Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.187
      1 /* $NetBSD: subr_autoconf.c,v 1.187 2009/11/12 19:10:30 dyoung Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.187 2009/11/12 19:10:30 dyoung Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #endif
     85 
     86 #include <sys/param.h>
     87 #include <sys/device.h>
     88 #include <sys/disklabel.h>
     89 #include <sys/conf.h>
     90 #include <sys/kauth.h>
     91 #include <sys/malloc.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/vnode.h>
    102 #include <sys/mount.h>
    103 #include <sys/namei.h>
    104 #include <sys/unistd.h>
    105 #include <sys/fcntl.h>
    106 #include <sys/lockf.h>
    107 #include <sys/callout.h>
    108 #include <sys/devmon.h>
    109 #include <sys/cpu.h>
    110 #include <sys/sysctl.h>
    111 
    112 #include <sys/disk.h>
    113 
    114 #include <machine/limits.h>
    115 
    116 #if defined(__i386__) && defined(_KERNEL_OPT)
    117 #include "opt_splash.h"
    118 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    119 #include <dev/splash/splash.h>
    120 extern struct splash_progress *splash_progress_state;
    121 #endif
    122 #endif
    123 
    124 /*
    125  * Autoconfiguration subroutines.
    126  */
    127 
    128 /*
    129  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    130  * devices and drivers are found via these tables.
    131  */
    132 extern struct cfdata cfdata[];
    133 extern const short cfroots[];
    134 
    135 /*
    136  * List of all cfdriver structures.  We use this to detect duplicates
    137  * when other cfdrivers are loaded.
    138  */
    139 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    140 extern struct cfdriver * const cfdriver_list_initial[];
    141 
    142 /*
    143  * Initial list of cfattach's.
    144  */
    145 extern const struct cfattachinit cfattachinit[];
    146 
    147 /*
    148  * List of cfdata tables.  We always have one such list -- the one
    149  * built statically when the kernel was configured.
    150  */
    151 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    152 static struct cftable initcftable;
    153 
    154 #define	ROOT ((device_t)NULL)
    155 
    156 struct matchinfo {
    157 	cfsubmatch_t fn;
    158 	struct	device *parent;
    159 	const int *locs;
    160 	void	*aux;
    161 	struct	cfdata *match;
    162 	int	pri;
    163 };
    164 
    165 static char *number(char *, int);
    166 static void mapply(struct matchinfo *, cfdata_t);
    167 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    168 static void config_devdelete(device_t);
    169 static void config_makeroom(int, struct cfdriver *);
    170 static void config_devlink(device_t);
    171 static void config_alldevs_unlock(int);
    172 static int config_alldevs_lock(void);
    173 
    174 static void config_collect_garbage(void);
    175 
    176 static void pmflock_debug(device_t, const char *, int);
    177 
    178 static device_t deviter_next1(deviter_t *);
    179 static void deviter_reinit(deviter_t *);
    180 
    181 struct deferred_config {
    182 	TAILQ_ENTRY(deferred_config) dc_queue;
    183 	device_t dc_dev;
    184 	void (*dc_func)(device_t);
    185 };
    186 
    187 TAILQ_HEAD(deferred_config_head, deferred_config);
    188 
    189 struct deferred_config_head deferred_config_queue =
    190 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    191 struct deferred_config_head interrupt_config_queue =
    192 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    193 int interrupt_config_threads = 8;
    194 
    195 static void config_process_deferred(struct deferred_config_head *, device_t);
    196 
    197 /* Hooks to finalize configuration once all real devices have been found. */
    198 struct finalize_hook {
    199 	TAILQ_ENTRY(finalize_hook) f_list;
    200 	int (*f_func)(device_t);
    201 	device_t f_dev;
    202 };
    203 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    204 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    205 static int config_finalize_done;
    206 
    207 /* list of all devices */
    208 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    209 static kmutex_t alldevs_mtx;
    210 static volatile bool alldevs_garbage = false;
    211 static volatile devgen_t alldevs_gen = 1;
    212 static volatile int alldevs_nread = 0;
    213 static volatile int alldevs_nwrite = 0;
    214 
    215 static int config_pending;		/* semaphore for mountroot */
    216 static kmutex_t config_misc_lock;
    217 static kcondvar_t config_misc_cv;
    218 
    219 static int detachall = 0;
    220 
    221 #define	STREQ(s1, s2)			\
    222 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    223 
    224 static bool config_initialized = false;	/* config_init() has been called. */
    225 
    226 static int config_do_twiddle;
    227 static callout_t config_twiddle_ch;
    228 
    229 static void sysctl_detach_setup(struct sysctllog **);
    230 
    231 /*
    232  * Initialize the autoconfiguration data structures.  Normally this
    233  * is done by configure(), but some platforms need to do this very
    234  * early (to e.g. initialize the console).
    235  */
    236 void
    237 config_init(void)
    238 {
    239 	const struct cfattachinit *cfai;
    240 	int i, j;
    241 
    242 	KASSERT(config_initialized == false);
    243 
    244 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_HIGH);
    245 
    246 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    247 	cv_init(&config_misc_cv, "cfgmisc");
    248 
    249 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    250 
    251 	/* allcfdrivers is statically initialized. */
    252 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
    253 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
    254 			panic("configure: duplicate `%s' drivers",
    255 			    cfdriver_list_initial[i]->cd_name);
    256 	}
    257 
    258 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
    259 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    260 			if (config_cfattach_attach(cfai->cfai_name,
    261 						   cfai->cfai_list[j]) != 0)
    262 				panic("configure: duplicate `%s' attachment "
    263 				    "of `%s' driver",
    264 				    cfai->cfai_list[j]->ca_name,
    265 				    cfai->cfai_name);
    266 		}
    267 	}
    268 
    269 	initcftable.ct_cfdata = cfdata;
    270 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    271 
    272 	config_initialized = true;
    273 }
    274 
    275 void
    276 config_init_mi(void)
    277 {
    278 
    279 	if (!config_initialized)
    280 		config_init();
    281 
    282 	sysctl_detach_setup(NULL);
    283 }
    284 
    285 void
    286 config_deferred(device_t dev)
    287 {
    288 	config_process_deferred(&deferred_config_queue, dev);
    289 	config_process_deferred(&interrupt_config_queue, dev);
    290 }
    291 
    292 static void
    293 config_interrupts_thread(void *cookie)
    294 {
    295 	struct deferred_config *dc;
    296 
    297 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    298 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    299 		(*dc->dc_func)(dc->dc_dev);
    300 		kmem_free(dc, sizeof(*dc));
    301 		config_pending_decr();
    302 	}
    303 	kthread_exit(0);
    304 }
    305 
    306 void
    307 config_create_interruptthreads()
    308 {
    309 	int i;
    310 
    311 	for (i = 0; i < interrupt_config_threads; i++) {
    312 		(void)kthread_create(PRI_NONE, 0, NULL,
    313 		    config_interrupts_thread, NULL, NULL, "config");
    314 	}
    315 }
    316 
    317 /*
    318  * Announce device attach/detach to userland listeners.
    319  */
    320 static void
    321 devmon_report_device(device_t dev, bool isattach)
    322 {
    323 #if NDRVCTL > 0
    324 	prop_dictionary_t ev;
    325 	const char *parent;
    326 	const char *what;
    327 	device_t pdev = device_parent(dev);
    328 
    329 	ev = prop_dictionary_create();
    330 	if (ev == NULL)
    331 		return;
    332 
    333 	what = (isattach ? "device-attach" : "device-detach");
    334 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    335 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
    336 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
    337 		prop_object_release(ev);
    338 		return;
    339 	}
    340 
    341 	devmon_insert(what, ev);
    342 #endif
    343 }
    344 
    345 /*
    346  * Add a cfdriver to the system.
    347  */
    348 int
    349 config_cfdriver_attach(struct cfdriver *cd)
    350 {
    351 	struct cfdriver *lcd;
    352 
    353 	/* Make sure this driver isn't already in the system. */
    354 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    355 		if (STREQ(lcd->cd_name, cd->cd_name))
    356 			return EEXIST;
    357 	}
    358 
    359 	LIST_INIT(&cd->cd_attach);
    360 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    361 
    362 	return 0;
    363 }
    364 
    365 /*
    366  * Remove a cfdriver from the system.
    367  */
    368 int
    369 config_cfdriver_detach(struct cfdriver *cd)
    370 {
    371 	int i, rc = 0, s;
    372 
    373 	s = config_alldevs_lock();
    374 	config_collect_garbage();
    375 	/* Make sure there are no active instances. */
    376 	for (i = 0; i < cd->cd_ndevs; i++) {
    377 		if (cd->cd_devs[i] != NULL) {
    378 			rc = EBUSY;
    379 			break;
    380 		}
    381 	}
    382 	config_alldevs_unlock(s);
    383 
    384 	if (rc != 0)
    385 		return rc;
    386 
    387 	/* ...and no attachments loaded. */
    388 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    389 		return EBUSY;
    390 
    391 	LIST_REMOVE(cd, cd_list);
    392 
    393 	KASSERT(cd->cd_devs == NULL);
    394 
    395 	return 0;
    396 }
    397 
    398 /*
    399  * Look up a cfdriver by name.
    400  */
    401 struct cfdriver *
    402 config_cfdriver_lookup(const char *name)
    403 {
    404 	struct cfdriver *cd;
    405 
    406 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    407 		if (STREQ(cd->cd_name, name))
    408 			return cd;
    409 	}
    410 
    411 	return NULL;
    412 }
    413 
    414 /*
    415  * Add a cfattach to the specified driver.
    416  */
    417 int
    418 config_cfattach_attach(const char *driver, struct cfattach *ca)
    419 {
    420 	struct cfattach *lca;
    421 	struct cfdriver *cd;
    422 
    423 	cd = config_cfdriver_lookup(driver);
    424 	if (cd == NULL)
    425 		return ESRCH;
    426 
    427 	/* Make sure this attachment isn't already on this driver. */
    428 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    429 		if (STREQ(lca->ca_name, ca->ca_name))
    430 			return EEXIST;
    431 	}
    432 
    433 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    434 
    435 	return 0;
    436 }
    437 
    438 /*
    439  * Remove a cfattach from the specified driver.
