subr_autoconf.c revision 1.196 1 /* $NetBSD: subr_autoconf.c,v 1.196 2010/01/10 13:42:34 martin Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.196 2010/01/10 13:42:34 martin Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #endif
85
86 #include <sys/param.h>
87 #include <sys/device.h>
88 #include <sys/disklabel.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91 #include <sys/malloc.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/vnode.h>
102 #include <sys/mount.h>
103 #include <sys/namei.h>
104 #include <sys/unistd.h>
105 #include <sys/fcntl.h>
106 #include <sys/lockf.h>
107 #include <sys/callout.h>
108 #include <sys/devmon.h>
109 #include <sys/cpu.h>
110 #include <sys/sysctl.h>
111
112 #include <sys/disk.h>
113
114 #include <machine/limits.h>
115
116 #if defined(__i386__) && defined(_KERNEL_OPT)
117 #include "opt_splash.h"
118 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
119 #include <dev/splash/splash.h>
120 extern struct splash_progress *splash_progress_state;
121 #endif
122 #endif
123
124 /*
125 * Autoconfiguration subroutines.
126 */
127
128 /*
129 * ioconf.c exports exactly two names: cfdata and cfroots. All system
130 * devices and drivers are found via these tables.
131 */
132 extern struct cfdata cfdata[];
133 extern const short cfroots[];
134
135 /*
136 * List of all cfdriver structures. We use this to detect duplicates
137 * when other cfdrivers are loaded.
138 */
139 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
140 extern struct cfdriver * const cfdriver_list_initial[];
141
142 /*
143 * Initial list of cfattach's.
144 */
145 extern const struct cfattachinit cfattachinit[];
146
147 /*
148 * List of cfdata tables. We always have one such list -- the one
149 * built statically when the kernel was configured.
150 */
151 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
152 static struct cftable initcftable;
153
154 #define ROOT ((device_t)NULL)
155
156 struct matchinfo {
157 cfsubmatch_t fn;
158 struct device *parent;
159 const int *locs;
160 void *aux;
161 struct cfdata *match;
162 int pri;
163 };
164
165 static char *number(char *, int);
166 static void mapply(struct matchinfo *, cfdata_t);
167 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
168 static void config_devdelete(device_t);
169 static void config_devunlink(device_t, struct devicelist *);
170 static void config_makeroom(int, struct cfdriver *);
171 static void config_devlink(device_t);
172 static void config_alldevs_unlock(int);
173 static int config_alldevs_lock(void);
174 static void config_alldevs_unlock_gc(int);
175 static void pmflock_debug(device_t, const char *, int);
176
177 static device_t deviter_next1(deviter_t *);
178 static void deviter_reinit(deviter_t *);
179
180 struct deferred_config {
181 TAILQ_ENTRY(deferred_config) dc_queue;
182 device_t dc_dev;
183 void (*dc_func)(device_t);
184 };
185
186 TAILQ_HEAD(deferred_config_head, deferred_config);
187
188 struct deferred_config_head deferred_config_queue =
189 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
190 struct deferred_config_head interrupt_config_queue =
191 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
192 int interrupt_config_threads = 8;
193
194 static void config_process_deferred(struct deferred_config_head *, device_t);
195
196 /* Hooks to finalize configuration once all real devices have been found. */
197 struct finalize_hook {
198 TAILQ_ENTRY(finalize_hook) f_list;
199 int (*f_func)(device_t);
200 device_t f_dev;
201 };
202 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
203 TAILQ_HEAD_INITIALIZER(config_finalize_list);
204 static int config_finalize_done;
205
206 /* list of all devices */
207 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
208 static struct devicelist devs_gclist = TAILQ_HEAD_INITIALIZER(devs_gclist);
209 static kmutex_t alldevs_mtx;
210 static volatile bool alldevs_garbage = false;
211 static volatile devgen_t alldevs_gen = 1;
212 static volatile int alldevs_nread = 0;
213 static volatile int alldevs_nwrite = 0;
214
215 static int config_pending; /* semaphore for mountroot */
216 static kmutex_t config_misc_lock;
217 static kcondvar_t config_misc_cv;
218
219 static int detachall = 0;
220
221 #define STREQ(s1, s2) \
222 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
223
224 static bool config_initialized = false; /* config_init() has been called. */
225
226 static int config_do_twiddle;
227 static callout_t config_twiddle_ch;
228
229 static void sysctl_detach_setup(struct sysctllog **);
230
231 /*
232 * Initialize the autoconfiguration data structures. Normally this
233 * is done by configure(), but some platforms need to do this very
234 * early (to e.g. initialize the console).
235 */
236 void
237 config_init(void)
238 {
239 const struct cfattachinit *cfai;
240 int i, j;
241
242 KASSERT(config_initialized == false);
243
244 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_HIGH);
245
246 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
247 cv_init(&config_misc_cv, "cfgmisc");
248
249 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
250
251 /* allcfdrivers is statically initialized. */
252 for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
253 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
254 panic("configure: duplicate `%s' drivers",
255 cfdriver_list_initial[i]->cd_name);
256 }
257
258 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
259 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
260 if (config_cfattach_attach(cfai->cfai_name,
261 cfai->cfai_list[j]) != 0)
262 panic("configure: duplicate `%s' attachment "
263 "of `%s' driver",
264 cfai->cfai_list[j]->ca_name,
265 cfai->cfai_name);
266 }
267 }
268
269 initcftable.ct_cfdata = cfdata;
270 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
271
272 config_initialized = true;
273 }
274
275 void
276 config_init_mi(void)
277 {
278
279 if (!config_initialized)
280 config_init();
281
282 sysctl_detach_setup(NULL);
283 }
284
285 void
286 config_deferred(device_t dev)
287 {
288 config_process_deferred(&deferred_config_queue, dev);
289 config_process_deferred(&interrupt_config_queue, dev);
290 }
291
292 static void
293 config_interrupts_thread(void *cookie)
294 {
295 struct deferred_config *dc;
296
297 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
298 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
299 (*dc->dc_func)(dc->dc_dev);
300 kmem_free(dc, sizeof(*dc));
301 config_pending_decr();
302 }
303 kthread_exit(0);
304 }
305
306 void
307 config_create_interruptthreads()
308 {
309 int i;
310
311 for (i = 0; i < interrupt_config_threads; i++) {
312 (void)kthread_create(PRI_NONE, 0, NULL,
313 config_interrupts_thread, NULL, NULL, "config");
314 }
315 }
316
317 /*
318 * Announce device attach/detach to userland listeners.
319 */
320 static void
321 devmon_report_device(device_t dev, bool isattach)
322 {
323 #if NDRVCTL > 0
324 prop_dictionary_t ev;
325 const char *parent;
326 const char *what;
327 device_t pdev = device_parent(dev);
328
329 ev = prop_dictionary_create();
330 if (ev == NULL)
331 return;
332
333 what = (isattach ? "device-attach" : "device-detach");
334 parent = (pdev == NULL ? "root" : device_xname(pdev));
335 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
336 !prop_dictionary_set_cstring(ev, "parent", parent)) {
337 prop_object_release(ev);
338 return;
339 }
340
341 devmon_insert(what, ev);
342 #endif
343 }
344
345 /*
346 * Add a cfdriver to the system.
347 */
348 int
349 config_cfdriver_attach(struct cfdriver *cd)
350 {
351 struct cfdriver *lcd;
352
353 /* Make sure this driver isn't already in the system. */
354 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
355 if (STREQ(lcd->cd_name, cd->cd_name))
356 return EEXIST;
357 }
358
359 LIST_INIT(&cd->cd_attach);
360 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
361
362 return 0;
363 }
364
365 /*
366 * Remove a cfdriver from the system.
367 */
368 int
369 config_cfdriver_detach(struct cfdriver *cd)
370 {
371 int i, rc = 0, s;
372
373 s = config_alldevs_lock();
374 /* Make sure there are no active instances. */
375 for (i = 0; i < cd->cd_ndevs; i++) {
376 if (cd->cd_devs[i] != NULL) {
377 rc = EBUSY;
378 break;
379 }
380 }
381 config_alldevs_unlock_gc(s);
382
383 if (rc != 0)
384 return rc;
385
386 /* ...and no attachments loaded. */
387 if (LIST_EMPTY(&cd->cd_attach) == 0)
388 return EBUSY;
389
390 LIST_REMOVE(cd, cd_list);
391
392 KASSERT(cd->cd_devs == NULL);
393
394 return 0;
395 }
396
397 /*
398 * Look up a cfdriver by name.
399 */
400 struct cfdriver *
401 config_cfdriver_lookup(const char *name)
402 {
403 struct cfdriver *cd;
404
405 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
406 if (STREQ(cd->cd_name, name))
407 return cd;
408 }
409
410 return NULL;
411 }
412
413 /*
414 * Add a cfattach to the specified driver.
415 */
416 int
417 config_cfattach_attach(const char *driver, struct cfattach *ca)
418 {
419 struct cfattach *lca;
420 struct cfdriver *cd;
421
422 cd = config_cfdriver_lookup(driver);
423 if (cd == NULL)
424 return ESRCH;
425
426 /* Make sure this attachment isn't already on this driver. */
427 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
428 if (STREQ(lca->ca_name, ca->ca_name))
429 return EEXIST;
430 }
431
432 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
433
434 return 0;
435 }
436
437 /*
438 * Remove a cfattach from the specified driver.
