subr_autoconf.c revision 1.191 1 /* $NetBSD: subr_autoconf.c,v 1.191 2010/01/05 22:42:16 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.191 2010/01/05 22:42:16 dyoung Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #endif
85
86 #include <sys/param.h>
87 #include <sys/device.h>
88 #include <sys/disklabel.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91 #include <sys/malloc.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/vnode.h>
102 #include <sys/mount.h>
103 #include <sys/namei.h>
104 #include <sys/unistd.h>
105 #include <sys/fcntl.h>
106 #include <sys/lockf.h>
107 #include <sys/callout.h>
108 #include <sys/devmon.h>
109 #include <sys/cpu.h>
110 #include <sys/sysctl.h>
111
112 #include <sys/disk.h>
113
114 #include <machine/limits.h>
115
116 #if defined(__i386__) && defined(_KERNEL_OPT)
117 #include "opt_splash.h"
118 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
119 #include <dev/splash/splash.h>
120 extern struct splash_progress *splash_progress_state;
121 #endif
122 #endif
123
124 /*
125 * Autoconfiguration subroutines.
126 */
127
128 /*
129 * ioconf.c exports exactly two names: cfdata and cfroots. All system
130 * devices and drivers are found via these tables.
131 */
132 extern struct cfdata cfdata[];
133 extern const short cfroots[];
134
135 /*
136 * List of all cfdriver structures. We use this to detect duplicates
137 * when other cfdrivers are loaded.
138 */
139 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
140 extern struct cfdriver * const cfdriver_list_initial[];
141
142 /*
143 * Initial list of cfattach's.
144 */
145 extern const struct cfattachinit cfattachinit[];
146
147 /*
148 * List of cfdata tables. We always have one such list -- the one
149 * built statically when the kernel was configured.
150 */
151 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
152 static struct cftable initcftable;
153
154 #define ROOT ((device_t)NULL)
155
156 struct matchinfo {
157 cfsubmatch_t fn;
158 struct device *parent;
159 const int *locs;
160 void *aux;
161 struct cfdata *match;
162 int pri;
163 };
164
165 static char *number(char *, int);
166 static void mapply(struct matchinfo *, cfdata_t);
167 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
168 static void config_devdelete(device_t);
169 static void config_devunlink(device_t, struct devicelist *);
170 static void config_makeroom(int, struct cfdriver *);
171 static void config_devlink(device_t);
172 static void config_alldevs_unlock(int);
173 static int config_alldevs_lock(void);
174
175 static void config_collect_garbage(struct devicelist *);
176 static void config_dump_garbage(struct devicelist *);
177
178 static void pmflock_debug(device_t, const char *, int);
179
180 static device_t deviter_next1(deviter_t *);
181 static void deviter_reinit(deviter_t *);
182
183 struct deferred_config {
184 TAILQ_ENTRY(deferred_config) dc_queue;
185 device_t dc_dev;
186 void (*dc_func)(device_t);
187 };
188
189 TAILQ_HEAD(deferred_config_head, deferred_config);
190
191 struct deferred_config_head deferred_config_queue =
192 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
193 struct deferred_config_head interrupt_config_queue =
194 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
195 int interrupt_config_threads = 8;
196
197 static void config_process_deferred(struct deferred_config_head *, device_t);
198
199 /* Hooks to finalize configuration once all real devices have been found. */
200 struct finalize_hook {
201 TAILQ_ENTRY(finalize_hook) f_list;
202 int (*f_func)(device_t);
203 device_t f_dev;
204 };
205 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
206 TAILQ_HEAD_INITIALIZER(config_finalize_list);
207 static int config_finalize_done;
208
209 /* list of all devices */
210 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
211 static kmutex_t alldevs_mtx;
212 static volatile bool alldevs_garbage = false;
213 static volatile devgen_t alldevs_gen = 1;
214 static volatile int alldevs_nread = 0;
215 static volatile int alldevs_nwrite = 0;
216
217 static int config_pending; /* semaphore for mountroot */
218 static kmutex_t config_misc_lock;
219 static kcondvar_t config_misc_cv;
220
221 static int detachall = 0;
222
223 #define STREQ(s1, s2) \
224 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
225
226 static bool config_initialized = false; /* config_init() has been called. */
227
228 static int config_do_twiddle;
229 static callout_t config_twiddle_ch;
230
231 static void sysctl_detach_setup(struct sysctllog **);
232
233 /*
234 * Initialize the autoconfiguration data structures. Normally this
235 * is done by configure(), but some platforms need to do this very
236 * early (to e.g. initialize the console).
237 */
238 void
239 config_init(void)
240 {
241 const struct cfattachinit *cfai;
242 int i, j;
243
244 KASSERT(config_initialized == false);
245
246 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_HIGH);
247
248 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
249 cv_init(&config_misc_cv, "cfgmisc");
250
251 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
252
253 /* allcfdrivers is statically initialized. */
254 for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
255 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
256 panic("configure: duplicate `%s' drivers",
257 cfdriver_list_initial[i]->cd_name);
258 }
259
260 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
261 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
262 if (config_cfattach_attach(cfai->cfai_name,
263 cfai->cfai_list[j]) != 0)
264 panic("configure: duplicate `%s' attachment "
265 "of `%s' driver",
266 cfai->cfai_list[j]->ca_name,
267 cfai->cfai_name);
268 }
269 }
270
271 initcftable.ct_cfdata = cfdata;
272 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
273
274 config_initialized = true;
275 }
276
277 void
278 config_init_mi(void)
279 {
280
281 if (!config_initialized)
282 config_init();
283
284 sysctl_detach_setup(NULL);
285 }
286
287 void
288 config_deferred(device_t dev)
289 {
290 config_process_deferred(&deferred_config_queue, dev);
291 config_process_deferred(&interrupt_config_queue, dev);
292 }
293
294 static void
295 config_interrupts_thread(void *cookie)
296 {
297 struct deferred_config *dc;
298
299 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
300 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
301 (*dc->dc_func)(dc->dc_dev);
302 kmem_free(dc, sizeof(*dc));
303 config_pending_decr();
304 }
305 kthread_exit(0);
306 }
307
308 void
309 config_create_interruptthreads()
310 {
311 int i;
312
313 for (i = 0; i < interrupt_config_threads; i++) {
314 (void)kthread_create(PRI_NONE, 0, NULL,
315 config_interrupts_thread, NULL, NULL, "config");
316 }
317 }
318
319 /*
320 * Announce device attach/detach to userland listeners.
321 */
322 static void
323 devmon_report_device(device_t dev, bool isattach)
324 {
325 #if NDRVCTL > 0
326 prop_dictionary_t ev;
327 const char *parent;
328 const char *what;
329 device_t pdev = device_parent(dev);
330
331 ev = prop_dictionary_create();
332 if (ev == NULL)
333 return;
334
335 what = (isattach ? "device-attach" : "device-detach");
336 parent = (pdev == NULL ? "root" : device_xname(pdev));
337 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
338 !prop_dictionary_set_cstring(ev, "parent", parent)) {
339 prop_object_release(ev);
340 return;
341 }
342
343 devmon_insert(what, ev);
344 #endif
345 }
346
347 /*
348 * Add a cfdriver to the system.
349 */
350 int
351 config_cfdriver_attach(struct cfdriver *cd)
352 {
353 struct cfdriver *lcd;
354
355 /* Make sure this driver isn't already in the system. */
356 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
357 if (STREQ(lcd->cd_name, cd->cd_name))
358 return EEXIST;
359 }
360
361 LIST_INIT(&cd->cd_attach);
362 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
363
364 return 0;
365 }
366
367 /*
368 * Remove a cfdriver from the system.
369 */
370 int
371 config_cfdriver_detach(struct cfdriver *cd)
372 {
373 struct devicelist garbage = TAILQ_HEAD_INITIALIZER(garbage);
374 int i, rc = 0, s;
375
376 s = config_alldevs_lock();
377 config_collect_garbage(&garbage);
378 /* Make sure there are no active instances. */
379 for (i = 0; i < cd->cd_ndevs; i++) {
380 if (cd->cd_devs[i] != NULL) {
381 rc = EBUSY;
382 break;
383 }
384 }
385 config_alldevs_unlock(s);
386 config_dump_garbage(&garbage);
387
388 if (rc != 0)
389 return rc;
390
391 /* ...and no attachments loaded. */
392 if (LIST_EMPTY(&cd->cd_attach) == 0)
393 return EBUSY;
394
395 LIST_REMOVE(cd, cd_list);
396
397 KASSERT(cd->cd_devs == NULL);
398
399 return 0;
400 }
401
402 /*
403 * Look up a cfdriver by name.
404 */
405 struct cfdriver *
406 config_cfdriver_lookup(const char *name)
407 {
408 struct cfdriver *cd;
409
410 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
411 if (STREQ(cd->cd_name, name))
412 return cd;
413 }
414
415 return NULL;
416 }
417
418 /*
419 * Add a cfattach to the specified driver.
