subr_autoconf.c revision 1.184 1 /* $NetBSD: subr_autoconf.c,v 1.184 2009/09/16 22:45:24 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.184 2009/09/16 22:45:24 dyoung Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/malloc.h>
93 #include <sys/kmem.h>
94 #include <sys/systm.h>
95 #include <sys/kernel.h>
96 #include <sys/errno.h>
97 #include <sys/proc.h>
98 #include <sys/reboot.h>
99 #include <sys/kthread.h>
100 #include <sys/buf.h>
101 #include <sys/dirent.h>
102 #include <sys/vnode.h>
103 #include <sys/mount.h>
104 #include <sys/namei.h>
105 #include <sys/unistd.h>
106 #include <sys/fcntl.h>
107 #include <sys/lockf.h>
108 #include <sys/callout.h>
109 #include <sys/devmon.h>
110 #include <sys/cpu.h>
111 #include <sys/sysctl.h>
112
113 #include <sys/disk.h>
114
115 #include <machine/limits.h>
116
117 #if defined(__i386__) && defined(_KERNEL_OPT)
118 #include "opt_splash.h"
119 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
120 #include <dev/splash/splash.h>
121 extern struct splash_progress *splash_progress_state;
122 #endif
123 #endif
124
125 /*
126 * Autoconfiguration subroutines.
127 */
128
129 /*
130 * ioconf.c exports exactly two names: cfdata and cfroots. All system
131 * devices and drivers are found via these tables.
132 */
133 extern struct cfdata cfdata[];
134 extern const short cfroots[];
135
136 /*
137 * List of all cfdriver structures. We use this to detect duplicates
138 * when other cfdrivers are loaded.
139 */
140 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
141 extern struct cfdriver * const cfdriver_list_initial[];
142
143 /*
144 * Initial list of cfattach's.
145 */
146 extern const struct cfattachinit cfattachinit[];
147
148 /*
149 * List of cfdata tables. We always have one such list -- the one
150 * built statically when the kernel was configured.
151 */
152 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
153 static struct cftable initcftable;
154
155 #define ROOT ((device_t)NULL)
156
157 struct matchinfo {
158 cfsubmatch_t fn;
159 struct device *parent;
160 const int *locs;
161 void *aux;
162 struct cfdata *match;
163 int pri;
164 };
165
166 static char *number(char *, int);
167 static void mapply(struct matchinfo *, cfdata_t);
168 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
169 static void config_devdealloc(device_t);
170 static void config_makeroom(int, struct cfdriver *);
171 static void config_devlink(device_t);
172 static void config_devunlink(device_t);
173
174 static void pmflock_debug(device_t, const char *, int);
175
176 static device_t deviter_next1(deviter_t *);
177 static void deviter_reinit(deviter_t *);
178
179 struct deferred_config {
180 TAILQ_ENTRY(deferred_config) dc_queue;
181 device_t dc_dev;
182 void (*dc_func)(device_t);
183 };
184
185 TAILQ_HEAD(deferred_config_head, deferred_config);
186
187 struct deferred_config_head deferred_config_queue =
188 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
189 struct deferred_config_head interrupt_config_queue =
190 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
191 int interrupt_config_threads = 8;
192
193 static void config_process_deferred(struct deferred_config_head *, device_t);
194
195 /* Hooks to finalize configuration once all real devices have been found. */
196 struct finalize_hook {
197 TAILQ_ENTRY(finalize_hook) f_list;
198 int (*f_func)(device_t);
199 device_t f_dev;
200 };
201 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
202 TAILQ_HEAD_INITIALIZER(config_finalize_list);
203 static int config_finalize_done;
204
205 /* list of all devices */
206 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
207 kcondvar_t alldevs_cv;
208 kmutex_t alldevs_mtx;
209 static int alldevs_nread = 0;
210 static int alldevs_nwrite = 0;
211 static lwp_t *alldevs_writer = NULL;
212
213 static int config_pending; /* semaphore for mountroot */
214 static kmutex_t config_misc_lock;
215 static kcondvar_t config_misc_cv;
216
217 static int detachall = 0;
218
219 #define STREQ(s1, s2) \
220 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
221
222 static int config_initialized; /* config_init() has been called. */
223
224 static int config_do_twiddle;
225 static callout_t config_twiddle_ch;
226
227 static void sysctl_detach_setup(struct sysctllog **);
228
229 /*
230 * Initialize the autoconfiguration data structures. Normally this
231 * is done by configure(), but some platforms need to do this very
232 * early (to e.g. initialize the console).
233 */
234 void
235 config_init(void)
236 {
237 const struct cfattachinit *cfai;
238 int i, j;
239
240 if (config_initialized)
241 return;
242
243 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
244 cv_init(&alldevs_cv, "alldevs");
245
246 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
247 cv_init(&config_misc_cv, "cfgmisc");
248
249 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
250
251 /* allcfdrivers is statically initialized. */
252 for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
253 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
254 panic("configure: duplicate `%s' drivers",
255 cfdriver_list_initial[i]->cd_name);
256 }
257
258 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
259 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
260 if (config_cfattach_attach(cfai->cfai_name,
261 cfai->cfai_list[j]) != 0)
262 panic("configure: duplicate `%s' attachment "
263 "of `%s' driver",
264 cfai->cfai_list[j]->ca_name,
265 cfai->cfai_name);
266 }
267 }
268
269 initcftable.ct_cfdata = cfdata;
270 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
271 sysctl_detach_setup(NULL);
272
273 config_initialized = 1;
274 }
275
276 void
277 config_deferred(device_t dev)
278 {
279 config_process_deferred(&deferred_config_queue, dev);
280 config_process_deferred(&interrupt_config_queue, dev);
281 }
282
283 static void
284 config_interrupts_thread(void *cookie)
285 {
286 struct deferred_config *dc;
287
288 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
289 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
290 (*dc->dc_func)(dc->dc_dev);
291 kmem_free(dc, sizeof(*dc));
292 config_pending_decr();
293 }
294 kthread_exit(0);
295 }
296
297 void
298 config_create_interruptthreads()
299 {
300 int i;
301
302 for (i = 0; i < interrupt_config_threads; i++) {
303 (void)kthread_create(PRI_NONE, 0, NULL,
304 config_interrupts_thread, NULL, NULL, "config");
305 }
306 }
307
308 /*
309 * Announce device attach/detach to userland listeners.
310 */
311 static void
312 devmon_report_device(device_t dev, bool isattach)
313 {
314 #if NDRVCTL > 0
315 prop_dictionary_t ev;
316 const char *parent;
317 const char *what;
318 device_t pdev = device_parent(dev);
319
320 ev = prop_dictionary_create();
321 if (ev == NULL)
322 return;
323
324 what = (isattach ? "device-attach" : "device-detach");
325 parent = (pdev == NULL ? "root" : device_xname(pdev));
326 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
327 !prop_dictionary_set_cstring(ev, "parent", parent)) {
328 prop_object_release(ev);
329 return;
330 }
331
332 devmon_insert(what, ev);
333 #endif
334 }
335
336 /*
337 * Add a cfdriver to the system.
338 */
339 int
340 config_cfdriver_attach(struct cfdriver *cd)
341 {
342 struct cfdriver *lcd;
343
344 /* Make sure this driver isn't already in the system. */
345 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
346 if (STREQ(lcd->cd_name, cd->cd_name))
347 return EEXIST;
348 }
349
350 LIST_INIT(&cd->cd_attach);
351 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
352
353 return 0;
354 }
355
356 /*
357 * Remove a cfdriver from the system.
358 */
359 int
360 config_cfdriver_detach(struct cfdriver *cd)
361 {
362 int i;
363
364 /* Make sure there are no active instances. */
365 for (i = 0; i < cd->cd_ndevs; i++) {
366 if (cd->cd_devs[i] != NULL)
367 return EBUSY;
368 }
369
370 /* ...and no attachments loaded. */
371 if (LIST_EMPTY(&cd->cd_attach) == 0)
372 return EBUSY;
373
374 LIST_REMOVE(cd, cd_list);
375
376 KASSERT(cd->cd_devs == NULL);
377
378 return 0;
379 }
380
381 /*
382 * Look up a cfdriver by name.
383 */
384 struct cfdriver *
385 config_cfdriver_lookup(const char *name)
386 {
387 struct cfdriver *cd;
388
389 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
390 if (STREQ(cd->cd_name, name))
391 return cd;
392 }
393
394 return NULL;
395 }
396
397 /*
398 * Add a cfattach to the specified driver.
