subr_autoconf.c revision 1.182 1 /* $NetBSD: subr_autoconf.c,v 1.182 2009/09/16 15:23:04 pooka Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.182 2009/09/16 15:23:04 pooka Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/malloc.h>
93 #include <sys/kmem.h>
94 #include <sys/systm.h>
95 #include <sys/kernel.h>
96 #include <sys/errno.h>
97 #include <sys/proc.h>
98 #include <sys/reboot.h>
99 #include <sys/kthread.h>
100 #include <sys/buf.h>
101 #include <sys/dirent.h>
102 #include <sys/vnode.h>
103 #include <sys/mount.h>
104 #include <sys/namei.h>
105 #include <sys/unistd.h>
106 #include <sys/fcntl.h>
107 #include <sys/lockf.h>
108 #include <sys/callout.h>
109 #include <sys/devmon.h>
110 #include <sys/cpu.h>
111 #include <sys/sysctl.h>
112
113 #include <sys/disk.h>
114
115 #include <machine/limits.h>
116
117 #if defined(__i386__) && defined(_KERNEL_OPT)
118 #include "opt_splash.h"
119 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
120 #include <dev/splash/splash.h>
121 extern struct splash_progress *splash_progress_state;
122 #endif
123 #endif
124
125 /*
126 * Autoconfiguration subroutines.
127 */
128
129 /*
130 * ioconf.c exports exactly two names: cfdata and cfroots. All system
131 * devices and drivers are found via these tables.
132 */
133 extern struct cfdata cfdata[];
134 extern const short cfroots[];
135
136 /*
137 * List of all cfdriver structures. We use this to detect duplicates
138 * when other cfdrivers are loaded.
139 */
140 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
141 extern struct cfdriver * const cfdriver_list_initial[];
142
143 /*
144 * Initial list of cfattach's.
145 */
146 extern const struct cfattachinit cfattachinit[];
147
148 /*
149 * List of cfdata tables. We always have one such list -- the one
150 * built statically when the kernel was configured.
151 */
152 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
153 static struct cftable initcftable;
154
155 #define ROOT ((device_t)NULL)
156
157 struct matchinfo {
158 cfsubmatch_t fn;
159 struct device *parent;
160 const int *locs;
161 void *aux;
162 struct cfdata *match;
163 int pri;
164 };
165
166 static char *number(char *, int);
167 static void mapply(struct matchinfo *, cfdata_t);
168 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
169 static void config_devdealloc(device_t);
170 static void config_makeroom(int, struct cfdriver *);
171 static void config_devlink(device_t);
172 static void config_devunlink(device_t);
173
174 static void pmflock_debug(device_t, const char *, int);
175 static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
176
177 static device_t deviter_next1(deviter_t *);
178 static void deviter_reinit(deviter_t *);
179
180 struct deferred_config {
181 TAILQ_ENTRY(deferred_config) dc_queue;
182 device_t dc_dev;
183 void (*dc_func)(device_t);
184 };
185
186 TAILQ_HEAD(deferred_config_head, deferred_config);
187
188 struct deferred_config_head deferred_config_queue =
189 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
190 struct deferred_config_head interrupt_config_queue =
191 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
192 int interrupt_config_threads = 8;
193
194 static void config_process_deferred(struct deferred_config_head *, device_t);
195
196 /* Hooks to finalize configuration once all real devices have been found. */
197 struct finalize_hook {
198 TAILQ_ENTRY(finalize_hook) f_list;
199 int (*f_func)(device_t);
200 device_t f_dev;
201 };
202 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
203 TAILQ_HEAD_INITIALIZER(config_finalize_list);
204 static int config_finalize_done;
205
206 /* list of all devices */
207 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
208 kcondvar_t alldevs_cv;
209 kmutex_t alldevs_mtx;
210 static int alldevs_nread = 0;
211 static int alldevs_nwrite = 0;
212 static lwp_t *alldevs_writer = NULL;
213
214 static int config_pending; /* semaphore for mountroot */
215 static kmutex_t config_misc_lock;
216 static kcondvar_t config_misc_cv;
217
218 static int detachall = 0;
219
220 #define STREQ(s1, s2) \
221 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
222
223 static int config_initialized; /* config_init() has been called. */
224
225 static int config_do_twiddle;
226 static callout_t config_twiddle_ch;
227
228 static void sysctl_detach_setup(struct sysctllog **);
229
230 /*
231 * Initialize the autoconfiguration data structures. Normally this
232 * is done by configure(), but some platforms need to do this very
233 * early (to e.g. initialize the console).
234 */
235 void
236 config_init(void)
237 {
238 const struct cfattachinit *cfai;
239 int i, j;
240
241 if (config_initialized)
242 return;
243
244 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
245 cv_init(&alldevs_cv, "alldevs");
246
247 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
248 cv_init(&config_misc_cv, "cfgmisc");
249
250 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
251
252 /* allcfdrivers is statically initialized. */
253 for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
254 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
255 panic("configure: duplicate `%s' drivers",
256 cfdriver_list_initial[i]->cd_name);
257 }
258
259 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
260 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
261 if (config_cfattach_attach(cfai->cfai_name,
262 cfai->cfai_list[j]) != 0)
263 panic("configure: duplicate `%s' attachment "
264 "of `%s' driver",
265 cfai->cfai_list[j]->ca_name,
266 cfai->cfai_name);
267 }
268 }
269
270 initcftable.ct_cfdata = cfdata;
271 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
272 sysctl_detach_setup(NULL);
273
274 config_initialized = 1;
275 }
276
277 void
278 config_deferred(device_t dev)
279 {
280 config_process_deferred(&deferred_config_queue, dev);
281 config_process_deferred(&interrupt_config_queue, dev);
282 }
283
284 static void
285 config_interrupts_thread(void *cookie)
286 {
287 struct deferred_config *dc;
288
289 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
290 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
291 (*dc->dc_func)(dc->dc_dev);
292 kmem_free(dc, sizeof(*dc));
293 config_pending_decr();
294 }
295 kthread_exit(0);
296 }
297
298 void
299 config_create_interruptthreads()
300 {
301 int i;
302
303 for (i = 0; i < interrupt_config_threads; i++) {
304 (void)kthread_create(PRI_NONE, 0, NULL,
305 config_interrupts_thread, NULL, NULL, "config");
306 }
307 }
308
309 /*
310 * Announce device attach/detach to userland listeners.
311 */
312 static void
313 devmon_report_device(device_t dev, bool isattach)
314 {
315 #if NDRVCTL > 0
316 prop_dictionary_t ev;
317 const char *parent;
318 const char *what;
319 device_t pdev = device_parent(dev);
320
321 ev = prop_dictionary_create();
322 if (ev == NULL)
323 return;
324
325 what = (isattach ? "device-attach" : "device-detach");
326 parent = (pdev == NULL ? "root" : device_xname(pdev));
327 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
328 !prop_dictionary_set_cstring(ev, "parent", parent)) {
329 prop_object_release(ev);
330 return;
331 }
332
333 devmon_insert(what, ev);
334 #endif
335 }
336
337 /*
338 * Add a cfdriver to the system.
339 */
340 int
341 config_cfdriver_attach(struct cfdriver *cd)
342 {
343 struct cfdriver *lcd;
344
345 /* Make sure this driver isn't already in the system. */
346 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
347 if (STREQ(lcd->cd_name, cd->cd_name))
348 return EEXIST;
349 }
350
351 LIST_INIT(&cd->cd_attach);
352 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
353
354 return 0;
355 }
356
357 /*
358 * Remove a cfdriver from the system.
359 */
360 int
361 config_cfdriver_detach(struct cfdriver *cd)
362 {
363 int i;
364
365 /* Make sure there are no active instances. */
366 for (i = 0; i < cd->cd_ndevs; i++) {
367 if (cd->cd_devs[i] != NULL)
368 return EBUSY;
369 }
370
371 /* ...and no attachments loaded. */
372 if (LIST_EMPTY(&cd->cd_attach) == 0)
373 return EBUSY;
374
375 LIST_REMOVE(cd, cd_list);
376
377 KASSERT(cd->cd_devs == NULL);
378
379 return 0;
380 }
381
382 /*
383 * Look up a cfdriver by name.
384 */
385 struct cfdriver *
386 config_cfdriver_lookup(const char *name)
387 {
388 struct cfdriver *cd;
389
390 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
391 if (STREQ(cd->cd_name, name))
392 return cd;
393 }
394
395 return NULL;
396 }
397
398 /*
399 * Add a cfattach to the specified driver.
