Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.191
      1 /* $NetBSD: subr_autoconf.c,v 1.191 2010/01/05 22:42:16 dyoung Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.191 2010/01/05 22:42:16 dyoung Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #endif
     85 
     86 #include <sys/param.h>
     87 #include <sys/device.h>
     88 #include <sys/disklabel.h>
     89 #include <sys/conf.h>
     90 #include <sys/kauth.h>
     91 #include <sys/malloc.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/vnode.h>
    102 #include <sys/mount.h>
    103 #include <sys/namei.h>
    104 #include <sys/unistd.h>
    105 #include <sys/fcntl.h>
    106 #include <sys/lockf.h>
    107 #include <sys/callout.h>
    108 #include <sys/devmon.h>
    109 #include <sys/cpu.h>
    110 #include <sys/sysctl.h>
    111 
    112 #include <sys/disk.h>
    113 
    114 #include <machine/limits.h>
    115 
    116 #if defined(__i386__) && defined(_KERNEL_OPT)
    117 #include "opt_splash.h"
    118 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    119 #include <dev/splash/splash.h>
    120 extern struct splash_progress *splash_progress_state;
    121 #endif
    122 #endif
    123 
    124 /*
    125  * Autoconfiguration subroutines.
    126  */
    127 
    128 /*
    129  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    130  * devices and drivers are found via these tables.
    131  */
    132 extern struct cfdata cfdata[];
    133 extern const short cfroots[];
    134 
    135 /*
    136  * List of all cfdriver structures.  We use this to detect duplicates
    137  * when other cfdrivers are loaded.
    138  */
    139 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    140 extern struct cfdriver * const cfdriver_list_initial[];
    141 
    142 /*
    143  * Initial list of cfattach's.
    144  */
    145 extern const struct cfattachinit cfattachinit[];
    146 
    147 /*
    148  * List of cfdata tables.  We always have one such list -- the one
    149  * built statically when the kernel was configured.
    150  */
    151 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    152 static struct cftable initcftable;
    153 
    154 #define	ROOT ((device_t)NULL)
    155 
    156 struct matchinfo {
    157 	cfsubmatch_t fn;
    158 	struct	device *parent;
    159 	const int *locs;
    160 	void	*aux;
    161 	struct	cfdata *match;
    162 	int	pri;
    163 };
    164 
    165 static char *number(char *, int);
    166 static void mapply(struct matchinfo *, cfdata_t);
    167 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    168 static void config_devdelete(device_t);
    169 static void config_devunlink(device_t, struct devicelist *);
    170 static void config_makeroom(int, struct cfdriver *);
    171 static void config_devlink(device_t);
    172 static void config_alldevs_unlock(int);
    173 static int config_alldevs_lock(void);
    174 
    175 static void config_collect_garbage(struct devicelist *);
    176 static void config_dump_garbage(struct devicelist *);
    177 
    178 static void pmflock_debug(device_t, const char *, int);
    179 
    180 static device_t deviter_next1(deviter_t *);
    181 static void deviter_reinit(deviter_t *);
    182 
    183 struct deferred_config {
    184 	TAILQ_ENTRY(deferred_config) dc_queue;
    185 	device_t dc_dev;
    186 	void (*dc_func)(device_t);
    187 };
    188 
    189 TAILQ_HEAD(deferred_config_head, deferred_config);
    190 
    191 struct deferred_config_head deferred_config_queue =
    192 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    193 struct deferred_config_head interrupt_config_queue =
    194 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    195 int interrupt_config_threads = 8;
    196 
    197 static void config_process_deferred(struct deferred_config_head *, device_t);
    198 
    199 /* Hooks to finalize configuration once all real devices have been found. */
    200 struct finalize_hook {
    201 	TAILQ_ENTRY(finalize_hook) f_list;
    202 	int (*f_func)(device_t);
    203 	device_t f_dev;
    204 };
    205 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    206 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    207 static int config_finalize_done;
    208 
    209 /* list of all devices */
    210 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    211 static kmutex_t alldevs_mtx;
    212 static volatile bool alldevs_garbage = false;
    213 static volatile devgen_t alldevs_gen = 1;
    214 static volatile int alldevs_nread = 0;
    215 static volatile int alldevs_nwrite = 0;
    216 
    217 static int config_pending;		/* semaphore for mountroot */
    218 static kmutex_t config_misc_lock;
    219 static kcondvar_t config_misc_cv;
    220 
    221 static int detachall = 0;
    222 
    223 #define	STREQ(s1, s2)			\
    224 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    225 
    226 static bool config_initialized = false;	/* config_init() has been called. */
    227 
    228 static int config_do_twiddle;
    229 static callout_t config_twiddle_ch;
    230 
    231 static void sysctl_detach_setup(struct sysctllog **);
    232 
    233 /*
    234  * Initialize the autoconfiguration data structures.  Normally this
    235  * is done by configure(), but some platforms need to do this very
    236  * early (to e.g. initialize the console).
    237  */
    238 void
    239 config_init(void)
    240 {
    241 	const struct cfattachinit *cfai;
    242 	int i, j;
    243 
    244 	KASSERT(config_initialized == false);
    245 
    246 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_HIGH);
    247 
    248 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    249 	cv_init(&config_misc_cv, "cfgmisc");
    250 
    251 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    252 
    253 	/* allcfdrivers is statically initialized. */
    254 	for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
    255 		if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
    256 			panic("configure: duplicate `%s' drivers",
    257 			    cfdriver_list_initial[i]->cd_name);
    258 	}
    259 
    260 	for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
    261 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    262 			if (config_cfattach_attach(cfai->cfai_name,
    263 						   cfai->cfai_list[j]) != 0)
    264 				panic("configure: duplicate `%s' attachment "
    265 				    "of `%s' driver",
    266 				    cfai->cfai_list[j]->ca_name,
    267 				    cfai->cfai_name);
    268 		}
    269 	}
    270 
    271 	initcftable.ct_cfdata = cfdata;
    272 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    273 
    274 	config_initialized = true;
    275 }
    276 
    277 void
    278 config_init_mi(void)
    279 {
    280 
    281 	if (!config_initialized)
    282 		config_init();
    283 
    284 	sysctl_detach_setup(NULL);
    285 }
    286 
    287 void
    288 config_deferred(device_t dev)
    289 {
    290 	config_process_deferred(&deferred_config_queue, dev);
    291 	config_process_deferred(&interrupt_config_queue, dev);
    292 }
    293 
    294 static void
    295 config_interrupts_thread(void *cookie)
    296 {
    297 	struct deferred_config *dc;
    298 
    299 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    300 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    301 		(*dc->dc_func)(dc->dc_dev);
    302 		kmem_free(dc, sizeof(*dc));
    303 		config_pending_decr();
    304 	}
    305 	kthread_exit(0);
    306 }
    307 
    308 void
    309 config_create_interruptthreads()
    310 {
    311 	int i;
    312 
    313 	for (i = 0; i < interrupt_config_threads; i++) {
    314 		(void)kthread_create(PRI_NONE, 0, NULL,
    315 		    config_interrupts_thread, NULL, NULL, "config");
    316 	}
    317 }
    318 
    319 /*
    320  * Announce device attach/detach to userland listeners.
    321  */
    322 static void
    323 devmon_report_device(device_t dev, bool isattach)
    324 {
    325 #if NDRVCTL > 0
    326 	prop_dictionary_t ev;
    327 	const char *parent;
    328 	const char *what;
    329 	device_t pdev = device_parent(dev);
    330 
    331 	ev = prop_dictionary_create();
    332 	if (ev == NULL)
    333 		return;
    334 
    335 	what = (isattach ? "device-attach" : "device-detach");
    336 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    337 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
    338 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
    339 		prop_object_release(ev);
    340 		return;
    341 	}
    342 
    343 	devmon_insert(what, ev);
    344 #endif
    345 }
    346 
    347 /*
    348  * Add a cfdriver to the system.
    349  */
    350 int
    351 config_cfdriver_attach(struct cfdriver *cd)
    352 {
    353 	struct cfdriver *lcd;
    354 
    355 	/* Make sure this driver isn't already in the system. */
    356 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    357 		if (STREQ(lcd->cd_name, cd->cd_name))
    358 			return EEXIST;
    359 	}
    360 
    361 	LIST_INIT(&cd->cd_attach);
    362 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    363 
    364 	return 0;
    365 }
    366 
    367 /*
    368  * Remove a cfdriver from the system.
    369  */
    370 int
    371 config_cfdriver_detach(struct cfdriver *cd)
    372 {
    373 	struct devicelist garbage = TAILQ_HEAD_INITIALIZER(garbage);
    374 	int i, rc = 0, s;
    375 
    376 	s = config_alldevs_lock();
    377 	config_collect_garbage(&garbage);
    378 	/* Make sure there are no active instances. */
    379 	for (i = 0; i < cd->cd_ndevs; i++) {
    380 		if (cd->cd_devs[i] != NULL) {
    381 			rc = EBUSY;
    382 			break;
    383 		}
    384 	}
    385 	config_alldevs_unlock(s);
    386 	config_dump_garbage(&garbage);
    387 
    388 	if (rc != 0)
    389 		return rc;
    390 
    391 	/* ...and no attachments loaded. */
    392 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    393 		return EBUSY;
    394 
    395 	LIST_REMOVE(cd, cd_list);
    396 
    397 	KASSERT(cd->cd_devs == NULL);
    398 
    399 	return 0;
    400 }
    401 
    402 /*
    403  * Look up a cfdriver by name.
    404  */
    405 struct cfdriver *
    406 config_cfdriver_lookup(const char *name)
    407 {
    408 	struct cfdriver *cd;
    409 
    410 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    411 		if (STREQ(cd->cd_name, name))
    412 			return cd;
    413 	}
    414 
    415 	return NULL;
    416 }
    417 
    418 /*
    419  * Add a cfattach to the specified driver.
    420  */
    421 int
    422 config_cfattach_attach(const char *driver, struct cfattach *ca)
    423 {
    424 	struct cfattach *lca;
    425 	struct cfdriver *cd;
    426 
    427 	cd = config_cfdriver_lookup(driver);
    428 	if (cd == NULL)
    429 		return ESRCH;
    430 
    431 	/* Make sure this attachment isn't already on this driver. */
    432 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    433 		if (STREQ(lca->ca_name, ca->ca_name))
    434 			return EEXIST;
    435 	}
    436 
    437 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    438 
    439 	return 0;
    440 }
    441 
    442 /*
    443  * Remove a cfattach from the specified driver.
