subr_autoconf.c revision 1.189 1 /* $NetBSD: subr_autoconf.c,v 1.189 2009/11/29 15:17:30 pooka Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.189 2009/11/29 15:17:30 pooka Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #endif
85
86 #include <sys/param.h>
87 #include <sys/device.h>
88 #include <sys/disklabel.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91 #include <sys/malloc.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/vnode.h>
102 #include <sys/mount.h>
103 #include <sys/namei.h>
104 #include <sys/unistd.h>
105 #include <sys/fcntl.h>
106 #include <sys/lockf.h>
107 #include <sys/callout.h>
108 #include <sys/devmon.h>
109 #include <sys/cpu.h>
110 #include <sys/sysctl.h>
111
112 #include <sys/disk.h>
113
114 #include <machine/limits.h>
115
116 #if defined(__i386__) && defined(_KERNEL_OPT)
117 #include "opt_splash.h"
118 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
119 #include <dev/splash/splash.h>
120 extern struct splash_progress *splash_progress_state;
121 #endif
122 #endif
123
124 /*
125 * Autoconfiguration subroutines.
126 */
127
128 /*
129 * ioconf.c exports exactly two names: cfdata and cfroots. All system
130 * devices and drivers are found via these tables.
131 */
132 extern struct cfdata cfdata[];
133 extern const short cfroots[];
134
135 /*
136 * List of all cfdriver structures. We use this to detect duplicates
137 * when other cfdrivers are loaded.
138 */
139 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
140 extern struct cfdriver * const cfdriver_list_initial[];
141
142 /*
143 * Initial list of cfattach's.
144 */
145 extern const struct cfattachinit cfattachinit[];
146
147 /*
148 * List of cfdata tables. We always have one such list -- the one
149 * built statically when the kernel was configured.
150 */
151 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
152 static struct cftable initcftable;
153
154 #define ROOT ((device_t)NULL)
155
156 struct matchinfo {
157 cfsubmatch_t fn;
158 struct device *parent;
159 const int *locs;
160 void *aux;
161 struct cfdata *match;
162 int pri;
163 };
164
165 static char *number(char *, int);
166 static void mapply(struct matchinfo *, cfdata_t);
167 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
168 static void config_devdelete(device_t);
169 static void config_makeroom(int, struct cfdriver *);
170 static void config_devlink(device_t);
171 static void config_alldevs_unlock(int);
172 static int config_alldevs_lock(void);
173
174 static void config_collect_garbage(void);
175
176 static void pmflock_debug(device_t, const char *, int);
177
178 static device_t deviter_next1(deviter_t *);
179 static void deviter_reinit(deviter_t *);
180
181 struct deferred_config {
182 TAILQ_ENTRY(deferred_config) dc_queue;
183 device_t dc_dev;
184 void (*dc_func)(device_t);
185 };
186
187 TAILQ_HEAD(deferred_config_head, deferred_config);
188
189 struct deferred_config_head deferred_config_queue =
190 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
191 struct deferred_config_head interrupt_config_queue =
192 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
193 int interrupt_config_threads = 8;
194
195 static void config_process_deferred(struct deferred_config_head *, device_t);
196
197 /* Hooks to finalize configuration once all real devices have been found. */
198 struct finalize_hook {
199 TAILQ_ENTRY(finalize_hook) f_list;
200 int (*f_func)(device_t);
201 device_t f_dev;
202 };
203 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
204 TAILQ_HEAD_INITIALIZER(config_finalize_list);
205 static int config_finalize_done;
206
207 /* list of all devices */
208 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
209 static kmutex_t alldevs_mtx;
210 static volatile bool alldevs_garbage = false;
211 static volatile devgen_t alldevs_gen = 1;
212 static volatile int alldevs_nread = 0;
213 static volatile int alldevs_nwrite = 0;
214
215 static int config_pending; /* semaphore for mountroot */
216 static kmutex_t config_misc_lock;
217 static kcondvar_t config_misc_cv;
218
219 static int detachall = 0;
220
221 #define STREQ(s1, s2) \
222 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
223
224 static bool config_initialized = false; /* config_init() has been called. */
225
226 static int config_do_twiddle;
227 static callout_t config_twiddle_ch;
228
229 static void sysctl_detach_setup(struct sysctllog **);
230
231 /*
232 * Initialize the autoconfiguration data structures. Normally this
233 * is done by configure(), but some platforms need to do this very
234 * early (to e.g. initialize the console).
235 */
236 void
237 config_init(void)
238 {
239 const struct cfattachinit *cfai;
240 int i, j;
241
242 KASSERT(config_initialized == false);
243
244 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_HIGH);
245
246 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
247 cv_init(&config_misc_cv, "cfgmisc");
248
249 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
250
251 /* allcfdrivers is statically initialized. */
252 for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
253 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
254 panic("configure: duplicate `%s' drivers",
255 cfdriver_list_initial[i]->cd_name);
256 }
257
258 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
259 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
260 if (config_cfattach_attach(cfai->cfai_name,
261 cfai->cfai_list[j]) != 0)
262 panic("configure: duplicate `%s' attachment "
263 "of `%s' driver",
264 cfai->cfai_list[j]->ca_name,
265 cfai->cfai_name);
266 }
267 }
268
269 initcftable.ct_cfdata = cfdata;
270 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
271
272 config_initialized = true;
273 }
274
275 void
276 config_init_mi(void)
277 {
278
279 if (!config_initialized)
280 config_init();
281
282 sysctl_detach_setup(NULL);
283 }
284
285 void
286 config_deferred(device_t dev)
287 {
288 config_process_deferred(&deferred_config_queue, dev);
289 config_process_deferred(&interrupt_config_queue, dev);
290 }
291
292 static void
293 config_interrupts_thread(void *cookie)
294 {
295 struct deferred_config *dc;
296
297 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
298 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
299 (*dc->dc_func)(dc->dc_dev);
300 kmem_free(dc, sizeof(*dc));
301 config_pending_decr();
302 }
303 kthread_exit(0);
304 }
305
306 void
307 config_create_interruptthreads()
308 {
309 int i;
310
311 for (i = 0; i < interrupt_config_threads; i++) {
312 (void)kthread_create(PRI_NONE, 0, NULL,
313 config_interrupts_thread, NULL, NULL, "config");
314 }
315 }
316
317 /*
318 * Announce device attach/detach to userland listeners.
319 */
320 static void
321 devmon_report_device(device_t dev, bool isattach)
322 {
323 #if NDRVCTL > 0
324 prop_dictionary_t ev;
325 const char *parent;
326 const char *what;
327 device_t pdev = device_parent(dev);
328
329 ev = prop_dictionary_create();
330 if (ev == NULL)
331 return;
332
333 what = (isattach ? "device-attach" : "device-detach");
334 parent = (pdev == NULL ? "root" : device_xname(pdev));
335 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
336 !prop_dictionary_set_cstring(ev, "parent", parent)) {
337 prop_object_release(ev);
338 return;
339 }
340
341 devmon_insert(what, ev);
342 #endif
343 }
344
345 /*
346 * Add a cfdriver to the system.
347 */
348 int
349 config_cfdriver_attach(struct cfdriver *cd)
350 {
351 struct cfdriver *lcd;
352
353 /* Make sure this driver isn't already in the system. */
354 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
355 if (STREQ(lcd->cd_name, cd->cd_name))
356 return EEXIST;
357 }
358
359 LIST_INIT(&cd->cd_attach);
360 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
361
362 return 0;
363 }
364
365 /*
366 * Remove a cfdriver from the system.
367 */
368 int
369 config_cfdriver_detach(struct cfdriver *cd)
370 {
371 int i, rc = 0, s;
372
373 s = config_alldevs_lock();
374 config_collect_garbage();
375 /* Make sure there are no active instances. */
376 for (i = 0; i < cd->cd_ndevs; i++) {
377 if (cd->cd_devs[i] != NULL) {
378 rc = EBUSY;
379 break;
380 }
381 }
382 config_alldevs_unlock(s);
383
384 if (rc != 0)
385 return rc;
386
387 /* ...and no attachments loaded. */
388 if (LIST_EMPTY(&cd->cd_attach) == 0)
389 return EBUSY;
390
391 LIST_REMOVE(cd, cd_list);
392
393 KASSERT(cd->cd_devs == NULL);
394
395 return 0;
396 }
397
398 /*
399 * Look up a cfdriver by name.
400 */
401 struct cfdriver *
402 config_cfdriver_lookup(const char *name)
403 {
404 struct cfdriver *cd;
405
406 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
407 if (STREQ(cd->cd_name, name))
408 return cd;
409 }
410
411 return NULL;
412 }
413
414 /*
415 * Add a cfattach to the specified driver.
416 */
417 int
418 config_cfattach_attach(const char *driver, struct cfattach *ca)
419 {
420 struct cfattach *lca;
421 struct cfdriver *cd;
422
423 cd = config_cfdriver_lookup(driver);
424 if (cd == NULL)
425 return ESRCH;
426
427 /* Make sure this attachment isn't already on this driver. */
428 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
429 if (STREQ(lca->ca_name, ca->ca_name))
430 return EEXIST;
431 }
432
433 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
434
435 return 0;
436 }
437
438 /*
439 * Remove a cfattach from the specified driver.