400 */
401 int
402 config_cfattach_attach(const char *driver, struct cfattach *ca)
403 {
404 struct cfattach *lca;
405 struct cfdriver *cd;
406
407 cd = config_cfdriver_lookup(driver);
408 if (cd == NULL)
409 return ESRCH;
410
411 /* Make sure this attachment isn't already on this driver. */
412 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
413 if (STREQ(lca->ca_name, ca->ca_name))
414 return EEXIST;
415 }
416
417 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
418
419 return 0;
420 }
421
422 /*
423 * Remove a cfattach from the specified driver.
424 */
425 int
426 config_cfattach_detach(const char *driver, struct cfattach *ca)
427 {
428 struct cfdriver *cd;
429 device_t dev;
430 int i;
431
432 cd = config_cfdriver_lookup(driver);
433 if (cd == NULL)
434 return ESRCH;
435
436 /* Make sure there are no active instances. */
437 for (i = 0; i < cd->cd_ndevs; i++) {
438 if ((dev = cd->cd_devs[i]) == NULL)
439 continue;
440 if (dev->dv_cfattach == ca)
441 return EBUSY;
442 }
443
444 LIST_REMOVE(ca, ca_list);
445
446 return 0;
447 }
448
449 /*
450 * Look up a cfattach by name.
451 */
452 static struct cfattach *
453 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
454 {
455 struct cfattach *ca;
456
457 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
458 if (STREQ(ca->ca_name, atname))
459 return ca;
460 }
461
462 return NULL;
463 }
464
465 /*
466 * Look up a cfattach by driver/attachment name.
467 */
468 struct cfattach *
469 config_cfattach_lookup(const char *name, const char *atname)
470 {
471 struct cfdriver *cd;
472
473 cd = config_cfdriver_lookup(name);
474 if (cd == NULL)
475 return NULL;
476
477 return config_cfattach_lookup_cd(cd, atname);
478 }
479
480 /*
481 * Apply the matching function and choose the best. This is used
482 * a few times and we want to keep the code small.
483 */
484 static void
485 mapply(struct matchinfo *m, cfdata_t cf)
486 {
487 int pri;
488
489 if (m->fn != NULL) {
490 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
491 } else {
492 pri = config_match(m->parent, cf, m->aux);
493 }
494 if (pri > m->pri) {
495 m->match = cf;
496 m->pri = pri;
497 }
498 }
499
500 int
501 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
502 {
503 const struct cfiattrdata *ci;
504 const struct cflocdesc *cl;
505 int nlocs, i;
506
507 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
508 KASSERT(ci);
509 nlocs = ci->ci_loclen;
510 KASSERT(!nlocs || locs);
511 for (i = 0; i < nlocs; i++) {
512 cl = &ci->ci_locdesc[i];
513 /* !cld_defaultstr means no default value */
514 if ((!(cl->cld_defaultstr)
515 || (cf->cf_loc[i] != cl->cld_default))
516 && cf->cf_loc[i] != locs[i])
517 return 0;
518 }
519
520 return config_match(parent, cf, aux);
521 }
522
523 /*
524 * Helper function: check whether the driver supports the interface attribute
525 * and return its descriptor structure.
526 */
527 static const struct cfiattrdata *
528 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
529 {
530 const struct cfiattrdata * const *cpp;
531
532 if (cd->cd_attrs == NULL)
533 return 0;
534
535 for (cpp = cd->cd_attrs; *cpp; cpp++) {
536 if (STREQ((*cpp)->ci_name, ia)) {
537 /* Match. */
538 return *cpp;
539 }
540 }
541 return 0;
542 }
543
544 /*
545 * Lookup an interface attribute description by name.
546 * If the driver is given, consider only its supported attributes.
547 */
548 const struct cfiattrdata *
549 cfiattr_lookup(const char *name, const struct cfdriver *cd)
550 {
551 const struct cfdriver *d;
552 const struct cfiattrdata *ia;
553
554 if (cd)
555 return cfdriver_get_iattr(cd, name);
556
557 LIST_FOREACH(d, &allcfdrivers, cd_list) {
558 ia = cfdriver_get_iattr(d, name);
559 if (ia)
560 return ia;
561 }
562 return 0;
563 }
564
565 /*
566 * Determine if `parent' is a potential parent for a device spec based
567 * on `cfp'.
568 */
569 static int
570 cfparent_match(const device_t parent, const struct cfparent *cfp)
571 {
572 struct cfdriver *pcd;
573
574 /* We don't match root nodes here. */
575 if (cfp == NULL)
576 return 0;
577
578 pcd = parent->dv_cfdriver;
579 KASSERT(pcd != NULL);
580
581 /*
582 * First, ensure this parent has the correct interface
583 * attribute.
584 */
585 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
586 return 0;
587
588 /*
589 * If no specific parent device instance was specified (i.e.
590 * we're attaching to the attribute only), we're done!
591 */
592 if (cfp->cfp_parent == NULL)
593 return 1;
594
595 /*
596 * Check the parent device's name.
597 */
598 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
599 return 0; /* not the same parent */
600
601 /*
602 * Make sure the unit number matches.
603 */
604 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
605 cfp->cfp_unit == parent->dv_unit)
606 return 1;
607
608 /* Unit numbers don't match. */
609 return 0;
610 }
611
612 /*
613 * Helper for config_cfdata_attach(): check all devices whether it could be
614 * parent any attachment in the config data table passed, and rescan.
615 */
616 static void
617 rescan_with_cfdata(const struct cfdata *cf)
618 {
619 device_t d;
620 const struct cfdata *cf1;
621 deviter_t di;
622
623
624 /*
625 * "alldevs" is likely longer than a modules's cfdata, so make it
626 * the outer loop.
627 */
628 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
629
630 if (!(d->dv_cfattach->ca_rescan))
631 continue;
632
633 for (cf1 = cf; cf1->cf_name; cf1++) {
634
635 if (!cfparent_match(d, cf1->cf_pspec))
636 continue;
637
638 (*d->dv_cfattach->ca_rescan)(d,
639 cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
640 }
641 }
642 deviter_release(&di);
643 }
644
645 /*
646 * Attach a supplemental config data table and rescan potential
647 * parent devices if required.
648 */
649 int
650 config_cfdata_attach(cfdata_t cf, int scannow)
651 {
652 struct cftable *ct;
653
654 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
655 ct->ct_cfdata = cf;
656 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
657
658 if (scannow)
659 rescan_with_cfdata(cf);
660
661 return 0;
662 }
663
664 /*
665 * Helper for config_cfdata_detach: check whether a device is
666 * found through any attachment in the config data table.
667 */
668 static int
669 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
670 {
671 const struct cfdata *cf1;
672
673 for (cf1 = cf; cf1->cf_name; cf1++)
674 if (d->dv_cfdata == cf1)
675 return 1;
676
677 return 0;
678 }
679
680 /*
681 * Detach a supplemental config data table. Detach all devices found
682 * through that table (and thus keeping references to it) before.
683 */
684 int
685 config_cfdata_detach(cfdata_t cf)
686 {
687 device_t d;
688 int error = 0;
689 struct cftable *ct;
690 deviter_t di;
691
692 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
693 d = deviter_next(&di)) {
694 if (!dev_in_cfdata(d, cf))
695 continue;
696 if ((error = config_detach(d, 0)) != 0)
697 break;
698 }
699 deviter_release(&di);
700 if (error) {
701 aprint_error_dev(d, "unable to detach instance\n");
702 return error;
703 }
704
705 TAILQ_FOREACH(ct, &allcftables, ct_list) {
706 if (ct->ct_cfdata == cf) {
707 TAILQ_REMOVE(&allcftables, ct, ct_list);
708 kmem_free(ct, sizeof(*ct));
709 return 0;
710 }
711 }
712
713 /* not found -- shouldn't happen */
714 return EINVAL;
715 }
716
717 /*
718 * Invoke the "match" routine for a cfdata entry on behalf of
719 * an external caller, usually a "submatch" routine.
720 */
721 int
722 config_match(device_t parent, cfdata_t cf, void *aux)
723 {
724 struct cfattach *ca;
725
726 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
727 if (ca == NULL) {
728 /* No attachment for this entry, oh well. */
729 return 0;
730 }
731
732 return (*ca->ca_match)(parent, cf, aux);
733 }
734
735 /*
736 * Iterate over all potential children of some device, calling the given
737 * function (default being the child's match function) for each one.
738 * Nonzero returns are matches; the highest value returned is considered
739 * the best match. Return the `found child' if we got a match, or NULL
740 * otherwise. The `aux' pointer is simply passed on through.
741 *
742 * Note that this function is designed so that it can be used to apply
743 * an arbitrary function to all potential children (its return value
744 * can be ignored).