399 */
400 int
401 config_cfattach_attach(const char *driver, struct cfattach *ca)
402 {
403 struct cfattach *lca;
404 struct cfdriver *cd;
405
406 cd = config_cfdriver_lookup(driver);
407 if (cd == NULL)
408 return ESRCH;
409
410 /* Make sure this attachment isn't already on this driver. */
411 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
412 if (STREQ(lca->ca_name, ca->ca_name))
413 return EEXIST;
414 }
415
416 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
417
418 return 0;
419 }
420
421 /*
422 * Remove a cfattach from the specified driver.
423 */
424 int
425 config_cfattach_detach(const char *driver, struct cfattach *ca)
426 {
427 struct cfdriver *cd;
428 device_t dev;
429 int i;
430
431 cd = config_cfdriver_lookup(driver);
432 if (cd == NULL)
433 return ESRCH;
434
435 /* Make sure there are no active instances. */
436 for (i = 0; i < cd->cd_ndevs; i++) {
437 if ((dev = cd->cd_devs[i]) == NULL)
438 continue;
439 if (dev->dv_cfattach == ca)
440 return EBUSY;
441 }
442
443 LIST_REMOVE(ca, ca_list);
444
445 return 0;
446 }
447
448 /*
449 * Look up a cfattach by name.
450 */
451 static struct cfattach *
452 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
453 {
454 struct cfattach *ca;
455
456 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
457 if (STREQ(ca->ca_name, atname))
458 return ca;
459 }
460
461 return NULL;
462 }
463
464 /*
465 * Look up a cfattach by driver/attachment name.
466 */
467 struct cfattach *
468 config_cfattach_lookup(const char *name, const char *atname)
469 {
470 struct cfdriver *cd;
471
472 cd = config_cfdriver_lookup(name);
473 if (cd == NULL)
474 return NULL;
475
476 return config_cfattach_lookup_cd(cd, atname);
477 }
478
479 /*
480 * Apply the matching function and choose the best. This is used
481 * a few times and we want to keep the code small.
482 */
483 static void
484 mapply(struct matchinfo *m, cfdata_t cf)
485 {
486 int pri;
487
488 if (m->fn != NULL) {
489 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
490 } else {
491 pri = config_match(m->parent, cf, m->aux);
492 }
493 if (pri > m->pri) {
494 m->match = cf;
495 m->pri = pri;
496 }
497 }
498
499 int
500 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
501 {
502 const struct cfiattrdata *ci;
503 const struct cflocdesc *cl;
504 int nlocs, i;
505
506 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
507 KASSERT(ci);
508 nlocs = ci->ci_loclen;
509 KASSERT(!nlocs || locs);
510 for (i = 0; i < nlocs; i++) {
511 cl = &ci->ci_locdesc[i];
512 /* !cld_defaultstr means no default value */
513 if ((!(cl->cld_defaultstr)
514 || (cf->cf_loc[i] != cl->cld_default))
515 && cf->cf_loc[i] != locs[i])
516 return 0;
517 }
518
519 return config_match(parent, cf, aux);
520 }
521
522 /*
523 * Helper function: check whether the driver supports the interface attribute
524 * and return its descriptor structure.
525 */
526 static const struct cfiattrdata *
527 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
528 {
529 const struct cfiattrdata * const *cpp;
530
531 if (cd->cd_attrs == NULL)
532 return 0;
533
534 for (cpp = cd->cd_attrs; *cpp; cpp++) {
535 if (STREQ((*cpp)->ci_name, ia)) {
536 /* Match. */
537 return *cpp;
538 }
539 }
540 return 0;
541 }
542
543 /*
544 * Lookup an interface attribute description by name.
545 * If the driver is given, consider only its supported attributes.
546 */
547 const struct cfiattrdata *
548 cfiattr_lookup(const char *name, const struct cfdriver *cd)
549 {
550 const struct cfdriver *d;
551 const struct cfiattrdata *ia;
552
553 if (cd)
554 return cfdriver_get_iattr(cd, name);
555
556 LIST_FOREACH(d, &allcfdrivers, cd_list) {
557 ia = cfdriver_get_iattr(d, name);
558 if (ia)
559 return ia;
560 }
561 return 0;
562 }
563
564 /*
565 * Determine if `parent' is a potential parent for a device spec based
566 * on `cfp'.
567 */
568 static int
569 cfparent_match(const device_t parent, const struct cfparent *cfp)
570 {
571 struct cfdriver *pcd;
572
573 /* We don't match root nodes here. */
574 if (cfp == NULL)
575 return 0;
576
577 pcd = parent->dv_cfdriver;
578 KASSERT(pcd != NULL);
579
580 /*
581 * First, ensure this parent has the correct interface
582 * attribute.
583 */
584 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
585 return 0;
586
587 /*
588 * If no specific parent device instance was specified (i.e.
589 * we're attaching to the attribute only), we're done!
590 */
591 if (cfp->cfp_parent == NULL)
592 return 1;
593
594 /*
595 * Check the parent device's name.
596 */
597 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
598 return 0; /* not the same parent */
599
600 /*
601 * Make sure the unit number matches.
602 */
603 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
604 cfp->cfp_unit == parent->dv_unit)
605 return 1;
606
607 /* Unit numbers don't match. */
608 return 0;
609 }
610
611 /*
612 * Helper for config_cfdata_attach(): check all devices whether it could be
613 * parent any attachment in the config data table passed, and rescan.
614 */
615 static void
616 rescan_with_cfdata(const struct cfdata *cf)
617 {
618 device_t d;
619 const struct cfdata *cf1;
620 deviter_t di;
621
622
623 /*
624 * "alldevs" is likely longer than a modules's cfdata, so make it
625 * the outer loop.
626 */
627 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
628
629 if (!(d->dv_cfattach->ca_rescan))
630 continue;
631
632 for (cf1 = cf; cf1->cf_name; cf1++) {
633
634 if (!cfparent_match(d, cf1->cf_pspec))
635 continue;
636
637 (*d->dv_cfattach->ca_rescan)(d,
638 cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
639 }
640 }
641 deviter_release(&di);
642 }
643
644 /*
645 * Attach a supplemental config data table and rescan potential
646 * parent devices if required.
647 */
648 int
649 config_cfdata_attach(cfdata_t cf, int scannow)
650 {
651 struct cftable *ct;
652
653 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
654 ct->ct_cfdata = cf;
655 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
656
657 if (scannow)
658 rescan_with_cfdata(cf);
659
660 return 0;
661 }
662
663 /*
664 * Helper for config_cfdata_detach: check whether a device is
665 * found through any attachment in the config data table.
666 */
667 static int
668 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
669 {
670 const struct cfdata *cf1;
671
672 for (cf1 = cf; cf1->cf_name; cf1++)
673 if (d->dv_cfdata == cf1)
674 return 1;
675
676 return 0;
677 }
678
679 /*
680 * Detach a supplemental config data table. Detach all devices found
681 * through that table (and thus keeping references to it) before.
682 */
683 int
684 config_cfdata_detach(cfdata_t cf)
685 {
686 device_t d;
687 int error = 0;
688 struct cftable *ct;
689 deviter_t di;
690
691 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
692 d = deviter_next(&di)) {
693 if (!dev_in_cfdata(d, cf))
694 continue;
695 if ((error = config_detach(d, 0)) != 0)
696 break;
697 }
698 deviter_release(&di);
699 if (error) {
700 aprint_error_dev(d, "unable to detach instance\n");
701 return error;
702 }
703
704 TAILQ_FOREACH(ct, &allcftables, ct_list) {
705 if (ct->ct_cfdata == cf) {
706 TAILQ_REMOVE(&allcftables, ct, ct_list);
707 kmem_free(ct, sizeof(*ct));
708 return 0;
709 }
710 }
711
712 /* not found -- shouldn't happen */
713 return EINVAL;
714 }
715
716 /*
717 * Invoke the "match" routine for a cfdata entry on behalf of
718 * an external caller, usually a "submatch" routine.
719 */
720 int
721 config_match(device_t parent, cfdata_t cf, void *aux)
722 {
723 struct cfattach *ca;
724
725 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
726 if (ca == NULL) {
727 /* No attachment for this entry, oh well. */
728 return 0;
729 }
730
731 return (*ca->ca_match)(parent, cf, aux);
732 }
733
734 /*
735 * Iterate over all potential children of some device, calling the given
736 * function (default being the child's match function) for each one.
737 * Nonzero returns are matches; the highest value returned is considered
738 * the best match. Return the `found child' if we got a match, or NULL
739 * otherwise. The `aux' pointer is simply passed on through.
740 *
741 * Note that this function is designed so that it can be used to apply
742 * an arbitrary function to all potential children (its return value
743 * can be ignored).