439 */
440 int
441 config_cfattach_detach(const char *driver, struct cfattach *ca)
442 {
443 struct cfdriver *cd;
444 device_t dev;
445 int i, rc = 0, s;
446
447 cd = config_cfdriver_lookup(driver);
448 if (cd == NULL)
449 return ESRCH;
450
451 s = config_alldevs_lock();
452 /* Make sure there are no active instances. */
453 for (i = 0; i < cd->cd_ndevs; i++) {
454 if ((dev = cd->cd_devs[i]) == NULL)
455 continue;
456 if (dev->dv_cfattach == ca) {
457 rc = EBUSY;
458 break;
459 }
460 }
461 config_alldevs_unlock_gc(s);
462
463 if (rc != 0)
464 return rc;
465
466 LIST_REMOVE(ca, ca_list);
467
468 return 0;
469 }
470
471 /*
472 * Look up a cfattach by name.
473 */
474 static struct cfattach *
475 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
476 {
477 struct cfattach *ca;
478
479 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
480 if (STREQ(ca->ca_name, atname))
481 return ca;
482 }
483
484 return NULL;
485 }
486
487 /*
488 * Look up a cfattach by driver/attachment name.
489 */
490 struct cfattach *
491 config_cfattach_lookup(const char *name, const char *atname)
492 {
493 struct cfdriver *cd;
494
495 cd = config_cfdriver_lookup(name);
496 if (cd == NULL)
497 return NULL;
498
499 return config_cfattach_lookup_cd(cd, atname);
500 }
501
502 /*
503 * Apply the matching function and choose the best. This is used
504 * a few times and we want to keep the code small.
505 */
506 static void
507 mapply(struct matchinfo *m, cfdata_t cf)
508 {
509 int pri;
510
511 if (m->fn != NULL) {
512 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
513 } else {
514 pri = config_match(m->parent, cf, m->aux);
515 }
516 if (pri > m->pri) {
517 m->match = cf;
518 m->pri = pri;
519 }
520 }
521
522 int
523 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
524 {
525 const struct cfiattrdata *ci;
526 const struct cflocdesc *cl;
527 int nlocs, i;
528
529 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
530 KASSERT(ci);
531 nlocs = ci->ci_loclen;
532 KASSERT(!nlocs || locs);
533 for (i = 0; i < nlocs; i++) {
534 cl = &ci->ci_locdesc[i];
535 /* !cld_defaultstr means no default value */
536 if ((!(cl->cld_defaultstr)
537 || (cf->cf_loc[i] != cl->cld_default))
538 && cf->cf_loc[i] != locs[i])
539 return 0;
540 }
541
542 return config_match(parent, cf, aux);
543 }
544
545 /*
546 * Helper function: check whether the driver supports the interface attribute
547 * and return its descriptor structure.
548 */
549 static const struct cfiattrdata *
550 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
551 {
552 const struct cfiattrdata * const *cpp;
553
554 if (cd->cd_attrs == NULL)
555 return 0;
556
557 for (cpp = cd->cd_attrs; *cpp; cpp++) {
558 if (STREQ((*cpp)->ci_name, ia)) {
559 /* Match. */
560 return *cpp;
561 }
562 }
563 return 0;
564 }
565
566 /*
567 * Lookup an interface attribute description by name.
568 * If the driver is given, consider only its supported attributes.
569 */
570 const struct cfiattrdata *
571 cfiattr_lookup(const char *name, const struct cfdriver *cd)
572 {
573 const struct cfdriver *d;
574 const struct cfiattrdata *ia;
575
576 if (cd)
577 return cfdriver_get_iattr(cd, name);
578
579 LIST_FOREACH(d, &allcfdrivers, cd_list) {
580 ia = cfdriver_get_iattr(d, name);
581 if (ia)
582 return ia;
583 }
584 return 0;
585 }
586
587 /*
588 * Determine if `parent' is a potential parent for a device spec based
589 * on `cfp'.
590 */
591 static int
592 cfparent_match(const device_t parent, const struct cfparent *cfp)
593 {
594 struct cfdriver *pcd;
595
596 /* We don't match root nodes here. */
597 if (cfp == NULL)
598 return 0;
599
600 pcd = parent->dv_cfdriver;
601 KASSERT(pcd != NULL);
602
603 /*
604 * First, ensure this parent has the correct interface
605 * attribute.
606 */
607 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
608 return 0;
609
610 /*
611 * If no specific parent device instance was specified (i.e.
612 * we're attaching to the attribute only), we're done!
613 */
614 if (cfp->cfp_parent == NULL)
615 return 1;
616
617 /*
618 * Check the parent device's name.
619 */
620 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
621 return 0; /* not the same parent */
622
623 /*
624 * Make sure the unit number matches.
625 */
626 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
627 cfp->cfp_unit == parent->dv_unit)
628 return 1;
629
630 /* Unit numbers don't match. */
631 return 0;
632 }
633
634 /*
635 * Helper for config_cfdata_attach(): check all devices whether it could be
636 * parent any attachment in the config data table passed, and rescan.
637 */
638 static void
639 rescan_with_cfdata(const struct cfdata *cf)
640 {
641 device_t d;
642 const struct cfdata *cf1;
643 deviter_t di;
644
645
646 /*
647 * "alldevs" is likely longer than a modules's cfdata, so make it
648 * the outer loop.
649 */
650 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
651
652 if (!(d->dv_cfattach->ca_rescan))
653 continue;
654
655 for (cf1 = cf; cf1->cf_name; cf1++) {
656
657 if (!cfparent_match(d, cf1->cf_pspec))
658 continue;
659
660 (*d->dv_cfattach->ca_rescan)(d,
661 cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
662 }
663 }
664 deviter_release(&di);
665 }
666
667 /*
668 * Attach a supplemental config data table and rescan potential
669 * parent devices if required.
670 */
671 int
672 config_cfdata_attach(cfdata_t cf, int scannow)
673 {
674 struct cftable *ct;
675
676 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
677 ct->ct_cfdata = cf;
678 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
679
680 if (scannow)
681 rescan_with_cfdata(cf);
682
683 return 0;
684 }
685
686 /*
687 * Helper for config_cfdata_detach: check whether a device is
688 * found through any attachment in the config data table.
689 */
690 static int
691 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
692 {
693 const struct cfdata *cf1;
694
695 for (cf1 = cf; cf1->cf_name; cf1++)
696 if (d->dv_cfdata == cf1)
697 return 1;
698
699 return 0;
700 }
701
702 /*
703 * Detach a supplemental config data table. Detach all devices found
704 * through that table (and thus keeping references to it) before.
705 */
706 int
707 config_cfdata_detach(cfdata_t cf)
708 {
709 device_t d;
710 int error = 0;
711 struct cftable *ct;
712 deviter_t di;
713
714 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
715 d = deviter_next(&di)) {
716 if (!dev_in_cfdata(d, cf))
717 continue;
718 if ((error = config_detach(d, 0)) != 0)
719 break;
720 }
721 deviter_release(&di);
722 if (error) {
723 aprint_error_dev(d, "unable to detach instance\n");
724 return error;
725 }
726
727 TAILQ_FOREACH(ct, &allcftables, ct_list) {
728 if (ct->ct_cfdata == cf) {
729 TAILQ_REMOVE(&allcftables, ct, ct_list);
730 kmem_free(ct, sizeof(*ct));
731 return 0;
732 }
733 }
734
735 /* not found -- shouldn't happen */
736 return EINVAL;
737 }
738
739 /*
740 * Invoke the "match" routine for a cfdata entry on behalf of
741 * an external caller, usually a "submatch" routine.
742 */
743 int
744 config_match(device_t parent, cfdata_t cf, void *aux)
745 {
746 struct cfattach *ca;
747
748 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
749 if (ca == NULL) {
750 /* No attachment for this entry, oh well. */
751 return 0;
752 }
753
754 return (*ca->ca_match)(parent, cf, aux);
755 }
756
757 /*
758 * Iterate over all potential children of some device, calling the given
759 * function (default being the child's match function) for each one.
760 * Nonzero returns are matches; the highest value returned is considered
761 * the best match. Return the `found child' if we got a match, or NULL
762 * otherwise. The `aux' pointer is simply passed on through.
763 *
764 * Note that this function is designed so that it can be used to apply
765 * an arbitrary function to all potential children (its return value
766 * can be ignored).
767 */
768 cfdata_t
769 config_search_loc(cfsubmatch_t fn, device_t parent,
770 const char *ifattr, const int *locs, void *aux)
771 {
772 struct cftable *ct;
773 cfdata_t cf;
774 struct matchinfo m;
775
776 KASSERT(config_initialized);
777 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
778
779 m.fn = fn;
780 m.parent = parent;
781 m.locs = locs;
782 m.aux = aux;
783 m.match = NULL;
784 m.pri = 0;
785
786 TAILQ_FOREACH(ct, &allcftables, ct_list) {
787 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
788
789 /* We don't match root nodes here. */
790 if (!cf->cf_pspec)
791 continue;
792
793 /*
794 * Skip cf if no longer eligible, otherwise scan
795 * through parents for one matching `parent', and
796 * try match function.
