Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.186
      1 /* $NetBSD: subr_autoconf.c,v 1.186 2009/10/12 23:33:02 yamt Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.186 2009/10/12 23:33:02 yamt Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #endif
     85 
     86 #include <sys/param.h>
     87 #include <sys/device.h>
     88 #include <sys/disklabel.h>
     89 #include <sys/conf.h>
     90 #include <sys/kauth.h>
     91 #include <sys/malloc.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/vnode.h>
    102 #include <sys/mount.h>
    103 #include <sys/namei.h>
    104 #include <sys/unistd.h>
    105 #include <sys/fcntl.h>
    106 #include <sys/lockf.h>
    107 #include <sys/callout.h>
    108 #include <sys/devmon.h>
    109 #include <sys/cpu.h>
    110 #include <sys/sysctl.h>
    111 
    112 #include <sys/disk.h>
    113 
    114 #include <machine/limits.h>
    115 
    116 #if defined(__i386__) && defined(_KERNEL_OPT)
    117 #include "opt_splash.h"
    118 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    119 #include <dev/splash/splash.h>
    120 extern struct splash_progress *splash_progress_state;
    121 #endif
    122 #endif
    123 
    124 /*
    125  * Autoconfiguration subroutines.
    126  */
    127 
    128 /*
    129  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    130  * devices and drivers are found via these tables.
    131  */
    132 extern struct cfdata cfdata[];
    133 extern const short cfroots[];
    134 
    135 /*
    136  * List of all cfdriver structures.  We use this to detect duplicates
    137  * when other cfdrivers are loaded.
    138  */
    139 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    140 extern struct cfdriver * const cfdriver_list_initial[];
    141 
    142 /*
    143  * Initial list of cfattach's.
    144  */
    145 extern const struct cfattachinit cfattachinit[];
    146 
    147 /*
    148  * List of cfdata tables.  We always have one such list -- the one
    149  * built statically when the kernel was configured.
    150  */
    151 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    152 static struct cftable initcftable;
    153 
    154 #define	ROOT ((device_t)NULL)
    155 
    156 struct matchinfo {
    157 	cfsubmatch_t fn;
    158 	struct	device *parent;
    159 	const int *locs;
    160 	void	*aux;
    161 	struct	cfdata *match;
    162 	int	pri;
    163 };
    164 
    165 static char *number(char *, int);
    166 static void mapply(struct matchinfo *, cfdata_t);
    167 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    168 static void config_devdealloc(device_t);
    169 static void config_makeroom(int, struct cfdriver *);
    170 static void config_devlink(device_t);
    171 static void config_devunlink(device_t);
    172 
    173 static void pmflock_debug(device_t, const char *, int);
    174 
    175 static device_t deviter_next1(deviter_t *);
    176 static void deviter_reinit(deviter_t *);
    177 
    178 struct deferred_config {
    179 	TAILQ_ENTRY(deferred_config) dc_queue;
    180 	device_t dc_dev;
    181 	void (*dc_func)(device_t);
    182 };
    183 
    184 TAILQ_HEAD(deferred_config_head, deferred_config);
    185 
    186 struct deferred_config_head deferred_config_queue =
    187 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    188 struct deferred_config_head interrupt_config_queue =
    189 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    190 int interrupt_config_threads = 8;
    191 
    192 static void config_process_deferred(struct deferred_config_head *, device_t);
    193 
    194 /* Hooks to finalize configuration once all real devices have been found. */
    195 struct finalize_hook {
    196 	TAILQ_ENTRY(finalize_hook) f_list;
    197 	int (*f_func)(device_t);
    198 	device_t f_dev;
    199 };
    200 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    201 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    202 static int config_finalize_done;
    203 
    204 /* list of all devices */
    205 struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    206 kcondvar_t alldevs_cv;
    207 kmutex_t alldevs_mtx;
    208 static int alldevs_nread = 0;
    209 static int alldevs_nwrite = 0;
    210 static lwp_t *alldevs_writer = NULL;
    211 
    212 static int config_pending;		/* semaphore for mountroot */
    213 static kmutex_t config_misc_lock;
    214 static kcondvar_t config_misc_cv;
    215 
    216 static int detachall = 0;
    217 
    218 #define	STREQ(s1, s2)			\
    219 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    220 
    221 static bool config_initialized = false;	/* config_init() has been called. */
    222 
    223 static int config_do_twiddle;
    224 static callout_t config_twiddle_ch;
    225 
    226 static void sysctl_detach_setup(struct sysctllog **);
    227 
    228 /*
    229  * Initialize the autoconfiguration data structures.  Normally this
    230  * is done by configure(), but some platforms need to do this very
    231  * early (to e.g. initialize the console).
    232  */
    233 void
    234 config_init(void)
    235 {
    236 	const struct cfattachinit *cfai;
    237 	int i, j;
    238 
    239 	KASSERT(config_initialized == false);
    240 
    241 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
    242 	cv_init(&alldevs_cv, "alldevs");
    243 
    244 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    245 	cv_init(&config_misc_cv, "cfgmisc");
    246 
    247 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    248 
    249 	/* allcfdrivers is statically initialized. */
    250 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
    251 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
    252 			panic("configure: duplicate `%s' drivers",
    253 			    cfdriver_list_initial[i]->cd_name);
    254 	}
    255 
    256 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
    257 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    258 			if (config_cfattach_attach(cfai->cfai_name,
    259 						   cfai->cfai_list[j]) != 0)
    260 				panic("configure: duplicate `%s' attachment "
    261 				    "of `%s' driver",
    262 				    cfai->cfai_list[j]->ca_name,
    263 				    cfai->cfai_name);
    264 		}
    265 	}
    266 
    267 	initcftable.ct_cfdata = cfdata;
    268 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    269 
    270 	config_initialized = true;
    271 }
    272 
    273 void
    274 config_init_mi(void)
    275 {
    276 
    277 	if (!config_initialized)
    278 		config_init();
    279 
    280 	sysctl_detach_setup(NULL);
    281 }
    282 
    283 void
    284 config_deferred(device_t dev)
    285 {
    286 	config_process_deferred(&deferred_config_queue, dev);
    287 	config_process_deferred(&interrupt_config_queue, dev);
    288 }
    289 
    290 static void
    291 config_interrupts_thread(void *cookie)
    292 {
    293 	struct deferred_config *dc;
    294 
    295 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    296 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    297 		(*dc->dc_func)(dc->dc_dev);
    298 		kmem_free(dc, sizeof(*dc));
    299 		config_pending_decr();
    300 	}
    301 	kthread_exit(0);
    302 }
    303 
    304 void
    305 config_create_interruptthreads()
    306 {
    307 	int i;
    308 
    309 	for (i = 0; i < interrupt_config_threads; i++) {
    310 		(void)kthread_create(PRI_NONE, 0, NULL,
    311 		    config_interrupts_thread, NULL, NULL, "config");
    312 	}
    313 }
    314 
    315 /*
    316  * Announce device attach/detach to userland listeners.
    317  */
    318 static void
    319 devmon_report_device(device_t dev, bool isattach)
    320 {
    321 #if NDRVCTL > 0
    322 	prop_dictionary_t ev;
    323 	const char *parent;
    324 	const char *what;
    325 	device_t pdev = device_parent(dev);
    326 
    327 	ev = prop_dictionary_create();
    328 	if (ev == NULL)
    329 		return;
    330 
    331 	what = (isattach ? "device-attach" : "device-detach");
    332 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    333 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
    334 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
    335 		prop_object_release(ev);
    336 		return;
    337 	}
    338 
    339 	devmon_insert(what, ev);
    340 #endif
    341 }
    342 
    343 /*
    344  * Add a cfdriver to the system.
    345  */
    346 int
    347 config_cfdriver_attach(struct cfdriver *cd)
    348 {
    349 	struct cfdriver *lcd;
    350 
    351 	/* Make sure this driver isn't already in the system. */
    352 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    353 		if (STREQ(lcd->cd_name, cd->cd_name))
    354 			return EEXIST;
    355 	}
    356 
    357 	LIST_INIT(&cd->cd_attach);
    358 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    359 
    360 	return 0;
    361 }
    362 
    363 /*
    364  * Remove a cfdriver from the system.
    365  */
    366 int
    367 config_cfdriver_detach(struct cfdriver *cd)
    368 {
    369 	int i;
    370 
    371 	/* Make sure there are no active instances. */
    372 	for (i = 0; i < cd->cd_ndevs; i++) {
    373 		if (cd->cd_devs[i] != NULL)
    374 			return EBUSY;
    375 	}
    376 
    377 	/* ...and no attachments loaded. */
    378 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    379 		return EBUSY;
    380 
    381 	LIST_REMOVE(cd, cd_list);
    382 
    383 	KASSERT(cd->cd_devs == NULL);
    384 
    385 	return 0;
    386 }
    387 
    388 /*
    389  * Look up a cfdriver by name.
    390  */
    391 struct cfdriver *
    392 config_cfdriver_lookup(const char *name)
    393 {
    394 	struct cfdriver *cd;
    395 
    396 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    397 		if (STREQ(cd->cd_name, name))
    398 			return cd;
    399 	}
    400 
    401 	return NULL;
    402 }
    403 
    404 /*
    405  * Add a cfattach to the specified driver.
    406  */
    407 int
    408 config_cfattach_attach(const char *driver, struct cfattach *ca)
    409 {
    410 	struct cfattach *lca;
    411 	struct cfdriver *cd;
    412 
    413 	cd = config_cfdriver_lookup(driver);
    414 	if (cd == NULL)
    415 		return ESRCH;
    416 
    417 	/* Make sure this attachment isn't already on this driver. */
    418 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    419 		if (STREQ(lca->ca_name, ca->ca_name))
    420 			return EEXIST;
    421 	}
    422 
    423 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    424 
    425 	return 0;
    426 }
    427 
    428 /*
    429  * Remove a cfattach from the specified driver.