744 */
745 cfdata_t
746 config_search_loc(cfsubmatch_t fn, device_t parent,
747 const char *ifattr, const int *locs, void *aux)
748 {
749 struct cftable *ct;
750 cfdata_t cf;
751 struct matchinfo m;
752
753 KASSERT(config_initialized);
754 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
755
756 m.fn = fn;
757 m.parent = parent;
758 m.locs = locs;
759 m.aux = aux;
760 m.match = NULL;
761 m.pri = 0;
762
763 TAILQ_FOREACH(ct, &allcftables, ct_list) {
764 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
765
766 /* We don't match root nodes here. */
767 if (!cf->cf_pspec)
768 continue;
769
770 /*
771 * Skip cf if no longer eligible, otherwise scan
772 * through parents for one matching `parent', and
773 * try match function.
774 */
775 if (cf->cf_fstate == FSTATE_FOUND)
776 continue;
777 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
778 cf->cf_fstate == FSTATE_DSTAR)
779 continue;
780
781 /*
782 * If an interface attribute was specified,
783 * consider only children which attach to
784 * that attribute.
785 */
786 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
787 continue;
788
789 if (cfparent_match(parent, cf->cf_pspec))
790 mapply(&m, cf);
791 }
792 }
793 return m.match;
794 }
795
796 cfdata_t
797 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
798 void *aux)
799 {
800
801 return config_search_loc(fn, parent, ifattr, NULL, aux);
802 }
803
804 /*
805 * Find the given root device.
806 * This is much like config_search, but there is no parent.
807 * Don't bother with multiple cfdata tables; the root node
808 * must always be in the initial table.
809 */
810 cfdata_t
811 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
812 {
813 cfdata_t cf;
814 const short *p;
815 struct matchinfo m;
816
817 m.fn = fn;
818 m.parent = ROOT;
819 m.aux = aux;
820 m.match = NULL;
821 m.pri = 0;
822 m.locs = 0;
823 /*
824 * Look at root entries for matching name. We do not bother
825 * with found-state here since only one root should ever be
826 * searched (and it must be done first).
827 */
828 for (p = cfroots; *p >= 0; p++) {
829 cf = &cfdata[*p];
830 if (strcmp(cf->cf_name, rootname) == 0)
831 mapply(&m, cf);
832 }
833 return m.match;
834 }
835
836 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
837
838 /*
839 * The given `aux' argument describes a device that has been found
840 * on the given parent, but not necessarily configured. Locate the
841 * configuration data for that device (using the submatch function
842 * provided, or using candidates' cd_match configuration driver
843 * functions) and attach it, and return true. If the device was
844 * not configured, call the given `print' function and return 0.
845 */
846 device_t
847 config_found_sm_loc(device_t parent,
848 const char *ifattr, const int *locs, void *aux,
849 cfprint_t print, cfsubmatch_t submatch)
850 {
851 cfdata_t cf;
852
853 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
854 if (splash_progress_state)
855 splash_progress_update(splash_progress_state);
856 #endif
857
858 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
859 return(config_attach_loc(parent, cf, locs, aux, print));
860 if (print) {
861 if (config_do_twiddle && cold)
862 twiddle();
863 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
864 }
865
866 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
867 if (splash_progress_state)
868 splash_progress_update(splash_progress_state);
869 #endif
870
871 return NULL;
872 }
873
874 device_t
875 config_found_ia(device_t parent, const char *ifattr, void *aux,
876 cfprint_t print)
877 {
878
879 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
880 }
881
882 device_t
883 config_found(device_t parent, void *aux, cfprint_t print)
884 {
885
886 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
887 }
888
889 /*
890 * As above, but for root devices.
891 */
892 device_t
893 config_rootfound(const char *rootname, void *aux)
894 {
895 cfdata_t cf;
896
897 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
898 return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
899 aprint_error("root device %s not configured\n", rootname);
900 return NULL;
901 }
902
903 /* just like sprintf(buf, "%d") except that it works from the end */
904 static char *
905 number(char *ep, int n)
906 {
907
908 *--ep = 0;
909 while (n >= 10) {
910 *--ep = (n % 10) + '0';
911 n /= 10;
912 }
913 *--ep = n + '0';
914 return ep;
915 }
916
917 /*
918 * Expand the size of the cd_devs array if necessary.
919 */
920 static void
921 config_makeroom(int n, struct cfdriver *cd)
922 {
923 int old, new;
924 device_t *nsp;
925
926 if (n < cd->cd_ndevs)
927 return;
928
929 /*
930 * Need to expand the array.
931 */
932 old = cd->cd_ndevs;
933 if (old == 0)
934 new = 4;
935 else
936 new = old * 2;
937 while (new <= n)
938 new *= 2;
939 cd->cd_ndevs = new;
940 nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP);
941 if (nsp == NULL)
942 panic("config_attach: %sing dev array",
943 old != 0 ? "expand" : "creat");
944 memset(nsp + old, 0, sizeof(device_t [new - old]));
945 if (old != 0) {
946 memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
947 kmem_free(cd->cd_devs, sizeof(device_t [old]));
948 }
949 cd->cd_devs = nsp;
950 }
951
952 static void
953 config_devlink(device_t dev)
954 {
955 struct cfdriver *cd = dev->dv_cfdriver;
956
957 /* put this device in the devices array */
958 config_makeroom(dev->dv_unit, cd);
959 if (cd->cd_devs[dev->dv_unit])
960 panic("config_attach: duplicate %s", device_xname(dev));
961 cd->cd_devs[dev->dv_unit] = dev;
962
963 /* It is safe to add a device to the tail of the list while
964 * readers are in the list, but not while a writer is in
965 * the list. Wait for any writer to complete.
966 */
967 mutex_enter(&alldevs_mtx);
968 while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
969 cv_wait(&alldevs_cv, &alldevs_mtx);
970 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
971 cv_signal(&alldevs_cv);
972 mutex_exit(&alldevs_mtx);
973 }
974
975 static void
976 config_devunlink(device_t dev)
977 {
978 struct cfdriver *cd = dev->dv_cfdriver;
979 int i;
980
981 /* Unlink from device list. */
982 TAILQ_REMOVE(&alldevs, dev, dv_list);
983
984 /* Remove from cfdriver's array. */
985 cd->cd_devs[dev->dv_unit] = NULL;
986
987 /*
988 * If the device now has no units in use, deallocate its softc array.
989 */
990 for (i = 0; i < cd->cd_ndevs; i++) {
991 if (cd->cd_devs[i] != NULL)
992 return;
993 }
994 /* nothing found; deallocate */
995 kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
996 cd->cd_devs = NULL;
997 cd->cd_ndevs = 0;
998 }
999
1000 static device_t
1001 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1002 {
1003 struct cfdriver *cd;
1004 struct cfattach *ca;
1005 size_t lname, lunit;
1006 const char *xunit;
1007 int myunit;
1008 char num[10];
1009 device_t dev;
1010 void *dev_private;
1011 const struct cfiattrdata *ia;
1012 device_lock_t dvl;
1013
1014 cd = config_cfdriver_lookup(cf->cf_name);
1015 if (cd == NULL)
1016 return NULL;
1017
1018 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1019 if (ca == NULL)
1020 return NULL;
1021
1022 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1023 ca->ca_devsize < sizeof(struct device))
1024 panic("config_devalloc: %s", cf->cf_atname);
1025
1026 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1027 if (cf->cf_fstate == FSTATE_STAR) {
1028 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1029 if (cd->cd_devs[myunit] == NULL)
1030 break;
1031 /*
1032 * myunit is now the unit of the first NULL device pointer,
1033 * or max(cd->cd_ndevs,cf->cf_unit).