797 */
798 if (cf->cf_fstate == FSTATE_FOUND)
799 continue;
800 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
801 cf->cf_fstate == FSTATE_DSTAR)
802 continue;
803
804 /*
805 * If an interface attribute was specified,
806 * consider only children which attach to
807 * that attribute.
808 */
809 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
810 continue;
811
812 if (cfparent_match(parent, cf->cf_pspec))
813 mapply(&m, cf);
814 }
815 }
816 return m.match;
817 }
818
819 cfdata_t
820 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
821 void *aux)
822 {
823
824 return config_search_loc(fn, parent, ifattr, NULL, aux);
825 }
826
827 /*
828 * Find the given root device.
829 * This is much like config_search, but there is no parent.
830 * Don't bother with multiple cfdata tables; the root node
831 * must always be in the initial table.
832 */
833 cfdata_t
834 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
835 {
836 cfdata_t cf;
837 const short *p;
838 struct matchinfo m;
839
840 m.fn = fn;
841 m.parent = ROOT;
842 m.aux = aux;
843 m.match = NULL;
844 m.pri = 0;
845 m.locs = 0;
846 /*
847 * Look at root entries for matching name. We do not bother
848 * with found-state here since only one root should ever be
849 * searched (and it must be done first).
850 */
851 for (p = cfroots; *p >= 0; p++) {
852 cf = &cfdata[*p];
853 if (strcmp(cf->cf_name, rootname) == 0)
854 mapply(&m, cf);
855 }
856 return m.match;
857 }
858
859 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
860
861 /*
862 * The given `aux' argument describes a device that has been found
863 * on the given parent, but not necessarily configured. Locate the
864 * configuration data for that device (using the submatch function
865 * provided, or using candidates' cd_match configuration driver
866 * functions) and attach it, and return true. If the device was
867 * not configured, call the given `print' function and return 0.
868 */
869 device_t
870 config_found_sm_loc(device_t parent,
871 const char *ifattr, const int *locs, void *aux,
872 cfprint_t print, cfsubmatch_t submatch)
873 {
874 cfdata_t cf;
875
876 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
877 if (splash_progress_state)
878 splash_progress_update(splash_progress_state);
879 #endif
880
881 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
882 return(config_attach_loc(parent, cf, locs, aux, print));
883 if (print) {
884 if (config_do_twiddle && cold)
885 twiddle();
886 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
887 }
888
889 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
890 if (splash_progress_state)
891 splash_progress_update(splash_progress_state);
892 #endif
893
894 return NULL;
895 }
896
897 device_t
898 config_found_ia(device_t parent, const char *ifattr, void *aux,
899 cfprint_t print)
900 {
901
902 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
903 }
904
905 device_t
906 config_found(device_t parent, void *aux, cfprint_t print)
907 {
908
909 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
910 }
911
912 /*
913 * As above, but for root devices.
914 */
915 device_t
916 config_rootfound(const char *rootname, void *aux)
917 {
918 cfdata_t cf;
919
920 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
921 return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
922 aprint_error("root device %s not configured\n", rootname);
923 return NULL;
924 }
925
926 /* just like sprintf(buf, "%d") except that it works from the end */
927 static char *
928 number(char *ep, int n)
929 {
930
931 *--ep = 0;
932 while (n >= 10) {
933 *--ep = (n % 10) + '0';
934 n /= 10;
935 }
936 *--ep = n + '0';
937 return ep;
938 }
939
940 /*
941 * Expand the size of the cd_devs array if necessary.
942 *
943 * The caller must hold alldevs_mtx. config_makeroom() may release and
944 * re-acquire alldevs_mtx, so callers should re-check conditions such
945 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
946 * returns.
947 */
948 static void
949 config_makeroom(int n, struct cfdriver *cd)
950 {
951 int old, new;
952 device_t *osp, *nsp;
953
954 alldevs_nwrite++;
955
956 for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
957 ;
958
959 while (n >= cd->cd_ndevs) {
960 /*
961 * Need to expand the array.
962 */
963 old = cd->cd_ndevs;
964 osp = cd->cd_devs;
965
966 /* Release alldevs_mtx around allocation, which may
967 * sleep.
968 */
969 mutex_exit(&alldevs_mtx);
970 nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
971 if (nsp == NULL)
972 panic("%s: could not expand cd_devs", __func__);
973 mutex_enter(&alldevs_mtx);
974
975 /* If another thread moved the array while we did
976 * not hold alldevs_mtx, try again.
977 */
978 if (cd->cd_devs != osp) {
979 kmem_free(nsp, sizeof(device_t[new]));
980 continue;
981 }
982
983 memset(nsp + old, 0, sizeof(device_t[new - old]));
984 if (old != 0)
985 memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
986
987 cd->cd_ndevs = new;
988 cd->cd_devs = nsp;
989 if (old != 0)
990 kmem_free(osp, sizeof(device_t[old]));
991 }
992 alldevs_nwrite--;
993 }
994
995 /*
996 * Put dev into the devices list.
997 */
998 static void
999 config_devlink(device_t dev)
1000 {
1001 int s;
1002
1003 s = config_alldevs_lock();
1004
1005 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1006
1007 dev->dv_add_gen = alldevs_gen;
1008 /* It is safe to add a device to the tail of the list while
1009 * readers and writers are in the list.
1010 */
1011 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1012 config_alldevs_unlock(s);
1013 }
1014
1015 static void
1016 config_devfree(device_t dev)
1017 {
1018 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1019
1020 if (dev->dv_cfattach->ca_devsize > 0)
1021 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1022 if (priv)
1023 kmem_free(dev, sizeof(*dev));
1024 }
1025
1026 /*
1027 * config_devunlink: unlink the device and put into the garbage list.
1028 *
1029 * => caller must hold alldevs_mtx.
1030 */
1031 static void
1032 config_devunlink(device_t dev, struct devicelist *garbage)
1033 {
1034 struct device_garbage *dg = &dev->dv_garbage;
1035 cfdriver_t cd = device_cfdriver(dev);
1036 int i;
1037
1038 KASSERT(mutex_owned(&alldevs_mtx));
1039
1040 /* Unlink from device list. Link to garbage list. */
1041 TAILQ_REMOVE(&alldevs, dev, dv_list);
1042 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1043
1044 /* Remove from cfdriver's array. */
1045 cd->cd_devs[dev->dv_unit] = NULL;
1046
1047 /*
1048 * If the device now has no units in use, unlink its softc array.
1049 */
1050 for (i = 0; i < cd->cd_ndevs; i++) {
1051 if (cd->cd_devs[i] != NULL)
1052 break;
1053 }
1054 /* Nothing found. Unlink, now. Deallocate, later. */
1055 if (i == cd->cd_ndevs) {
1056 dg->dg_ndevs = cd->cd_ndevs;
1057 dg->dg_devs = cd->cd_devs;
1058 cd->cd_devs = NULL;
1059 cd->cd_ndevs = 0;
1060 }
1061 }
1062
1063 static void
1064 config_devdelete(device_t dev)
1065 {
1066 struct device_garbage *dg = &dev->dv_garbage;
1067 device_lock_t dvl = device_getlock(dev);
1068
1069 if (dg->dg_devs != NULL)
1070 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1071
1072 cv_destroy(&dvl->dvl_cv);
1073 mutex_destroy(&dvl->dvl_mtx);
1074
1075 KASSERT(dev->dv_properties != NULL);
1076 prop_object_release(dev->dv_properties);
1077
1078 KASSERT(dev->dv_activity_handlers == NULL);
1079
1080 if (dev->dv_locators) {
1081 size_t amount = *--dev->dv_locators;
1082 kmem_free(dev->dv_locators, amount);
1083 }
1084 config_devfree(dev);
1085 }
1086
1087 static int
1088 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1089 {
1090 int unit;
1091
1092 if (cf->cf_fstate == FSTATE_STAR) {
1093 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1094 if (cd->cd_devs[unit] == NULL)
1095 break;
1096 /*
1097 * unit is now the unit of the first NULL device pointer,
1098 * or max(cd->cd_ndevs,cf->cf_unit).