    430  */
    431 int
    432 config_cfattach_detach(const char *driver, struct cfattach *ca)
    433 {
    434 	struct cfdriver *cd;
    435 	device_t dev;
    436 	int i;
    437 
    438 	cd = config_cfdriver_lookup(driver);
    439 	if (cd == NULL)
    440 		return ESRCH;
    441 
    442 	/* Make sure there are no active instances. */
    443 	for (i = 0; i < cd->cd_ndevs; i++) {
    444 		if ((dev = cd->cd_devs[i]) == NULL)
    445 			continue;
    446 		if (dev->dv_cfattach == ca)
    447 			return EBUSY;
    448 	}
    449 
    450 	LIST_REMOVE(ca, ca_list);
    451 
    452 	return 0;
    453 }
    454 
    455 /*
    456  * Look up a cfattach by name.
    457  */
    458 static struct cfattach *
    459 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    460 {
    461 	struct cfattach *ca;
    462 
    463 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    464 		if (STREQ(ca->ca_name, atname))
    465 			return ca;
    466 	}
    467 
    468 	return NULL;
    469 }
    470 
    471 /*
    472  * Look up a cfattach by driver/attachment name.
    473  */
    474 struct cfattach *
    475 config_cfattach_lookup(const char *name, const char *atname)
    476 {
    477 	struct cfdriver *cd;
    478 
    479 	cd = config_cfdriver_lookup(name);
    480 	if (cd == NULL)
    481 		return NULL;
    482 
    483 	return config_cfattach_lookup_cd(cd, atname);
    484 }
    485 
    486 /*
    487  * Apply the matching function and choose the best.  This is used
    488  * a few times and we want to keep the code small.
    489  */
    490 static void
    491 mapply(struct matchinfo *m, cfdata_t cf)
    492 {
    493 	int pri;
    494 
    495 	if (m->fn != NULL) {
    496 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    497 	} else {
    498 		pri = config_match(m->parent, cf, m->aux);
    499 	}
    500 	if (pri > m->pri) {
    501 		m->match = cf;
    502 		m->pri = pri;
    503 	}
    504 }
    505 
    506 int
    507 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    508 {
    509 	const struct cfiattrdata *ci;
    510 	const struct cflocdesc *cl;
    511 	int nlocs, i;
    512 
    513 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
    514 	KASSERT(ci);
    515 	nlocs = ci->ci_loclen;
    516 	KASSERT(!nlocs || locs);
    517 	for (i = 0; i < nlocs; i++) {
    518 		cl = &ci->ci_locdesc[i];
    519 		/* !cld_defaultstr means no default value */
    520 		if ((!(cl->cld_defaultstr)
    521 		     || (cf->cf_loc[i] != cl->cld_default))
    522 		    && cf->cf_loc[i] != locs[i])
    523 			return 0;
    524 	}
    525 
    526 	return config_match(parent, cf, aux);
    527 }
    528 
    529 /*
    530  * Helper function: check whether the driver supports the interface attribute
    531  * and return its descriptor structure.
    532  */
    533 static const struct cfiattrdata *
    534 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    535 {
    536 	const struct cfiattrdata * const *cpp;
    537 
    538 	if (cd->cd_attrs == NULL)
    539 		return 0;
    540 
    541 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    542 		if (STREQ((*cpp)->ci_name, ia)) {
    543 			/* Match. */
    544 			return *cpp;
    545 		}
    546 	}
    547 	return 0;
    548 }
    549 
    550 /*
    551  * Lookup an interface attribute description by name.
    552  * If the driver is given, consider only its supported attributes.
    553  */
    554 const struct cfiattrdata *
    555 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    556 {
    557 	const struct cfdriver *d;
    558 	const struct cfiattrdata *ia;
    559 
    560 	if (cd)
    561 		return cfdriver_get_iattr(cd, name);
    562 
    563 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    564 		ia = cfdriver_get_iattr(d, name);
    565 		if (ia)
    566 			return ia;
    567 	}
    568 	return 0;
    569 }
    570 
    571 /*
    572  * Determine if `parent' is a potential parent for a device spec based
    573  * on `cfp'.
    574  */
    575 static int
    576 cfparent_match(const device_t parent, const struct cfparent *cfp)
    577 {
    578 	struct cfdriver *pcd;
    579 
    580 	/* We don't match root nodes here. */
    581 	if (cfp == NULL)
    582 		return 0;
    583 
    584 	pcd = parent->dv_cfdriver;
    585 	KASSERT(pcd != NULL);
    586 
    587 	/*
    588 	 * First, ensure this parent has the correct interface
    589 	 * attribute.
    590 	 */
    591 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    592 		return 0;
    593 
    594 	/*
    595 	 * If no specific parent device instance was specified (i.e.
    596 	 * we're attaching to the attribute only), we're done!
    597 	 */
    598 	if (cfp->cfp_parent == NULL)
    599 		return 1;
    600 
    601 	/*
    602 	 * Check the parent device's name.
    603 	 */
    604 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    605 		return 0;	/* not the same parent */
    606 
    607 	/*
    608 	 * Make sure the unit number matches.
    609 	 */
    610 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    611 	    cfp->cfp_unit == parent->dv_unit)
    612 		return 1;
    613 
    614 	/* Unit numbers don't match. */
    615 	return 0;
    616 }
    617 
    618 /*
    619  * Helper for config_cfdata_attach(): check all devices whether it could be
    620  * parent any attachment in the config data table passed, and rescan.
    621  */
    622 static void
    623 rescan_with_cfdata(const struct cfdata *cf)
    624 {
    625 	device_t d;
    626 	const struct cfdata *cf1;
    627 	deviter_t di;
    628 
    629 
    630 	/*
    631 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    632 	 * the outer loop.
    633 	 */
    634 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    635 
    636 		if (!(d->dv_cfattach->ca_rescan))
    637 			continue;
    638 
    639 		for (cf1 = cf; cf1->cf_name; cf1++) {
    640 
    641 			if (!cfparent_match(d, cf1->cf_pspec))
    642 				continue;
    643 
    644 			(*d->dv_cfattach->ca_rescan)(d,
    645 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
    646 		}
    647 	}
    648 	deviter_release(&di);
    649 }
    650 
    651 /*
    652  * Attach a supplemental config data table and rescan potential
    653  * parent devices if required.
    654  */
    655 int
    656 config_cfdata_attach(cfdata_t cf, int scannow)
    657 {
    658 	struct cftable *ct;
    659 
    660 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    661 	ct->ct_cfdata = cf;
    662 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    663 
    664 	if (scannow)
    665 		rescan_with_cfdata(cf);
    666 
    667 	return 0;
    668 }
    669 
    670 /*
    671  * Helper for config_cfdata_detach: check whether a device is
    672  * found through any attachment in the config data table.
    673  */
    674 static int
    675 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
    676 {
    677 	const struct cfdata *cf1;
    678 
    679 	for (cf1 = cf; cf1->cf_name; cf1++)
    680 		if (d->dv_cfdata == cf1)
    681 			return 1;
    682 
    683 	return 0;
    684 }
    685 
    686 /*
    687  * Detach a supplemental config data table. Detach all devices found
    688  * through that table (and thus keeping references to it) before.
    689  */
    690 int
    691 config_cfdata_detach(cfdata_t cf)
    692 {
    693 	device_t d;
    694 	int error = 0;
    695 	struct cftable *ct;
    696 	deviter_t di;
    697 
    698 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    699 	     d = deviter_next(&di)) {
    700 		if (!dev_in_cfdata(d, cf))
    701 			continue;
    702 		if ((error = config_detach(d, 0)) != 0)
    703 			break;
    704 	}
    705 	deviter_release(&di);
    706 	if (error) {
    707 		aprint_error_dev(d, "unable to detach instance\n");
    708 		return error;
    709 	}
    710 
    711 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    712 		if (ct->ct_cfdata == cf) {
    713 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    714 			kmem_free(ct, sizeof(*ct));
    715 			return 0;
    716 		}
    717 	}
    718 
    719 	/* not found -- shouldn't happen */
    720 	return EINVAL;
    721 }
    722 
    723 /*
    724  * Invoke the "match" routine for a cfdata entry on behalf of
    725  * an external caller, usually a "submatch" routine.
    726  */
    727 int
    728 config_match(device_t parent, cfdata_t cf, void *aux)
    729 {
    730 	struct cfattach *ca;
    731 
    732 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    733 	if (ca == NULL) {
    734 		/* No attachment for this entry, oh well. */
    735 		return 0;
    736 	}
    737 
    738 	return (*ca->ca_match)(parent, cf, aux);
    739 }
    740 
    741 /*
    742  * Iterate over all potential children of some device, calling the given
    743  * function (default being the child's match function) for each one.
    744  * Nonzero returns are matches; the highest value returned is considered
    745  * the best match.  Return the `found child' if we got a match, or NULL
    746  * otherwise.  The `aux' pointer is simply passed on through.
    747  *
    748  * Note that this function is designed so that it can be used to apply
    749  * an arbitrary function to all potential children (its return value
    750  * can be ignored).
