subr_autoconf.c revision 1.198 1 /* $NetBSD: subr_autoconf.c,v 1.198 2010/01/19 21:24:36 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.198 2010/01/19 21:24:36 dyoung Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #endif
85
86 #include <sys/param.h>
87 #include <sys/device.h>
88 #include <sys/disklabel.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91 #include <sys/malloc.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/vnode.h>
102 #include <sys/mount.h>
103 #include <sys/namei.h>
104 #include <sys/unistd.h>
105 #include <sys/fcntl.h>
106 #include <sys/lockf.h>
107 #include <sys/callout.h>
108 #include <sys/devmon.h>
109 #include <sys/cpu.h>
110 #include <sys/sysctl.h>
111
112 #include <sys/disk.h>
113
114 #include <machine/limits.h>
115
116 #if defined(__i386__) && defined(_KERNEL_OPT)
117 #include "opt_splash.h"
118 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
119 #include <dev/splash/splash.h>
120 extern struct splash_progress *splash_progress_state;
121 #endif
122 #endif
123
124 /*
125 * Autoconfiguration subroutines.
126 */
127
128 /*
129 * ioconf.c exports exactly two names: cfdata and cfroots. All system
130 * devices and drivers are found via these tables.
131 */
132 extern struct cfdata cfdata[];
133 extern const short cfroots[];
134
135 /*
136 * List of all cfdriver structures. We use this to detect duplicates
137 * when other cfdrivers are loaded.
138 */
139 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
140 extern struct cfdriver * const cfdriver_list_initial[];
141
142 /*
143 * Initial list of cfattach's.
144 */
145 extern const struct cfattachinit cfattachinit[];
146
147 /*
148 * List of cfdata tables. We always have one such list -- the one
149 * built statically when the kernel was configured.
150 */
151 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
152 static struct cftable initcftable;
153
154 #define ROOT ((device_t)NULL)
155
156 struct matchinfo {
157 cfsubmatch_t fn;
158 struct device *parent;
159 const int *locs;
160 void *aux;
161 struct cfdata *match;
162 int pri;
163 };
164
165 struct alldevs_foray {
166 int af_s;
167 struct devicelist af_garbage;
168 };
169
170 static char *number(char *, int);
171 static void mapply(struct matchinfo *, cfdata_t);
172 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
173 static void config_devdelete(device_t);
174 static void config_devunlink(device_t, struct devicelist *);
175 static void config_makeroom(int, struct cfdriver *);
176 static void config_devlink(device_t);
177 static void config_alldevs_unlock(int);
178 static int config_alldevs_lock(void);
179 static void config_alldevs_enter(struct alldevs_foray *);
180 static void config_alldevs_exit(struct alldevs_foray *);
181
182 static void config_collect_garbage(struct devicelist *);
183 static void config_dump_garbage(struct devicelist *);
184
185 static void pmflock_debug(device_t, const char *, int);
186
187 static device_t deviter_next1(deviter_t *);
188 static void deviter_reinit(deviter_t *);
189
190 struct deferred_config {
191 TAILQ_ENTRY(deferred_config) dc_queue;
192 device_t dc_dev;
193 void (*dc_func)(device_t);
194 };
195
196 TAILQ_HEAD(deferred_config_head, deferred_config);
197
198 struct deferred_config_head deferred_config_queue =
199 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
200 struct deferred_config_head interrupt_config_queue =
201 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
202 int interrupt_config_threads = 8;
203
204 static void config_process_deferred(struct deferred_config_head *, device_t);
205
206 /* Hooks to finalize configuration once all real devices have been found. */
207 struct finalize_hook {
208 TAILQ_ENTRY(finalize_hook) f_list;
209 int (*f_func)(device_t);
210 device_t f_dev;
211 };
212 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
213 TAILQ_HEAD_INITIALIZER(config_finalize_list);
214 static int config_finalize_done;
215
216 /* list of all devices */
217 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
218 static kmutex_t alldevs_mtx;
219 static volatile bool alldevs_garbage = false;
220 static volatile devgen_t alldevs_gen = 1;
221 static volatile int alldevs_nread = 0;
222 static volatile int alldevs_nwrite = 0;
223
224 static int config_pending; /* semaphore for mountroot */
225 static kmutex_t config_misc_lock;
226 static kcondvar_t config_misc_cv;
227
228 static int detachall = 0;
229
230 #define STREQ(s1, s2) \
231 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
232
233 static bool config_initialized = false; /* config_init() has been called. */
234
235 static int config_do_twiddle;
236 static callout_t config_twiddle_ch;
237
238 static void sysctl_detach_setup(struct sysctllog **);
239
240 /*
241 * Initialize the autoconfiguration data structures. Normally this
242 * is done by configure(), but some platforms need to do this very
243 * early (to e.g. initialize the console).
244 */
245 void
246 config_init(void)
247 {
248 const struct cfattachinit *cfai;
249 int i, j;
250
251 KASSERT(config_initialized == false);
252
253 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_HIGH);
254
255 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
256 cv_init(&config_misc_cv, "cfgmisc");
257
258 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
259
260 /* allcfdrivers is statically initialized. */
261 for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
262 if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
263 panic("configure: duplicate `%s' drivers",
264 cfdriver_list_initial[i]->cd_name);
265 }
266
267 for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
268 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
269 if (config_cfattach_attach(cfai->cfai_name,
270 cfai->cfai_list[j]) != 0)
271 panic("configure: duplicate `%s' attachment "
272 "of `%s' driver",
273 cfai->cfai_list[j]->ca_name,
274 cfai->cfai_name);
275 }
276 }
277
278 initcftable.ct_cfdata = cfdata;
279 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
280
281 config_initialized = true;
282 }
283
284 void
285 config_init_mi(void)
286 {
287
288 if (!config_initialized)
289 config_init();
290
291 sysctl_detach_setup(NULL);
292 }
293
294 void
295 config_deferred(device_t dev)
296 {
297 config_process_deferred(&deferred_config_queue, dev);
298 config_process_deferred(&interrupt_config_queue, dev);
299 }
300
301 static void
302 config_interrupts_thread(void *cookie)
303 {
304 struct deferred_config *dc;
305
306 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
307 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
308 (*dc->dc_func)(dc->dc_dev);
309 kmem_free(dc, sizeof(*dc));
310 config_pending_decr();
311 }
312 kthread_exit(0);
313 }
314
315 void
316 config_create_interruptthreads()
317 {
318 int i;
319
320 for (i = 0; i < interrupt_config_threads; i++) {
321 (void)kthread_create(PRI_NONE, 0, NULL,
322 config_interrupts_thread, NULL, NULL, "config");
323 }
324 }
325
326 /*
327 * Announce device attach/detach to userland listeners.