    444  */
    445 int
    446 config_cfattach_detach(const char *driver, struct cfattach *ca)
    447 {
    448 	struct devicelist garbage = TAILQ_HEAD_INITIALIZER(garbage);
    449 	struct cfdriver *cd;
    450 	device_t dev;
    451 	int i, rc = 0, s;
    452 
    453 	cd = config_cfdriver_lookup(driver);
    454 	if (cd == NULL)
    455 		return ESRCH;
    456 
    457 	s = config_alldevs_lock();
    458 	config_collect_garbage(&garbage);
    459 	/* Make sure there are no active instances. */
    460 	for (i = 0; i < cd->cd_ndevs; i++) {
    461 		if ((dev = cd->cd_devs[i]) == NULL)
    462 			continue;
    463 		if (dev->dv_cfattach == ca) {
    464 			rc = EBUSY;
    465 			break;
    466 		}
    467 	}
    468 	config_alldevs_unlock(s);
    469 	config_dump_garbage(&garbage);
    470 
    471 	if (rc != 0)
    472 		return rc;
    473 
    474 	LIST_REMOVE(ca, ca_list);
    475 
    476 	return 0;
    477 }
    478 
    479 /*
    480  * Look up a cfattach by name.
    481  */
    482 static struct cfattach *
    483 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    484 {
    485 	struct cfattach *ca;
    486 
    487 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    488 		if (STREQ(ca->ca_name, atname))
    489 			return ca;
    490 	}
    491 
    492 	return NULL;
    493 }
    494 
    495 /*
    496  * Look up a cfattach by driver/attachment name.
    497  */
    498 struct cfattach *
    499 config_cfattach_lookup(const char *name, const char *atname)
    500 {
    501 	struct cfdriver *cd;
    502 
    503 	cd = config_cfdriver_lookup(name);
    504 	if (cd == NULL)
    505 		return NULL;
    506 
    507 	return config_cfattach_lookup_cd(cd, atname);
    508 }
    509 
    510 /*
    511  * Apply the matching function and choose the best.  This is used
    512  * a few times and we want to keep the code small.
    513  */
    514 static void
    515 mapply(struct matchinfo *m, cfdata_t cf)
    516 {
    517 	int pri;
    518 
    519 	if (m->fn != NULL) {
    520 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    521 	} else {
    522 		pri = config_match(m->parent, cf, m->aux);
    523 	}
    524 	if (pri > m->pri) {
    525 		m->match = cf;
    526 		m->pri = pri;
    527 	}
    528 }
    529 
    530 int
    531 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    532 {
    533 	const struct cfiattrdata *ci;
    534 	const struct cflocdesc *cl;
    535 	int nlocs, i;
    536 
    537 	ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
    538 	KASSERT(ci);
    539 	nlocs = ci->ci_loclen;
    540 	KASSERT(!nlocs || locs);
    541 	for (i = 0; i < nlocs; i++) {
    542 		cl = &ci->ci_locdesc[i];
    543 		/* !cld_defaultstr means no default value */
    544 		if ((!(cl->cld_defaultstr)
    545 		     || (cf->cf_loc[i] != cl->cld_default))
    546 		    && cf->cf_loc[i] != locs[i])
    547 			return 0;
    548 	}
    549 
    550 	return config_match(parent, cf, aux);
    551 }
    552 
    553 /*
    554  * Helper function: check whether the driver supports the interface attribute
    555  * and return its descriptor structure.
    556  */
    557 static const struct cfiattrdata *
    558 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    559 {
    560 	const struct cfiattrdata * const *cpp;
    561 
    562 	if (cd->cd_attrs == NULL)
    563 		return 0;
    564 
    565 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    566 		if (STREQ((*cpp)->ci_name, ia)) {
    567 			/* Match. */
    568 			return *cpp;
    569 		}
    570 	}
    571 	return 0;
    572 }
    573 
    574 /*
    575  * Lookup an interface attribute description by name.
    576  * If the driver is given, consider only its supported attributes.
    577  */
    578 const struct cfiattrdata *
    579 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    580 {
    581 	const struct cfdriver *d;
    582 	const struct cfiattrdata *ia;
    583 
    584 	if (cd)
    585 		return cfdriver_get_iattr(cd, name);
    586 
    587 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    588 		ia = cfdriver_get_iattr(d, name);
    589 		if (ia)
    590 			return ia;
    591 	}
    592 	return 0;
    593 }
    594 
    595 /*
    596  * Determine if `parent' is a potential parent for a device spec based
    597  * on `cfp'.
    598  */
    599 static int
    600 cfparent_match(const device_t parent, const struct cfparent *cfp)
    601 {
    602 	struct cfdriver *pcd;
    603 
    604 	/* We don't match root nodes here. */
    605 	if (cfp == NULL)
    606 		return 0;
    607 
    608 	pcd = parent->dv_cfdriver;
    609 	KASSERT(pcd != NULL);
    610 
    611 	/*
    612 	 * First, ensure this parent has the correct interface
    613 	 * attribute.
    614 	 */
    615 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    616 		return 0;
    617 
    618 	/*
    619 	 * If no specific parent device instance was specified (i.e.
    620 	 * we're attaching to the attribute only), we're done!
    621 	 */
    622 	if (cfp->cfp_parent == NULL)
    623 		return 1;
    624 
    625 	/*
    626 	 * Check the parent device's name.
    627 	 */
    628 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    629 		return 0;	/* not the same parent */
    630 
    631 	/*
    632 	 * Make sure the unit number matches.
    633 	 */
    634 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    635 	    cfp->cfp_unit == parent->dv_unit)
    636 		return 1;
    637 
    638 	/* Unit numbers don't match. */
    639 	return 0;
    640 }
    641 
    642 /*
    643  * Helper for config_cfdata_attach(): check all devices whether it could be
    644  * parent any attachment in the config data table passed, and rescan.
    645  */
    646 static void
    647 rescan_with_cfdata(const struct cfdata *cf)
    648 {
    649 	device_t d;
    650 	const struct cfdata *cf1;
    651 	deviter_t di;
    652 
    653 
    654 	/*
    655 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    656 	 * the outer loop.
    657 	 */
    658 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    659 
    660 		if (!(d->dv_cfattach->ca_rescan))
    661 			continue;
    662 
    663 		for (cf1 = cf; cf1->cf_name; cf1++) {
    664 
    665 			if (!cfparent_match(d, cf1->cf_pspec))
    666 				continue;
    667 
    668 			(*d->dv_cfattach->ca_rescan)(d,
    669 				cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
    670 		}
    671 	}
    672 	deviter_release(&di);
    673 }
    674 
    675 /*
    676  * Attach a supplemental config data table and rescan potential
    677  * parent devices if required.
    678  */
    679 int
    680 config_cfdata_attach(cfdata_t cf, int scannow)
    681 {
    682 	struct cftable *ct;
    683 
    684 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    685 	ct->ct_cfdata = cf;
    686 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    687 
    688 	if (scannow)
    689 		rescan_with_cfdata(cf);
    690 
    691 	return 0;
    692 }
    693 
    694 /*
    695  * Helper for config_cfdata_detach: check whether a device is
    696  * found through any attachment in the config data table.
    697  */
    698 static int
    699 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
    700 {
    701 	const struct cfdata *cf1;
    702 
    703 	for (cf1 = cf; cf1->cf_name; cf1++)
    704 		if (d->dv_cfdata == cf1)
    705 			return 1;
    706 
    707 	return 0;
    708 }
    709 
    710 /*
    711  * Detach a supplemental config data table. Detach all devices found
    712  * through that table (and thus keeping references to it) before.
    713  */
    714 int
    715 config_cfdata_detach(cfdata_t cf)
    716 {
    717 	device_t d;
    718 	int error = 0;
    719 	struct cftable *ct;
    720 	deviter_t di;
    721 
    722 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    723 	     d = deviter_next(&di)) {
    724 		if (!dev_in_cfdata(d, cf))
    725 			continue;
    726 		if ((error = config_detach(d, 0)) != 0)
    727 			break;
    728 	}
    729 	deviter_release(&di);
    730 	if (error) {
    731 		aprint_error_dev(d, "unable to detach instance\n");
    732 		return error;
    733 	}
    734 
    735 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    736 		if (ct->ct_cfdata == cf) {
    737 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    738 			kmem_free(ct, sizeof(*ct));
    739 			return 0;
    740 		}
    741 	}
    742 
    743 	/* not found -- shouldn't happen */
    744 	return EINVAL;
    745 }
    746 
    747 /*
    748  * Invoke the "match" routine for a cfdata entry on behalf of
    749  * an external caller, usually a "submatch" routine.
    750  */
    751 int
    752 config_match(device_t parent, cfdata_t cf, void *aux)
    753 {
    754 	struct cfattach *ca;
    755 
    756 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    757 	if (ca == NULL) {
    758 		/* No attachment for this entry, oh well. */
    759 		return 0;
    760 	}
    761 
    762 	return (*ca->ca_match)(parent, cf, aux);
    763 }
    764 
    765 /*
    766  * Iterate over all potential children of some device, calling the given
    767  * function (default being the child's match function) for each one.
    768  * Nonzero returns are matches; the highest value returned is considered
    769  * the best match.  Return the `found child' if we got a match, or NULL
    770  * otherwise.  The `aux' pointer is simply passed on through.
    771  *
    772  * Note that this function is designed so that it can be used to apply
    773  * an arbitrary function to all potential children (its return value
    774  * can be ignored).
    775  */
    776 cfdata_t
    777 config_search_loc(cfsubmatch_t fn, device_t parent,
    778 		  const char *ifattr, const int *locs, void *aux)
    779 {
    780 	struct cftable *ct;
    781 	cfdata_t cf;
    782 	struct matchinfo m;
    783 
    784 	KASSERT(config_initialized);
    785 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
    786 
    787 	m.fn = fn;
    788 	m.parent = parent;
    789 	m.locs = locs;
    790 	m.aux = aux;
    791 	m.match = NULL;
    792 	m.pri = 0;
    793 
    794 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    795 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
    796 
    797 			/* We don't match root nodes here. */
    798 			if (!cf->cf_pspec)
    799 				continue;
    800 
    801 			/*
    802 			 * Skip cf if no longer eligible, otherwise scan
    803 			 * through parents for one matching `parent', and
    804 			 * try match function.