    751  */
    752 cfdata_t
    753 config_search_loc(cfsubmatch_t fn, device_t parent,
    754 		  const char *ifattr, const int *locs, void *aux)
    755 {
    756 	struct cftable *ct;
    757 	cfdata_t cf;
    758 	struct matchinfo m;
    759 
    760 	KASSERT(config_initialized);
    761 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
    762 
    763 	m.fn = fn;
    764 	m.parent = parent;
    765 	m.locs = locs;
    766 	m.aux = aux;
    767 	m.match = NULL;
    768 	m.pri = 0;
    769 
    770 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    771 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
    772 
    773 			/* We don't match root nodes here. */
    774 			if (!cf->cf_pspec)
    775 				continue;
    776 
    777 			/*
    778 			 * Skip cf if no longer eligible, otherwise scan
    779 			 * through parents for one matching `parent', and
    780 			 * try match function.
    781 			 */
    782 			if (cf->cf_fstate == FSTATE_FOUND)
    783 				continue;
    784 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
    785 			    cf->cf_fstate == FSTATE_DSTAR)
    786 				continue;
    787 
    788 			/*
    789 			 * If an interface attribute was specified,
    790 			 * consider only children which attach to
    791 			 * that attribute.
    792 			 */
    793 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
    794 				continue;
    795 
    796 			if (cfparent_match(parent, cf->cf_pspec))
    797 				mapply(&m, cf);
    798 		}
    799 	}
    800 	return m.match;
    801 }
    802 
    803 cfdata_t
    804 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
    805     void *aux)
    806 {
    807 
    808 	return config_search_loc(fn, parent, ifattr, NULL, aux);
    809 }
    810 
    811 /*
    812  * Find the given root device.
    813  * This is much like config_search, but there is no parent.
    814  * Don't bother with multiple cfdata tables; the root node
    815  * must always be in the initial table.
    816  */
    817 cfdata_t
    818 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
    819 {
    820 	cfdata_t cf;
    821 	const short *p;
    822 	struct matchinfo m;
    823 
    824 	m.fn = fn;
    825 	m.parent = ROOT;
    826 	m.aux = aux;
    827 	m.match = NULL;
    828 	m.pri = 0;
    829 	m.locs = 0;
    830 	/*
    831 	 * Look at root entries for matching name.  We do not bother
    832 	 * with found-state here since only one root should ever be
    833 	 * searched (and it must be done first).
    834 	 */
    835 	for (p = cfroots; *p >= 0; p++) {
    836 		cf = &cfdata[*p];
    837 		if (strcmp(cf->cf_name, rootname) == 0)
    838 			mapply(&m, cf);
    839 	}
    840 	return m.match;
    841 }
    842 
    843 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
    844 
    845 /*
    846  * The given `aux' argument describes a device that has been found
    847  * on the given parent, but not necessarily configured.  Locate the
    848  * configuration data for that device (using the submatch function
    849  * provided, or using candidates' cd_match configuration driver
    850  * functions) and attach it, and return true.  If the device was
    851  * not configured, call the given `print' function and return 0.
    852  */
    853 device_t
    854 config_found_sm_loc(device_t parent,
    855 		const char *ifattr, const int *locs, void *aux,
    856 		cfprint_t print, cfsubmatch_t submatch)
    857 {
    858 	cfdata_t cf;
    859 
    860 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    861 	if (splash_progress_state)
    862 		splash_progress_update(splash_progress_state);
    863 #endif
    864 
    865 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
    866 		return(config_attach_loc(parent, cf, locs, aux, print));
    867 	if (print) {
    868 		if (config_do_twiddle && cold)
    869 			twiddle();
    870 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
    871 	}
    872 
    873 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    874 	if (splash_progress_state)
    875 		splash_progress_update(splash_progress_state);
    876 #endif
    877 
    878 	return NULL;
    879 }
    880 
    881 device_t
    882 config_found_ia(device_t parent, const char *ifattr, void *aux,
    883     cfprint_t print)
    884 {
    885 
    886 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
    887 }
    888 
    889 device_t
    890 config_found(device_t parent, void *aux, cfprint_t print)
    891 {
    892 
    893 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
    894 }
    895 
    896 /*
    897  * As above, but for root devices.
    898  */
    899 device_t
    900 config_rootfound(const char *rootname, void *aux)
    901 {
    902 	cfdata_t cf;
    903 
    904 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
    905 		return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
    906 	aprint_error("root device %s not configured\n", rootname);
    907 	return NULL;
    908 }
    909 
    910 /* just like sprintf(buf, "%d") except that it works from the end */
    911 static char *
    912 number(char *ep, int n)
    913 {
    914 
    915 	*--ep = 0;
    916 	while (n >= 10) {
    917 		*--ep = (n % 10) + '0';
    918 		n /= 10;
    919 	}
    920 	*--ep = n + '0';
    921 	return ep;
    922 }
    923 
    924 /*
    925  * Expand the size of the cd_devs array if necessary.
    926  */
    927 static void
    928 config_makeroom(int n, struct cfdriver *cd)
    929 {
    930 	int old, new;
    931 	device_t *nsp;
    932 
    933 	if (n < cd->cd_ndevs)
    934 		return;
    935 
    936 	/*
    937 	 * Need to expand the array.
    938 	 */
    939 	old = cd->cd_ndevs;
    940 	if (old == 0)
    941 		new = 4;
    942 	else
    943 		new = old * 2;
    944 	while (new <= n)
    945 		new *= 2;
    946 	cd->cd_ndevs = new;
    947 	nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP);
    948 	if (nsp == NULL)
    949 		panic("config_attach: %sing dev array",
    950 		    old != 0 ? "expand" : "creat");
    951 	memset(nsp + old, 0, sizeof(device_t [new - old]));
    952 	if (old != 0) {
    953 		memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
    954 		kmem_free(cd->cd_devs, sizeof(device_t [old]));
    955 	}
    956 	cd->cd_devs = nsp;
    957 }
    958 
    959 static void
    960 config_devlink(device_t dev)
    961 {
    962 	struct cfdriver *cd = dev->dv_cfdriver;
    963 
    964 	/* put this device in the devices array */
    965 	config_makeroom(dev->dv_unit, cd);
    966 	if (cd->cd_devs[dev->dv_unit])
    967 		panic("config_attach: duplicate %s", device_xname(dev));
    968 	cd->cd_devs[dev->dv_unit] = dev;
    969 
    970 	/* It is safe to add a device to the tail of the list while
    971 	 * readers are in the list, but not while a writer is in
    972 	 * the list.  Wait for any writer to complete.
    973 	 */
    974 	mutex_enter(&alldevs_mtx);
    975 	while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
    976 		cv_wait(&alldevs_cv, &alldevs_mtx);
    977 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
    978 	cv_signal(&alldevs_cv);
    979 	mutex_exit(&alldevs_mtx);
    980 }
    981 
    982 static void
    983 config_devunlink(device_t dev)
    984 {
    985 	struct cfdriver *cd = dev->dv_cfdriver;
    986 	int i;
    987 
    988 	/* Unlink from device list. */
    989 	TAILQ_REMOVE(&alldevs, dev, dv_list);
    990 
    991 	/* Remove from cfdriver's array. */
    992 	cd->cd_devs[dev->dv_unit] = NULL;
    993 
    994 	/*
    995 	 * If the device now has no units in use, deallocate its softc array.
    996 	 */
    997 	for (i = 0; i < cd->cd_ndevs; i++) {
    998 		if (cd->cd_devs[i] != NULL)
    999 			return;
   1000 	}
   1001 	/* nothing found; deallocate */
   1002 	kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
   1003 	cd->cd_devs = NULL;
   1004 	cd->cd_ndevs = 0;
   1005 }
   1006 
   1007 static device_t
   1008 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1009 {
   1010 	struct cfdriver *cd;
   1011 	struct cfattach *ca;
   1012 	size_t lname, lunit;
   1013 	const char *xunit;
   1014 	int myunit;
   1015 	char num[10];
   1016 	device_t dev;
   1017 	void *dev_private;
   1018 	const struct cfiattrdata *ia;
   1019 	device_lock_t dvl;
   1020 
   1021 	cd = config_cfdriver_lookup(cf->cf_name);
   1022 	if (cd == NULL)
   1023 		return NULL;
   1024 
   1025 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1026 	if (ca == NULL)
   1027 		return NULL;
   1028 
   1029 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
   1030 	    ca->ca_devsize < sizeof(struct device))
   1031 		panic("config_devalloc: %s", cf->cf_atname);
   1032 
   1033 #ifndef __BROKEN_CONFIG_UNIT_USAGE
   1034 	if (cf->cf_fstate == FSTATE_STAR) {
   1035 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
   1036 			if (cd->cd_devs[myunit] == NULL)
   1037 				break;
   1038 		/*
   1039 		 * myunit is now the unit of the first NULL device pointer,
   1040 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1041 		 */
   1042 	} else {
   1043 		myunit = cf->cf_unit;
   1044 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
   1045 			return NULL;
   1046 	}
   1047 #else
   1048 	myunit = cf->cf_unit;
   1049 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
   1050 
   1051 	/* compute length of name and decimal expansion of unit number */
   1052 	lname = strlen(cd->cd_name);
   1053 	xunit = number(&num[sizeof(num)], myunit);
   1054 	lunit = &num[sizeof(num)] - xunit;
   1055 	if (lname + lunit > sizeof(dev->dv_xname))
   1056 		panic("config_devalloc: device name too long");
   1057 
   1058 	/* get memory for all device vars */
   1059 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
   1060 	if (ca->ca_devsize > 0) {
   1061 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1062 		if (dev_private == NULL)
   1063 			panic("config_devalloc: memory allocation for device softc failed");
   1064 	} else {
   1065 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1066 		dev_private = NULL;
   1067 	}
   1068 
   1069 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1070 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1071 	} else {
   1072 		dev = dev_private;
   1073 	}
   1074 	if (dev == NULL)
   1075 		panic("config_devalloc: memory allocation for device_t failed");
   1076 
   1077 	dvl = device_getlock(dev);
   1078 
   1079 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1080 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1081 
   1082 	dev->dv_class = cd->cd_class;
   1083 	dev->dv_cfdata = cf;
   1084 	dev->dv_cfdriver = cd;
   1085 	dev->dv_cfattach = ca;
   1086 	dev->dv_unit = myunit;
   1087 	dev->dv_activity_count = 0;
   1088 	dev->dv_activity_handlers = NULL;
   1089 	dev->dv_private = dev_private;
   1090 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1091 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1092 	dev->dv_parent = parent;
   1093 	if (parent != NULL)
   1094 		dev->dv_depth = parent->dv_depth + 1;
   1095 	else
   1096 		dev->dv_depth = 0;
   1097 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
   1098 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
   1099 	if (locs) {
   1100 		KASSERT(parent); /* no locators at root */
   1101 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
   1102 				    parent->dv_cfdriver);
   1103 		dev->dv_locators =
   1104 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
   1105 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
   1106 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
   1107 	}
   1108 	dev->dv_properties = prop_dictionary_create();
   1109 	KASSERT(dev->dv_properties != NULL);
   1110 
   1111 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
   1112 	    "device-driver", dev->dv_cfdriver->cd_name);
   1113 	prop_dictionary_set_uint16(dev->dv_properties,
   1114 	    "device-unit", dev->dv_unit);
   1115 
   1116 	return dev;
   1117 }
   1118 
   1119 static void
   1120 config_devdealloc(device_t dev)
   1121 {
   1122 	device_lock_t dvl = device_getlock(dev);
   1123 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
   1124 
   1125 	cv_destroy(&dvl->dvl_cv);
   1126 	mutex_destroy(&dvl->dvl_mtx);
   1127 
   1128 	KASSERT(dev->dv_properties != NULL);
   1129 	prop_object_release(dev->dv_properties);
   1130 
   1131 	if (dev->dv_activity_handlers)
   1132 		panic("config_devdealloc with registered handlers");
   1133 
   1134 	if (dev->dv_locators) {
   1135 		size_t amount = *--dev->dv_locators;
   1136 		kmem_free(dev->dv_locators, amount);
   1137 	}
   1138 
   1139 	if (dev->dv_cfattach->ca_devsize > 0)
   1140 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1141 	if (priv)
   1142 		kmem_free(dev, sizeof(*dev));
   1143 }
   1144 
   1145 /*
   1146  * Attach a found device.