1099 */
1100 } else {
1101 unit = cf->cf_unit;
1102 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1103 unit = -1;
1104 }
1105 return unit;
1106 }
1107
1108 static int
1109 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1110 {
1111 int s, unit;
1112
1113 s = config_alldevs_lock();
1114 for (;;) {
1115 unit = config_unit_nextfree(cd, cf);
1116 if (unit == -1)
1117 break;
1118 if (unit < cd->cd_ndevs) {
1119 cd->cd_devs[unit] = dev;
1120 dev->dv_unit = unit;
1121 break;
1122 }
1123 config_makeroom(unit, cd);
1124 }
1125 config_alldevs_unlock_gc(s);
1126
1127 return unit;
1128 }
1129
1130 static device_t
1131 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1132 {
1133 cfdriver_t cd;
1134 cfattach_t ca;
1135 size_t lname, lunit;
1136 const char *xunit;
1137 int myunit;
1138 char num[10];
1139 device_t dev;
1140 void *dev_private;
1141 const struct cfiattrdata *ia;
1142 device_lock_t dvl;
1143
1144 cd = config_cfdriver_lookup(cf->cf_name);
1145 if (cd == NULL)
1146 return NULL;
1147
1148 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1149 if (ca == NULL)
1150 return NULL;
1151
1152 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1153 ca->ca_devsize < sizeof(struct device))
1154 panic("config_devalloc: %s", cf->cf_atname);
1155
1156 /* get memory for all device vars */
1157 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1158 if (ca->ca_devsize > 0) {
1159 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1160 if (dev_private == NULL)
1161 panic("config_devalloc: memory allocation for device softc failed");
1162 } else {
1163 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1164 dev_private = NULL;
1165 }
1166
1167 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1168 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1169 } else {
1170 dev = dev_private;
1171 }
1172 if (dev == NULL)
1173 panic("config_devalloc: memory allocation for device_t failed");
1174
1175 myunit = config_unit_alloc(dev, cd, cf);
1176 if (myunit == -1) {
1177 config_devfree(dev);
1178 return NULL;
1179 }
1180
1181 /* compute length of name and decimal expansion of unit number */
1182 lname = strlen(cd->cd_name);
1183 xunit = number(&num[sizeof(num)], myunit);
1184 lunit = &num[sizeof(num)] - xunit;
1185 if (lname + lunit > sizeof(dev->dv_xname))
1186 panic("config_devalloc: device name too long");
1187
1188 dvl = device_getlock(dev);
1189
1190 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1191 cv_init(&dvl->dvl_cv, "pmfsusp");
1192
1193 dev->dv_class = cd->cd_class;
1194 dev->dv_cfdata = cf;
1195 dev->dv_cfdriver = cd;
1196 dev->dv_cfattach = ca;
1197 dev->dv_activity_count = 0;
1198 dev->dv_activity_handlers = NULL;
1199 dev->dv_private = dev_private;
1200 memcpy(dev->dv_xname, cd->cd_name, lname);
1201 memcpy(dev->dv_xname + lname, xunit, lunit);
1202 dev->dv_parent = parent;
1203 if (parent != NULL)
1204 dev->dv_depth = parent->dv_depth + 1;
1205 else
1206 dev->dv_depth = 0;
1207 dev->dv_flags = DVF_ACTIVE; /* always initially active */
1208 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
1209 if (locs) {
1210 KASSERT(parent); /* no locators at root */
1211 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1212 parent->dv_cfdriver);
1213 dev->dv_locators =
1214 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1215 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1216 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1217 }
1218 dev->dv_properties = prop_dictionary_create();
1219 KASSERT(dev->dv_properties != NULL);
1220
1221 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1222 "device-driver", dev->dv_cfdriver->cd_name);
1223 prop_dictionary_set_uint16(dev->dv_properties,
1224 "device-unit", dev->dv_unit);
1225
1226 return dev;
1227 }
1228
1229 /*
1230 * Attach a found device.
1231 */
1232 device_t
1233 config_attach_loc(device_t parent, cfdata_t cf,
1234 const int *locs, void *aux, cfprint_t print)
1235 {
1236 device_t dev;
1237 struct cftable *ct;
1238 const char *drvname;
1239
1240 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1241 if (splash_progress_state)
1242 splash_progress_update(splash_progress_state);
1243 #endif
1244
1245 dev = config_devalloc(parent, cf, locs);
1246 if (!dev)
1247 panic("config_attach: allocation of device softc failed");
1248
1249 /* XXX redundant - see below? */
1250 if (cf->cf_fstate != FSTATE_STAR) {
1251 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1252 cf->cf_fstate = FSTATE_FOUND;
1253 }
1254
1255 config_devlink(dev);
1256
1257 if (config_do_twiddle && cold)
1258 twiddle();
1259 else
1260 aprint_naive("Found ");
1261 /*
1262 * We want the next two printfs for normal, verbose, and quiet,
1263 * but not silent (in which case, we're twiddling, instead).
1264 */
1265 if (parent == ROOT) {
1266 aprint_naive("%s (root)", device_xname(dev));
1267 aprint_normal("%s (root)", device_xname(dev));
1268 } else {
1269 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1270 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1271 if (print)
1272 (void) (*print)(aux, NULL);
1273 }
1274
1275 /*
1276 * Before attaching, clobber any unfound devices that are
1277 * otherwise identical.
1278 * XXX code above is redundant?
1279 */
1280 drvname = dev->dv_cfdriver->cd_name;
1281 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1282 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1283 if (STREQ(cf->cf_name, drvname) &&
1284 cf->cf_unit == dev->dv_unit) {
1285 if (cf->cf_fstate == FSTATE_NOTFOUND)
1286 cf->cf_fstate = FSTATE_FOUND;
1287 }
1288 }
1289 }
1290 #ifdef __HAVE_DEVICE_REGISTER
1291 device_register(dev, aux);
1292 #endif
1293
1294 /* Let userland know */
1295 devmon_report_device(dev, true);
1296
1297 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1298 if (splash_progress_state)
1299 splash_progress_update(splash_progress_state);
1300 #endif
1301 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1302 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1303 if (splash_progress_state)
1304 splash_progress_update(splash_progress_state);
1305 #endif
1306
1307 if (!device_pmf_is_registered(dev))
1308 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1309
1310 config_process_deferred(&deferred_config_queue, dev);
1311
1312 #ifdef __HAVE_DEVICE_REGISTER_POSTCONFIG
1313 device_register_post_config(dev, aux);
1314 #endif
1315 return dev;
1316 }
1317
1318 device_t
1319 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1320 {
1321
1322 return config_attach_loc(parent, cf, NULL, aux, print);
1323 }
1324
1325 /*
1326 * As above, but for pseudo-devices. Pseudo-devices attached in this
1327 * way are silently inserted into the device tree, and their children
1328 * attached.
1329 *
1330 * Note that because pseudo-devices are attached silently, any information
1331 * the attach routine wishes to print should be prefixed with the device
1332 * name by the attach routine.
1333 */
1334 device_t
1335 config_attach_pseudo(cfdata_t cf)
1336 {
1337 device_t dev;
1338
1339 dev = config_devalloc(ROOT, cf, NULL);
1340 if (!dev)
1341 return NULL;
1342
1343 /* XXX mark busy in cfdata */
1344
1345 if (cf->cf_fstate != FSTATE_STAR) {
1346 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1347 cf->cf_fstate = FSTATE_FOUND;
1348 }
1349
1350 config_devlink(dev);
1351
1352 #if 0 /* XXXJRT not yet */
1353 #ifdef __HAVE_DEVICE_REGISTER
1354 device_register(dev, NULL); /* like a root node */
1355 #endif
1356 #endif
1357 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1358 config_process_deferred(&deferred_config_queue, dev);
1359 return dev;
1360 }
1361
1362 /*
1363 * Detach a device. Optionally forced (e.g. because of hardware
1364 * removal) and quiet. Returns zero if successful, non-zero
1365 * (an error code) otherwise.
1366 *
1367 * Note that this code wants to be run from a process context, so
1368 * that the detach can sleep to allow processes which have a device
1369 * open to run and unwind their stacks.
1370 */
1371 int
1372 config_detach(device_t dev, int flags)
1373 {
1374 struct cftable *ct;
1375 cfdata_t cf;
1376 const struct cfattach *ca;
1377 struct cfdriver *cd;
1378 #ifdef DIAGNOSTIC
1379 device_t d;
1380 #endif
1381 int rv = 0, s;
1382
1383 #ifdef DIAGNOSTIC
1384 cf = dev->dv_cfdata;
1385 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1386 cf->cf_fstate != FSTATE_STAR)
1387 panic("config_detach: %s: bad device fstate %d",
1388 device_xname(dev), cf ? cf->cf_fstate : -1);
1389 #endif
1390 cd = dev->dv_cfdriver;
1391 KASSERT(cd != NULL);
1392
1393 ca = dev->dv_cfattach;
1394 KASSERT(ca != NULL);
1395
1396 s = config_alldevs_lock();
1397 if (dev->dv_del_gen != 0) {
1398 config_alldevs_unlock(s);
1399 #ifdef DIAGNOSTIC
1400 printf("%s: %s is already detached\n", __func__,
1401 device_xname(dev));
1402 #endif /* DIAGNOSTIC */
1403 return ENOENT;
1404 }
1405 alldevs_nwrite++;
1406 config_alldevs_unlock(s);
1407
1408 if (!detachall &&
1409 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1410 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1411 rv = EOPNOTSUPP;
1412 } else if (ca->ca_detach != NULL) {
1413 rv = (*ca->ca_detach)(dev, flags);
1414 } else
1415 rv = EOPNOTSUPP;
1416
1417 /*
1418 * If it was not possible to detach the device, then we either
1419 * panic() (for the forced but failed case), or return an error.
1420 *
1421 * If it was possible to detach the device, ensure that the
1422 * device is deactivated.
1423 */
1424 if (rv == 0)
1425 dev->dv_flags &= ~DVF_ACTIVE;
1426 else if ((flags & DETACH_FORCE) == 0)
1427 goto out;
1428 else {
1429 panic("config_detach: forced detach of %s failed (%d)",
1430 device_xname(dev), rv);
1431 }
1432
1433 /*
1434 * The device has now been successfully detached.