1034 */
1035 } else {
1036 myunit = cf->cf_unit;
1037 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1038 return NULL;
1039 }
1040 #else
1041 myunit = cf->cf_unit;
1042 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1043
1044 /* compute length of name and decimal expansion of unit number */
1045 lname = strlen(cd->cd_name);
1046 xunit = number(&num[sizeof(num)], myunit);
1047 lunit = &num[sizeof(num)] - xunit;
1048 if (lname + lunit > sizeof(dev->dv_xname))
1049 panic("config_devalloc: device name too long");
1050
1051 /* get memory for all device vars */
1052 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1053 if (ca->ca_devsize > 0) {
1054 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1055 if (dev_private == NULL)
1056 panic("config_devalloc: memory allocation for device softc failed");
1057 } else {
1058 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1059 dev_private = NULL;
1060 }
1061
1062 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1063 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1064 } else {
1065 dev = dev_private;
1066 }
1067 if (dev == NULL)
1068 panic("config_devalloc: memory allocation for device_t failed");
1069
1070 dvl = device_getlock(dev);
1071
1072 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1073 cv_init(&dvl->dvl_cv, "pmfsusp");
1074
1075 dev->dv_class = cd->cd_class;
1076 dev->dv_cfdata = cf;
1077 dev->dv_cfdriver = cd;
1078 dev->dv_cfattach = ca;
1079 dev->dv_unit = myunit;
1080 dev->dv_activity_count = 0;
1081 dev->dv_activity_handlers = NULL;
1082 dev->dv_private = dev_private;
1083 memcpy(dev->dv_xname, cd->cd_name, lname);
1084 memcpy(dev->dv_xname + lname, xunit, lunit);
1085 dev->dv_parent = parent;
1086 if (parent != NULL)
1087 dev->dv_depth = parent->dv_depth + 1;
1088 else
1089 dev->dv_depth = 0;
1090 dev->dv_flags = DVF_ACTIVE; /* always initially active */
1091 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
1092 if (locs) {
1093 KASSERT(parent); /* no locators at root */
1094 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1095 parent->dv_cfdriver);
1096 dev->dv_locators =
1097 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1098 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1099 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1100 }
1101 dev->dv_properties = prop_dictionary_create();
1102 KASSERT(dev->dv_properties != NULL);
1103
1104 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1105 "device-driver", dev->dv_cfdriver->cd_name);
1106 prop_dictionary_set_uint16(dev->dv_properties,
1107 "device-unit", dev->dv_unit);
1108
1109 return dev;
1110 }
1111
1112 static void
1113 config_devdealloc(device_t dev)
1114 {
1115 device_lock_t dvl = device_getlock(dev);
1116 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1117
1118 cv_destroy(&dvl->dvl_cv);
1119 mutex_destroy(&dvl->dvl_mtx);
1120
1121 KASSERT(dev->dv_properties != NULL);
1122 prop_object_release(dev->dv_properties);
1123
1124 if (dev->dv_activity_handlers)
1125 panic("config_devdealloc with registered handlers");
1126
1127 if (dev->dv_locators) {
1128 size_t amount = *--dev->dv_locators;
1129 kmem_free(dev->dv_locators, amount);
1130 }
1131
1132 if (dev->dv_cfattach->ca_devsize > 0)
1133 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1134 if (priv)
1135 kmem_free(dev, sizeof(*dev));
1136 }
1137
1138 /*
1139 * Attach a found device.
1140 */
1141 device_t
1142 config_attach_loc(device_t parent, cfdata_t cf,
1143 const int *locs, void *aux, cfprint_t print)
1144 {
1145 device_t dev;
1146 struct cftable *ct;
1147 const char *drvname;
1148
1149 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1150 if (splash_progress_state)
1151 splash_progress_update(splash_progress_state);
1152 #endif
1153
1154 dev = config_devalloc(parent, cf, locs);
1155 if (!dev)
1156 panic("config_attach: allocation of device softc failed");
1157
1158 /* XXX redundant - see below? */
1159 if (cf->cf_fstate != FSTATE_STAR) {
1160 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1161 cf->cf_fstate = FSTATE_FOUND;
1162 }
1163 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1164 else
1165 cf->cf_unit++;
1166 #endif
1167
1168 config_devlink(dev);
1169
1170 if (config_do_twiddle && cold)
1171 twiddle();
1172 else
1173 aprint_naive("Found ");
1174 /*
1175 * We want the next two printfs for normal, verbose, and quiet,
1176 * but not silent (in which case, we're twiddling, instead).
1177 */
1178 if (parent == ROOT) {
1179 aprint_naive("%s (root)", device_xname(dev));
1180 aprint_normal("%s (root)", device_xname(dev));
1181 } else {
1182 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1183 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1184 if (print)
1185 (void) (*print)(aux, NULL);
1186 }
1187
1188 /*
1189 * Before attaching, clobber any unfound devices that are
1190 * otherwise identical.
1191 * XXX code above is redundant?
1192 */
1193 drvname = dev->dv_cfdriver->cd_name;
1194 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1195 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1196 if (STREQ(cf->cf_name, drvname) &&
1197 cf->cf_unit == dev->dv_unit) {
1198 if (cf->cf_fstate == FSTATE_NOTFOUND)
1199 cf->cf_fstate = FSTATE_FOUND;
1200 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1201 /*
1202 * Bump the unit number on all starred cfdata
1203 * entries for this device.
1204 */
1205 if (cf->cf_fstate == FSTATE_STAR)
1206 cf->cf_unit++;
1207 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1208 }
1209 }
1210 }
1211 #ifdef __HAVE_DEVICE_REGISTER
1212 device_register(dev, aux);
1213 #endif
1214
1215 /* Let userland know */
1216 devmon_report_device(dev, true);
1217
1218 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1219 if (splash_progress_state)
1220 splash_progress_update(splash_progress_state);
1221 #endif
1222 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1223 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1224 if (splash_progress_state)
1225 splash_progress_update(splash_progress_state);
1226 #endif
1227
1228 if (!device_pmf_is_registered(dev))
1229 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1230
1231 config_process_deferred(&deferred_config_queue, dev);
1232 return dev;
1233 }
1234
1235 device_t
1236 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1237 {
1238
1239 return config_attach_loc(parent, cf, NULL, aux, print);
1240 }
1241
1242 /*
1243 * As above, but for pseudo-devices. Pseudo-devices attached in this
1244 * way are silently inserted into the device tree, and their children
1245 * attached.
1246 *
1247 * Note that because pseudo-devices are attached silently, any information
1248 * the attach routine wishes to print should be prefixed with the device
1249 * name by the attach routine.
1250 */
1251 device_t
1252 config_attach_pseudo(cfdata_t cf)
1253 {
1254 device_t dev;
1255
1256 dev = config_devalloc(ROOT, cf, NULL);
1257 if (!dev)
1258 return NULL;
1259
1260 /* XXX mark busy in cfdata */
1261
1262 if (cf->cf_fstate != FSTATE_STAR) {
1263 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1264 cf->cf_fstate = FSTATE_FOUND;
1265 }
1266
1267 config_devlink(dev);
1268
1269 #if 0 /* XXXJRT not yet */
1270 #ifdef __HAVE_DEVICE_REGISTER
1271 device_register(dev, NULL); /* like a root node */
1272 #endif
1273 #endif
1274 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1275 config_process_deferred(&deferred_config_queue, dev);
1276 return dev;
1277 }
1278
1279 /*
1280 * Detach a device. Optionally forced (e.g. because of hardware
1281 * removal) and quiet. Returns zero if successful, non-zero
1282 * (an error code) otherwise.
1283 *
1284 * Note that this code wants to be run from a process context, so
1285 * that the detach can sleep to allow processes which have a device
1286 * open to run and unwind their stacks.
1287 */
1288 int
1289 config_detach(device_t dev, int flags)
1290 {
1291 struct cftable *ct;
1292 cfdata_t cf;
1293 const struct cfattach *ca;
1294 struct cfdriver *cd;
1295 #ifdef DIAGNOSTIC
1296 device_t d;
1297 #endif
1298 int rv = 0;
1299
1300 #ifdef DIAGNOSTIC
1301 cf = dev->dv_cfdata;
1302 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1303 cf->cf_fstate != FSTATE_STAR)
1304 panic("config_detach: %s: bad device fstate %d",
1305 device_xname(dev), cf ? cf->cf_fstate : -1);
1306 #endif
1307 cd = dev->dv_cfdriver;
1308 KASSERT(cd != NULL);
1309
1310 ca = dev->dv_cfattach;
1311 KASSERT(ca != NULL);
1312
1313 KASSERT(curlwp != NULL);
1314 mutex_enter(&alldevs_mtx);
1315 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
1316 ;
1317 else while (alldevs_nread != 0 ||
1318 (alldevs_nwrite != 0 && alldevs_writer != curlwp))
1319 cv_wait(&alldevs_cv, &alldevs_mtx);
1320 if (alldevs_nwrite++ == 0)
1321 alldevs_writer = curlwp;
1322 mutex_exit(&alldevs_mtx);
1323
1324 /*
1325 * Ensure the device is deactivated. If the device doesn't
1326 * have an activation entry point, we allow DVF_ACTIVE to
1327 * remain set. Otherwise, if DVF_ACTIVE is still set, the
1328 * device is busy, and the detach fails.
1329 */
1330 if (!detachall &&
1331 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1332 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1333 rv = EOPNOTSUPP;
1334 } else if ((rv = config_deactivate(dev)) == EOPNOTSUPP)
1335 rv = 0; /* Do not treat EOPNOTSUPP as an error */
1336
1337 /*
1338 * Try to detach the device. If that's not possible, then
1339 * we either panic() (for the forced but failed case), or
1340 * return an error.