745 */
746 cfdata_t
747 config_search_loc(cfsubmatch_t fn, device_t parent,
748 const char *ifattr, const int *locs, void *aux)
749 {
750 struct cftable *ct;
751 cfdata_t cf;
752 struct matchinfo m;
753
754 KASSERT(config_initialized);
755 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
756
757 m.fn = fn;
758 m.parent = parent;
759 m.locs = locs;
760 m.aux = aux;
761 m.match = NULL;
762 m.pri = 0;
763
764 TAILQ_FOREACH(ct, &allcftables, ct_list) {
765 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
766
767 /* We don't match root nodes here. */
768 if (!cf->cf_pspec)
769 continue;
770
771 /*
772 * Skip cf if no longer eligible, otherwise scan
773 * through parents for one matching `parent', and
774 * try match function.
775 */
776 if (cf->cf_fstate == FSTATE_FOUND)
777 continue;
778 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
779 cf->cf_fstate == FSTATE_DSTAR)
780 continue;
781
782 /*
783 * If an interface attribute was specified,
784 * consider only children which attach to
785 * that attribute.
786 */
787 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
788 continue;
789
790 if (cfparent_match(parent, cf->cf_pspec))
791 mapply(&m, cf);
792 }
793 }
794 return m.match;
795 }
796
797 cfdata_t
798 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
799 void *aux)
800 {
801
802 return config_search_loc(fn, parent, ifattr, NULL, aux);
803 }
804
805 /*
806 * Find the given root device.
807 * This is much like config_search, but there is no parent.
808 * Don't bother with multiple cfdata tables; the root node
809 * must always be in the initial table.
810 */
811 cfdata_t
812 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
813 {
814 cfdata_t cf;
815 const short *p;
816 struct matchinfo m;
817
818 m.fn = fn;
819 m.parent = ROOT;
820 m.aux = aux;
821 m.match = NULL;
822 m.pri = 0;
823 m.locs = 0;
824 /*
825 * Look at root entries for matching name. We do not bother
826 * with found-state here since only one root should ever be
827 * searched (and it must be done first).
828 */
829 for (p = cfroots; *p >= 0; p++) {
830 cf = &cfdata[*p];
831 if (strcmp(cf->cf_name, rootname) == 0)
832 mapply(&m, cf);
833 }
834 return m.match;
835 }
836
837 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
838
839 /*
840 * The given `aux' argument describes a device that has been found
841 * on the given parent, but not necessarily configured. Locate the
842 * configuration data for that device (using the submatch function
843 * provided, or using candidates' cd_match configuration driver
844 * functions) and attach it, and return true. If the device was
845 * not configured, call the given `print' function and return 0.
846 */
847 device_t
848 config_found_sm_loc(device_t parent,
849 const char *ifattr, const int *locs, void *aux,
850 cfprint_t print, cfsubmatch_t submatch)
851 {
852 cfdata_t cf;
853
854 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
855 if (splash_progress_state)
856 splash_progress_update(splash_progress_state);
857 #endif
858
859 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
860 return(config_attach_loc(parent, cf, locs, aux, print));
861 if (print) {
862 if (config_do_twiddle && cold)
863 twiddle();
864 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
865 }
866
867 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
868 if (splash_progress_state)
869 splash_progress_update(splash_progress_state);
870 #endif
871
872 return NULL;
873 }
874
875 device_t
876 config_found_ia(device_t parent, const char *ifattr, void *aux,
877 cfprint_t print)
878 {
879
880 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
881 }
882
883 device_t
884 config_found(device_t parent, void *aux, cfprint_t print)
885 {
886
887 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
888 }
889
890 /*
891 * As above, but for root devices.
892 */
893 device_t
894 config_rootfound(const char *rootname, void *aux)
895 {
896 cfdata_t cf;
897
898 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
899 return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
900 aprint_error("root device %s not configured\n", rootname);
901 return NULL;
902 }
903
904 /* just like sprintf(buf, "%d") except that it works from the end */
905 static char *
906 number(char *ep, int n)
907 {
908
909 *--ep = 0;
910 while (n >= 10) {
911 *--ep = (n % 10) + '0';
912 n /= 10;
913 }
914 *--ep = n + '0';
915 return ep;
916 }
917
918 /*
919 * Expand the size of the cd_devs array if necessary.
920 */
921 static void
922 config_makeroom(int n, struct cfdriver *cd)
923 {
924 int old, new;
925 device_t *nsp;
926
927 if (n < cd->cd_ndevs)
928 return;
929
930 /*
931 * Need to expand the array.
932 */
933 old = cd->cd_ndevs;
934 if (old == 0)
935 new = 4;
936 else
937 new = old * 2;
938 while (new <= n)
939 new *= 2;
940 cd->cd_ndevs = new;
941 nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP);
942 if (nsp == NULL)
943 panic("config_attach: %sing dev array",
944 old != 0 ? "expand" : "creat");
945 memset(nsp + old, 0, sizeof(device_t [new - old]));
946 if (old != 0) {
947 memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
948 kmem_free(cd->cd_devs, sizeof(device_t [old]));
949 }
950 cd->cd_devs = nsp;
951 }
952
953 static void
954 config_devlink(device_t dev)
955 {
956 struct cfdriver *cd = dev->dv_cfdriver;
957
958 /* put this device in the devices array */
959 config_makeroom(dev->dv_unit, cd);
960 if (cd->cd_devs[dev->dv_unit])
961 panic("config_attach: duplicate %s", device_xname(dev));
962 cd->cd_devs[dev->dv_unit] = dev;
963
964 /* It is safe to add a device to the tail of the list while
965 * readers are in the list, but not while a writer is in
966 * the list. Wait for any writer to complete.
967 */
968 mutex_enter(&alldevs_mtx);
969 while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
970 cv_wait(&alldevs_cv, &alldevs_mtx);
971 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
972 cv_signal(&alldevs_cv);
973 mutex_exit(&alldevs_mtx);
974 }
975
976 static void
977 config_devunlink(device_t dev)
978 {
979 struct cfdriver *cd = dev->dv_cfdriver;
980 int i;
981
982 /* Unlink from device list. */
983 TAILQ_REMOVE(&alldevs, dev, dv_list);
984
985 /* Remove from cfdriver's array. */
986 cd->cd_devs[dev->dv_unit] = NULL;
987
988 /*
989 * If the device now has no units in use, deallocate its softc array.
990 */
991 for (i = 0; i < cd->cd_ndevs; i++) {
992 if (cd->cd_devs[i] != NULL)
993 return;
994 }
995 /* nothing found; deallocate */
996 kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
997 cd->cd_devs = NULL;
998 cd->cd_ndevs = 0;
999 }
1000
1001 static device_t
1002 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1003 {
1004 struct cfdriver *cd;
1005 struct cfattach *ca;
1006 size_t lname, lunit;
1007 const char *xunit;
1008 int myunit;
1009 char num[10];
1010 device_t dev;
1011 void *dev_private;
1012 const struct cfiattrdata *ia;
1013 device_lock_t dvl;
1014
1015 cd = config_cfdriver_lookup(cf->cf_name);
1016 if (cd == NULL)
1017 return NULL;
1018
1019 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1020 if (ca == NULL)
1021 return NULL;
1022
1023 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1024 ca->ca_devsize < sizeof(struct device))
1025 panic("config_devalloc: %s", cf->cf_atname);
1026
1027 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1028 if (cf->cf_fstate == FSTATE_STAR) {
1029 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1030 if (cd->cd_devs[myunit] == NULL)
1031 break;
1032 /*
1033 * myunit is now the unit of the first NULL device pointer,
1034 * or max(cd->cd_ndevs,cf->cf_unit).