328 */
329 static void
330 devmon_report_device(device_t dev, bool isattach)
331 {
332 #if NDRVCTL > 0
333 prop_dictionary_t ev;
334 const char *parent;
335 const char *what;
336 device_t pdev = device_parent(dev);
337
338 ev = prop_dictionary_create();
339 if (ev == NULL)
340 return;
341
342 what = (isattach ? "device-attach" : "device-detach");
343 parent = (pdev == NULL ? "root" : device_xname(pdev));
344 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
345 !prop_dictionary_set_cstring(ev, "parent", parent)) {
346 prop_object_release(ev);
347 return;
348 }
349
350 devmon_insert(what, ev);
351 #endif
352 }
353
354 /*
355 * Add a cfdriver to the system.
356 */
357 int
358 config_cfdriver_attach(struct cfdriver *cd)
359 {
360 struct cfdriver *lcd;
361
362 /* Make sure this driver isn't already in the system. */
363 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
364 if (STREQ(lcd->cd_name, cd->cd_name))
365 return EEXIST;
366 }
367
368 LIST_INIT(&cd->cd_attach);
369 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
370
371 return 0;
372 }
373
374 /*
375 * Remove a cfdriver from the system.
376 */
377 int
378 config_cfdriver_detach(struct cfdriver *cd)
379 {
380 struct alldevs_foray af;
381 int i, rc = 0;
382
383 config_alldevs_enter(&af);
384 /* Make sure there are no active instances. */
385 for (i = 0; i < cd->cd_ndevs; i++) {
386 if (cd->cd_devs[i] != NULL) {
387 rc = EBUSY;
388 break;
389 }
390 }
391 config_alldevs_exit(&af);
392
393 if (rc != 0)
394 return rc;
395
396 /* ...and no attachments loaded. */
397 if (LIST_EMPTY(&cd->cd_attach) == 0)
398 return EBUSY;
399
400 LIST_REMOVE(cd, cd_list);
401
402 KASSERT(cd->cd_devs == NULL);
403
404 return 0;
405 }
406
407 /*
408 * Look up a cfdriver by name.
409 */
410 struct cfdriver *
411 config_cfdriver_lookup(const char *name)
412 {
413 struct cfdriver *cd;
414
415 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
416 if (STREQ(cd->cd_name, name))
417 return cd;
418 }
419
420 return NULL;
421 }
422
423 /*
424 * Add a cfattach to the specified driver.
425 */
426 int
427 config_cfattach_attach(const char *driver, struct cfattach *ca)
428 {
429 struct cfattach *lca;
430 struct cfdriver *cd;
431
432 cd = config_cfdriver_lookup(driver);
433 if (cd == NULL)
434 return ESRCH;
435
436 /* Make sure this attachment isn't already on this driver. */
437 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
438 if (STREQ(lca->ca_name, ca->ca_name))
439 return EEXIST;
440 }
441
442 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
443
444 return 0;
445 }
446
447 /*
448 * Remove a cfattach from the specified driver.
449 */
450 int
451 config_cfattach_detach(const char *driver, struct cfattach *ca)
452 {
453 struct alldevs_foray af;
454 struct cfdriver *cd;
455 device_t dev;
456 int i, rc = 0;
457
458 cd = config_cfdriver_lookup(driver);
459 if (cd == NULL)
460 return ESRCH;
461
462 config_alldevs_enter(&af);
463 /* Make sure there are no active instances. */
464 for (i = 0; i < cd->cd_ndevs; i++) {
465 if ((dev = cd->cd_devs[i]) == NULL)
466 continue;
467 if (dev->dv_cfattach == ca) {
468 rc = EBUSY;
469 break;
470 }
471 }
472 config_alldevs_exit(&af);
473
474 if (rc != 0)
475 return rc;
476
477 LIST_REMOVE(ca, ca_list);
478
479 return 0;
480 }
481
482 /*
483 * Look up a cfattach by name.
484 */
485 static struct cfattach *
486 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
487 {
488 struct cfattach *ca;
489
490 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
491 if (STREQ(ca->ca_name, atname))
492 return ca;
493 }
494
495 return NULL;
496 }
497
498 /*
499 * Look up a cfattach by driver/attachment name.
500 */
501 struct cfattach *
502 config_cfattach_lookup(const char *name, const char *atname)
503 {
504 struct cfdriver *cd;
505
506 cd = config_cfdriver_lookup(name);
507 if (cd == NULL)
508 return NULL;
509
510 return config_cfattach_lookup_cd(cd, atname);
511 }
512
513 /*
514 * Apply the matching function and choose the best. This is used
515 * a few times and we want to keep the code small.
516 */
517 static void
518 mapply(struct matchinfo *m, cfdata_t cf)
519 {
520 int pri;
521
522 if (m->fn != NULL) {
523 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
524 } else {
525 pri = config_match(m->parent, cf, m->aux);
526 }
527 if (pri > m->pri) {
528 m->match = cf;
529 m->pri = pri;
530 }
531 }
532
533 int
534 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
535 {
536 const struct cfiattrdata *ci;
537 const struct cflocdesc *cl;
538 int nlocs, i;
539
540 ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
541 KASSERT(ci);
542 nlocs = ci->ci_loclen;
543 KASSERT(!nlocs || locs);
544 for (i = 0; i < nlocs; i++) {
545 cl = &ci->ci_locdesc[i];
546 /* !cld_defaultstr means no default value */
547 if ((!(cl->cld_defaultstr)
548 || (cf->cf_loc[i] != cl->cld_default))
549 && cf->cf_loc[i] != locs[i])
550 return 0;
551 }
552
553 return config_match(parent, cf, aux);
554 }
555
556 /*
557 * Helper function: check whether the driver supports the interface attribute
558 * and return its descriptor structure.
559 */
560 static const struct cfiattrdata *
561 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
562 {
563 const struct cfiattrdata * const *cpp;
564
565 if (cd->cd_attrs == NULL)
566 return 0;
567
568 for (cpp = cd->cd_attrs; *cpp; cpp++) {
569 if (STREQ((*cpp)->ci_name, ia)) {
570 /* Match. */
571 return *cpp;
572 }
573 }
574 return 0;
575 }
576
577 /*
578 * Lookup an interface attribute description by name.