    805 			 */
    806 			if (cf->cf_fstate == FSTATE_FOUND)
    807 				continue;
    808 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
    809 			    cf->cf_fstate == FSTATE_DSTAR)
    810 				continue;
    811 
    812 			/*
    813 			 * If an interface attribute was specified,
    814 			 * consider only children which attach to
    815 			 * that attribute.
    816 			 */
    817 			if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
    818 				continue;
    819 
    820 			if (cfparent_match(parent, cf->cf_pspec))
    821 				mapply(&m, cf);
    822 		}
    823 	}
    824 	return m.match;
    825 }
    826 
    827 cfdata_t
    828 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
    829     void *aux)
    830 {
    831 
    832 	return config_search_loc(fn, parent, ifattr, NULL, aux);
    833 }
    834 
    835 /*
    836  * Find the given root device.
    837  * This is much like config_search, but there is no parent.
    838  * Don't bother with multiple cfdata tables; the root node
    839  * must always be in the initial table.
    840  */
    841 cfdata_t
    842 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
    843 {
    844 	cfdata_t cf;
    845 	const short *p;
    846 	struct matchinfo m;
    847 
    848 	m.fn = fn;
    849 	m.parent = ROOT;
    850 	m.aux = aux;
    851 	m.match = NULL;
    852 	m.pri = 0;
    853 	m.locs = 0;
    854 	/*
    855 	 * Look at root entries for matching name.  We do not bother
    856 	 * with found-state here since only one root should ever be
    857 	 * searched (and it must be done first).
    858 	 */
    859 	for (p = cfroots; *p >= 0; p++) {
    860 		cf = &cfdata[*p];
    861 		if (strcmp(cf->cf_name, rootname) == 0)
    862 			mapply(&m, cf);
    863 	}
    864 	return m.match;
    865 }
    866 
    867 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
    868 
    869 /*
    870  * The given `aux' argument describes a device that has been found
    871  * on the given parent, but not necessarily configured.  Locate the
    872  * configuration data for that device (using the submatch function
    873  * provided, or using candidates' cd_match configuration driver
    874  * functions) and attach it, and return true.  If the device was
    875  * not configured, call the given `print' function and return 0.
    876  */
    877 device_t
    878 config_found_sm_loc(device_t parent,
    879 		const char *ifattr, const int *locs, void *aux,
    880 		cfprint_t print, cfsubmatch_t submatch)
    881 {
    882 	cfdata_t cf;
    883 
    884 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    885 	if (splash_progress_state)
    886 		splash_progress_update(splash_progress_state);
    887 #endif
    888 
    889 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
    890 		return(config_attach_loc(parent, cf, locs, aux, print));
    891 	if (print) {
    892 		if (config_do_twiddle && cold)
    893 			twiddle();
    894 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
    895 	}
    896 
    897 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    898 	if (splash_progress_state)
    899 		splash_progress_update(splash_progress_state);
    900 #endif
    901 
    902 	return NULL;
    903 }
    904 
    905 device_t
    906 config_found_ia(device_t parent, const char *ifattr, void *aux,
    907     cfprint_t print)
    908 {
    909 
    910 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
    911 }
    912 
    913 device_t
    914 config_found(device_t parent, void *aux, cfprint_t print)
    915 {
    916 
    917 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
    918 }
    919 
    920 /*
    921  * As above, but for root devices.
    922  */
    923 device_t
    924 config_rootfound(const char *rootname, void *aux)
    925 {
    926 	cfdata_t cf;
    927 
    928 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
    929 		return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
    930 	aprint_error("root device %s not configured\n", rootname);
    931 	return NULL;
    932 }
    933 
    934 /* just like sprintf(buf, "%d") except that it works from the end */
    935 static char *
    936 number(char *ep, int n)
    937 {
    938 
    939 	*--ep = 0;
    940 	while (n >= 10) {
    941 		*--ep = (n % 10) + '0';
    942 		n /= 10;
    943 	}
    944 	*--ep = n + '0';
    945 	return ep;
    946 }
    947 
    948 /*
    949  * Expand the size of the cd_devs array if necessary.
    950  *
    951  * The caller must hold alldevs_mtx. config_makeroom() may release and
    952  * re-acquire alldevs_mtx, so callers should re-check conditions such
    953  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
    954  * returns.
    955  */
    956 static void
    957 config_makeroom(int n, struct cfdriver *cd)
    958 {
    959 	int old, new;
    960 	device_t *osp, *nsp;
    961 
    962 	alldevs_nwrite++;
    963 
    964 	for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
    965 		;
    966 
    967 	while (n >= cd->cd_ndevs) {
    968 		/*
    969 		 * Need to expand the array.
    970 		 */
    971 		old = cd->cd_ndevs;
    972 		osp = cd->cd_devs;
    973 
    974 		/* Release alldevs_mtx around allocation, which may
    975 		 * sleep.
    976 		 */
    977 		mutex_exit(&alldevs_mtx);
    978 		nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
    979 		if (nsp == NULL)
    980 			panic("%s: could not expand cd_devs", __func__);
    981 		mutex_enter(&alldevs_mtx);
    982 
    983 		/* If another thread moved the array while we did
    984 		 * not hold alldevs_mtx, try again.
    985 		 */
    986 		if (cd->cd_devs != osp) {
    987 			kmem_free(nsp, sizeof(device_t[new]));
    988 			continue;
    989 		}
    990 
    991 		memset(nsp + old, 0, sizeof(device_t[new - old]));
    992 		if (old != 0)
    993 			memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
    994 
    995 		cd->cd_ndevs = new;
    996 		cd->cd_devs = nsp;
    997 		if (old != 0)
    998 			kmem_free(osp, sizeof(device_t[old]));
    999 	}
   1000 	alldevs_nwrite--;
   1001 }
   1002 
   1003 /*
   1004  * Put dev into the devices list.
   1005  */
   1006 static void
   1007 config_devlink(device_t dev)
   1008 {
   1009 	int s;
   1010 
   1011 	s = config_alldevs_lock();
   1012 
   1013 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1014 
   1015 	dev->dv_add_gen = alldevs_gen;
   1016 	/* It is safe to add a device to the tail of the list while
   1017 	 * readers and writers are in the list.
   1018 	 */
   1019 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1020 	config_alldevs_unlock(s);
   1021 }
   1022 
   1023 static void
   1024 config_devfree(device_t dev)
   1025 {
   1026 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
   1027 
   1028 	if (dev->dv_cfattach->ca_devsize > 0)
   1029 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1030 	if (priv)
   1031 		kmem_free(dev, sizeof(*dev));
   1032 }
   1033 
   1034 /*
   1035  * Caller must hold alldevs_mtx.
   1036  */
   1037 static void
   1038 config_devunlink(device_t dev, struct devicelist *garbage)
   1039 {
   1040 	struct device_garbage *dg = &dev->dv_garbage;
   1041 	cfdriver_t cd = device_cfdriver(dev);
   1042 	int i;
   1043 
   1044 	KASSERT(mutex_owned(&alldevs_mtx));
   1045 
   1046  	/* Unlink from device list.  Link to garbage list. */
   1047 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1048 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1049 
   1050 	/* Remove from cfdriver's array. */
   1051 	cd->cd_devs[dev->dv_unit] = NULL;
   1052 
   1053 	/*
   1054 	 * If the device now has no units in use, unlink its softc array.