    440  */
    441 int
    442 config_cfattach_detach(const char *driver, struct cfattach *ca)
    443 {
    444 	struct cfdriver *cd;
    445 	device_t dev;
    446 	int i, rc = 0, s;
    447 
    448 	cd = config_cfdriver_lookup(driver);
    449 	if (cd == NULL)
    450 		return ESRCH;
    451 
    452 	s = config_alldevs_lock();
    453 	config_collect_garbage();
    454 	/* Make sure there are no active instances. */
    455 	for (i = 0; i < cd->cd_ndevs; i++) {
    456 		if ((dev = cd->cd_devs[i]) == NULL)
    457 			continue;
    458 		if (dev->dv_cfattach == ca) {
    459 			rc = EBUSY;
    460 			break;
    461 		}
    462 	}
    463 	config_alldevs_unlock(s);
    464 
    465 	if (rc != 0)
    466 		return rc;
    467 
    468 	LIST_REMOVE(ca, ca_list);
    469 
    470 	return 0;
    471 }
    472 
    473 /*
    474  * Look up a cfattach by name.
    475  */
    476 static struct cfattach *
    477 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    478 {
    479 	struct cfattach *ca;
    480 
    481 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    482 		if (STREQ(ca->ca_name, atname))
    483 			return ca;
    484 	}
    485 
    486 	return NULL;
    487 }
    488 
    489 /*
    490  * Look up a cfattach by driver/attachment name.
    491  */
    492 struct cfattach *
    493 config_cfattach_lookup(const char *name, const char *atname)
    494 {
    495 	struct cfdriver *cd;
    496 
    497 	cd = config_cfdriver_lookup(name);
    498 	if (cd == NULL)
    499 		return NULL;
    500 
    501 	return config_cfattach_lookup_cd(cd, atname);
    502 }
    503 
    504 /*
    505  * Apply the matching function and choose the best.  This is used
    506  * a few times and we want to keep the code small.
    507  */
    508 static void
    509 mapply(struct matchinfo *m, cfdata_t cf)
    510 {
    511 	int pri;
    512 
    513 	if (m->fn != NULL) {
    514 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    515 	} else {
    516 		pri = config_match(m->parent, cf, m->aux);
    517 	}
    518 	if (pri > m->pri) {
    519 		m->match = cf;
    520 		m->pri = pri;
    521 	}
    522 }
    523 
    524 int
    525 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    526 {
    527 	const struct cfiattrdata *ci;
    528 	const struct cflocdesc *cl;
    529 	int nlocs, i;
    530 
    531 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
    532 	KASSERT(ci);
    533 	nlocs = ci->ci_loclen;
    534 	KASSERT(!nlocs || locs);
    535 	for (i = 0; i < nlocs; i++) {
    536 		cl = &ci->ci_locdesc[i];
    537 		/* !cld_defaultstr means no default value */
    538 		if ((!(cl->cld_defaultstr)
    539 		     || (cf->cf_loc[i] != cl->cld_default))
    540 		    && cf->cf_loc[i] != locs[i])
    541 			return 0;
    542 	}
    543 
    544 	return config_match(parent, cf, aux);
    545 }
    546 
    547 /*
    548  * Helper function: check whether the driver supports the interface attribute
    549  * and return its descriptor structure.
    550  */
    551 static const struct cfiattrdata *
    552 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    553 {
    554 	const struct cfiattrdata * const *cpp;
    555 
    556 	if (cd->cd_attrs == NULL)
    557 		return 0;
    558 
    559 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    560 		if (STREQ((*cpp)->ci_name, ia)) {
    561 			/* Match. */
    562 			return *cpp;
    563 		}
    564 	}
    565 	return 0;
    566 }
    567 
    568 /*
    569  * Lookup an interface attribute description by name.
    570  * If the driver is given, consider only its supported attributes.
    571  */
    572 const struct cfiattrdata *
    573 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    574 {
    575 	const struct cfdriver *d;
    576 	const struct cfiattrdata *ia;
    577 
    578 	if (cd)
    579 		return cfdriver_get_iattr(cd, name);
    580 
    581 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    582 		ia = cfdriver_get_iattr(d, name);
    583 		if (ia)
    584 			return ia;
    585 	}
    586 	return 0;
    587 }
    588 
    589 /*
    590  * Determine if `parent' is a potential parent for a device spec based
    591  * on `cfp'.
    592  */
    593 static int
    594 cfparent_match(const device_t parent, const struct cfparent *cfp)
    595 {
    596 	struct cfdriver *pcd;
    597 
    598 	/* We don't match root nodes here. */
    599 	if (cfp == NULL)
    600 		return 0;
    601 
    602 	pcd = parent->dv_cfdriver;
    603 	KASSERT(pcd != NULL);
    604 
    605 	/*
    606 	 * First, ensure this parent has the correct interface
    607 	 * attribute.
    608 	 */
    609 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    610 		return 0;
    611 
    612 	/*
    613 	 * If no specific parent device instance was specified (i.e.
    614 	 * we're attaching to the attribute only), we're done!
    615 	 */
    616 	if (cfp->cfp_parent == NULL)
    617 		return 1;
    618 
    619 	/*
    620 	 * Check the parent device's name.
    621 	 */
    622 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    623 		return 0;	/* not the same parent */
    624 
    625 	/*
    626 	 * Make sure the unit number matches.
    627 	 */
    628 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    629 	    cfp->cfp_unit == parent->dv_unit)
    630 		return 1;
    631 
    632 	/* Unit numbers don't match. */
    633 	return 0;
    634 }
    635 
    636 /*
    637  * Helper for config_cfdata_attach(): check all devices whether it could be
    638  * parent any attachment in the config data table passed, and rescan.
    639  */
    640 static void
    641 rescan_with_cfdata(const struct cfdata *cf)
    642 {
    643 	device_t d;
    644 	const struct cfdata *cf1;
    645 	deviter_t di;
    646 
    647 
    648 	/*
    649 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    650 	 * the outer loop.
    651 	 */
    652 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    653 
    654 		if (!(d->dv_cfattach->ca_rescan))
    655 			continue;
    656 
    657 		for (cf1 = cf; cf1->cf_name; cf1++) {
    658 
    659 			if (!cfparent_match(d, cf1->cf_pspec))
    660 				continue;
    661 
    662 			(*d->dv_cfattach->ca_rescan)(d,
    663 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
    664 		}
    665 	}
    666 	deviter_release(&di);
    667 }
    668 
    669 /*
    670  * Attach a supplemental config data table and rescan potential
    671  * parent devices if required.
    672  */
    673 int
    674 config_cfdata_attach(cfdata_t cf, int scannow)
    675 {
    676 	struct cftable *ct;
    677 
    678 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    679 	ct->ct_cfdata = cf;
    680 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    681 
    682 	if (scannow)
    683 		rescan_with_cfdata(cf);
    684 
    685 	return 0;
    686 }
    687 
    688 /*
    689  * Helper for config_cfdata_detach: check whether a device is
    690  * found through any attachment in the config data table.
    691  */
    692 static int
    693 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
    694 {
    695 	const struct cfdata *cf1;
    696 
    697 	for (cf1 = cf; cf1->cf_name; cf1++)
    698 		if (d->dv_cfdata == cf1)
    699 			return 1;
    700 
    701 	return 0;
    702 }
    703 
    704 /*
    705  * Detach a supplemental config data table. Detach all devices found
    706  * through that table (and thus keeping references to it) before.
    707  */
    708 int
    709 config_cfdata_detach(cfdata_t cf)
    710 {
    711 	device_t d;
    712 	int error = 0;
    713 	struct cftable *ct;
    714 	deviter_t di;
    715 
    716 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    717 	     d = deviter_next(&di)) {
    718 		if (!dev_in_cfdata(d, cf))
    719 			continue;
    720 		if ((error = config_detach(d, 0)) != 0)
    721 			break;
    722 	}
    723 	deviter_release(&di);
    724 	if (error) {
    725 		aprint_error_dev(d, "unable to detach instance\n");
    726 		return error;
    727 	}
    728 
    729 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    730 		if (ct->ct_cfdata == cf) {
    731 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    732 			kmem_free(ct, sizeof(*ct));
    733 			return 0;
    734 		}
    735 	}
    736 
    737 	/* not found -- shouldn't happen */
    738 	return EINVAL;
    739 }
    740 
    741 /*
    742  * Invoke the "match" routine for a cfdata entry on behalf of
    743  * an external caller, usually a "submatch" routine.
    744  */
    745 int
    746 config_match(device_t parent, cfdata_t cf, void *aux)
    747 {
    748 	struct cfattach *ca;
    749 
    750 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    751 	if (ca == NULL) {
    752 		/* No attachment for this entry, oh well. */
    753 		return 0;
    754 	}
    755 
    756 	return (*ca->ca_match)(parent, cf, aux);
    757 }
    758 
    759 /*
    760  * Iterate over all potential children of some device, calling the given
    761  * function (default being the child's match function) for each one.
    762  * Nonzero returns are matches; the highest value returned is considered
    763  * the best match.  Return the `found child' if we got a match, or NULL
    764  * otherwise.  The `aux' pointer is simply passed on through.
    765  *
    766  * Note that this function is designed so that it can be used to apply
    767  * an arbitrary function to all potential children (its return value
    768  * can be ignored).
    769  */
    770 cfdata_t
    771 config_search_loc(cfsubmatch_t fn, device_t parent,
    772 		  const char *ifattr, const int *locs, void *aux)
    773 {
    774 	struct cftable *ct;
    775 	cfdata_t cf;
    776 	struct matchinfo m;
    777 
    778 	KASSERT(config_initialized);
    779 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
    780 
    781 	m.fn = fn;
    782 	m.parent = parent;
    783 	m.locs = locs;
    784 	m.aux = aux;
    785 	m.match = NULL;
    786 	m.pri = 0;
    787 
    788 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    789 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
    790 
    791 			/* We don't match root nodes here. */
    792 			if (!cf->cf_pspec)
    793 				continue;
    794 
    795 			/*
    796 			 * Skip cf if no longer eligible, otherwise scan
    797 			 * through parents for one matching `parent', and
    798 			 * try match function.