579 * If the driver is given, consider only its supported attributes.
580 */
581 const struct cfiattrdata *
582 cfiattr_lookup(const char *name, const struct cfdriver *cd)
583 {
584 const struct cfdriver *d;
585 const struct cfiattrdata *ia;
586
587 if (cd)
588 return cfdriver_get_iattr(cd, name);
589
590 LIST_FOREACH(d, &allcfdrivers, cd_list) {
591 ia = cfdriver_get_iattr(d, name);
592 if (ia)
593 return ia;
594 }
595 return 0;
596 }
597
598 /*
599 * Determine if `parent' is a potential parent for a device spec based
600 * on `cfp'.
601 */
602 static int
603 cfparent_match(const device_t parent, const struct cfparent *cfp)
604 {
605 struct cfdriver *pcd;
606
607 /* We don't match root nodes here. */
608 if (cfp == NULL)
609 return 0;
610
611 pcd = parent->dv_cfdriver;
612 KASSERT(pcd != NULL);
613
614 /*
615 * First, ensure this parent has the correct interface
616 * attribute.
617 */
618 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
619 return 0;
620
621 /*
622 * If no specific parent device instance was specified (i.e.
623 * we're attaching to the attribute only), we're done!
624 */
625 if (cfp->cfp_parent == NULL)
626 return 1;
627
628 /*
629 * Check the parent device's name.
630 */
631 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
632 return 0; /* not the same parent */
633
634 /*
635 * Make sure the unit number matches.
636 */
637 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
638 cfp->cfp_unit == parent->dv_unit)
639 return 1;
640
641 /* Unit numbers don't match. */
642 return 0;
643 }
644
645 /*
646 * Helper for config_cfdata_attach(): check all devices whether it could be
647 * parent any attachment in the config data table passed, and rescan.
648 */
649 static void
650 rescan_with_cfdata(const struct cfdata *cf)
651 {
652 device_t d;
653 const struct cfdata *cf1;
654 deviter_t di;
655
656
657 /*
658 * "alldevs" is likely longer than a modules's cfdata, so make it
659 * the outer loop.
660 */
661 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
662
663 if (!(d->dv_cfattach->ca_rescan))
664 continue;
665
666 for (cf1 = cf; cf1->cf_name; cf1++) {
667
668 if (!cfparent_match(d, cf1->cf_pspec))
669 continue;
670
671 (*d->dv_cfattach->ca_rescan)(d,
672 cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
673 }
674 }
675 deviter_release(&di);
676 }
677
678 /*
679 * Attach a supplemental config data table and rescan potential
680 * parent devices if required.
681 */
682 int
683 config_cfdata_attach(cfdata_t cf, int scannow)
684 {
685 struct cftable *ct;
686
687 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
688 ct->ct_cfdata = cf;
689 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
690
691 if (scannow)
692 rescan_with_cfdata(cf);
693
694 return 0;
695 }
696
697 /*
698 * Helper for config_cfdata_detach: check whether a device is
699 * found through any attachment in the config data table.
700 */
701 static int
702 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
703 {
704 const struct cfdata *cf1;
705
706 for (cf1 = cf; cf1->cf_name; cf1++)
707 if (d->dv_cfdata == cf1)
708 return 1;
709
710 return 0;
711 }
712
713 /*
714 * Detach a supplemental config data table. Detach all devices found
715 * through that table (and thus keeping references to it) before.
716 */
717 int
718 config_cfdata_detach(cfdata_t cf)
719 {
720 device_t d;
721 int error = 0;
722 struct cftable *ct;
723 deviter_t di;
724
725 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
726 d = deviter_next(&di)) {
727 if (!dev_in_cfdata(d, cf))
728 continue;
729 if ((error = config_detach(d, 0)) != 0)
730 break;
731 }
732 deviter_release(&di);
733 if (error) {
734 aprint_error_dev(d, "unable to detach instance\n");
735 return error;
736 }
737
738 TAILQ_FOREACH(ct, &allcftables, ct_list) {
739 if (ct->ct_cfdata == cf) {
740 TAILQ_REMOVE(&allcftables, ct, ct_list);
741 kmem_free(ct, sizeof(*ct));
742 return 0;
743 }
744 }
745
746 /* not found -- shouldn't happen */
747 return EINVAL;
748 }
749
750 /*
751 * Invoke the "match" routine for a cfdata entry on behalf of
752 * an external caller, usually a "submatch" routine.
753 */
754 int
755 config_match(device_t parent, cfdata_t cf, void *aux)
756 {
757 struct cfattach *ca;
758
759 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
760 if (ca == NULL) {
761 /* No attachment for this entry, oh well. */
762 return 0;
763 }
764
765 return (*ca->ca_match)(parent, cf, aux);
766 }
767
768 /*
769 * Iterate over all potential children of some device, calling the given
770 * function (default being the child's match function) for each one.
771 * Nonzero returns are matches; the highest value returned is considered
772 * the best match. Return the `found child' if we got a match, or NULL
773 * otherwise. The `aux' pointer is simply passed on through.
774 *
775 * Note that this function is designed so that it can be used to apply
776 * an arbitrary function to all potential children (its return value
777 * can be ignored).
778 */
779 cfdata_t
780 config_search_loc(cfsubmatch_t fn, device_t parent,
781 const char *ifattr, const int *locs, void *aux)
782 {
783 struct cftable *ct;
784 cfdata_t cf;
785 struct matchinfo m;
786
787 KASSERT(config_initialized);
788 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
789
790 m.fn = fn;
791 m.parent = parent;
792 m.locs = locs;
793 m.aux = aux;
794 m.match = NULL;
795 m.pri = 0;
796
797 TAILQ_FOREACH(ct, &allcftables, ct_list) {
798 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
799
800 /* We don't match root nodes here. */
801 if (!cf->cf_pspec)
802 continue;
803
804 /*
805 * Skip cf if no longer eligible, otherwise scan
806 * through parents for one matching `parent', and
807 * try match function.
808 */
809 if (cf->cf_fstate == FSTATE_FOUND)
810 continue;
811 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
812 cf->cf_fstate == FSTATE_DSTAR)
813 continue;
814
815 /*
816 * If an interface attribute was specified,
817 * consider only children which attach to
818 * that attribute.