420 */
421 int
422 config_cfattach_attach(const char *driver, struct cfattach *ca)
423 {
424 struct cfattach *lca;
425 struct cfdriver *cd;
426
427 cd = config_cfdriver_lookup(driver);
428 if (cd == NULL)
429 return ESRCH;
430
431 /* Make sure this attachment isn't already on this driver. */
432 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
433 if (STREQ(lca->ca_name, ca->ca_name))
434 return EEXIST;
435 }
436
437 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
438
439 return 0;
440 }
441
442 /*
443 * Remove a cfattach from the specified driver.
444 */
445 int
446 config_cfattach_detach(const char *driver, struct cfattach *ca)
447 {
448 struct devicelist garbage = TAILQ_HEAD_INITIALIZER(garbage);
449 struct cfdriver *cd;
450 device_t dev;
451 int i, rc = 0, s;
452
453 cd = config_cfdriver_lookup(driver);
454 if (cd == NULL)
455 return ESRCH;
456
457 s = config_alldevs_lock();
458 config_collect_garbage(&garbage);
459 /* Make sure there are no active instances. */
460 for (i = 0; i < cd->cd_ndevs; i++) {
461 if ((dev = cd->cd_devs[i]) == NULL)
462 continue;
463 if (dev->dv_cfattach == ca) {
464 rc = EBUSY;
465 break;
466 }
467 }
468 config_alldevs_unlock(s);
469 config_dump_garbage(&garbage);
470
471 if (rc != 0)
472 return rc;
473
474 LIST_REMOVE(ca, ca_list);
475
476 return 0;
477 }
478
479 /*
480 * Look up a cfattach by name.
481 */
482 static struct cfattach *
483 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
484 {
485 struct cfattach *ca;
486
487 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
488 if (STREQ(ca->ca_name, atname))
489 return ca;
490 }
491
492 return NULL;
493 }
494
495 /*
496 * Look up a cfattach by driver/attachment name.
497 */
498 struct cfattach *
499 config_cfattach_lookup(const char *name, const char *atname)
500 {
501 struct cfdriver *cd;
502
503 cd = config_cfdriver_lookup(name);
504 if (cd == NULL)
505 return NULL;
506
507 return config_cfattach_lookup_cd(cd, atname);
508 }
509
510 /*
511 * Apply the matching function and choose the best. This is used
512 * a few times and we want to keep the code small.
513 */
514 static void
515 mapply(struct matchinfo *m, cfdata_t cf)
516 {
517 int pri;
518
519 if (m->fn != NULL) {
520 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
521 } else {
522 pri = config_match(m->parent, cf, m->aux);
523 }
524 if (pri > m->pri) {
525 m->match = cf;
526 m->pri = pri;
527 }
528 }
529
530 int
531 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
532 {
533 const struct cfiattrdata *ci;
534 const struct cflocdesc *cl;
535 int nlocs, i;
536
537 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
538 KASSERT(ci);
539 nlocs = ci->ci_loclen;
540 KASSERT(!nlocs || locs);
541 for (i = 0; i < nlocs; i++) {
542 cl = &ci->ci_locdesc[i];
543 /* !cld_defaultstr means no default value */
544 if ((!(cl->cld_defaultstr)
545 || (cf->cf_loc[i] != cl->cld_default))
546 && cf->cf_loc[i] != locs[i])
547 return 0;
548 }
549
550 return config_match(parent, cf, aux);
551 }
552
553 /*
554 * Helper function: check whether the driver supports the interface attribute
555 * and return its descriptor structure.
556 */
557 static const struct cfiattrdata *
558 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
559 {
560 const struct cfiattrdata * const *cpp;
561
562 if (cd->cd_attrs == NULL)
563 return 0;
564
565 for (cpp = cd->cd_attrs; *cpp; cpp++) {
566 if (STREQ((*cpp)->ci_name, ia)) {
567 /* Match. */
568 return *cpp;
569 }
570 }
571 return 0;
572 }
573
574 /*
575 * Lookup an interface attribute description by name.
576 * If the driver is given, consider only its supported attributes.
577 */
578 const struct cfiattrdata *
579 cfiattr_lookup(const char *name, const struct cfdriver *cd)
580 {
581 const struct cfdriver *d;
582 const struct cfiattrdata *ia;
583
584 if (cd)
585 return cfdriver_get_iattr(cd, name);
586
587 LIST_FOREACH(d, &allcfdrivers, cd_list) {
588 ia = cfdriver_get_iattr(d, name);
589 if (ia)
590 return ia;
591 }
592 return 0;
593 }
594
595 /*
596 * Determine if `parent' is a potential parent for a device spec based
597 * on `cfp'.
598 */
599 static int
600 cfparent_match(const device_t parent, const struct cfparent *cfp)
601 {
602 struct cfdriver *pcd;
603
604 /* We don't match root nodes here. */
605 if (cfp == NULL)
606 return 0;
607
608 pcd = parent->dv_cfdriver;
609 KASSERT(pcd != NULL);
610
611 /*
612 * First, ensure this parent has the correct interface
613 * attribute.
614 */
615 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
616 return 0;
617
618 /*
619 * If no specific parent device instance was specified (i.e.
620 * we're attaching to the attribute only), we're done!
621 */
622 if (cfp->cfp_parent == NULL)
623 return 1;
624
625 /*
626 * Check the parent device's name.
627 */
628 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
629 return 0; /* not the same parent */
630
631 /*
632 * Make sure the unit number matches.
633 */
634 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
635 cfp->cfp_unit == parent->dv_unit)
636 return 1;
637
638 /* Unit numbers don't match. */
639 return 0;
640 }
641
642 /*
643 * Helper for config_cfdata_attach(): check all devices whether it could be
644 * parent any attachment in the config data table passed, and rescan.
645 */
646 static void
647 rescan_with_cfdata(const struct cfdata *cf)
648 {
649 device_t d;
650 const struct cfdata *cf1;
651 deviter_t di;
652
653
654 /*
655 * "alldevs" is likely longer than a modules's cfdata, so make it
656 * the outer loop.
657 */
658 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
659
660 if (!(d->dv_cfattach->ca_rescan))
661 continue;
662
663 for (cf1 = cf; cf1->cf_name; cf1++) {
664
665 if (!cfparent_match(d, cf1->cf_pspec))
666 continue;
667
668 (*d->dv_cfattach->ca_rescan)(d,
669 cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
670 }
671 }
672 deviter_release(&di);
673 }
674
675 /*
676 * Attach a supplemental config data table and rescan potential
677 * parent devices if required.
678 */
679 int
680 config_cfdata_attach(cfdata_t cf, int scannow)
681 {
682 struct cftable *ct;
683
684 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
685 ct->ct_cfdata = cf;
686 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
687
688 if (scannow)
689 rescan_with_cfdata(cf);
690
691 return 0;
692 }
693
694 /*
695 * Helper for config_cfdata_detach: check whether a device is
696 * found through any attachment in the config data table.
697 */
698 static int
699 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
700 {
701 const struct cfdata *cf1;
702
703 for (cf1 = cf; cf1->cf_name; cf1++)
704 if (d->dv_cfdata == cf1)
705 return 1;
706
707 return 0;
708 }
709
710 /*
711 * Detach a supplemental config data table. Detach all devices found
712 * through that table (and thus keeping references to it) before.
713 */
714 int
715 config_cfdata_detach(cfdata_t cf)
716 {
717 device_t d;
718 int error = 0;
719 struct cftable *ct;
720 deviter_t di;
721
722 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
723 d = deviter_next(&di)) {
724 if (!dev_in_cfdata(d, cf))
725 continue;
726 if ((error = config_detach(d, 0)) != 0)
727 break;
728 }
729 deviter_release(&di);
730 if (error) {
731 aprint_error_dev(d, "unable to detach instance\n");
732 return error;
733 }
734
735 TAILQ_FOREACH(ct, &allcftables, ct_list) {
736 if (ct->ct_cfdata == cf) {
737 TAILQ_REMOVE(&allcftables, ct, ct_list);
738 kmem_free(ct, sizeof(*ct));
739 return 0;
740 }
741 }
742
743 /* not found -- shouldn't happen */
744 return EINVAL;
745 }
746
747 /*
748 * Invoke the "match" routine for a cfdata entry on behalf of
749 * an external caller, usually a "submatch" routine.
750 */
751 int
752 config_match(device_t parent, cfdata_t cf, void *aux)
753 {
754 struct cfattach *ca;
755
756 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
757 if (ca == NULL) {
758 /* No attachment for this entry, oh well. */
759 return 0;
760 }
761
762 return (*ca->ca_match)(parent, cf, aux);
763 }
764
765 /*
766 * Iterate over all potential children of some device, calling the given
767 * function (default being the child's match function) for each one.
768 * Nonzero returns are matches; the highest value returned is considered
769 * the best match. Return the `found child' if we got a match, or NULL
770 * otherwise. The `aux' pointer is simply passed on through.
771 *
772 * Note that this function is designed so that it can be used to apply
773 * an arbitrary function to all potential children (its return value
774 * can be ignored).