    799 			 */
    800 			if (cf->cf_fstate == FSTATE_FOUND)
    801 				continue;
    802 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
    803 			    cf->cf_fstate == FSTATE_DSTAR)
    804 				continue;
    805 
    806 			/*
    807 			 * If an interface attribute was specified,
    808 			 * consider only children which attach to
    809 			 * that attribute.
    810 			 */
    811 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
    812 				continue;
    813 
    814 			if (cfparent_match(parent, cf->cf_pspec))
    815 				mapply(&m, cf);
    816 		}
    817 	}
    818 	return m.match;
    819 }
    820 
    821 cfdata_t
    822 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
    823     void *aux)
    824 {
    825 
    826 	return config_search_loc(fn, parent, ifattr, NULL, aux);
    827 }
    828 
    829 /*
    830  * Find the given root device.
    831  * This is much like config_search, but there is no parent.
    832  * Don't bother with multiple cfdata tables; the root node
    833  * must always be in the initial table.
    834  */
    835 cfdata_t
    836 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
    837 {
    838 	cfdata_t cf;
    839 	const short *p;
    840 	struct matchinfo m;
    841 
    842 	m.fn = fn;
    843 	m.parent = ROOT;
    844 	m.aux = aux;
    845 	m.match = NULL;
    846 	m.pri = 0;
    847 	m.locs = 0;
    848 	/*
    849 	 * Look at root entries for matching name.  We do not bother
    850 	 * with found-state here since only one root should ever be
    851 	 * searched (and it must be done first).
    852 	 */
    853 	for (p = cfroots; *p >= 0; p++) {
    854 		cf = &cfdata[*p];
    855 		if (strcmp(cf->cf_name, rootname) == 0)
    856 			mapply(&m, cf);
    857 	}
    858 	return m.match;
    859 }
    860 
    861 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
    862 
    863 /*
    864  * The given `aux' argument describes a device that has been found
    865  * on the given parent, but not necessarily configured.  Locate the
    866  * configuration data for that device (using the submatch function
    867  * provided, or using candidates' cd_match configuration driver
    868  * functions) and attach it, and return true.  If the device was
    869  * not configured, call the given `print' function and return 0.
    870  */
    871 device_t
    872 config_found_sm_loc(device_t parent,
    873 		const char *ifattr, const int *locs, void *aux,
    874 		cfprint_t print, cfsubmatch_t submatch)
    875 {
    876 	cfdata_t cf;
    877 
    878 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    879 	if (splash_progress_state)
    880 		splash_progress_update(splash_progress_state);
    881 #endif
    882 
    883 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
    884 		return(config_attach_loc(parent, cf, locs, aux, print));
    885 	if (print) {
    886 		if (config_do_twiddle && cold)
    887 			twiddle();
    888 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
    889 	}
    890 
    891 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    892 	if (splash_progress_state)
    893 		splash_progress_update(splash_progress_state);
    894 #endif
    895 
    896 	return NULL;
    897 }
    898 
    899 device_t
    900 config_found_ia(device_t parent, const char *ifattr, void *aux,
    901     cfprint_t print)
    902 {
    903 
    904 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
    905 }
    906 
    907 device_t
    908 config_found(device_t parent, void *aux, cfprint_t print)
    909 {
    910 
    911 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
    912 }
    913 
    914 /*
    915  * As above, but for root devices.
    916  */
    917 device_t
    918 config_rootfound(const char *rootname, void *aux)
    919 {
    920 	cfdata_t cf;
    921 
    922 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
    923 		return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
    924 	aprint_error("root device %s not configured\n", rootname);
    925 	return NULL;
    926 }
    927 
    928 /* just like sprintf(buf, "%d") except that it works from the end */
    929 static char *
    930 number(char *ep, int n)
    931 {
    932 
    933 	*--ep = 0;
    934 	while (n >= 10) {
    935 		*--ep = (n % 10) + '0';
    936 		n /= 10;
    937 	}
    938 	*--ep = n + '0';
    939 	return ep;
    940 }
    941 
    942 /*
    943  * Expand the size of the cd_devs array if necessary.
    944  *
    945  * The caller must hold alldevs_mtx. config_makeroom() may release and
    946  * re-acquire alldevs_mtx, so callers should re-check conditions such
    947  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
    948  * returns.
    949  */
    950 static void
    951 config_makeroom(int n, struct cfdriver *cd)
    952 {
    953 	int old, new;
    954 	device_t *nsp;
    955 
    956 	alldevs_nwrite++;
    957 	mutex_exit(&alldevs_mtx);
    958 
    959 	if (n < cd->cd_ndevs)
    960 		goto out;
    961 
    962 	/*
    963 	 * Need to expand the array.
    964 	 */
    965 	old = cd->cd_ndevs;
    966 	if (old == 0)
    967 		new = 4;
    968 	else
    969 		new = old * 2;
    970 	while (new <= n)
    971 		new *= 2;
    972 	nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP);
    973 	if (nsp == NULL)
    974 		panic("config_attach: %sing dev array",
    975 		    old != 0 ? "expand" : "creat");
    976 	memset(nsp + old, 0, sizeof(device_t [new - old]));
    977 	if (old != 0) {
    978 		memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
    979 		kmem_free(cd->cd_devs, sizeof(device_t [old]));
    980 	}
    981 	cd->cd_ndevs = new;
    982 	cd->cd_devs = nsp;
    983 out:
    984 	mutex_enter(&alldevs_mtx);
    985 	alldevs_nwrite--;
    986 }
    987 
    988 static void
    989 config_devlink(device_t dev)
    990 {
    991 	struct cfdriver *cd = dev->dv_cfdriver;
    992 	int s;
    993 
    994 	/* put this device in the devices array */
    995 	s = config_alldevs_lock();
    996 	config_makeroom(dev->dv_unit, cd);
    997 	if (cd->cd_devs[dev->dv_unit])
    998 		panic("config_attach: duplicate %s", device_xname(dev));
    999 	cd->cd_devs[dev->dv_unit] = dev;
   1000 
   1001 	/* It is safe to add a device to the tail of the list while
   1002 	 * readers and writers are in the list.
   1003 	 */
   1004 	dev->dv_add_gen = alldevs_gen;
   1005 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);	/* link up */
   1006 	config_alldevs_unlock(s);
   1007 }
   1008 
   1009 /*
   1010  * Caller must hold alldevs_mtx. config_devdelete() may release and
   1011  * re-acquire alldevs_mtx, so callers should re-check conditions such as
   1012  * alldevs_nwrite == 0 && alldevs_nread == 0 after config_devdelete()
   1013  * returns.
   1014  */
   1015 static void
   1016 config_devdelete(device_t dev)
   1017 {
   1018 	device_lock_t dvl = device_getlock(dev);
   1019 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
   1020 	struct cfdriver *cd = dev->dv_cfdriver;
   1021 	device_t *devs = NULL;
   1022 	int i, ndevs = 0;
   1023 
   1024 	KASSERT(mutex_owned(&alldevs_mtx));
   1025 
   1026 	/* Unlink from device list. */
   1027 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1028 
   1029 	/* Remove from cfdriver's array. */
   1030 	cd->cd_devs[dev->dv_unit] = NULL;
   1031 
   1032 	/*
   1033 	 * If the device now has no units in use, deallocate its softc array.
   1034 	 */
   1035 	for (i = 0; i < cd->cd_ndevs; i++) {
   1036 		if (cd->cd_devs[i] != NULL)
   1037 			break;
   1038 	}
   1039 	/* nothing found.  unlink, now.  deallocate below. */
   1040 	if (i == cd->cd_ndevs) {
   1041 		ndevs = cd->cd_ndevs;
   1042 		devs = cd->cd_devs;
   1043 		cd->cd_devs = NULL;
   1044 		cd->cd_ndevs = 0;
   1045 	}
   1046 
   1047 	mutex_exit(&alldevs_mtx);
   1048 
   1049 	KASSERT(!mutex_owned(&alldevs_mtx));
   1050 
   1051 	if (devs != NULL)
   1052 		kmem_free(devs, sizeof(device_t [ndevs]));
   1053 
   1054 	cv_destroy(&dvl->dvl_cv);
   1055 	mutex_destroy(&dvl->dvl_mtx);
   1056 
   1057 	KASSERT(dev->dv_properties != NULL);
   1058 	prop_object_release(dev->dv_properties);
   1059 
   1060 	if (dev->dv_activity_handlers)
   1061 		panic("%s with registered handlers", __func__);
   1062 
   1063 	if (dev->dv_locators) {
   1064 		size_t amount = *--dev->dv_locators;
   1065 		kmem_free(dev->dv_locators, amount);
   1066 	}
   1067 
   1068 	if (dev->dv_cfattach->ca_devsize > 0)
   1069 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1070 	if (priv)
   1071 		kmem_free(dev, sizeof(*dev));
   1072 
   1073 	KASSERT(!mutex_owned(&alldevs_mtx));
   1074 
   1075 	mutex_enter(&alldevs_mtx);
   1076 }
   1077 
   1078 static device_t
   1079 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1080 {
   1081 	struct cfdriver *cd;
   1082 	struct cfattach *ca;
   1083 	size_t lname, lunit;
   1084 	const char *xunit;
   1085 	int myunit, s;
   1086 	char num[10];
   1087 	device_t dev;
   1088 	void *dev_private;
   1089 	const struct cfiattrdata *ia;
   1090 	device_lock_t dvl;
   1091 
   1092 	cd = config_cfdriver_lookup(cf->cf_name);
   1093 	if (cd == NULL)
   1094 		return NULL;
   1095 
   1096 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1097 	if (ca == NULL)
   1098 		return NULL;
   1099 
   1100 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
   1101 	    ca->ca_devsize < sizeof(struct device))
   1102 		panic("config_devalloc: %s", cf->cf_atname);
   1103 
   1104 #ifndef __BROKEN_CONFIG_UNIT_USAGE
   1105 	s = config_alldevs_lock();
   1106 	config_collect_garbage();
   1107 	if (cf->cf_fstate == FSTATE_STAR) {
   1108 		for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
   1109 			if (cd->cd_devs[myunit] == NULL)
   1110 				break;
   1111 		/*
   1112 		 * myunit is now the unit of the first NULL device pointer,
   1113 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1114 		 */
   1115 	} else {
   1116 		myunit = cf->cf_unit;
   1117 		if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
   1118 			myunit = -1;
   1119 	}
   1120 	config_alldevs_unlock(s);
   1121 	if (myunit == -1)
   1122 		return NULL;
   1123 #else
   1124 	myunit = cf->cf_unit;
   1125 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
   1126 
   1127 	/* compute length of name and decimal expansion of unit number */
   1128 	lname = strlen(cd->cd_name);
   1129 	xunit = number(&num[sizeof(num)], myunit);
   1130 	lunit = &num[sizeof(num)] - xunit;
   1131 	if (lname + lunit > sizeof(dev->dv_xname))
   1132 		panic("config_devalloc: device name too long");
   1133 
   1134 	/* get memory for all device vars */
   1135 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
   1136 	if (ca->ca_devsize > 0) {
   1137 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1138 		if (dev_private == NULL)
   1139 			panic("config_devalloc: memory allocation for device softc failed");
   1140 	} else {
   1141 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1142 		dev_private = NULL;
   1143 	}
   1144 
   1145 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1146 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1147 	} else {
   1148 		dev = dev_private;
   1149 	}
   1150 	if (dev == NULL)
   1151 		panic("config_devalloc: memory allocation for device_t failed");
   1152 
   1153 	dvl = device_getlock(dev);
   1154 
   1155 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1156 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1157 
   1158 	dev->dv_class = cd->cd_class;
   1159 	dev->dv_cfdata = cf;
   1160 	dev->dv_cfdriver = cd;
   1161 	dev->dv_cfattach = ca;
   1162 	dev->dv_unit = myunit;
   1163 	dev->dv_activity_count = 0;
   1164 	dev->dv_activity_handlers = NULL;
   1165 	dev->dv_private = dev_private;
   1166 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1167 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1168 	dev->dv_parent = parent;
   1169 	if (parent != NULL)
   1170 		dev->dv_depth = parent->dv_depth + 1;
   1171 	else
   1172 		dev->dv_depth = 0;
   1173 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
   1174 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
   1175 	if (locs) {
   1176 		KASSERT(parent); /* no locators at root */
   1177 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
   1178 				    parent->dv_cfdriver);
   1179 		dev->dv_locators =
   1180 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
   1181 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
   1182 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
   1183 	}
   1184 	dev->dv_properties = prop_dictionary_create();
   1185 	KASSERT(dev->dv_properties != NULL);
   1186 
   1187 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
   1188 	    "device-driver", dev->dv_cfdriver->cd_name);
   1189 	prop_dictionary_set_uint16(dev->dv_properties,
   1190 	    "device-unit", dev->dv_unit);
   1191 
   1192 	return dev;
   1193 }
   1194 
   1195 /*
   1196  * Attach a found device.