819 */
820 if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
821 continue;
822
823 if (cfparent_match(parent, cf->cf_pspec))
824 mapply(&m, cf);
825 }
826 }
827 return m.match;
828 }
829
830 cfdata_t
831 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
832 void *aux)
833 {
834
835 return config_search_loc(fn, parent, ifattr, NULL, aux);
836 }
837
838 /*
839 * Find the given root device.
840 * This is much like config_search, but there is no parent.
841 * Don't bother with multiple cfdata tables; the root node
842 * must always be in the initial table.
843 */
844 cfdata_t
845 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
846 {
847 cfdata_t cf;
848 const short *p;
849 struct matchinfo m;
850
851 m.fn = fn;
852 m.parent = ROOT;
853 m.aux = aux;
854 m.match = NULL;
855 m.pri = 0;
856 m.locs = 0;
857 /*
858 * Look at root entries for matching name. We do not bother
859 * with found-state here since only one root should ever be
860 * searched (and it must be done first).
861 */
862 for (p = cfroots; *p >= 0; p++) {
863 cf = &cfdata[*p];
864 if (strcmp(cf->cf_name, rootname) == 0)
865 mapply(&m, cf);
866 }
867 return m.match;
868 }
869
870 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
871
872 /*
873 * The given `aux' argument describes a device that has been found
874 * on the given parent, but not necessarily configured. Locate the
875 * configuration data for that device (using the submatch function
876 * provided, or using candidates' cd_match configuration driver
877 * functions) and attach it, and return true. If the device was
878 * not configured, call the given `print' function and return 0.
879 */
880 device_t
881 config_found_sm_loc(device_t parent,
882 const char *ifattr, const int *locs, void *aux,
883 cfprint_t print, cfsubmatch_t submatch)
884 {
885 cfdata_t cf;
886
887 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
888 if (splash_progress_state)
889 splash_progress_update(splash_progress_state);
890 #endif
891
892 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
893 return(config_attach_loc(parent, cf, locs, aux, print));
894 if (print) {
895 if (config_do_twiddle && cold)
896 twiddle();
897 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
898 }
899
900 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
901 if (splash_progress_state)
902 splash_progress_update(splash_progress_state);
903 #endif
904
905 return NULL;
906 }
907
908 device_t
909 config_found_ia(device_t parent, const char *ifattr, void *aux,
910 cfprint_t print)
911 {
912
913 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
914 }
915
916 device_t
917 config_found(device_t parent, void *aux, cfprint_t print)
918 {
919
920 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
921 }
922
923 /*
924 * As above, but for root devices.
925 */
926 device_t
927 config_rootfound(const char *rootname, void *aux)
928 {
929 cfdata_t cf;
930
931 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
932 return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
933 aprint_error("root device %s not configured\n", rootname);
934 return NULL;
935 }
936
937 /* just like sprintf(buf, "%d") except that it works from the end */
938 static char *
939 number(char *ep, int n)
940 {
941
942 *--ep = 0;
943 while (n >= 10) {
944 *--ep = (n % 10) + '0';
945 n /= 10;
946 }
947 *--ep = n + '0';
948 return ep;
949 }
950
951 /*
952 * Expand the size of the cd_devs array if necessary.
953 *
954 * The caller must hold alldevs_mtx. config_makeroom() may release and
955 * re-acquire alldevs_mtx, so callers should re-check conditions such
956 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
957 * returns.
958 */
959 static void
960 config_makeroom(int n, struct cfdriver *cd)
961 {
962 int old, new;
963 device_t *osp, *nsp;
964
965 alldevs_nwrite++;
966
967 for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
968 ;
969
970 while (n >= cd->cd_ndevs) {
971 /*
972 * Need to expand the array.
973 */
974 old = cd->cd_ndevs;
975 osp = cd->cd_devs;
976
977 /* Release alldevs_mtx around allocation, which may
978 * sleep.
979 */
980 mutex_exit(&alldevs_mtx);
981 nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
982 if (nsp == NULL)
983 panic("%s: could not expand cd_devs", __func__);
984 mutex_enter(&alldevs_mtx);
985
986 /* If another thread moved the array while we did
987 * not hold alldevs_mtx, try again.
988 */
989 if (cd->cd_devs != osp) {
990 kmem_free(nsp, sizeof(device_t[new]));
991 continue;
992 }
993
994 memset(nsp + old, 0, sizeof(device_t[new - old]));
995 if (old != 0)
996 memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
997
998 cd->cd_ndevs = new;
999 cd->cd_devs = nsp;
1000 if (old != 0)
1001 kmem_free(osp, sizeof(device_t[old]));
1002 }
1003 alldevs_nwrite--;
1004 }
1005
1006 /*
1007 * Put dev into the devices list.
1008 */
1009 static void
1010 config_devlink(device_t dev)
1011 {
1012 int s;
1013
1014 s = config_alldevs_lock();
1015
1016 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1017
1018 dev->dv_add_gen = alldevs_gen;
1019 /* It is safe to add a device to the tail of the list while
1020 * readers and writers are in the list.
1021 */
1022 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1023 config_alldevs_unlock(s);
1024 }
1025
1026 static void
1027 config_devfree(device_t dev)
1028 {
1029 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1030
1031 if (dev->dv_cfattach->ca_devsize > 0)
1032 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1033 if (priv)
1034 kmem_free(dev, sizeof(*dev));
1035 }
1036
1037 /*
1038 * Caller must hold alldevs_mtx.
1039 */
1040 static void
1041 config_devunlink(device_t dev, struct devicelist *garbage)
1042 {
1043 struct device_garbage *dg = &dev->dv_garbage;
1044 cfdriver_t cd = device_cfdriver(dev);
1045 int i;
1046
1047 KASSERT(mutex_owned(&alldevs_mtx));
1048
1049 /* Unlink from device list. Link to garbage list. */
1050 TAILQ_REMOVE(&alldevs, dev, dv_list);
1051 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1052
1053 /* Remove from cfdriver's array. */
1054 cd->cd_devs[dev->dv_unit] = NULL;
1055
1056 /*
1057 * If the device now has no units in use, unlink its softc array.