   1147  */
   1148 device_t
   1149 config_attach_loc(device_t parent, cfdata_t cf,
   1150 	const int *locs, void *aux, cfprint_t print)
   1151 {
   1152 	device_t dev;
   1153 	struct cftable *ct;
   1154 	const char *drvname;
   1155 
   1156 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1157 	if (splash_progress_state)
   1158 		splash_progress_update(splash_progress_state);
   1159 #endif
   1160 
   1161 	dev = config_devalloc(parent, cf, locs);
   1162 	if (!dev)
   1163 		panic("config_attach: allocation of device softc failed");
   1164 
   1165 	/* XXX redundant - see below? */
   1166 	if (cf->cf_fstate != FSTATE_STAR) {
   1167 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1168 		cf->cf_fstate = FSTATE_FOUND;
   1169 	}
   1170 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1171 	  else
   1172 		cf->cf_unit++;
   1173 #endif
   1174 
   1175 	config_devlink(dev);
   1176 
   1177 	if (config_do_twiddle && cold)
   1178 		twiddle();
   1179 	else
   1180 		aprint_naive("Found ");
   1181 	/*
   1182 	 * We want the next two printfs for normal, verbose, and quiet,
   1183 	 * but not silent (in which case, we're twiddling, instead).
   1184 	 */
   1185 	if (parent == ROOT) {
   1186 		aprint_naive("%s (root)", device_xname(dev));
   1187 		aprint_normal("%s (root)", device_xname(dev));
   1188 	} else {
   1189 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
   1190 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
   1191 		if (print)
   1192 			(void) (*print)(aux, NULL);
   1193 	}
   1194 
   1195 	/*
   1196 	 * Before attaching, clobber any unfound devices that are
   1197 	 * otherwise identical.
   1198 	 * XXX code above is redundant?
   1199 	 */
   1200 	drvname = dev->dv_cfdriver->cd_name;
   1201 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1202 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1203 			if (STREQ(cf->cf_name, drvname) &&
   1204 			    cf->cf_unit == dev->dv_unit) {
   1205 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1206 					cf->cf_fstate = FSTATE_FOUND;
   1207 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1208 				/*
   1209 				 * Bump the unit number on all starred cfdata
   1210 				 * entries for this device.
   1211 				 */
   1212 				if (cf->cf_fstate == FSTATE_STAR)
   1213 					cf->cf_unit++;
   1214 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1215 			}
   1216 		}
   1217 	}
   1218 #ifdef __HAVE_DEVICE_REGISTER
   1219 	device_register(dev, aux);
   1220 #endif
   1221 
   1222 	/* Let userland know */
   1223 	devmon_report_device(dev, true);
   1224 
   1225 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1226 	if (splash_progress_state)
   1227 		splash_progress_update(splash_progress_state);
   1228 #endif
   1229 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1230 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1231 	if (splash_progress_state)
   1232 		splash_progress_update(splash_progress_state);
   1233 #endif
   1234 
   1235 	if (!device_pmf_is_registered(dev))
   1236 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
   1237 
   1238 	config_process_deferred(&deferred_config_queue, dev);
   1239 	return dev;
   1240 }
   1241 
   1242 device_t
   1243 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1244 {
   1245 
   1246 	return config_attach_loc(parent, cf, NULL, aux, print);
   1247 }
   1248 
   1249 /*
   1250  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1251  * way are silently inserted into the device tree, and their children
   1252  * attached.
   1253  *
   1254  * Note that because pseudo-devices are attached silently, any information
   1255  * the attach routine wishes to print should be prefixed with the device
   1256  * name by the attach routine.
   1257  */
   1258 device_t
   1259 config_attach_pseudo(cfdata_t cf)
   1260 {
   1261 	device_t dev;
   1262 
   1263 	dev = config_devalloc(ROOT, cf, NULL);
   1264 	if (!dev)
   1265 		return NULL;
   1266 
   1267 	/* XXX mark busy in cfdata */
   1268 
   1269 	if (cf->cf_fstate != FSTATE_STAR) {
   1270 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1271 		cf->cf_fstate = FSTATE_FOUND;
   1272 	}
   1273 
   1274 	config_devlink(dev);
   1275 
   1276 #if 0	/* XXXJRT not yet */
   1277 #ifdef __HAVE_DEVICE_REGISTER
   1278 	device_register(dev, NULL);	/* like a root node */
   1279 #endif
   1280 #endif
   1281 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1282 	config_process_deferred(&deferred_config_queue, dev);
   1283 	return dev;
   1284 }
   1285 
   1286 /*
   1287  * Detach a device.  Optionally forced (e.g. because of hardware
   1288  * removal) and quiet.  Returns zero if successful, non-zero
   1289  * (an error code) otherwise.
   1290  *
   1291  * Note that this code wants to be run from a process context, so
   1292  * that the detach can sleep to allow processes which have a device
   1293  * open to run and unwind their stacks.
   1294  */
   1295 int
   1296 config_detach(device_t dev, int flags)
   1297 {
   1298 	struct cftable *ct;
   1299 	cfdata_t cf;
   1300 	const struct cfattach *ca;
   1301 	struct cfdriver *cd;
   1302 #ifdef DIAGNOSTIC
   1303 	device_t d;
   1304 #endif
   1305 	int rv = 0;
   1306 
   1307 #ifdef DIAGNOSTIC
   1308 	cf = dev->dv_cfdata;
   1309 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
   1310 	    cf->cf_fstate != FSTATE_STAR)
   1311 		panic("config_detach: %s: bad device fstate %d",
   1312 		    device_xname(dev), cf ? cf->cf_fstate : -1);
   1313 #endif
   1314 	cd = dev->dv_cfdriver;
   1315 	KASSERT(cd != NULL);
   1316 
   1317 	ca = dev->dv_cfattach;
   1318 	KASSERT(ca != NULL);
   1319 
   1320 	KASSERT(curlwp != NULL);
   1321 	mutex_enter(&alldevs_mtx);
   1322 	if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   1323 		;
   1324 	else while (alldevs_nread != 0 ||
   1325 	       (alldevs_nwrite != 0 && alldevs_writer != curlwp))
   1326 		cv_wait(&alldevs_cv, &alldevs_mtx);
   1327 	if (alldevs_nwrite++ == 0)
   1328 		alldevs_writer = curlwp;
   1329 	mutex_exit(&alldevs_mtx);
   1330 
   1331 	/*
   1332 	 * Ensure the device is deactivated.  If the device doesn't
   1333 	 * have an activation entry point, we allow DVF_ACTIVE to
   1334 	 * remain set.  Otherwise, if DVF_ACTIVE is still set, the
   1335 	 * device is busy, and the detach fails.
   1336 	 */
   1337 	if (!detachall &&
   1338 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1339 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1340 		rv = EOPNOTSUPP;
   1341 	} else if ((rv = config_deactivate(dev)) == EOPNOTSUPP)
   1342 		rv = 0;	/* Do not treat EOPNOTSUPP as an error */
   1343 
   1344 	/*
   1345 	 * Try to detach the device.  If that's not possible, then
   1346 	 * we either panic() (for the forced but failed case), or
   1347 	 * return an error.