1341 */
1342 if (rv == 0) {
1343 if (ca->ca_detach != NULL)
1344 rv = (*ca->ca_detach)(dev, flags);
1345 else
1346 rv = EOPNOTSUPP;
1347 }
1348 if (rv != 0) {
1349 if ((flags & DETACH_FORCE) == 0)
1350 goto out;
1351 else
1352 panic("config_detach: forced detach of %s failed (%d)",
1353 device_xname(dev), rv);
1354 }
1355
1356 dev->dv_flags &= ~DVF_ACTIVE;
1357
1358 /*
1359 * The device has now been successfully detached.
1360 */
1361
1362 /* Let userland know */
1363 devmon_report_device(dev, false);
1364
1365 #ifdef DIAGNOSTIC
1366 /*
1367 * Sanity: If you're successfully detached, you should have no
1368 * children. (Note that because children must be attached
1369 * after parents, we only need to search the latter part of
1370 * the list.)
1371 */
1372 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1373 d = TAILQ_NEXT(d, dv_list)) {
1374 if (d->dv_parent == dev) {
1375 printf("config_detach: detached device %s"
1376 " has children %s\n", device_xname(dev), device_xname(d));
1377 panic("config_detach");
1378 }
1379 }
1380 #endif
1381
1382 /* notify the parent that the child is gone */
1383 if (dev->dv_parent) {
1384 device_t p = dev->dv_parent;
1385 if (p->dv_cfattach->ca_childdetached)
1386 (*p->dv_cfattach->ca_childdetached)(p, dev);
1387 }
1388
1389 /*
1390 * Mark cfdata to show that the unit can be reused, if possible.
1391 */
1392 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1393 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1394 if (STREQ(cf->cf_name, cd->cd_name)) {
1395 if (cf->cf_fstate == FSTATE_FOUND &&
1396 cf->cf_unit == dev->dv_unit)
1397 cf->cf_fstate = FSTATE_NOTFOUND;
1398 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1399 /*
1400 * Note that we can only re-use a starred
1401 * unit number if the unit being detached
1402 * had the last assigned unit number.
1403 */
1404 if (cf->cf_fstate == FSTATE_STAR &&
1405 cf->cf_unit == dev->dv_unit + 1)
1406 cf->cf_unit--;
1407 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1408 }
1409 }
1410 }
1411
1412 config_devunlink(dev);
1413
1414 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1415 aprint_normal_dev(dev, "detached\n");
1416
1417 config_devdealloc(dev);
1418
1419 out:
1420 mutex_enter(&alldevs_mtx);
1421 KASSERT(alldevs_nwrite != 0);
1422 if (--alldevs_nwrite == 0)
1423 alldevs_writer = NULL;
1424 cv_signal(&alldevs_cv);
1425 mutex_exit(&alldevs_mtx);
1426 return rv;
1427 }
1428
1429 int
1430 config_detach_children(device_t parent, int flags)
1431 {
1432 device_t dv;
1433 deviter_t di;
1434 int error = 0;
1435
1436 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1437 dv = deviter_next(&di)) {
1438 if (device_parent(dv) != parent)
1439 continue;
1440 if ((error = config_detach(dv, flags)) != 0)
1441 break;
1442 }
1443 deviter_release(&di);
1444 return error;
1445 }
1446
1447 device_t
1448 shutdown_first(struct shutdown_state *s)
1449 {
1450 if (!s->initialized) {
1451 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1452 s->initialized = true;
1453 }
1454 return shutdown_next(s);
1455 }
1456
1457 device_t
1458 shutdown_next(struct shutdown_state *s)
1459 {
1460 device_t dv;
1461
1462 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1463 ;
1464
1465 if (dv == NULL)
1466 s->initialized = false;
1467
1468 return dv;
1469 }
1470
1471 bool
1472 config_detach_all(int how)
1473 {
1474 static struct shutdown_state s;
1475 device_t curdev;
1476 bool progress = false;
1477
1478 if ((how & RB_NOSYNC) != 0)
1479 return false;
1480
1481 for (curdev = shutdown_first(&s); curdev != NULL;
1482 curdev = shutdown_next(&s)) {
1483 aprint_debug(" detaching %s, ", device_xname(curdev));
1484 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1485 progress = true;
1486 aprint_debug("success.");
1487 } else
1488 aprint_debug("failed.");
1489 }
1490 return progress;
1491 }
1492
1493 int
1494 config_deactivate(device_t dev)
1495 {
1496 const struct cfattach *ca = dev->dv_cfattach;
1497 int rv = 0, oflags = dev->dv_flags;
1498
1499 if (ca->ca_activate == NULL)
1500 return EOPNOTSUPP;
1501
1502 if (dev->dv_flags & DVF_ACTIVE) {
1503 dev->dv_flags &= ~DVF_ACTIVE;
1504 rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
1505 if (rv)
1506 dev->dv_flags = oflags;
1507 }
1508 return rv;
1509 }
1510
1511 /*
1512 * Defer the configuration of the specified device until all
1513 * of its parent's devices have been attached.
1514 */
1515 void
1516 config_defer(device_t dev, void (*func)(device_t))
1517 {
1518 struct deferred_config *dc;
1519
1520 if (dev->dv_parent == NULL)
1521 panic("config_defer: can't defer config of a root device");
1522
1523 #ifdef DIAGNOSTIC
1524 for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
1525 dc = TAILQ_NEXT(dc, dc_queue)) {
1526 if (dc->dc_dev == dev)
1527 panic("config_defer: deferred twice");
1528 }
1529 #endif
1530
1531 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1532 if (dc == NULL)
1533 panic("config_defer: unable to allocate callback");
1534
1535 dc->dc_dev = dev;
1536 dc->dc_func = func;
1537 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1538 config_pending_incr();
1539 }
1540
1541 /*
1542 * Defer some autoconfiguration for a device until after interrupts
1543 * are enabled.
1544 */
1545 void
1546 config_interrupts(device_t dev, void (*func)(device_t))
1547 {
1548 struct deferred_config *dc;
1549
1550 /*
1551 * If interrupts are enabled, callback now.
1552 */
1553 if (cold == 0) {
1554 (*func)(dev);
1555 return;
1556 }
1557
1558 #ifdef DIAGNOSTIC
1559 for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
1560 dc = TAILQ_NEXT(dc, dc_queue)) {
1561 if (dc->dc_dev == dev)
1562 panic("config_interrupts: deferred twice");
1563 }
1564 #endif
1565
1566 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1567 if (dc == NULL)
1568 panic("config_interrupts: unable to allocate callback");
1569
1570 dc->dc_dev = dev;
1571 dc->dc_func = func;
1572 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1573 config_pending_incr();
1574 }
1575
1576 /*
1577 * Process a deferred configuration queue.
1578 */
1579 static void
1580 config_process_deferred(struct deferred_config_head *queue,
1581 device_t parent)
1582 {
1583 struct deferred_config *dc, *ndc;
1584
1585 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1586 ndc = TAILQ_NEXT(dc, dc_queue);
1587 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1588 TAILQ_REMOVE(queue, dc, dc_queue);
1589 (*dc->dc_func)(dc->dc_dev);
1590 kmem_free(dc, sizeof(*dc));
1591 config_pending_decr();
1592 }
1593 }
1594 }
1595
1596 /*
1597 * Manipulate the config_pending semaphore.
1598 */
1599 void
1600 config_pending_incr(void)
1601 {
1602
1603 mutex_enter(&config_misc_lock);
1604 config_pending++;
1605 mutex_exit(&config_misc_lock);
1606 }
1607
1608 void
1609 config_pending_decr(void)
1610 {
1611
1612 #ifdef DIAGNOSTIC
1613 if (config_pending == 0)
1614 panic("config_pending_decr: config_pending == 0");
1615 #endif
1616 mutex_enter(&config_misc_lock);
1617 config_pending--;
1618 if (config_pending == 0)
1619 cv_broadcast(&config_misc_cv);
1620 mutex_exit(&config_misc_lock);
1621 }
1622
1623 /*
1624 * Register a "finalization" routine. Finalization routines are
1625 * called iteratively once all real devices have been found during
1626 * autoconfiguration, for as long as any one finalizer has done
1627 * any work.
1628 */
1629 int
1630 config_finalize_register(device_t dev, int (*fn)(device_t))
1631 {
1632 struct finalize_hook *f;
1633
1634 /*
1635 * If finalization has already been done, invoke the
1636 * callback function now.