1058 */
1059 for (i = 0; i < cd->cd_ndevs; i++) {
1060 if (cd->cd_devs[i] != NULL)
1061 break;
1062 }
1063 /* Nothing found. Unlink, now. Deallocate, later. */
1064 if (i == cd->cd_ndevs) {
1065 dg->dg_ndevs = cd->cd_ndevs;
1066 dg->dg_devs = cd->cd_devs;
1067 cd->cd_devs = NULL;
1068 cd->cd_ndevs = 0;
1069 }
1070 }
1071
1072 static void
1073 config_devdelete(device_t dev)
1074 {
1075 struct device_garbage *dg = &dev->dv_garbage;
1076 device_lock_t dvl = device_getlock(dev);
1077
1078 if (dg->dg_devs != NULL)
1079 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1080
1081 cv_destroy(&dvl->dvl_cv);
1082 mutex_destroy(&dvl->dvl_mtx);
1083
1084 KASSERT(dev->dv_properties != NULL);
1085 prop_object_release(dev->dv_properties);
1086
1087 if (dev->dv_activity_handlers)
1088 panic("%s with registered handlers", __func__);
1089
1090 if (dev->dv_locators) {
1091 size_t amount = *--dev->dv_locators;
1092 kmem_free(dev->dv_locators, amount);
1093 }
1094
1095 config_devfree(dev);
1096 }
1097
1098 static int
1099 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1100 {
1101 int unit;
1102
1103 if (cf->cf_fstate == FSTATE_STAR) {
1104 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1105 if (cd->cd_devs[unit] == NULL)
1106 break;
1107 /*
1108 * unit is now the unit of the first NULL device pointer,
1109 * or max(cd->cd_ndevs,cf->cf_unit).
1110 */
1111 } else {
1112 unit = cf->cf_unit;
1113 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1114 unit = -1;
1115 }
1116 return unit;
1117 }
1118
1119 static int
1120 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1121 {
1122 struct alldevs_foray af;
1123 int unit;
1124
1125 config_alldevs_enter(&af);
1126 for (;;) {
1127 unit = config_unit_nextfree(cd, cf);
1128 if (unit == -1)
1129 break;
1130 if (unit < cd->cd_ndevs) {
1131 cd->cd_devs[unit] = dev;
1132 dev->dv_unit = unit;
1133 break;
1134 }
1135 config_makeroom(unit, cd);
1136 }
1137 config_alldevs_exit(&af);
1138
1139 return unit;
1140 }
1141
1142 static device_t
1143 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1144 {
1145 cfdriver_t cd;
1146 cfattach_t ca;
1147 size_t lname, lunit;
1148 const char *xunit;
1149 int myunit;
1150 char num[10];
1151 device_t dev;
1152 void *dev_private;
1153 const struct cfiattrdata *ia;
1154 device_lock_t dvl;
1155
1156 cd = config_cfdriver_lookup(cf->cf_name);
1157 if (cd == NULL)
1158 return NULL;
1159
1160 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1161 if (ca == NULL)
1162 return NULL;
1163
1164 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1165 ca->ca_devsize < sizeof(struct device))
1166 panic("config_devalloc: %s", cf->cf_atname);
1167
1168 /* get memory for all device vars */
1169 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1170 if (ca->ca_devsize > 0) {
1171 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1172 if (dev_private == NULL)
1173 panic("config_devalloc: memory allocation for device softc failed");
1174 } else {
1175 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1176 dev_private = NULL;
1177 }
1178
1179 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1180 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1181 } else {
1182 dev = dev_private;
1183 }
1184 if (dev == NULL)
1185 panic("config_devalloc: memory allocation for device_t failed");
1186
1187 myunit = config_unit_alloc(dev, cd, cf);
1188 if (myunit == -1) {
1189 config_devfree(dev);
1190 return NULL;
1191 }
1192
1193 /* compute length of name and decimal expansion of unit number */
1194 lname = strlen(cd->cd_name);
1195 xunit = number(&num[sizeof(num)], myunit);
1196 lunit = &num[sizeof(num)] - xunit;
1197 if (lname + lunit > sizeof(dev->dv_xname))
1198 panic("config_devalloc: device name too long");
1199
1200 dvl = device_getlock(dev);
1201
1202 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1203 cv_init(&dvl->dvl_cv, "pmfsusp");
1204
1205 dev->dv_class = cd->cd_class;
1206 dev->dv_cfdata = cf;
1207 dev->dv_cfdriver = cd;
1208 dev->dv_cfattach = ca;
1209 dev->dv_activity_count = 0;
1210 dev->dv_activity_handlers = NULL;
1211 dev->dv_private = dev_private;
1212 memcpy(dev->dv_xname, cd->cd_name, lname);
1213 memcpy(dev->dv_xname + lname, xunit, lunit);
1214 dev->dv_parent = parent;
1215 if (parent != NULL)
1216 dev->dv_depth = parent->dv_depth + 1;
1217 else
1218 dev->dv_depth = 0;
1219 dev->dv_flags = DVF_ACTIVE; /* always initially active */
1220 dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
1221 if (locs) {
1222 KASSERT(parent); /* no locators at root */
1223 ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
1224 parent->dv_cfdriver);
1225 dev->dv_locators =
1226 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1227 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1228 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1229 }
1230 dev->dv_properties = prop_dictionary_create();
1231 KASSERT(dev->dv_properties != NULL);
1232
1233 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1234 "device-driver", dev->dv_cfdriver->cd_name);
1235 prop_dictionary_set_uint16(dev->dv_properties,
1236 "device-unit", dev->dv_unit);
1237
1238 return dev;
1239 }
1240
1241 /*
1242 * Attach a found device.
1243 */
1244 device_t
1245 config_attach_loc(device_t parent, cfdata_t cf,
1246 const int *locs, void *aux, cfprint_t print)
1247 {
1248 device_t dev;
1249 struct cftable *ct;
1250 const char *drvname;
1251
1252 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1253 if (splash_progress_state)
1254 splash_progress_update(splash_progress_state);
1255 #endif
1256
1257 dev = config_devalloc(parent, cf, locs);
1258 if (!dev)
1259 panic("config_attach: allocation of device softc failed");
1260
1261 /* XXX redundant - see below? */
1262 if (cf->cf_fstate != FSTATE_STAR) {
1263 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1264 cf->cf_fstate = FSTATE_FOUND;
1265 }
1266
1267 config_devlink(dev);
1268
1269 if (config_do_twiddle && cold)
1270 twiddle();
1271 else
1272 aprint_naive("Found ");
1273 /*
1274 * We want the next two printfs for normal, verbose, and quiet,
1275 * but not silent (in which case, we're twiddling, instead).