1035 */
1036 } else {
1037 myunit = cf->cf_unit;
1038 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1039 return NULL;
1040 }
1041 #else
1042 myunit = cf->cf_unit;
1043 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1044
1045 /* compute length of name and decimal expansion of unit number */
1046 lname = strlen(cd->cd_name);
1047 xunit = number(&num[sizeof(num)], myunit);
1048 lunit = &num[sizeof(num)] - xunit;
1049 if (lname + lunit > sizeof(dev->dv_xname))
1050 panic("config_devalloc: device name too long");
1051
1052 /* get memory for all device vars */
1053 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1054 if (ca->ca_devsize > 0) {
1055 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1056 if (dev_private == NULL)
1057 panic("config_devalloc: memory allocation for device softc failed");
1058 } else {
1059 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1060 dev_private = NULL;
1061 }
1062
1063 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1064 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1065 } else {
1066 dev = dev_private;
1067 }
1068 if (dev == NULL)
1069 panic("config_devalloc: memory allocation for device_t failed");
1070
1071 dvl = device_getlock(dev);
1072
1073 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1074 cv_init(&dvl->dvl_cv, "pmfsusp");
1075
1076 dev->dv_class = cd->cd_class;
1077 dev->dv_cfdata = cf;
1078 dev->dv_cfdriver = cd;
1079 dev->dv_cfattach = ca;
1080 dev->dv_unit = myunit;
1081 dev->dv_activity_count = 0;
1082 dev->dv_activity_handlers = NULL;
1083 dev->dv_private = dev_private;
1084 memcpy(dev->dv_xname, cd->cd_name, lname);
1085 memcpy(dev->dv_xname + lname, xunit, lunit);
1086 dev->dv_parent = parent;
1087 if (parent != NULL)
1088 dev->dv_depth = parent->dv_depth + 1;
1089 else
1090 dev->dv_depth = 0;
1091 dev->dv_flags = DVF_ACTIVE; /* always initially active */
1092 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
1093 if (locs) {
1094 KASSERT(parent); /* no locators at root */
1095 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1096 parent->dv_cfdriver);
1097 dev->dv_locators =
1098 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1099 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1100 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1101 }
1102 dev->dv_properties = prop_dictionary_create();
1103 KASSERT(dev->dv_properties != NULL);
1104
1105 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1106 "device-driver", dev->dv_cfdriver->cd_name);
1107 prop_dictionary_set_uint16(dev->dv_properties,
1108 "device-unit", dev->dv_unit);
1109
1110 return dev;
1111 }
1112
1113 static void
1114 config_devdealloc(device_t dev)
1115 {
1116 device_lock_t dvl = device_getlock(dev);
1117 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1118
1119 cv_destroy(&dvl->dvl_cv);
1120 mutex_destroy(&dvl->dvl_mtx);
1121
1122 KASSERT(dev->dv_properties != NULL);
1123 prop_object_release(dev->dv_properties);
1124
1125 if (dev->dv_activity_handlers)
1126 panic("config_devdealloc with registered handlers");
1127
1128 if (dev->dv_locators) {
1129 size_t amount = *--dev->dv_locators;
1130 kmem_free(dev->dv_locators, amount);
1131 }
1132
1133 if (dev->dv_cfattach->ca_devsize > 0)
1134 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1135 if (priv)
1136 kmem_free(dev, sizeof(*dev));
1137 }
1138
1139 /*
1140 * Attach a found device.
1141 */
1142 device_t
1143 config_attach_loc(device_t parent, cfdata_t cf,
1144 const int *locs, void *aux, cfprint_t print)
1145 {
1146 device_t dev;
1147 struct cftable *ct;
1148 const char *drvname;
1149
1150 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1151 if (splash_progress_state)
1152 splash_progress_update(splash_progress_state);
1153 #endif
1154
1155 dev = config_devalloc(parent, cf, locs);
1156 if (!dev)
1157 panic("config_attach: allocation of device softc failed");
1158
1159 /* XXX redundant - see below? */
1160 if (cf->cf_fstate != FSTATE_STAR) {
1161 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1162 cf->cf_fstate = FSTATE_FOUND;
1163 }
1164 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1165 else
1166 cf->cf_unit++;
1167 #endif
1168
1169 config_devlink(dev);
1170
1171 if (config_do_twiddle && cold)
1172 twiddle();
1173 else
1174 aprint_naive("Found ");
1175 /*
1176 * We want the next two printfs for normal, verbose, and quiet,
1177 * but not silent (in which case, we're twiddling, instead).
1178 */
1179 if (parent == ROOT) {
1180 aprint_naive("%s (root)", device_xname(dev));
1181 aprint_normal("%s (root)", device_xname(dev));
1182 } else {
1183 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1184 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1185 if (print)
1186 (void) (*print)(aux, NULL);
1187 }
1188
1189 /*
1190 * Before attaching, clobber any unfound devices that are
1191 * otherwise identical.
1192 * XXX code above is redundant?
1193 */
1194 drvname = dev->dv_cfdriver->cd_name;
1195 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1196 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1197 if (STREQ(cf->cf_name, drvname) &&
1198 cf->cf_unit == dev->dv_unit) {
1199 if (cf->cf_fstate == FSTATE_NOTFOUND)
1200 cf->cf_fstate = FSTATE_FOUND;
1201 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1202 /*
1203 * Bump the unit number on all starred cfdata
1204 * entries for this device.
1205 */
1206 if (cf->cf_fstate == FSTATE_STAR)
1207 cf->cf_unit++;
1208 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1209 }
1210 }
1211 }
1212 #ifdef __HAVE_DEVICE_REGISTER
1213 device_register(dev, aux);
1214 #endif
1215
1216 /* Let userland know */
1217 devmon_report_device(dev, true);
1218
1219 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1220 if (splash_progress_state)
1221 splash_progress_update(splash_progress_state);
1222 #endif
1223 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1224 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1225 if (splash_progress_state)
1226 splash_progress_update(splash_progress_state);
1227 #endif
1228
1229 if (!device_pmf_is_registered(dev))
1230 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1231
1232 config_process_deferred(&deferred_config_queue, dev);
1233 return dev;
1234 }
1235
1236 device_t
1237 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1238 {
1239
1240 return config_attach_loc(parent, cf, NULL, aux, print);
1241 }
1242
1243 /*
1244 * As above, but for pseudo-devices. Pseudo-devices attached in this
1245 * way are silently inserted into the device tree, and their children
1246 * attached.
1247 *
1248 * Note that because pseudo-devices are attached silently, any information
1249 * the attach routine wishes to print should be prefixed with the device
1250 * name by the attach routine.
1251 */
1252 device_t
1253 config_attach_pseudo(cfdata_t cf)
1254 {
1255 device_t dev;
1256
1257 dev = config_devalloc(ROOT, cf, NULL);
1258 if (!dev)
1259 return NULL;
1260
1261 /* XXX mark busy in cfdata */
1262
1263 if (cf->cf_fstate != FSTATE_STAR) {
1264 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1265 cf->cf_fstate = FSTATE_FOUND;
1266 }
1267
1268 config_devlink(dev);
1269
1270 #if 0 /* XXXJRT not yet */
1271 #ifdef __HAVE_DEVICE_REGISTER
1272 device_register(dev, NULL); /* like a root node */
1273 #endif
1274 #endif
1275 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1276 config_process_deferred(&deferred_config_queue, dev);
1277 return dev;
1278 }
1279
1280 /*
1281 * Detach a device. Optionally forced (e.g. because of hardware
1282 * removal) and quiet. Returns zero if successful, non-zero
1283 * (an error code) otherwise.
1284 *
1285 * Note that this code wants to be run from a process context, so
1286 * that the detach can sleep to allow processes which have a device
1287 * open to run and unwind their stacks.
1288 */
1289 int
1290 config_detach(device_t dev, int flags)
1291 {
1292 struct cftable *ct;
1293 cfdata_t cf;
1294 const struct cfattach *ca;
1295 struct cfdriver *cd;
1296 #ifdef DIAGNOSTIC
1297 device_t d;
1298 #endif
1299 int rv = 0;
1300
1301 #ifdef DIAGNOSTIC
1302 cf = dev->dv_cfdata;
1303 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1304 cf->cf_fstate != FSTATE_STAR)
1305 panic("config_detach: %s: bad device fstate %d",
1306 device_xname(dev), cf ? cf->cf_fstate : -1);
1307 #endif
1308 cd = dev->dv_cfdriver;
1309 KASSERT(cd != NULL);
1310
1311 ca = dev->dv_cfattach;
1312 KASSERT(ca != NULL);
1313
1314 KASSERT(curlwp != NULL);
1315 mutex_enter(&alldevs_mtx);
1316 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1317 ;
1318 else while (alldevs_nread != 0 ||
1319 (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1320 cv_wait(&alldevs_cv, &alldevs_mtx);
1321 if (alldevs_nwrite++ == 0)
1322 alldevs_writer = curlwp;
1323 mutex_exit(&alldevs_mtx);
1324
1325 /*
1326 * Ensure the device is deactivated. If the device doesn't
1327 * have an activation entry point, we allow DVF_ACTIVE to
1328 * remain set. Otherwise, if DVF_ACTIVE is still set, the
1329 * device is busy, and the detach fails.
1330 */
1331 if (!detachall &&
1332 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1333 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1334 rv = EBUSY; /* XXX EOPNOTSUPP? */
1335 } else if ((rv = config_deactivate(dev)) == EOPNOTSUPP)
1336 rv = 0; /* Do not treat EOPNOTSUPP as an error */
1337
1338 /*
1339 * Try to detach the device. If that's not possible, then
1340 * we either panic() (for the forced but failed case), or
1341 * return an error.