   1348 	 */
   1349 	if (rv == 0) {
   1350 		if (ca->ca_detach != NULL)
   1351 			rv = (*ca->ca_detach)(dev, flags);
   1352 		else
   1353 			rv = EOPNOTSUPP;
   1354 	}
   1355 	if (rv != 0) {
   1356 		if ((flags & DETACH_FORCE) == 0)
   1357 			goto out;
   1358 		else
   1359 			panic("config_detach: forced detach of %s failed (%d)",
   1360 			    device_xname(dev), rv);
   1361 	}
   1362 
   1363 	dev->dv_flags &= ~DVF_ACTIVE;
   1364 
   1365 	/*
   1366 	 * The device has now been successfully detached.
   1367 	 */
   1368 
   1369 	/* Let userland know */
   1370 	devmon_report_device(dev, false);
   1371 
   1372 #ifdef DIAGNOSTIC
   1373 	/*
   1374 	 * Sanity: If you're successfully detached, you should have no
   1375 	 * children.  (Note that because children must be attached
   1376 	 * after parents, we only need to search the latter part of
   1377 	 * the list.)
   1378 	 */
   1379 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1380 	    d = TAILQ_NEXT(d, dv_list)) {
   1381 		if (d->dv_parent == dev) {
   1382 			printf("config_detach: detached device %s"
   1383 			    " has children %s\n", device_xname(dev), device_xname(d));
   1384 			panic("config_detach");
   1385 		}
   1386 	}
   1387 #endif
   1388 
   1389 	/* notify the parent that the child is gone */
   1390 	if (dev->dv_parent) {
   1391 		device_t p = dev->dv_parent;
   1392 		if (p->dv_cfattach->ca_childdetached)
   1393 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1394 	}
   1395 
   1396 	/*
   1397 	 * Mark cfdata to show that the unit can be reused, if possible.
   1398 	 */
   1399 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1400 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1401 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1402 				if (cf->cf_fstate == FSTATE_FOUND &&
   1403 				    cf->cf_unit == dev->dv_unit)
   1404 					cf->cf_fstate = FSTATE_NOTFOUND;
   1405 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1406 				/*
   1407 				 * Note that we can only re-use a starred
   1408 				 * unit number if the unit being detached
   1409 				 * had the last assigned unit number.
   1410 				 */
   1411 				if (cf->cf_fstate == FSTATE_STAR &&
   1412 				    cf->cf_unit == dev->dv_unit + 1)
   1413 					cf->cf_unit--;
   1414 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1415 			}
   1416 		}
   1417 	}
   1418 
   1419 	config_devunlink(dev);
   1420 
   1421 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1422 		aprint_normal_dev(dev, "detached\n");
   1423 
   1424 	config_devdealloc(dev);
   1425 
   1426 out:
   1427 	mutex_enter(&alldevs_mtx);
   1428 	KASSERT(alldevs_nwrite != 0);
   1429 	if (--alldevs_nwrite == 0)
   1430 		alldevs_writer = NULL;
   1431 	cv_signal(&alldevs_cv);
   1432 	mutex_exit(&alldevs_mtx);
   1433 	return rv;
   1434 }
   1435 
   1436 int
   1437 config_detach_children(device_t parent, int flags)
   1438 {
   1439 	device_t dv;
   1440 	deviter_t di;
   1441 	int error = 0;
   1442 
   1443 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1444 	     dv = deviter_next(&di)) {
   1445 		if (device_parent(dv) != parent)
   1446 			continue;
   1447 		if ((error = config_detach(dv, flags)) != 0)
   1448 			break;
   1449 	}
   1450 	deviter_release(&di);
   1451 	return error;
   1452 }
   1453 
   1454 device_t
   1455 shutdown_first(struct shutdown_state *s)
   1456 {
   1457 	if (!s->initialized) {
   1458 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1459 		s->initialized = true;
   1460 	}
   1461 	return shutdown_next(s);
   1462 }
   1463 
   1464 device_t
   1465 shutdown_next(struct shutdown_state *s)
   1466 {
   1467 	device_t dv;
   1468 
   1469 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1470 		;
   1471 
   1472 	if (dv == NULL)
   1473 		s->initialized = false;
   1474 
   1475 	return dv;
   1476 }
   1477 
   1478 bool
   1479 config_detach_all(int how)
   1480 {
   1481 	static struct shutdown_state s;
   1482 	device_t curdev;
   1483 	bool progress = false;
   1484 
   1485 	if ((how & RB_NOSYNC) != 0)
   1486 		return false;
   1487 
   1488 	for (curdev = shutdown_first(&s); curdev != NULL;
   1489 	     curdev = shutdown_next(&s)) {
   1490 		aprint_debug(" detaching %s, ", device_xname(curdev));
   1491 		if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
   1492 			progress = true;
   1493 			aprint_debug("success.");
   1494 		} else
   1495 			aprint_debug("failed.");
   1496 	}
   1497 	return progress;
   1498 }
   1499 
   1500 int
   1501 config_deactivate(device_t dev)
   1502 {
   1503 	const struct cfattach *ca = dev->dv_cfattach;
   1504 	int rv = 0, oflags = dev->dv_flags;
   1505 
   1506 	if (ca->ca_activate == NULL)
   1507 		return EOPNOTSUPP;
   1508 
   1509 	if (dev->dv_flags & DVF_ACTIVE) {
   1510 		dev->dv_flags &= ~DVF_ACTIVE;
   1511 		rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
   1512 		if (rv)
   1513 			dev->dv_flags = oflags;
   1514 	}
   1515 	return rv;
   1516 }
   1517 
   1518 /*
   1519  * Defer the configuration of the specified device until all
   1520  * of its parent's devices have been attached.
   1521  */
   1522 void
   1523 config_defer(device_t dev, void (*func)(device_t))
   1524 {
   1525 	struct deferred_config *dc;
   1526 
   1527 	if (dev->dv_parent == NULL)
   1528 		panic("config_defer: can't defer config of a root device");
   1529 
   1530 #ifdef DIAGNOSTIC
   1531 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
   1532 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1533 		if (dc->dc_dev == dev)
   1534 			panic("config_defer: deferred twice");
   1535 	}
   1536 #endif
   1537 
   1538 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1539 	if (dc == NULL)
   1540 		panic("config_defer: unable to allocate callback");
   1541 
   1542 	dc->dc_dev = dev;
   1543 	dc->dc_func = func;
   1544 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1545 	config_pending_incr();
   1546 }
   1547 
   1548 /*
   1549  * Defer some autoconfiguration for a device until after interrupts
   1550  * are enabled.
   1551  */
   1552 void
   1553 config_interrupts(device_t dev, void (*func)(device_t))
   1554 {
   1555 	struct deferred_config *dc;
   1556 
   1557 	/*
   1558 	 * If interrupts are enabled, callback now.
   1559 	 */
   1560 	if (cold == 0) {
   1561 		(*func)(dev);
   1562 		return;
   1563 	}
   1564 
   1565 #ifdef DIAGNOSTIC
   1566 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
   1567 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1568 		if (dc->dc_dev == dev)
   1569 			panic("config_interrupts: deferred twice");
   1570 	}
   1571 #endif
   1572 
   1573 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1574 	if (dc == NULL)
   1575 		panic("config_interrupts: unable to allocate callback");
   1576 
   1577 	dc->dc_dev = dev;
   1578 	dc->dc_func = func;
   1579 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   1580 	config_pending_incr();
   1581 }
   1582 
   1583 /*
   1584  * Process a deferred configuration queue.
   1585  */
   1586 static void
   1587 config_process_deferred(struct deferred_config_head *queue,
   1588     device_t parent)
   1589 {
   1590 	struct deferred_config *dc, *ndc;
   1591 
   1592 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   1593 		ndc = TAILQ_NEXT(dc, dc_queue);
   1594 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   1595 			TAILQ_REMOVE(queue, dc, dc_queue);
   1596 			(*dc->dc_func)(dc->dc_dev);
   1597 			kmem_free(dc, sizeof(*dc));
   1598 			config_pending_decr();
   1599 		}
   1600 	}
   1601 }
   1602 
   1603 /*
   1604  * Manipulate the config_pending semaphore.
   1605  */
   1606 void
   1607 config_pending_incr(void)
   1608 {
   1609 
   1610 	mutex_enter(&config_misc_lock);
   1611 	config_pending++;
   1612 	mutex_exit(&config_misc_lock);
   1613 }
   1614 
   1615 void
   1616 config_pending_decr(void)
   1617 {
   1618 
   1619 #ifdef DIAGNOSTIC
   1620 	if (config_pending == 0)
   1621 		panic("config_pending_decr: config_pending == 0");
   1622 #endif
   1623 	mutex_enter(&config_misc_lock);
   1624 	config_pending--;
   1625 	if (config_pending == 0)
   1626 		cv_broadcast(&config_misc_cv);
   1627 	mutex_exit(&config_misc_lock);
   1628 }
   1629 
   1630 /*
   1631  * Register a "finalization" routine.  Finalization routines are
   1632  * called iteratively once all real devices have been found during
   1633  * autoconfiguration, for as long as any one finalizer has done
   1634  * any work.
   1635  */
   1636 int
   1637 config_finalize_register(device_t dev, int (*fn)(device_t))
   1638 {
   1639 	struct finalize_hook *f;
   1640 
   1641 	/*
   1642 	 * If finalization has already been done, invoke the
   1643 	 * callback function now.