775 */
776 cfdata_t
777 config_search_loc(cfsubmatch_t fn, device_t parent,
778 const char *ifattr, const int *locs, void *aux)
779 {
780 struct cftable *ct;
781 cfdata_t cf;
782 struct matchinfo m;
783
784 KASSERT(config_initialized);
785 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
786
787 m.fn = fn;
788 m.parent = parent;
789 m.locs = locs;
790 m.aux = aux;
791 m.match = NULL;
792 m.pri = 0;
793
794 TAILQ_FOREACH(ct, &allcftables, ct_list) {
795 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
796
797 /* We don't match root nodes here. */
798 if (!cf->cf_pspec)
799 continue;
800
801 /*
802 * Skip cf if no longer eligible, otherwise scan
803 * through parents for one matching `parent', and
804 * try match function.
805 */
806 if (cf->cf_fstate == FSTATE_FOUND)
807 continue;
808 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
809 cf->cf_fstate == FSTATE_DSTAR)
810 continue;
811
812 /*
813 * If an interface attribute was specified,
814 * consider only children which attach to
815 * that attribute.
816 */
817 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
818 continue;
819
820 if (cfparent_match(parent, cf->cf_pspec))
821 mapply(&m, cf);
822 }
823 }
824 return m.match;
825 }
826
827 cfdata_t
828 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
829 void *aux)
830 {
831
832 return config_search_loc(fn, parent, ifattr, NULL, aux);
833 }
834
835 /*
836 * Find the given root device.
837 * This is much like config_search, but there is no parent.
838 * Don't bother with multiple cfdata tables; the root node
839 * must always be in the initial table.
840 */
841 cfdata_t
842 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
843 {
844 cfdata_t cf;
845 const short *p;
846 struct matchinfo m;
847
848 m.fn = fn;
849 m.parent = ROOT;
850 m.aux = aux;
851 m.match = NULL;
852 m.pri = 0;
853 m.locs = 0;
854 /*
855 * Look at root entries for matching name. We do not bother
856 * with found-state here since only one root should ever be
857 * searched (and it must be done first).
858 */
859 for (p = cfroots; *p >= 0; p++) {
860 cf = &cfdata[*p];
861 if (strcmp(cf->cf_name, rootname) == 0)
862 mapply(&m, cf);
863 }
864 return m.match;
865 }
866
867 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
868
869 /*
870 * The given `aux' argument describes a device that has been found
871 * on the given parent, but not necessarily configured. Locate the
872 * configuration data for that device (using the submatch function
873 * provided, or using candidates' cd_match configuration driver
874 * functions) and attach it, and return true. If the device was
875 * not configured, call the given `print' function and return 0.
876 */
877 device_t
878 config_found_sm_loc(device_t parent,
879 const char *ifattr, const int *locs, void *aux,
880 cfprint_t print, cfsubmatch_t submatch)
881 {
882 cfdata_t cf;
883
884 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
885 if (splash_progress_state)
886 splash_progress_update(splash_progress_state);
887 #endif
888
889 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
890 return(config_attach_loc(parent, cf, locs, aux, print));
891 if (print) {
892 if (config_do_twiddle && cold)
893 twiddle();
894 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
895 }
896
897 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
898 if (splash_progress_state)
899 splash_progress_update(splash_progress_state);
900 #endif
901
902 return NULL;
903 }
904
905 device_t
906 config_found_ia(device_t parent, const char *ifattr, void *aux,
907 cfprint_t print)
908 {
909
910 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
911 }
912
913 device_t
914 config_found(device_t parent, void *aux, cfprint_t print)
915 {
916
917 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
918 }
919
920 /*
921 * As above, but for root devices.
922 */
923 device_t
924 config_rootfound(const char *rootname, void *aux)
925 {
926 cfdata_t cf;
927
928 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
929 return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
930 aprint_error("root device %s not configured\n", rootname);
931 return NULL;
932 }
933
934 /* just like sprintf(buf, "%d") except that it works from the end */
935 static char *
936 number(char *ep, int n)
937 {
938
939 *--ep = 0;
940 while (n >= 10) {
941 *--ep = (n % 10) + '0';
942 n /= 10;
943 }
944 *--ep = n + '0';
945 return ep;
946 }
947
948 /*
949 * Expand the size of the cd_devs array if necessary.
950 *
951 * The caller must hold alldevs_mtx. config_makeroom() may release and
952 * re-acquire alldevs_mtx, so callers should re-check conditions such
953 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
954 * returns.
955 */
956 static void
957 config_makeroom(int n, struct cfdriver *cd)
958 {
959 int old, new;
960 device_t *osp, *nsp;
961
962 alldevs_nwrite++;
963
964 for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
965 ;
966
967 while (n >= cd->cd_ndevs) {
968 /*
969 * Need to expand the array.
970 */
971 old = cd->cd_ndevs;
972 osp = cd->cd_devs;
973
974 /* Release alldevs_mtx around allocation, which may
975 * sleep.
976 */
977 mutex_exit(&alldevs_mtx);
978 nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
979 if (nsp == NULL)
980 panic("%s: could not expand cd_devs", __func__);
981 mutex_enter(&alldevs_mtx);
982
983 /* If another thread moved the array while we did
984 * not hold alldevs_mtx, try again.
985 */
986 if (cd->cd_devs != osp) {
987 kmem_free(nsp, sizeof(device_t[new]));
988 continue;
989 }
990
991 memset(nsp + old, 0, sizeof(device_t[new - old]));
992 if (old != 0)
993 memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
994
995 cd->cd_ndevs = new;
996 cd->cd_devs = nsp;
997 if (old != 0)
998 kmem_free(osp, sizeof(device_t[old]));
999 }
1000 alldevs_nwrite--;
1001 }
1002
1003 /*
1004 * Put dev into the devices list.
1005 */
1006 static void
1007 config_devlink(device_t dev)
1008 {
1009 int s;
1010
1011 s = config_alldevs_lock();
1012
1013 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1014
1015 dev->dv_add_gen = alldevs_gen;
1016 /* It is safe to add a device to the tail of the list while
1017 * readers and writers are in the list.
1018 */
1019 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1020 config_alldevs_unlock(s);
1021 }
1022
1023 static void
1024 config_devfree(device_t dev)
1025 {
1026 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1027
1028 if (dev->dv_cfattach->ca_devsize > 0)
1029 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1030 if (priv)
1031 kmem_free(dev, sizeof(*dev));
1032 }
1033
1034 /*
1035 * Caller must hold alldevs_mtx.
1036 */
1037 static void
1038 config_devunlink(device_t dev, struct devicelist *garbage)
1039 {
1040 struct device_garbage *dg = &dev->dv_garbage;
1041 cfdriver_t cd = device_cfdriver(dev);
1042 int i;
1043
1044 KASSERT(mutex_owned(&alldevs_mtx));
1045
1046 /* Unlink from device list. Link to garbage list. */
1047 TAILQ_REMOVE(&alldevs, dev, dv_list);
1048 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1049
1050 /* Remove from cfdriver's array. */
1051 cd->cd_devs[dev->dv_unit] = NULL;
1052
1053 /*
1054 * If the device now has no units in use, unlink its softc array.
1055 */
1056 for (i = 0; i < cd->cd_ndevs; i++) {
1057 if (cd->cd_devs[i] != NULL)
1058 break;
1059 }
1060 /* Nothing found. Unlink, now. Deallocate, later. */
1061 if (i == cd->cd_ndevs) {
1062 dg->dg_ndevs = cd->cd_ndevs;
1063 dg->dg_devs = cd->cd_devs;
1064 cd->cd_devs = NULL;
1065 cd->cd_ndevs = 0;
1066 }
1067 }
1068
1069 static void
1070 config_devdelete(device_t dev)
1071 {
1072 struct device_garbage *dg = &dev->dv_garbage;
1073 device_lock_t dvl = device_getlock(dev);
1074
1075 if (dg->dg_devs != NULL)
1076 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1077
1078 cv_destroy(&dvl->dvl_cv);
1079 mutex_destroy(&dvl->dvl_mtx);
1080
1081 KASSERT(dev->dv_properties != NULL);
1082 prop_object_release(dev->dv_properties);
1083
1084 if (dev->dv_activity_handlers)
1085 panic("%s with registered handlers", __func__);
1086
1087 if (dev->dv_locators) {
1088 size_t amount = *--dev->dv_locators;
1089 kmem_free(dev->dv_locators, amount);
1090 }
1091
1092 config_devfree(dev);
1093 }
1094
1095 static int
1096 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1097 {
1098 int unit;
1099
1100 if (cf->cf_fstate == FSTATE_STAR) {
1101 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1102 if (cd->cd_devs[unit] == NULL)
1103 break;
1104 /*
1105 * unit is now the unit of the first NULL device pointer,
1106 * or max(cd->cd_ndevs,cf->cf_unit).