   1055 	 */
   1056 	for (i = 0; i < cd->cd_ndevs; i++) {
   1057 		if (cd->cd_devs[i] != NULL)
   1058 			break;
   1059 	}
   1060 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1061 	if (i == cd->cd_ndevs) {
   1062 		dg->dg_ndevs = cd->cd_ndevs;
   1063 		dg->dg_devs = cd->cd_devs;
   1064 		cd->cd_devs = NULL;
   1065 		cd->cd_ndevs = 0;
   1066 	}
   1067 }
   1068 
   1069 static void
   1070 config_devdelete(device_t dev)
   1071 {
   1072 	struct device_garbage *dg = &dev->dv_garbage;
   1073 	device_lock_t dvl = device_getlock(dev);
   1074 
   1075 	if (dg->dg_devs != NULL)
   1076 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
   1077 
   1078 	cv_destroy(&dvl->dvl_cv);
   1079 	mutex_destroy(&dvl->dvl_mtx);
   1080 
   1081 	KASSERT(dev->dv_properties != NULL);
   1082 	prop_object_release(dev->dv_properties);
   1083 
   1084 	if (dev->dv_activity_handlers)
   1085 		panic("%s with registered handlers", __func__);
   1086 
   1087 	if (dev->dv_locators) {
   1088 		size_t amount = *--dev->dv_locators;
   1089 		kmem_free(dev->dv_locators, amount);
   1090 	}
   1091 
   1092 	config_devfree(dev);
   1093 }
   1094 
   1095 static int
   1096 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1097 {
   1098 	int unit;
   1099 
   1100 	if (cf->cf_fstate == FSTATE_STAR) {
   1101 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1102 			if (cd->cd_devs[unit] == NULL)
   1103 				break;
   1104 		/*
   1105 		 * unit is now the unit of the first NULL device pointer,
   1106 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1107 		 */
   1108 	} else {
   1109 		unit = cf->cf_unit;
   1110 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1111 			unit = -1;
   1112 	}
   1113 	return unit;
   1114 }
   1115 
   1116 static int
   1117 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1118 {
   1119 	struct devicelist garbage = TAILQ_HEAD_INITIALIZER(garbage);
   1120 	int s, unit;
   1121 
   1122 	s = config_alldevs_lock();
   1123 	for (;;) {
   1124 		config_collect_garbage(&garbage);
   1125 		unit = config_unit_nextfree(cd, cf);
   1126 		if (unit == -1)
   1127 			break;
   1128 		if (unit < cd->cd_ndevs) {
   1129 			cd->cd_devs[unit] = dev;
   1130 			dev->dv_unit = unit;
   1131 			break;
   1132 		}
   1133 		config_makeroom(unit, cd);
   1134 	}
   1135 	config_alldevs_unlock(s);
   1136 	config_dump_garbage(&garbage);
   1137 
   1138 	return unit;
   1139 }
   1140 
   1141 static device_t
   1142 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1143 {
   1144 	struct devicelist garbage = TAILQ_HEAD_INITIALIZER(garbage);
   1145 	cfdriver_t cd;
   1146 	cfattach_t ca;
   1147 	size_t lname, lunit;
   1148 	const char *xunit;
   1149 	int myunit;
   1150 	char num[10];
   1151 	device_t dev;
   1152 	void *dev_private;
   1153 	const struct cfiattrdata *ia;
   1154 	device_lock_t dvl;
   1155 
   1156 	cd = config_cfdriver_lookup(cf->cf_name);
   1157 	if (cd == NULL)
   1158 		return NULL;
   1159 
   1160 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1161 	if (ca == NULL)
   1162 		return NULL;
   1163 
   1164 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
   1165 	    ca->ca_devsize < sizeof(struct device))
   1166 		panic("config_devalloc: %s", cf->cf_atname);
   1167 
   1168 	/* get memory for all device vars */
   1169 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
   1170 	if (ca->ca_devsize > 0) {
   1171 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1172 		if (dev_private == NULL)
   1173 			panic("config_devalloc: memory allocation for device softc failed");
   1174 	} else {
   1175 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1176 		dev_private = NULL;
   1177 	}
   1178 
   1179 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1180 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1181 	} else {
   1182 		dev = dev_private;
   1183 	}
   1184 	if (dev == NULL)
   1185 		panic("config_devalloc: memory allocation for device_t failed");
   1186 
   1187 	myunit = config_unit_alloc(dev, cd, cf);
   1188 	if (myunit == -1) {
   1189 		config_devfree(dev);
   1190 		return NULL;
   1191 	}
   1192 
   1193 	/* compute length of name and decimal expansion of unit number */
   1194 	lname = strlen(cd->cd_name);
   1195 	xunit = number(&num[sizeof(num)], myunit);
   1196 	lunit = &num[sizeof(num)] - xunit;
   1197 	if (lname + lunit > sizeof(dev->dv_xname))
   1198 		panic("config_devalloc: device name too long");
   1199 
   1200 	dvl = device_getlock(dev);
   1201 
   1202 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1203 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1204 
   1205 	dev->dv_class = cd->cd_class;
   1206 	dev->dv_cfdata = cf;
   1207 	dev->dv_cfdriver = cd;
   1208 	dev->dv_cfattach = ca;
   1209 	dev->dv_activity_count = 0;
   1210 	dev->dv_activity_handlers = NULL;
   1211 	dev->dv_private = dev_private;
   1212 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1213 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1214 	dev->dv_parent = parent;
   1215 	if (parent != NULL)
   1216 		dev->dv_depth = parent->dv_depth + 1;
   1217 	else
   1218 		dev->dv_depth = 0;
   1219 	dev->dv_flags = DVF_ACTIVE;	/* always initially active */
   1220 	dev->dv_flags |= ca->ca_flags;	/* inherit flags from class */
   1221 	if (locs) {
   1222 		KASSERT(parent); /* no locators at root */
   1223 		ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
   1224 				    parent->dv_cfdriver);
   1225 		dev->dv_locators =
   1226 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
   1227 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
   1228 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
   1229 	}
   1230 	dev->dv_properties = prop_dictionary_create();
   1231 	KASSERT(dev->dv_properties != NULL);
   1232 
   1233 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
   1234 	    "device-driver", dev->dv_cfdriver->cd_name);
   1235 	prop_dictionary_set_uint16(dev->dv_properties,
   1236 	    "device-unit", dev->dv_unit);
   1237 
   1238 	return dev;
   1239 }
   1240 
   1241 /*
   1242  * Attach a found device.
   1243  */
   1244 device_t
   1245 config_attach_loc(device_t parent, cfdata_t cf,
   1246 	const int *locs, void *aux, cfprint_t print)
   1247 {
   1248 	device_t dev;
   1249 	struct cftable *ct;
   1250 	const char *drvname;
   1251 
   1252 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1253 	if (splash_progress_state)
   1254 		splash_progress_update(splash_progress_state);
   1255 #endif
   1256 
   1257 	dev = config_devalloc(parent, cf, locs);
   1258 	if (!dev)
   1259 		panic("config_attach: allocation of device softc failed");
   1260 
   1261 	/* XXX redundant - see below? */
   1262 	if (cf->cf_fstate != FSTATE_STAR) {
   1263 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1264 		cf->cf_fstate = FSTATE_FOUND;
   1265 	}
   1266 
   1267 	config_devlink(dev);
   1268 
   1269 	if (config_do_twiddle && cold)
   1270 		twiddle();
   1271 	else
   1272 		aprint_naive("Found ");
   1273 	/*
   1274 	 * We want the next two printfs for normal, verbose, and quiet,
   1275 	 * but not silent (in which case, we're twiddling, instead).
   1276 	 */
   1277 	if (parent == ROOT) {
   1278 		aprint_naive("%s (root)", device_xname(dev));
   1279 		aprint_normal("%s (root)", device_xname(dev));
   1280 	} else {
   1281 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
   1282 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
   1283 		if (print)
   1284 			(void) (*print)(aux, NULL);
   1285 	}
   1286 
   1287 	/*
   1288 	 * Before attaching, clobber any unfound devices that are
   1289 	 * otherwise identical.
   1290 	 * XXX code above is redundant?
   1291 	 */
   1292 	drvname = dev->dv_cfdriver->cd_name;
   1293 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1294 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1295 			if (STREQ(cf->cf_name, drvname) &&
   1296 			    cf->cf_unit == dev->dv_unit) {
   1297 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1298 					cf->cf_fstate = FSTATE_FOUND;
   1299 			}
   1300 		}
   1301 	}
   1302 #ifdef __HAVE_DEVICE_REGISTER
   1303 	device_register(dev, aux);
   1304 #endif
   1305 
   1306 	/* Let userland know */
   1307 	devmon_report_device(dev, true);
   1308 
   1309 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1310 	if (splash_progress_state)
   1311 		splash_progress_update(splash_progress_state);
   1312 #endif
   1313 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1314 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1315 	if (splash_progress_state)
   1316 		splash_progress_update(splash_progress_state);
   1317 #endif
   1318 
   1319 	if (!device_pmf_is_registered(dev))
   1320 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
   1321 
   1322 	config_process_deferred(&deferred_config_queue, dev);
   1323 	return dev;
   1324 }
   1325 
   1326 device_t
   1327 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1328 {
   1329 
   1330 	return config_attach_loc(parent, cf, NULL, aux, print);
   1331 }
   1332 
   1333 /*
   1334  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1335  * way are silently inserted into the device tree, and their children
   1336  * attached.
   1337  *
   1338  * Note that because pseudo-devices are attached silently, any information
   1339  * the attach routine wishes to print should be prefixed with the device
   1340  * name by the attach routine.
   1341  */
   1342 device_t
   1343 config_attach_pseudo(cfdata_t cf)
   1344 {
   1345 	device_t dev;
   1346 
   1347 	dev = config_devalloc(ROOT, cf, NULL);
   1348 	if (!dev)
   1349 		return NULL;
   1350 
   1351 	/* XXX mark busy in cfdata */
   1352 
   1353 	if (cf->cf_fstate != FSTATE_STAR) {
   1354 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1355 		cf->cf_fstate = FSTATE_FOUND;
   1356 	}
   1357 
   1358 	config_devlink(dev);
   1359 
   1360 #if 0	/* XXXJRT not yet */
   1361 #ifdef __HAVE_DEVICE_REGISTER
   1362 	device_register(dev, NULL);	/* like a root node */
   1363 #endif
   1364 #endif
   1365 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1366 	config_process_deferred(&deferred_config_queue, dev);
   1367 	return dev;
   1368 }
   1369 
   1370 /*
   1371  * Caller must hold alldevs_mtx.
   1372  */
   1373 static void
   1374 config_collect_garbage(struct devicelist *garbage)
   1375 {
   1376 	device_t dv;
   1377 
   1378 	KASSERT(!cpu_intr_p());
   1379 	KASSERT(!cpu_softintr_p());
   1380 	KASSERT(mutex_owned(&alldevs_mtx));
   1381 
   1382 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1383 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1384 			if (dv->dv_del_gen != 0)
   1385 				break;
   1386 		}
   1387 		if (dv == NULL) {
   1388 			alldevs_garbage = false;
   1389 			break;
   1390 		}
   1391 		config_devunlink(dv, garbage);
   1392 	}
   1393 	KASSERT(mutex_owned(&alldevs_mtx));
   1394 }
   1395 
   1396 static void
   1397 config_dump_garbage(struct devicelist *garbage)
   1398 {
   1399 	device_t dv;
   1400 
   1401 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1402 		TAILQ_REMOVE(garbage, dv, dv_list);
   1403 		config_devdelete(dv);
   1404 	}
   1405 }
   1406 
   1407 /*
   1408  * Detach a device.  Optionally forced (e.g. because of hardware
   1409  * removal) and quiet.  Returns zero if successful, non-zero
   1410  * (an error code) otherwise.
   1411  *
   1412  * Note that this code wants to be run from a process context, so
   1413  * that the detach can sleep to allow processes which have a device
   1414  * open to run and unwind their stacks.