   1644 	 */
   1645 	if (config_finalize_done) {
   1646 		while ((*fn)(dev) != 0)
   1647 			/* loop */ ;
   1648 	}
   1649 
   1650 	/* Ensure this isn't already on the list. */
   1651 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   1652 		if (f->f_func == fn && f->f_dev == dev)
   1653 			return EEXIST;
   1654 	}
   1655 
   1656 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   1657 	f->f_func = fn;
   1658 	f->f_dev = dev;
   1659 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   1660 
   1661 	return 0;
   1662 }
   1663 
   1664 void
   1665 config_finalize(void)
   1666 {
   1667 	struct finalize_hook *f;
   1668 	struct pdevinit *pdev;
   1669 	extern struct pdevinit pdevinit[];
   1670 	int errcnt, rv;
   1671 
   1672 	/*
   1673 	 * Now that device driver threads have been created, wait for
   1674 	 * them to finish any deferred autoconfiguration.
   1675 	 */
   1676 	mutex_enter(&config_misc_lock);
   1677 	while (config_pending != 0)
   1678 		cv_wait(&config_misc_cv, &config_misc_lock);
   1679 	mutex_exit(&config_misc_lock);
   1680 
   1681 	KERNEL_LOCK(1, NULL);
   1682 
   1683 	/* Attach pseudo-devices. */
   1684 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   1685 		(*pdev->pdev_attach)(pdev->pdev_count);
   1686 
   1687 	/* Run the hooks until none of them does any work. */
   1688 	do {
   1689 		rv = 0;
   1690 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   1691 			rv |= (*f->f_func)(f->f_dev);
   1692 	} while (rv != 0);
   1693 
   1694 	config_finalize_done = 1;
   1695 
   1696 	/* Now free all the hooks. */
   1697 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   1698 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   1699 		kmem_free(f, sizeof(*f));
   1700 	}
   1701 
   1702 	KERNEL_UNLOCK_ONE(NULL);
   1703 
   1704 	errcnt = aprint_get_error_count();
   1705 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   1706 	    (boothowto & AB_VERBOSE) == 0) {
   1707 		mutex_enter(&config_misc_lock);
   1708 		if (config_do_twiddle) {
   1709 			config_do_twiddle = 0;
   1710 			printf_nolog(" done.\n");
   1711 		}
   1712 		mutex_exit(&config_misc_lock);
   1713 		if (errcnt != 0) {
   1714 			printf("WARNING: %d error%s while detecting hardware; "
   1715 			    "check system log.\n", errcnt,
   1716 			    errcnt == 1 ? "" : "s");
   1717 		}
   1718 	}
   1719 }
   1720 
   1721 void
   1722 config_twiddle_init()
   1723 {
   1724 
   1725 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   1726 		config_do_twiddle = 1;
   1727 	}
   1728 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   1729 }
   1730 
   1731 void
   1732 config_twiddle_fn(void *cookie)
   1733 {
   1734 
   1735 	mutex_enter(&config_misc_lock);
   1736 	if (config_do_twiddle) {
   1737 		twiddle();
   1738 		callout_schedule(&config_twiddle_ch, mstohz(100));
   1739 	}
   1740 	mutex_exit(&config_misc_lock);
   1741 }
   1742 
   1743 /*
   1744  * device_lookup:
   1745  *
   1746  *	Look up a device instance for a given driver.
   1747  */
   1748 device_t
   1749 device_lookup(cfdriver_t cd, int unit)
   1750 {
   1751 
   1752 	if (unit < 0 || unit >= cd->cd_ndevs)
   1753 		return NULL;
   1754 
   1755 	return cd->cd_devs[unit];
   1756 }
   1757 
   1758 /*
   1759  * device_lookup:
   1760  *
   1761  *	Look up a device instance for a given driver.
   1762  */
   1763 void *
   1764 device_lookup_private(cfdriver_t cd, int unit)
   1765 {
   1766 	device_t dv;
   1767 
   1768 	if (unit < 0 || unit >= cd->cd_ndevs)
   1769 		return NULL;
   1770 
   1771 	if ((dv = cd->cd_devs[unit]) == NULL)
   1772 		return NULL;
   1773 
   1774 	return dv->dv_private;
   1775 }
   1776 
   1777 /*
   1778  * Accessor functions for the device_t type.
   1779  */
   1780 devclass_t
   1781 device_class(device_t dev)
   1782 {
   1783 
   1784 	return dev->dv_class;
   1785 }
   1786 
   1787 cfdata_t
   1788 device_cfdata(device_t dev)
   1789 {
   1790 
   1791 	return dev->dv_cfdata;
   1792 }
   1793 
   1794 cfdriver_t
   1795 device_cfdriver(device_t dev)
   1796 {
   1797 
   1798 	return dev->dv_cfdriver;
   1799 }
   1800 
   1801 cfattach_t
   1802 device_cfattach(device_t dev)
   1803 {
   1804 
   1805 	return dev->dv_cfattach;
   1806 }
   1807 
   1808 int
   1809 device_unit(device_t dev)
   1810 {
   1811 
   1812 	return dev->dv_unit;
   1813 }
   1814 
   1815 const char *
   1816 device_xname(device_t dev)
   1817 {
   1818 
   1819 	return dev->dv_xname;
   1820 }
   1821 
   1822 device_t
   1823 device_parent(device_t dev)
   1824 {
   1825 
   1826 	return dev->dv_parent;
   1827 }
   1828 
   1829 bool
   1830 device_activation(device_t dev, devact_level_t level)
   1831 {
   1832 	int active_flags;
   1833 
   1834 	active_flags = DVF_ACTIVE;
   1835 	switch (level) {
   1836 	case DEVACT_LEVEL_FULL:
   1837 		active_flags |= DVF_CLASS_SUSPENDED;
   1838 		/*FALLTHROUGH*/
   1839 	case DEVACT_LEVEL_DRIVER:
   1840 		active_flags |= DVF_DRIVER_SUSPENDED;
   1841 		/*FALLTHROUGH*/
   1842 	case DEVACT_LEVEL_BUS:
   1843 		active_flags |= DVF_BUS_SUSPENDED;
   1844 		break;
   1845 	}
   1846 
   1847 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
   1848 }
   1849 
   1850 bool
   1851 device_is_active(device_t dev)
   1852 {
   1853 	int active_flags;
   1854 
   1855 	active_flags = DVF_ACTIVE;
   1856 	active_flags |= DVF_CLASS_SUSPENDED;
   1857 	active_flags |= DVF_DRIVER_SUSPENDED;
   1858 	active_flags |= DVF_BUS_SUSPENDED;
   1859 
   1860 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
   1861 }
   1862 
   1863 bool
   1864 device_is_enabled(device_t dev)
   1865 {
   1866 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
   1867 }
   1868 
   1869 bool
   1870 device_has_power(device_t dev)
   1871 {
   1872 	int active_flags;
   1873 
   1874 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
   1875 
   1876 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
   1877 }
   1878 
   1879 int
   1880 device_locator(device_t dev, u_int locnum)
   1881 {
   1882 
   1883 	KASSERT(dev->dv_locators != NULL);
   1884 	return dev->dv_locators[locnum];
   1885 }
   1886 
   1887 void *
   1888 device_private(device_t dev)
   1889 {
   1890 
   1891 	/*
   1892 	 * The reason why device_private(NULL) is allowed is to simplify the
   1893 	 * work of a lot of userspace request handlers (i.e., c/bdev
   1894 	 * handlers) which grab cfdriver_t->cd_units[n].
   1895 	 * It avoids having them test for it to be NULL and only then calling
   1896 	 * device_private.
   1897 	 */
   1898 	return dev == NULL ? NULL : dev->dv_private;
   1899 }
   1900 
   1901 prop_dictionary_t
   1902 device_properties(device_t dev)
   1903 {
   1904 
   1905 	return dev->dv_properties;
   1906 }
   1907 
   1908 /*
   1909  * device_is_a:
   1910  *
   1911  *	Returns true if the device is an instance of the specified
   1912  *	driver.
   1913  */
   1914 bool
   1915 device_is_a(device_t dev, const char *dname)
   1916 {
   1917 
   1918 	return strcmp(dev->dv_cfdriver->cd_name, dname) == 0;
   1919 }
   1920 
   1921 /*
   1922  * device_find_by_xname:
   1923  *
   1924  *	Returns the device of the given name or NULL if it doesn't exist.
   1925  */
   1926 device_t
   1927 device_find_by_xname(const char *name)
   1928 {
   1929 	device_t dv;
   1930 	deviter_t di;
   1931 
   1932 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   1933 		if (strcmp(device_xname(dv), name) == 0)
   1934 			break;
   1935 	}
   1936 	deviter_release(&di);
   1937 
   1938 	return dv;
   1939 }
   1940 
   1941 /*
   1942  * device_find_by_driver_unit:
   1943  *
   1944  *	Returns the device of the given driver name and unit or
   1945  *	NULL if it doesn't exist.
   1946  */
   1947 device_t
   1948 device_find_by_driver_unit(const char *name, int unit)
   1949 {
   1950 	struct cfdriver *cd;
   1951 
   1952 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   1953 		return NULL;
   1954 	return device_lookup(cd, unit);
   1955 }
   1956 
   1957 /*
   1958  * Power management related functions.