1342 */
1343 if (rv == 0) {
1344 if (ca->ca_detach != NULL)
1345 rv = (*ca->ca_detach)(dev, flags);
1346 else
1347 rv = EOPNOTSUPP;
1348 }
1349 if (rv != 0) {
1350 if ((flags & DETACH_FORCE) == 0)
1351 goto out;
1352 else
1353 panic("config_detach: forced detach of %s failed (%d)",
1354 device_xname(dev), rv);
1355 }
1356
1357 dev->dv_flags &= ~DVF_ACTIVE;
1358
1359 /*
1360 * The device has now been successfully detached.
1361 */
1362
1363 /* Let userland know */
1364 devmon_report_device(dev, false);
1365
1366 #ifdef DIAGNOSTIC
1367 /*
1368 * Sanity: If you're successfully detached, you should have no
1369 * children. (Note that because children must be attached
1370 * after parents, we only need to search the latter part of
1371 * the list.)
1372 */
1373 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1374 d = TAILQ_NEXT(d, dv_list)) {
1375 if (d->dv_parent == dev) {
1376 printf("config_detach: detached device %s"
1377 " has children %s\n", device_xname(dev), device_xname(d));
1378 panic("config_detach");
1379 }
1380 }
1381 #endif
1382
1383 /* notify the parent that the child is gone */
1384 if (dev->dv_parent) {
1385 device_t p = dev->dv_parent;
1386 if (p->dv_cfattach->ca_childdetached)
1387 (*p->dv_cfattach->ca_childdetached)(p, dev);
1388 }
1389
1390 /*
1391 * Mark cfdata to show that the unit can be reused, if possible.
1392 */
1393 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1394 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1395 if (STREQ(cf->cf_name, cd->cd_name)) {
1396 if (cf->cf_fstate == FSTATE_FOUND &&
1397 cf->cf_unit == dev->dv_unit)
1398 cf->cf_fstate = FSTATE_NOTFOUND;
1399 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1400 /*
1401 * Note that we can only re-use a starred
1402 * unit number if the unit being detached
1403 * had the last assigned unit number.
1404 */
1405 if (cf->cf_fstate == FSTATE_STAR &&
1406 cf->cf_unit == dev->dv_unit + 1)
1407 cf->cf_unit--;
1408 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1409 }
1410 }
1411 }
1412
1413 config_devunlink(dev);
1414
1415 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1416 aprint_normal_dev(dev, "detached\n");
1417
1418 config_devdealloc(dev);
1419
1420 out:
1421 mutex_enter(&alldevs_mtx);
1422 KASSERT(alldevs_nwrite != 0);
1423 if (--alldevs_nwrite == 0)
1424 alldevs_writer = NULL;
1425 cv_signal(&alldevs_cv);
1426 mutex_exit(&alldevs_mtx);
1427 return rv;
1428 }
1429
1430 int
1431 config_detach_children(device_t parent, int flags)
1432 {
1433 device_t dv;
1434 deviter_t di;
1435 int error = 0;
1436
1437 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1438 dv = deviter_next(&di)) {
1439 if (device_parent(dv) != parent)
1440 continue;
1441 if ((error = config_detach(dv, flags)) != 0)
1442 break;
1443 }
1444 deviter_release(&di);
1445 return error;
1446 }
1447
1448 device_t
1449 shutdown_first(struct shutdown_state *s)
1450 {
1451 if (!s->initialized) {
1452 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1453 s->initialized = true;
1454 }
1455 return shutdown_next(s);
1456 }
1457
1458 device_t
1459 shutdown_next(struct shutdown_state *s)
1460 {
1461 device_t dv;
1462
1463 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1464 ;
1465
1466 if (dv == NULL)
1467 s->initialized = false;
1468
1469 return dv;
1470 }
1471
1472 bool
1473 config_detach_all(int how)
1474 {
1475 static struct shutdown_state s;
1476 device_t curdev;
1477 bool progress = false;
1478
1479 if ((how & RB_NOSYNC) != 0)
1480 return false;
1481
1482 for (curdev = shutdown_first(&s); curdev != NULL;
1483 curdev = shutdown_next(&s)) {
1484 aprint_debug(" detaching %s, ", device_xname(curdev));
1485 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1486 progress = true;
1487 aprint_debug("success.");
1488 } else
1489 aprint_debug("failed.");
1490 }
1491 return progress;
1492 }
1493
1494 int
1495 config_activate(device_t dev)
1496 {
1497 const struct cfattach *ca = dev->dv_cfattach;
1498 int rv = 0, oflags = dev->dv_flags;
1499
1500 if (ca->ca_activate == NULL)
1501 return EOPNOTSUPP;
1502
1503 if ((dev->dv_flags & DVF_ACTIVE) == 0) {
1504 dev->dv_flags |= DVF_ACTIVE;
1505 rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
1506 if (rv)
1507 dev->dv_flags = oflags;
1508 }
1509 return rv;
1510 }
1511
1512 int
1513 config_deactivate(device_t dev)
1514 {
1515 const struct cfattach *ca = dev->dv_cfattach;
1516 int rv = 0, oflags = dev->dv_flags;
1517
1518 if (ca->ca_activate == NULL)
1519 return EOPNOTSUPP;
1520
1521 if (dev->dv_flags & DVF_ACTIVE) {
1522 dev->dv_flags &= ~DVF_ACTIVE;
1523 rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1524 if (rv)
1525 dev->dv_flags = oflags;
1526 }
1527 return rv;
1528 }
1529
1530 /*
1531 * Defer the configuration of the specified device until all
1532 * of its parent's devices have been attached.
1533 */
1534 void
1535 config_defer(device_t dev, void (*func)(device_t))
1536 {
1537 struct deferred_config *dc;
1538
1539 if (dev->dv_parent == NULL)
1540 panic("config_defer: can't defer config of a root device");
1541
1542 #ifdef DIAGNOSTIC
1543 for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1544 dc = TAILQ_NEXT(dc, dc_queue)) {
1545 if (dc->dc_dev == dev)
1546 panic("config_defer: deferred twice");
1547 }
1548 #endif
1549
1550 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1551 if (dc == NULL)
1552 panic("config_defer: unable to allocate callback");
1553
1554 dc->dc_dev = dev;
1555 dc->dc_func = func;
1556 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1557 config_pending_incr();
1558 }
1559
1560 /*
1561 * Defer some autoconfiguration for a device until after interrupts
1562 * are enabled.
1563 */
1564 void
1565 config_interrupts(device_t dev, void (*func)(device_t))
1566 {
1567 struct deferred_config *dc;
1568
1569 /*
1570 * If interrupts are enabled, callback now.
1571 */
1572 if (cold == 0) {
1573 (*func)(dev);
1574 return;
1575 }
1576
1577 #ifdef DIAGNOSTIC
1578 for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1579 dc = TAILQ_NEXT(dc, dc_queue)) {
1580 if (dc->dc_dev == dev)
1581 panic("config_interrupts: deferred twice");
1582 }
1583 #endif
1584
1585 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1586 if (dc == NULL)
1587 panic("config_interrupts: unable to allocate callback");
1588
1589 dc->dc_dev = dev;
1590 dc->dc_func = func;
1591 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1592 config_pending_incr();
1593 }
1594
1595 /*
1596 * Process a deferred configuration queue.
1597 */
1598 static void
1599 config_process_deferred(struct deferred_config_head *queue,
1600 device_t parent)
1601 {
1602 struct deferred_config *dc, *ndc;
1603
1604 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1605 ndc = TAILQ_NEXT(dc, dc_queue);
1606 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1607 TAILQ_REMOVE(queue, dc, dc_queue);
1608 (*dc->dc_func)(dc->dc_dev);
1609 kmem_free(dc, sizeof(*dc));
1610 config_pending_decr();
1611 }
1612 }
1613 }
1614
1615 /*
1616 * Manipulate the config_pending semaphore.
1617 */
1618 void
1619 config_pending_incr(void)
1620 {
1621
1622 mutex_enter(&config_misc_lock);
1623 config_pending++;
1624 mutex_exit(&config_misc_lock);
1625 }
1626
1627 void
1628 config_pending_decr(void)
1629 {
1630
1631 #ifdef DIAGNOSTIC
1632 if (config_pending == 0)
1633 panic("config_pending_decr: config_pending == 0");
1634 #endif
1635 mutex_enter(&config_misc_lock);
1636 config_pending--;
1637 if (config_pending == 0)
1638 cv_broadcast(&config_misc_cv);
1639 mutex_exit(&config_misc_lock);
1640 }
1641
1642 /*
1643 * Register a "finalization" routine. Finalization routines are
1644 * called iteratively once all real devices have been found during
1645 * autoconfiguration, for as long as any one finalizer has done
1646 * any work.
1647 */
1648 int
1649 config_finalize_register(device_t dev, int (*fn)(device_t))
1650 {
1651 struct finalize_hook *f;
1652
1653 /*
1654 * If finalization has already been done, invoke the
1655 * callback function now.
