;
690
691 /*
692 * If no specific parent device instance was specified (i.e.
693 * we're attaching to the attribute only), we're done!
694 */
695 if (cfp->cfp_parent == NULL)
696 return 1;
697
698 /*
699 * Check the parent device's name.
700 */
701 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
702 return 0; /* not the same parent */
703
704 /*
705 * Make sure the unit number matches.
706 */
707 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
708 cfp->cfp_unit == parent->dv_unit)
709 return 1;
710
711 /* Unit numbers don't match. */
712 return 0;
713 }
714
715 /*
716 * Helper for config_cfdata_attach(): check all devices whether it could be
717 * parent any attachment in the config data table passed, and rescan.
718 */
719 static void
720 rescan_with_cfdata(const struct cfdata *cf)
721 {
722 device_t d;
723 const struct cfdata *cf1;
724 deviter_t di;
725
726
727 /*
728 * "alldevs" is likely longer than a modules's cfdata, so make it
729 * the outer loop.
730 */
731 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
732
733 if (!(d->dv_cfattach->ca_rescan))
734 continue;
735
736 for (cf1 = cf; cf1->cf_name; cf1++) {
737
738 if (!cfparent_match(d, cf1->cf_pspec))
739 continue;
740
741 (*d->dv_cfattach->ca_rescan)(d,
742 cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
743 }
744 }
745 deviter_release(&di);
746 }
747
748 /*
749 * Attach a supplemental config data table and rescan potential
750 * parent devices if required.
751 */
752 int
753 config_cfdata_attach(cfdata_t cf, int scannow)
754 {
755 struct cftable *ct;
756
757 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
758 ct->ct_cfdata = cf;
759 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
760
761 if (scannow)
762 rescan_with_cfdata(cf);
763
764 return 0;
765 }
766
767 /*
768 * Helper for config_cfdata_detach: check whether a device is
769 * found through any attachment in the config data table.
770 */
771 static int
772 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
773 {
774 const struct cfdata *cf1;
775
776 for (cf1 = cf; cf1->cf_name; cf1++)
777 if (d->dv_cfdata == cf1)
778 return 1;
779
780 return 0;
781 }
782
783 /*
784 * Detach a supplemental config data table. Detach all devices found
785 * through that table (and thus keeping references to it) before.
786 */
787 int
788 config_cfdata_detach(cfdata_t cf)
789 {
790 device_t d;
791 int error = 0;
792 struct cftable *ct;
793 deviter_t di;
794
795 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
796 d = deviter_next(&di)) {
797 if (!dev_in_cfdata(d, cf))
798 continue;
799 if ((error = config_detach(d, 0)) != 0)
800 break;
801 }
802 deviter_release(&di);
803 if (error) {
804 aprint_error_dev(d, "unable to detach instance\n");
805 return error;
806 }
807
808 TAILQ_FOREACH(ct, &allcftables, ct_list) {
809 if (ct->ct_cfdata == cf) {
810 TAILQ_REMOVE(&allcftables, ct, ct_list);
811 kmem_free(ct, sizeof(*ct));
812 return 0;
813 }
814 }
815
816 /* not found -- shouldn't happen */
817 return EINVAL;
818 }
819
820 /*
821 * Invoke the "match" routine for a cfdata entry on behalf of
822 * an external caller, usually a "submatch" routine.
823 */
824 int
825 config_match(device_t parent, cfdata_t cf, void *aux)
826 {
827 struct cfattach *ca;
828
829 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
830 if (ca == NULL) {
831 /* No attachment for this entry, oh well. */
832 return 0;
833 }
834
835 return (*ca->ca_match)(parent, cf, aux);
836 }
837
838 /*
839 * Iterate over all potential children of some device, calling the given
840 * function (default being the child's match function) for each one.
841 * Nonzero returns are matches; the highest value returned is considered
842 * the best match. Return the `found child' if we got a match, or NULL
843 * otherwise. The `aux' pointer is simply passed on through.
844 *
845 * Note that this function is designed so that it can be used to apply
846 * an arbitrary function to all potential children (its return value
847 * can be ignored).
848 */
849 cfdata_t
850 config_search_loc(cfsubmatch_t fn, device_t parent,
851 const char *ifattr, const int *locs, void *aux)
852 {
853 struct cftable *ct;
854 cfdata_t cf;
855 struct matchinfo m;
856
857 KASSERT(config_initialized);
858 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
859
860 m.fn = fn;
861 m.parent = parent;
862 m.locs = locs;
863 m.aux = aux;
864 m.match = NULL;
865 m.pri = 0;
866
867 TAILQ_FOREACH(ct, &allcftables, ct_list) {
868 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
869
870 /* We don't match root nodes here. */
871 if (!cf->cf_pspec)
872 continue;
873
874 /*
875 * Skip cf if no longer eligible, otherwise scan
876 * through parents for one matching `parent', and
877 * try match function.
878 */
879 if (cf->cf_fstate == FSTATE_FOUND)
880 continue;
881 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
882 cf->cf_fstate == FSTATE_DSTAR)
883 continue;
884
885 /*
886 * If an interface attribute was specified,
887 * consider only children which attach to
888 * that attribute.
889 */
890 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
891 continue;
892
893 if (cfparent_match(parent, cf->cf_pspec))
894 mapply(&m, cf);
895 }
896 }
897 return m.match;
898 }
899
900 cfdata_t
901 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
902 void *aux)
903 {
904
905 return config_search_loc(fn, parent, ifattr, NULL, aux);
906 }
907
908 /*
909 * Find the given root device.
910 * This is much like config_search, but there is no parent.
911 * Don't bother with multiple cfdata tables; the root node
912 * must always be in the initial table.
913 */
914 cfdata_t
915 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
916 {
917 cfdata_t cf;
918 const short *p;
919 struct matchinfo m;
920
921 m.fn = fn;
922 m.parent = ROOT;
923 m.aux = aux;
924 m.match = NULL;
925 m.pri = 0;
926 m.locs = 0;
927 /*
928 * Look at root entries for matching name. We do not bother
929 * with found-state here since only one root should ever be
930 * searched (and it must be done first).
931 */
932 for (p = cfroots; *p >= 0; p++) {
933 cf = &cfdata[*p];
934 if (strcmp(cf->cf_name, rootname) == 0)
935 mapply(&m, cf);
936 }
937 return m.match;
938 }
939
940 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
941
942 /*
943 * The given `aux' argument describes a device that has been found
944 * on the given parent, but not necessarily configured. Locate the
945 * configuration data for that device (using the submatch function
946 * provided, or using candidates' cd_match configuration driver
947 * functions) and attach it, and return true. If the device was
948 * not configured, call the given `print' function and return 0.