440 */
441 int
442 config_cfattach_detach(const char *driver, struct cfattach *ca)
443 {
444 struct cfdriver *cd;
445 device_t dev;
446 int i, rc = 0, s;
447
448 cd = config_cfdriver_lookup(driver);
449 if (cd == NULL)
450 return ESRCH;
451
452 s = config_alldevs_lock();
453 config_collect_garbage();
454 /* Make sure there are no active instances. */
455 for (i = 0; i < cd->cd_ndevs; i++) {
456 if ((dev = cd->cd_devs[i]) == NULL)
457 continue;
458 if (dev->dv_cfattach == ca) {
459 rc = EBUSY;
460 break;
461 }
462 }
463 config_alldevs_unlock(s);
464
465 if (rc != 0)
466 return rc;
467
468 LIST_REMOVE(ca, ca_list);
469
470 return 0;
471 }
472
473 /*
474 * Look up a cfattach by name.
475 */
476 static struct cfattach *
477 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
478 {
479 struct cfattach *ca;
480
481 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
482 if (STREQ(ca->ca_name, atname))
483 return ca;
484 }
485
486 return NULL;
487 }
488
489 /*
490 * Look up a cfattach by driver/attachment name.
491 */
492 struct cfattach *
493 config_cfattach_lookup(const char *name, const char *atname)
494 {
495 struct cfdriver *cd;
496
497 cd = config_cfdriver_lookup(name);
498 if (cd == NULL)
499 return NULL;
500
501 return config_cfattach_lookup_cd(cd, atname);
502 }
503
504 /*
505 * Apply the matching function and choose the best. This is used
506 * a few times and we want to keep the code small.
507 */
508 static void
509 mapply(struct matchinfo *m, cfdata_t cf)
510 {
511 int pri;
512
513 if (m->fn != NULL) {
514 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
515 } else {
516 pri = config_match(m->parent, cf, m->aux);
517 }
518 if (pri > m->pri) {
519 m->match = cf;
520 m->pri = pri;
521 }
522 }
523
524 int
525 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
526 {
527 const struct cfiattrdata *ci;
528 const struct cflocdesc *cl;
529 int nlocs, i;
530
531 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
532 KASSERT(ci);
533 nlocs = ci->ci_loclen;
534 KASSERT(!nlocs || locs);
535 for (i = 0; i < nlocs; i++) {
536 cl = &ci->ci_locdesc[i];
537 /* !cld_defaultstr means no default value */
538 if ((!(cl->cld_defaultstr)
539 || (cf->cf_loc[i] != cl->cld_default))
540 && cf->cf_loc[i] != locs[i])
541 return 0;
542 }
543
544 return config_match(parent, cf, aux);
545 }
546
547 /*
548 * Helper function: check whether the driver supports the interface attribute
549 * and return its descriptor structure.
550 */
551 static const struct cfiattrdata *
552 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
553 {
554 const struct cfiattrdata * const *cpp;
555
556 if (cd->cd_attrs == NULL)
557 return 0;
558
559 for (cpp = cd->cd_attrs; *cpp; cpp++) {
560 if (STREQ((*cpp)->ci_name, ia)) {
561 /* Match. */
562 return *cpp;
563 }
564 }
565 return 0;
566 }
567
568 /*
569 * Lookup an interface attribute description by name.
570 * If the driver is given, consider only its supported attributes.
571 */
572 const struct cfiattrdata *
573 cfiattr_lookup(const char *name, const struct cfdriver *cd)
574 {
575 const struct cfdriver *d;
576 const struct cfiattrdata *ia;
577
578 if (cd)
579 return cfdriver_get_iattr(cd, name);
580
581 LIST_FOREACH(d, &allcfdrivers, cd_list) {
582 ia = cfdriver_get_iattr(d, name);
583 if (ia)
584 return ia;
585 }
586 return 0;
587 }
588
589 /*
590 * Determine if `parent' is a potential parent for a device spec based
591 * on `cfp'.
592 */
593 static int
594 cfparent_match(const device_t parent, const struct cfparent *cfp)
595 {
596 struct cfdriver *pcd;
597
598 /* We don't match root nodes here. */
599 if (cfp == NULL)
600 return 0;
601
602 pcd = parent->dv_cfdriver;
603 KASSERT(pcd != NULL);
604
605 /*
606 * First, ensure this parent has the correct interface
607 * attribute.
608 */
609 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
610 return 0;
611
612 /*
613 * If no specific parent device instance was specified (i.e.
614 * we're attaching to the attribute only), we're done!
615 */
616 if (cfp->cfp_parent == NULL)
617 return 1;
618
619 /*
620 * Check the parent device's name.
621 */
622 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
623 return 0; /* not the same parent */
624
625 /*
626 * Make sure the unit number matches.
627 */
628 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
629 cfp->cfp_unit == parent->dv_unit)
630 return 1;
631
632 /* Unit numbers don't match. */
633 return 0;
634 }
635
636 /*
637 * Helper for config_cfdata_attach(): check all devices whether it could be
638 * parent any attachment in the config data table passed, and rescan.
639 */
640 static void
641 rescan_with_cfdata(const struct cfdata *cf)
642 {
643 device_t d;
644 const struct cfdata *cf1;
645 deviter_t di;
646
647
648 /*
649 * "alldevs" is likely longer than a modules's cfdata, so make it
650 * the outer loop.
651 */
652 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
653
654 if (!(d->dv_cfattach->ca_rescan))
655 continue;
656
657 for (cf1 = cf; cf1->cf_name; cf1++) {
658
659 if (!cfparent_match(d, cf1->cf_pspec))
660 continue;
661
662 (*d->dv_cfattach->ca_rescan)(d,
663 cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
664 }
665 }
666 deviter_release(&di);
667 }
668
669 /*
670 * Attach a supplemental config data table and rescan potential
671 * parent devices if required.
672 */
673 int
674 config_cfdata_attach(cfdata_t cf, int scannow)
675 {
676 struct cftable *ct;
677
678 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
679 ct->ct_cfdata = cf;
680 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
681
682 if (scannow)
683 rescan_with_cfdata(cf);
684
685 return 0;
686 }
687
688 /*
689 * Helper for config_cfdata_detach: check whether a device is
690 * found through any attachment in the config data table.
691 */
692 static int
693 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
694 {
695 const struct cfdata *cf1;
696
697 for (cf1 = cf; cf1->cf_name; cf1++)
698 if (d->dv_cfdata == cf1)
699 return 1;
700
701 return 0;
702 }
703
704 /*
705 * Detach a supplemental config data table. Detach all devices found
706 * through that table (and thus keeping references to it) before.
707 */
708 int
709 config_cfdata_detach(cfdata_t cf)
710 {
711 device_t d;
712 int error = 0;
713 struct cftable *ct;
714 deviter_t di;
715
716 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
717 d = deviter_next(&di)) {
718 if (!dev_in_cfdata(d, cf))
719 continue;
720 if ((error = config_detach(d, 0)) != 0)
721 break;
722 }
723 deviter_release(&di);
724 if (error) {
725 aprint_error_dev(d, "unable to detach instance\n");
726 return error;
727 }
728
729 TAILQ_FOREACH(ct, &allcftables, ct_list) {
730 if (ct->ct_cfdata == cf) {
731 TAILQ_REMOVE(&allcftables, ct, ct_list);
732 kmem_free(ct, sizeof(*ct));
733 return 0;
734 }
735 }
736
737 /* not found -- shouldn't happen */
738 return EINVAL;
739 }
740
741 /*
742 * Invoke the "match" routine for a cfdata entry on behalf of
743 * an external caller, usually a "submatch" routine.
744 */
745 int
746 config_match(device_t parent, cfdata_t cf, void *aux)
747 {
748 struct cfattach *ca;
749
750 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
751 if (ca == NULL) {
752 /* No attachment for this entry, oh well. */
753 return 0;
754 }
755
756 return (*ca->ca_match)(parent, cf, aux);
757 }
758
759 /*
760 * Iterate over all potential children of some device, calling the given
761 * function (default being the child's match function) for each one.
762 * Nonzero returns are matches; the highest value returned is considered
763 * the best match. Return the `found child' if we got a match, or NULL
764 * otherwise. The `aux' pointer is simply passed on through.
765 *
766 * Note that this function is designed so that it can be used to apply
767 * an arbitrary function to all potential children (its return value
768 * can be ignored).
769 */
770 cfdata_t
771 config_search_loc(cfsubmatch_t fn, device_t parent,
772 const char *ifattr, const int *locs, void *aux)
773 {
774 struct cftable *ct;
775 cfdata_t cf;
776 struct matchinfo m;
777
778 KASSERT(config_initialized);
779 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
780
781 m.fn = fn;
782 m.parent = parent;
783 m.locs = locs;
784 m.aux = aux;
785 m.match = NULL;
786 m.pri = 0;
787
788 TAILQ_FOREACH(ct, &allcftables, ct_list) {
789 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
790
791 /* We don't match root nodes here. */
792 if (!cf->cf_pspec)
793 continue;
794
795 /*
796 * Skip cf if no longer eligible, otherwise scan
797 * through parents for one matching `parent', and
798 * try match function.