1276 */
1277 if (parent == ROOT) {
1278 aprint_naive("%s (root)", device_xname(dev));
1279 aprint_normal("%s (root)", device_xname(dev));
1280 } else {
1281 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1282 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1283 if (print)
1284 (void) (*print)(aux, NULL);
1285 }
1286
1287 /*
1288 * Before attaching, clobber any unfound devices that are
1289 * otherwise identical.
1290 * XXX code above is redundant?
1291 */
1292 drvname = dev->dv_cfdriver->cd_name;
1293 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1294 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1295 if (STREQ(cf->cf_name, drvname) &&
1296 cf->cf_unit == dev->dv_unit) {
1297 if (cf->cf_fstate == FSTATE_NOTFOUND)
1298 cf->cf_fstate = FSTATE_FOUND;
1299 }
1300 }
1301 }
1302 #ifdef __HAVE_DEVICE_REGISTER
1303 device_register(dev, aux);
1304 #endif
1305
1306 /* Let userland know */
1307 devmon_report_device(dev, true);
1308
1309 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1310 if (splash_progress_state)
1311 splash_progress_update(splash_progress_state);
1312 #endif
1313 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1314 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1315 if (splash_progress_state)
1316 splash_progress_update(splash_progress_state);
1317 #endif
1318
1319 if (!device_pmf_is_registered(dev))
1320 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1321
1322 config_process_deferred(&deferred_config_queue, dev);
1323
1324 #ifdef __HAVE_DEVICE_REGISTER_POSTCONFIG
1325 device_register_post_config(dev, aux);
1326 #endif
1327 return dev;
1328 }
1329
1330 device_t
1331 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1332 {
1333
1334 return config_attach_loc(parent, cf, NULL, aux, print);
1335 }
1336
1337 /*
1338 * As above, but for pseudo-devices. Pseudo-devices attached in this
1339 * way are silently inserted into the device tree, and their children
1340 * attached.
1341 *
1342 * Note that because pseudo-devices are attached silently, any information
1343 * the attach routine wishes to print should be prefixed with the device
1344 * name by the attach routine.
1345 */
1346 device_t
1347 config_attach_pseudo(cfdata_t cf)
1348 {
1349 device_t dev;
1350
1351 dev = config_devalloc(ROOT, cf, NULL);
1352 if (!dev)
1353 return NULL;
1354
1355 /* XXX mark busy in cfdata */
1356
1357 if (cf->cf_fstate != FSTATE_STAR) {
1358 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1359 cf->cf_fstate = FSTATE_FOUND;
1360 }
1361
1362 config_devlink(dev);
1363
1364 #if 0 /* XXXJRT not yet */
1365 #ifdef __HAVE_DEVICE_REGISTER
1366 device_register(dev, NULL); /* like a root node */
1367 #endif
1368 #endif
1369 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1370 config_process_deferred(&deferred_config_queue, dev);
1371 return dev;
1372 }
1373
1374 /*
1375 * Caller must hold alldevs_mtx.
1376 */
1377 static void
1378 config_collect_garbage(struct devicelist *garbage)
1379 {
1380 device_t dv;
1381
1382 KASSERT(!cpu_intr_p());
1383 KASSERT(!cpu_softintr_p());
1384 KASSERT(mutex_owned(&alldevs_mtx));
1385
1386 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1387 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1388 if (dv->dv_del_gen != 0)
1389 break;
1390 }
1391 if (dv == NULL) {
1392 alldevs_garbage = false;
1393 break;
1394 }
1395 config_devunlink(dv, garbage);
1396 }
1397 KASSERT(mutex_owned(&alldevs_mtx));
1398 }
1399
1400 static void
1401 config_dump_garbage(struct devicelist *garbage)
1402 {
1403 device_t dv;
1404
1405 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1406 TAILQ_REMOVE(garbage, dv, dv_list);
1407 config_devdelete(dv);
1408 }
1409 }
1410
1411 /*
1412 * Detach a device. Optionally forced (e.g. because of hardware
1413 * removal) and quiet. Returns zero if successful, non-zero
1414 * (an error code) otherwise.
1415 *
1416 * Note that this code wants to be run from a process context, so
1417 * that the detach can sleep to allow processes which have a device
1418 * open to run and unwind their stacks.
1419 */
1420 int
1421 config_detach(device_t dev, int flags)
1422 {
1423 struct alldevs_foray af;
1424 struct cftable *ct;
1425 cfdata_t cf;
1426 const struct cfattach *ca;
1427 struct cfdriver *cd;
1428 #ifdef DIAGNOSTIC
1429 device_t d;
1430 #endif
1431 int rv = 0, s;
1432
1433 #ifdef DIAGNOSTIC
1434 cf = dev->dv_cfdata;
1435 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1436 cf->cf_fstate != FSTATE_STAR)
1437 panic("config_detach: %s: bad device fstate %d",
1438 device_xname(dev), cf ? cf->cf_fstate : -1);
1439 #endif
1440 cd = dev->dv_cfdriver;
1441 KASSERT(cd != NULL);
1442
1443 ca = dev->dv_cfattach;
1444 KASSERT(ca != NULL);
1445
1446 s = config_alldevs_lock();
1447 if (dev->dv_del_gen != 0) {
1448 config_alldevs_unlock(s);
1449 #ifdef DIAGNOSTIC
1450 printf("%s: %s is already detached\n", __func__,
1451 device_xname(dev));
1452 #endif /* DIAGNOSTIC */
1453 return ENOENT;
1454 }
1455 alldevs_nwrite++;
1456 config_alldevs_unlock(s);
1457
1458 if (!detachall &&
1459 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1460 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1461 rv = EOPNOTSUPP;
1462 } else if (ca->ca_detach != NULL) {
1463 rv = (*ca->ca_detach)(dev, flags);
1464 } else
1465 rv = EOPNOTSUPP;
1466
1467 /*
1468 * If it was not possible to detach the device, then we either
1469 * panic() (for the forced but failed case), or return an error.
1470 *
1471 * If it was possible to detach the device, ensure that the
1472 * device is deactivated.
1473 */
1474 if (rv == 0)
1475 dev->dv_flags &= ~DVF_ACTIVE;
1476 else if ((flags & DETACH_FORCE) == 0)
1477 goto out;
1478 else {
1479 panic("config_detach: forced detach of %s failed (%d)",
1480 device_xname(dev), rv);
1481 }
1482
1483 /*
1484 * The device has now been successfully detached.