1435 */
1436
1437 /* Let userland know */
1438 devmon_report_device(dev, false);
1439
1440 #ifdef DIAGNOSTIC
1441 /*
1442 * Sanity: If you're successfully detached, you should have no
1443 * children. (Note that because children must be attached
1444 * after parents, we only need to search the latter part of
1445 * the list.)
1446 */
1447 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1448 d = TAILQ_NEXT(d, dv_list)) {
1449 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1450 printf("config_detach: detached device %s"
1451 " has children %s\n", device_xname(dev), device_xname(d));
1452 panic("config_detach");
1453 }
1454 }
1455 #endif
1456
1457 /* notify the parent that the child is gone */
1458 if (dev->dv_parent) {
1459 device_t p = dev->dv_parent;
1460 if (p->dv_cfattach->ca_childdetached)
1461 (*p->dv_cfattach->ca_childdetached)(p, dev);
1462 }
1463
1464 /*
1465 * Mark cfdata to show that the unit can be reused, if possible.
1466 */
1467 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1468 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1469 if (STREQ(cf->cf_name, cd->cd_name)) {
1470 if (cf->cf_fstate == FSTATE_FOUND &&
1471 cf->cf_unit == dev->dv_unit)
1472 cf->cf_fstate = FSTATE_NOTFOUND;
1473 }
1474 }
1475 }
1476
1477 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1478 aprint_normal_dev(dev, "detached\n");
1479
1480 out:
1481 s = config_alldevs_lock();
1482 KASSERT(alldevs_nwrite != 0);
1483 --alldevs_nwrite;
1484 if (rv == 0 && dev->dv_del_gen == 0) {
1485 dev->dv_del_gen = alldevs_gen;
1486 alldevs_garbage = true;
1487 }
1488 config_alldevs_unlock_gc(s);
1489
1490 return rv;
1491 }
1492
1493 int
1494 config_detach_children(device_t parent, int flags)
1495 {
1496 device_t dv;
1497 deviter_t di;
1498 int error = 0;
1499
1500 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1501 dv = deviter_next(&di)) {
1502 if (device_parent(dv) != parent)
1503 continue;
1504 if ((error = config_detach(dv, flags)) != 0)
1505 break;
1506 }
1507 deviter_release(&di);
1508 return error;
1509 }
1510
1511 device_t
1512 shutdown_first(struct shutdown_state *s)
1513 {
1514 if (!s->initialized) {
1515 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1516 s->initialized = true;
1517 }
1518 return shutdown_next(s);
1519 }
1520
1521 device_t
1522 shutdown_next(struct shutdown_state *s)
1523 {
1524 device_t dv;
1525
1526 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1527 ;
1528
1529 if (dv == NULL)
1530 s->initialized = false;
1531
1532 return dv;
1533 }
1534
1535 bool
1536 config_detach_all(int how)
1537 {
1538 static struct shutdown_state s;
1539 device_t curdev;
1540 bool progress = false;
1541
1542 if ((how & RB_NOSYNC) != 0)
1543 return false;
1544
1545 for (curdev = shutdown_first(&s); curdev != NULL;
1546 curdev = shutdown_next(&s)) {
1547 aprint_debug(" detaching %s, ", device_xname(curdev));
1548 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1549 progress = true;
1550 aprint_debug("success.");
1551 } else
1552 aprint_debug("failed.");
1553 }
1554 return progress;
1555 }
1556
1557 static bool
1558 device_is_ancestor_of(device_t ancestor, device_t descendant)
1559 {
1560 device_t dv;
1561
1562 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1563 if (device_parent(dv) == ancestor)
1564 return true;
1565 }
1566 return false;
1567 }
1568
1569 int
1570 config_deactivate(device_t dev)
1571 {
1572 deviter_t di;
1573 const struct cfattach *ca;
1574 device_t descendant;
1575 int s, rv = 0, oflags;
1576
1577 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1578 descendant != NULL;
1579 descendant = deviter_next(&di)) {
1580 if (dev != descendant &&
1581 !device_is_ancestor_of(dev, descendant))
1582 continue;
1583
1584 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1585 continue;
1586
1587 ca = descendant->dv_cfattach;
1588 oflags = descendant->dv_flags;
1589
1590 descendant->dv_flags &= ~DVF_ACTIVE;
1591 if (ca->ca_activate == NULL)
1592 continue;
1593 s = splhigh();
1594 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1595 splx(s);
1596 if (rv != 0)
1597 descendant->dv_flags = oflags;
1598 }
1599 deviter_release(&di);
1600 return rv;
1601 }
1602
1603 /*
1604 * Defer the configuration of the specified device until all
1605 * of its parent's devices have been attached.
1606 */
1607 void
1608 config_defer(device_t dev, void (*func)(device_t))
1609 {
1610 struct deferred_config *dc;
1611
1612 if (dev->dv_parent == NULL)
1613 panic("config_defer: can't defer config of a root device");
1614
1615 #ifdef DIAGNOSTIC
1616 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1617 if (dc->dc_dev == dev)
1618 panic("config_defer: deferred twice");
1619 }
1620 #endif
1621
1622 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1623 if (dc == NULL)
1624 panic("config_defer: unable to allocate callback");
1625
1626 dc->dc_dev = dev;
1627 dc->dc_func = func;
1628 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1629 config_pending_incr();
1630 }
1631
1632 /*
1633 * Defer some autoconfiguration for a device until after interrupts
1634 * are enabled.
1635 */
1636 void
1637 config_interrupts(device_t dev, void (*func)(device_t))
1638 {
1639 struct deferred_config *dc;
1640
1641 /*
1642 * If interrupts are enabled, callback now.
1643 */
1644 if (cold == 0) {
1645 (*func)(dev);
1646 return;
1647 }
1648
1649 #ifdef DIAGNOSTIC
1650 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1651 if (dc->dc_dev == dev)
1652 panic("config_interrupts: deferred twice");
1653 }
1654 #endif
1655
1656 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1657 if (dc == NULL)
1658 panic("config_interrupts: unable to allocate callback");
1659
1660 dc->dc_dev = dev;
1661 dc->dc_func = func;
1662 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1663 config_pending_incr();
1664 }
1665
1666 /*
1667 * Process a deferred configuration queue.
1668 */
1669 static void
1670 config_process_deferred(struct deferred_config_head *queue,
1671 device_t parent)
1672 {
1673 struct deferred_config *dc, *ndc;
1674
1675 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1676 ndc = TAILQ_NEXT(dc, dc_queue);
1677 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1678 TAILQ_REMOVE(queue, dc, dc_queue);
1679 (*dc->dc_func)(dc->dc_dev);
1680 kmem_free(dc, sizeof(*dc));
1681 config_pending_decr();
1682 }
1683 }
1684 }
1685
1686 /*
1687 * Manipulate the config_pending semaphore.
1688 */
1689 void
1690 config_pending_incr(void)
1691 {
1692
1693 mutex_enter(&config_misc_lock);
1694 config_pending++;
1695 mutex_exit(&config_misc_lock);
1696 }
1697
1698 void
1699 config_pending_decr(void)
1700 {
1701
1702 #ifdef DIAGNOSTIC
1703 if (config_pending == 0)
1704 panic("config_pending_decr: config_pending == 0");
1705 #endif
1706 mutex_enter(&config_misc_lock);
1707 config_pending--;
1708 if (config_pending == 0)
1709 cv_broadcast(&config_misc_cv);
1710 mutex_exit(&config_misc_lock);
1711 }
1712
1713 /*
1714 * Register a "finalization" routine. Finalization routines are
1715 * called iteratively once all real devices have been found during
1716 * autoconfiguration, for as long as any one finalizer has done
1717 * any work.
1718 */
1719 int
1720 config_finalize_register(device_t dev, int (*fn)(device_t))
1721 {
1722 struct finalize_hook *f;
1723
1724 /*
1725 * If finalization has already been done, invoke the
1726 * callback function now.
1727 */
1728 if (config_finalize_done) {
1729 while ((*fn)(dev) != 0)
1730 /* loop */ ;
1731 }
1732
1733 /* Ensure this isn't already on the list. */
1734 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1735 if (f->f_func == fn && f->f_dev == dev)
1736 return EEXIST;
1737 }
1738
1739 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1740 f->f_func = fn;
1741 f->f_dev = dev;
1742 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1743
1744 return 0;
1745 }
1746
1747 void
1748 config_finalize(void)
1749 {
1750 struct finalize_hook *f;
1751 struct pdevinit *pdev;
1752 extern struct pdevinit pdevinit[];
1753 int errcnt, rv;
1754
1755 /*
1756 * Now that device driver threads have been created, wait for
1757 * them to finish any deferred autoconfiguration.