799 */
800 if (cf->cf_fstate == FSTATE_FOUND)
801 continue;
802 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
803 cf->cf_fstate == FSTATE_DSTAR)
804 continue;
805
806 /*
807 * If an interface attribute was specified,
808 * consider only children which attach to
809 * that attribute.
810 */
811 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
812 continue;
813
814 if (cfparent_match(parent, cf->cf_pspec))
815 mapply(&m, cf);
816 }
817 }
818 return m.match;
819 }
820
821 cfdata_t
822 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
823 void *aux)
824 {
825
826 return config_search_loc(fn, parent, ifattr, NULL, aux);
827 }
828
829 /*
830 * Find the given root device.
831 * This is much like config_search, but there is no parent.
832 * Don't bother with multiple cfdata tables; the root node
833 * must always be in the initial table.
834 */
835 cfdata_t
836 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
837 {
838 cfdata_t cf;
839 const short *p;
840 struct matchinfo m;
841
842 m.fn = fn;
843 m.parent = ROOT;
844 m.aux = aux;
845 m.match = NULL;
846 m.pri = 0;
847 m.locs = 0;
848 /*
849 * Look at root entries for matching name. We do not bother
850 * with found-state here since only one root should ever be
851 * searched (and it must be done first).
852 */
853 for (p = cfroots; *p >= 0; p++) {
854 cf = &cfdata[*p];
855 if (strcmp(cf->cf_name, rootname) == 0)
856 mapply(&m, cf);
857 }
858 return m.match;
859 }
860
861 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
862
863 /*
864 * The given `aux' argument describes a device that has been found
865 * on the given parent, but not necessarily configured. Locate the
866 * configuration data for that device (using the submatch function
867 * provided, or using candidates' cd_match configuration driver
868 * functions) and attach it, and return true. If the device was
869 * not configured, call the given `print' function and return 0.
870 */
871 device_t
872 config_found_sm_loc(device_t parent,
873 const char *ifattr, const int *locs, void *aux,
874 cfprint_t print, cfsubmatch_t submatch)
875 {
876 cfdata_t cf;
877
878 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
879 if (splash_progress_state)
880 splash_progress_update(splash_progress_state);
881 #endif
882
883 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
884 return(config_attach_loc(parent, cf, locs, aux, print));
885 if (print) {
886 if (config_do_twiddle && cold)
887 twiddle();
888 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
889 }
890
891 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
892 if (splash_progress_state)
893 splash_progress_update(splash_progress_state);
894 #endif
895
896 return NULL;
897 }
898
899 device_t
900 config_found_ia(device_t parent, const char *ifattr, void *aux,
901 cfprint_t print)
902 {
903
904 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
905 }
906
907 device_t
908 config_found(device_t parent, void *aux, cfprint_t print)
909 {
910
911 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
912 }
913
914 /*
915 * As above, but for root devices.
916 */
917 device_t
918 config_rootfound(const char *rootname, void *aux)
919 {
920 cfdata_t cf;
921
922 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
923 return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
924 aprint_error("root device %s not configured\n", rootname);
925 return NULL;
926 }
927
928 /* just like sprintf(buf, "%d") except that it works from the end */
929 static char *
930 number(char *ep, int n)
931 {
932
933 *--ep = 0;
934 while (n >= 10) {
935 *--ep = (n % 10) + '0';
936 n /= 10;
937 }
938 *--ep = n + '0';
939 return ep;
940 }
941
942 /*
943 * Expand the size of the cd_devs array if necessary.
944 *
945 * The caller must hold alldevs_mtx. config_makeroom() may release and
946 * re-acquire alldevs_mtx, so callers should re-check conditions such
947 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
948 * returns.
949 */
950 static void
951 config_makeroom(int n, struct cfdriver *cd)
952 {
953 int old, new;
954 device_t *nsp;
955
956 alldevs_nwrite++;
957 mutex_exit(&alldevs_mtx);
958
959 if (n < cd->cd_ndevs)
960 goto out;
961
962 /*
963 * Need to expand the array.
964 */
965 old = cd->cd_ndevs;
966 if (old == 0)
967 new = 4;
968 else
969 new = old * 2;
970 while (new <= n)
971 new *= 2;
972 nsp = kmem_alloc(sizeof(device_t [new]), KM_SLEEP);
973 if (nsp == NULL)
974 panic("config_attach: %sing dev array",
975 old != 0 ? "expand" : "creat");
976 memset(nsp + old, 0, sizeof(device_t [new - old]));
977 if (old != 0) {
978 memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
979 kmem_free(cd->cd_devs, sizeof(device_t [old]));
980 }
981 cd->cd_ndevs = new;
982 cd->cd_devs = nsp;
983 out:
984 mutex_enter(&alldevs_mtx);
985 alldevs_nwrite--;
986 }
987
988 static void
989 config_devlink(device_t dev)
990 {
991 struct cfdriver *cd = dev->dv_cfdriver;
992 int s;
993
994 /* put this device in the devices array */
995 s = config_alldevs_lock();
996 config_makeroom(dev->dv_unit, cd);
997 if (cd->cd_devs[dev->dv_unit])
998 panic("config_attach: duplicate %s", device_xname(dev));
999 cd->cd_devs[dev->dv_unit] = dev;
1000
1001 /* It is safe to add a device to the tail of the list while
1002 * readers and writers are in the list.
1003 */
1004 dev->dv_add_gen = alldevs_gen;
1005 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
1006 config_alldevs_unlock(s);
1007 }
1008
1009 /*
1010 * Caller must hold alldevs_mtx. config_devdelete() may release and
1011 * re-acquire alldevs_mtx, so callers should re-check conditions such as
1012 * alldevs_nwrite == 0 && alldevs_nread == 0 after config_devdelete()
1013 * returns.
1014 */
1015 static void
1016 config_devdelete(device_t dev)
1017 {
1018 device_lock_t dvl = device_getlock(dev);
1019 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1020 struct cfdriver *cd = dev->dv_cfdriver;
1021 device_t *devs = NULL;
1022 int i, ndevs = 0;
1023
1024 KASSERT(mutex_owned(&alldevs_mtx));
1025
1026 /* Unlink from device list. */
1027 TAILQ_REMOVE(&alldevs, dev, dv_list);
1028
1029 /* Remove from cfdriver's array. */
1030 cd->cd_devs[dev->dv_unit] = NULL;
1031
1032 /*
1033 * If the device now has no units in use, deallocate its softc array.
1034 */
1035 for (i = 0; i < cd->cd_ndevs; i++) {
1036 if (cd->cd_devs[i] != NULL)
1037 break;
1038 }
1039 /* nothing found. unlink, now. deallocate below. */
1040 if (i == cd->cd_ndevs) {
1041 ndevs = cd->cd_ndevs;
1042 devs = cd->cd_devs;
1043 cd->cd_devs = NULL;
1044 cd->cd_ndevs = 0;
1045 }
1046
1047 mutex_exit(&alldevs_mtx);
1048
1049 KASSERT(!mutex_owned(&alldevs_mtx));
1050
1051 if (devs != NULL)
1052 kmem_free(devs, sizeof(device_t [ndevs]));
1053
1054 cv_destroy(&dvl->dvl_cv);
1055 mutex_destroy(&dvl->dvl_mtx);
1056
1057 KASSERT(dev->dv_properties != NULL);
1058 prop_object_release(dev->dv_properties);
1059
1060 if (dev->dv_activity_handlers)
1061 panic("%s with registered handlers", __func__);
1062
1063 if (dev->dv_locators) {
1064 size_t amount = *--dev->dv_locators;
1065 kmem_free(dev->dv_locators, amount);
1066 }
1067
1068 if (dev->dv_cfattach->ca_devsize > 0)
1069 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1070 if (priv)
1071 kmem_free(dev, sizeof(*dev));
1072
1073 KASSERT(!mutex_owned(&alldevs_mtx));
1074
1075 mutex_enter(&alldevs_mtx);
1076 }
1077
1078 static device_t
1079 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1080 {
1081 struct cfdriver *cd;
1082 struct cfattach *ca;
1083 size_t lname, lunit;
1084 const char *xunit;
1085 int myunit;
1086 char num[10];
1087 device_t dev;
1088 void *dev_private;
1089 const struct cfiattrdata *ia;
1090 device_lock_t dvl;
1091 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1092 int s;
1093 #endif
1094
1095 cd = config_cfdriver_lookup(cf->cf_name);
1096 if (cd == NULL)
1097 return NULL;
1098
1099 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1100 if (ca == NULL)
1101 return NULL;
1102
1103 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1104 ca->ca_devsize < sizeof(struct device))
1105 panic("config_devalloc: %s", cf->cf_atname);
1106
1107 #ifndef __BROKEN_CONFIG_UNIT_USAGE
1108 s = config_alldevs_lock();
1109 config_collect_garbage();
1110 if (cf->cf_fstate == FSTATE_STAR) {
1111 for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
1112 if (cd->cd_devs[myunit] == NULL)
1113 break;
1114 /*
1115 * myunit is now the unit of the first NULL device pointer,
1116 * or max(cd->cd_ndevs,cf->cf_unit).