1485 */
1486
1487 /* Let userland know */
1488 devmon_report_device(dev, false);
1489
1490 #ifdef DIAGNOSTIC
1491 /*
1492 * Sanity: If you're successfully detached, you should have no
1493 * children. (Note that because children must be attached
1494 * after parents, we only need to search the latter part of
1495 * the list.)
1496 */
1497 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1498 d = TAILQ_NEXT(d, dv_list)) {
1499 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1500 printf("config_detach: detached device %s"
1501 " has children %s\n", device_xname(dev), device_xname(d));
1502 panic("config_detach");
1503 }
1504 }
1505 #endif
1506
1507 /* notify the parent that the child is gone */
1508 if (dev->dv_parent) {
1509 device_t p = dev->dv_parent;
1510 if (p->dv_cfattach->ca_childdetached)
1511 (*p->dv_cfattach->ca_childdetached)(p, dev);
1512 }
1513
1514 /*
1515 * Mark cfdata to show that the unit can be reused, if possible.
1516 */
1517 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1518 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1519 if (STREQ(cf->cf_name, cd->cd_name)) {
1520 if (cf->cf_fstate == FSTATE_FOUND &&
1521 cf->cf_unit == dev->dv_unit)
1522 cf->cf_fstate = FSTATE_NOTFOUND;
1523 }
1524 }
1525 }
1526
1527 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1528 aprint_normal_dev(dev, "detached\n");
1529
1530 out:
1531 config_alldevs_enter(&af);
1532 KASSERT(alldevs_nwrite != 0);
1533 --alldevs_nwrite;
1534 if (rv == 0 && dev->dv_del_gen == 0)
1535 config_devunlink(dev, &af.af_garbage);
1536 config_alldevs_exit(&af);
1537
1538 return rv;
1539 }
1540
1541 int
1542 config_detach_children(device_t parent, int flags)
1543 {
1544 device_t dv;
1545 deviter_t di;
1546 int error = 0;
1547
1548 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1549 dv = deviter_next(&di)) {
1550 if (device_parent(dv) != parent)
1551 continue;
1552 if ((error = config_detach(dv, flags)) != 0)
1553 break;
1554 }
1555 deviter_release(&di);
1556 return error;
1557 }
1558
1559 device_t
1560 shutdown_first(struct shutdown_state *s)
1561 {
1562 if (!s->initialized) {
1563 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1564 s->initialized = true;
1565 }
1566 return shutdown_next(s);
1567 }
1568
1569 device_t
1570 shutdown_next(struct shutdown_state *s)
1571 {
1572 device_t dv;
1573
1574 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1575 ;
1576
1577 if (dv == NULL)
1578 s->initialized = false;
1579
1580 return dv;
1581 }
1582
1583 bool
1584 config_detach_all(int how)
1585 {
1586 static struct shutdown_state s;
1587 device_t curdev;
1588 bool progress = false;
1589
1590 if ((how & RB_NOSYNC) != 0)
1591 return false;
1592
1593 for (curdev = shutdown_first(&s); curdev != NULL;
1594 curdev = shutdown_next(&s)) {
1595 aprint_debug(" detaching %s, ", device_xname(curdev));
1596 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1597 progress = true;
1598 aprint_debug("success.");
1599 } else
1600 aprint_debug("failed.");
1601 }
1602 return progress;
1603 }
1604
1605 static bool
1606 device_is_ancestor_of(device_t ancestor, device_t descendant)
1607 {
1608 device_t dv;
1609
1610 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1611 if (device_parent(dv) == ancestor)
1612 return true;
1613 }
1614 return false;
1615 }
1616
1617 int
1618 config_deactivate(device_t dev)
1619 {
1620 deviter_t di;
1621 const struct cfattach *ca;
1622 device_t descendant;
1623 int s, rv = 0, oflags;
1624
1625 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1626 descendant != NULL;
1627 descendant = deviter_next(&di)) {
1628 if (dev != descendant &&
1629 !device_is_ancestor_of(dev, descendant))
1630 continue;
1631
1632 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1633 continue;
1634
1635 ca = descendant->dv_cfattach;
1636 oflags = descendant->dv_flags;
1637
1638 descendant->dv_flags &= ~DVF_ACTIVE;
1639 if (ca->ca_activate == NULL)
1640 continue;
1641 s = splhigh();
1642 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1643 splx(s);
1644 if (rv != 0)
1645 descendant->dv_flags = oflags;
1646 }
1647 deviter_release(&di);
1648 return rv;
1649 }
1650
1651 /*
1652 * Defer the configuration of the specified device until all
1653 * of its parent's devices have been attached.
1654 */
1655 void
1656 config_defer(device_t dev, void (*func)(device_t))
1657 {
1658 struct deferred_config *dc;
1659
1660 if (dev->dv_parent == NULL)
1661 panic("config_defer: can't defer config of a root device");
1662
1663 #ifdef DIAGNOSTIC
1664 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1665 if (dc->dc_dev == dev)
1666 panic("config_defer: deferred twice");
1667 }
1668 #endif
1669
1670 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1671 if (dc == NULL)
1672 panic("config_defer: unable to allocate callback");
1673
1674 dc->dc_dev = dev;
1675 dc->dc_func = func;
1676 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1677 config_pending_incr();
1678 }
1679
1680 /*
1681 * Defer some autoconfiguration for a device until after interrupts
1682 * are enabled.
1683 */
1684 void
1685 config_interrupts(device_t dev, void (*func)(device_t))
1686 {
1687 struct deferred_config *dc;
1688
1689 /*
1690 * If interrupts are enabled, callback now.
1691 */
1692 if (cold == 0) {
1693 (*func)(dev);
1694 return;
1695 }
1696
1697 #ifdef DIAGNOSTIC
1698 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1699 if (dc->dc_dev == dev)
1700 panic("config_interrupts: deferred twice");
1701 }
1702 #endif
1703
1704 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1705 if (dc == NULL)
1706 panic("config_interrupts: unable to allocate callback");
1707
1708 dc->dc_dev = dev;
1709 dc->dc_func = func;
1710 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1711 config_pending_incr();
1712 }
1713
1714 /*
1715 * Process a deferred configuration queue.
1716 */
1717 static void
1718 config_process_deferred(struct deferred_config_head *queue,
1719 device_t parent)
1720 {
1721 struct deferred_config *dc, *ndc;
1722
1723 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1724 ndc = TAILQ_NEXT(dc, dc_queue);
1725 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1726 TAILQ_REMOVE(queue, dc, dc_queue);
1727 (*dc->dc_func)(dc->dc_dev);
1728 kmem_free(dc, sizeof(*dc));
1729 config_pending_decr();
1730 }
1731 }
1732 }
1733
1734 /*
1735 * Manipulate the config_pending semaphore.