   1197  */
   1198 device_t
   1199 config_attach_loc(device_t parent, cfdata_t cf,
   1200 	const int *locs, void *aux, cfprint_t print)
   1201 {
   1202 	device_t dev;
   1203 	struct cftable *ct;
   1204 	const char *drvname;
   1205 
   1206 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1207 	if (splash_progress_state)
   1208 		splash_progress_update(splash_progress_state);
   1209 #endif
   1210 
   1211 	dev = config_devalloc(parent, cf, locs);
   1212 	if (!dev)
   1213 		panic("config_attach: allocation of device softc failed");
   1214 
   1215 	/* XXX redundant - see below? */
   1216 	if (cf->cf_fstate != FSTATE_STAR) {
   1217 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1218 		cf->cf_fstate = FSTATE_FOUND;
   1219 	}
   1220 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1221 	  else
   1222 		cf->cf_unit++;
   1223 #endif
   1224 
   1225 	config_devlink(dev);
   1226 
   1227 	if (config_do_twiddle && cold)
   1228 		twiddle();
   1229 	else
   1230 		aprint_naive("Found ");
   1231 	/*
   1232 	 * We want the next two printfs for normal, verbose, and quiet,
   1233 	 * but not silent (in which case, we're twiddling, instead).
   1234 	 */
   1235 	if (parent == ROOT) {
   1236 		aprint_naive("%s (root)", device_xname(dev));
   1237 		aprint_normal("%s (root)", device_xname(dev));
   1238 	} else {
   1239 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
   1240 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
   1241 		if (print)
   1242 			(void) (*print)(aux, NULL);
   1243 	}
   1244 
   1245 	/*
   1246 	 * Before attaching, clobber any unfound devices that are
   1247 	 * otherwise identical.
   1248 	 * XXX code above is redundant?
   1249 	 */
   1250 	drvname = dev->dv_cfdriver->cd_name;
   1251 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1252 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1253 			if (STREQ(cf->cf_name, drvname) &&
   1254 			    cf->cf_unit == dev->dv_unit) {
   1255 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1256 					cf->cf_fstate = FSTATE_FOUND;
   1257 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1258 				/*
   1259 				 * Bump the unit number on all starred cfdata
   1260 				 * entries for this device.
   1261 				 */
   1262 				if (cf->cf_fstate == FSTATE_STAR)
   1263 					cf->cf_unit++;
   1264 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1265 			}
   1266 		}
   1267 	}
   1268 #ifdef __HAVE_DEVICE_REGISTER
   1269 	device_register(dev, aux);
   1270 #endif
   1271 
   1272 	/* Let userland know */
   1273 	devmon_report_device(dev, true);
   1274 
   1275 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1276 	if (splash_progress_state)
   1277 		splash_progress_update(splash_progress_state);
   1278 #endif
   1279 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1280 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1281 	if (splash_progress_state)
   1282 		splash_progress_update(splash_progress_state);
   1283 #endif
   1284 
   1285 	if (!device_pmf_is_registered(dev))
   1286 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
   1287 
   1288 	config_process_deferred(&deferred_config_queue, dev);
   1289 	return dev;
   1290 }
   1291 
   1292 device_t
   1293 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1294 {
   1295 
   1296 	return config_attach_loc(parent, cf, NULL, aux, print);
   1297 }
   1298 
   1299 /*
   1300  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1301  * way are silently inserted into the device tree, and their children
   1302  * attached.
   1303  *
   1304  * Note that because pseudo-devices are attached silently, any information
   1305  * the attach routine wishes to print should be prefixed with the device
   1306  * name by the attach routine.
   1307  */
   1308 device_t
   1309 config_attach_pseudo(cfdata_t cf)
   1310 {
   1311 	device_t dev;
   1312 
   1313 	dev = config_devalloc(ROOT, cf, NULL);
   1314 	if (!dev)
   1315 		return NULL;
   1316 
   1317 	/* XXX mark busy in cfdata */
   1318 
   1319 	if (cf->cf_fstate != FSTATE_STAR) {
   1320 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1321 		cf->cf_fstate = FSTATE_FOUND;
   1322 	}
   1323 
   1324 	config_devlink(dev);
   1325 
   1326 #if 0	/* XXXJRT not yet */
   1327 #ifdef __HAVE_DEVICE_REGISTER
   1328 	device_register(dev, NULL);	/* like a root node */
   1329 #endif
   1330 #endif
   1331 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1332 	config_process_deferred(&deferred_config_queue, dev);
   1333 	return dev;
   1334 }
   1335 
   1336 /*
   1337  * Caller must hold alldevs_mtx. config_collect_garbage() may
   1338  * release and re-acquire alldevs_mtx, so callers should re-check
   1339  * conditions such as alldevs_nwrite == 0 && alldevs_nread == 0 after
   1340  * config_collect_garbage() returns.
   1341  */
   1342 static void
   1343 config_collect_garbage(void)
   1344 {
   1345 	device_t dv;
   1346 
   1347 	KASSERT(mutex_owned(&alldevs_mtx));
   1348 
   1349 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1350 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1351 			if (dv->dv_del_gen != 0)
   1352 				break;
   1353 		}
   1354 		if (dv == NULL) {
   1355 			alldevs_garbage = false;
   1356 			break;
   1357 		}
   1358 		config_devdelete(dv);
   1359 	}
   1360 	KASSERT(mutex_owned(&alldevs_mtx));
   1361 }
   1362 
   1363 /*
   1364  * Detach a device.  Optionally forced (e.g. because of hardware
   1365  * removal) and quiet.  Returns zero if successful, non-zero
   1366  * (an error code) otherwise.
   1367  *
   1368  * Note that this code wants to be run from a process context, so
   1369  * that the detach can sleep to allow processes which have a device
   1370  * open to run and unwind their stacks.
   1371  */
   1372 int
   1373 config_detach(device_t dev, int flags)
   1374 {
   1375 	struct cftable *ct;
   1376 	cfdata_t cf;
   1377 	const struct cfattach *ca;
   1378 	struct cfdriver *cd;
   1379 #ifdef DIAGNOSTIC
   1380 	device_t d;
   1381 #endif
   1382 	int rv = 0, s;
   1383 
   1384 #ifdef DIAGNOSTIC
   1385 	cf = dev->dv_cfdata;
   1386 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
   1387 	    cf->cf_fstate != FSTATE_STAR)
   1388 		panic("config_detach: %s: bad device fstate %d",
   1389 		    device_xname(dev), cf ? cf->cf_fstate : -1);
   1390 #endif
   1391 	cd = dev->dv_cfdriver;
   1392 	KASSERT(cd != NULL);
   1393 
   1394 	ca = dev->dv_cfattach;
   1395 	KASSERT(ca != NULL);
   1396 
   1397 	s = config_alldevs_lock();
   1398 	if (dev->dv_del_gen != 0) {
   1399 		config_alldevs_unlock(s);
   1400 #ifdef DIAGNOSTIC
   1401 		printf("%s: %s is already detached\n", __func__,
   1402 		    device_xname(dev));
   1403 #endif /* DIAGNOSTIC */
   1404 		return ENOENT;
   1405 	}
   1406 	alldevs_nwrite++;
   1407 	config_alldevs_unlock(s);
   1408 
   1409 	if (!detachall &&
   1410 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1411 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1412 		rv = EOPNOTSUPP;
   1413 	} else if (ca->ca_detach != NULL) {
   1414 		rv = (*ca->ca_detach)(dev, flags);
   1415 	} else
   1416 		rv = EOPNOTSUPP;
   1417 
   1418 	/*
   1419 	 * If it was not possible to detach the device, then we either
   1420 	 * panic() (for the forced but failed case), or return an error.