   1415  */
   1416 int
   1417 config_detach(device_t dev, int flags)
   1418 {
   1419 	struct devicelist garbage = TAILQ_HEAD_INITIALIZER(garbage);
   1420 	struct cftable *ct;
   1421 	cfdata_t cf;
   1422 	const struct cfattach *ca;
   1423 	struct cfdriver *cd;
   1424 #ifdef DIAGNOSTIC
   1425 	device_t d;
   1426 #endif
   1427 	int rv = 0, s;
   1428 
   1429 #ifdef DIAGNOSTIC
   1430 	cf = dev->dv_cfdata;
   1431 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
   1432 	    cf->cf_fstate != FSTATE_STAR)
   1433 		panic("config_detach: %s: bad device fstate %d",
   1434 		    device_xname(dev), cf ? cf->cf_fstate : -1);
   1435 #endif
   1436 	cd = dev->dv_cfdriver;
   1437 	KASSERT(cd != NULL);
   1438 
   1439 	ca = dev->dv_cfattach;
   1440 	KASSERT(ca != NULL);
   1441 
   1442 	s = config_alldevs_lock();
   1443 	if (dev->dv_del_gen != 0) {
   1444 		config_alldevs_unlock(s);
   1445 #ifdef DIAGNOSTIC
   1446 		printf("%s: %s is already detached\n", __func__,
   1447 		    device_xname(dev));
   1448 #endif /* DIAGNOSTIC */
   1449 		return ENOENT;
   1450 	}
   1451 	alldevs_nwrite++;
   1452 	config_alldevs_unlock(s);
   1453 
   1454 	if (!detachall &&
   1455 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1456 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1457 		rv = EOPNOTSUPP;
   1458 	} else if (ca->ca_detach != NULL) {
   1459 		rv = (*ca->ca_detach)(dev, flags);
   1460 	} else
   1461 		rv = EOPNOTSUPP;
   1462 
   1463 	/*
   1464 	 * If it was not possible to detach the device, then we either
   1465 	 * panic() (for the forced but failed case), or return an error.
   1466 	 *
   1467 	 * If it was possible to detach the device, ensure that the
   1468 	 * device is deactivated.
   1469 	 */
   1470 	if (rv == 0)
   1471 		dev->dv_flags &= ~DVF_ACTIVE;
   1472 	else if ((flags & DETACH_FORCE) == 0)
   1473 		goto out;
   1474 	else {
   1475 		panic("config_detach: forced detach of %s failed (%d)",
   1476 		    device_xname(dev), rv);
   1477 	}
   1478 
   1479 	/*
   1480 	 * The device has now been successfully detached.
   1481 	 */
   1482 
   1483 	/* Let userland know */
   1484 	devmon_report_device(dev, false);
   1485 
   1486 #ifdef DIAGNOSTIC
   1487 	/*
   1488 	 * Sanity: If you're successfully detached, you should have no
   1489 	 * children.  (Note that because children must be attached
   1490 	 * after parents, we only need to search the latter part of
   1491 	 * the list.)
   1492 	 */
   1493 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1494 	    d = TAILQ_NEXT(d, dv_list)) {
   1495 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1496 			printf("config_detach: detached device %s"
   1497 			    " has children %s\n", device_xname(dev), device_xname(d));
   1498 			panic("config_detach");
   1499 		}
   1500 	}
   1501 #endif
   1502 
   1503 	/* notify the parent that the child is gone */
   1504 	if (dev->dv_parent) {
   1505 		device_t p = dev->dv_parent;
   1506 		if (p->dv_cfattach->ca_childdetached)
   1507 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1508 	}
   1509 
   1510 	/*
   1511 	 * Mark cfdata to show that the unit can be reused, if possible.
   1512 	 */
   1513 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1514 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1515 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1516 				if (cf->cf_fstate == FSTATE_FOUND &&
   1517 				    cf->cf_unit == dev->dv_unit)
   1518 					cf->cf_fstate = FSTATE_NOTFOUND;
   1519 			}
   1520 		}
   1521 	}
   1522 
   1523 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1524 		aprint_normal_dev(dev, "detached\n");
   1525 
   1526 out:
   1527 	s = config_alldevs_lock();
   1528 	KASSERT(alldevs_nwrite != 0);
   1529 	--alldevs_nwrite;
   1530 	if (rv == 0 && dev->dv_del_gen == 0) {
   1531 		dev->dv_del_gen = alldevs_gen;
   1532 		alldevs_garbage = true;
   1533 	}
   1534 	config_collect_garbage(&garbage);
   1535 	config_alldevs_unlock(s);
   1536 	config_dump_garbage(&garbage);
   1537 
   1538 	return rv;
   1539 }
   1540 
   1541 int
   1542 config_detach_children(device_t parent, int flags)
   1543 {
   1544 	device_t dv;
   1545 	deviter_t di;
   1546 	int error = 0;
   1547 
   1548 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1549 	     dv = deviter_next(&di)) {
   1550 		if (device_parent(dv) != parent)
   1551 			continue;
   1552 		if ((error = config_detach(dv, flags)) != 0)
   1553 			break;
   1554 	}
   1555 	deviter_release(&di);
   1556 	return error;
   1557 }
   1558 
   1559 device_t
   1560 shutdown_first(struct shutdown_state *s)
   1561 {
   1562 	if (!s->initialized) {
   1563 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1564 		s->initialized = true;
   1565 	}
   1566 	return shutdown_next(s);
   1567 }
   1568 
   1569 device_t
   1570 shutdown_next(struct shutdown_state *s)
   1571 {
   1572 	device_t dv;
   1573 
   1574 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1575 		;
   1576 
   1577 	if (dv == NULL)
   1578 		s->initialized = false;
   1579 
   1580 	return dv;
   1581 }
   1582 
   1583 bool
   1584 config_detach_all(int how)
   1585 {
   1586 	static struct shutdown_state s;
   1587 	device_t curdev;
   1588 	bool progress = false;
   1589 
   1590 	if ((how & RB_NOSYNC) != 0)
   1591 		return false;
   1592 
   1593 	for (curdev = shutdown_first(&s); curdev != NULL;
   1594 	     curdev = shutdown_next(&s)) {
   1595 		aprint_debug(" detaching %s, ", device_xname(curdev));
   1596 		if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
   1597 			progress = true;
   1598 			aprint_debug("success.");
   1599 		} else
   1600 			aprint_debug("failed.");
   1601 	}
   1602 	return progress;
   1603 }
   1604 
   1605 static bool
   1606 device_is_ancestor_of(device_t ancestor, device_t descendant)
   1607 {
   1608 	device_t dv;
   1609 
   1610 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   1611 		if (device_parent(dv) == ancestor)
   1612 			return true;
   1613 	}
   1614 	return false;
   1615 }
   1616 
   1617 int
   1618 config_deactivate(device_t dev)
   1619 {
   1620 	deviter_t di;
   1621 	const struct cfattach *ca;
   1622 	device_t descendant;
   1623 	int s, rv = 0, oflags;
   1624 
   1625 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   1626 	     descendant != NULL;
   1627 	     descendant = deviter_next(&di)) {
   1628 		if (dev != descendant &&
   1629 		    !device_is_ancestor_of(dev, descendant))
   1630 			continue;
   1631 
   1632 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   1633 			continue;
   1634 
   1635 		ca = descendant->dv_cfattach;
   1636 		oflags = descendant->dv_flags;
   1637 
   1638 		descendant->dv_flags &= ~DVF_ACTIVE;
   1639 		if (ca->ca_activate == NULL)
   1640 			continue;
   1641 		s = splhigh();
   1642 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   1643 		splx(s);
   1644 		if (rv != 0)
   1645 			descendant->dv_flags = oflags;
   1646 	}
   1647 	deviter_release(&di);
   1648 	return rv;
   1649 }
   1650 
   1651 /*
   1652  * Defer the configuration of the specified device until all
   1653  * of its parent's devices have been attached.
   1654  */
   1655 void
   1656 config_defer(device_t dev, void (*func)(device_t))
   1657 {
   1658 	struct deferred_config *dc;
   1659 
   1660 	if (dev->dv_parent == NULL)
   1661 		panic("config_defer: can't defer config of a root device");
   1662 
   1663 #ifdef DIAGNOSTIC
   1664 	TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
   1665 		if (dc->dc_dev == dev)
   1666 			panic("config_defer: deferred twice");
   1667 	}
   1668 #endif
   1669 
   1670 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1671 	if (dc == NULL)
   1672 		panic("config_defer: unable to allocate callback");
   1673 
   1674 	dc->dc_dev = dev;
   1675 	dc->dc_func = func;
   1676 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1677 	config_pending_incr();
   1678 }
   1679 
   1680 /*
   1681  * Defer some autoconfiguration for a device until after interrupts
   1682  * are enabled.
   1683  */
   1684 void
   1685 config_interrupts(device_t dev, void (*func)(device_t))
   1686 {
   1687 	struct deferred_config *dc;
   1688 
   1689 	/*
   1690 	 * If interrupts are enabled, callback now.
   1691 	 */
   1692 	if (cold == 0) {
   1693 		(*func)(dev);
   1694 		return;
   1695 	}
   1696 
   1697 #ifdef DIAGNOSTIC
   1698 	TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
   1699 		if (dc->dc_dev == dev)
   1700 			panic("config_interrupts: deferred twice");
   1701 	}
   1702 #endif
   1703 
   1704 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1705 	if (dc == NULL)
   1706 		panic("config_interrupts: unable to allocate callback");
   1707 
   1708 	dc->dc_dev = dev;
   1709 	dc->dc_func = func;
   1710 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   1711 	config_pending_incr();
   1712 }
   1713 
   1714 /*
   1715  * Process a deferred configuration queue.
   1716  */
   1717 static void
   1718 config_process_deferred(struct deferred_config_head *queue,
   1719     device_t parent)
   1720 {
   1721 	struct deferred_config *dc, *ndc;
   1722 
   1723 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   1724 		ndc = TAILQ_NEXT(dc, dc_queue);
   1725 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   1726 			TAILQ_REMOVE(queue, dc, dc_queue);
   1727 			(*dc->dc_func)(dc->dc_dev);
   1728 			kmem_free(dc, sizeof(*dc));
   1729 			config_pending_decr();
   1730 		}
   1731 	}
   1732 }
   1733 
   1734 /*
   1735  * Manipulate the config_pending semaphore.
   1736  */
   1737 void
   1738 config_pending_incr(void)
   1739 {
   1740 
   1741 	mutex_enter(&config_misc_lock);
   1742 	config_pending++;
   1743 	mutex_exit(&config_misc_lock);
   1744 }
   1745 
   1746 void
   1747 config_pending_decr(void)
   1748 {
   1749 
   1750 #ifdef DIAGNOSTIC
   1751 	if (config_pending == 0)
   1752 		panic("config_pending_decr: config_pending == 0");
   1753 #endif
   1754 	mutex_enter(&config_misc_lock);
   1755 	config_pending--;
   1756 	if (config_pending == 0)
   1757 		cv_broadcast(&config_misc_cv);
   1758 	mutex_exit(&config_misc_lock);
   1759 }
   1760 
   1761 /*
   1762  * Register a "finalization" routine.  Finalization routines are
   1763  * called iteratively once all real devices have been found during
   1764  * autoconfiguration, for as long as any one finalizer has done
   1765  * any work.