   1959  */
   1960 
   1961 bool
   1962 device_pmf_is_registered(device_t dev)
   1963 {
   1964 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   1965 }
   1966 
   1967 bool
   1968 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
   1969 {
   1970 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   1971 		return true;
   1972 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   1973 		return false;
   1974 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_DRIVER &&
   1975 	    dev->dv_driver_suspend != NULL &&
   1976 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
   1977 		return false;
   1978 
   1979 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   1980 	return true;
   1981 }
   1982 
   1983 bool
   1984 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
   1985 {
   1986 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   1987 		return true;
   1988 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   1989 		return false;
   1990 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_DRIVER &&
   1991 	    dev->dv_driver_resume != NULL &&
   1992 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
   1993 		return false;
   1994 
   1995 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   1996 	return true;
   1997 }
   1998 
   1999 bool
   2000 device_pmf_driver_shutdown(device_t dev, int how)
   2001 {
   2002 
   2003 	if (*dev->dv_driver_shutdown != NULL &&
   2004 	    !(*dev->dv_driver_shutdown)(dev, how))
   2005 		return false;
   2006 	return true;
   2007 }
   2008 
   2009 bool
   2010 device_pmf_driver_register(device_t dev,
   2011     bool (*suspend)(device_t PMF_FN_PROTO),
   2012     bool (*resume)(device_t PMF_FN_PROTO),
   2013     bool (*shutdown)(device_t, int))
   2014 {
   2015 	dev->dv_driver_suspend = suspend;
   2016 	dev->dv_driver_resume = resume;
   2017 	dev->dv_driver_shutdown = shutdown;
   2018 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2019 	return true;
   2020 }
   2021 
   2022 static const char *
   2023 curlwp_name(void)
   2024 {
   2025 	if (curlwp->l_name != NULL)
   2026 		return curlwp->l_name;
   2027 	else
   2028 		return curlwp->l_proc->p_comm;
   2029 }
   2030 
   2031 void
   2032 device_pmf_driver_deregister(device_t dev)
   2033 {
   2034 	device_lock_t dvl = device_getlock(dev);
   2035 
   2036 	dev->dv_driver_suspend = NULL;
   2037 	dev->dv_driver_resume = NULL;
   2038 
   2039 	mutex_enter(&dvl->dvl_mtx);
   2040 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2041 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2042 		/* Wake a thread that waits for the lock.  That
   2043 		 * thread will fail to acquire the lock, and then
   2044 		 * it will wake the next thread that waits for the
   2045 		 * lock, or else it will wake us.
   2046 		 */
   2047 		cv_signal(&dvl->dvl_cv);
   2048 		pmflock_debug(dev, __func__, __LINE__);
   2049 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2050 		pmflock_debug(dev, __func__, __LINE__);
   2051 	}
   2052 	mutex_exit(&dvl->dvl_mtx);
   2053 }
   2054 
   2055 bool
   2056 device_pmf_driver_child_register(device_t dev)
   2057 {
   2058 	device_t parent = device_parent(dev);
   2059 
   2060 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2061 		return true;
   2062 	return (*parent->dv_driver_child_register)(dev);
   2063 }
   2064 
   2065 void
   2066 device_pmf_driver_set_child_register(device_t dev,
   2067     bool (*child_register)(device_t))
   2068 {
   2069 	dev->dv_driver_child_register = child_register;
   2070 }
   2071 
   2072 static void
   2073 pmflock_debug(device_t dev, const char *func, int line)
   2074 {
   2075 	device_lock_t dvl = device_getlock(dev);
   2076 
   2077 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
   2078 	    func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
   2079 	    dev->dv_flags);
   2080 }
   2081 
   2082 static bool
   2083 device_pmf_lock1(device_t dev)
   2084 {
   2085 	device_lock_t dvl = device_getlock(dev);
   2086 
   2087 	while (device_pmf_is_registered(dev) &&
   2088 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2089 		dvl->dvl_nwait++;
   2090 		pmflock_debug(dev, __func__, __LINE__);
   2091 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2092 		pmflock_debug(dev, __func__, __LINE__);
   2093 		dvl->dvl_nwait--;
   2094 	}
   2095 	if (!device_pmf_is_registered(dev)) {
   2096 		pmflock_debug(dev, __func__, __LINE__);
   2097 		/* We could not acquire the lock, but some other thread may
   2098 		 * wait for it, also.  Wake that thread.
   2099 		 */
   2100 		cv_signal(&dvl->dvl_cv);
   2101 		return false;
   2102 	}
   2103 	dvl->dvl_nlock++;
   2104 	dvl->dvl_holder = curlwp;
   2105 	pmflock_debug(dev, __func__, __LINE__);
   2106 	return true;
   2107 }
   2108 
   2109 bool
   2110 device_pmf_lock(device_t dev)
   2111 {
   2112 	bool rc;
   2113 	device_lock_t dvl = device_getlock(dev);
   2114 
   2115 	mutex_enter(&dvl->dvl_mtx);
   2116 	rc = device_pmf_lock1(dev);
   2117 	mutex_exit(&dvl->dvl_mtx);
   2118 
   2119 	return rc;
   2120 }
   2121 
   2122 void
   2123 device_pmf_unlock(device_t dev)
   2124 {
   2125 	device_lock_t dvl = device_getlock(dev);
   2126 
   2127 	KASSERT(dvl->dvl_nlock > 0);
   2128 	mutex_enter(&dvl->dvl_mtx);
   2129 	if (--dvl->dvl_nlock == 0)
   2130 		dvl->dvl_holder = NULL;
   2131 	cv_signal(&dvl->dvl_cv);
   2132 	pmflock_debug(dev, __func__, __LINE__);
   2133 	mutex_exit(&dvl->dvl_mtx);
   2134 }
   2135 
   2136 device_lock_t
   2137 device_getlock(device_t dev)
   2138 {
   2139 	return &dev->dv_lock;
   2140 }
   2141 
   2142 void *
   2143 device_pmf_bus_private(device_t dev)
   2144 {
   2145 	return dev->dv_bus_private;
   2146 }
   2147 
   2148 bool
   2149 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
   2150 {
   2151 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2152 		return true;
   2153 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2154 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2155 		return false;
   2156 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_BUS &&
   2157 	    dev->dv_bus_suspend != NULL &&
   2158 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
   2159 		return false;
   2160 
   2161 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2162 	return true;
   2163 }
   2164 
   2165 bool
   2166 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
   2167 {
   2168 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2169 		return true;
   2170 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_BUS &&
   2171 	    dev->dv_bus_resume != NULL &&
   2172 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
   2173 		return false;
   2174 
   2175 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2176 	return true;
   2177 }
   2178 
   2179 bool
   2180 device_pmf_bus_shutdown(device_t dev, int how)
   2181 {
   2182 
   2183 	if (*dev->dv_bus_shutdown != NULL &&
   2184 	    !(*dev->dv_bus_shutdown)(dev, how))
   2185 		return false;
   2186 	return true;
   2187 }
   2188 
   2189 void
   2190 device_pmf_bus_register(device_t dev, void *priv,
   2191     bool (*suspend)(device_t PMF_FN_PROTO),
   2192     bool (*resume)(device_t PMF_FN_PROTO),
   2193     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2194 {
   2195 	dev->dv_bus_private = priv;
   2196 	dev->dv_bus_resume = resume;
   2197 	dev->dv_bus_suspend = suspend;
   2198 	dev->dv_bus_shutdown = shutdown;
   2199 	dev->dv_bus_deregister = deregister;
   2200 }
   2201 
   2202 void
   2203 device_pmf_bus_deregister(device_t dev)
   2204 {
   2205 	if (dev->dv_bus_deregister == NULL)
   2206 		return;
   2207 	(*dev->dv_bus_deregister)(dev);
   2208 	dev->dv_bus_private = NULL;
   2209 	dev->dv_bus_suspend = NULL;
   2210 	dev->dv_bus_resume = NULL;
   2211 	dev->dv_bus_deregister = NULL;
   2212 }
   2213 
   2214 void *
   2215 device_pmf_class_private(device_t dev)
   2216 {
   2217 	return dev->dv_class_private;
   2218 }
   2219 
   2220 bool
   2221 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
   2222 {
   2223 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2224 		return true;
   2225 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_CLASS &&
   2226 	    dev->dv_class_suspend != NULL &&
   2227 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
   2228 		return false;
   2229 
   2230 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2231 	return true;
   2232 }
   2233 
   2234 bool
   2235 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
   2236 {
   2237 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2238 		return true;
   2239 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2240 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2241 		return false;
   2242 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_CLASS &&
   2243 	    dev->dv_class_resume != NULL &&
   2244 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
   2245 		return false;
   2246 
   2247 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2248 	return true;
   2249 }
   2250 
   2251 void
   2252 device_pmf_class_register(device_t dev, void *priv,
   2253     bool (*suspend)(device_t PMF_FN_PROTO),
   2254     bool (*resume)(device_t PMF_FN_PROTO),
   2255     void (*deregister)(device_t))
   2256 {
   2257 	dev->dv_class_private = priv;
   2258 	dev->dv_class_suspend = suspend;
   2259 	dev->dv_class_resume = resume;
   2260 	dev->dv_class_deregister = deregister;
   2261 }
   2262 
   2263 void
   2264 device_pmf_class_deregister(device_t dev)
   2265 {
   2266 	if (dev->dv_class_deregister == NULL)
   2267 		return;
   2268 	(*dev->dv_class_deregister)(dev);
   2269 	dev->dv_class_private = NULL;
   2270 	dev->dv_class_suspend = NULL;
   2271 	dev->dv_class_resume = NULL;
   2272 	dev->dv_class_deregister = NULL;
   2273 }
   2274 
   2275 bool
   2276 device_active(device_t dev, devactive_t type)
   2277 {
   2278 	size_t i;
   2279 
   2280 	if (dev->dv_activity_count == 0)
   2281 		return false;
   2282 
   2283 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2284 		if (dev->dv_activity_handlers[i] == NULL)
   2285 			break;
   2286 		(*dev->dv_activity_handlers[i])(dev, type);
   2287 	}
   2288 
   2289 	return true;
   2290 }
   2291 
   2292 bool
   2293 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2294 {
   2295 	void (**new_handlers)(device_t, devactive_t);
   2296 	void (**old_handlers)(device_t, devactive_t);
   2297 	size_t i, old_size, new_size;
   2298 	int s;
   2299 
   2300 	old_handlers = dev->dv_activity_handlers;
   2301 	old_size = dev->dv_activity_count;
   2302 
   2303 	for (i = 0; i < old_size; ++i) {
   2304 		KASSERT(old_handlers[i] != handler);
   2305 		if (old_handlers[i] == NULL) {
   2306 			old_handlers[i] = handler;
   2307 			return true;
   2308 		}
   2309 	}
   2310 
   2311 	new_size = old_size + 4;
   2312 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
   2313 
   2314 	memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
   2315 	new_handlers[old_size] = handler;
   2316 	memset(new_handlers + old_size + 1, 0,
   2317 	    sizeof(int [new_size - (old_size+1)]));
   2318 
   2319 	s = splhigh();
   2320 	dev->dv_activity_count = new_size;
   2321 	dev->dv_activity_handlers = new_handlers;
   2322 	splx(s);
   2323 
   2324 	if (old_handlers != NULL)
   2325 		kmem_free(old_handlers, sizeof(void * [old_size]));
   2326 
   2327 	return true;
   2328 }
   2329 
   2330 void
   2331 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2332 {
   2333 	void (**old_handlers)(device_t, devactive_t);
   2334 	size_t i, old_size;
   2335 	int s;
   2336 
   2337 	old_handlers = dev->dv_activity_handlers;
   2338 	old_size = dev->dv_activity_count;
   2339 
   2340 	for (i = 0; i < old_size; ++i) {
   2341 		if (old_handlers[i] == handler)
   2342 			break;
   2343 		if (old_handlers[i] == NULL)
   2344 			return; /* XXX panic? */
   2345 	}
   2346 
   2347 	if (i == old_size)
   2348 		return; /* XXX panic? */
   2349 
   2350 	for (; i < old_size - 1; ++i) {
   2351 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   2352 			continue;
   2353 
   2354 		if (i == 0) {
   2355 			s = splhigh();
   2356 			dev->dv_activity_count = 0;
   2357 			dev->dv_activity_handlers = NULL;
   2358 			splx(s);
   2359 			kmem_free(old_handlers, sizeof(void *[old_size]));
   2360 		}
   2361 		return;
   2362 	}
   2363 	old_handlers[i] = NULL;
   2364 }
   2365 
   2366 /*
   2367  * Device Iteration
   2368  *
   2369  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2370  *     each device_t's in the device tree.