1637 */
1638 if (config_finalize_done) {
1639 while ((*fn)(dev) != 0)
1640 /* loop */ ;
1641 }
1642
1643 /* Ensure this isn't already on the list. */
1644 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1645 if (f->f_func == fn && f->f_dev == dev)
1646 return EEXIST;
1647 }
1648
1649 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1650 f->f_func = fn;
1651 f->f_dev = dev;
1652 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1653
1654 return 0;
1655 }
1656
1657 void
1658 config_finalize(void)
1659 {
1660 struct finalize_hook *f;
1661 struct pdevinit *pdev;
1662 extern struct pdevinit pdevinit[];
1663 int errcnt, rv;
1664
1665 /*
1666 * Now that device driver threads have been created, wait for
1667 * them to finish any deferred autoconfiguration.
1668 */
1669 mutex_enter(&config_misc_lock);
1670 while (config_pending != 0)
1671 cv_wait(&config_misc_cv, &config_misc_lock);
1672 mutex_exit(&config_misc_lock);
1673
1674 KERNEL_LOCK(1, NULL);
1675
1676 /* Attach pseudo-devices. */
1677 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1678 (*pdev->pdev_attach)(pdev->pdev_count);
1679
1680 /* Run the hooks until none of them does any work. */
1681 do {
1682 rv = 0;
1683 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1684 rv |= (*f->f_func)(f->f_dev);
1685 } while (rv != 0);
1686
1687 config_finalize_done = 1;
1688
1689 /* Now free all the hooks. */
1690 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1691 TAILQ_REMOVE(&config_finalize_list, f, f_list);
1692 kmem_free(f, sizeof(*f));
1693 }
1694
1695 KERNEL_UNLOCK_ONE(NULL);
1696
1697 errcnt = aprint_get_error_count();
1698 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1699 (boothowto & AB_VERBOSE) == 0) {
1700 mutex_enter(&config_misc_lock);
1701 if (config_do_twiddle) {
1702 config_do_twiddle = 0;
1703 printf_nolog(" done.\n");
1704 }
1705 mutex_exit(&config_misc_lock);
1706 if (errcnt != 0) {
1707 printf("WARNING: %d error%s while detecting hardware; "
1708 "check system log.\n", errcnt,
1709 errcnt == 1 ? "" : "s");
1710 }
1711 }
1712 }
1713
1714 void
1715 config_twiddle_init()
1716 {
1717
1718 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
1719 config_do_twiddle = 1;
1720 }
1721 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
1722 }
1723
1724 void
1725 config_twiddle_fn(void *cookie)
1726 {
1727
1728 mutex_enter(&config_misc_lock);
1729 if (config_do_twiddle) {
1730 twiddle();
1731 callout_schedule(&config_twiddle_ch, mstohz(100));
1732 }
1733 mutex_exit(&config_misc_lock);
1734 }
1735
1736 /*
1737 * device_lookup:
1738 *
1739 * Look up a device instance for a given driver.
1740 */
1741 device_t
1742 device_lookup(cfdriver_t cd, int unit)
1743 {
1744
1745 if (unit < 0 || unit >= cd->cd_ndevs)
1746 return NULL;
1747
1748 return cd->cd_devs[unit];
1749 }
1750
1751 /*
1752 * device_lookup:
1753 *
1754 * Look up a device instance for a given driver.
1755 */
1756 void *
1757 device_lookup_private(cfdriver_t cd, int unit)
1758 {
1759 device_t dv;
1760
1761 if (unit < 0 || unit >= cd->cd_ndevs)
1762 return NULL;
1763
1764 if ((dv = cd->cd_devs[unit]) == NULL)
1765 return NULL;
1766
1767 return dv->dv_private;
1768 }
1769
1770 /*
1771 * Accessor functions for the device_t type.
1772 */
1773 devclass_t
1774 device_class(device_t dev)
1775 {
1776
1777 return dev->dv_class;
1778 }
1779
1780 cfdata_t
1781 device_cfdata(device_t dev)
1782 {
1783
1784 return dev->dv_cfdata;
1785 }
1786
1787 cfdriver_t
1788 device_cfdriver(device_t dev)
1789 {
1790
1791 return dev->dv_cfdriver;
1792 }
1793
1794 cfattach_t
1795 device_cfattach(device_t dev)
1796 {
1797
1798 return dev->dv_cfattach;
1799 }
1800
1801 int
1802 device_unit(device_t dev)
1803 {
1804
1805 return dev->dv_unit;
1806 }
1807
1808 const char *
1809 device_xname(device_t dev)
1810 {
1811
1812 return dev->dv_xname;
1813 }
1814
1815 device_t
1816 device_parent(device_t dev)
1817 {
1818
1819 return dev->dv_parent;
1820 }
1821
1822 bool
1823 device_activation(device_t dev, devact_level_t level)
1824 {
1825 int active_flags;
1826
1827 active_flags = DVF_ACTIVE;
1828 switch (level) {
1829 case DEVACT_LEVEL_FULL:
1830 active_flags |= DVF_CLASS_SUSPENDED;
1831 /*FALLTHROUGH*/
1832 case DEVACT_LEVEL_DRIVER:
1833 active_flags |= DVF_DRIVER_SUSPENDED;
1834 /*FALLTHROUGH*/
1835 case DEVACT_LEVEL_BUS:
1836 active_flags |= DVF_BUS_SUSPENDED;
1837 break;
1838 }
1839
1840 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
1841 }
1842
1843 bool
1844 device_is_active(device_t dev)
1845 {
1846 int active_flags;
1847
1848 active_flags = DVF_ACTIVE;
1849 active_flags |= DVF_CLASS_SUSPENDED;
1850 active_flags |= DVF_DRIVER_SUSPENDED;
1851 active_flags |= DVF_BUS_SUSPENDED;
1852
1853 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
1854 }
1855
1856 bool
1857 device_is_enabled(device_t dev)
1858 {
1859 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
1860 }
1861
1862 bool
1863 device_has_power(device_t dev)
1864 {
1865 int active_flags;
1866
1867 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
1868
1869 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
1870 }
1871
1872 int
1873 device_locator(device_t dev, u_int locnum)
1874 {
1875
1876 KASSERT(dev->dv_locators != NULL);
1877 return dev->dv_locators[locnum];
1878 }
1879
1880 void *
1881 device_private(device_t dev)
1882 {
1883
1884 /*
1885 * The reason why device_private(NULL) is allowed is to simplify the
1886 * work of a lot of userspace request handlers (i.e., c/bdev
1887 * handlers) which grab cfdriver_t->cd_units[n].
1888 * It avoids having them test for it to be NULL and only then calling
1889 * device_private.
1890 */
1891 return dev == NULL ? NULL : dev->dv_private;
1892 }
1893
1894 prop_dictionary_t
1895 device_properties(device_t dev)
1896 {
1897
1898 return dev->dv_properties;
1899 }
1900
1901 /*
1902 * device_is_a:
1903 *
1904 * Returns true if the device is an instance of the specified
1905 * driver.
1906 */
1907 bool
1908 device_is_a(device_t dev, const char *dname)
1909 {
1910
1911 return strcmp(dev->dv_cfdriver->cd_name, dname) == 0;
1912 }
1913
1914 /*
1915 * device_find_by_xname:
1916 *
1917 * Returns the device of the given name or NULL if it doesn't exist.
1918 */
1919 device_t
1920 device_find_by_xname(const char *name)
1921 {
1922 device_t dv;
1923 deviter_t di;
1924
1925 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
1926 if (strcmp(device_xname(dv), name) == 0)
1927 break;
1928 }
1929 deviter_release(&di);
1930
1931 return dv;
1932 }
1933
1934 /*
1935 * device_find_by_driver_unit:
1936 *
1937 * Returns the device of the given driver name and unit or
1938 * NULL if it doesn't exist.
1939 */
1940 device_t
1941 device_find_by_driver_unit(const char *name, int unit)
1942 {
1943 struct cfdriver *cd;
1944
1945 if ((cd = config_cfdriver_lookup(name)) == NULL)
1946 return NULL;
1947 return device_lookup(cd, unit);
1948 }
1949
1950 /*
1951 * Power management related functions.