   1766  */
   1767 int
   1768 config_finalize_register(device_t dev, int (*fn)(device_t))
   1769 {
   1770 	struct finalize_hook *f;
   1771 
   1772 	/*
   1773 	 * If finalization has already been done, invoke the
   1774 	 * callback function now.
   1775 	 */
   1776 	if (config_finalize_done) {
   1777 		while ((*fn)(dev) != 0)
   1778 			/* loop */ ;
   1779 	}
   1780 
   1781 	/* Ensure this isn't already on the list. */
   1782 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   1783 		if (f->f_func == fn && f->f_dev == dev)
   1784 			return EEXIST;
   1785 	}
   1786 
   1787 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   1788 	f->f_func = fn;
   1789 	f->f_dev = dev;
   1790 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   1791 
   1792 	return 0;
   1793 }
   1794 
   1795 void
   1796 config_finalize(void)
   1797 {
   1798 	struct finalize_hook *f;
   1799 	struct pdevinit *pdev;
   1800 	extern struct pdevinit pdevinit[];
   1801 	int errcnt, rv;
   1802 
   1803 	/*
   1804 	 * Now that device driver threads have been created, wait for
   1805 	 * them to finish any deferred autoconfiguration.
   1806 	 */
   1807 	mutex_enter(&config_misc_lock);
   1808 	while (config_pending != 0)
   1809 		cv_wait(&config_misc_cv, &config_misc_lock);
   1810 	mutex_exit(&config_misc_lock);
   1811 
   1812 	KERNEL_LOCK(1, NULL);
   1813 
   1814 	/* Attach pseudo-devices. */
   1815 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   1816 		(*pdev->pdev_attach)(pdev->pdev_count);
   1817 
   1818 	/* Run the hooks until none of them does any work. */
   1819 	do {
   1820 		rv = 0;
   1821 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   1822 			rv |= (*f->f_func)(f->f_dev);
   1823 	} while (rv != 0);
   1824 
   1825 	config_finalize_done = 1;
   1826 
   1827 	/* Now free all the hooks. */
   1828 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   1829 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   1830 		kmem_free(f, sizeof(*f));
   1831 	}
   1832 
   1833 	KERNEL_UNLOCK_ONE(NULL);
   1834 
   1835 	errcnt = aprint_get_error_count();
   1836 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   1837 	    (boothowto & AB_VERBOSE) == 0) {
   1838 		mutex_enter(&config_misc_lock);
   1839 		if (config_do_twiddle) {
   1840 			config_do_twiddle = 0;
   1841 			printf_nolog(" done.\n");
   1842 		}
   1843 		mutex_exit(&config_misc_lock);
   1844 		if (errcnt != 0) {
   1845 			printf("WARNING: %d error%s while detecting hardware; "
   1846 			    "check system log.\n", errcnt,
   1847 			    errcnt == 1 ? "" : "s");
   1848 		}
   1849 	}
   1850 }
   1851 
   1852 void
   1853 config_twiddle_init()
   1854 {
   1855 
   1856 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   1857 		config_do_twiddle = 1;
   1858 	}
   1859 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   1860 }
   1861 
   1862 void
   1863 config_twiddle_fn(void *cookie)
   1864 {
   1865 
   1866 	mutex_enter(&config_misc_lock);
   1867 	if (config_do_twiddle) {
   1868 		twiddle();
   1869 		callout_schedule(&config_twiddle_ch, mstohz(100));
   1870 	}
   1871 	mutex_exit(&config_misc_lock);
   1872 }
   1873 
   1874 static int
   1875 config_alldevs_lock(void)
   1876 {
   1877 	int s;
   1878 
   1879 	s = splhigh();
   1880 	mutex_enter(&alldevs_mtx);
   1881 	return s;
   1882 }
   1883 
   1884 static void
   1885 config_alldevs_unlock(int s)
   1886 {
   1887 	mutex_exit(&alldevs_mtx);
   1888 	splx(s);
   1889 }
   1890 
   1891 /*
   1892  * device_lookup:
   1893  *
   1894  *	Look up a device instance for a given driver.
   1895  */
   1896 device_t
   1897 device_lookup(cfdriver_t cd, int unit)
   1898 {
   1899 	struct devicelist garbage = TAILQ_HEAD_INITIALIZER(garbage);
   1900 	device_t dv;
   1901 	int s;
   1902 
   1903 	s = config_alldevs_lock();
   1904 	KASSERT(mutex_owned(&alldevs_mtx));
   1905 	if (unit < 0 || unit >= cd->cd_ndevs)
   1906 		dv = NULL;
   1907 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   1908 		dv = NULL;
   1909 	config_alldevs_unlock(s);
   1910 	config_dump_garbage(&garbage);
   1911 
   1912 	return dv;
   1913 }
   1914 
   1915 /*
   1916  * device_lookup_private:
   1917  *
   1918  *	Look up a softc instance for a given driver.
   1919  */
   1920 void *
   1921 device_lookup_private(cfdriver_t cd, int unit)
   1922 {
   1923 	device_t dv;
   1924 
   1925 	if ((dv = device_lookup(cd, unit)) == NULL)
   1926 		return NULL;
   1927 
   1928 	return dv->dv_private;
   1929 }
   1930 
   1931 /*
   1932  * Accessor functions for the device_t type.
   1933  */
   1934 devclass_t
   1935 device_class(device_t dev)
   1936 {
   1937 
   1938 	return dev->dv_class;
   1939 }
   1940 
   1941 cfdata_t
   1942 device_cfdata(device_t dev)
   1943 {
   1944 
   1945 	return dev->dv_cfdata;
   1946 }
   1947 
   1948 cfdriver_t
   1949 device_cfdriver(device_t dev)
   1950 {
   1951 
   1952 	return dev->dv_cfdriver;
   1953 }
   1954 
   1955 cfattach_t
   1956 device_cfattach(device_t dev)
   1957 {
   1958 
   1959 	return dev->dv_cfattach;
   1960 }
   1961 
   1962 int
   1963 device_unit(device_t dev)
   1964 {
   1965 
   1966 	return dev->dv_unit;
   1967 }
   1968 
   1969 const char *
   1970 device_xname(device_t dev)
   1971 {
   1972 
   1973 	return dev->dv_xname;
   1974 }
   1975 
   1976 device_t
   1977 device_parent(device_t dev)
   1978 {
   1979 
   1980 	return dev->dv_parent;
   1981 }
   1982 
   1983 bool
   1984 device_activation(device_t dev, devact_level_t level)
   1985 {
   1986 	int active_flags;
   1987 
   1988 	active_flags = DVF_ACTIVE;
   1989 	switch (level) {
   1990 	case DEVACT_LEVEL_FULL:
   1991 		active_flags |= DVF_CLASS_SUSPENDED;
   1992 		/*FALLTHROUGH*/
   1993 	case DEVACT_LEVEL_DRIVER:
   1994 		active_flags |= DVF_DRIVER_SUSPENDED;
   1995 		/*FALLTHROUGH*/
   1996 	case DEVACT_LEVEL_BUS:
   1997 		active_flags |= DVF_BUS_SUSPENDED;
   1998 		break;
   1999 	}
   2000 
   2001 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
   2002 }
   2003 
   2004 bool
   2005 device_is_active(device_t dev)
   2006 {
   2007 	int active_flags;
   2008 
   2009 	active_flags = DVF_ACTIVE;
   2010 	active_flags |= DVF_CLASS_SUSPENDED;
   2011 	active_flags |= DVF_DRIVER_SUSPENDED;
   2012 	active_flags |= DVF_BUS_SUSPENDED;
   2013 
   2014 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
   2015 }
   2016 
   2017 bool
   2018 device_is_enabled(device_t dev)
   2019 {
   2020 	return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
   2021 }
   2022 
   2023 bool
   2024 device_has_power(device_t dev)
   2025 {
   2026 	int active_flags;
   2027 
   2028 	active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
   2029 
   2030 	return (dev->dv_flags & active_flags) == DVF_ACTIVE;
   2031 }
   2032 
   2033 int
   2034 device_locator(device_t dev, u_int locnum)
   2035 {
   2036 
   2037 	KASSERT(dev->dv_locators != NULL);
   2038 	return dev->dv_locators[locnum];
   2039 }
   2040 
   2041 void *
   2042 device_private(device_t dev)
   2043 {
   2044 
   2045 	/*
   2046 	 * The reason why device_private(NULL) is allowed is to simplify the
   2047 	 * work of a lot of userspace request handlers (i.e., c/bdev
   2048 	 * handlers) which grab cfdriver_t->cd_units[n].
   2049 	 * It avoids having them test for it to be NULL and only then calling
   2050 	 * device_private.
   2051 	 */
   2052 	return dev == NULL ? NULL : dev->dv_private;
   2053 }
   2054 
   2055 prop_dictionary_t
   2056 device_properties(device_t dev)
   2057 {
   2058 
   2059 	return dev->dv_properties;
   2060 }
   2061 
   2062 /*
   2063  * device_is_a:
   2064  *
   2065  *	Returns true if the device is an instance of the specified
   2066  *	driver.
   2067  */
   2068 bool
   2069 device_is_a(device_t dev, const char *dname)
   2070 {
   2071 
   2072 	return strcmp(dev->dv_cfdriver->cd_name, dname) == 0;
   2073 }
   2074 
   2075 /*
   2076  * device_find_by_xname:
   2077  *
   2078  *	Returns the device of the given name or NULL if it doesn't exist.
   2079  */
   2080 device_t
   2081 device_find_by_xname(const char *name)
   2082 {
   2083 	device_t dv;
   2084 	deviter_t di;
   2085 
   2086 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2087 		if (strcmp(device_xname(dv), name) == 0)
   2088 			break;
   2089 	}
   2090 	deviter_release(&di);
   2091 
   2092 	return dv;
   2093 }
   2094 
   2095 /*
   2096  * device_find_by_driver_unit:
   2097  *
   2098  *	Returns the device of the given driver name and unit or
   2099  *	NULL if it doesn't exist.