949 */
950 device_t
951 config_found_sm_loc(device_t parent,
952 const char *ifattr, const int *locs, void *aux,
953 cfprint_t print, cfsubmatch_t submatch)
954 {
955 cfdata_t cf;
956
957 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
958 if (splash_progress_state)
959 splash_progress_update(splash_progress_state);
960 #endif
961
962 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
963 return(config_attach_loc(parent, cf, locs, aux, print));
964 if (print) {
965 if (config_do_twiddle && cold)
966 twiddle();
967 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
968 }
969
970 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
971 if (splash_progress_state)
972 splash_progress_update(splash_progress_state);
973 #endif
974
975 return NULL;
976 }
977
978 device_t
979 config_found_ia(device_t parent, const char *ifattr, void *aux,
980 cfprint_t print)
981 {
982
983 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
984 }
985
986 device_t
987 config_found(device_t parent, void *aux, cfprint_t print)
988 {
989
990 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
991 }
992
993 /*
994 * As above, but for root devices.
995 */
996 device_t
997 config_rootfound(const char *rootname, void *aux)
998 {
999 cfdata_t cf;
1000
1001 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1002 return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
1003 aprint_error("root device %s not configured\n", rootname);
1004 return NULL;
1005 }
1006
1007 /* just like sprintf(buf, "%d") except that it works from the end */
1008 static char *
1009 number(char *ep, int n)
1010 {
1011
1012 *--ep = 0;
1013 while (n >= 10) {
1014 *--ep = (n % 10) + '0';
1015 n /= 10;
1016 }
1017 *--ep = n + '0';
1018 return ep;
1019 }
1020
1021 /*
1022 * Expand the size of the cd_devs array if necessary.
1023 */
1024 static void
1025 config_makeroom(int n, struct cfdriver *cd)
1026 {
1027 int old, new;
1028 device_t *nsp;
1029
1030 if (n < cd->cd_ndevs)
1031 return;
1032
1033 /*
1034 * Need to expand the array.
1035 */
1036 old = cd->cd_ndevs;
1037 if (old == 0)
1038 new = 4;
1039 else
1040 new = old * 2;
1041 while (new <= n)
1042 new *= 2;
1043 cd->cd_ndevs = new;
1044 nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP);
1045 if (nsp == NULL)
1046 panic("config_attach: %sing dev array",
1047 old != 0 ? "expand" : "creat");
1048 memset(nsp + old, 0, sizeof(device_t [new - old]));
1049 if (old != 0) {
1050 memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
1051 kmem_free(cd->cd_devs, sizeof(device_t [old]));
1052 }
1053 cd->cd_devs = nsp;
1054 }
1055
1056 static void
1057 config_devlink(device_t dev)
1058 {
1059 struct cfdriver *cd = dev->dv_cfdriver;
1060
1061 /* put this device in the devices array */
1062 config_makeroom(dev->dv_unit, cd);
1063 if (cd->cd_devs[dev->dv_unit])
1064 panic("config_attach: duplicate %s", device_xname(dev));
1065 cd->cd_devs[dev->dv_unit] = dev;
1066
1067 /* It is safe to add a device to the tail of the list while
1068 * readers are in the list, but not while a writer is in
1069 * the list. Wait for any writer to complete.
1070 */
1071 mutex_enter(&alldevs_mtx);
1072 while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
1073 cv_wait(&alldevs_cv, &alldevs_mtx);
1074 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
1075 cv_signal(&alldevs_cv);
1076 mutex_exit(&alldevs_mtx);
1077 }
1078
1079 static void
1080 config_devunlink(device_t dev)
1081 {
1082 struct cfdriver *cd = dev->dv_cfdriver;
1083 int i;
1084
1085 /* Unlink from device list. */
1086 TAILQ_REMOVE(&alldevs, dev, dv_list);
1087
1088 /* Remove from cfdriver's array. */
1089 cd->cd_devs[dev->dv_unit] = NULL;
1090
1091 /*
1092 * If the device now has no units in use, deallocate its softc array.
1093 */
1094 for (i = 0; i < cd->cd_ndevs; i++) {
1095 if (cd->cd_devs[i] != NULL)
1096 return;
1097 }
1098 /* nothing found; deallocate */
1099 kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
1100 cd->cd_devs = NULL;
1101 cd->cd_ndevs = 0;
1102 }
1103
1104 static device_t
1105 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1106 {
1107 struct cfdriver *cd;
1108 struct cfattach *ca;
1109 size_t lname, lunit;
1110 const char *xunit;
1111 int myunit;
1112 char num[10];
1113 device_t dev;
1114 void *dev_private;
1115 const struct cfiattrdata *ia;
1116 device_lock_t dvl;
1117
1118 cd = config_cfdriver_lookup(cf->cf_name);
1119 if (cd == NULL)
1120 return NULL;
1121
1122 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1123 if (ca == NULL)
1124 return NULL;
1125
1126 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1127 ca->ca_devsize < sizeof(struct device))
1128 panic("config_devalloc: %s", cf->cf_atname);
1129
1130 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1131 if (cf->cf_fstate == FSTATE_STAR) {
1132 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1133 if (cd->cd_devs[myunit] == NULL)
1134 break;
1135 /*
1136 * myunit is now the unit of the first NULL device pointer,
1137 * or max(cd->cd_ndevs,cf->cf_unit).
1138 */
1139 } else {
1140 myunit = cf->cf_unit;
1141 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1142 return NULL;
1143 }
1144 #else
1145 myunit = cf->cf_unit;
1146 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1147
1148 /* compute length of name and decimal expansion of unit number */
1149 lname = strlen(cd->cd_name);
1150 xunit = number(&num[sizeof(num)], myunit);
1151 lunit = &num[sizeof(num)] - xunit;
1152 if (lname + lunit > sizeof(dev->dv_xname))
1153 panic("config_devalloc: device name too long");
1154
1155 /* get memory for all device vars */
1156 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1157 if (ca->ca_devsize > 0) {
1158 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1159 if (dev_private == NULL)
1160 panic("config_devalloc: memory allocation for device softc failed");
1161 } else {
1162 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1163 dev_private = NULL;
1164 }
1165
1166 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1167 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1168 } else {
1169 dev = dev_private;
1170 }
1171 if (dev == NULL)
1172 panic("config_devalloc: memory allocation for device_t failed");
1173
1174 dvl = device_getlock(dev);
1175
1176 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1177 cv_init(&dvl->dvl_cv, "pmfsusp");
1178
1179 dev->dv_class = cd->cd_class;
1180 dev->dv_cfdata = cf;
1181 dev->dv_cfdriver = cd;
1182 dev->dv_cfattach = ca;
1183 dev->dv_unit = myunit;
1184 dev->dv_activity_count = 0;
1185 dev->dv_activity_handlers = NULL;
1186 dev->dv_private = dev_private;
1187 memcpy(dev->dv_xname, cd->cd_name, lname);
1188 memcpy(dev->dv_xname + lname, xunit, lunit);
1189 dev->dv_parent = parent;
1190 if (parent != NULL)
1191 dev->dv_depth = parent->dv_depth + 1;
1192 else
1193 dev->dv_depth = 0;
1194 dev->dv_flags = DVF_ACTIVE; /* always initially active */
1195 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
1196 if (locs) {
1197 KASSERT(parent); /* no locators at root */
1198 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1199 parent->dv_cfdriver);
1200 dev->dv_locators =
1201 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1202 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1203 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1204 }
1205 dev->dv_properties = prop_dictionary_create();
1206 KASSERT(dev->dv_properties != NULL);
1207
1208 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1209 "device-driver", dev->dv_cfdriver->cd_name);
1210 prop_dictionary_set_uint16(dev->dv_properties,
1211 "device-unit", dev->dv_unit);
1212
1213 return dev;
1214 }
1215
1216 static void
1217 config_devdealloc(device_t dev)
1218 {
1219 device_lock_t dvl = device_getlock(dev);
1220 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1221
1222 cv_destroy(&dvl->dvl_cv);
1223 mutex_destroy(&dvl->dvl_mtx);
1224
1225 KASSERT(dev->dv_properties != NULL);
1226 prop_object_release(dev->dv_properties);
1227
1228 if (dev->dv_activity_handlers)
1229 panic("config_devdealloc with registered handlers");
1230
1231 if (dev->dv_locators) {
1232 size_t amount = *--dev->dv_locators;
1233 kmem_free(dev->dv_locators, amount);
1234 }
1235
1236 if (dev->dv_cfattach->ca_devsize > 0)
1237 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1238 if (priv)
1239 kmem_free(dev, sizeof(*dev));
1240 }
1241
1242 /*
1243 * Attach a found device.