1758 */
1759 mutex_enter(&config_misc_lock);
1760 while (config_pending != 0)
1761 cv_wait(&config_misc_cv, &config_misc_lock);
1762 mutex_exit(&config_misc_lock);
1763
1764 KERNEL_LOCK(1, NULL);
1765
1766 /* Attach pseudo-devices. */
1767 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1768 (*pdev->pdev_attach)(pdev->pdev_count);
1769
1770 /* Run the hooks until none of them does any work. */
1771 do {
1772 rv = 0;
1773 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1774 rv |= (*f->f_func)(f->f_dev);
1775 } while (rv != 0);
1776
1777 config_finalize_done = 1;
1778
1779 /* Now free all the hooks. */
1780 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1781 TAILQ_REMOVE(&config_finalize_list, f, f_list);
1782 kmem_free(f, sizeof(*f));
1783 }
1784
1785 KERNEL_UNLOCK_ONE(NULL);
1786
1787 errcnt = aprint_get_error_count();
1788 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1789 (boothowto & AB_VERBOSE) == 0) {
1790 mutex_enter(&config_misc_lock);
1791 if (config_do_twiddle) {
1792 config_do_twiddle = 0;
1793 printf_nolog(" done.\n");
1794 }
1795 mutex_exit(&config_misc_lock);
1796 if (errcnt != 0) {
1797 printf("WARNING: %d error%s while detecting hardware; "
1798 "check system log.\n", errcnt,
1799 errcnt == 1 ? "" : "s");
1800 }
1801 }
1802 }
1803
1804 void
1805 config_twiddle_init()
1806 {
1807
1808 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
1809 config_do_twiddle = 1;
1810 }
1811 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
1812 }
1813
1814 void
1815 config_twiddle_fn(void *cookie)
1816 {
1817
1818 mutex_enter(&config_misc_lock);
1819 if (config_do_twiddle) {
1820 twiddle();
1821 callout_schedule(&config_twiddle_ch, mstohz(100));
1822 }
1823 mutex_exit(&config_misc_lock);
1824 }
1825
1826 static int
1827 config_alldevs_lock(void)
1828 {
1829 device_t dv;
1830 int s;
1831
1832 s = splhigh();
1833 mutex_enter(&alldevs_mtx);
1834
1835 KASSERT(TAILQ_EMPTY(&devs_gclist));
1836 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1837 TAILQ_FOREACH(dv, &alldevs, dv_list)
1838 if (dv->dv_del_gen != 0)
1839 break;
1840 if (dv == NULL) {
1841 alldevs_garbage = false;
1842 break;
1843 }
1844 config_devunlink(dv, &devs_gclist);
1845 }
1846 return s;
1847 }
1848
1849 static void
1850 config_alldevs_unlock(int s)
1851 {
1852
1853 mutex_exit(&alldevs_mtx);
1854 splx(s);
1855 }
1856
1857 /*
1858 * config_alldevs_unlock_gc: unlock and free garbage collected entries.
1859 */
1860 static void
1861 config_alldevs_unlock_gc(int s)
1862 {
1863 struct devicelist gclist = TAILQ_HEAD_INITIALIZER(gclist);
1864 device_t dv;
1865
1866 KASSERT(mutex_owned(&alldevs_mtx));
1867 TAILQ_CONCAT(&gclist, &devs_gclist, dv_list);
1868 KASSERT(TAILQ_EMPTY(&devs_gclist));
1869 config_alldevs_unlock(s);
1870
1871 while ((dv = TAILQ_FIRST(&gclist)) != NULL) {
1872 TAILQ_REMOVE(&gclist, dv, dv_list);
1873 config_devdelete(dv);
1874 }
1875 }
1876
1877 /*
1878 * device_lookup:
1879 *
1880 * Look up a device instance for a given driver.
1881 */
1882 device_t
1883 device_lookup(cfdriver_t cd, int unit)
1884 {
1885 device_t dv;
1886 int s;
1887
1888 s = config_alldevs_lock();
1889 KASSERT(mutex_owned(&alldevs_mtx));
1890 if (unit < 0 || unit >= cd->cd_ndevs)
1891 dv = NULL;
1892 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
1893 dv = NULL;
1894 config_alldevs_unlock(s);
1895
1896 return dv;
1897 }
1898
1899 /*
1900 * device_lookup_private:
1901 *
1902 * Look up a softc instance for a given driver.
1903 */
1904 void *
1905 device_lookup_private(cfdriver_t cd, int unit)
1906 {
1907 device_t dv;
1908
1909 if ((dv = device_lookup(cd, unit)) == NULL)
1910 return NULL;
1911
1912 return dv->dv_private;
1913 }
1914
1915 /*
1916 * Accessor functions for the device_t type.
1917 */
1918 devclass_t
1919 device_class(device_t dev)
1920 {
1921
1922 return dev->dv_class;
1923 }
1924
1925 cfdata_t
1926 device_cfdata(device_t dev)
1927 {
1928
1929 return dev->dv_cfdata;
1930 }
1931
1932 cfdriver_t
1933 device_cfdriver(device_t dev)
1934 {
1935
1936 return dev->dv_cfdriver;
1937 }
1938
1939 cfattach_t
1940 device_cfattach(device_t dev)
1941 {
1942
1943 return dev->dv_cfattach;
1944 }
1945
1946 int
1947 device_unit(device_t dev)
1948 {
1949
1950 return dev->dv_unit;
1951 }
1952
1953 const char *
1954 device_xname(device_t dev)
1955 {
1956
1957 return dev->dv_xname;
1958 }
1959
1960 device_t
1961 device_parent(device_t dev)
1962 {
1963
1964 return dev->dv_parent;
1965 }
1966
1967 bool
1968 device_activation(device_t dev, devact_level_t level)
1969 {
1970 int active_flags;
1971
1972 active_flags = DVF_ACTIVE;
1973 switch (level) {
1974 case DEVACT_LEVEL_FULL:
1975 active_flags |= DVF_CLASS_SUSPENDED;
1976 /*FALLTHROUGH*/
1977 case DEVACT_LEVEL_DRIVER:
1978 active_flags |= DVF_DRIVER_SUSPENDED;
1979 /*FALLTHROUGH*/
1980 case DEVACT_LEVEL_BUS:
1981 active_flags |= DVF_BUS_SUSPENDED;
1982 break;
1983 }
1984
1985 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
1986 }
1987
1988 bool
1989 device_is_active(device_t dev)
1990 {
1991 int active_flags;
1992
1993 active_flags = DVF_ACTIVE;
1994 active_flags |= DVF_CLASS_SUSPENDED;
1995 active_flags |= DVF_DRIVER_SUSPENDED;
1996 active_flags |= DVF_BUS_SUSPENDED;
1997
1998 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
1999 }
2000
2001 bool
2002 device_is_enabled(device_t dev)
2003 {
2004 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
2005 }
2006
2007 bool
2008 device_has_power(device_t dev)
2009 {
2010 int active_flags;
2011
2012 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
2013
2014 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
2015 }
2016
2017 int
2018 device_locator(device_t dev, u_int locnum)
2019 {
2020
2021 KASSERT(dev->dv_locators != NULL);
2022 return dev->dv_locators[locnum];
2023 }
2024
2025 void *
2026 device_private(device_t dev)
2027 {
2028
2029 /*
2030 * The reason why device_private(NULL) is allowed is to simplify the
2031 * work of a lot of userspace request handlers (i.e., c/bdev
2032 * handlers) which grab cfdriver_t->cd_units[n].
2033 * It avoids having them test for it to be NULL and only then calling
2034 * device_private.
2035 */
2036 return dev == NULL ? NULL : dev->dv_private;
2037 }
2038
2039 prop_dictionary_t
2040 device_properties(device_t dev)
2041 {
2042
2043 return dev->dv_properties;
2044 }
2045
2046 /*
2047 * device_is_a:
2048 *
2049 * Returns true if the device is an instance of the specified
2050 * driver.
2051 */
2052 bool
2053 device_is_a(device_t dev, const char *dname)
2054 {
2055
2056 return strcmp(dev->dv_cfdriver->cd_name, dname) == 0;
2057 }
2058
2059 /*
2060 * device_find_by_xname:
2061 *
2062 * Returns the device of the given name or NULL if it doesn't exist.
2063 */
2064 device_t
2065 device_find_by_xname(const char *name)
2066 {
2067 device_t dv;
2068 deviter_t di;
2069
2070 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2071 if (strcmp(device_xname(dv), name) == 0)
2072 break;
2073 }
2074 deviter_release(&di);
2075
2076 return dv;
2077 }
2078
2079 /*
2080 * device_find_by_driver_unit:
2081 *
2082 * Returns the device of the given driver name and unit or
2083 * NULL if it doesn't exist.
2084 */
2085 device_t
2086 device_find_by_driver_unit(const char *name, int unit)
2087 {
2088 struct cfdriver *cd;
2089
2090 if ((cd = config_cfdriver_lookup(name)) == NULL)
2091 return NULL;
2092 return device_lookup(cd, unit);
2093 }
2094
2095 /*
2096 * Power management related functions.