1952 */
1953
1954 bool
1955 device_pmf_is_registered(device_t dev)
1956 {
1957 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
1958 }
1959
1960 bool
1961 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
1962 {
1963 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
1964 return true;
1965 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
1966 return false;
1967 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_DRIVER &&
1968 dev->dv_driver_suspend != NULL &&
1969 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
1970 return false;
1971
1972 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
1973 return true;
1974 }
1975
1976 bool
1977 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
1978 {
1979 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
1980 return true;
1981 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
1982 return false;
1983 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_DRIVER &&
1984 dev->dv_driver_resume != NULL &&
1985 !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
1986 return false;
1987
1988 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
1989 return true;
1990 }
1991
1992 bool
1993 device_pmf_driver_shutdown(device_t dev, int how)
1994 {
1995
1996 if (*dev->dv_driver_shutdown != NULL &&
1997 !(*dev->dv_driver_shutdown)(dev, how))
1998 return false;
1999 return true;
2000 }
2001
2002 bool
2003 device_pmf_driver_register(device_t dev,
2004 bool (*suspend)(device_t PMF_FN_PROTO),
2005 bool (*resume)(device_t PMF_FN_PROTO),
2006 bool (*shutdown)(device_t, int))
2007 {
2008 dev->dv_driver_suspend = suspend;
2009 dev->dv_driver_resume = resume;
2010 dev->dv_driver_shutdown = shutdown;
2011 dev->dv_flags |= DVF_POWER_HANDLERS;
2012 return true;
2013 }
2014
2015 static const char *
2016 curlwp_name(void)
2017 {
2018 if (curlwp->l_name != NULL)
2019 return curlwp->l_name;
2020 else
2021 return curlwp->l_proc->p_comm;
2022 }
2023
2024 void
2025 device_pmf_driver_deregister(device_t dev)
2026 {
2027 device_lock_t dvl = device_getlock(dev);
2028
2029 dev->dv_driver_suspend = NULL;
2030 dev->dv_driver_resume = NULL;
2031
2032 mutex_enter(&dvl->dvl_mtx);
2033 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2034 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2035 /* Wake a thread that waits for the lock. That
2036 * thread will fail to acquire the lock, and then
2037 * it will wake the next thread that waits for the
2038 * lock, or else it will wake us.
2039 */
2040 cv_signal(&dvl->dvl_cv);
2041 pmflock_debug(dev, __func__, __LINE__);
2042 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2043 pmflock_debug(dev, __func__, __LINE__);
2044 }
2045 mutex_exit(&dvl->dvl_mtx);
2046 }
2047
2048 bool
2049 device_pmf_driver_child_register(device_t dev)
2050 {
2051 device_t parent = device_parent(dev);
2052
2053 if (parent == NULL || parent->dv_driver_child_register == NULL)
2054 return true;
2055 return (*parent->dv_driver_child_register)(dev);
2056 }
2057
2058 void
2059 device_pmf_driver_set_child_register(device_t dev,
2060 bool (*child_register)(device_t))
2061 {
2062 dev->dv_driver_child_register = child_register;
2063 }
2064
2065 static void
2066 pmflock_debug(device_t dev, const char *func, int line)
2067 {
2068 device_lock_t dvl = device_getlock(dev);
2069
2070 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2071 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2072 dev->dv_flags);
2073 }
2074
2075 static bool
2076 device_pmf_lock1(device_t dev)
2077 {
2078 device_lock_t dvl = device_getlock(dev);
2079
2080 while (device_pmf_is_registered(dev) &&
2081 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2082 dvl->dvl_nwait++;
2083 pmflock_debug(dev, __func__, __LINE__);
2084 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2085 pmflock_debug(dev, __func__, __LINE__);
2086 dvl->dvl_nwait--;
2087 }
2088 if (!device_pmf_is_registered(dev)) {
2089 pmflock_debug(dev, __func__, __LINE__);
2090 /* We could not acquire the lock, but some other thread may
2091 * wait for it, also. Wake that thread.
2092 */
2093 cv_signal(&dvl->dvl_cv);
2094 return false;
2095 }
2096 dvl->dvl_nlock++;
2097 dvl->dvl_holder = curlwp;
2098 pmflock_debug(dev, __func__, __LINE__);
2099 return true;
2100 }
2101
2102 bool
2103 device_pmf_lock(device_t dev)
2104 {
2105 bool rc;
2106 device_lock_t dvl = device_getlock(dev);
2107
2108 mutex_enter(&dvl->dvl_mtx);
2109 rc = device_pmf_lock1(dev);
2110 mutex_exit(&dvl->dvl_mtx);
2111
2112 return rc;
2113 }
2114
2115 void
2116 device_pmf_unlock(device_t dev)
2117 {
2118 device_lock_t dvl = device_getlock(dev);
2119
2120 KASSERT(dvl->dvl_nlock > 0);
2121 mutex_enter(&dvl->dvl_mtx);
2122 if (--dvl->dvl_nlock == 0)
2123 dvl->dvl_holder = NULL;
2124 cv_signal(&dvl->dvl_cv);
2125 pmflock_debug(dev, __func__, __LINE__);
2126 mutex_exit(&dvl->dvl_mtx);
2127 }
2128
2129 device_lock_t
2130 device_getlock(device_t dev)
2131 {
2132 return &dev->dv_lock;
2133 }
2134
2135 void *
2136 device_pmf_bus_private(device_t dev)
2137 {
2138 return dev->dv_bus_private;
2139 }
2140
2141 bool
2142 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2143 {
2144 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2145 return true;
2146 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2147 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2148 return false;
2149 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_BUS &&
2150 dev->dv_bus_suspend != NULL &&
2151 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2152 return false;
2153
2154 dev->dv_flags |= DVF_BUS_SUSPENDED;
2155 return true;
2156 }
2157
2158 bool
2159 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2160 {
2161 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2162 return true;
2163 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_BUS &&
2164 dev->dv_bus_resume != NULL &&
2165 !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2166 return false;
2167
2168 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2169 return true;
2170 }
2171
2172 bool
2173 device_pmf_bus_shutdown(device_t dev, int how)
2174 {
2175
2176 if (*dev->dv_bus_shutdown != NULL &&
2177 !(*dev->dv_bus_shutdown)(dev, how))
2178 return false;
2179 return true;
2180 }
2181
2182 void
2183 device_pmf_bus_register(device_t dev, void *priv,
2184 bool (*suspend)(device_t PMF_FN_PROTO),
2185 bool (*resume)(device_t PMF_FN_PROTO),
2186 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2187 {
2188 dev->dv_bus_private = priv;
2189 dev->dv_bus_resume = resume;
2190 dev->dv_bus_suspend = suspend;
2191 dev->dv_bus_shutdown = shutdown;
2192 dev->dv_bus_deregister = deregister;
2193 }
2194
2195 void
2196 device_pmf_bus_deregister(device_t dev)
2197 {
2198 if (dev->dv_bus_deregister == NULL)
2199 return;
2200 (*dev->dv_bus_deregister)(dev);
2201 dev->dv_bus_private = NULL;
2202 dev->dv_bus_suspend = NULL;
2203 dev->dv_bus_resume = NULL;
2204 dev->dv_bus_deregister = NULL;
2205 }
2206
2207 void *
2208 device_pmf_class_private(device_t dev)
2209 {
2210 return dev->dv_class_private;
2211 }
2212
2213 bool
2214 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2215 {
2216 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2217 return true;
2218 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_CLASS &&
2219 dev->dv_class_suspend != NULL &&
2220 !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2221 return false;
2222
2223 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2224 return true;
2225 }
2226
2227 bool
2228 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2229 {
2230 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2231 return true;
2232 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2233 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2234 return false;
2235 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_CLASS &&
2236 dev->dv_class_resume != NULL &&
2237 !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2238 return false;
2239
2240 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2241 return true;
2242 }
2243
2244 void
2245 device_pmf_class_register(device_t dev, void *priv,
2246 bool (*suspend)(device_t PMF_FN_PROTO),
2247 bool (*resume)(device_t PMF_FN_PROTO),
2248 void (*deregister)(device_t))
2249 {
2250 dev->dv_class_private = priv;
2251 dev->dv_class_suspend = suspend;
2252 dev->dv_class_resume = resume;
2253 dev->dv_class_deregister = deregister;
2254 }
2255
2256 void
2257 device_pmf_class_deregister(device_t dev)
2258 {
2259 if (dev->dv_class_deregister == NULL)
2260 return;
2261 (*dev->dv_class_deregister)(dev);
2262 dev->dv_class_private = NULL;
2263 dev->dv_class_suspend = NULL;
2264 dev->dv_class_resume = NULL;
2265 dev->dv_class_deregister = NULL;
2266 }
2267
2268 bool
2269 device_active(device_t dev, devactive_t type)
2270 {
2271 size_t i;
2272
2273 if (dev->dv_activity_count == 0)
2274 return false;
2275
2276 for (i = 0; i < dev->dv_activity_count; ++i) {
2277 if (dev->dv_activity_handlers[i] == NULL)
2278 break;
2279 (*dev->dv_activity_handlers[i])(dev, type);
2280 }
2281
2282 return true;
2283 }
2284
2285 bool
2286 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2287 {
2288 void (**new_handlers)(device_t, devactive_t);
2289 void (**old_handlers)(device_t, devactive_t);
2290 size_t i, old_size, new_size;
2291 int s;
2292
2293 old_handlers = dev->dv_activity_handlers;
2294 old_size = dev->dv_activity_count;
2295
2296 for (i = 0; i < old_size; ++i) {
2297 KASSERT(old_handlers[i] != handler);
2298 if (old_handlers[i] == NULL) {
2299 old_handlers[i] = handler;
2300 return true;
2301 }
2302 }
2303
2304 new_size = old_size + 4;
2305 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2306
2307 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2308 new_handlers[old_size] = handler;
2309 memset(new_handlers + old_size + 1, 0,
2310 sizeof(int [new_size - (old_size+1)]));
2311
2312 s = splhigh();
2313 dev->dv_activity_count = new_size;
2314 dev->dv_activity_handlers = new_handlers;
2315 splx(s);
2316
2317 if (old_handlers != NULL)
2318 kmem_free(old_handlers, sizeof(void * [old_size]));
2319
2320 return true;
2321 }
2322
2323 void
2324 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2325 {
2326 void (**old_handlers)(device_t, devactive_t);
2327 size_t i, old_size;
2328 int s;
2329
2330 old_handlers = dev->dv_activity_handlers;
2331 old_size = dev->dv_activity_count;
2332
2333 for (i = 0; i < old_size; ++i) {
2334 if (old_handlers[i] == handler)
2335 break;
2336 if (old_handlers[i] == NULL)
2337 return; /* XXX panic? */
2338 }
2339
2340 if (i == old_size)
2341 return; /* XXX panic? */
2342
2343 for (; i < old_size - 1; ++i) {
2344 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2345 continue;
2346
2347 if (i == 0) {
2348 s = splhigh();
2349 dev->dv_activity_count = 0;
2350 dev->dv_activity_handlers = NULL;
2351 splx(s);
2352 kmem_free(old_handlers, sizeof(void *[old_size]));
2353 }
2354 return;
2355 }
2356 old_handlers[i] = NULL;
2357 }
2358
2359 /*
2360 * Device Iteration
2361 *
2362 * deviter_t: a device iterator. Holds state for a "walk" visiting
2363 * each device_t's in the device tree.