1244 */
1245 device_t
1246 config_attach_loc(device_t parent, cfdata_t cf,
1247 const int *locs, void *aux, cfprint_t print)
1248 {
1249 device_t dev;
1250 struct cftable *ct;
1251 const char *drvname;
1252
1253 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1254 if (splash_progress_state)
1255 splash_progress_update(splash_progress_state);
1256 #endif
1257
1258 dev = config_devalloc(parent, cf, locs);
1259 if (!dev)
1260 panic("config_attach: allocation of device softc failed");
1261
1262 /* XXX redundant - see below? */
1263 if (cf->cf_fstate != FSTATE_STAR) {
1264 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1265 cf->cf_fstate = FSTATE_FOUND;
1266 }
1267 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1268 else
1269 cf->cf_unit++;
1270 #endif
1271
1272 config_devlink(dev);
1273
1274 if (config_do_twiddle && cold)
1275 twiddle();
1276 else
1277 aprint_naive("Found ");
1278 /*
1279 * We want the next two printfs for normal, verbose, and quiet,
1280 * but not silent (in which case, we're twiddling, instead).
1281 */
1282 if (parent == ROOT) {
1283 aprint_naive("%s (root)", device_xname(dev));
1284 aprint_normal("%s (root)", device_xname(dev));
1285 } else {
1286 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1287 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1288 if (print)
1289 (void) (*print)(aux, NULL);
1290 }
1291
1292 /*
1293 * Before attaching, clobber any unfound devices that are
1294 * otherwise identical.
1295 * XXX code above is redundant?
1296 */
1297 drvname = dev->dv_cfdriver->cd_name;
1298 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1299 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1300 if (STREQ(cf->cf_name, drvname) &&
1301 cf->cf_unit == dev->dv_unit) {
1302 if (cf->cf_fstate == FSTATE_NOTFOUND)
1303 cf->cf_fstate = FSTATE_FOUND;
1304 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1305 /*
1306 * Bump the unit number on all starred cfdata
1307 * entries for this device.
1308 */
1309 if (cf->cf_fstate == FSTATE_STAR)
1310 cf->cf_unit++;
1311 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1312 }
1313 }
1314 }
1315 #ifdef __HAVE_DEVICE_REGISTER
1316 device_register(dev, aux);
1317 #endif
1318
1319 /* Let userland know */
1320 devmon_report_device(dev, true);
1321
1322 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1323 if (splash_progress_state)
1324 splash_progress_update(splash_progress_state);
1325 #endif
1326 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1327 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1328 if (splash_progress_state)
1329 splash_progress_update(splash_progress_state);
1330 #endif
1331
1332 if (!device_pmf_is_registered(dev))
1333 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1334
1335 config_process_deferred(&deferred_config_queue, dev);
1336 return dev;
1337 }
1338
1339 device_t
1340 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1341 {
1342
1343 return config_attach_loc(parent, cf, NULL, aux, print);
1344 }
1345
1346 /*
1347 * As above, but for pseudo-devices. Pseudo-devices attached in this
1348 * way are silently inserted into the device tree, and their children
1349 * attached.
1350 *
1351 * Note that because pseudo-devices are attached silently, any information
1352 * the attach routine wishes to print should be prefixed with the device
1353 * name by the attach routine.
1354 */
1355 device_t
1356 config_attach_pseudo(cfdata_t cf)
1357 {
1358 device_t dev;
1359
1360 dev = config_devalloc(ROOT, cf, NULL);
1361 if (!dev)
1362 return NULL;
1363
1364 /* XXX mark busy in cfdata */
1365
1366 if (cf->cf_fstate != FSTATE_STAR) {
1367 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1368 cf->cf_fstate = FSTATE_FOUND;
1369 }
1370
1371 config_devlink(dev);
1372
1373 #if 0 /* XXXJRT not yet */
1374 #ifdef __HAVE_DEVICE_REGISTER
1375 device_register(dev, NULL); /* like a root node */
1376 #endif
1377 #endif
1378 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1379 config_process_deferred(&deferred_config_queue, dev);
1380 return dev;
1381 }
1382
1383 /*
1384 * Detach a device. Optionally forced (e.g. because of hardware
1385 * removal) and quiet. Returns zero if successful, non-zero
1386 * (an error code) otherwise.
1387 *
1388 * Note that this code wants to be run from a process context, so
1389 * that the detach can sleep to allow processes which have a device
1390 * open to run and unwind their stacks.
1391 */
1392 int
1393 config_detach(device_t dev, int flags)
1394 {
1395 struct cftable *ct;
1396 cfdata_t cf;
1397 const struct cfattach *ca;
1398 struct cfdriver *cd;
1399 #ifdef DIAGNOSTIC
1400 device_t d;
1401 #endif
1402 int rv = 0;
1403
1404 #ifdef DIAGNOSTIC
1405 cf = dev->dv_cfdata;
1406 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1407 cf->cf_fstate != FSTATE_STAR)
1408 panic("config_detach: %s: bad device fstate %d",
1409 device_xname(dev), cf ? cf->cf_fstate : -1);
1410 #endif
1411 cd = dev->dv_cfdriver;
1412 KASSERT(cd != NULL);
1413
1414 ca = dev->dv_cfattach;
1415 KASSERT(ca != NULL);
1416
1417 KASSERT(curlwp != NULL);
1418 mutex_enter(&alldevs_mtx);
1419 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1420 ;
1421 else while (alldevs_nread != 0 ||
1422 (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1423 cv_wait(&alldevs_cv, &alldevs_mtx);
1424 if (alldevs_nwrite++ == 0)
1425 alldevs_writer = curlwp;
1426 mutex_exit(&alldevs_mtx);
1427
1428 /*
1429 * Ensure the device is deactivated. If the device doesn't
1430 * have an activation entry point, we allow DVF_ACTIVE to
1431 * remain set. Otherwise, if DVF_ACTIVE is still set, the
1432 * device is busy, and the detach fails.