1107 */
1108 } else {
1109 unit = cf->cf_unit;
1110 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1111 unit = -1;
1112 }
1113 return unit;
1114 }
1115
1116 static int
1117 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1118 {
1119 struct devicelist garbage = TAILQ_HEAD_INITIALIZER(garbage);
1120 int s, unit;
1121
1122 s = config_alldevs_lock();
1123 for (;;) {
1124 config_collect_garbage(&garbage);
1125 unit = config_unit_nextfree(cd, cf);
1126 if (unit == -1)
1127 break;
1128 if (unit < cd->cd_ndevs) {
1129 cd->cd_devs[unit] = dev;
1130 dev->dv_unit = unit;
1131 break;
1132 }
1133 config_makeroom(unit, cd);
1134 }
1135 config_alldevs_unlock(s);
1136 config_dump_garbage(&garbage);
1137
1138 return unit;
1139 }
1140
1141 static device_t
1142 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1143 {
1144 struct devicelist garbage = TAILQ_HEAD_INITIALIZER(garbage);
1145 cfdriver_t cd;
1146 cfattach_t ca;
1147 size_t lname, lunit;
1148 const char *xunit;
1149 int myunit;
1150 char num[10];
1151 device_t dev;
1152 void *dev_private;
1153 const struct cfiattrdata *ia;
1154 device_lock_t dvl;
1155
1156 cd = config_cfdriver_lookup(cf->cf_name);
1157 if (cd == NULL)
1158 return NULL;
1159
1160 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1161 if (ca == NULL)
1162 return NULL;
1163
1164 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1165 ca->ca_devsize < sizeof(struct device))
1166 panic("config_devalloc: %s", cf->cf_atname);
1167
1168 /* get memory for all device vars */
1169 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1170 if (ca->ca_devsize > 0) {
1171 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1172 if (dev_private == NULL)
1173 panic("config_devalloc: memory allocation for device softc failed");
1174 } else {
1175 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1176 dev_private = NULL;
1177 }
1178
1179 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1180 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1181 } else {
1182 dev = dev_private;
1183 }
1184 if (dev == NULL)
1185 panic("config_devalloc: memory allocation for device_t failed");
1186
1187 myunit = config_unit_alloc(dev, cd, cf);
1188 if (myunit == -1) {
1189 config_devfree(dev);
1190 return NULL;
1191 }
1192
1193 /* compute length of name and decimal expansion of unit number */
1194 lname = strlen(cd->cd_name);
1195 xunit = number(&num[sizeof(num)], myunit);
1196 lunit = &num[sizeof(num)] - xunit;
1197 if (lname + lunit > sizeof(dev->dv_xname))
1198 panic("config_devalloc: device name too long");
1199
1200 dvl = device_getlock(dev);
1201
1202 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1203 cv_init(&dvl->dvl_cv, "pmfsusp");
1204
1205 dev->dv_class = cd->cd_class;
1206 dev->dv_cfdata = cf;
1207 dev->dv_cfdriver = cd;
1208 dev->dv_cfattach = ca;
1209 dev->dv_activity_count = 0;
1210 dev->dv_activity_handlers = NULL;
1211 dev->dv_private = dev_private;
1212 memcpy(dev->dv_xname, cd->cd_name, lname);
1213 memcpy(dev->dv_xname + lname, xunit, lunit);
1214 dev->dv_parent = parent;
1215 if (parent != NULL)
1216 dev->dv_depth = parent->dv_depth + 1;
1217 else
1218 dev->dv_depth = 0;
1219 dev->dv_flags = DVF_ACTIVE; /* always initially active */
1220 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
1221 if (locs) {
1222 KASSERT(parent); /* no locators at root */
1223 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1224 parent->dv_cfdriver);
1225 dev->dv_locators =
1226 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1227 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1228 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1229 }
1230 dev->dv_properties = prop_dictionary_create();
1231 KASSERT(dev->dv_properties != NULL);
1232
1233 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1234 "device-driver", dev->dv_cfdriver->cd_name);
1235 prop_dictionary_set_uint16(dev->dv_properties,
1236 "device-unit", dev->dv_unit);
1237
1238 return dev;
1239 }
1240
1241 /*
1242 * Attach a found device.
1243 */
1244 device_t
1245 config_attach_loc(device_t parent, cfdata_t cf,
1246 const int *locs, void *aux, cfprint_t print)
1247 {
1248 device_t dev;
1249 struct cftable *ct;
1250 const char *drvname;
1251
1252 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1253 if (splash_progress_state)
1254 splash_progress_update(splash_progress_state);
1255 #endif
1256
1257 dev = config_devalloc(parent, cf, locs);
1258 if (!dev)
1259 panic("config_attach: allocation of device softc failed");
1260
1261 /* XXX redundant - see below? */
1262 if (cf->cf_fstate != FSTATE_STAR) {
1263 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1264 cf->cf_fstate = FSTATE_FOUND;
1265 }
1266
1267 config_devlink(dev);
1268
1269 if (config_do_twiddle && cold)
1270 twiddle();
1271 else
1272 aprint_naive("Found ");
1273 /*
1274 * We want the next two printfs for normal, verbose, and quiet,
1275 * but not silent (in which case, we're twiddling, instead).
1276 */
1277 if (parent == ROOT) {
1278 aprint_naive("%s (root)", device_xname(dev));
1279 aprint_normal("%s (root)", device_xname(dev));
1280 } else {
1281 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1282 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1283 if (print)
1284 (void) (*print)(aux, NULL);
1285 }
1286
1287 /*
1288 * Before attaching, clobber any unfound devices that are
1289 * otherwise identical.
1290 * XXX code above is redundant?
1291 */
1292 drvname = dev->dv_cfdriver->cd_name;
1293 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1294 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1295 if (STREQ(cf->cf_name, drvname) &&
1296 cf->cf_unit == dev->dv_unit) {
1297 if (cf->cf_fstate == FSTATE_NOTFOUND)
1298 cf->cf_fstate = FSTATE_FOUND;
1299 }
1300 }
1301 }
1302 #ifdef __HAVE_DEVICE_REGISTER
1303 device_register(dev, aux);
1304 #endif
1305
1306 /* Let userland know */
1307 devmon_report_device(dev, true);
1308
1309 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1310 if (splash_progress_state)
1311 splash_progress_update(splash_progress_state);
1312 #endif
1313 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1314 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1315 if (splash_progress_state)
1316 splash_progress_update(splash_progress_state);
1317 #endif
1318
1319 if (!device_pmf_is_registered(dev))
1320 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1321
1322 config_process_deferred(&deferred_config_queue, dev);
1323 return dev;
1324 }
1325
1326 device_t
1327 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1328 {
1329
1330 return config_attach_loc(parent, cf, NULL, aux, print);
1331 }
1332
1333 /*
1334 * As above, but for pseudo-devices. Pseudo-devices attached in this
1335 * way are silently inserted into the device tree, and their children
1336 * attached.
1337 *
1338 * Note that because pseudo-devices are attached silently, any information
1339 * the attach routine wishes to print should be prefixed with the device
1340 * name by the attach routine.
1341 */
1342 device_t
1343 config_attach_pseudo(cfdata_t cf)
1344 {
1345 device_t dev;
1346
1347 dev = config_devalloc(ROOT, cf, NULL);
1348 if (!dev)
1349 return NULL;
1350
1351 /* XXX mark busy in cfdata */
1352
1353 if (cf->cf_fstate != FSTATE_STAR) {
1354 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1355 cf->cf_fstate = FSTATE_FOUND;
1356 }
1357
1358 config_devlink(dev);
1359
1360 #if 0 /* XXXJRT not yet */
1361 #ifdef __HAVE_DEVICE_REGISTER
1362 device_register(dev, NULL); /* like a root node */
1363 #endif
1364 #endif
1365 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1366 config_process_deferred(&deferred_config_queue, dev);
1367 return dev;
1368 }
1369
1370 /*
1371 * Caller must hold alldevs_mtx.
1372 */
1373 static void
1374 config_collect_garbage(struct devicelist *garbage)
1375 {
1376 device_t dv;
1377
1378 KASSERT(!cpu_intr_p());
1379 KASSERT(!cpu_softintr_p());
1380 KASSERT(mutex_owned(&alldevs_mtx));
1381
1382 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1383 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1384 if (dv->dv_del_gen != 0)
1385 break;
1386 }
1387 if (dv == NULL) {
1388 alldevs_garbage = false;
1389 break;
1390 }
1391 config_devunlink(dv, garbage);
1392 }
1393 KASSERT(mutex_owned(&alldevs_mtx));
1394 }
1395
1396 static void
1397 config_dump_garbage(struct devicelist *garbage)
1398 {
1399 device_t dv;
1400
1401 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1402 TAILQ_REMOVE(garbage, dv, dv_list);
1403 config_devdelete(dv);
1404 }
1405 }
1406
1407 /*
1408 * Detach a device. Optionally forced (e.g. because of hardware
1409 * removal) and quiet. Returns zero if successful, non-zero
1410 * (an error code) otherwise.
1411 *
1412 * Note that this code wants to be run from a process context, so
1413 * that the detach can sleep to allow processes which have a device
1414 * open to run and unwind their stacks.