1117 */
1118 } else {
1119 myunit = cf->cf_unit;
1120 if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
1121 myunit = -1;
1122 }
1123 config_alldevs_unlock(s);
1124 if (myunit == -1)
1125 return NULL;
1126 #else
1127 myunit = cf->cf_unit;
1128 #endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
1129
1130 /* compute length of name and decimal expansion of unit number */
1131 lname = strlen(cd->cd_name);
1132 xunit = number(&num[sizeof(num)], myunit);
1133 lunit = &num[sizeof(num)] - xunit;
1134 if (lname + lunit > sizeof(dev->dv_xname))
1135 panic("config_devalloc: device name too long");
1136
1137 /* get memory for all device vars */
1138 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1139 if (ca->ca_devsize > 0) {
1140 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1141 if (dev_private == NULL)
1142 panic("config_devalloc: memory allocation for device softc failed");
1143 } else {
1144 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1145 dev_private = NULL;
1146 }
1147
1148 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1149 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1150 } else {
1151 dev = dev_private;
1152 }
1153 if (dev == NULL)
1154 panic("config_devalloc: memory allocation for device_t failed");
1155
1156 dvl = device_getlock(dev);
1157
1158 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1159 cv_init(&dvl->dvl_cv, "pmfsusp");
1160
1161 dev->dv_class = cd->cd_class;
1162 dev->dv_cfdata = cf;
1163 dev->dv_cfdriver = cd;
1164 dev->dv_cfattach = ca;
1165 dev->dv_unit = myunit;
1166 dev->dv_activity_count = 0;
1167 dev->dv_activity_handlers = NULL;
1168 dev->dv_private = dev_private;
1169 memcpy(dev->dv_xname, cd->cd_name, lname);
1170 memcpy(dev->dv_xname + lname, xunit, lunit);
1171 dev->dv_parent = parent;
1172 if (parent != NULL)
1173 dev->dv_depth = parent->dv_depth + 1;
1174 else
1175 dev->dv_depth = 0;
1176 dev->dv_flags = DVF_ACTIVE; /* always initially active */
1177 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
1178 if (locs) {
1179 KASSERT(parent); /* no locators at root */
1180 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1181 parent->dv_cfdriver);
1182 dev->dv_locators =
1183 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1184 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1185 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1186 }
1187 dev->dv_properties = prop_dictionary_create();
1188 KASSERT(dev->dv_properties != NULL);
1189
1190 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1191 "device-driver", dev->dv_cfdriver->cd_name);
1192 prop_dictionary_set_uint16(dev->dv_properties,
1193 "device-unit", dev->dv_unit);
1194
1195 return dev;
1196 }
1197
1198 /*
1199 * Attach a found device.
1200 */
1201 device_t
1202 config_attach_loc(device_t parent, cfdata_t cf,
1203 const int *locs, void *aux, cfprint_t print)
1204 {
1205 device_t dev;
1206 struct cftable *ct;
1207 const char *drvname;
1208
1209 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1210 if (splash_progress_state)
1211 splash_progress_update(splash_progress_state);
1212 #endif
1213
1214 dev = config_devalloc(parent, cf, locs);
1215 if (!dev)
1216 panic("config_attach: allocation of device softc failed");
1217
1218 /* XXX redundant - see below? */
1219 if (cf->cf_fstate != FSTATE_STAR) {
1220 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1221 cf->cf_fstate = FSTATE_FOUND;
1222 }
1223 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1224 else
1225 cf->cf_unit++;
1226 #endif
1227
1228 config_devlink(dev);
1229
1230 if (config_do_twiddle && cold)
1231 twiddle();
1232 else
1233 aprint_naive("Found ");
1234 /*
1235 * We want the next two printfs for normal, verbose, and quiet,
1236 * but not silent (in which case, we're twiddling, instead).
1237 */
1238 if (parent == ROOT) {
1239 aprint_naive("%s (root)", device_xname(dev));
1240 aprint_normal("%s (root)", device_xname(dev));
1241 } else {
1242 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1243 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1244 if (print)
1245 (void) (*print)(aux, NULL);
1246 }
1247
1248 /*
1249 * Before attaching, clobber any unfound devices that are
1250 * otherwise identical.
1251 * XXX code above is redundant?
1252 */
1253 drvname = dev->dv_cfdriver->cd_name;
1254 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1255 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1256 if (STREQ(cf->cf_name, drvname) &&
1257 cf->cf_unit == dev->dv_unit) {
1258 if (cf->cf_fstate == FSTATE_NOTFOUND)
1259 cf->cf_fstate = FSTATE_FOUND;
1260 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1261 /*
1262 * Bump the unit number on all starred cfdata
1263 * entries for this device.
1264 */
1265 if (cf->cf_fstate == FSTATE_STAR)
1266 cf->cf_unit++;
1267 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1268 }
1269 }
1270 }
1271 #ifdef __HAVE_DEVICE_REGISTER
1272 device_register(dev, aux);
1273 #endif
1274
1275 /* Let userland know */
1276 devmon_report_device(dev, true);
1277
1278 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1279 if (splash_progress_state)
1280 splash_progress_update(splash_progress_state);
1281 #endif
1282 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1283 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1284 if (splash_progress_state)
1285 splash_progress_update(splash_progress_state);
1286 #endif
1287
1288 if (!device_pmf_is_registered(dev))
1289 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1290
1291 config_process_deferred(&deferred_config_queue, dev);
1292 return dev;
1293 }
1294
1295 device_t
1296 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1297 {
1298
1299 return config_attach_loc(parent, cf, NULL, aux, print);
1300 }
1301
1302 /*
1303 * As above, but for pseudo-devices. Pseudo-devices attached in this
1304 * way are silently inserted into the device tree, and their children
1305 * attached.
1306 *
1307 * Note that because pseudo-devices are attached silently, any information
1308 * the attach routine wishes to print should be prefixed with the device
1309 * name by the attach routine.
1310 */
1311 device_t
1312 config_attach_pseudo(cfdata_t cf)
1313 {
1314 device_t dev;
1315
1316 dev = config_devalloc(ROOT, cf, NULL);
1317 if (!dev)
1318 return NULL;
1319
1320 /* XXX mark busy in cfdata */
1321
1322 if (cf->cf_fstate != FSTATE_STAR) {
1323 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1324 cf->cf_fstate = FSTATE_FOUND;
1325 }
1326
1327 config_devlink(dev);
1328
1329 #if 0 /* XXXJRT not yet */
1330 #ifdef __HAVE_DEVICE_REGISTER
1331 device_register(dev, NULL); /* like a root node */
1332 #endif
1333 #endif
1334 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1335 config_process_deferred(&deferred_config_queue, dev);
1336 return dev;
1337 }
1338
1339 /*
1340 * Caller must hold alldevs_mtx. config_collect_garbage() may
1341 * release and re-acquire alldevs_mtx, so callers should re-check
1342 * conditions such as alldevs_nwrite == 0 && alldevs_nread == 0 after
1343 * config_collect_garbage() returns.
1344 */
1345 static void
1346 config_collect_garbage(void)
1347 {
1348 device_t dv;
1349
1350 KASSERT(mutex_owned(&alldevs_mtx));
1351
1352 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1353 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1354 if (dv->dv_del_gen != 0)
1355 break;
1356 }
1357 if (dv == NULL) {
1358 alldevs_garbage = false;
1359 break;
1360 }
1361 config_devdelete(dv);
1362 }
1363 KASSERT(mutex_owned(&alldevs_mtx));
1364 }
1365
1366 /*
1367 * Detach a device. Optionally forced (e.g. because of hardware
1368 * removal) and quiet. Returns zero if successful, non-zero
1369 * (an error code) otherwise.
1370 *
1371 * Note that this code wants to be run from a process context, so
1372 * that the detach can sleep to allow processes which have a device
1373 * open to run and unwind their stacks.
1374 */
1375 int
1376 config_detach(device_t dev, int flags)
1377 {
1378 struct cftable *ct;
1379 cfdata_t cf;
1380 const struct cfattach *ca;
1381 struct cfdriver *cd;
1382 #ifdef DIAGNOSTIC
1383 device_t d;
1384 #endif
1385 int rv = 0, s;
1386
1387 #ifdef DIAGNOSTIC
1388 cf = dev->dv_cfdata;
1389 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1390 cf->cf_fstate != FSTATE_STAR)
1391 panic("config_detach: %s: bad device fstate %d",
1392 device_xname(dev), cf ? cf->cf_fstate : -1);
1393 #endif
1394 cd = dev->dv_cfdriver;
1395 KASSERT(cd != NULL);
1396
1397 ca = dev->dv_cfattach;
1398 KASSERT(ca != NULL);
1399
1400 s = config_alldevs_lock();
1401 if (dev->dv_del_gen != 0) {
1402 config_alldevs_unlock(s);
1403 #ifdef DIAGNOSTIC
1404 printf("%s: %s is already detached\n", __func__,
1405 device_xname(dev));
1406 #endif /* DIAGNOSTIC */
1407 return ENOENT;
1408 }
1409 alldevs_nwrite++;
1410 config_alldevs_unlock(s);
1411
1412 if (!detachall &&
1413 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1414 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1415 rv = EOPNOTSUPP;
1416 } else if (ca->ca_detach != NULL) {
1417 rv = (*ca->ca_detach)(dev, flags);
1418 } else
1419 rv = EOPNOTSUPP;
1420
1421 /*
1422 * If it was not possible to detach the device, then we either
1423 * panic() (for the forced but failed case), or return an error.