2097 */
2098
2099 bool
2100 device_pmf_is_registered(device_t dev)
2101 {
2102 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2103 }
2104
2105 bool
2106 device_pmf_driver_suspend(device_t dev, pmf_qual_t qual)
2107 {
2108 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2109 return true;
2110 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2111 return false;
2112 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2113 dev->dv_driver_suspend != NULL &&
2114 !(*dev->dv_driver_suspend)(dev, qual))
2115 return false;
2116
2117 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2118 return true;
2119 }
2120
2121 bool
2122 device_pmf_driver_resume(device_t dev, pmf_qual_t qual)
2123 {
2124 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2125 return true;
2126 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2127 return false;
2128 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2129 dev->dv_driver_resume != NULL &&
2130 !(*dev->dv_driver_resume)(dev, qual))
2131 return false;
2132
2133 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2134 return true;
2135 }
2136
2137 bool
2138 device_pmf_driver_shutdown(device_t dev, int how)
2139 {
2140
2141 if (*dev->dv_driver_shutdown != NULL &&
2142 !(*dev->dv_driver_shutdown)(dev, how))
2143 return false;
2144 return true;
2145 }
2146
2147 bool
2148 device_pmf_driver_register(device_t dev,
2149 bool (*suspend)(device_t, pmf_qual_t),
2150 bool (*resume)(device_t, pmf_qual_t),
2151 bool (*shutdown)(device_t, int))
2152 {
2153 dev->dv_driver_suspend = suspend;
2154 dev->dv_driver_resume = resume;
2155 dev->dv_driver_shutdown = shutdown;
2156 dev->dv_flags |= DVF_POWER_HANDLERS;
2157 return true;
2158 }
2159
2160 static const char *
2161 curlwp_name(void)
2162 {
2163 if (curlwp->l_name != NULL)
2164 return curlwp->l_name;
2165 else
2166 return curlwp->l_proc->p_comm;
2167 }
2168
2169 void
2170 device_pmf_driver_deregister(device_t dev)
2171 {
2172 device_lock_t dvl = device_getlock(dev);
2173
2174 dev->dv_driver_suspend = NULL;
2175 dev->dv_driver_resume = NULL;
2176
2177 mutex_enter(&dvl->dvl_mtx);
2178 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2179 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2180 /* Wake a thread that waits for the lock. That
2181 * thread will fail to acquire the lock, and then
2182 * it will wake the next thread that waits for the
2183 * lock, or else it will wake us.
2184 */
2185 cv_signal(&dvl->dvl_cv);
2186 pmflock_debug(dev, __func__, __LINE__);
2187 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2188 pmflock_debug(dev, __func__, __LINE__);
2189 }
2190 mutex_exit(&dvl->dvl_mtx);
2191 }
2192
2193 bool
2194 device_pmf_driver_child_register(device_t dev)
2195 {
2196 device_t parent = device_parent(dev);
2197
2198 if (parent == NULL || parent->dv_driver_child_register == NULL)
2199 return true;
2200 return (*parent->dv_driver_child_register)(dev);
2201 }
2202
2203 void
2204 device_pmf_driver_set_child_register(device_t dev,
2205 bool (*child_register)(device_t))
2206 {
2207 dev->dv_driver_child_register = child_register;
2208 }
2209
2210 static void
2211 pmflock_debug(device_t dev, const char *func, int line)
2212 {
2213 device_lock_t dvl = device_getlock(dev);
2214
2215 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2216 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2217 dev->dv_flags);
2218 }
2219
2220 static bool
2221 device_pmf_lock1(device_t dev)
2222 {
2223 device_lock_t dvl = device_getlock(dev);
2224
2225 while (device_pmf_is_registered(dev) &&
2226 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2227 dvl->dvl_nwait++;
2228 pmflock_debug(dev, __func__, __LINE__);
2229 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2230 pmflock_debug(dev, __func__, __LINE__);
2231 dvl->dvl_nwait--;
2232 }
2233 if (!device_pmf_is_registered(dev)) {
2234 pmflock_debug(dev, __func__, __LINE__);
2235 /* We could not acquire the lock, but some other thread may
2236 * wait for it, also. Wake that thread.
2237 */
2238 cv_signal(&dvl->dvl_cv);
2239 return false;
2240 }
2241 dvl->dvl_nlock++;
2242 dvl->dvl_holder = curlwp;
2243 pmflock_debug(dev, __func__, __LINE__);
2244 return true;
2245 }
2246
2247 bool
2248 device_pmf_lock(device_t dev)
2249 {
2250 bool rc;
2251 device_lock_t dvl = device_getlock(dev);
2252
2253 mutex_enter(&dvl->dvl_mtx);
2254 rc = device_pmf_lock1(dev);
2255 mutex_exit(&dvl->dvl_mtx);
2256
2257 return rc;
2258 }
2259
2260 void
2261 device_pmf_unlock(device_t dev)
2262 {
2263 device_lock_t dvl = device_getlock(dev);
2264
2265 KASSERT(dvl->dvl_nlock > 0);
2266 mutex_enter(&dvl->dvl_mtx);
2267 if (--dvl->dvl_nlock == 0)
2268 dvl->dvl_holder = NULL;
2269 cv_signal(&dvl->dvl_cv);
2270 pmflock_debug(dev, __func__, __LINE__);
2271 mutex_exit(&dvl->dvl_mtx);
2272 }
2273
2274 device_lock_t
2275 device_getlock(device_t dev)
2276 {
2277 return &dev->dv_lock;
2278 }
2279
2280 void *
2281 device_pmf_bus_private(device_t dev)
2282 {
2283 return dev->dv_bus_private;
2284 }
2285
2286 bool
2287 device_pmf_bus_suspend(device_t dev, pmf_qual_t qual)
2288 {
2289 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2290 return true;
2291 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2292 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2293 return false;
2294 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2295 dev->dv_bus_suspend != NULL &&
2296 !(*dev->dv_bus_suspend)(dev, qual))
2297 return false;
2298
2299 dev->dv_flags |= DVF_BUS_SUSPENDED;
2300 return true;
2301 }
2302
2303 bool
2304 device_pmf_bus_resume(device_t dev, pmf_qual_t qual)
2305 {
2306 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2307 return true;
2308 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2309 dev->dv_bus_resume != NULL &&
2310 !(*dev->dv_bus_resume)(dev, qual))
2311 return false;
2312
2313 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2314 return true;
2315 }
2316
2317 bool
2318 device_pmf_bus_shutdown(device_t dev, int how)
2319 {
2320
2321 if (*dev->dv_bus_shutdown != NULL &&
2322 !(*dev->dv_bus_shutdown)(dev, how))
2323 return false;
2324 return true;
2325 }
2326
2327 void
2328 device_pmf_bus_register(device_t dev, void *priv,
2329 bool (*suspend)(device_t, pmf_qual_t),
2330 bool (*resume)(device_t, pmf_qual_t),
2331 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2332 {
2333 dev->dv_bus_private = priv;
2334 dev->dv_bus_resume = resume;
2335 dev->dv_bus_suspend = suspend;
2336 dev->dv_bus_shutdown = shutdown;
2337 dev->dv_bus_deregister = deregister;
2338 }
2339
2340 void
2341 device_pmf_bus_deregister(device_t dev)
2342 {
2343 if (dev->dv_bus_deregister == NULL)
2344 return;
2345 (*dev->dv_bus_deregister)(dev);
2346 dev->dv_bus_private = NULL;
2347 dev->dv_bus_suspend = NULL;
2348 dev->dv_bus_resume = NULL;
2349 dev->dv_bus_deregister = NULL;
2350 }
2351
2352 void *
2353 device_pmf_class_private(device_t dev)
2354 {
2355 return dev->dv_class_private;
2356 }
2357
2358 bool
2359 device_pmf_class_suspend(device_t dev, pmf_qual_t qual)
2360 {
2361 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2362 return true;
2363 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2364 dev->dv_class_suspend != NULL &&
2365 !(*dev->dv_class_suspend)(dev, qual))
2366 return false;
2367
2368 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2369 return true;
2370 }
2371
2372 bool
2373 device_pmf_class_resume(device_t dev, pmf_qual_t qual)
2374 {
2375 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2376 return true;
2377 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2378 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2379 return false;
2380 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2381 dev->dv_class_resume != NULL &&
2382 !(*dev->dv_class_resume)(dev, qual))
2383 return false;
2384
2385 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2386 return true;
2387 }
2388
2389 void
2390 device_pmf_class_register(device_t dev, void *priv,
2391 bool (*suspend)(device_t, pmf_qual_t),
2392 bool (*resume)(device_t, pmf_qual_t),
2393 void (*deregister)(device_t))
2394 {
2395 dev->dv_class_private = priv;
2396 dev->dv_class_suspend = suspend;
2397 dev->dv_class_resume = resume;
2398 dev->dv_class_deregister = deregister;
2399 }
2400
2401 void
2402 device_pmf_class_deregister(device_t dev)
2403 {
2404 if (dev->dv_class_deregister == NULL)
2405 return;
2406 (*dev->dv_class_deregister)(dev);
2407 dev->dv_class_private = NULL;
2408 dev->dv_class_suspend = NULL;
2409 dev->dv_class_resume = NULL;
2410 dev->dv_class_deregister = NULL;
2411 }
2412
2413 bool
2414 device_active(device_t dev, devactive_t type)
2415 {
2416 size_t i;
2417
2418 if (dev->dv_activity_count == 0)
2419 return false;
2420
2421 for (i = 0; i < dev->dv_activity_count; ++i) {
2422 if (dev->dv_activity_handlers[i] == NULL)
2423 break;
2424 (*dev->dv_activity_handlers[i])(dev, type);
2425 }
2426
2427 return true;
2428 }
2429
2430 bool
2431 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2432 {
2433 void (**new_handlers)(device_t, devactive_t);
2434 void (**old_handlers)(device_t, devactive_t);
2435 size_t i, old_size, new_size;
2436 int s;
2437
2438 old_handlers = dev->dv_activity_handlers;
2439 old_size = dev->dv_activity_count;
2440
2441 for (i = 0; i < old_size; ++i) {
2442 KASSERT(old_handlers[i] != handler);
2443 if (old_handlers[i] == NULL) {
2444 old_handlers[i] = handler;
2445 return true;
2446 }
2447 }
2448
2449 new_size = old_size + 4;
2450 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2451
2452 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2453 new_handlers[old_size] = handler;
2454 memset(new_handlers + old_size + 1, 0,
2455 sizeof(int [new_size - (old_size+1)]));
2456
2457 s = splhigh();
2458 dev->dv_activity_count = new_size;
2459 dev->dv_activity_handlers = new_handlers;
2460 splx(s);
2461
2462 if (old_handlers != NULL)
2463 kmem_free(old_handlers, sizeof(void * [old_size]));
2464
2465 return true;
2466 }
2467
2468 void
2469 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2470 {
2471 void (**old_handlers)(device_t, devactive_t);
2472 size_t i, old_size;
2473 int s;
2474
2475 old_handlers = dev->dv_activity_handlers;
2476 old_size = dev->dv_activity_count;
2477
2478 for (i = 0; i < old_size; ++i) {
2479 if (old_handlers[i] == handler)
2480 break;
2481 if (old_handlers[i] == NULL)
2482 return; /* XXX panic? */
2483 }
2484
2485 if (i == old_size)
2486 return; /* XXX panic? */
2487
2488 for (; i < old_size - 1; ++i) {
2489 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2490 continue;
2491
2492 if (i == 0) {
2493 s = splhigh();
2494 dev->dv_activity_count = 0;
2495 dev->dv_activity_handlers = NULL;
2496 splx(s);
2497 kmem_free(old_handlers, sizeof(void *[old_size]));
2498 }
2499 return;
2500 }
2501 old_handlers[i] = NULL;
2502 }
2503
2504 /* Return true iff the device_t `dev' exists at generation `gen'. */
2505 static bool
2506 device_exists_at(device_t dv, devgen_t gen)
2507 {
2508 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2509 dv->dv_add_gen <= gen;
2510 }
2511
2512 static bool
2513 deviter_visits(const deviter_t *di, device_t dv)
2514 {
2515 return device_exists_at(dv, di->di_gen);
2516 }
2517
2518 /*
2519 * Device Iteration
2520 *
2521 * deviter_t: a device iterator. Holds state for a "walk" visiting
2522 * each device_t's in the device tree.