1415 */
1416 int
1417 config_detach(device_t dev, int flags)
1418 {
1419 struct devicelist garbage = TAILQ_HEAD_INITIALIZER(garbage);
1420 struct cftable *ct;
1421 cfdata_t cf;
1422 const struct cfattach *ca;
1423 struct cfdriver *cd;
1424 #ifdef DIAGNOSTIC
1425 device_t d;
1426 #endif
1427 int rv = 0, s;
1428
1429 #ifdef DIAGNOSTIC
1430 cf = dev->dv_cfdata;
1431 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1432 cf->cf_fstate != FSTATE_STAR)
1433 panic("config_detach: %s: bad device fstate %d",
1434 device_xname(dev), cf ? cf->cf_fstate : -1);
1435 #endif
1436 cd = dev->dv_cfdriver;
1437 KASSERT(cd != NULL);
1438
1439 ca = dev->dv_cfattach;
1440 KASSERT(ca != NULL);
1441
1442 s = config_alldevs_lock();
1443 if (dev->dv_del_gen != 0) {
1444 config_alldevs_unlock(s);
1445 #ifdef DIAGNOSTIC
1446 printf("%s: %s is already detached\n", __func__,
1447 device_xname(dev));
1448 #endif /* DIAGNOSTIC */
1449 return ENOENT;
1450 }
1451 alldevs_nwrite++;
1452 config_alldevs_unlock(s);
1453
1454 if (!detachall &&
1455 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1456 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1457 rv = EOPNOTSUPP;
1458 } else if (ca->ca_detach != NULL) {
1459 rv = (*ca->ca_detach)(dev, flags);
1460 } else
1461 rv = EOPNOTSUPP;
1462
1463 /*
1464 * If it was not possible to detach the device, then we either
1465 * panic() (for the forced but failed case), or return an error.
1466 *
1467 * If it was possible to detach the device, ensure that the
1468 * device is deactivated.
1469 */
1470 if (rv == 0)
1471 dev->dv_flags &= ~DVF_ACTIVE;
1472 else if ((flags & DETACH_FORCE) == 0)
1473 goto out;
1474 else {
1475 panic("config_detach: forced detach of %s failed (%d)",
1476 device_xname(dev), rv);
1477 }
1478
1479 /*
1480 * The device has now been successfully detached.
1481 */
1482
1483 /* Let userland know */
1484 devmon_report_device(dev, false);
1485
1486 #ifdef DIAGNOSTIC
1487 /*
1488 * Sanity: If you're successfully detached, you should have no
1489 * children. (Note that because children must be attached
1490 * after parents, we only need to search the latter part of
1491 * the list.)
1492 */
1493 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1494 d = TAILQ_NEXT(d, dv_list)) {
1495 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1496 printf("config_detach: detached device %s"
1497 " has children %s\n", device_xname(dev), device_xname(d));
1498 panic("config_detach");
1499 }
1500 }
1501 #endif
1502
1503 /* notify the parent that the child is gone */
1504 if (dev->dv_parent) {
1505 device_t p = dev->dv_parent;
1506 if (p->dv_cfattach->ca_childdetached)
1507 (*p->dv_cfattach->ca_childdetached)(p, dev);
1508 }
1509
1510 /*
1511 * Mark cfdata to show that the unit can be reused, if possible.
1512 */
1513 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1514 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1515 if (STREQ(cf->cf_name, cd->cd_name)) {
1516 if (cf->cf_fstate == FSTATE_FOUND &&
1517 cf->cf_unit == dev->dv_unit)
1518 cf->cf_fstate = FSTATE_NOTFOUND;
1519 }
1520 }
1521 }
1522
1523 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1524 aprint_normal_dev(dev, "detached\n");
1525
1526 out:
1527 s = config_alldevs_lock();
1528 KASSERT(alldevs_nwrite != 0);
1529 --alldevs_nwrite;
1530 if (rv == 0 && dev->dv_del_gen == 0) {
1531 dev->dv_del_gen = alldevs_gen;
1532 alldevs_garbage = true;
1533 }
1534 config_collect_garbage(&garbage);
1535 config_alldevs_unlock(s);
1536 config_dump_garbage(&garbage);
1537
1538 return rv;
1539 }
1540
1541 int
1542 config_detach_children(device_t parent, int flags)
1543 {
1544 device_t dv;
1545 deviter_t di;
1546 int error = 0;
1547
1548 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1549 dv = deviter_next(&di)) {
1550 if (device_parent(dv) != parent)
1551 continue;
1552 if ((error = config_detach(dv, flags)) != 0)
1553 break;
1554 }
1555 deviter_release(&di);
1556 return error;
1557 }
1558
1559 device_t
1560 shutdown_first(struct shutdown_state *s)
1561 {
1562 if (!s->initialized) {
1563 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1564 s->initialized = true;
1565 }
1566 return shutdown_next(s);
1567 }
1568
1569 device_t
1570 shutdown_next(struct shutdown_state *s)
1571 {
1572 device_t dv;
1573
1574 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1575 ;
1576
1577 if (dv == NULL)
1578 s->initialized = false;
1579
1580 return dv;
1581 }
1582
1583 bool
1584 config_detach_all(int how)
1585 {
1586 static struct shutdown_state s;
1587 device_t curdev;
1588 bool progress = false;
1589
1590 if ((how & RB_NOSYNC) != 0)
1591 return false;
1592
1593 for (curdev = shutdown_first(&s); curdev != NULL;
1594 curdev = shutdown_next(&s)) {
1595 aprint_debug(" detaching %s, ", device_xname(curdev));
1596 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1597 progress = true;
1598 aprint_debug("success.");
1599 } else
1600 aprint_debug("failed.");
1601 }
1602 return progress;
1603 }
1604
1605 static bool
1606 device_is_ancestor_of(device_t ancestor, device_t descendant)
1607 {
1608 device_t dv;
1609
1610 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1611 if (device_parent(dv) == ancestor)
1612 return true;
1613 }
1614 return false;
1615 }
1616
1617 int
1618 config_deactivate(device_t dev)
1619 {
1620 deviter_t di;
1621 const struct cfattach *ca;
1622 device_t descendant;
1623 int s, rv = 0, oflags;
1624
1625 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1626 descendant != NULL;
1627 descendant = deviter_next(&di)) {
1628 if (dev != descendant &&
1629 !device_is_ancestor_of(dev, descendant))
1630 continue;
1631
1632 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1633 continue;
1634
1635 ca = descendant->dv_cfattach;
1636 oflags = descendant->dv_flags;
1637
1638 descendant->dv_flags &= ~DVF_ACTIVE;
1639 if (ca->ca_activate == NULL)
1640 continue;
1641 s = splhigh();
1642 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1643 splx(s);
1644 if (rv != 0)
1645 descendant->dv_flags = oflags;
1646 }
1647 deviter_release(&di);
1648 return rv;
1649 }
1650
1651 /*
1652 * Defer the configuration of the specified device until all
1653 * of its parent's devices have been attached.
1654 */
1655 void
1656 config_defer(device_t dev, void (*func)(device_t))
1657 {
1658 struct deferred_config *dc;
1659
1660 if (dev->dv_parent == NULL)
1661 panic("config_defer: can't defer config of a root device");
1662
1663 #ifdef DIAGNOSTIC
1664 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1665 if (dc->dc_dev == dev)
1666 panic("config_defer: deferred twice");
1667 }
1668 #endif
1669
1670 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1671 if (dc == NULL)
1672 panic("config_defer: unable to allocate callback");
1673
1674 dc->dc_dev = dev;
1675 dc->dc_func = func;
1676 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1677 config_pending_incr();
1678 }
1679
1680 /*
1681 * Defer some autoconfiguration for a device until after interrupts
1682 * are enabled.
1683 */
1684 void
1685 config_interrupts(device_t dev, void (*func)(device_t))
1686 {
1687 struct deferred_config *dc;
1688
1689 /*
1690 * If interrupts are enabled, callback now.
1691 */
1692 if (cold == 0) {
1693 (*func)(dev);
1694 return;
1695 }
1696
1697 #ifdef DIAGNOSTIC
1698 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1699 if (dc->dc_dev == dev)
1700 panic("config_interrupts: deferred twice");
1701 }
1702 #endif
1703
1704 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1705 if (dc == NULL)
1706 panic("config_interrupts: unable to allocate callback");
1707
1708 dc->dc_dev = dev;
1709 dc->dc_func = func;
1710 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1711 config_pending_incr();
1712 }
1713
1714 /*
1715 * Process a deferred configuration queue.
1716 */
1717 static void
1718 config_process_deferred(struct deferred_config_head *queue,
1719 device_t parent)
1720 {
1721 struct deferred_config *dc, *ndc;
1722
1723 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1724 ndc = TAILQ_NEXT(dc, dc_queue);
1725 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1726 TAILQ_REMOVE(queue, dc, dc_queue);
1727 (*dc->dc_func)(dc->dc_dev);
1728 kmem_free(dc, sizeof(*dc));
1729 config_pending_decr();
1730 }
1731 }
1732 }
1733
1734 /*
1735 * Manipulate the config_pending semaphore.
1736 */
1737 void
1738 config_pending_incr(void)
1739 {
1740
1741 mutex_enter(&config_misc_lock);
1742 config_pending++;
1743 mutex_exit(&config_misc_lock);
1744 }
1745
1746 void
1747 config_pending_decr(void)
1748 {
1749
1750 #ifdef DIAGNOSTIC
1751 if (config_pending == 0)
1752 panic("config_pending_decr: config_pending == 0");
1753 #endif
1754 mutex_enter(&config_misc_lock);
1755 config_pending--;
1756 if (config_pending == 0)
1757 cv_broadcast(&config_misc_cv);
1758 mutex_exit(&config_misc_lock);
1759 }
1760
1761 /*
1762 * Register a "finalization" routine. Finalization routines are
1763 * called iteratively once all real devices have been found during
1764 * autoconfiguration, for as long as any one finalizer has done
1765 * any work.