1424 *
1425 * If it was possible to detach the device, ensure that the
1426 * device is deactivated.
1427 */
1428 if (rv == 0)
1429 dev->dv_flags &= ~DVF_ACTIVE;
1430 else if ((flags & DETACH_FORCE) == 0)
1431 goto out;
1432 else {
1433 panic("config_detach: forced detach of %s failed (%d)",
1434 device_xname(dev), rv);
1435 }
1436
1437 /*
1438 * The device has now been successfully detached.
1439 */
1440
1441 /* Let userland know */
1442 devmon_report_device(dev, false);
1443
1444 #ifdef DIAGNOSTIC
1445 /*
1446 * Sanity: If you're successfully detached, you should have no
1447 * children. (Note that because children must be attached
1448 * after parents, we only need to search the latter part of
1449 * the list.)
1450 */
1451 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1452 d = TAILQ_NEXT(d, dv_list)) {
1453 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1454 printf("config_detach: detached device %s"
1455 " has children %s\n", device_xname(dev), device_xname(d));
1456 panic("config_detach");
1457 }
1458 }
1459 #endif
1460
1461 /* notify the parent that the child is gone */
1462 if (dev->dv_parent) {
1463 device_t p = dev->dv_parent;
1464 if (p->dv_cfattach->ca_childdetached)
1465 (*p->dv_cfattach->ca_childdetached)(p, dev);
1466 }
1467
1468 /*
1469 * Mark cfdata to show that the unit can be reused, if possible.
1470 */
1471 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1472 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1473 if (STREQ(cf->cf_name, cd->cd_name)) {
1474 if (cf->cf_fstate == FSTATE_FOUND &&
1475 cf->cf_unit == dev->dv_unit)
1476 cf->cf_fstate = FSTATE_NOTFOUND;
1477 #ifdef __BROKEN_CONFIG_UNIT_USAGE
1478 /*
1479 * Note that we can only re-use a starred
1480 * unit number if the unit being detached
1481 * had the last assigned unit number.
1482 */
1483 if (cf->cf_fstate == FSTATE_STAR &&
1484 cf->cf_unit == dev->dv_unit + 1)
1485 cf->cf_unit--;
1486 #endif /* __BROKEN_CONFIG_UNIT_USAGE */
1487 }
1488 }
1489 }
1490
1491 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1492 aprint_normal_dev(dev, "detached\n");
1493
1494 out:
1495 s = config_alldevs_lock();
1496 KASSERT(alldevs_nwrite != 0);
1497 --alldevs_nwrite;
1498 if (rv != 0)
1499 ;
1500 else if (dev->dv_del_gen != 0)
1501 ;
1502 else {
1503 dev->dv_del_gen = alldevs_gen;
1504 alldevs_garbage = true;
1505 }
1506 config_collect_garbage();
1507 config_alldevs_unlock(s);
1508
1509 return rv;
1510 }
1511
1512 int
1513 config_detach_children(device_t parent, int flags)
1514 {
1515 device_t dv;
1516 deviter_t di;
1517 int error = 0;
1518
1519 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1520 dv = deviter_next(&di)) {
1521 if (device_parent(dv) != parent)
1522 continue;
1523 if ((error = config_detach(dv, flags)) != 0)
1524 break;
1525 }
1526 deviter_release(&di);
1527 return error;
1528 }
1529
1530 device_t
1531 shutdown_first(struct shutdown_state *s)
1532 {
1533 if (!s->initialized) {
1534 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1535 s->initialized = true;
1536 }
1537 return shutdown_next(s);
1538 }
1539
1540 device_t
1541 shutdown_next(struct shutdown_state *s)
1542 {
1543 device_t dv;
1544
1545 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1546 ;
1547
1548 if (dv == NULL)
1549 s->initialized = false;
1550
1551 return dv;
1552 }
1553
1554 bool
1555 config_detach_all(int how)
1556 {
1557 static struct shutdown_state s;
1558 device_t curdev;
1559 bool progress = false;
1560
1561 if ((how & RB_NOSYNC) != 0)
1562 return false;
1563
1564 for (curdev = shutdown_first(&s); curdev != NULL;
1565 curdev = shutdown_next(&s)) {
1566 aprint_debug(" detaching %s, ", device_xname(curdev));
1567 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1568 progress = true;
1569 aprint_debug("success.");
1570 } else
1571 aprint_debug("failed.");
1572 }
1573 return progress;
1574 }
1575
1576 static bool
1577 device_is_ancestor_of(device_t ancestor, device_t descendant)
1578 {
1579 device_t dv;
1580
1581 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1582 if (device_parent(dv) == ancestor)
1583 return true;
1584 }
1585 return false;
1586 }
1587
1588 int
1589 config_deactivate(device_t dev)
1590 {
1591 deviter_t di;
1592 const struct cfattach *ca;
1593 device_t descendant;
1594 int s, rv = 0, oflags;
1595
1596 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1597 descendant != NULL;
1598 descendant = deviter_next(&di)) {
1599 if (dev != descendant &&
1600 !device_is_ancestor_of(dev, descendant))
1601 continue;
1602
1603 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1604 continue;
1605
1606 ca = descendant->dv_cfattach;
1607 oflags = descendant->dv_flags;
1608
1609 descendant->dv_flags &= ~DVF_ACTIVE;
1610 if (ca->ca_activate == NULL)
1611 continue;
1612 s = splhigh();
1613 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1614 splx(s);
1615 if (rv != 0)
1616 descendant->dv_flags = oflags;
1617 }
1618 deviter_release(&di);
1619 return rv;
1620 }
1621
1622 /*
1623 * Defer the configuration of the specified device until all
1624 * of its parent's devices have been attached.
1625 */
1626 void
1627 config_defer(device_t dev, void (*func)(device_t))
1628 {
1629 struct deferred_config *dc;
1630
1631 if (dev->dv_parent == NULL)
1632 panic("config_defer: can't defer config of a root device");
1633
1634 #ifdef DIAGNOSTIC
1635 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1636 if (dc->dc_dev == dev)
1637 panic("config_defer: deferred twice");
1638 }
1639 #endif
1640
1641 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1642 if (dc == NULL)
1643 panic("config_defer: unable to allocate callback");
1644
1645 dc->dc_dev = dev;
1646 dc->dc_func = func;
1647 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1648 config_pending_incr();
1649 }
1650
1651 /*
1652 * Defer some autoconfiguration for a device until after interrupts
1653 * are enabled.
1654 */
1655 void
1656 config_interrupts(device_t dev, void (*func)(device_t))
1657 {
1658 struct deferred_config *dc;
1659
1660 /*
1661 * If interrupts are enabled, callback now.
1662 */
1663 if (cold == 0) {
1664 (*func)(dev);
1665 return;
1666 }
1667
1668 #ifdef DIAGNOSTIC
1669 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1670 if (dc->dc_dev == dev)
1671 panic("config_interrupts: deferred twice");
1672 }
1673 #endif
1674
1675 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1676 if (dc == NULL)
1677 panic("config_interrupts: unable to allocate callback");
1678
1679 dc->dc_dev = dev;
1680 dc->dc_func = func;
1681 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1682 config_pending_incr();
1683 }
1684
1685 /*
1686 * Process a deferred configuration queue.
1687 */
1688 static void
1689 config_process_deferred(struct deferred_config_head *queue,
1690 device_t parent)
1691 {
1692 struct deferred_config *dc, *ndc;
1693
1694 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1695 ndc = TAILQ_NEXT(dc, dc_queue);
1696 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1697 TAILQ_REMOVE(queue, dc, dc_queue);
1698 (*dc->dc_func)(dc->dc_dev);
1699 kmem_free(dc, sizeof(*dc));
1700 config_pending_decr();
1701 }
1702 }
1703 }
1704
1705 /*
1706 * Manipulate the config_pending semaphore.
1707 */
1708 void
1709 config_pending_incr(void)
1710 {
1711
1712 mutex_enter(&config_misc_lock);
1713 config_pending++;
1714 mutex_exit(&config_misc_lock);
1715 }
1716
1717 void
1718 config_pending_decr(void)
1719 {
1720
1721 #ifdef DIAGNOSTIC
1722 if (config_pending == 0)
1723 panic("config_pending_decr: config_pending == 0");
1724 #endif
1725 mutex_enter(&config_misc_lock);
1726 config_pending--;
1727 if (config_pending == 0)
1728 cv_broadcast(&config_misc_cv);
1729 mutex_exit(&config_misc_lock);
1730 }
1731
1732 /*
1733 * Register a "finalization" routine. Finalization routines are
1734 * called iteratively once all real devices have been found during
1735 * autoconfiguration, for as long as any one finalizer has done
1736 * any work.