2523 *
2524 * deviter_init(di, flags): initialize the device iterator `di'
2525 * to "walk" the device tree. deviter_next(di) will return
2526 * the first device_t in the device tree, or NULL if there are
2527 * no devices.
2528 *
2529 * `flags' is one or more of DEVITER_F_RW, indicating that the
2530 * caller intends to modify the device tree by calling
2531 * config_detach(9) on devices in the order that the iterator
2532 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2533 * nearest the "root" of the device tree to be returned, first;
2534 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2535 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2536 * indicating both that deviter_init() should not respect any
2537 * locks on the device tree, and that deviter_next(di) may run
2538 * in more than one LWP before the walk has finished.
2539 *
2540 * Only one DEVITER_F_RW iterator may be in the device tree at
2541 * once.
2542 *
2543 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2544 *
2545 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2546 * DEVITER_F_LEAVES_FIRST are used in combination.
2547 *
2548 * deviter_first(di, flags): initialize the device iterator `di'
2549 * and return the first device_t in the device tree, or NULL
2550 * if there are no devices. The statement
2551 *
2552 * dv = deviter_first(di);
2553 *
2554 * is shorthand for
2555 *
2556 * deviter_init(di);
2557 * dv = deviter_next(di);
2558 *
2559 * deviter_next(di): return the next device_t in the device tree,
2560 * or NULL if there are no more devices. deviter_next(di)
2561 * is undefined if `di' was not initialized with deviter_init() or
2562 * deviter_first().
2563 *
2564 * deviter_release(di): stops iteration (subsequent calls to
2565 * deviter_next() will return NULL), releases any locks and
2566 * resources held by the device iterator.
2567 *
2568 * Device iteration does not return device_t's in any particular
2569 * order. An iterator will never return the same device_t twice.
2570 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2571 * is called repeatedly on the same `di', it will eventually return
2572 * NULL. It is ok to attach/detach devices during device iteration.
2573 */
2574 void
2575 deviter_init(deviter_t *di, deviter_flags_t flags)
2576 {
2577 device_t dv;
2578 int s;
2579
2580 memset(di, 0, sizeof(*di));
2581
2582 s = config_alldevs_lock();
2583 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2584 flags |= DEVITER_F_RW;
2585
2586 if ((flags & DEVITER_F_RW) != 0)
2587 alldevs_nwrite++;
2588 else
2589 alldevs_nread++;
2590 di->di_gen = alldevs_gen++;
2591 config_alldevs_unlock(s);
2592
2593 di->di_flags = flags;
2594
2595 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2596 case DEVITER_F_LEAVES_FIRST:
2597 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2598 if (!deviter_visits(di, dv))
2599 continue;
2600 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2601 }
2602 break;
2603 case DEVITER_F_ROOT_FIRST:
2604 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2605 if (!deviter_visits(di, dv))
2606 continue;
2607 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2608 }
2609 break;
2610 default:
2611 break;
2612 }
2613
2614 deviter_reinit(di);
2615 }
2616
2617 static void
2618 deviter_reinit(deviter_t *di)
2619 {
2620 if ((di->di_flags & DEVITER_F_RW) != 0)
2621 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2622 else
2623 di->di_prev = TAILQ_FIRST(&alldevs);
2624 }
2625
2626 device_t
2627 deviter_first(deviter_t *di, deviter_flags_t flags)
2628 {
2629 deviter_init(di, flags);
2630 return deviter_next(di);
2631 }
2632
2633 static device_t
2634 deviter_next2(deviter_t *di)
2635 {
2636 device_t dv;
2637
2638 dv = di->di_prev;
2639
2640 if (dv == NULL)
2641 return NULL;
2642
2643 if ((di->di_flags & DEVITER_F_RW) != 0)
2644 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2645 else
2646 di->di_prev = TAILQ_NEXT(dv, dv_list);
2647
2648 return dv;
2649 }
2650
2651 static device_t
2652 deviter_next1(deviter_t *di)
2653 {
2654 device_t dv;
2655
2656 do {
2657 dv = deviter_next2(di);
2658 } while (dv != NULL && !deviter_visits(di, dv));
2659
2660 return dv;
2661 }
2662
2663 device_t
2664 deviter_next(deviter_t *di)
2665 {
2666 device_t dv = NULL;
2667
2668 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2669 case 0:
2670 return deviter_next1(di);
2671 case DEVITER_F_LEAVES_FIRST:
2672 while (di->di_curdepth >= 0) {
2673 if ((dv = deviter_next1(di)) == NULL) {
2674 di->di_curdepth--;
2675 deviter_reinit(di);
2676 } else if (dv->dv_depth == di->di_curdepth)
2677 break;
2678 }
2679 return dv;
2680 case DEVITER_F_ROOT_FIRST:
2681 while (di->di_curdepth <= di->di_maxdepth) {
2682 if ((dv = deviter_next1(di)) == NULL) {
2683 di->di_curdepth++;
2684 deviter_reinit(di);
2685 } else if (dv->dv_depth == di->di_curdepth)
2686 break;
2687 }
2688 return dv;
2689 default:
2690 return NULL;
2691 }
2692 }
2693
2694 void
2695 deviter_release(deviter_t *di)
2696 {
2697 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2698 int s;
2699
2700 s = config_alldevs_lock();
2701 if (rw)
2702 --alldevs_nwrite;
2703 else
2704 --alldevs_nread;
2705 /* XXX wake a garbage-collection thread */
2706 config_alldevs_unlock(s);
2707 }
2708
2709 bool
2710 ifattr_match(const char *snull, const char *t)
2711 {
2712 return (snull == NULL) || strcmp(snull, t) == 0;
2713 }
2714
2715 void
2716 null_childdetached(device_t self, device_t child)
2717 {
2718 /* do nothing */
2719 }
2720
2721 static void
2722 sysctl_detach_setup(struct sysctllog **clog)
2723 {
2724 const struct sysctlnode *node = NULL;
2725
2726 sysctl_createv(clog, 0, NULL, &node,
2727 CTLFLAG_PERMANENT,
2728 CTLTYPE_NODE, "kern", NULL,
2729 NULL, 0, NULL, 0,
2730 CTL_KERN, CTL_EOL);
2731
2732 if (node == NULL)
2733 return;
2734
2735 sysctl_createv(clog, 0, &node, NULL,
2736 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2737 CTLTYPE_INT, "detachall",
2738 SYSCTL_DESCR("Detach all devices at shutdown"),
2739 NULL, 0, &detachall, 0,
2740 CTL_CREATE, CTL_EOL);
2741 }
2742