1766 */
1767 int
1768 config_finalize_register(device_t dev, int (*fn)(device_t))
1769 {
1770 struct finalize_hook *f;
1771
1772 /*
1773 * If finalization has already been done, invoke the
1774 * callback function now.
1775 */
1776 if (config_finalize_done) {
1777 while ((*fn)(dev) != 0)
1778 /* loop */ ;
1779 }
1780
1781 /* Ensure this isn't already on the list. */
1782 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1783 if (f->f_func == fn && f->f_dev == dev)
1784 return EEXIST;
1785 }
1786
1787 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1788 f->f_func = fn;
1789 f->f_dev = dev;
1790 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1791
1792 return 0;
1793 }
1794
1795 void
1796 config_finalize(void)
1797 {
1798 struct finalize_hook *f;
1799 struct pdevinit *pdev;
1800 extern struct pdevinit pdevinit[];
1801 int errcnt, rv;
1802
1803 /*
1804 * Now that device driver threads have been created, wait for
1805 * them to finish any deferred autoconfiguration.
1806 */
1807 mutex_enter(&config_misc_lock);
1808 while (config_pending != 0)
1809 cv_wait(&config_misc_cv, &config_misc_lock);
1810 mutex_exit(&config_misc_lock);
1811
1812 KERNEL_LOCK(1, NULL);
1813
1814 /* Attach pseudo-devices. */
1815 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1816 (*pdev->pdev_attach)(pdev->pdev_count);
1817
1818 /* Run the hooks until none of them does any work. */
1819 do {
1820 rv = 0;
1821 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1822 rv |= (*f->f_func)(f->f_dev);
1823 } while (rv != 0);
1824
1825 config_finalize_done = 1;
1826
1827 /* Now free all the hooks. */
1828 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1829 TAILQ_REMOVE(&config_finalize_list, f, f_list);
1830 kmem_free(f, sizeof(*f));
1831 }
1832
1833 KERNEL_UNLOCK_ONE(NULL);
1834
1835 errcnt = aprint_get_error_count();
1836 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1837 (boothowto & AB_VERBOSE) == 0) {
1838 mutex_enter(&config_misc_lock);
1839 if (config_do_twiddle) {
1840 config_do_twiddle = 0;
1841 printf_nolog(" done.\n");
1842 }
1843 mutex_exit(&config_misc_lock);
1844 if (errcnt != 0) {
1845 printf("WARNING: %d error%s while detecting hardware; "
1846 "check system log.\n", errcnt,
1847 errcnt == 1 ? "" : "s");
1848 }
1849 }
1850 }
1851
1852 void
1853 config_twiddle_init()
1854 {
1855
1856 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
1857 config_do_twiddle = 1;
1858 }
1859 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
1860 }
1861
1862 void
1863 config_twiddle_fn(void *cookie)
1864 {
1865
1866 mutex_enter(&config_misc_lock);
1867 if (config_do_twiddle) {
1868 twiddle();
1869 callout_schedule(&config_twiddle_ch, mstohz(100));
1870 }
1871 mutex_exit(&config_misc_lock);
1872 }
1873
1874 static int
1875 config_alldevs_lock(void)
1876 {
1877 int s;
1878
1879 s = splhigh();
1880 mutex_enter(&alldevs_mtx);
1881 return s;
1882 }
1883
1884 static void
1885 config_alldevs_unlock(int s)
1886 {
1887 mutex_exit(&alldevs_mtx);
1888 splx(s);
1889 }
1890
1891 /*
1892 * device_lookup:
1893 *
1894 * Look up a device instance for a given driver.
1895 */
1896 device_t
1897 device_lookup(cfdriver_t cd, int unit)
1898 {
1899 struct devicelist garbage = TAILQ_HEAD_INITIALIZER(garbage);
1900 device_t dv;
1901 int s;
1902
1903 s = config_alldevs_lock();
1904 KASSERT(mutex_owned(&alldevs_mtx));
1905 if (unit < 0 || unit >= cd->cd_ndevs)
1906 dv = NULL;
1907 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
1908 dv = NULL;
1909 config_alldevs_unlock(s);
1910 config_dump_garbage(&garbage);
1911
1912 return dv;
1913 }
1914
1915 /*
1916 * device_lookup_private:
1917 *
1918 * Look up a softc instance for a given driver.
1919 */
1920 void *
1921 device_lookup_private(cfdriver_t cd, int unit)
1922 {
1923 device_t dv;
1924
1925 if ((dv = device_lookup(cd, unit)) == NULL)
1926 return NULL;
1927
1928 return dv->dv_private;
1929 }
1930
1931 /*
1932 * Accessor functions for the device_t type.
1933 */
1934 devclass_t
1935 device_class(device_t dev)
1936 {
1937
1938 return dev->dv_class;
1939 }
1940
1941 cfdata_t
1942 device_cfdata(device_t dev)
1943 {
1944
1945 return dev->dv_cfdata;
1946 }
1947
1948 cfdriver_t
1949 device_cfdriver(device_t dev)
1950 {
1951
1952 return dev->dv_cfdriver;
1953 }
1954
1955 cfattach_t
1956 device_cfattach(device_t dev)
1957 {
1958
1959 return dev->dv_cfattach;
1960 }
1961
1962 int
1963 device_unit(device_t dev)
1964 {
1965
1966 return dev->dv_unit;
1967 }
1968
1969 const char *
1970 device_xname(device_t dev)
1971 {
1972
1973 return dev->dv_xname;
1974 }
1975
1976 device_t
1977 device_parent(device_t dev)
1978 {
1979
1980 return dev->dv_parent;
1981 }
1982
1983 bool
1984 device_activation(device_t dev, devact_level_t level)
1985 {
1986 int active_flags;
1987
1988 active_flags = DVF_ACTIVE;
1989 switch (level) {
1990 case DEVACT_LEVEL_FULL:
1991 active_flags |= DVF_CLASS_SUSPENDED;
1992 /*FALLTHROUGH*/
1993 case DEVACT_LEVEL_DRIVER:
1994 active_flags |= DVF_DRIVER_SUSPENDED;
1995 /*FALLTHROUGH*/
1996 case DEVACT_LEVEL_BUS:
1997 active_flags |= DVF_BUS_SUSPENDED;
1998 break;
1999 }
2000
2001 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
2002 }
2003
2004 bool
2005 device_is_active(device_t dev)
2006 {
2007 int active_flags;
2008
2009 active_flags = DVF_ACTIVE;
2010 active_flags |= DVF_CLASS_SUSPENDED;
2011 active_flags |= DVF_DRIVER_SUSPENDED;
2012 active_flags |= DVF_BUS_SUSPENDED;
2013
2014 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
2015 }
2016
2017 bool
2018 device_is_enabled(device_t dev)
2019 {
2020 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
2021 }
2022
2023 bool
2024 device_has_power(device_t dev)
2025 {
2026 int active_flags;
2027
2028 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
2029
2030 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
2031 }
2032
2033 int
2034 device_locator(device_t dev, u_int locnum)
2035 {
2036
2037 KASSERT(dev->dv_locators != NULL);
2038 return dev->dv_locators[locnum];
2039 }
2040
2041 void *
2042 device_private(device_t dev)
2043 {
2044
2045 /*
2046 * The reason why device_private(NULL) is allowed is to simplify the
2047 * work of a lot of userspace request handlers (i.e., c/bdev
2048 * handlers) which grab cfdriver_t->cd_units[n].
2049 * It avoids having them test for it to be NULL and only then calling
2050 * device_private.
2051 */
2052 return dev == NULL ? NULL : dev->dv_private;
2053 }
2054
2055 prop_dictionary_t
2056 device_properties(device_t dev)
2057 {
2058
2059 return dev->dv_properties;
2060 }
2061
2062 /*
2063 * device_is_a:
2064 *
2065 * Returns true if the device is an instance of the specified
2066 * driver.
2067 */
2068 bool
2069 device_is_a(device_t dev, const char *dname)
2070 {
2071
2072 return strcmp(dev->dv_cfdriver->cd_name, dname) == 0;
2073 }
2074
2075 /*
2076 * device_find_by_xname:
2077 *
2078 * Returns the device of the given name or NULL if it doesn't exist.
2079 */
2080 device_t
2081 device_find_by_xname(const char *name)
2082 {
2083 device_t dv;
2084 deviter_t di;
2085
2086 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2087 if (strcmp(device_xname(dv), name) == 0)
2088 break;
2089 }
2090 deviter_release(&di);
2091
2092 return dv;
2093 }
2094
2095 /*
2096 * device_find_by_driver_unit:
2097 *
2098 * Returns the device of the given driver name and unit or
2099 * NULL if it doesn't exist.
2100 */
2101 device_t
2102 device_find_by_driver_unit(const char *name, int unit)
2103 {
2104 struct cfdriver *cd;
2105
2106 if ((cd = config_cfdriver_lookup(name)) == NULL)
2107 return NULL;
2108 return device_lookup(cd, unit);
2109 }
2110
2111 /*
2112 * Power management related functions.