1737 */
1738 int
1739 config_finalize_register(device_t dev, int (*fn)(device_t))
1740 {
1741 struct finalize_hook *f;
1742
1743 /*
1744 * If finalization has already been done, invoke the
1745 * callback function now.
1746 */
1747 if (config_finalize_done) {
1748 while ((*fn)(dev) != 0)
1749 /* loop */ ;
1750 }
1751
1752 /* Ensure this isn't already on the list. */
1753 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1754 if (f->f_func == fn && f->f_dev == dev)
1755 return EEXIST;
1756 }
1757
1758 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1759 f->f_func = fn;
1760 f->f_dev = dev;
1761 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1762
1763 return 0;
1764 }
1765
1766 void
1767 config_finalize(void)
1768 {
1769 struct finalize_hook *f;
1770 struct pdevinit *pdev;
1771 extern struct pdevinit pdevinit[];
1772 int errcnt, rv;
1773
1774 /*
1775 * Now that device driver threads have been created, wait for
1776 * them to finish any deferred autoconfiguration.
1777 */
1778 mutex_enter(&config_misc_lock);
1779 while (config_pending != 0)
1780 cv_wait(&config_misc_cv, &config_misc_lock);
1781 mutex_exit(&config_misc_lock);
1782
1783 KERNEL_LOCK(1, NULL);
1784
1785 /* Attach pseudo-devices. */
1786 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1787 (*pdev->pdev_attach)(pdev->pdev_count);
1788
1789 /* Run the hooks until none of them does any work. */
1790 do {
1791 rv = 0;
1792 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1793 rv |= (*f->f_func)(f->f_dev);
1794 } while (rv != 0);
1795
1796 config_finalize_done = 1;
1797
1798 /* Now free all the hooks. */
1799 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1800 TAILQ_REMOVE(&config_finalize_list, f, f_list);
1801 kmem_free(f, sizeof(*f));
1802 }
1803
1804 KERNEL_UNLOCK_ONE(NULL);
1805
1806 errcnt = aprint_get_error_count();
1807 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1808 (boothowto & AB_VERBOSE) == 0) {
1809 mutex_enter(&config_misc_lock);
1810 if (config_do_twiddle) {
1811 config_do_twiddle = 0;
1812 printf_nolog(" done.\n");
1813 }
1814 mutex_exit(&config_misc_lock);
1815 if (errcnt != 0) {
1816 printf("WARNING: %d error%s while detecting hardware; "
1817 "check system log.\n", errcnt,
1818 errcnt == 1 ? "" : "s");
1819 }
1820 }
1821 }
1822
1823 void
1824 config_twiddle_init()
1825 {
1826
1827 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
1828 config_do_twiddle = 1;
1829 }
1830 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
1831 }
1832
1833 void
1834 config_twiddle_fn(void *cookie)
1835 {
1836
1837 mutex_enter(&config_misc_lock);
1838 if (config_do_twiddle) {
1839 twiddle();
1840 callout_schedule(&config_twiddle_ch, mstohz(100));
1841 }
1842 mutex_exit(&config_misc_lock);
1843 }
1844
1845 static int
1846 config_alldevs_lock(void)
1847 {
1848 int s;
1849
1850 s = splhigh();
1851 mutex_enter(&alldevs_mtx);
1852 return s;
1853 }
1854
1855 static void
1856 config_alldevs_unlock(int s)
1857 {
1858 mutex_exit(&alldevs_mtx);
1859 splx(s);
1860 }
1861
1862 /*
1863 * device_lookup:
1864 *
1865 * Look up a device instance for a given driver.
1866 */
1867 device_t
1868 device_lookup(cfdriver_t cd, int unit)
1869 {
1870 device_t dv;
1871 int s;
1872
1873 s = config_alldevs_lock();
1874 config_collect_garbage();
1875 KASSERT(mutex_owned(&alldevs_mtx));
1876 if (unit < 0 || unit >= cd->cd_ndevs)
1877 dv = NULL;
1878 else
1879 dv = cd->cd_devs[unit];
1880 config_alldevs_unlock(s);
1881
1882 KASSERT(!mutex_owned(&alldevs_mtx));
1883 return dv;
1884 }
1885
1886 /*
1887 * device_lookup:
1888 *
1889 * Look up a device instance for a given driver.
1890 */
1891 void *
1892 device_lookup_private(cfdriver_t cd, int unit)
1893 {
1894 device_t dv;
1895 int s;
1896 void *priv;
1897
1898 s = config_alldevs_lock();
1899 config_collect_garbage();
1900 KASSERT(mutex_owned(&alldevs_mtx));
1901 if (unit < 0 || unit >= cd->cd_ndevs)
1902 priv = NULL;
1903 else if ((dv = cd->cd_devs[unit]) == NULL)
1904 priv = NULL;
1905 else
1906 priv = dv->dv_private;
1907 config_alldevs_unlock(s);
1908
1909 KASSERT(!mutex_owned(&alldevs_mtx));
1910 return priv;
1911 }
1912
1913 /*
1914 * Accessor functions for the device_t type.
1915 */
1916 devclass_t
1917 device_class(device_t dev)
1918 {
1919
1920 return dev->dv_class;
1921 }
1922
1923 cfdata_t
1924 device_cfdata(device_t dev)
1925 {
1926
1927 return dev->dv_cfdata;
1928 }
1929
1930 cfdriver_t
1931 device_cfdriver(device_t dev)
1932 {
1933
1934 return dev->dv_cfdriver;
1935 }
1936
1937 cfattach_t
1938 device_cfattach(device_t dev)
1939 {
1940
1941 return dev->dv_cfattach;
1942 }
1943
1944 int
1945 device_unit(device_t dev)
1946 {
1947
1948 return dev->dv_unit;
1949 }
1950
1951 const char *
1952 device_xname(device_t dev)
1953 {
1954
1955 return dev->dv_xname;
1956 }
1957
1958 device_t
1959 device_parent(device_t dev)
1960 {
1961
1962 return dev->dv_parent;
1963 }
1964
1965 bool
1966 device_activation(device_t dev, devact_level_t level)
1967 {
1968 int active_flags;
1969
1970 active_flags = DVF_ACTIVE;
1971 switch (level) {
1972 case DEVACT_LEVEL_FULL:
1973 active_flags |= DVF_CLASS_SUSPENDED;
1974 /*FALLTHROUGH*/
1975 case DEVACT_LEVEL_DRIVER:
1976 active_flags |= DVF_DRIVER_SUSPENDED;
1977 /*FALLTHROUGH*/
1978 case DEVACT_LEVEL_BUS:
1979 active_flags |= DVF_BUS_SUSPENDED;
1980 break;
1981 }
1982
1983 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
1984 }
1985
1986 bool
1987 device_is_active(device_t dev)
1988 {
1989 int active_flags;
1990
1991 active_flags = DVF_ACTIVE;
1992 active_flags |= DVF_CLASS_SUSPENDED;
1993 active_flags |= DVF_DRIVER_SUSPENDED;
1994 active_flags |= DVF_BUS_SUSPENDED;
1995
1996 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
1997 }
1998
1999 bool
2000 device_is_enabled(device_t dev)
2001 {
2002 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
2003 }
2004
2005 bool
2006 device_has_power(device_t dev)
2007 {
2008 int active_flags;
2009
2010 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
2011
2012 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
2013 }
2014
2015 int
2016 device_locator(device_t dev, u_int locnum)
2017 {
2018
2019 KASSERT(dev->dv_locators != NULL);
2020 return dev->dv_locators[locnum];
2021 }
2022
2023 void *
2024 device_private(device_t dev)
2025 {
2026
2027 /*
2028 * The reason why device_private(NULL) is allowed is to simplify the
2029 * work of a lot of userspace request handlers (i.e., c/bdev
2030 * handlers) which grab cfdriver_t->cd_units[n].
2031 * It avoids having them test for it to be NULL and only then calling
2032 * device_private.
2033 */
2034 return dev == NULL ? NULL : dev->dv_private;
2035 }
2036
2037 prop_dictionary_t
2038 device_properties(device_t dev)
2039 {
2040
2041 return dev->dv_properties;
2042 }
2043
2044 /*
2045 * device_is_a:
2046 *
2047 * Returns true if the device is an instance of the specified
2048 * driver.
2049 */
2050 bool
2051 device_is_a(device_t dev, const char *dname)
2052 {
2053
2054 return strcmp(dev->dv_cfdriver->cd_name, dname) == 0;
2055 }
2056
2057 /*
2058 * device_find_by_xname:
2059 *
2060 * Returns the device of the given name or NULL if it doesn't exist.
2061 */
2062 device_t
2063 device_find_by_xname(const char *name)
2064 {
2065 device_t dv;
2066 deviter_t di;
2067
2068 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2069 if (strcmp(device_xname(dv), name) == 0)
2070 break;
2071 }
2072 deviter_release(&di);
2073
2074 return dv;
2075 }
2076
2077 /*
2078 * device_find_by_driver_unit:
2079 *
2080 * Returns the device of the given driver name and unit or
2081 * NULL if it doesn't exist.