   1421 	 *
   1422 	 * If it was possible to detach the device, ensure that the
   1423 	 * device is deactivated.
   1424 	 */
   1425 	if (rv == 0)
   1426 		dev->dv_flags &= ~DVF_ACTIVE;
   1427 	else if ((flags & DETACH_FORCE) == 0)
   1428 		goto out;
   1429 	else {
   1430 		panic("config_detach: forced detach of %s failed (%d)",
   1431 		    device_xname(dev), rv);
   1432 	}
   1433 
   1434 	/*
   1435 	 * The device has now been successfully detached.
   1436 	 */
   1437 
   1438 	/* Let userland know */
   1439 	devmon_report_device(dev, false);
   1440 
   1441 #ifdef DIAGNOSTIC
   1442 	/*
   1443 	 * Sanity: If you're successfully detached, you should have no
   1444 	 * children.  (Note that because children must be attached
   1445 	 * after parents, we only need to search the latter part of
   1446 	 * the list.)
   1447 	 */
   1448 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1449 	    d = TAILQ_NEXT(d, dv_list)) {
   1450 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1451 			printf("config_detach: detached device %s"
   1452 			    " has children %s\n", device_xname(dev), device_xname(d));
   1453 			panic("config_detach");
   1454 		}
   1455 	}
   1456 #endif
   1457 
   1458 	/* notify the parent that the child is gone */
   1459 	if (dev->dv_parent) {
   1460 		device_t p = dev->dv_parent;
   1461 		if (p->dv_cfattach->ca_childdetached)
   1462 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1463 	}
   1464 
   1465 	/*
   1466 	 * Mark cfdata to show that the unit can be reused, if possible.
   1467 	 */
   1468 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1469 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1470 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1471 				if (cf->cf_fstate == FSTATE_FOUND &&
   1472 				    cf->cf_unit == dev->dv_unit)
   1473 					cf->cf_fstate = FSTATE_NOTFOUND;
   1474 #ifdef __BROKEN_CONFIG_UNIT_USAGE
   1475 				/*
   1476 				 * Note that we can only re-use a starred
   1477 				 * unit number if the unit being detached
   1478 				 * had the last assigned unit number.
   1479 				 */
   1480 				if (cf->cf_fstate == FSTATE_STAR &&
   1481 				    cf->cf_unit == dev->dv_unit + 1)
   1482 					cf->cf_unit--;
   1483 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
   1484 			}
   1485 		}
   1486 	}
   1487 
   1488 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1489 		aprint_normal_dev(dev, "detached\n");
   1490 
   1491 out:
   1492 	s = config_alldevs_lock();
   1493 	KASSERT(alldevs_nwrite != 0);
   1494 	--alldevs_nwrite;
   1495 	if (rv != 0)
   1496 		;
   1497 	else if (dev->dv_del_gen != 0)
   1498 		;
   1499 	else {
   1500 		dev->dv_del_gen = alldevs_gen;
   1501 		alldevs_garbage = true;
   1502 	}
   1503 	config_collect_garbage();
   1504 	config_alldevs_unlock(s);
   1505 
   1506 	return rv;
   1507 }
   1508 
   1509 int
   1510 config_detach_children(device_t parent, int flags)
   1511 {
   1512 	device_t dv;
   1513 	deviter_t di;
   1514 	int error = 0;
   1515 
   1516 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1517 	     dv = deviter_next(&di)) {
   1518 		if (device_parent(dv) != parent)
   1519 			continue;
   1520 		if ((error = config_detach(dv, flags)) != 0)
   1521 			break;
   1522 	}
   1523 	deviter_release(&di);
   1524 	return error;
   1525 }
   1526 
   1527 device_t
   1528 shutdown_first(struct shutdown_state *s)
   1529 {
   1530 	if (!s->initialized) {
   1531 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1532 		s->initialized = true;
   1533 	}
   1534 	return shutdown_next(s);
   1535 }
   1536 
   1537 device_t
   1538 shutdown_next(struct shutdown_state *s)
   1539 {
   1540 	device_t dv;
   1541 
   1542 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1543 		;
   1544 
   1545 	if (dv == NULL)
   1546 		s->initialized = false;
   1547 
   1548 	return dv;
   1549 }
   1550 
   1551 bool
   1552 config_detach_all(int how)
   1553 {
   1554 	static struct shutdown_state s;
   1555 	device_t curdev;
   1556 	bool progress = false;
   1557 
   1558 	if ((how & RB_NOSYNC) != 0)
   1559 		return false;
   1560 
   1561 	for (curdev = shutdown_first(&s); curdev != NULL;
   1562 	     curdev = shutdown_next(&s)) {
   1563 		aprint_debug(" detaching %s, ", device_xname(curdev));
   1564 		if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
   1565 			progress = true;
   1566 			aprint_debug("success.");
   1567 		} else
   1568 			aprint_debug("failed.");
   1569 	}
   1570 	return progress;
   1571 }
   1572 
   1573 static bool
   1574 device_is_ancestor_of(device_t ancestor, device_t descendant)
   1575 {
   1576 	device_t dv;
   1577 
   1578 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   1579 		if (device_parent(dv) == ancestor)
   1580 			return true;
   1581 	}
   1582 	return false;
   1583 }
   1584 
   1585 int
   1586 config_deactivate(device_t dev)
   1587 {
   1588 	deviter_t di;
   1589 	const struct cfattach *ca;
   1590 	device_t descendant;
   1591 	int s, rv = 0, oflags;
   1592 
   1593 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   1594 	     descendant != NULL;
   1595 	     descendant = deviter_next(&di)) {
   1596 		if (dev != descendant &&
   1597 		    !device_is_ancestor_of(dev, descendant))
   1598 			continue;
   1599 
   1600 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   1601 			continue;
   1602 
   1603 		ca = descendant->dv_cfattach;
   1604 		oflags = descendant->dv_flags;
   1605 
   1606 		descendant->dv_flags &= ~DVF_ACTIVE;
   1607 		if (ca->ca_activate == NULL)
   1608 			continue;
   1609 		s = splhigh();
   1610 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   1611 		splx(s);
   1612 		if (rv != 0)
   1613 			descendant->dv_flags = oflags;
   1614 	}
   1615 	deviter_release(&di);
   1616 	return rv;
   1617 }
   1618 
   1619 /*
   1620  * Defer the configuration of the specified device until all
   1621  * of its parent's devices have been attached.
   1622  */
   1623 void
   1624 config_defer(device_t dev, void (*func)(device_t))
   1625 {
   1626 	struct deferred_config *dc;
   1627 
   1628 	if (dev->dv_parent == NULL)
   1629 		panic("config_defer: can't defer config of a root device");
   1630 
   1631 #ifdef DIAGNOSTIC
   1632 	for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
   1633 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1634 		if (dc->dc_dev == dev)
   1635 			panic("config_defer: deferred twice");
   1636 	}
   1637 #endif
   1638 
   1639 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1640 	if (dc == NULL)
   1641 		panic("config_defer: unable to allocate callback");
   1642 
   1643 	dc->dc_dev = dev;
   1644 	dc->dc_func = func;
   1645 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1646 	config_pending_incr();
   1647 }
   1648 
   1649 /*
   1650  * Defer some autoconfiguration for a device until after interrupts
   1651  * are enabled.
   1652  */
   1653 void
   1654 config_interrupts(device_t dev, void (*func)(device_t))
   1655 {
   1656 	struct deferred_config *dc;
   1657 
   1658 	/*
   1659 	 * If interrupts are enabled, callback now.
   1660 	 */
   1661 	if (cold == 0) {
   1662 		(*func)(dev);
   1663 		return;
   1664 	}
   1665 
   1666 #ifdef DIAGNOSTIC
   1667 	for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
   1668 	     dc = TAILQ_NEXT(dc, dc_queue)) {
   1669 		if (dc->dc_dev == dev)
   1670 			panic("config_interrupts: deferred twice");
   1671 	}
   1672 #endif
   1673 
   1674 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1675 	if (dc == NULL)
   1676 		panic("config_interrupts: unable to allocate callback");
   1677 
   1678 	dc->dc_dev = dev;
   1679 	dc->dc_func = func;
   1680 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   1681 	config_pending_incr();
   1682 }
   1683 
   1684 /*
   1685  * Process a deferred configuration queue.
   1686  */
   1687 static void
   1688 config_process_deferred(struct deferred_config_head *queue,
   1689     device_t parent)
   1690 {
   1691 	struct deferred_config *dc, *ndc;
   1692 
   1693 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   1694 		ndc = TAILQ_NEXT(dc, dc_queue);
   1695 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   1696 			TAILQ_REMOVE(queue, dc, dc_queue);
   1697 			(*dc->dc_func)(dc->dc_dev);
   1698 			kmem_free(dc, sizeof(*dc));
   1699 			config_pending_decr();
   1700 		}
   1701 	}
   1702 }
   1703 
   1704 /*
   1705  * Manipulate the config_pending semaphore.
   1706  */
   1707 void
   1708 config_pending_incr(void)
   1709 {
   1710 
   1711 	mutex_enter(&config_misc_lock);
   1712 	config_pending++;
   1713 	mutex_exit(&config_misc_lock);
   1714 }
   1715 
   1716 void
   1717 config_pending_decr(void)
   1718 {
   1719 
   1720 #ifdef DIAGNOSTIC
   1721 	if (config_pending == 0)
   1722 		panic("config_pending_decr: config_pending == 0");
   1723 #endif
   1724 	mutex_enter(&config_misc_lock);
   1725 	config_pending--;
   1726 	if (config_pending == 0)
   1727 		cv_broadcast(&config_misc_cv);
   1728 	mutex_exit(&config_misc_lock);
   1729 }
   1730 
   1731 /*
   1732  * Register a "finalization" routine.  Finalization routines are
   1733  * called iteratively once all real devices have been found during
   1734  * autoconfiguration, for as long as any one finalizer has done
   1735  * any work.