1433 */
1434 if (!detachall &&
1435 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1436 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1437 rv = EBUSY; /* XXX EOPNOTSUPP? */
1438 } else if ((rv = config_deactivate(dev)) == EOPNOTSUPP)
1439 rv = 0; /* Do not treat EOPNOTSUPP as an error */
1440
1441 /*
1442 * Try to detach the device. If that's not possible, then
1443 * we either panic() (for the forced but failed case), or
1444 * return an error.
1445 */
1446 if (rv == 0) {
1447 if (ca->ca_detach != NULL)
1448 rv = (*ca->ca_detach)(dev, flags);
1449 else
1450 rv = EOPNOTSUPP;
1451 }
1452 if (rv != 0) {
1453 if ((flags & DETACH_FORCE) == 0)
1454 goto out;
1455 else
1456 panic("config_detach: forced detach of %s failed (%d)",
1457 device_xname(dev), rv);
1458 }
1459
1460 dev->dv_flags &= ~DVF_ACTIVE;
1461
1462 /*
1463 * The device has now been successfully detached.
1464 */
1465
1466 /* Let userland know */
1467 devmon_report_device(dev, false);
1468
1469 #ifdef DIAGNOSTIC
1470 /*
1471 * Sanity: If you're successfully detached, you should have no
1472 * children. (Note that because children must be attached
1473 * after parents, we only need to search the latter part of
1474 * the list.)
1475 */
1476 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1477 d = TAILQ_NEXT(d, dv_list)) {
1478 if (d->dv_parent == dev) {
1479 printf("config_detach: detached device %s"
1480 " has children %s\n", device_xname(dev), device_xname(d));
1481 panic("config_detach");
1482 }
1483 }
1484 #endif
1485
1486 /* notify the parent that the child is gone */
1487 if (dev->dv_parent) {
1488 device_t p = dev->dv_parent;
1489 if (p->dv_cfattach->ca_childdetached)
1490 (*p->dv_cfattach->ca_childdetached)(p, dev);
1491 }
1492
1493 /*
1494 * Mark cfdata to show that the unit can be reused, if possible.
1495 */
1496 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1497 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1498 if (STREQ(cf->cf_name, cd->cd_name)) {
1499 if (cf->cf_fstate == FSTATE_FOUND &&
1500 cf->cf_unit == dev->dv_unit)
1501 cf->cf_fstate = FSTATE_NOTFOUND;
1502 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1503 /*
1504 * Note that we can only re-use a starred
1505 * unit number if the unit being detached
1506 * had the last assigned unit number.
1507 */
1508 if (cf->cf_fstate == FSTATE_STAR &&
1509 cf->cf_unit == dev->dv_unit + 1)
1510 cf->cf_unit--;
1511 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1512 }
1513 }
1514 }
1515
1516 config_devunlink(dev);
1517
1518 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1519 aprint_normal_dev(dev, "detached\n");
1520
1521 config_devdealloc(dev);
1522
1523 out:
1524 mutex_enter(&alldevs_mtx);
1525 KASSERT(alldevs_nwrite != 0);
1526 if (--alldevs_nwrite == 0)
1527 alldevs_writer = NULL;
1528 cv_signal(&alldevs_cv);
1529 mutex_exit(&alldevs_mtx);
1530 return rv;
1531 }
1532
1533 int
1534 config_detach_children(device_t parent, int flags)
1535 {
1536 device_t dv;
1537 deviter_t di;
1538 int error = 0;
1539
1540 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1541 dv = deviter_next(&di)) {
1542 if (device_parent(dv) != parent)
1543 continue;
1544 if ((error = config_detach(dv, flags)) != 0)
1545 break;
1546 }
1547 deviter_release(&di);
1548 return error;
1549 }
1550
1551 device_t
1552 shutdown_first(struct shutdown_state *s)
1553 {
1554 if (!s->initialized) {
1555 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1556 s->initialized = true;
1557 }
1558 return shutdown_next(s);
1559 }
1560
1561 device_t
1562 shutdown_next(struct shutdown_state *s)
1563 {
1564 device_t dv;
1565
1566 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1567 ;
1568
1569 if (dv == NULL)
1570 s->initialized = false;
1571
1572 return dv;
1573 }
1574
1575 bool
1576 config_detach_all(int how)
1577 {
1578 static struct shutdown_state s;
1579 device_t curdev;
1580 bool progress = false;
1581
1582 if ((how & RB_NOSYNC) != 0)
1583 return false;
1584
1585 for (curdev = shutdown_first(&s); curdev != NULL;
1586 curdev = shutdown_next(&s)) {
1587 aprint_debug(" detaching %s, ", device_xname(curdev));
1588 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1589 progress = true;
1590 aprint_debug("success.");
1591 } else
1592 aprint_debug("failed.");
1593 }
1594 return progress;
1595 }
1596
1597 int
1598 config_activate(device_t dev)
1599 {
1600 const struct cfattach *ca = dev->dv_cfattach;
1601 int rv = 0, oflags = dev->dv_flags;
1602
1603 if (ca->ca_activate == NULL)
1604 return EOPNOTSUPP;
1605
1606 if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1607 dev->dv_flags |= DVF_ACTIVE;
1608 rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1609 if (rv)
1610 dev->dv_flags = oflags;
1611 }
1612 return rv;
1613 }
1614
1615 int
1616 config_deactivate(device_t dev)
1617 {
1618 const struct cfattach *ca = dev->dv_cfattach;
1619 int rv = 0, oflags = dev->dv_flags;
1620
1621 if (ca->ca_activate == NULL)
1622 return EOPNOTSUPP;
1623
1624 if (dev->dv_flags & DVF_ACTIVE) {
1625 dev->dv_flags &= ~DVF_ACTIVE;
1626 rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1627 if (rv)
1628 dev->dv_flags = oflags;
1629 }
1630 return rv;
1631 }
1632
1633 /*
1634 * Defer the configuration of the specified device until all
1635 * of its parent's devices have been attached.
1636 */
1637 void
1638 config_defer(device_t dev, void (*func)(device_t))
1639 {
1640 struct deferred_config *dc;
1641
1642 if (dev->dv_parent == NULL)
1643 panic("config_defer: can't defer config of a root device");
1644
1645 #ifdef DIAGNOSTIC
1646 for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1647 dc = TAILQ_NEXT(dc, dc_queue)) {
1648 if (dc->dc_dev == dev)
1649 panic("config_defer: deferred twice");
1650 }
1651 #endif
1652
1653 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1654 if (dc == NULL)
1655 panic("config_defer: unable to allocate callback");
1656
1657 dc->dc_dev = dev;
1658 dc->dc_func = func;
1659 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1660 config_pending_incr();
1661 }
1662
1663 /*
1664 * Defer some autoconfiguration for a device until after interrupts
1665 * are enabled.
1666 */
1667 void
1668 config_interrupts(device_t dev, void (*func)(device_t))
1669 {
1670 struct deferred_config *dc;
1671
1672 /*
1673 * If interrupts are enabled, callback now.