   2100  */
   2101 device_t
   2102 device_find_by_driver_unit(const char *name, int unit)
   2103 {
   2104 	struct cfdriver *cd;
   2105 
   2106 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2107 		return NULL;
   2108 	return device_lookup(cd, unit);
   2109 }
   2110 
   2111 /*
   2112  * Power management related functions.
   2113  */
   2114 
   2115 bool
   2116 device_pmf_is_registered(device_t dev)
   2117 {
   2118 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2119 }
   2120 
   2121 bool
   2122 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
   2123 {
   2124 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2125 		return true;
   2126 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2127 		return false;
   2128 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_DRIVER &&
   2129 	    dev->dv_driver_suspend != NULL &&
   2130 	    !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
   2131 		return false;
   2132 
   2133 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2134 	return true;
   2135 }
   2136 
   2137 bool
   2138 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
   2139 {
   2140 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2141 		return true;
   2142 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2143 		return false;
   2144 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_DRIVER &&
   2145 	    dev->dv_driver_resume != NULL &&
   2146 	    !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
   2147 		return false;
   2148 
   2149 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2150 	return true;
   2151 }
   2152 
   2153 bool
   2154 device_pmf_driver_shutdown(device_t dev, int how)
   2155 {
   2156 
   2157 	if (*dev->dv_driver_shutdown != NULL &&
   2158 	    !(*dev->dv_driver_shutdown)(dev, how))
   2159 		return false;
   2160 	return true;
   2161 }
   2162 
   2163 bool
   2164 device_pmf_driver_register(device_t dev,
   2165     bool (*suspend)(device_t PMF_FN_PROTO),
   2166     bool (*resume)(device_t PMF_FN_PROTO),
   2167     bool (*shutdown)(device_t, int))
   2168 {
   2169 	dev->dv_driver_suspend = suspend;
   2170 	dev->dv_driver_resume = resume;
   2171 	dev->dv_driver_shutdown = shutdown;
   2172 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2173 	return true;
   2174 }
   2175 
   2176 static const char *
   2177 curlwp_name(void)
   2178 {
   2179 	if (curlwp->l_name != NULL)
   2180 		return curlwp->l_name;
   2181 	else
   2182 		return curlwp->l_proc->p_comm;
   2183 }
   2184 
   2185 void
   2186 device_pmf_driver_deregister(device_t dev)
   2187 {
   2188 	device_lock_t dvl = device_getlock(dev);
   2189 
   2190 	dev->dv_driver_suspend = NULL;
   2191 	dev->dv_driver_resume = NULL;
   2192 
   2193 	mutex_enter(&dvl->dvl_mtx);
   2194 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2195 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2196 		/* Wake a thread that waits for the lock.  That
   2197 		 * thread will fail to acquire the lock, and then
   2198 		 * it will wake the next thread that waits for the
   2199 		 * lock, or else it will wake us.
   2200 		 */
   2201 		cv_signal(&dvl->dvl_cv);
   2202 		pmflock_debug(dev, __func__, __LINE__);
   2203 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2204 		pmflock_debug(dev, __func__, __LINE__);
   2205 	}
   2206 	mutex_exit(&dvl->dvl_mtx);
   2207 }
   2208 
   2209 bool
   2210 device_pmf_driver_child_register(device_t dev)
   2211 {
   2212 	device_t parent = device_parent(dev);
   2213 
   2214 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2215 		return true;
   2216 	return (*parent->dv_driver_child_register)(dev);
   2217 }
   2218 
   2219 void
   2220 device_pmf_driver_set_child_register(device_t dev,
   2221     bool (*child_register)(device_t))
   2222 {
   2223 	dev->dv_driver_child_register = child_register;
   2224 }
   2225 
   2226 static void
   2227 pmflock_debug(device_t dev, const char *func, int line)
   2228 {
   2229 	device_lock_t dvl = device_getlock(dev);
   2230 
   2231 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
   2232 	    func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
   2233 	    dev->dv_flags);
   2234 }
   2235 
   2236 static bool
   2237 device_pmf_lock1(device_t dev)
   2238 {
   2239 	device_lock_t dvl = device_getlock(dev);
   2240 
   2241 	while (device_pmf_is_registered(dev) &&
   2242 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2243 		dvl->dvl_nwait++;
   2244 		pmflock_debug(dev, __func__, __LINE__);
   2245 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2246 		pmflock_debug(dev, __func__, __LINE__);
   2247 		dvl->dvl_nwait--;
   2248 	}
   2249 	if (!device_pmf_is_registered(dev)) {
   2250 		pmflock_debug(dev, __func__, __LINE__);
   2251 		/* We could not acquire the lock, but some other thread may
   2252 		 * wait for it, also.  Wake that thread.
   2253 		 */
   2254 		cv_signal(&dvl->dvl_cv);
   2255 		return false;
   2256 	}
   2257 	dvl->dvl_nlock++;
   2258 	dvl->dvl_holder = curlwp;
   2259 	pmflock_debug(dev, __func__, __LINE__);
   2260 	return true;
   2261 }
   2262 
   2263 bool
   2264 device_pmf_lock(device_t dev)
   2265 {
   2266 	bool rc;
   2267 	device_lock_t dvl = device_getlock(dev);
   2268 
   2269 	mutex_enter(&dvl->dvl_mtx);
   2270 	rc = device_pmf_lock1(dev);
   2271 	mutex_exit(&dvl->dvl_mtx);
   2272 
   2273 	return rc;
   2274 }
   2275 
   2276 void
   2277 device_pmf_unlock(device_t dev)
   2278 {
   2279 	device_lock_t dvl = device_getlock(dev);
   2280 
   2281 	KASSERT(dvl->dvl_nlock > 0);
   2282 	mutex_enter(&dvl->dvl_mtx);
   2283 	if (--dvl->dvl_nlock == 0)
   2284 		dvl->dvl_holder = NULL;
   2285 	cv_signal(&dvl->dvl_cv);
   2286 	pmflock_debug(dev, __func__, __LINE__);
   2287 	mutex_exit(&dvl->dvl_mtx);
   2288 }
   2289 
   2290 device_lock_t
   2291 device_getlock(device_t dev)
   2292 {
   2293 	return &dev->dv_lock;
   2294 }
   2295 
   2296 void *
   2297 device_pmf_bus_private(device_t dev)
   2298 {
   2299 	return dev->dv_bus_private;
   2300 }
   2301 
   2302 bool
   2303 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
   2304 {
   2305 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2306 		return true;
   2307 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2308 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2309 		return false;
   2310 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_BUS &&
   2311 	    dev->dv_bus_suspend != NULL &&
   2312 	    !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
   2313 		return false;
   2314 
   2315 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2316 	return true;
   2317 }
   2318 
   2319 bool
   2320 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
   2321 {
   2322 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2323 		return true;
   2324 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_BUS &&
   2325 	    dev->dv_bus_resume != NULL &&
   2326 	    !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
   2327 		return false;
   2328 
   2329 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2330 	return true;
   2331 }
   2332 
   2333 bool
   2334 device_pmf_bus_shutdown(device_t dev, int how)
   2335 {
   2336 
   2337 	if (*dev->dv_bus_shutdown != NULL &&
   2338 	    !(*dev->dv_bus_shutdown)(dev, how))
   2339 		return false;
   2340 	return true;
   2341 }
   2342 
   2343 void
   2344 device_pmf_bus_register(device_t dev, void *priv,
   2345     bool (*suspend)(device_t PMF_FN_PROTO),
   2346     bool (*resume)(device_t PMF_FN_PROTO),
   2347     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2348 {
   2349 	dev->dv_bus_private = priv;
   2350 	dev->dv_bus_resume = resume;
   2351 	dev->dv_bus_suspend = suspend;
   2352 	dev->dv_bus_shutdown = shutdown;
   2353 	dev->dv_bus_deregister = deregister;
   2354 }
   2355 
   2356 void
   2357 device_pmf_bus_deregister(device_t dev)
   2358 {
   2359 	if (dev->dv_bus_deregister == NULL)
   2360 		return;
   2361 	(*dev->dv_bus_deregister)(dev);
   2362 	dev->dv_bus_private = NULL;
   2363 	dev->dv_bus_suspend = NULL;
   2364 	dev->dv_bus_resume = NULL;
   2365 	dev->dv_bus_deregister = NULL;
   2366 }
   2367 
   2368 void *
   2369 device_pmf_class_private(device_t dev)
   2370 {
   2371 	return dev->dv_class_private;
   2372 }
   2373 
   2374 bool
   2375 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
   2376 {
   2377 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2378 		return true;
   2379 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_CLASS &&
   2380 	    dev->dv_class_suspend != NULL &&
   2381 	    !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
   2382 		return false;
   2383 
   2384 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2385 	return true;
   2386 }
   2387 
   2388 bool
   2389 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
   2390 {
   2391 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2392 		return true;
   2393 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2394 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2395 		return false;
   2396 	if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_CLASS &&
   2397 	    dev->dv_class_resume != NULL &&
   2398 	    !(*dev->dv_class_resume)(dev PMF_FN_CALL))
   2399 		return false;
   2400 
   2401 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2402 	return true;
   2403 }
   2404 
   2405 void
   2406 device_pmf_class_register(device_t dev, void *priv,
   2407     bool (*suspend)(device_t PMF_FN_PROTO),
   2408     bool (*resume)(device_t PMF_FN_PROTO),
   2409     void (*deregister)(device_t))
   2410 {
   2411 	dev->dv_class_private = priv;
   2412 	dev->dv_class_suspend = suspend;
   2413 	dev->dv_class_resume = resume;
   2414 	dev->dv_class_deregister = deregister;
   2415 }
   2416 
   2417 void
   2418 device_pmf_class_deregister(device_t dev)
   2419 {
   2420 	if (dev->dv_class_deregister == NULL)
   2421 		return;
   2422 	(*dev->dv_class_deregister)(dev);