1656 */
1657 if (config_finalize_done) {
1658 while ((*fn)(dev) != 0)
1659 /* loop */ ;
1660 }
1661
1662 /* Ensure this isn't already on the list. */
1663 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1664 if (f->f_func == fn && f->f_dev == dev)
1665 return EEXIST;
1666 }
1667
1668 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1669 f->f_func = fn;
1670 f->f_dev = dev;
1671 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1672
1673 return 0;
1674 }
1675
1676 void
1677 config_finalize(void)
1678 {
1679 struct finalize_hook *f;
1680 struct pdevinit *pdev;
1681 extern struct pdevinit pdevinit[];
1682 int errcnt, rv;
1683
1684 /*
1685 * Now that device driver threads have been created, wait for
1686 * them to finish any deferred autoconfiguration.
1687 */
1688 mutex_enter(&config_misc_lock);
1689 while (config_pending != 0)
1690 cv_wait(&config_misc_cv, &config_misc_lock);
1691 mutex_exit(&config_misc_lock);
1692
1693 KERNEL_LOCK(1, NULL);
1694
1695 /* Attach pseudo-devices. */
1696 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1697 (*pdev->pdev_attach)(pdev->pdev_count);
1698
1699 /* Run the hooks until none of them does any work. */
1700 do {
1701 rv = 0;
1702 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1703 rv |= (*f->f_func)(f->f_dev);
1704 } while (rv != 0);
1705
1706 config_finalize_done = 1;
1707
1708 /* Now free all the hooks. */
1709 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1710 TAILQ_REMOVE(&config_finalize_list, f, f_list);
1711 kmem_free(f, sizeof(*f));
1712 }
1713
1714 KERNEL_UNLOCK_ONE(NULL);
1715
1716 errcnt = aprint_get_error_count();
1717 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1718 (boothowto & AB_VERBOSE) == 0) {
1719 mutex_enter(&config_misc_lock);
1720 if (config_do_twiddle) {
1721 config_do_twiddle = 0;
1722 printf_nolog(" done.\n");
1723 }
1724 mutex_exit(&config_misc_lock);
1725 if (errcnt != 0) {
1726 printf("WARNING: %d error%s while detecting hardware; "
1727 "check system log.\n", errcnt,
1728 errcnt == 1 ? "" : "s");
1729 }
1730 }
1731 }
1732
1733 void
1734 config_twiddle_init()
1735 {
1736
1737 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
1738 config_do_twiddle = 1;
1739 }
1740 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
1741 }
1742
1743 void
1744 config_twiddle_fn(void *cookie)
1745 {
1746
1747 mutex_enter(&config_misc_lock);
1748 if (config_do_twiddle) {
1749 twiddle();
1750 callout_schedule(&config_twiddle_ch, mstohz(100));
1751 }
1752 mutex_exit(&config_misc_lock);
1753 }
1754
1755 /*
1756 * device_lookup:
1757 *
1758 * Look up a device instance for a given driver.
1759 */
1760 device_t
1761 device_lookup(cfdriver_t cd, int unit)
1762 {
1763
1764 if (unit < 0 || unit >= cd->cd_ndevs)
1765 return NULL;
1766
1767 return cd->cd_devs[unit];
1768 }
1769
1770 /*
1771 * device_lookup:
1772 *
1773 * Look up a device instance for a given driver.
1774 */
1775 void *
1776 device_lookup_private(cfdriver_t cd, int unit)
1777 {
1778 device_t dv;
1779
1780 if (unit < 0 || unit >= cd->cd_ndevs)
1781 return NULL;
1782
1783 if ((dv = cd->cd_devs[unit]) == NULL)
1784 return NULL;
1785
1786 return dv->dv_private;
1787 }
1788
1789 /*
1790 * Accessor functions for the device_t type.
1791 */
1792 devclass_t
1793 device_class(device_t dev)
1794 {
1795
1796 return dev->dv_class;
1797 }
1798
1799 cfdata_t
1800 device_cfdata(device_t dev)
1801 {
1802
1803 return dev->dv_cfdata;
1804 }
1805
1806 cfdriver_t
1807 device_cfdriver(device_t dev)
1808 {
1809
1810 return dev->dv_cfdriver;
1811 }
1812
1813 cfattach_t
1814 device_cfattach(device_t dev)
1815 {
1816
1817 return dev->dv_cfattach;
1818 }
1819
1820 int
1821 device_unit(device_t dev)
1822 {
1823
1824 return dev->dv_unit;
1825 }
1826
1827 const char *
1828 device_xname(device_t dev)
1829 {
1830
1831 return dev->dv_xname;
1832 }
1833
1834 device_t
1835 device_parent(device_t dev)
1836 {
1837
1838 return dev->dv_parent;
1839 }
1840
1841 bool
1842 device_is_active(device_t dev)
1843 {
1844 int active_flags;
1845
1846 active_flags = DVF_ACTIVE;
1847 active_flags |= DVF_CLASS_SUSPENDED;
1848 active_flags |= DVF_DRIVER_SUSPENDED;
1849 active_flags |= DVF_BUS_SUSPENDED;
1850
1851 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
1852 }
1853
1854 bool
1855 device_is_enabled(device_t dev)
1856 {
1857 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1858 }
1859
1860 bool
1861 device_has_power(device_t dev)
1862 {
1863 int active_flags;
1864
1865 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1866
1867 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
1868 }
1869
1870 int
1871 device_locator(device_t dev, u_int locnum)
1872 {
1873
1874 KASSERT(dev->dv_locators != NULL);
1875 return dev->dv_locators[locnum];
1876 }
1877
1878 void *
1879 device_private(device_t dev)
1880 {
1881
1882 /*
1883 * The reason why device_private(NULL) is allowed is to simplify the
1884 * work of a lot of userspace request handlers (i.e., c/bdev
1885 * handlers) which grab cfdriver_t->cd_units[n].
1886 * It avoids having them test for it to be NULL and only then calling
1887 * device_private.
1888 */
1889 return dev == NULL ? NULL : dev->dv_private;
1890 }
1891
1892 prop_dictionary_t
1893 device_properties(device_t dev)
1894 {
1895
1896 return dev->dv_properties;
1897 }
1898
1899 /*
1900 * device_is_a:
1901 *
1902 * Returns true if the device is an instance of the specified
1903 * driver.
1904 */
1905 bool
1906 device_is_a(device_t dev, const char *dname)
1907 {
1908
1909 return strcmp(dev->dv_cfdriver->cd_name, dname) == 0;
1910 }
1911
1912 /*
1913 * device_find_by_xname:
1914 *
1915 * Returns the device of the given name or NULL if it doesn't exist.
1916 */
1917 device_t
1918 device_find_by_xname(const char *name)
1919 {
1920 device_t dv;
1921 deviter_t di;
1922
1923 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
1924 if (strcmp(device_xname(dv), name) == 0)
1925 break;
1926 }
1927 deviter_release(&di);
1928
1929 return dv;
1930 }
1931
1932 /*
1933 * device_find_by_driver_unit:
1934 *
1935 * Returns the device of the given driver name and unit or
1936 * NULL if it doesn't exist.
1937 */
1938 device_t
1939 device_find_by_driver_unit(const char *name, int unit)
1940 {
1941 struct cfdriver *cd;
1942
1943 if ((cd = config_cfdriver_lookup(name)) == NULL)
1944 return NULL;
1945 return device_lookup(cd, unit);
1946 }
1947
1948 /*
1949 * Power management related functions.
1950 */
1951
1952 bool
1953 device_pmf_is_registered(device_t dev)
1954 {
1955 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
1956 }
1957
1958 bool
1959 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
1960 {
1961 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
1962 return true;
1963 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
1964 return false;
1965 if (*dev->dv_driver_suspend != NULL &&
1966 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
1967 return false;
1968
1969 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
1970 return true;
1971 }
1972
1973 bool
1974 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
1975 {
1976 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
1977 return true;
1978 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
1979 return false;
1980 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
1981 return false;
1982 if (*dev->dv_driver_resume != NULL &&
1983 !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
1984 return false;
1985
1986 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
1987 return true;
1988 }
1989
1990 bool
1991 device_pmf_driver_shutdown(device_t dev, int how)
1992 {
1993
1994 if (*dev->dv_driver_shutdown != NULL &&
1995 !(*dev->dv_driver_shutdown)(dev, how))
1996 return false;
1997 return true;
1998 }
1999
2000 bool
2001 device_pmf_driver_register(device_t dev,
2002 bool (*suspend)(device_t PMF_FN_PROTO),
2003 bool (*resume)(device_t PMF_FN_PROTO),
2004 bool (*shutdown)(device_t, int))
2005 {
2006 dev->dv_driver_suspend = suspend;
2007 dev->dv_driver_resume = resume;
2008 dev->dv_driver_shutdown = shutdown;
2009 dev->dv_flags |= DVF_POWER_HANDLERS;
2010 return true;
2011 }
2012
2013 static const char *
2014 curlwp_name(void)
2015 {
2016 if (curlwp->l_name != NULL)
2017 return curlwp->l_name;
2018 else
2019 return curlwp->l_proc->p_comm;
2020 }
2021
2022 void
2023 device_pmf_driver_deregister(device_t dev)
2024 {
2025 device_lock_t dvl = device_getlock(dev);
2026
2027 dev->dv_driver_suspend = NULL;
2028 dev->dv_driver_resume = NULL;
2029
2030 mutex_enter(&dvl->dvl_mtx);
2031 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2032 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2033 /* Wake a thread that waits for the lock. That
2034 * thread will fail to acquire the lock, and then
2035 * it will wake the next thread that waits for the
2036 * lock, or else it will wake us.