   1736  */
   1737 int
   1738 config_finalize_register(device_t dev, int (*fn)(device_t))
   1739 {
   1740 	struct finalize_hook *f;
   1741 
   1742 	/*
   1743 	 * If finalization has already been done, invoke the
   1744 	 * callback function now.
   1745 	 */
   1746 	if (config_finalize_done) {
   1747 		while ((*fn)(dev) != 0)
   1748 			/* loop */ ;
   1749 	}
   1750 
   1751 	/* Ensure this isn't already on the list. */
   1752 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   1753 		if (f->f_func == fn && f->f_dev == dev)
   1754 			return EEXIST;
   1755 	}
   1756 
   1757 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   1758 	f->f_func = fn;
   1759 	f->f_dev = dev;
   1760 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   1761 
   1762 	return 0;
   1763 }
   1764 
   1765 void
   1766 config_finalize(void)
   1767 {
   1768 	struct finalize_hook *f;
   1769 	struct pdevinit *pdev;
   1770 	extern struct pdevinit pdevinit[];
   1771 	int errcnt, rv;
   1772 
   1773 	/*
   1774 	 * Now that device driver threads have been created, wait for
   1775 	 * them to finish any deferred autoconfiguration.
   1776 	 */
   1777 	mutex_enter(&config_misc_lock);
   1778 	while (config_pending != 0)
   1779 		cv_wait(&config_misc_cv, &config_misc_lock);
   1780 	mutex_exit(&config_misc_lock);
   1781 
   1782 	KERNEL_LOCK(1, NULL);
   1783 
   1784 	/* Attach pseudo-devices. */
   1785 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   1786 		(*pdev->pdev_attach)(pdev->pdev_count);
   1787 
   1788 	/* Run the hooks until none of them does any work. */
   1789 	do {
   1790 		rv = 0;
   1791 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   1792 			rv |= (*f->f_func)(f->f_dev);
   1793 	} while (rv != 0);
   1794 
   1795 	config_finalize_done = 1;
   1796 
   1797 	/* Now free all the hooks. */
   1798 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   1799 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   1800 		kmem_free(f, sizeof(*f));
   1801 	}
   1802 
   1803 	KERNEL_UNLOCK_ONE(NULL);
   1804 
   1805 	errcnt = aprint_get_error_count();
   1806 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   1807 	    (boothowto & AB_VERBOSE) == 0) {
   1808 		mutex_enter(&config_misc_lock);
   1809 		if (config_do_twiddle) {
   1810 			config_do_twiddle = 0;
   1811 			printf_nolog(" done.\n");
   1812 		}
   1813 		mutex_exit(&config_misc_lock);
   1814 		if (errcnt != 0) {
   1815 			printf("WARNING: %d error%s while detecting hardware; "
   1816 			    "check system log.\n", errcnt,
   1817 			    errcnt == 1 ? "" : "s");
   1818 		}
   1819 	}
   1820 }
   1821 
   1822 void
   1823 config_twiddle_init()
   1824 {
   1825 
   1826 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   1827 		config_do_twiddle = 1;
   1828 	}
   1829 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   1830 }
   1831 
   1832 void
   1833 config_twiddle_fn(void *cookie)
   1834 {
   1835 
   1836 	mutex_enter(&config_misc_lock);
   1837 	if (config_do_twiddle) {
   1838 		twiddle();
   1839 		callout_schedule(&config_twiddle_ch, mstohz(100));
   1840 	}
   1841 	mutex_exit(&config_misc_lock);
   1842 }
   1843 
   1844 static int
   1845 config_alldevs_lock(void)
   1846 {
   1847 	int s;
   1848 
   1849 	s = splhigh();
   1850 	mutex_enter(&alldevs_mtx);
   1851 	return s;
   1852 }
   1853 
   1854 static void
   1855 config_alldevs_unlock(int s)
   1856 {
   1857 	mutex_exit(&alldevs_mtx);
   1858 	splx(s);
   1859 }
   1860 
   1861 /*
   1862  * device_lookup:
   1863  *
   1864  *	Look up a device instance for a given driver.
   1865  */
   1866 device_t
   1867 device_lookup(cfdriver_t cd, int unit)
   1868 {
   1869 	device_t dv;
   1870 	int s;
   1871 
   1872 	s = config_alldevs_lock();
   1873 	config_collect_garbage();
   1874 	KASSERT(mutex_owned(&alldevs_mtx));
   1875 	if (unit < 0 || unit >= cd->cd_ndevs)
   1876 		dv = NULL;
   1877 	else
   1878 		dv = cd->cd_devs[unit];
   1879 	config_alldevs_unlock(s);
   1880 
   1881 	KASSERT(!mutex_owned(&alldevs_mtx));
   1882 	return dv;
   1883 }
   1884 
   1885 /*
   1886  * device_lookup:
   1887  *
   1888  *	Look up a device instance for a given driver.
   1889  */
   1890 void *
   1891 device_lookup_private(cfdriver_t cd, int unit)
   1892 {
   1893 	device_t dv;
   1894 	int s;
   1895 	void *priv;
   1896 
   1897 	s = config_alldevs_lock();
   1898 	config_collect_garbage();
   1899 	KASSERT(mutex_owned(&alldevs_mtx));
   1900 	if (unit < 0 || unit >= cd->cd_ndevs)
   1901 		priv = NULL;
   1902 	else if ((dv = cd->cd_devs[unit]) == NULL)
   1903 		priv = NULL;
   1904 	else
   1905 		priv = dv->dv_private;
   1906 	config_alldevs_unlock(s);
   1907 
   1908 	KASSERT(!mutex_owned(&alldevs_mtx));
   1909 	return priv;
   1910 }
   1911 
   1912 /*
   1913  * Accessor functions for the device_t type.
   1914  */
   1915 devclass_t
   1916 device_class(device_t dev)
   1917 {
   1918 
   1919 	return dev->dv_class;
   1920 }
   1921 
   1922 cfdata_t
   1923 device_cfdata(device_t dev)
   1924 {
   1925 
   1926 	return dev->dv_cfdata;
   1927 }
   1928 
   1929 cfdriver_t
   1930 device_cfdriver(device_t dev)
   1931 {
   1932 
   1933 	return dev->dv_cfdriver;
   1934 }
   1935 
   1936 cfattach_t
   1937 device_cfattach(device_t dev)
   1938 {
   1939 
   1940 	return dev->dv_cfattach;
   1941 }
   1942 
   1943 int
   1944 device_unit(device_t dev)
   1945 {
   1946 
   1947 	return dev->dv_unit;
   1948 }
   1949 
   1950 const char *
   1951 device_xname(device_t dev)
   1952 {
   1953 
   1954 	return dev->dv_xname;
   1955 }
   1956 
   1957 device_t
   1958 device_parent(device_t dev)
   1959 {
   1960 
   1961 	return dev->dv_parent;
   1962 }
   1963 
   1964 bool
   1965 device_activation(device_t dev, devact_level_t level)
   1966 {
   1967 	int active_flags;
   1968 
   1969 	active_flags = DVF_ACTIVE;
   1970 	switch (level) {
   1971 	case DEVACT_LEVEL_FULL:
   1972 		active_flags |= DVF_CLASS_SUSPENDED;
   1973 		/*FALLTHROUGH*/
   1974 	case DEVACT_LEVEL_DRIVER:
   1975 		active_flags |= DVF_DRIVER_SUSPENDED;
   1976 		/*FALLTHROUGH*/
   1977 	case DEVACT_LEVEL_BUS:
   1978 		active_flags |= DVF_BUS_SUSPENDED;
   1979 		break;
   1980 	}
   1981 
   1982 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
   1983 }
   1984 
   1985 bool
   1986 device_is_active(device_t dev)
   1987 {
   1988 	int active_flags;
   1989 
   1990 	active_flags = DVF_ACTIVE;
   1991 	active_flags |= DVF_CLASS_SUSPENDED;
   1992 	active_flags |= DVF_DRIVER_SUSPENDED;
   1993 	active_flags |= DVF_BUS_SUSPENDED;
   1994 
   1995 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
   1996 }
   1997 
   1998 bool
   1999 device_is_enabled(device_t dev)
   2000 {
   2001 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
   2002 }
   2003 
   2004 bool
   2005 device_has_power(device_t dev)
   2006 {
   2007 	int active_flags;
   2008 
   2009 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
   2010 
   2011 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
   2012 }
   2013 
   2014 int
   2015 device_locator(device_t dev, u_int locnum)
   2016 {
   2017 
   2018 	KASSERT(dev->dv_locators != NULL);
   2019 	return dev->dv_locators[locnum];
   2020 }
   2021 
   2022 void *
   2023 device_private(device_t dev)
   2024 {
   2025 
   2026 	/*
   2027 	 * The reason why device_private(NULL) is allowed is to simplify the
   2028 	 * work of a lot of userspace request handlers (i.e., c/bdev
   2029 	 * handlers) which grab cfdriver_t->cd_units[n].
   2030 	 * It avoids having them test for it to be NULL and only then calling
   2031 	 * device_private.
   2032 	 */
   2033 	return dev == NULL ? NULL : dev->dv_private;
   2034 }
   2035 
   2036 prop_dictionary_t
   2037 device_properties(device_t dev)
   2038 {
   2039 
   2040 	return dev->dv_properties;
   2041 }
   2042 
   2043 /*
   2044  * device_is_a:
   2045  *
   2046  *	Returns true if the device is an instance of the specified
   2047  *	driver.
   2048  */
   2049 bool
   2050 device_is_a(device_t dev, const char *dname)
   2051 {
   2052 
   2053 	return strcmp(dev->dv_cfdriver->cd_name, dname) == 0;
   2054 }
   2055 
   2056 /*
   2057  * device_find_by_xname:
   2058  *
   2059  *	Returns the device of the given name or NULL if it doesn't exist.
   2060  */
   2061 device_t
   2062 device_find_by_xname(const char *name)
   2063 {
   2064 	device_t dv;
   2065 	deviter_t di;
   2066 
   2067 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2068 		if (strcmp(device_xname(dv), name) == 0)
   2069 			break;
   2070 	}
   2071 	deviter_release(&di);
   2072 
   2073 	return dv;
   2074 }
   2075 
   2076 /*
   2077  * device_find_by_driver_unit:
   2078  *
   2079  *	Returns the device of the given driver name and unit or
   2080  *	NULL if it doesn't exist.