2082 */
2083 device_t
2084 device_find_by_driver_unit(const char *name, int unit)
2085 {
2086 struct cfdriver *cd;
2087
2088 if ((cd = config_cfdriver_lookup(name)) == NULL)
2089 return NULL;
2090 return device_lookup(cd, unit);
2091 }
2092
2093 /*
2094 * Power management related functions.
2095 */
2096
2097 bool
2098 device_pmf_is_registered(device_t dev)
2099 {
2100 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2101 }
2102
2103 bool
2104 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
2105 {
2106 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2107 return true;
2108 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2109 return false;
2110 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_DRIVER &&
2111 dev->dv_driver_suspend != NULL &&
2112 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
2113 return false;
2114
2115 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2116 return true;
2117 }
2118
2119 bool
2120 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
2121 {
2122 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2123 return true;
2124 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2125 return false;
2126 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_DRIVER &&
2127 dev->dv_driver_resume != NULL &&
2128 !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2129 return false;
2130
2131 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2132 return true;
2133 }
2134
2135 bool
2136 device_pmf_driver_shutdown(device_t dev, int how)
2137 {
2138
2139 if (*dev->dv_driver_shutdown != NULL &&
2140 !(*dev->dv_driver_shutdown)(dev, how))
2141 return false;
2142 return true;
2143 }
2144
2145 bool
2146 device_pmf_driver_register(device_t dev,
2147 bool (*suspend)(device_t PMF_FN_PROTO),
2148 bool (*resume)(device_t PMF_FN_PROTO),
2149 bool (*shutdown)(device_t, int))
2150 {
2151 dev->dv_driver_suspend = suspend;
2152 dev->dv_driver_resume = resume;
2153 dev->dv_driver_shutdown = shutdown;
2154 dev->dv_flags |= DVF_POWER_HANDLERS;
2155 return true;
2156 }
2157
2158 static const char *
2159 curlwp_name(void)
2160 {
2161 if (curlwp->l_name != NULL)
2162 return curlwp->l_name;
2163 else
2164 return curlwp->l_proc->p_comm;
2165 }
2166
2167 void
2168 device_pmf_driver_deregister(device_t dev)
2169 {
2170 device_lock_t dvl = device_getlock(dev);
2171
2172 dev->dv_driver_suspend = NULL;
2173 dev->dv_driver_resume = NULL;
2174
2175 mutex_enter(&dvl->dvl_mtx);
2176 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2177 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2178 /* Wake a thread that waits for the lock. That
2179 * thread will fail to acquire the lock, and then
2180 * it will wake the next thread that waits for the
2181 * lock, or else it will wake us.
2182 */
2183 cv_signal(&dvl->dvl_cv);
2184 pmflock_debug(dev, __func__, __LINE__);
2185 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2186 pmflock_debug(dev, __func__, __LINE__);
2187 }
2188 mutex_exit(&dvl->dvl_mtx);
2189 }
2190
2191 bool
2192 device_pmf_driver_child_register(device_t dev)
2193 {
2194 device_t parent = device_parent(dev);
2195
2196 if (parent == NULL || parent->dv_driver_child_register == NULL)
2197 return true;
2198 return (*parent->dv_driver_child_register)(dev);
2199 }
2200
2201 void
2202 device_pmf_driver_set_child_register(device_t dev,
2203 bool (*child_register)(device_t))
2204 {
2205 dev->dv_driver_child_register = child_register;
2206 }
2207
2208 static void
2209 pmflock_debug(device_t dev, const char *func, int line)
2210 {
2211 device_lock_t dvl = device_getlock(dev);
2212
2213 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2214 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2215 dev->dv_flags);
2216 }
2217
2218 static bool
2219 device_pmf_lock1(device_t dev)
2220 {
2221 device_lock_t dvl = device_getlock(dev);
2222
2223 while (device_pmf_is_registered(dev) &&
2224 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2225 dvl->dvl_nwait++;
2226 pmflock_debug(dev, __func__, __LINE__);
2227 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2228 pmflock_debug(dev, __func__, __LINE__);
2229 dvl->dvl_nwait--;
2230 }
2231 if (!device_pmf_is_registered(dev)) {
2232 pmflock_debug(dev, __func__, __LINE__);
2233 /* We could not acquire the lock, but some other thread may
2234 * wait for it, also. Wake that thread.
2235 */
2236 cv_signal(&dvl->dvl_cv);
2237 return false;
2238 }
2239 dvl->dvl_nlock++;
2240 dvl->dvl_holder = curlwp;
2241 pmflock_debug(dev, __func__, __LINE__);
2242 return true;
2243 }
2244
2245 bool
2246 device_pmf_lock(device_t dev)
2247 {
2248 bool rc;
2249 device_lock_t dvl = device_getlock(dev);
2250
2251 mutex_enter(&dvl->dvl_mtx);
2252 rc = device_pmf_lock1(dev);
2253 mutex_exit(&dvl->dvl_mtx);
2254
2255 return rc;
2256 }
2257
2258 void
2259 device_pmf_unlock(device_t dev)
2260 {
2261 device_lock_t dvl = device_getlock(dev);
2262
2263 KASSERT(dvl->dvl_nlock > 0);
2264 mutex_enter(&dvl->dvl_mtx);
2265 if (--dvl->dvl_nlock == 0)
2266 dvl->dvl_holder = NULL;
2267 cv_signal(&dvl->dvl_cv);
2268 pmflock_debug(dev, __func__, __LINE__);
2269 mutex_exit(&dvl->dvl_mtx);
2270 }
2271
2272 device_lock_t
2273 device_getlock(device_t dev)
2274 {
2275 return &dev->dv_lock;
2276 }
2277
2278 void *
2279 device_pmf_bus_private(device_t dev)
2280 {
2281 return dev->dv_bus_private;
2282 }
2283
2284 bool
2285 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2286 {
2287 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2288 return true;
2289 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2290 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2291 return false;
2292 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_BUS &&
2293 dev->dv_bus_suspend != NULL &&
2294 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2295 return false;
2296
2297 dev->dv_flags |= DVF_BUS_SUSPENDED;
2298 return true;
2299 }
2300
2301 bool
2302 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2303 {
2304 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2305 return true;
2306 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_BUS &&
2307 dev->dv_bus_resume != NULL &&
2308 !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2309 return false;
2310
2311 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2312 return true;
2313 }
2314
2315 bool
2316 device_pmf_bus_shutdown(device_t dev, int how)
2317 {
2318
2319 if (*dev->dv_bus_shutdown != NULL &&
2320 !(*dev->dv_bus_shutdown)(dev, how))
2321 return false;
2322 return true;
2323 }
2324
2325 void
2326 device_pmf_bus_register(device_t dev, void *priv,
2327 bool (*suspend)(device_t PMF_FN_PROTO),
2328 bool (*resume)(device_t PMF_FN_PROTO),
2329 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2330 {
2331 dev->dv_bus_private = priv;
2332 dev->dv_bus_resume = resume;
2333 dev->dv_bus_suspend = suspend;
2334 dev->dv_bus_shutdown = shutdown;
2335 dev->dv_bus_deregister = deregister;
2336 }
2337
2338 void
2339 device_pmf_bus_deregister(device_t dev)
2340 {
2341 if (dev->dv_bus_deregister == NULL)
2342 return;
2343 (*dev->dv_bus_deregister)(dev);
2344 dev->dv_bus_private = NULL;
2345 dev->dv_bus_suspend = NULL;
2346 dev->dv_bus_resume = NULL;
2347 dev->dv_bus_deregister = NULL;
2348 }
2349
2350 void *
2351 device_pmf_class_private(device_t dev)
2352 {
2353 return dev->dv_class_private;
2354 }
2355
2356 bool
2357 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2358 {
2359 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2360 return true;
2361 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_CLASS &&
2362 dev->dv_class_suspend != NULL &&
2363 !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2364 return false;
2365
2366 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2367 return true;
2368 }
2369
2370 bool
2371 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2372 {
2373 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2374 return true;
2375 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2376 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2377 return false;
2378 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_CLASS &&
2379 dev->dv_class_resume != NULL &&
2380 !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2381 return false;
2382
2383 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2384 return true;
2385 }
2386
2387 void
2388 device_pmf_class_register(device_t dev, void *priv,
2389 bool (*suspend)(device_t PMF_FN_PROTO),
2390 bool (*resume)(device_t PMF_FN_PROTO),
2391 void (*deregister)(device_t))
2392 {
2393 dev->dv_class_private = priv;
2394 dev->dv_class_suspend = suspend;
2395 dev->dv_class_resume = resume;
2396 dev->dv_class_deregister = deregister;
2397 }
2398
2399 void
2400 device_pmf_class_deregister(device_t dev)
2401 {
2402 if (dev->dv_class_deregister == NULL)