2037 */
2038 cv_signal(&dvl->dvl_cv);
2039 pmflock_debug(dev, __func__, __LINE__);
2040 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2041 pmflock_debug(dev, __func__, __LINE__);
2042 }
2043 mutex_exit(&dvl->dvl_mtx);
2044 }
2045
2046 bool
2047 device_pmf_driver_child_register(device_t dev)
2048 {
2049 device_t parent = device_parent(dev);
2050
2051 if (parent == NULL || parent->dv_driver_child_register == NULL)
2052 return true;
2053 return (*parent->dv_driver_child_register)(dev);
2054 }
2055
2056 void
2057 device_pmf_driver_set_child_register(device_t dev,
2058 bool (*child_register)(device_t))
2059 {
2060 dev->dv_driver_child_register = child_register;
2061 }
2062
2063 void
2064 device_pmf_self_resume(device_t dev PMF_FN_ARGS)
2065 {
2066 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2067 if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
2068 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2069 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2070 }
2071
2072 bool
2073 device_is_self_suspended(device_t dev)
2074 {
2075 return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
2076 }
2077
2078 void
2079 device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
2080 {
2081 bool self = (flags & PMF_F_SELF) != 0;
2082
2083 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2084
2085 if (!self)
2086 dev->dv_flags &= ~DVF_SELF_SUSPENDED;
2087 else if (device_is_active(dev))
2088 dev->dv_flags |= DVF_SELF_SUSPENDED;
2089
2090 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2091 }
2092
2093 static void
2094 pmflock_debug(device_t dev, const char *func, int line)
2095 {
2096 device_lock_t dvl = device_getlock(dev);
2097
2098 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2099 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2100 dev->dv_flags);
2101 }
2102
2103 static void
2104 pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
2105 {
2106 device_lock_t dvl = device_getlock(dev);
2107
2108 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x "
2109 "flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
2110 dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags PMF_FN_CALL);
2111 }
2112
2113 static bool
2114 device_pmf_lock1(device_t dev PMF_FN_ARGS)
2115 {
2116 device_lock_t dvl = device_getlock(dev);
2117
2118 while (device_pmf_is_registered(dev) &&
2119 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2120 dvl->dvl_nwait++;
2121 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2122 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2123 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2124 dvl->dvl_nwait--;
2125 }
2126 if (!device_pmf_is_registered(dev)) {
2127 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2128 /* We could not acquire the lock, but some other thread may
2129 * wait for it, also. Wake that thread.
2130 */
2131 cv_signal(&dvl->dvl_cv);
2132 return false;
2133 }
2134 dvl->dvl_nlock++;
2135 dvl->dvl_holder = curlwp;
2136 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2137 return true;
2138 }
2139
2140 bool
2141 device_pmf_lock(device_t dev PMF_FN_ARGS)
2142 {
2143 bool rc;
2144 device_lock_t dvl = device_getlock(dev);
2145
2146 mutex_enter(&dvl->dvl_mtx);
2147 rc = device_pmf_lock1(dev PMF_FN_CALL);
2148 mutex_exit(&dvl->dvl_mtx);
2149
2150 return rc;
2151 }
2152
2153 void
2154 device_pmf_unlock(device_t dev PMF_FN_ARGS)
2155 {
2156 device_lock_t dvl = device_getlock(dev);
2157
2158 KASSERT(dvl->dvl_nlock > 0);
2159 mutex_enter(&dvl->dvl_mtx);
2160 if (--dvl->dvl_nlock == 0)
2161 dvl->dvl_holder = NULL;
2162 cv_signal(&dvl->dvl_cv);
2163 pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
2164 mutex_exit(&dvl->dvl_mtx);
2165 }
2166
2167 device_lock_t
2168 device_getlock(device_t dev)
2169 {
2170 return &dev->dv_lock;
2171 }
2172
2173 void *
2174 device_pmf_bus_private(device_t dev)
2175 {
2176 return dev->dv_bus_private;
2177 }
2178
2179 bool
2180 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2181 {
2182 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2183 return true;
2184 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2185 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2186 return false;
2187 if (*dev->dv_bus_suspend != NULL &&
2188 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2189 return false;
2190
2191 dev->dv_flags |= DVF_BUS_SUSPENDED;
2192 return true;
2193 }
2194
2195 bool
2196 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2197 {
2198 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2199 return true;
2200 if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
2201 return false;
2202 if (*dev->dv_bus_resume != NULL &&
2203 !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2204 return false;
2205
2206 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2207 return true;
2208 }
2209
2210 bool
2211 device_pmf_bus_shutdown(device_t dev, int how)
2212 {
2213
2214 if (*dev->dv_bus_shutdown != NULL &&
2215 !(*dev->dv_bus_shutdown)(dev, how))
2216 return false;
2217 return true;
2218 }
2219
2220 void
2221 device_pmf_bus_register(device_t dev, void *priv,
2222 bool (*suspend)(device_t PMF_FN_PROTO),
2223 bool (*resume)(device_t PMF_FN_PROTO),
2224 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2225 {
2226 dev->dv_bus_private = priv;
2227 dev->dv_bus_resume = resume;
2228 dev->dv_bus_suspend = suspend;
2229 dev->dv_bus_shutdown = shutdown;
2230 dev->dv_bus_deregister = deregister;
2231 }
2232
2233 void
2234 device_pmf_bus_deregister(device_t dev)
2235 {
2236 if (dev->dv_bus_deregister == NULL)
2237 return;
2238 (*dev->dv_bus_deregister)(dev);
2239 dev->dv_bus_private = NULL;
2240 dev->dv_bus_suspend = NULL;
2241 dev->dv_bus_resume = NULL;
2242 dev->dv_bus_deregister = NULL;
2243 }
2244
2245 void *
2246 device_pmf_class_private(device_t dev)
2247 {
2248 return dev->dv_class_private;
2249 }
2250
2251 bool
2252 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2253 {
2254 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2255 return true;
2256 if (*dev->dv_class_suspend != NULL &&
2257 !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2258 return false;
2259
2260 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2261 return true;
2262 }
2263
2264 bool
2265 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2266 {
2267 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2268 return true;
2269 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2270 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2271 return false;
2272 if (*dev->dv_class_resume != NULL &&
2273 !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2274 return false;
2275
2276 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2277 return true;
2278 }
2279
2280 void
2281 device_pmf_class_register(device_t dev, void *priv,
2282 bool (*suspend)(device_t PMF_FN_PROTO),
2283 bool (*resume)(device_t PMF_FN_PROTO),
2284 void (*deregister)(device_t))
2285 {
2286 dev->dv_class_private = priv;
2287 dev->dv_class_suspend = suspend;
2288 dev->dv_class_resume = resume;
2289 dev->dv_class_deregister = deregister;
2290 }
2291
2292 void
2293 device_pmf_class_deregister(device_t dev)
2294 {
2295 if (dev->dv_class_deregister == NULL)
2296 return;
2297 (*dev->dv_class_deregister)(dev);
2298 dev->dv_class_private = NULL;
2299 dev->dv_class_suspend = NULL;
2300 dev->dv_class_resume = NULL;
2301 dev->dv_class_deregister = NULL;
2302 }
2303
2304 bool
2305 device_active(device_t dev, devactive_t type)
2306 {
2307 size_t i;
2308
2309 if (dev->dv_activity_count == 0)
2310 return false;
2311
2312 for (i = 0; i < dev->dv_activity_count; ++i) {
2313 if (dev->dv_activity_handlers[i] == NULL)
2314 break;
2315 (*dev->dv_activity_handlers[i])(dev, type);
2316 }
2317
2318 return true;
2319 }
2320
2321 bool
2322 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2323 {
2324 void (**new_handlers)(device_t, devactive_t);
2325 void (**old_handlers)(device_t, devactive_t);
2326 size_t i, old_size, new_size;
2327 int s;
2328
2329 old_handlers = dev->dv_activity_handlers;
2330 old_size = dev->dv_activity_count;
2331
2332 for (i = 0; i < old_size; ++i) {
2333 KASSERT(old_handlers[i] != handler);
2334 if (old_handlers[i] == NULL) {
2335 old_handlers[i] = handler;
2336 return true;
2337 }
2338 }
2339
2340 new_size = old_size + 4;
2341 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2342
2343 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2344 new_handlers[old_size] = handler;
2345 memset(new_handlers + old_size + 1, 0,
2346 sizeof(int [new_size - (old_size+1)]));
2347
2348 s = splhigh();
2349 dev->dv_activity_count = new_size;
2350 dev->dv_activity_handlers = new_handlers;
2351 splx(s);
2352
2353 if (old_handlers != NULL)
2354 kmem_free(old_handlers, sizeof(void * [old_size]));
2355
2356 return true;
2357 }
2358
2359 void
2360 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2361 {
2362 void (**old_handlers)(device_t, devactive_t);
2363 size_t i, old_size;
2364 int s;
2365
2366 old_handlers = dev->dv_activity_handlers;
2367 old_size = dev->dv_activity_count;
2368
2369 for (i = 0; i < old_size; ++i) {
2370 if (old_handlers[i] == handler)
2371 break;
2372 if (old_handlers[i] == NULL)
2373 return; /* XXX panic? */
2374 }
2375
2376 if (i == old_size)
2377 return; /* XXX panic? */
2378
2379 for (; i < old_size - 1; ++i) {
2380 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2381 continue;
2382
2383 if (i == 0) {
2384 s = splhigh();
2385 dev->dv_activity_count = 0;
2386 dev->dv_activity_handlers = NULL;
2387 splx(s);
2388 kmem_free(old_handlers, sizeof(void *[old_size]));
2389 }
2390 return;
2391 }
2392 old_handlers[i] = NULL;
2393 }
2394
2395 /*
2396 * Device Iteration
2397 *
2398 * deviter_t: a device iterator. Holds state for a "walk" visiting
2399 * each device_t's in the device tree.