1674 */
1675 if (cold == 0) {
1676 (*func)(dev);
1677 return;
1678 }
1679
1680 #ifdef DIAGNOSTIC
1681 for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1682 dc = TAILQ_NEXT(dc, dc_queue)) {
1683 if (dc->dc_dev == dev)
1684 panic("config_interrupts: deferred twice");
1685 }
1686 #endif
1687
1688 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1689 if (dc == NULL)
1690 panic("config_interrupts: unable to allocate callback");
1691
1692 dc->dc_dev = dev;
1693 dc->dc_func = func;
1694 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1695 config_pending_incr();
1696 }
1697
1698 /*
1699 * Process a deferred configuration queue.
1700 */
1701 static void
1702 config_process_deferred(struct deferred_config_head *queue,
1703 device_t parent)
1704 {
1705 struct deferred_config *dc, *ndc;
1706
1707 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1708 ndc = TAILQ_NEXT(dc, dc_queue);
1709 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1710 TAILQ_REMOVE(queue, dc, dc_queue);
1711 (*dc->dc_func)(dc->dc_dev);
1712 kmem_free(dc, sizeof(*dc));
1713 config_pending_decr();
1714 }
1715 }
1716 }
1717
1718 /*
1719 * Manipulate the config_pending semaphore.
1720 */
1721 void
1722 config_pending_incr(void)
1723 {
1724
1725 mutex_enter(&config_misc_lock);
1726 config_pending++;
1727 mutex_exit(&config_misc_lock);
1728 }
1729
1730 void
1731 config_pending_decr(void)
1732 {
1733
1734 #ifdef DIAGNOSTIC
1735 if (config_pending == 0)
1736 panic("config_pending_decr: config_pending == 0");
1737 #endif
1738 mutex_enter(&config_misc_lock);
1739 config_pending--;
1740 if (config_pending == 0)
1741 cv_broadcast(&config_misc_cv);
1742 mutex_exit(&config_misc_lock);
1743 }
1744
1745 /*
1746 * Register a "finalization" routine. Finalization routines are
1747 * called iteratively once all real devices have been found during
1748 * autoconfiguration, for as long as any one finalizer has done
1749 * any work.
1750 */
1751 int
1752 config_finalize_register(device_t dev, int (*fn)(device_t))
1753 {
1754 struct finalize_hook *f;
1755
1756 /*
1757 * If finalization has already been done, invoke the
1758 * callback function now.
1759 */
1760 if (config_finalize_done) {
1761 while ((*fn)(dev) != 0)
1762 /* loop */ ;
1763 }
1764
1765 /* Ensure this isn't already on the list. */
1766 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1767 if (f->f_func == fn && f->f_dev == dev)
1768 return EEXIST;
1769 }
1770
1771 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1772 f->f_func = fn;
1773 f->f_dev = dev;
1774 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1775
1776 return 0;
1777 }
1778
1779 void
1780 config_finalize(void)
1781 {
1782 struct finalize_hook *f;
1783 struct pdevinit *pdev;
1784 extern struct pdevinit pdevinit[];
1785 int errcnt, rv;
1786
1787 /*
1788 * Now that device driver threads have been created, wait for
1789 * them to finish any deferred autoconfiguration.
1790 */
1791 mutex_enter(&config_misc_lock);
1792 while (config_pending != 0)
1793 cv_wait(&config_misc_cv, &config_misc_lock);
1794 mutex_exit(&config_misc_lock);
1795
1796 KERNEL_LOCK(1, NULL);
1797
1798 /* Attach pseudo-devices. */
1799 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1800 (*pdev->pdev_attach)(pdev->pdev_count);
1801
1802 /* Run the hooks until none of them does any work. */
1803 do {
1804 rv = 0;
1805 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1806 rv |= (*f->f_func)(f->f_dev);
1807 } while (rv != 0);
1808
1809 config_finalize_done = 1;
1810
1811 /* Now free all the hooks. */
1812 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1813 TAILQ_REMOVE(&config_finalize_list, f, f_list);
1814 kmem_free(f, sizeof(*f));
1815 }
1816
1817 KERNEL_UNLOCK_ONE(NULL);
1818
1819 errcnt = aprint_get_error_count();
1820 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1821 (boothowto & AB_VERBOSE) == 0) {
1822 mutex_enter(&config_misc_lock);
1823 if (config_do_twiddle) {
1824 config_do_twiddle = 0;
1825 printf_nolog(" done.\n");
1826 }
1827 mutex_exit(&config_misc_lock);
1828 if (errcnt != 0) {
1829 printf("WARNING: %d error%s while detecting hardware; "
1830 "check system log.\n", errcnt,
1831 errcnt == 1 ? "" : "s");
1832 }
1833 }
1834 }
1835
1836 void
1837 config_twiddle_init()
1838 {
1839
1840 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
1841 config_do_twiddle = 1;
1842 }
1843 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
1844 }
1845
1846 void
1847 config_twiddle_fn(void *cookie)
1848 {
1849
1850 mutex_enter(&config_misc_lock);
1851 if (config_do_twiddle) {
1852 twiddle();
1853 callout_schedule(&config_twiddle_ch, mstohz(100));
1854 }
1855 mutex_exit(&config_misc_lock);
1856 }
1857
1858 /*
1859 * device_lookup:
1860 *
1861 * Look up a device instance for a given driver.
1862 */
1863 device_t
1864 device_lookup(cfdriver_t cd, int unit)
1865 {
1866
1867 if (unit < 0 || unit >= cd->cd_ndevs)
1868 return NULL;
1869
1870 return cd->cd_devs[unit];
1871 }
1872
1873 /*
1874 * device_lookup:
1875 *
1876 * Look up a device instance for a given driver.
1877 */
1878 void *
1879 device_lookup_private(cfdriver_t cd, int unit)
1880 {
1881 device_t dv;
1882
1883 if (unit < 0 || unit >= cd->cd_ndevs)
1884 return NULL;
1885
1886 if ((dv = cd->cd_devs[unit]) == NULL)
1887 return NULL;
1888
1889 return dv->dv_private;
1890 }
1891
1892 /*
1893 * Accessor functions for the device_t type.