   2081  */
   2082 device_t
   2083 device_find_by_driver_unit(const char *name, int unit)
   2084 {
   2085 	struct cfdriver *cd;
   2086 
   2087 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2088 		return NULL;
   2089 	return device_lookup(cd, unit);
   2090 }
   2091 
   2092 /*
   2093  * Power management related functions.
   2094  */
   2095 
   2096 bool
   2097 device_pmf_is_registered(device_t dev)
   2098 {
   2099 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2100 }
   2101 
   2102 bool
   2103 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
   2104 {
   2105 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2106 		return true;
   2107 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2108 		return false;
   2109 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_DRIVER &&
   2110 	    dev->dv_driver_suspend != NULL &&
   2111 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
   2112 		return false;
   2113 
   2114 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2115 	return true;
   2116 }
   2117 
   2118 bool
   2119 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
   2120 {
   2121 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2122 		return true;
   2123 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2124 		return false;
   2125 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_DRIVER &&
   2126 	    dev->dv_driver_resume != NULL &&
   2127 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
   2128 		return false;
   2129 
   2130 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2131 	return true;
   2132 }
   2133 
   2134 bool
   2135 device_pmf_driver_shutdown(device_t dev, int how)
   2136 {
   2137 
   2138 	if (*dev->dv_driver_shutdown != NULL &&
   2139 	    !(*dev->dv_driver_shutdown)(dev, how))
   2140 		return false;
   2141 	return true;
   2142 }
   2143 
   2144 bool
   2145 device_pmf_driver_register(device_t dev,
   2146     bool (*suspend)(device_t PMF_FN_PROTO),
   2147     bool (*resume)(device_t PMF_FN_PROTO),
   2148     bool (*shutdown)(device_t, int))
   2149 {
   2150 	dev->dv_driver_suspend = suspend;
   2151 	dev->dv_driver_resume = resume;
   2152 	dev->dv_driver_shutdown = shutdown;
   2153 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2154 	return true;
   2155 }
   2156 
   2157 static const char *
   2158 curlwp_name(void)
   2159 {
   2160 	if (curlwp->l_name != NULL)
   2161 		return curlwp->l_name;
   2162 	else
   2163 		return curlwp->l_proc->p_comm;
   2164 }
   2165 
   2166 void
   2167 device_pmf_driver_deregister(device_t dev)
   2168 {
   2169 	device_lock_t dvl = device_getlock(dev);
   2170 
   2171 	dev->dv_driver_suspend = NULL;
   2172 	dev->dv_driver_resume = NULL;
   2173 
   2174 	mutex_enter(&dvl->dvl_mtx);
   2175 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2176 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2177 		/* Wake a thread that waits for the lock.  That
   2178 		 * thread will fail to acquire the lock, and then
   2179 		 * it will wake the next thread that waits for the
   2180 		 * lock, or else it will wake us.
   2181 		 */
   2182 		cv_signal(&dvl->dvl_cv);
   2183 		pmflock_debug(dev, __func__, __LINE__);
   2184 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2185 		pmflock_debug(dev, __func__, __LINE__);
   2186 	}
   2187 	mutex_exit(&dvl->dvl_mtx);
   2188 }
   2189 
   2190 bool
   2191 device_pmf_driver_child_register(device_t dev)
   2192 {
   2193 	device_t parent = device_parent(dev);
   2194 
   2195 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2196 		return true;
   2197 	return (*parent->dv_driver_child_register)(dev);
   2198 }
   2199 
   2200 void
   2201 device_pmf_driver_set_child_register(device_t dev,
   2202     bool (*child_register)(device_t))
   2203 {
   2204 	dev->dv_driver_child_register = child_register;
   2205 }
   2206 
   2207 static void
   2208 pmflock_debug(device_t dev, const char *func, int line)
   2209 {
   2210 	device_lock_t dvl = device_getlock(dev);
   2211 
   2212 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
   2213 	    func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
   2214 	    dev->dv_flags);
   2215 }
   2216 
   2217 static bool
   2218 device_pmf_lock1(device_t dev)
   2219 {
   2220 	device_lock_t dvl = device_getlock(dev);
   2221 
   2222 	while (device_pmf_is_registered(dev) &&
   2223 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2224 		dvl->dvl_nwait++;
   2225 		pmflock_debug(dev, __func__, __LINE__);
   2226 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2227 		pmflock_debug(dev, __func__, __LINE__);
   2228 		dvl->dvl_nwait--;
   2229 	}
   2230 	if (!device_pmf_is_registered(dev)) {
   2231 		pmflock_debug(dev, __func__, __LINE__);
   2232 		/* We could not acquire the lock, but some other thread may
   2233 		 * wait for it, also.  Wake that thread.
   2234 		 */
   2235 		cv_signal(&dvl->dvl_cv);
   2236 		return false;
   2237 	}
   2238 	dvl->dvl_nlock++;
   2239 	dvl->dvl_holder = curlwp;
   2240 	pmflock_debug(dev, __func__, __LINE__);
   2241 	return true;
   2242 }
   2243 
   2244 bool
   2245 device_pmf_lock(device_t dev)
   2246 {
   2247 	bool rc;
   2248 	device_lock_t dvl = device_getlock(dev);
   2249 
   2250 	mutex_enter(&dvl->dvl_mtx);
   2251 	rc = device_pmf_lock1(dev);
   2252 	mutex_exit(&dvl->dvl_mtx);
   2253 
   2254 	return rc;
   2255 }
   2256 
   2257 void
   2258 device_pmf_unlock(device_t dev)
   2259 {
   2260 	device_lock_t dvl = device_getlock(dev);
   2261 
   2262 	KASSERT(dvl->dvl_nlock > 0);
   2263 	mutex_enter(&dvl->dvl_mtx);
   2264 	if (--dvl->dvl_nlock == 0)
   2265 		dvl->dvl_holder = NULL;
   2266 	cv_signal(&dvl->dvl_cv);
   2267 	pmflock_debug(dev, __func__, __LINE__);
   2268 	mutex_exit(&dvl->dvl_mtx);
   2269 }
   2270 
   2271 device_lock_t
   2272 device_getlock(device_t dev)
   2273 {
   2274 	return &dev->dv_lock;
   2275 }
   2276 
   2277 void *
   2278 device_pmf_bus_private(device_t dev)
   2279 {
   2280 	return dev->dv_bus_private;
   2281 }
   2282 
   2283 bool
   2284 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
   2285 {
   2286 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2287 		return true;
   2288 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2289 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2290 		return false;
   2291 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_BUS &&
   2292 	    dev->dv_bus_suspend != NULL &&
   2293 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
   2294 		return false;
   2295 
   2296 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2297 	return true;
   2298 }
   2299 
   2300 bool
   2301 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
   2302 {
   2303 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2304 		return true;
   2305 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_BUS &&
   2306 	    dev->dv_bus_resume != NULL &&
   2307 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
   2308 		return false;
   2309 
   2310 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2311 	return true;
   2312 }
   2313 
   2314 bool
   2315 device_pmf_bus_shutdown(device_t dev, int how)
   2316 {
   2317 
   2318 	if (*dev->dv_bus_shutdown != NULL &&
   2319 	    !(*dev->dv_bus_shutdown)(dev, how))
   2320 		return false;
   2321 	return true;
   2322 }
   2323 
   2324 void
   2325 device_pmf_bus_register(device_t dev, void *priv,
   2326     bool (*suspend)(device_t PMF_FN_PROTO),
   2327     bool (*resume)(device_t PMF_FN_PROTO),
   2328     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2329 {
   2330 	dev->dv_bus_private = priv;
   2331 	dev->dv_bus_resume = resume;
   2332 	dev->dv_bus_suspend = suspend;
   2333 	dev->dv_bus_shutdown = shutdown;
   2334 	dev->dv_bus_deregister = deregister;
   2335 }
   2336 
   2337 void
   2338 device_pmf_bus_deregister(device_t dev)
   2339 {
   2340 	if (dev->dv_bus_deregister == NULL)
   2341 		return;
   2342 	(*dev->dv_bus_deregister)(dev);
   2343 	dev->dv_bus_private = NULL;
   2344 	dev->dv_bus_suspend = NULL;
   2345 	dev->dv_bus_resume = NULL;
   2346 	dev->dv_bus_deregister = NULL;
   2347 }
   2348 
   2349 void *
   2350 device_pmf_class_private(device_t dev)
   2351 {
   2352 	return dev->dv_class_private;
   2353 }
   2354 
   2355 bool
   2356 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
   2357 {
   2358 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2359 		return true;
   2360 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_CLASS &&
   2361 	    dev->dv_class_suspend != NULL &&
   2362 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
   2363 		return false;
   2364 
   2365 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2366 	return true;
   2367 }
   2368 
   2369 bool
   2370 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
   2371 {
   2372 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2373 		return true;
   2374 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2375 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2376 		return false;
   2377 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_CLASS &&
   2378 	    dev->dv_class_resume != NULL &&
   2379 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
   2380 		return false;
   2381 
   2382 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2383 	return true;
   2384 }
   2385 
   2386 void
   2387 device_pmf_class_register(device_t dev, void *priv,
   2388     bool (*suspend)(device_t PMF_FN_PROTO),
   2389     bool (*resume)(device_t PMF_FN_PROTO),
   2390     void (*deregister)(device_t))
   2391 {
   2392 	dev->dv_class_private = priv;
   2393 	dev->dv_class_suspend = suspend;
   2394 	dev->dv_class_resume = resume;
   2395 	dev->dv_class_deregister = deregister;
   2396 }
   2397 
   2398 void
   2399 device_pmf_class_deregister(device_t dev)
   2400 {
   2401 	if (dev->dv_class_deregister == NULL)
   2402 		return;
   2403 	(*dev->dv_class_deregister)(dev);