   2423 	dev->dv_class_private = NULL;
   2424 	dev->dv_class_suspend = NULL;
   2425 	dev->dv_class_resume = NULL;
   2426 	dev->dv_class_deregister = NULL;
   2427 }
   2428 
   2429 bool
   2430 device_active(device_t dev, devactive_t type)
   2431 {
   2432 	size_t i;
   2433 
   2434 	if (dev->dv_activity_count == 0)
   2435 		return false;
   2436 
   2437 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2438 		if (dev->dv_activity_handlers[i] == NULL)
   2439 			break;
   2440 		(*dev->dv_activity_handlers[i])(dev, type);
   2441 	}
   2442 
   2443 	return true;
   2444 }
   2445 
   2446 bool
   2447 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2448 {
   2449 	void (**new_handlers)(device_t, devactive_t);
   2450 	void (**old_handlers)(device_t, devactive_t);
   2451 	size_t i, old_size, new_size;
   2452 	int s;
   2453 
   2454 	old_handlers = dev->dv_activity_handlers;
   2455 	old_size = dev->dv_activity_count;
   2456 
   2457 	for (i = 0; i < old_size; ++i) {
   2458 		KASSERT(old_handlers[i] != handler);
   2459 		if (old_handlers[i] == NULL) {
   2460 			old_handlers[i] = handler;
   2461 			return true;
   2462 		}
   2463 	}
   2464 
   2465 	new_size = old_size + 4;
   2466 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
   2467 
   2468 	memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
   2469 	new_handlers[old_size] = handler;
   2470 	memset(new_handlers + old_size + 1, 0,
   2471 	    sizeof(int [new_size - (old_size+1)]));
   2472 
   2473 	s = splhigh();
   2474 	dev->dv_activity_count = new_size;
   2475 	dev->dv_activity_handlers = new_handlers;
   2476 	splx(s);
   2477 
   2478 	if (old_handlers != NULL)
   2479 		kmem_free(old_handlers, sizeof(void * [old_size]));
   2480 
   2481 	return true;
   2482 }
   2483 
   2484 void
   2485 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2486 {
   2487 	void (**old_handlers)(device_t, devactive_t);
   2488 	size_t i, old_size;
   2489 	int s;
   2490 
   2491 	old_handlers = dev->dv_activity_handlers;
   2492 	old_size = dev->dv_activity_count;
   2493 
   2494 	for (i = 0; i < old_size; ++i) {
   2495 		if (old_handlers[i] == handler)
   2496 			break;
   2497 		if (old_handlers[i] == NULL)
   2498 			return; /* XXX panic? */
   2499 	}
   2500 
   2501 	if (i == old_size)
   2502 		return; /* XXX panic? */
   2503 
   2504 	for (; i < old_size - 1; ++i) {
   2505 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   2506 			continue;
   2507 
   2508 		if (i == 0) {
   2509 			s = splhigh();
   2510 			dev->dv_activity_count = 0;
   2511 			dev->dv_activity_handlers = NULL;
   2512 			splx(s);
   2513 			kmem_free(old_handlers, sizeof(void *[old_size]));
   2514 		}
   2515 		return;
   2516 	}
   2517 	old_handlers[i] = NULL;
   2518 }
   2519 
   2520 /* Return true iff the device_t `dev' exists at generation `gen'. */
   2521 static bool
   2522 device_exists_at(device_t dv, devgen_t gen)
   2523 {
   2524 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   2525 	    dv->dv_add_gen <= gen;
   2526 }
   2527 
   2528 static bool
   2529 deviter_visits(const deviter_t *di, device_t dv)
   2530 {
   2531 	return device_exists_at(dv, di->di_gen);
   2532 }
   2533 
   2534 /*
   2535  * Device Iteration
   2536  *
   2537  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2538  *     each device_t's in the device tree.
   2539  *
   2540  * deviter_init(di, flags): initialize the device iterator `di'
   2541  *     to "walk" the device tree.  deviter_next(di) will return
   2542  *     the first device_t in the device tree, or NULL if there are
   2543  *     no devices.
   2544  *
   2545  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2546  *     caller intends to modify the device tree by calling
   2547  *     config_detach(9) on devices in the order that the iterator
   2548  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2549  *     nearest the "root" of the device tree to be returned, first;
   2550  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2551  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2552  *     indicating both that deviter_init() should not respect any
   2553  *     locks on the device tree, and that deviter_next(di) may run
   2554  *     in more than one LWP before the walk has finished.
   2555  *
   2556  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2557  *     once.
   2558  *
   2559  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2560  *
   2561  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2562  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2563  *
   2564  * deviter_first(di, flags): initialize the device iterator `di'
   2565  *     and return the first device_t in the device tree, or NULL
   2566  *     if there are no devices.  The statement
   2567  *
   2568  *         dv = deviter_first(di);
   2569  *
   2570  *     is shorthand for
   2571  *
   2572  *         deviter_init(di);
   2573  *         dv = deviter_next(di);
   2574  *
   2575  * deviter_next(di): return the next device_t in the device tree,
   2576  *     or NULL if there are no more devices.  deviter_next(di)
   2577  *     is undefined if `di' was not initialized with deviter_init() or
   2578  *     deviter_first().
   2579  *
   2580  * deviter_release(di): stops iteration (subsequent calls to
   2581  *     deviter_next() will return NULL), releases any locks and
   2582  *     resources held by the device iterator.
   2583  *
   2584  * Device iteration does not return device_t's in any particular
   2585  * order.  An iterator will never return the same device_t twice.
   2586  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2587  * is called repeatedly on the same `di', it will eventually return
   2588  * NULL.  It is ok to attach/detach devices during device iteration.
   2589  */
   2590 void
   2591 deviter_init(deviter_t *di, deviter_flags_t flags)
   2592 {
   2593 	device_t dv;
   2594 	int s;
   2595 
   2596 	memset(di, 0, sizeof(*di));
   2597 
   2598 	s = config_alldevs_lock();
   2599 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   2600 		flags |= DEVITER_F_RW;
   2601 
   2602 	if ((flags & DEVITER_F_RW) != 0)
   2603 		alldevs_nwrite++;
   2604 	else
   2605 		alldevs_nread++;
   2606 	di->di_gen = alldevs_gen++;
   2607 	config_alldevs_unlock(s);
   2608 
   2609 	di->di_flags = flags;
   2610 
   2611 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2612 	case DEVITER_F_LEAVES_FIRST:
   2613 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2614 			if (!deviter_visits(di, dv))
   2615 				continue;
   2616 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2617 		}
   2618 		break;
   2619 	case DEVITER_F_ROOT_FIRST:
   2620 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2621 			if (!deviter_visits(di, dv))
   2622 				continue;
   2623 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2624 		}
   2625 		break;
   2626 	default:
   2627 		break;
   2628 	}
   2629 
   2630 	deviter_reinit(di);
   2631 }
   2632 
   2633 static void
   2634 deviter_reinit(deviter_t *di)
   2635 {
   2636 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2637 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2638 	else
   2639 		di->di_prev = TAILQ_FIRST(&alldevs);
   2640 }
   2641 
   2642 device_t
   2643 deviter_first(deviter_t *di, deviter_flags_t flags)
   2644 {
   2645 	deviter_init(di, flags);
   2646 	return deviter_next(di);
   2647 }
   2648 
   2649 static device_t
   2650 deviter_next2(deviter_t *di)
   2651 {
   2652 	device_t dv;
   2653 
   2654 	dv = di->di_prev;
   2655 
   2656 	if (dv == NULL)
   2657 		return NULL;
   2658 
   2659 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2660 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2661 	else
   2662 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2663 
   2664 	return dv;
   2665 }
   2666 
   2667 static device_t
   2668 deviter_next1(deviter_t *di)
   2669 {
   2670 	device_t dv;
   2671 
   2672 	do {
   2673 		dv = deviter_next2(di);
   2674 	} while (dv != NULL && !deviter_visits(di, dv));
   2675 
   2676 	return dv;
   2677 }
   2678 
   2679 device_t
   2680 deviter_next(deviter_t *di)
   2681 {
   2682 	device_t dv = NULL;
   2683 
   2684 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2685 	case 0:
   2686 		return deviter_next1(di);
   2687 	case DEVITER_F_LEAVES_FIRST:
   2688 		while (di->di_curdepth >= 0) {
   2689 			if ((dv = deviter_next1(di)) == NULL) {
   2690 				di->di_curdepth--;
   2691 				deviter_reinit(di);
   2692 			} else if (dv->dv_depth == di->di_curdepth)
   2693 				break;
   2694 		}
   2695 		return dv;
   2696 	case DEVITER_F_ROOT_FIRST:
   2697 		while (di->di_curdepth <= di->di_maxdepth) {
   2698 			if ((dv = deviter_next1(di)) == NULL) {
   2699 				di->di_curdepth++;
   2700 				deviter_reinit(di);
   2701 			} else if (dv->dv_depth == di->di_curdepth)
   2702 				break;
   2703 		}
   2704 		return dv;
   2705 	default:
   2706 		return NULL;
   2707 	}
   2708 }
   2709 
   2710 void
   2711 deviter_release(deviter_t *di)
   2712 {
   2713 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2714 	int s;
   2715 
   2716 	s = config_alldevs_lock();
   2717 	if (rw)
   2718 		--alldevs_nwrite;
   2719 	else
   2720 		--alldevs_nread;
   2721 	/* XXX wake a garbage-collection thread */
   2722 	config_alldevs_unlock(s);
   2723 }
   2724 
   2725 static void
   2726 sysctl_detach_setup(struct sysctllog **clog)
   2727 {
   2728 	const struct sysctlnode *node = NULL;
   2729 
   2730 	sysctl_createv(clog, 0, NULL, &node,
   2731 		CTLFLAG_PERMANENT,
   2732 		CTLTYPE_NODE, "kern", NULL,
   2733 		NULL, 0, NULL, 0,
   2734 		CTL_KERN, CTL_EOL);
   2735 
   2736 	if (node == NULL)
   2737 		return;
   2738 
   2739 	sysctl_createv(clog, 0, &node, NULL,
   2740 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   2741 		CTLTYPE_INT, "detachall",
   2742 		SYSCTL_DESCR("Detach all devices at shutdown"),
   2743 		NULL, 0, &detachall, 0,
   2744 		CTL_CREATE, CTL_EOL);
   2745 }
   2746