2403 return;
2404 (*dev->dv_class_deregister)(dev);
2405 dev->dv_class_private = NULL;
2406 dev->dv_class_suspend = NULL;
2407 dev->dv_class_resume = NULL;
2408 dev->dv_class_deregister = NULL;
2409 }
2410
2411 bool
2412 device_active(device_t dev, devactive_t type)
2413 {
2414 size_t i;
2415
2416 if (dev->dv_activity_count == 0)
2417 return false;
2418
2419 for (i = 0; i < dev->dv_activity_count; ++i) {
2420 if (dev->dv_activity_handlers[i] == NULL)
2421 break;
2422 (*dev->dv_activity_handlers[i])(dev, type);
2423 }
2424
2425 return true;
2426 }
2427
2428 bool
2429 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2430 {
2431 void (**new_handlers)(device_t, devactive_t);
2432 void (**old_handlers)(device_t, devactive_t);
2433 size_t i, old_size, new_size;
2434 int s;
2435
2436 old_handlers = dev->dv_activity_handlers;
2437 old_size = dev->dv_activity_count;
2438
2439 for (i = 0; i < old_size; ++i) {
2440 KASSERT(old_handlers[i] != handler);
2441 if (old_handlers[i] == NULL) {
2442 old_handlers[i] = handler;
2443 return true;
2444 }
2445 }
2446
2447 new_size = old_size + 4;
2448 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2449
2450 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2451 new_handlers[old_size] = handler;
2452 memset(new_handlers + old_size + 1, 0,
2453 sizeof(int [new_size - (old_size+1)]));
2454
2455 s = splhigh();
2456 dev->dv_activity_count = new_size;
2457 dev->dv_activity_handlers = new_handlers;
2458 splx(s);
2459
2460 if (old_handlers != NULL)
2461 kmem_free(old_handlers, sizeof(void * [old_size]));
2462
2463 return true;
2464 }
2465
2466 void
2467 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2468 {
2469 void (**old_handlers)(device_t, devactive_t);
2470 size_t i, old_size;
2471 int s;
2472
2473 old_handlers = dev->dv_activity_handlers;
2474 old_size = dev->dv_activity_count;
2475
2476 for (i = 0; i < old_size; ++i) {
2477 if (old_handlers[i] == handler)
2478 break;
2479 if (old_handlers[i] == NULL)
2480 return; /* XXX panic? */
2481 }
2482
2483 if (i == old_size)
2484 return; /* XXX panic? */
2485
2486 for (; i < old_size - 1; ++i) {
2487 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2488 continue;
2489
2490 if (i == 0) {
2491 s = splhigh();
2492 dev->dv_activity_count = 0;
2493 dev->dv_activity_handlers = NULL;
2494 splx(s);
2495 kmem_free(old_handlers, sizeof(void *[old_size]));
2496 }
2497 return;
2498 }
2499 old_handlers[i] = NULL;
2500 }
2501
2502 /* Return true iff the device_t `dev' exists at generation `gen'. */
2503 static bool
2504 device_exists_at(device_t dv, devgen_t gen)
2505 {
2506 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2507 dv->dv_add_gen <= gen;
2508 }
2509
2510 static bool
2511 deviter_visits(const deviter_t *di, device_t dv)
2512 {
2513 return device_exists_at(dv, di->di_gen);
2514 }
2515
2516 /*
2517 * Device Iteration
2518 *
2519 * deviter_t: a device iterator. Holds state for a "walk" visiting
2520 * each device_t's in the device tree.
2521 *
2522 * deviter_init(di, flags): initialize the device iterator `di'
2523 * to "walk" the device tree. deviter_next(di) will return
2524 * the first device_t in the device tree, or NULL if there are
2525 * no devices.
2526 *
2527 * `flags' is one or more of DEVITER_F_RW, indicating that the
2528 * caller intends to modify the device tree by calling
2529 * config_detach(9) on devices in the order that the iterator
2530 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2531 * nearest the "root" of the device tree to be returned, first;
2532 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2533 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2534 * indicating both that deviter_init() should not respect any
2535 * locks on the device tree, and that deviter_next(di) may run
2536 * in more than one LWP before the walk has finished.
2537 *
2538 * Only one DEVITER_F_RW iterator may be in the device tree at
2539 * once.
2540 *
2541 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2542 *
2543 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2544 * DEVITER_F_LEAVES_FIRST are used in combination.
2545 *
2546 * deviter_first(di, flags): initialize the device iterator `di'
2547 * and return the first device_t in the device tree, or NULL
2548 * if there are no devices. The statement
2549 *
2550 * dv = deviter_first(di);
2551 *
2552 * is shorthand for
2553 *
2554 * deviter_init(di);
2555 * dv = deviter_next(di);
2556 *
2557 * deviter_next(di): return the next device_t in the device tree,
2558 * or NULL if there are no more devices. deviter_next(di)
2559 * is undefined if `di' was not initialized with deviter_init() or
2560 * deviter_first().
2561 *
2562 * deviter_release(di): stops iteration (subsequent calls to
2563 * deviter_next() will return NULL), releases any locks and
2564 * resources held by the device iterator.
2565 *
2566 * Device iteration does not return device_t's in any particular
2567 * order. An iterator will never return the same device_t twice.
2568 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2569 * is called repeatedly on the same `di', it will eventually return
2570 * NULL. It is ok to attach/detach devices during device iteration.
2571 */
2572 void
2573 deviter_init(deviter_t *di, deviter_flags_t flags)
2574 {
2575 device_t dv;
2576 int s;
2577
2578 memset(di, 0, sizeof(*di));
2579
2580 s = config_alldevs_lock();
2581 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2582 flags |= DEVITER_F_RW;
2583
2584 if ((flags & DEVITER_F_RW) != 0)
2585 alldevs_nwrite++;
2586 else
2587 alldevs_nread++;
2588 di->di_gen = alldevs_gen++;
2589 config_alldevs_unlock(s);
2590
2591 di->di_flags = flags;
2592
2593 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2594 case DEVITER_F_LEAVES_FIRST:
2595 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2596 if (!deviter_visits(di, dv))
2597 continue;
2598 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2599 }
2600 break;
2601 case DEVITER_F_ROOT_FIRST:
2602 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2603 if (!deviter_visits(di, dv))
2604 continue;
2605 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2606 }
2607 break;
2608 default:
2609 break;
2610 }
2611
2612 deviter_reinit(di);
2613 }
2614
2615 static void
2616 deviter_reinit(deviter_t *di)
2617 {
2618 if ((di->di_flags & DEVITER_F_RW) != 0)
2619 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2620 else
2621 di->di_prev = TAILQ_FIRST(&alldevs);
2622 }
2623
2624 device_t
2625 deviter_first(deviter_t *di, deviter_flags_t flags)
2626 {
2627 deviter_init(di, flags);
2628 return deviter_next(di);
2629 }
2630
2631 static device_t
2632 deviter_next2(deviter_t *di)
2633 {
2634 device_t dv;
2635
2636 dv = di->di_prev;
2637
2638 if (dv == NULL)
2639 ;
2640 else if ((di->di_flags & DEVITER_F_RW) != 0)
2641 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2642 else
2643 di->di_prev = TAILQ_NEXT(dv, dv_list);
2644
2645 return dv;
2646 }
2647
2648 static device_t
2649 deviter_next1(deviter_t *di)
2650 {
2651 device_t dv;
2652
2653 do {
2654 dv = deviter_next2(di);
2655 } while (dv != NULL && !deviter_visits(di, dv));
2656
2657 return dv;
2658 }
2659
2660 device_t
2661 deviter_next(deviter_t *di)
2662 {
2663 device_t dv = NULL;
2664
2665 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2666 case 0:
2667 return deviter_next1(di);
2668 case DEVITER_F_LEAVES_FIRST:
2669 while (di->di_curdepth >= 0) {
2670 if ((dv = deviter_next1(di)) == NULL) {
2671 di->di_curdepth--;
2672 deviter_reinit(di);
2673 } else if (dv->dv_depth == di->di_curdepth)
2674 break;
2675 }
2676 return dv;
2677 case DEVITER_F_ROOT_FIRST:
2678 while (di->di_curdepth <= di->di_maxdepth) {
2679 if ((dv = deviter_next1(di)) == NULL) {
2680 di->di_curdepth++;
2681 deviter_reinit(di);
2682 } else if (dv->dv_depth == di->di_curdepth)
2683 break;
2684 }
2685 return dv;
2686 default:
2687 return NULL;
2688 }
2689 }
2690
2691 void
2692 deviter_release(deviter_t *di)
2693 {
2694 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2695 int s;
2696
2697 s = config_alldevs_lock();
2698 if (rw)
2699 --alldevs_nwrite;
2700 else
2701 --alldevs_nread;
2702 /* XXX wake a garbage-collection thread */
2703 config_alldevs_unlock(s);
2704 }
2705
2706 static void
2707 sysctl_detach_setup(struct sysctllog **clog)
2708 {
2709 const struct sysctlnode *node = NULL;
2710
2711 sysctl_createv(clog, 0, NULL, &node,
2712 CTLFLAG_PERMANENT,
2713 CTLTYPE_NODE, "kern", NULL,
2714 NULL, 0, NULL, 0,
2715 CTL_KERN, CTL_EOL);
2716
2717 if (node == NULL)
2718 return;
2719
2720 sysctl_createv(clog, 0, &node, NULL,
2721 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2722 CTLTYPE_INT, "detachall",
2723 SYSCTL_DESCR("Detach all devices at shutdown"),
2724 NULL, 0, &detachall, 0,
2725 CTL_CREATE, CTL_EOL);
2726 }
2727