   2404 	dev->dv_class_private = NULL;
   2405 	dev->dv_class_suspend = NULL;
   2406 	dev->dv_class_resume = NULL;
   2407 	dev->dv_class_deregister = NULL;
   2408 }
   2409 
   2410 bool
   2411 device_active(device_t dev, devactive_t type)
   2412 {
   2413 	size_t i;
   2414 
   2415 	if (dev->dv_activity_count == 0)
   2416 		return false;
   2417 
   2418 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2419 		if (dev->dv_activity_handlers[i] == NULL)
   2420 			break;
   2421 		(*dev->dv_activity_handlers[i])(dev, type);
   2422 	}
   2423 
   2424 	return true;
   2425 }
   2426 
   2427 bool
   2428 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2429 {
   2430 	void (**new_handlers)(device_t, devactive_t);
   2431 	void (**old_handlers)(device_t, devactive_t);
   2432 	size_t i, old_size, new_size;
   2433 	int s;
   2434 
   2435 	old_handlers = dev->dv_activity_handlers;
   2436 	old_size = dev->dv_activity_count;
   2437 
   2438 	for (i = 0; i < old_size; ++i) {
   2439 		KASSERT(old_handlers[i] != handler);
   2440 		if (old_handlers[i] == NULL) {
   2441 			old_handlers[i] = handler;
   2442 			return true;
   2443 		}
   2444 	}
   2445 
   2446 	new_size = old_size + 4;
   2447 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
   2448 
   2449 	memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
   2450 	new_handlers[old_size] = handler;
   2451 	memset(new_handlers + old_size + 1, 0,
   2452 	    sizeof(int [new_size - (old_size+1)]));
   2453 
   2454 	s = splhigh();
   2455 	dev->dv_activity_count = new_size;
   2456 	dev->dv_activity_handlers = new_handlers;
   2457 	splx(s);
   2458 
   2459 	if (old_handlers != NULL)
   2460 		kmem_free(old_handlers, sizeof(void * [old_size]));
   2461 
   2462 	return true;
   2463 }
   2464 
   2465 void
   2466 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2467 {
   2468 	void (**old_handlers)(device_t, devactive_t);
   2469 	size_t i, old_size;
   2470 	int s;
   2471 
   2472 	old_handlers = dev->dv_activity_handlers;
   2473 	old_size = dev->dv_activity_count;
   2474 
   2475 	for (i = 0; i < old_size; ++i) {
   2476 		if (old_handlers[i] == handler)
   2477 			break;
   2478 		if (old_handlers[i] == NULL)
   2479 			return; /* XXX panic? */
   2480 	}
   2481 
   2482 	if (i == old_size)
   2483 		return; /* XXX panic? */
   2484 
   2485 	for (; i < old_size - 1; ++i) {
   2486 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   2487 			continue;
   2488 
   2489 		if (i == 0) {
   2490 			s = splhigh();
   2491 			dev->dv_activity_count = 0;
   2492 			dev->dv_activity_handlers = NULL;
   2493 			splx(s);
   2494 			kmem_free(old_handlers, sizeof(void *[old_size]));
   2495 		}
   2496 		return;
   2497 	}
   2498 	old_handlers[i] = NULL;
   2499 }
   2500 
   2501 /* Return true iff the device_t `dev' exists at generation `gen'. */
   2502 static bool
   2503 device_exists_at(device_t dv, devgen_t gen)
   2504 {
   2505 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   2506 	    dv->dv_add_gen <= gen;
   2507 }
   2508 
   2509 static bool
   2510 deviter_visits(const deviter_t *di, device_t dv)
   2511 {
   2512 	return device_exists_at(dv, di->di_gen);
   2513 }
   2514 
   2515 /*
   2516  * Device Iteration
   2517  *
   2518  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2519  *     each device_t's in the device tree.
   2520  *
   2521  * deviter_init(di, flags): initialize the device iterator `di'
   2522  *     to "walk" the device tree.  deviter_next(di) will return
   2523  *     the first device_t in the device tree, or NULL if there are
   2524  *     no devices.
   2525  *
   2526  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2527  *     caller intends to modify the device tree by calling
   2528  *     config_detach(9) on devices in the order that the iterator
   2529  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2530  *     nearest the "root" of the device tree to be returned, first;
   2531  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2532  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2533  *     indicating both that deviter_init() should not respect any
   2534  *     locks on the device tree, and that deviter_next(di) may run
   2535  *     in more than one LWP before the walk has finished.
   2536  *
   2537  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2538  *     once.
   2539  *
   2540  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2541  *
   2542  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2543  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2544  *
   2545  * deviter_first(di, flags): initialize the device iterator `di'
   2546  *     and return the first device_t in the device tree, or NULL
   2547  *     if there are no devices.  The statement
   2548  *
   2549  *         dv = deviter_first(di);
   2550  *
   2551  *     is shorthand for
   2552  *
   2553  *         deviter_init(di);
   2554  *         dv = deviter_next(di);
   2555  *
   2556  * deviter_next(di): return the next device_t in the device tree,
   2557  *     or NULL if there are no more devices.  deviter_next(di)
   2558  *     is undefined if `di' was not initialized with deviter_init() or
   2559  *     deviter_first().
   2560  *
   2561  * deviter_release(di): stops iteration (subsequent calls to
   2562  *     deviter_next() will return NULL), releases any locks and
   2563  *     resources held by the device iterator.
   2564  *
   2565  * Device iteration does not return device_t's in any particular
   2566  * order.  An iterator will never return the same device_t twice.
   2567  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2568  * is called repeatedly on the same `di', it will eventually return
   2569  * NULL.  It is ok to attach/detach devices during device iteration.
   2570  */
   2571 void
   2572 deviter_init(deviter_t *di, deviter_flags_t flags)
   2573 {
   2574 	device_t dv;
   2575 	int s;
   2576 
   2577 	memset(di, 0, sizeof(*di));
   2578 
   2579 	s = config_alldevs_lock();
   2580 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   2581 		flags |= DEVITER_F_RW;
   2582 
   2583 	if ((flags & DEVITER_F_RW) != 0)
   2584 		alldevs_nwrite++;
   2585 	else
   2586 		alldevs_nread++;
   2587 	di->di_gen = alldevs_gen++;
   2588 	config_alldevs_unlock(s);
   2589 
   2590 	di->di_flags = flags;
   2591 
   2592 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2593 	case DEVITER_F_LEAVES_FIRST:
   2594 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2595 			if (!deviter_visits(di, dv))
   2596 				continue;
   2597 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2598 		}
   2599 		break;
   2600 	case DEVITER_F_ROOT_FIRST:
   2601 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2602 			if (!deviter_visits(di, dv))
   2603 				continue;
   2604 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2605 		}
   2606 		break;
   2607 	default:
   2608 		break;
   2609 	}
   2610 
   2611 	deviter_reinit(di);
   2612 }
   2613 
   2614 static void
   2615 deviter_reinit(deviter_t *di)
   2616 {
   2617 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2618 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2619 	else
   2620 		di->di_prev = TAILQ_FIRST(&alldevs);
   2621 }
   2622 
   2623 device_t
   2624 deviter_first(deviter_t *di, deviter_flags_t flags)
   2625 {
   2626 	deviter_init(di, flags);
   2627 	return deviter_next(di);
   2628 }
   2629 
   2630 static device_t
   2631 deviter_next2(deviter_t *di)
   2632 {
   2633 	device_t dv;
   2634 
   2635 	dv = di->di_prev;
   2636 
   2637 	if (dv == NULL)
   2638 		;
   2639 	else if ((di->di_flags & DEVITER_F_RW) != 0)
   2640 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2641 	else
   2642 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2643 
   2644 	return dv;
   2645 }
   2646 
   2647 static device_t
   2648 deviter_next1(deviter_t *di)
   2649 {
   2650 	device_t dv;
   2651 
   2652 	do {
   2653 		dv = deviter_next2(di);
   2654 	} while (dv != NULL && !deviter_visits(di, dv));
   2655 
   2656 	return dv;
   2657 }
   2658 
   2659 device_t
   2660 deviter_next(deviter_t *di)
   2661 {
   2662 	device_t dv = NULL;
   2663 
   2664 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2665 	case 0:
   2666 		return deviter_next1(di);
   2667 	case DEVITER_F_LEAVES_FIRST:
   2668 		while (di->di_curdepth >= 0) {
   2669 			if ((dv = deviter_next1(di)) == NULL) {
   2670 				di->di_curdepth--;
   2671 				deviter_reinit(di);
   2672 			} else if (dv->dv_depth == di->di_curdepth)
   2673 				break;
   2674 		}
   2675 		return dv;
   2676 	case DEVITER_F_ROOT_FIRST:
   2677 		while (di->di_curdepth <= di->di_maxdepth) {
   2678 			if ((dv = deviter_next1(di)) == NULL) {
   2679 				di->di_curdepth++;
   2680 				deviter_reinit(di);
   2681 			} else if (dv->dv_depth == di->di_curdepth)
   2682 				break;
   2683 		}
   2684 		return dv;
   2685 	default:
   2686 		return NULL;
   2687 	}
   2688 }
   2689 
   2690 void
   2691 deviter_release(deviter_t *di)
   2692 {
   2693 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2694 	int s;
   2695 
   2696 	s = config_alldevs_lock();
   2697 	if (rw)
   2698 		--alldevs_nwrite;
   2699 	else
   2700 		--alldevs_nread;
   2701 	/* XXX wake a garbage-collection thread */
   2702 	config_alldevs_unlock(s);
   2703 }
   2704 
   2705 static void
   2706 sysctl_detach_setup(struct sysctllog **clog)
   2707 {
   2708 	const struct sysctlnode *node = NULL;
   2709 
   2710 	sysctl_createv(clog, 0, NULL, &node,
   2711 		CTLFLAG_PERMANENT,
   2712 		CTLTYPE_NODE, "kern", NULL,
   2713 		NULL, 0, NULL, 0,
   2714 		CTL_KERN, CTL_EOL);
   2715 
   2716 	if (node == NULL)
   2717 		return;
   2718 
   2719 	sysctl_createv(clog, 0, &node, NULL,
   2720 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   2721 		CTLTYPE_INT, "detachall",
   2722 		SYSCTL_DESCR("Detach all devices at shutdown"),
   2723 		NULL, 0, &detachall, 0,
   2724 		CTL_CREATE, CTL_EOL);
   2725 }
   2726