2364 *
2365 * deviter_init(di, flags): initialize the device iterator `di'
2366 * to "walk" the device tree. deviter_next(di) will return
2367 * the first device_t in the device tree, or NULL if there are
2368 * no devices.
2369 *
2370 * `flags' is one or more of DEVITER_F_RW, indicating that the
2371 * caller intends to modify the device tree by calling
2372 * config_detach(9) on devices in the order that the iterator
2373 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2374 * nearest the "root" of the device tree to be returned, first;
2375 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2376 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2377 * indicating both that deviter_init() should not respect any
2378 * locks on the device tree, and that deviter_next(di) may run
2379 * in more than one LWP before the walk has finished.
2380 *
2381 * Only one DEVITER_F_RW iterator may be in the device tree at
2382 * once.
2383 *
2384 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2385 *
2386 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2387 * DEVITER_F_LEAVES_FIRST are used in combination.
2388 *
2389 * deviter_first(di, flags): initialize the device iterator `di'
2390 * and return the first device_t in the device tree, or NULL
2391 * if there are no devices. The statement
2392 *
2393 * dv = deviter_first(di);
2394 *
2395 * is shorthand for
2396 *
2397 * deviter_init(di);
2398 * dv = deviter_next(di);
2399 *
2400 * deviter_next(di): return the next device_t in the device tree,
2401 * or NULL if there are no more devices. deviter_next(di)
2402 * is undefined if `di' was not initialized with deviter_init() or
2403 * deviter_first().
2404 *
2405 * deviter_release(di): stops iteration (subsequent calls to
2406 * deviter_next() will return NULL), releases any locks and
2407 * resources held by the device iterator.
2408 *
2409 * Device iteration does not return device_t's in any particular
2410 * order. An iterator will never return the same device_t twice.
2411 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2412 * is called repeatedly on the same `di', it will eventually return
2413 * NULL. It is ok to attach/detach devices during device iteration.
2414 */
2415 void
2416 deviter_init(deviter_t *di, deviter_flags_t flags)
2417 {
2418 device_t dv;
2419 bool rw;
2420
2421 mutex_enter(&alldevs_mtx);
2422 if ((flags & DEVITER_F_SHUTDOWN) != 0) {
2423 flags |= DEVITER_F_RW;
2424 alldevs_nwrite++;
2425 alldevs_writer = NULL;
2426 alldevs_nread = 0;
2427 } else {
2428 rw = (flags & DEVITER_F_RW) != 0;
2429
2430 if (alldevs_nwrite > 0 && alldevs_writer == NULL)
2431 ;
2432 else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
2433 (rw && alldevs_nread != 0))
2434 cv_wait(&alldevs_cv, &alldevs_mtx);
2435
2436 if (rw) {
2437 if (alldevs_nwrite++ == 0)
2438 alldevs_writer = curlwp;
2439 } else
2440 alldevs_nread++;
2441 }
2442 mutex_exit(&alldevs_mtx);
2443
2444 memset(di, 0, sizeof(*di));
2445
2446 di->di_flags = flags;
2447
2448 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2449 case DEVITER_F_LEAVES_FIRST:
2450 TAILQ_FOREACH(dv, &alldevs, dv_list)
2451 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2452 break;
2453 case DEVITER_F_ROOT_FIRST:
2454 TAILQ_FOREACH(dv, &alldevs, dv_list)
2455 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2456 break;
2457 default:
2458 break;
2459 }
2460
2461 deviter_reinit(di);
2462 }
2463
2464 static void
2465 deviter_reinit(deviter_t *di)
2466 {
2467 if ((di->di_flags & DEVITER_F_RW) != 0)
2468 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2469 else
2470 di->di_prev = TAILQ_FIRST(&alldevs);
2471 }
2472
2473 device_t
2474 deviter_first(deviter_t *di, deviter_flags_t flags)
2475 {
2476 deviter_init(di, flags);
2477 return deviter_next(di);
2478 }
2479
2480 static device_t
2481 deviter_next1(deviter_t *di)
2482 {
2483 device_t dv;
2484
2485 dv = di->di_prev;
2486
2487 if (dv == NULL)
2488 ;
2489 else if ((di->di_flags & DEVITER_F_RW) != 0)
2490 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2491 else
2492 di->di_prev = TAILQ_NEXT(dv, dv_list);
2493
2494 return dv;
2495 }
2496
2497 device_t
2498 deviter_next(deviter_t *di)
2499 {
2500 device_t dv = NULL;
2501
2502 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2503 case 0:
2504 return deviter_next1(di);
2505 case DEVITER_F_LEAVES_FIRST:
2506 while (di->di_curdepth >= 0) {
2507 if ((dv = deviter_next1(di)) == NULL) {
2508 di->di_curdepth--;
2509 deviter_reinit(di);
2510 } else if (dv->dv_depth == di->di_curdepth)
2511 break;
2512 }
2513 return dv;
2514 case DEVITER_F_ROOT_FIRST:
2515 while (di->di_curdepth <= di->di_maxdepth) {
2516 if ((dv = deviter_next1(di)) == NULL) {
2517 di->di_curdepth++;
2518 deviter_reinit(di);
2519 } else if (dv->dv_depth == di->di_curdepth)
2520 break;
2521 }
2522 return dv;
2523 default:
2524 return NULL;
2525 }
2526 }
2527
2528 void
2529 deviter_release(deviter_t *di)
2530 {
2531 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2532
2533 mutex_enter(&alldevs_mtx);
2534 if (!rw) {
2535 --alldevs_nread;
2536 cv_signal(&alldevs_cv);
2537 } else if (alldevs_nwrite > 0 && alldevs_writer == NULL) {
2538 --alldevs_nwrite; /* shutting down: do not signal */
2539 } else {
2540 KASSERT(alldevs_nwrite != 0);
2541 if (--alldevs_nwrite == 0)
2542 alldevs_writer = NULL;
2543 cv_signal(&alldevs_cv);
2544 }
2545 mutex_exit(&alldevs_mtx);
2546 }
2547
2548 static void
2549 sysctl_detach_setup(struct sysctllog **clog)
2550 {
2551 const struct sysctlnode *node = NULL;
2552
2553 sysctl_createv(clog, 0, NULL, &node,
2554 CTLFLAG_PERMANENT,
2555 CTLTYPE_NODE, "kern", NULL,
2556 NULL, 0, NULL, 0,
2557 CTL_KERN, CTL_EOL);
2558
2559 if (node == NULL)
2560 return;
2561
2562 sysctl_createv(clog, 0, &node, NULL,
2563 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2564 CTLTYPE_INT, "detachall",
2565 SYSCTL_DESCR("Detach all devices at shutdown"),
2566 NULL, 0, &detachall, 0,
2567 CTL_CREATE, CTL_EOL);
2568 }
2569