1894 */
1895 devclass_t
1896 device_class(device_t dev)
1897 {
1898
1899 return dev->dv_class;
1900 }
1901
1902 cfdata_t
1903 device_cfdata(device_t dev)
1904 {
1905
1906 return dev->dv_cfdata;
1907 }
1908
1909 cfdriver_t
1910 device_cfdriver(device_t dev)
1911 {
1912
1913 return dev->dv_cfdriver;
1914 }
1915
1916 cfattach_t
1917 device_cfattach(device_t dev)
1918 {
1919
1920 return dev->dv_cfattach;
1921 }
1922
1923 int
1924 device_unit(device_t dev)
1925 {
1926
1927 return dev->dv_unit;
1928 }
1929
1930 const char *
1931 device_xname(device_t dev)
1932 {
1933
1934 return dev->dv_xname;
1935 }
1936
1937 device_t
1938 device_parent(device_t dev)
1939 {
1940
1941 return dev->dv_parent;
1942 }
1943
1944 bool
1945 device_is_active(device_t dev)
1946 {
1947 int active_flags;
1948
1949 active_flags = DVF_ACTIVE;
1950 active_flags |= DVF_CLASS_SUSPENDED;
1951 active_flags |= DVF_DRIVER_SUSPENDED;
1952 active_flags |= DVF_BUS_SUSPENDED;
1953
1954 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
1955 }
1956
1957 bool
1958 device_is_enabled(device_t dev)
1959 {
1960 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1961 }
1962
1963 bool
1964 device_has_power(device_t dev)
1965 {
1966 int active_flags;
1967
1968 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1969
1970 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
1971 }
1972
1973 int
1974 device_locator(device_t dev, u_int locnum)
1975 {
1976
1977 KASSERT(dev->dv_locators != NULL);
1978 return dev->dv_locators[locnum];
1979 }
1980
1981 void *
1982 device_private(device_t dev)
1983 {
1984
1985 /*
1986 * The reason why device_private(NULL) is allowed is to simplify the
1987 * work of a lot of userspace request handlers (i.e., c/bdev
1988 * handlers) which grab cfdriver_t->cd_units[n].
1989 * It avoids having them test for it to be NULL and only then calling
1990 * device_private.
1991 */
1992 return dev == NULL ? NULL : dev->dv_private;
1993 }
1994
1995 prop_dictionary_t
1996 device_properties(device_t dev)
1997 {
1998
1999 return dev->dv_properties;
2000 }
2001
2002 /*
2003 * device_is_a:
2004 *
2005 * Returns true if the device is an instance of the specified
2006 * driver.
2007 */
2008 bool
2009 device_is_a(device_t dev, const char *dname)
2010 {
2011
2012 return strcmp(dev->dv_cfdriver->cd_name, dname) == 0;
2013 }
2014
2015 /*
2016 * device_find_by_xname:
2017 *
2018 * Returns the device of the given name or NULL if it doesn't exist.
2019 */
2020 device_t
2021 device_find_by_xname(const char *name)
2022 {
2023 device_t dv;
2024 deviter_t di;
2025
2026 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2027 if (strcmp(device_xname(dv), name) == 0)
2028 break;
2029 }
2030 deviter_release(&di);
2031
2032 return dv;
2033 }
2034
2035 /*
2036 * device_find_by_driver_unit:
2037 *
2038 * Returns the device of the given driver name and unit or
2039 * NULL if it doesn't exist.
2040 */
2041 device_t
2042 device_find_by_driver_unit(const char *name, int unit)
2043 {
2044 struct cfdriver *cd;
2045
2046 if ((cd = config_cfdriver_lookup(name)) == NULL)
2047 return NULL;
2048 return device_lookup(cd, unit);
2049 }
2050
2051 /*
2052 * Power management related functions.
2053 */
2054
2055 bool
2056 device_pmf_is_registered(device_t dev)
2057 {
2058 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2059 }
2060
2061 bool
2062 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
2063 {
2064 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2065 return true;
2066 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2067 return false;
2068 if (*dev->dv_driver_suspend != NULL &&
2069 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
2070 return false;
2071
2072 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2073 return true;
2074 }
2075
2076 bool
2077 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
2078 {
2079 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2080 return true;
2081 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2082 return false;
2083 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2084 return false;
2085 if (*dev->dv_driver_resume != NULL &&
2086 !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2087 return false;
2088
2089 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2090 return true;
2091 }
2092
2093 bool
2094 device_pmf_driver_shutdown(device_t dev, int how)
2095 {
2096
2097 if (*dev->dv_driver_shutdown != NULL &&
2098 !(*dev->dv_driver_shutdown)(dev, how))
2099 return false;
2100 return true;
2101 }
2102
2103 bool
2104 device_pmf_driver_register(device_t dev,
2105 bool (*suspend)(device_t PMF_FN_PROTO),
2106 bool (*resume)(device_t PMF_FN_PROTO),
2107 bool (*shutdown)(device_t, int))
2108 {
2109 dev->dv_driver_suspend = suspend;
2110 dev->dv_driver_resume = resume;
2111 dev->dv_driver_shutdown = shutdown;
2112 dev->dv_flags |= DVF_POWER_HANDLERS;
2113 return true;
2114 }
2115
2116 static const char *
2117 curlwp_name(void)
2118 {
2119 if (curlwp->l_name != NULL)
2120 return curlwp->l_name;
2121 else
2122 return curlwp->l_proc->p_comm;
2123 }
2124
2125 void
2126 device_pmf_driver_deregister(device_t dev)
2127 {
2128 device_lock_t dvl = device_getlock(dev);
2129
2130 dev->dv_driver_suspend = NULL;
2131 dev->dv_driver_resume = NULL;
2132
2133 mutex_enter(&dvl->dvl_mtx);
2134 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2135 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2136 /* Wake a thread that waits for the lock. That
2137 * thread will fail to acquire the lock, and then
2138 * it will wake the next thread that waits for the
2139 * lock, or else it will wake us.
2140 */
2141 cv_signal(&dvl->dvl_cv);
2142 pmflock_debug(dev, __func__, __LINE__);
2143 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2144 pmflock_debug(dev, __func__, __LINE__);
2145 }
2146 mutex_exit(&dvl->dvl_mtx);
2147 }
2148
2149 bool
2150 device_pmf_driver_child_register(device_t dev)
2151 {
2152 device_t parent = device_parent(dev);
2153
2154 if (parent == NULL || parent->dv_driver_child_register == NULL)
2155 return true;
2156 return (*parent->dv_driver_child_register)(dev);
2157 }
2158
2159 void
2160 device_pmf_driver_set_child_register(device_t dev,
2161 bool (*child_register)(device_t))
2162 {
2163 dev->dv_driver_child_register = child_register;
2164 }
2165
2166 void
2167 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2168 {
2169 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2170 if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2171 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2172 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2173 }
2174
2175 bool
2176 device_is_self_suspended(device_t dev)
2177 {
2178 return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2179 }
2180
2181 void
2182 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2183 {
2184 bool self = (flags & PMF_F_SELF) != 0;
2185
2186 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2187
2188 if (!self)
2189 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2190 else if (device_is_active(dev))
2191 dev->dv_flags |= DVF_SELF_SUSPENDED;
2192
2193 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2194 }
2195
2196 static void
2197 pmflock_debug(device_t dev, const char *func, int line)
2198 {
2199 device_lock_t dvl = device_getlock(dev);
2200
2201 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2202 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2203 dev->dv_flags);
2204 }
2205
2206 static void
2207 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2208 {
2209 device_lock_t dvl = device_getlock(dev);
2210
2211 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x "
2212 "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2213 dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags PMF_FN_CALL);
2214 }
2215
2216 static bool
2217 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2218 {
2219 device_lock_t dvl = device_getlock(dev);
2220
2221 while (device_pmf_is_registered(dev) &&
2222 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2223 dvl->dvl_nwait++;
2224 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2225 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2226 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2227 dvl->dvl_nwait--;
2228 }
2229 if (!device_pmf_is_registered(dev)) {
2230 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2231 /* We could not acquire the lock, but some other thread may
2232 * wait for it, also. Wake that thread.