2113 */
2114
2115 bool
2116 device_pmf_is_registered(device_t dev)
2117 {
2118 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2119 }
2120
2121 bool
2122 device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
2123 {
2124 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2125 return true;
2126 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2127 return false;
2128 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_DRIVER &&
2129 dev->dv_driver_suspend != NULL &&
2130 !(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
2131 return false;
2132
2133 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2134 return true;
2135 }
2136
2137 bool
2138 device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
2139 {
2140 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2141 return true;
2142 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2143 return false;
2144 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_DRIVER &&
2145 dev->dv_driver_resume != NULL &&
2146 !(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2147 return false;
2148
2149 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2150 return true;
2151 }
2152
2153 bool
2154 device_pmf_driver_shutdown(device_t dev, int how)
2155 {
2156
2157 if (*dev->dv_driver_shutdown != NULL &&
2158 !(*dev->dv_driver_shutdown)(dev, how))
2159 return false;
2160 return true;
2161 }
2162
2163 bool
2164 device_pmf_driver_register(device_t dev,
2165 bool (*suspend)(device_t PMF_FN_PROTO),
2166 bool (*resume)(device_t PMF_FN_PROTO),
2167 bool (*shutdown)(device_t, int))
2168 {
2169 dev->dv_driver_suspend = suspend;
2170 dev->dv_driver_resume = resume;
2171 dev->dv_driver_shutdown = shutdown;
2172 dev->dv_flags |= DVF_POWER_HANDLERS;
2173 return true;
2174 }
2175
2176 static const char *
2177 curlwp_name(void)
2178 {
2179 if (curlwp->l_name != NULL)
2180 return curlwp->l_name;
2181 else
2182 return curlwp->l_proc->p_comm;
2183 }
2184
2185 void
2186 device_pmf_driver_deregister(device_t dev)
2187 {
2188 device_lock_t dvl = device_getlock(dev);
2189
2190 dev->dv_driver_suspend = NULL;
2191 dev->dv_driver_resume = NULL;
2192
2193 mutex_enter(&dvl->dvl_mtx);
2194 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2195 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2196 /* Wake a thread that waits for the lock. That
2197 * thread will fail to acquire the lock, and then
2198 * it will wake the next thread that waits for the
2199 * lock, or else it will wake us.
2200 */
2201 cv_signal(&dvl->dvl_cv);
2202 pmflock_debug(dev, __func__, __LINE__);
2203 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2204 pmflock_debug(dev, __func__, __LINE__);
2205 }
2206 mutex_exit(&dvl->dvl_mtx);
2207 }
2208
2209 bool
2210 device_pmf_driver_child_register(device_t dev)
2211 {
2212 device_t parent = device_parent(dev);
2213
2214 if (parent == NULL || parent->dv_driver_child_register == NULL)
2215 return true;
2216 return (*parent->dv_driver_child_register)(dev);
2217 }
2218
2219 void
2220 device_pmf_driver_set_child_register(device_t dev,
2221 bool (*child_register)(device_t))
2222 {
2223 dev->dv_driver_child_register = child_register;
2224 }
2225
2226 static void
2227 pmflock_debug(device_t dev, const char *func, int line)
2228 {
2229 device_lock_t dvl = device_getlock(dev);
2230
2231 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2232 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2233 dev->dv_flags);
2234 }
2235
2236 static bool
2237 device_pmf_lock1(device_t dev)
2238 {
2239 device_lock_t dvl = device_getlock(dev);
2240
2241 while (device_pmf_is_registered(dev) &&
2242 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2243 dvl->dvl_nwait++;
2244 pmflock_debug(dev, __func__, __LINE__);
2245 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2246 pmflock_debug(dev, __func__, __LINE__);
2247 dvl->dvl_nwait--;
2248 }
2249 if (!device_pmf_is_registered(dev)) {
2250 pmflock_debug(dev, __func__, __LINE__);
2251 /* We could not acquire the lock, but some other thread may
2252 * wait for it, also. Wake that thread.
2253 */
2254 cv_signal(&dvl->dvl_cv);
2255 return false;
2256 }
2257 dvl->dvl_nlock++;
2258 dvl->dvl_holder = curlwp;
2259 pmflock_debug(dev, __func__, __LINE__);
2260 return true;
2261 }
2262
2263 bool
2264 device_pmf_lock(device_t dev)
2265 {
2266 bool rc;
2267 device_lock_t dvl = device_getlock(dev);
2268
2269 mutex_enter(&dvl->dvl_mtx);
2270 rc = device_pmf_lock1(dev);
2271 mutex_exit(&dvl->dvl_mtx);
2272
2273 return rc;
2274 }
2275
2276 void
2277 device_pmf_unlock(device_t dev)
2278 {
2279 device_lock_t dvl = device_getlock(dev);
2280
2281 KASSERT(dvl->dvl_nlock > 0);
2282 mutex_enter(&dvl->dvl_mtx);
2283 if (--dvl->dvl_nlock == 0)
2284 dvl->dvl_holder = NULL;
2285 cv_signal(&dvl->dvl_cv);
2286 pmflock_debug(dev, __func__, __LINE__);
2287 mutex_exit(&dvl->dvl_mtx);
2288 }
2289
2290 device_lock_t
2291 device_getlock(device_t dev)
2292 {
2293 return &dev->dv_lock;
2294 }
2295
2296 void *
2297 device_pmf_bus_private(device_t dev)
2298 {
2299 return dev->dv_bus_private;
2300 }
2301
2302 bool
2303 device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2304 {
2305 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2306 return true;
2307 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2308 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2309 return false;
2310 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_BUS &&
2311 dev->dv_bus_suspend != NULL &&
2312 !(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2313 return false;
2314
2315 dev->dv_flags |= DVF_BUS_SUSPENDED;
2316 return true;
2317 }
2318
2319 bool
2320 device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2321 {
2322 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2323 return true;
2324 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_BUS &&
2325 dev->dv_bus_resume != NULL &&
2326 !(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2327 return false;
2328
2329 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2330 return true;
2331 }
2332
2333 bool
2334 device_pmf_bus_shutdown(device_t dev, int how)
2335 {
2336
2337 if (*dev->dv_bus_shutdown != NULL &&
2338 !(*dev->dv_bus_shutdown)(dev, how))
2339 return false;
2340 return true;
2341 }
2342
2343 void
2344 device_pmf_bus_register(device_t dev, void *priv,
2345 bool (*suspend)(device_t PMF_FN_PROTO),
2346 bool (*resume)(device_t PMF_FN_PROTO),
2347 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2348 {
2349 dev->dv_bus_private = priv;
2350 dev->dv_bus_resume = resume;
2351 dev->dv_bus_suspend = suspend;
2352 dev->dv_bus_shutdown = shutdown;
2353 dev->dv_bus_deregister = deregister;
2354 }
2355
2356 void
2357 device_pmf_bus_deregister(device_t dev)
2358 {
2359 if (dev->dv_bus_deregister == NULL)
2360 return;
2361 (*dev->dv_bus_deregister)(dev);
2362 dev->dv_bus_private = NULL;
2363 dev->dv_bus_suspend = NULL;
2364 dev->dv_bus_resume = NULL;
2365 dev->dv_bus_deregister = NULL;
2366 }
2367
2368 void *
2369 device_pmf_class_private(device_t dev)
2370 {
2371 return dev->dv_class_private;
2372 }
2373
2374 bool
2375 device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2376 {
2377 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2378 return true;
2379 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_CLASS &&
2380 dev->dv_class_suspend != NULL &&
2381 !(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2382 return false;
2383
2384 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2385 return true;
2386 }
2387
2388 bool
2389 device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2390 {
2391 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2392 return true;
2393 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2394 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2395 return false;
2396 if (pmf_qual_depth(PMF_FN_CALL1) <= DEVACT_LEVEL_CLASS &&
2397 dev->dv_class_resume != NULL &&
2398 !(*dev->dv_class_resume)(dev PMF_FN_CALL))
2399 return false;
2400
2401 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2402 return true;
2403 }
2404
2405 void
2406 device_pmf_class_register(device_t dev, void *priv,
2407 bool (*suspend)(device_t PMF_FN_PROTO),
2408 bool (*resume)(device_t PMF_FN_PROTO),
2409 void (*deregister)(device_t))
2410 {
2411 dev->dv_class_private = priv;
2412 dev->dv_class_suspend = suspend;
2413 dev->dv_class_resume = resume;
2414 dev->dv_class_deregister = deregister;
2415 }
2416
2417 void
2418 device_pmf_class_deregister(device_t dev)
2419 {
2420 if (dev->dv_class_deregister == NULL)
2421 return;
2422 (*dev->dv_class_deregister)(dev);
2423 dev->dv_class_private = NULL;
2424 dev->dv_class_suspend = NULL;