2400 *
2401 * deviter_init(di, flags): initialize the device iterator `di'
2402 * to "walk" the device tree. deviter_next(di) will return
2403 * the first device_t in the device tree, or NULL if there are
2404 * no devices.
2405 *
2406 * `flags' is one or more of DEVITER_F_RW, indicating that the
2407 * caller intends to modify the device tree by calling
2408 * config_detach(9) on devices in the order that the iterator
2409 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2410 * nearest the "root" of the device tree to be returned, first;
2411 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2412 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2413 * indicating both that deviter_init() should not respect any
2414 * locks on the device tree, and that deviter_next(di) may run
2415 * in more than one LWP before the walk has finished.
2416 *
2417 * Only one DEVITER_F_RW iterator may be in the device tree at
2418 * once.
2419 *
2420 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2421 *
2422 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2423 * DEVITER_F_LEAVES_FIRST are used in combination.
2424 *
2425 * deviter_first(di, flags): initialize the device iterator `di'
2426 * and return the first device_t in the device tree, or NULL
2427 * if there are no devices. The statement
2428 *
2429 * dv = deviter_first(di);
2430 *
2431 * is shorthand for
2432 *
2433 * deviter_init(di);
2434 * dv = deviter_next(di);
2435 *
2436 * deviter_next(di): return the next device_t in the device tree,
2437 * or NULL if there are no more devices. deviter_next(di)
2438 * is undefined if `di' was not initialized with deviter_init() or
2439 * deviter_first().
2440 *
2441 * deviter_release(di): stops iteration (subsequent calls to
2442 * deviter_next() will return NULL), releases any locks and
2443 * resources held by the device iterator.
2444 *
2445 * Device iteration does not return device_t's in any particular
2446 * order. An iterator will never return the same device_t twice.
2447 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2448 * is called repeatedly on the same `di', it will eventually return
2449 * NULL. It is ok to attach/detach devices during device iteration.
2450 */
2451 void
2452 deviter_init(deviter_t *di, deviter_flags_t flags)
2453 {
2454 device_t dv;
2455 bool rw;
2456
2457 mutex_enter(&alldevs_mtx);
2458 if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2459 flags |= DEVITER_F_RW;
2460 alldevs_nwrite++;
2461 alldevs_writer = NULL;
2462 alldevs_nread = 0;
2463 } else {
2464 rw = (flags & DEVITER_F_RW) != 0;
2465
2466 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2467 ;
2468 else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2469 (rw && alldevs_nread != 0))
2470 cv_wait(&alldevs_cv, &alldevs_mtx);
2471
2472 if (rw) {
2473 if (alldevs_nwrite++ == 0)
2474 alldevs_writer = curlwp;
2475 } else
2476 alldevs_nread++;
2477 }
2478 mutex_exit(&alldevs_mtx);
2479
2480 memset(di, 0, sizeof(*di));
2481
2482 di->di_flags = flags;
2483
2484 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2485 case DEVITER_F_LEAVES_FIRST:
2486 TAILQ_FOREACH(dv, &alldevs, dv_list)
2487 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2488 break;
2489 case DEVITER_F_ROOT_FIRST:
2490 TAILQ_FOREACH(dv, &alldevs, dv_list)
2491 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2492 break;
2493 default:
2494 break;
2495 }
2496
2497 deviter_reinit(di);
2498 }
2499
2500 static void
2501 deviter_reinit(deviter_t *di)
2502 {
2503 if ((di->di_flags & DEVITER_F_RW) != 0)
2504 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2505 else
2506 di->di_prev = TAILQ_FIRST(&alldevs);
2507 }
2508
2509 device_t
2510 deviter_first(deviter_t *di, deviter_flags_t flags)
2511 {
2512 deviter_init(di, flags);
2513 return deviter_next(di);
2514 }
2515
2516 static device_t
2517 deviter_next1(deviter_t *di)
2518 {
2519 device_t dv;
2520
2521 dv = di->di_prev;
2522
2523 if (dv == NULL)
2524 ;
2525 else if ((di->di_flags & DEVITER_F_RW) != 0)
2526 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2527 else
2528 di->di_prev = TAILQ_NEXT(dv, dv_list);
2529
2530 return dv;
2531 }
2532
2533 device_t
2534 deviter_next(deviter_t *di)
2535 {
2536 device_t dv = NULL;
2537
2538 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2539 case 0:
2540 return deviter_next1(di);
2541 case DEVITER_F_LEAVES_FIRST:
2542 while (di->di_curdepth >= 0) {
2543 if ((dv = deviter_next1(di)) == NULL) {
2544 di->di_curdepth--;
2545 deviter_reinit(di);
2546 } else if (dv->dv_depth == di->di_curdepth)
2547 break;
2548 }
2549 return dv;
2550 case DEVITER_F_ROOT_FIRST:
2551 while (di->di_curdepth <= di->di_maxdepth) {
2552 if ((dv = deviter_next1(di)) == NULL) {
2553 di->di_curdepth++;
2554 deviter_reinit(di);
2555 } else if (dv->dv_depth == di->di_curdepth)
2556 break;
2557 }
2558 return dv;
2559 default:
2560 return NULL;
2561 }
2562 }
2563
2564 void
2565 deviter_release(deviter_t *di)
2566 {
2567 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2568
2569 mutex_enter(&alldevs_mtx);
2570 if (!rw) {
2571 --alldevs_nread;
2572 cv_signal(&alldevs_cv);
2573 } else if (alldevs_nwrite > 0 && alldevs_writer == NULL) {
2574 --alldevs_nwrite; /* shutting down: do not signal */
2575 } else {
2576 KASSERT(alldevs_nwrite != 0);
2577 if (--alldevs_nwrite == 0)
2578 alldevs_writer = NULL;
2579 cv_signal(&alldevs_cv);
2580 }
2581 mutex_exit(&alldevs_mtx);
2582 }
2583
2584 static void
2585 sysctl_detach_setup(struct sysctllog **clog)
2586 {
2587 const struct sysctlnode *node = NULL;
2588
2589 sysctl_createv(clog, 0, NULL, &node,
2590 CTLFLAG_PERMANENT,
2591 CTLTYPE_NODE, "kern", NULL,
2592 NULL, 0, NULL, 0,
2593 CTL_KERN, CTL_EOL);
2594
2595 if (node == NULL)
2596 return;
2597
2598 sysctl_createv(clog, 0, &node, NULL,
2599 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2600 CTLTYPE_INT, "detachall",
2601 SYSCTL_DESCR("Detach all devices at shutdown"),
2602 NULL, 0, &detachall, 0,
2603 CTL_CREATE, CTL_EOL);
2604 }
2605