2233 */
2234 cv_signal(&dvl->dvl_cv);
2235 return false;
2236 }
2237 dvl->dvl_nlock++;
2238 dvl->dvl_holder = curlwp;
2239 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2240 return true;
2241 }
2242
2243 bool
2244 device_pmf_lock(device_t dev PMF_FN_ARGS)
2245 {
2246 bool rc;
2247 device_lock_t dvl = device_getlock(dev);
2248
2249 mutex_enter(&dvl->dvl_mtx);
2250 rc = device_pmf_lock1(dev PMF_FN_CALL);
2251 mutex_exit(&dvl->dvl_mtx);
2252
2253 return rc;
2254 }
2255
2256 void
2257 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2258 {
2259 device_lock_t dvl = device_getlock(dev);
2260
2261 KASSERT(dvl->dvl_nlock > 0);
2262 mutex_enter(&dvl->dvl_mtx);
2263 if (--dvl->dvl_nlock == 0)
2264 dvl->dvl_holder = NULL;
2265 cv_signal(&dvl->dvl_cv);
2266 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2267 mutex_exit(&dvl->dvl_mtx);
2268 }
2269
2270 device_lock_t
2271 device_getlock(device_t dev)
2272 {
2273 return &dev->dv_lock;
2274 }
2275
2276 void *
2277 device_pmf_bus_private(device_t dev)
2278 {
2279 return dev->dv_bus_private;
2280 }
2281
2282 bool
2283 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2284 {
2285 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2286 return true;
2287 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2288 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2289 return false;
2290 if (*dev->dv_bus_suspend != NULL &&
2291 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2292 return false;
2293
2294 dev->dv_flags |= DVF_BUS_SUSPENDED;
2295 return true;
2296 }
2297
2298 bool
2299 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2300 {
2301 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2302 return true;
2303 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2304 return false;
2305 if (*dev->dv_bus_resume != NULL &&
2306 !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2307 return false;
2308
2309 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2310 return true;
2311 }
2312
2313 bool
2314 device_pmf_bus_shutdown(device_t dev, int how)
2315 {
2316
2317 if (*dev->dv_bus_shutdown != NULL &&
2318 !(*dev->dv_bus_shutdown)(dev, how))
2319 return false;
2320 return true;
2321 }
2322
2323 void
2324 device_pmf_bus_register(device_t dev, void *priv,
2325 bool (*suspend)(device_t PMF_FN_PROTO),
2326 bool (*resume)(device_t PMF_FN_PROTO),
2327 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2328 {
2329 dev->dv_bus_private = priv;
2330 dev->dv_bus_resume = resume;
2331 dev->dv_bus_suspend = suspend;
2332 dev->dv_bus_shutdown = shutdown;
2333 dev->dv_bus_deregister = deregister;
2334 }
2335
2336 void
2337 device_pmf_bus_deregister(device_t dev)
2338 {
2339 if (dev->dv_bus_deregister == NULL)
2340 return;
2341 (*dev->dv_bus_deregister)(dev);
2342 dev->dv_bus_private = NULL;
2343 dev->dv_bus_suspend = NULL;
2344 dev->dv_bus_resume = NULL;
2345 dev->dv_bus_deregister = NULL;
2346 }
2347
2348 void *
2349 device_pmf_class_private(device_t dev)
2350 {
2351 return dev->dv_class_private;
2352 }
2353
2354 bool
2355 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2356 {
2357 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2358 return true;
2359 if (*dev->dv_class_suspend != NULL &&
2360 !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2361 return false;
2362
2363 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2364 return true;
2365 }
2366
2367 bool
2368 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2369 {
2370 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2371 return true;
2372 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2373 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2374 return false;
2375 if (*dev->dv_class_resume != NULL &&
2376 !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2377 return false;
2378
2379 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2380 return true;
2381 }
2382
2383 void
2384 device_pmf_class_register(device_t dev, void *priv,
2385 bool (*suspend)(device_t PMF_FN_PROTO),
2386 bool (*resume)(device_t PMF_FN_PROTO),
2387 void (*deregister)(device_t))
2388 {
2389 dev->dv_class_private = priv;
2390 dev->dv_class_suspend = suspend;
2391 dev->dv_class_resume = resume;
2392 dev->dv_class_deregister = deregister;
2393 }
2394
2395 void
2396 device_pmf_class_deregister(device_t dev)
2397 {
2398 if (dev->dv_class_deregister == NULL)
2399 return;
2400 (*dev->dv_class_deregister)(dev);
2401 dev->dv_class_private = NULL;
2402 dev->dv_class_suspend = NULL;
2403 dev->dv_class_resume = NULL;
2404 dev->dv_class_deregister = NULL;
2405 }
2406
2407 bool
2408 device_active(device_t dev, devactive_t type)
2409 {
2410 size_t i;
2411
2412 if (dev->dv_activity_count == 0)
2413 return false;
2414
2415 for (i = 0; i < dev->dv_activity_count; ++i) {
2416 if (dev->dv_activity_handlers[i] == NULL)
2417 break;
2418 (*dev->dv_activity_handlers[i])(dev, type);
2419 }
2420
2421 return true;
2422 }
2423
2424 bool
2425 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2426 {
2427 void (**new_handlers)(device_t, devactive_t);
2428 void (**old_handlers)(device_t, devactive_t);
2429 size_t i, old_size, new_size;
2430 int s;
2431
2432 old_handlers = dev->dv_activity_handlers;
2433 old_size = dev->dv_activity_count;
2434
2435 for (i = 0; i < old_size; ++i) {
2436 KASSERT(old_handlers[i] != handler);
2437 if (old_handlers[i] == NULL) {
2438 old_handlers[i] = handler;
2439 return true;
2440 }
2441 }
2442
2443 new_size = old_size + 4;
2444 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2445
2446 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2447 new_handlers[old_size] = handler;
2448 memset(new_handlers + old_size + 1, 0,
2449 sizeof(int [new_size - (old_size+1)]));
2450
2451 s = splhigh();
2452 dev->dv_activity_count = new_size;
2453 dev->dv_activity_handlers = new_handlers;
2454 splx(s);
2455
2456 if (old_handlers != NULL)
2457 kmem_free(old_handlers, sizeof(void * [old_size]));
2458
2459 return true;
2460 }
2461
2462 void
2463 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2464 {
2465 void (**old_handlers)(device_t, devactive_t);
2466 size_t i, old_size;
2467 int s;
2468
2469 old_handlers = dev->dv_activity_handlers;
2470 old_size = dev->dv_activity_count;
2471
2472 for (i = 0; i < old_size; ++i) {
2473 if (old_handlers[i] == handler)
2474 break;
2475 if (old_handlers[i] == NULL)
2476 return; /* XXX panic? */
2477 }
2478
2479 if (i == old_size)
2480 return; /* XXX panic? */
2481
2482 for (; i < old_size - 1; ++i) {
2483 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2484 continue;
2485
2486 if (i == 0) {
2487 s = splhigh();
2488 dev->dv_activity_count = 0;
2489 dev->dv_activity_handlers = NULL;
2490 splx(s);
2491 kmem_free(old_handlers, sizeof(void *[old_size]));
2492 }
2493 return;
2494 }
2495 old_handlers[i] = NULL;
2496 }
2497
2498 /*
2499 * Device Iteration
2500 *
2501 * deviter_t: a device iterator. Holds state for a "walk" visiting
2502 * each device_t's in the device tree.