2425 dev->dv_class_resume = NULL;
2426 dev->dv_class_deregister = NULL;
2427 }
2428
2429 bool
2430 device_active(device_t dev, devactive_t type)
2431 {
2432 size_t i;
2433
2434 if (dev->dv_activity_count == 0)
2435 return false;
2436
2437 for (i = 0; i < dev->dv_activity_count; ++i) {
2438 if (dev->dv_activity_handlers[i] == NULL)
2439 break;
2440 (*dev->dv_activity_handlers[i])(dev, type);
2441 }
2442
2443 return true;
2444 }
2445
2446 bool
2447 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2448 {
2449 void (**new_handlers)(device_t, devactive_t);
2450 void (**old_handlers)(device_t, devactive_t);
2451 size_t i, old_size, new_size;
2452 int s;
2453
2454 old_handlers = dev->dv_activity_handlers;
2455 old_size = dev->dv_activity_count;
2456
2457 for (i = 0; i < old_size; ++i) {
2458 KASSERT(old_handlers[i] != handler);
2459 if (old_handlers[i] == NULL) {
2460 old_handlers[i] = handler;
2461 return true;
2462 }
2463 }
2464
2465 new_size = old_size + 4;
2466 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2467
2468 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2469 new_handlers[old_size] = handler;
2470 memset(new_handlers + old_size + 1, 0,
2471 sizeof(int [new_size - (old_size+1)]));
2472
2473 s = splhigh();
2474 dev->dv_activity_count = new_size;
2475 dev->dv_activity_handlers = new_handlers;
2476 splx(s);
2477
2478 if (old_handlers != NULL)
2479 kmem_free(old_handlers, sizeof(void * [old_size]));
2480
2481 return true;
2482 }
2483
2484 void
2485 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2486 {
2487 void (**old_handlers)(device_t, devactive_t);
2488 size_t i, old_size;
2489 int s;
2490
2491 old_handlers = dev->dv_activity_handlers;
2492 old_size = dev->dv_activity_count;
2493
2494 for (i = 0; i < old_size; ++i) {
2495 if (old_handlers[i] == handler)
2496 break;
2497 if (old_handlers[i] == NULL)
2498 return; /* XXX panic? */
2499 }
2500
2501 if (i == old_size)
2502 return; /* XXX panic? */
2503
2504 for (; i < old_size - 1; ++i) {
2505 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2506 continue;
2507
2508 if (i == 0) {
2509 s = splhigh();
2510 dev->dv_activity_count = 0;
2511 dev->dv_activity_handlers = NULL;
2512 splx(s);
2513 kmem_free(old_handlers, sizeof(void *[old_size]));
2514 }
2515 return;
2516 }
2517 old_handlers[i] = NULL;
2518 }
2519
2520 /* Return true iff the device_t `dev' exists at generation `gen'. */
2521 static bool
2522 device_exists_at(device_t dv, devgen_t gen)
2523 {
2524 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2525 dv->dv_add_gen <= gen;
2526 }
2527
2528 static bool
2529 deviter_visits(const deviter_t *di, device_t dv)
2530 {
2531 return device_exists_at(dv, di->di_gen);
2532 }
2533
2534 /*
2535 * Device Iteration
2536 *
2537 * deviter_t: a device iterator. Holds state for a "walk" visiting
2538 * each device_t's in the device tree.
2539 *
2540 * deviter_init(di, flags): initialize the device iterator `di'
2541 * to "walk" the device tree. deviter_next(di) will return
2542 * the first device_t in the device tree, or NULL if there are
2543 * no devices.
2544 *
2545 * `flags' is one or more of DEVITER_F_RW, indicating that the
2546 * caller intends to modify the device tree by calling
2547 * config_detach(9) on devices in the order that the iterator
2548 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2549 * nearest the "root" of the device tree to be returned, first;
2550 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2551 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2552 * indicating both that deviter_init() should not respect any
2553 * locks on the device tree, and that deviter_next(di) may run
2554 * in more than one LWP before the walk has finished.
2555 *
2556 * Only one DEVITER_F_RW iterator may be in the device tree at
2557 * once.
2558 *
2559 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2560 *
2561 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2562 * DEVITER_F_LEAVES_FIRST are used in combination.
2563 *
2564 * deviter_first(di, flags): initialize the device iterator `di'
2565 * and return the first device_t in the device tree, or NULL
2566 * if there are no devices. The statement
2567 *
2568 * dv = deviter_first(di);
2569 *
2570 * is shorthand for
2571 *
2572 * deviter_init(di);
2573 * dv = deviter_next(di);
2574 *
2575 * deviter_next(di): return the next device_t in the device tree,
2576 * or NULL if there are no more devices. deviter_next(di)
2577 * is undefined if `di' was not initialized with deviter_init() or
2578 * deviter_first().
2579 *
2580 * deviter_release(di): stops iteration (subsequent calls to
2581 * deviter_next() will return NULL), releases any locks and
2582 * resources held by the device iterator.
2583 *
2584 * Device iteration does not return device_t's in any particular
2585 * order. An iterator will never return the same device_t twice.
2586 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2587 * is called repeatedly on the same `di', it will eventually return
2588 * NULL. It is ok to attach/detach devices during device iteration.
2589 */
2590 void
2591 deviter_init(deviter_t *di, deviter_flags_t flags)
2592 {
2593 device_t dv;
2594 int s;
2595
2596 memset(di, 0, sizeof(*di));
2597
2598 s = config_alldevs_lock();
2599 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2600 flags |= DEVITER_F_RW;
2601
2602 if ((flags & DEVITER_F_RW) != 0)
2603 alldevs_nwrite++;
2604 else
2605 alldevs_nread++;
2606 di->di_gen = alldevs_gen++;
2607 config_alldevs_unlock(s);
2608
2609 di->di_flags = flags;
2610
2611 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2612 case DEVITER_F_LEAVES_FIRST:
2613 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2614 if (!deviter_visits(di, dv))
2615 continue;
2616 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2617 }
2618 break;
2619 case DEVITER_F_ROOT_FIRST:
2620 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2621 if (!deviter_visits(di, dv))
2622 continue;
2623 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2624 }
2625 break;
2626 default:
2627 break;
2628 }
2629
2630 deviter_reinit(di);
2631 }
2632
2633 static void
2634 deviter_reinit(deviter_t *di)
2635 {
2636 if ((di->di_flags & DEVITER_F_RW) != 0)
2637 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2638 else
2639 di->di_prev = TAILQ_FIRST(&alldevs);
2640 }
2641
2642 device_t
2643 deviter_first(deviter_t *di, deviter_flags_t flags)
2644 {
2645 deviter_init(di, flags);
2646 return deviter_next(di);
2647 }
2648
2649 static device_t
2650 deviter_next2(deviter_t *di)
2651 {
2652 device_t dv;
2653
2654 dv = di->di_prev;
2655
2656 if (dv == NULL)
2657 return NULL;
2658
2659 if ((di->di_flags & DEVITER_F_RW) != 0)
2660 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2661 else
2662 di->di_prev = TAILQ_NEXT(dv, dv_list);
2663
2664 return dv;
2665 }
2666
2667 static device_t
2668 deviter_next1(deviter_t *di)
2669 {
2670 device_t dv;
2671
2672 do {
2673 dv = deviter_next2(di);
2674 } while (dv != NULL && !deviter_visits(di, dv));
2675
2676 return dv;
2677 }
2678
2679 device_t
2680 deviter_next(deviter_t *di)
2681 {
2682 device_t dv = NULL;
2683
2684 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2685 case 0:
2686 return deviter_next1(di);
2687 case DEVITER_F_LEAVES_FIRST:
2688 while (di->di_curdepth >= 0) {
2689 if ((dv = deviter_next1(di)) == NULL) {
2690 di->di_curdepth--;
2691 deviter_reinit(di);
2692 } else if (dv->dv_depth == di->di_curdepth)
2693 break;
2694 }
2695 return dv;
2696 case DEVITER_F_ROOT_FIRST:
2697 while (di->di_curdepth <= di->di_maxdepth) {
2698 if ((dv = deviter_next1(di)) == NULL) {
2699 di->di_curdepth++;
2700 deviter_reinit(di);
2701 } else if (dv->dv_depth == di->di_curdepth)
2702 break;
2703 }
2704 return dv;
2705 default:
2706 return NULL;
2707 }
2708 }
2709
2710 void
2711 deviter_release(deviter_t *di)
2712 {
2713 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2714 int s;
2715
2716 s = config_alldevs_lock();
2717 if (rw)
2718 --alldevs_nwrite;
2719 else
2720 --alldevs_nread;
2721 /* XXX wake a garbage-collection thread */
2722 config_alldevs_unlock(s);
2723 }
2724
2725 static void
2726 sysctl_detach_setup(struct sysctllog **clog)
2727 {
2728 const struct sysctlnode *node = NULL;
2729
2730 sysctl_createv(clog, 0, NULL, &node,
2731 CTLFLAG_PERMANENT,
2732 CTLTYPE_NODE, "kern", NULL,
2733 NULL, 0, NULL, 0,
2734 CTL_KERN, CTL_EOL);
2735
2736 if (node == NULL)
2737 return;
2738
2739 sysctl_createv(clog, 0, &node, NULL,
2740 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2741 CTLTYPE_INT, "detachall",
2742 SYSCTL_DESCR("Detach all devices at shutdown"),
2743 NULL, 0, &detachall, 0,
2744 CTL_CREATE, CTL_EOL);
2745 }
2746