   2371  *
   2372  * deviter_init(di, flags): initialize the device iterator `di'
   2373  *     to "walk" the device tree.  deviter_next(di) will return
   2374  *     the first device_t in the device tree, or NULL if there are
   2375  *     no devices.
   2376  *
   2377  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2378  *     caller intends to modify the device tree by calling
   2379  *     config_detach(9) on devices in the order that the iterator
   2380  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2381  *     nearest the "root" of the device tree to be returned, first;
   2382  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2383  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2384  *     indicating both that deviter_init() should not respect any
   2385  *     locks on the device tree, and that deviter_next(di) may run
   2386  *     in more than one LWP before the walk has finished.
   2387  *
   2388  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2389  *     once.
   2390  *
   2391  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2392  *
   2393  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2394  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2395  *
   2396  * deviter_first(di, flags): initialize the device iterator `di'
   2397  *     and return the first device_t in the device tree, or NULL
   2398  *     if there are no devices.  The statement
   2399  *
   2400  *         dv = deviter_first(di);
   2401  *
   2402  *     is shorthand for
   2403  *
   2404  *         deviter_init(di);
   2405  *         dv = deviter_next(di);
   2406  *
   2407  * deviter_next(di): return the next device_t in the device tree,
   2408  *     or NULL if there are no more devices.  deviter_next(di)
   2409  *     is undefined if `di' was not initialized with deviter_init() or
   2410  *     deviter_first().
   2411  *
   2412  * deviter_release(di): stops iteration (subsequent calls to
   2413  *     deviter_next() will return NULL), releases any locks and
   2414  *     resources held by the device iterator.
   2415  *
   2416  * Device iteration does not return device_t's in any particular
   2417  * order.  An iterator will never return the same device_t twice.
   2418  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2419  * is called repeatedly on the same `di', it will eventually return
   2420  * NULL.  It is ok to attach/detach devices during device iteration.
   2421  */
   2422 void
   2423 deviter_init(deviter_t *di, deviter_flags_t flags)
   2424 {
   2425 	device_t dv;
   2426 	bool rw;
   2427 
   2428 	mutex_enter(&alldevs_mtx);
   2429 	if ((flags & DEVITER_F_SHUTDOWN) != 0) {
   2430 		flags |= DEVITER_F_RW;
   2431 		alldevs_nwrite++;
   2432 		alldevs_writer = NULL;
   2433 		alldevs_nread = 0;
   2434 	} else {
   2435 		rw = (flags & DEVITER_F_RW) != 0;
   2436 
   2437 		if (alldevs_nwrite > 0 && alldevs_writer == NULL)
   2438 			;
   2439 		else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
   2440 		       (rw && alldevs_nread != 0))
   2441 			cv_wait(&alldevs_cv, &alldevs_mtx);
   2442 
   2443 		if (rw) {
   2444 			if (alldevs_nwrite++ == 0)
   2445 				alldevs_writer = curlwp;
   2446 		} else
   2447 			alldevs_nread++;
   2448 	}
   2449 	mutex_exit(&alldevs_mtx);
   2450 
   2451 	memset(di, 0, sizeof(*di));
   2452 
   2453 	di->di_flags = flags;
   2454 
   2455 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2456 	case DEVITER_F_LEAVES_FIRST:
   2457 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2458 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2459 		break;
   2460 	case DEVITER_F_ROOT_FIRST:
   2461 		TAILQ_FOREACH(dv, &alldevs, dv_list)
   2462 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2463 		break;
   2464 	default:
   2465 		break;
   2466 	}
   2467 
   2468 	deviter_reinit(di);
   2469 }
   2470 
   2471 static void
   2472 deviter_reinit(deviter_t *di)
   2473 {
   2474 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2475 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2476 	else
   2477 		di->di_prev = TAILQ_FIRST(&alldevs);
   2478 }
   2479 
   2480 device_t
   2481 deviter_first(deviter_t *di, deviter_flags_t flags)
   2482 {
   2483 	deviter_init(di, flags);
   2484 	return deviter_next(di);
   2485 }
   2486 
   2487 static device_t
   2488 deviter_next1(deviter_t *di)
   2489 {
   2490 	device_t dv;
   2491 
   2492 	dv = di->di_prev;
   2493 
   2494 	if (dv == NULL)
   2495 		;
   2496 	else if ((di->di_flags & DEVITER_F_RW) != 0)
   2497 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2498 	else
   2499 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2500 
   2501 	return dv;
   2502 }
   2503 
   2504 device_t
   2505 deviter_next(deviter_t *di)
   2506 {
   2507 	device_t dv = NULL;
   2508 
   2509 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2510 	case 0:
   2511 		return deviter_next1(di);
   2512 	case DEVITER_F_LEAVES_FIRST:
   2513 		while (di->di_curdepth >= 0) {
   2514 			if ((dv = deviter_next1(di)) == NULL) {
   2515 				di->di_curdepth--;
   2516 				deviter_reinit(di);
   2517 			} else if (dv->dv_depth == di->di_curdepth)
   2518 				break;
   2519 		}
   2520 		return dv;
   2521 	case DEVITER_F_ROOT_FIRST:
   2522 		while (di->di_curdepth <= di->di_maxdepth) {
   2523 			if ((dv = deviter_next1(di)) == NULL) {
   2524 				di->di_curdepth++;
   2525 				deviter_reinit(di);
   2526 			} else if (dv->dv_depth == di->di_curdepth)
   2527 				break;
   2528 		}
   2529 		return dv;
   2530 	default:
   2531 		return NULL;
   2532 	}
   2533 }
   2534 
   2535 void
   2536 deviter_release(deviter_t *di)
   2537 {
   2538 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2539 
   2540 	mutex_enter(&alldevs_mtx);
   2541 	if (!rw) {
   2542 		--alldevs_nread;
   2543 		cv_signal(&alldevs_cv);
   2544 	} else if (alldevs_nwrite > 0 && alldevs_writer == NULL) {
   2545 		--alldevs_nwrite;	/* shutting down: do not signal */
   2546 	} else {
   2547 		KASSERT(alldevs_nwrite != 0);
   2548 		if (--alldevs_nwrite == 0)
   2549 			alldevs_writer = NULL;
   2550 		cv_signal(&alldevs_cv);
   2551 	}
   2552 	mutex_exit(&alldevs_mtx);
   2553 }
   2554 
   2555 static void
   2556 sysctl_detach_setup(struct sysctllog **clog)
   2557 {
   2558 	const struct sysctlnode *node = NULL;
   2559 
   2560 	sysctl_createv(clog, 0, NULL, &node,
   2561 		CTLFLAG_PERMANENT,
   2562 		CTLTYPE_NODE, "kern", NULL,
   2563 		NULL, 0, NULL, 0,
   2564 		CTL_KERN, CTL_EOL);
   2565 
   2566 	if (node == NULL)
   2567 		return;
   2568 
   2569 	sysctl_createv(clog, 0, &node, NULL,
   2570 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   2571 		CTLTYPE_INT, "detachall",
   2572 		SYSCTL_DESCR("Detach all devices at shutdown"),
   2573 		NULL, 0, &detachall, 0,
   2574 		CTL_CREATE, CTL_EOL);
   2575 }
   2576