2503 *
2504 * deviter_init(di, flags): initialize the device iterator `di'
2505 * to "walk" the device tree. deviter_next(di) will return
2506 * the first device_t in the device tree, or NULL if there are
2507 * no devices.
2508 *
2509 * `flags' is one or more of DEVITER_F_RW, indicating that the
2510 * caller intends to modify the device tree by calling
2511 * config_detach(9) on devices in the order that the iterator
2512 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2513 * nearest the "root" of the device tree to be returned, first;
2514 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2515 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2516 * indicating both that deviter_init() should not respect any
2517 * locks on the device tree, and that deviter_next(di) may run
2518 * in more than one LWP before the walk has finished.
2519 *
2520 * Only one DEVITER_F_RW iterator may be in the device tree at
2521 * once.
2522 *
2523 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2524 *
2525 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2526 * DEVITER_F_LEAVES_FIRST are used in combination.
2527 *
2528 * deviter_first(di, flags): initialize the device iterator `di'
2529 * and return the first device_t in the device tree, or NULL
2530 * if there are no devices. The statement
2531 *
2532 * dv = deviter_first(di);
2533 *
2534 * is shorthand for
2535 *
2536 * deviter_init(di);
2537 * dv = deviter_next(di);
2538 *
2539 * deviter_next(di): return the next device_t in the device tree,
2540 * or NULL if there are no more devices. deviter_next(di)
2541 * is undefined if `di' was not initialized with deviter_init() or
2542 * deviter_first().
2543 *
2544 * deviter_release(di): stops iteration (subsequent calls to
2545 * deviter_next() will return NULL), releases any locks and
2546 * resources held by the device iterator.
2547 *
2548 * Device iteration does not return device_t's in any particular
2549 * order. An iterator will never return the same device_t twice.
2550 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2551 * is called repeatedly on the same `di', it will eventually return
2552 * NULL. It is ok to attach/detach devices during device iteration.
2553 */
2554 void
2555 deviter_init(deviter_t *di, deviter_flags_t flags)
2556 {
2557 device_t dv;
2558 bool rw;
2559
2560 mutex_enter(&alldevs_mtx);
2561 if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2562 flags |= DEVITER_F_RW;
2563 alldevs_nwrite++;
2564 alldevs_writer = NULL;
2565 alldevs_nread = 0;
2566 } else {
2567 rw = (flags & DEVITER_F_RW) != 0;
2568
2569 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2570 ;
2571 else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2572 (rw && alldevs_nread != 0))
2573 cv_wait(&alldevs_cv, &alldevs_mtx);
2574
2575 if (rw) {
2576 if (alldevs_nwrite++ == 0)
2577 alldevs_writer = curlwp;
2578 } else
2579 alldevs_nread++;
2580 }
2581 mutex_exit(&alldevs_mtx);
2582
2583 memset(di, 0, sizeof(*di));
2584
2585 di->di_flags = flags;
2586
2587 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2588 case DEVITER_F_LEAVES_FIRST:
2589 TAILQ_FOREACH(dv, &alldevs, dv_list)
2590 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2591 break;
2592 case DEVITER_F_ROOT_FIRST:
2593 TAILQ_FOREACH(dv, &alldevs, dv_list)
2594 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2595 break;
2596 default:
2597 break;
2598 }
2599
2600 deviter_reinit(di);
2601 }
2602
2603 static void
2604 deviter_reinit(deviter_t *di)
2605 {
2606 if ((di->di_flags & DEVITER_F_RW) != 0)
2607 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2608 else
2609 di->di_prev = TAILQ_FIRST(&alldevs);
2610 }
2611
2612 device_t
2613 deviter_first(deviter_t *di, deviter_flags_t flags)
2614 {
2615 deviter_init(di, flags);
2616 return deviter_next(di);
2617 }
2618
2619 static device_t
2620 deviter_next1(deviter_t *di)
2621 {
2622 device_t dv;
2623
2624 dv = di->di_prev;
2625
2626 if (dv == NULL)
2627 ;
2628 else if ((di->di_flags & DEVITER_F_RW) != 0)
2629 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2630 else
2631 di->di_prev = TAILQ_NEXT(dv, dv_list);
2632
2633 return dv;
2634 }
2635
2636 device_t
2637 deviter_next(deviter_t *di)
2638 {
2639 device_t dv = NULL;
2640
2641 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2642 case 0:
2643 return deviter_next1(di);
2644 case DEVITER_F_LEAVES_FIRST:
2645 while (di->di_curdepth >= 0) {
2646 if ((dv = deviter_next1(di)) == NULL) {
2647 di->di_curdepth--;
2648 deviter_reinit(di);
2649 } else if (dv->dv_depth == di->di_curdepth)
2650 break;
2651 }
2652 return dv;
2653 case DEVITER_F_ROOT_FIRST:
2654 while (di->di_curdepth <= di->di_maxdepth) {
2655 if ((dv = deviter_next1(di)) == NULL) {
2656 di->di_curdepth++;
2657 deviter_reinit(di);
2658 } else if (dv->dv_depth == di->di_curdepth)
2659 break;
2660 }
2661 return dv;
2662 default:
2663 return NULL;
2664 }
2665 }
2666
2667 void
2668 deviter_release(deviter_t *di)
2669 {
2670 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2671
2672 mutex_enter(&alldevs_mtx);
2673 if (!rw) {
2674 --alldevs_nread;
2675 cv_signal(&alldevs_cv);
2676 } else if (alldevs_nwrite > 0 && alldevs_writer == NULL) {
2677 --alldevs_nwrite; /* shutting down: do not signal */
2678 } else {
2679 KASSERT(alldevs_nwrite != 0);
2680 if (--alldevs_nwrite == 0)
2681 alldevs_writer = NULL;
2682 cv_signal(&alldevs_cv);
2683 }
2684 mutex_exit(&alldevs_mtx);
2685 }
2686
2687 SYSCTL_SETUP(sysctl_detach_setup, "sysctl detach setup")
2688 {
2689 const struct sysctlnode *node = NULL;
2690
2691 sysctl_createv(clog, 0, NULL, &node,
2692 CTLFLAG_PERMANENT,
2693 CTLTYPE_NODE, "kern", NULL,
2694 NULL, 0, NULL, 0,
2695 CTL_KERN, CTL_EOL);
2696
2697 if (node == NULL)
2698 return;
2699
2700 sysctl_createv(clog, 0, &node, NULL,
2701 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2702 CTLTYPE_INT, "detachall",
2703 SYSCTL_DESCR("Detach all devices at shutdown"),
2704 NULL, 0, &detachall, 0,
2705 CTL_CREATE, CTL_EOL);
2706 }
2707