1736 */
1737 void
1738 config_pending_incr(void)
1739 {
1740
1741 mutex_enter(&config_misc_lock);
1742 config_pending++;
1743 mutex_exit(&config_misc_lock);
1744 }
1745
1746 void
1747 config_pending_decr(void)
1748 {
1749
1750 #ifdef DIAGNOSTIC
1751 if (config_pending == 0)
1752 panic("config_pending_decr: config_pending == 0");
1753 #endif
1754 mutex_enter(&config_misc_lock);
1755 config_pending--;
1756 if (config_pending == 0)
1757 cv_broadcast(&config_misc_cv);
1758 mutex_exit(&config_misc_lock);
1759 }
1760
1761 /*
1762 * Register a "finalization" routine. Finalization routines are
1763 * called iteratively once all real devices have been found during
1764 * autoconfiguration, for as long as any one finalizer has done
1765 * any work.
1766 */
1767 int
1768 config_finalize_register(device_t dev, int (*fn)(device_t))
1769 {
1770 struct finalize_hook *f;
1771
1772 /*
1773 * If finalization has already been done, invoke the
1774 * callback function now.
1775 */
1776 if (config_finalize_done) {
1777 while ((*fn)(dev) != 0)
1778 /* loop */ ;
1779 }
1780
1781 /* Ensure this isn't already on the list. */
1782 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1783 if (f->f_func == fn && f->f_dev == dev)
1784 return EEXIST;
1785 }
1786
1787 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1788 f->f_func = fn;
1789 f->f_dev = dev;
1790 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1791
1792 return 0;
1793 }
1794
1795 void
1796 config_finalize(void)
1797 {
1798 struct finalize_hook *f;
1799 struct pdevinit *pdev;
1800 extern struct pdevinit pdevinit[];
1801 int errcnt, rv;
1802
1803 /*
1804 * Now that device driver threads have been created, wait for
1805 * them to finish any deferred autoconfiguration.
1806 */
1807 mutex_enter(&config_misc_lock);
1808 while (config_pending != 0)
1809 cv_wait(&config_misc_cv, &config_misc_lock);
1810 mutex_exit(&config_misc_lock);
1811
1812 KERNEL_LOCK(1, NULL);
1813
1814 /* Attach pseudo-devices. */
1815 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1816 (*pdev->pdev_attach)(pdev->pdev_count);
1817
1818 /* Run the hooks until none of them does any work. */
1819 do {
1820 rv = 0;
1821 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1822 rv |= (*f->f_func)(f->f_dev);
1823 } while (rv != 0);
1824
1825 config_finalize_done = 1;
1826
1827 /* Now free all the hooks. */
1828 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1829 TAILQ_REMOVE(&config_finalize_list, f, f_list);
1830 kmem_free(f, sizeof(*f));
1831 }
1832
1833 KERNEL_UNLOCK_ONE(NULL);
1834
1835 errcnt = aprint_get_error_count();
1836 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1837 (boothowto & AB_VERBOSE) == 0) {
1838 mutex_enter(&config_misc_lock);
1839 if (config_do_twiddle) {
1840 config_do_twiddle = 0;
1841 printf_nolog(" done.\n");
1842 }
1843 mutex_exit(&config_misc_lock);
1844 if (errcnt != 0) {
1845 printf("WARNING: %d error%s while detecting hardware; "
1846 "check system log.\n", errcnt,
1847 errcnt == 1 ? "" : "s");
1848 }
1849 }
1850 }
1851
1852 void
1853 config_twiddle_init()
1854 {
1855
1856 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
1857 config_do_twiddle = 1;
1858 }
1859 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
1860 }
1861
1862 void
1863 config_twiddle_fn(void *cookie)
1864 {
1865
1866 mutex_enter(&config_misc_lock);
1867 if (config_do_twiddle) {
1868 twiddle();
1869 callout_schedule(&config_twiddle_ch, mstohz(100));
1870 }
1871 mutex_exit(&config_misc_lock);
1872 }
1873
1874 static int
1875 config_alldevs_lock(void)
1876 {
1877 int s;
1878
1879 s = splhigh();
1880 mutex_enter(&alldevs_mtx);
1881 return s;
1882 }
1883
1884 static void
1885 config_alldevs_enter(struct alldevs_foray *af)
1886 {
1887 TAILQ_INIT(&af->af_garbage);
1888 af->af_s = config_alldevs_lock();
1889 config_collect_garbage(&af->af_garbage);
1890 }
1891
1892 static void
1893 config_alldevs_exit(struct alldevs_foray *af)
1894 {
1895 config_alldevs_unlock(af->af_s);
1896 config_dump_garbage(&af->af_garbage);
1897 }
1898
1899 static void
1900 config_alldevs_unlock(int s)
1901 {
1902 mutex_exit(&alldevs_mtx);
1903 splx(s);
1904 }
1905
1906 /*
1907 * device_lookup:
1908 *
1909 * Look up a device instance for a given driver.
1910 */
1911 device_t
1912 device_lookup(cfdriver_t cd, int unit)
1913 {
1914 device_t dv;
1915 int s;
1916
1917 s = config_alldevs_lock();
1918 KASSERT(mutex_owned(&alldevs_mtx));
1919 if (unit < 0 || unit >= cd->cd_ndevs)
1920 dv = NULL;
1921 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
1922 dv = NULL;
1923 config_alldevs_unlock(s);
1924
1925 return dv;
1926 }
1927
1928 /*
1929 * device_lookup_private:
1930 *
1931 * Look up a softc instance for a given driver.
1932 */
1933 void *
1934 device_lookup_private(cfdriver_t cd, int unit)
1935 {
1936
1937 return device_private(device_lookup(cd, unit));
1938 }
1939
1940 /*
1941 * Accessor functions for the device_t type.
1942 */
1943 devclass_t
1944 device_class(device_t dev)
1945 {
1946
1947 return dev->dv_class;
1948 }
1949
1950 cfdata_t
1951 device_cfdata(device_t dev)
1952 {
1953
1954 return dev->dv_cfdata;
1955 }
1956
1957 cfdriver_t
1958 device_cfdriver(device_t dev)
1959 {
1960
1961 return dev->dv_cfdriver;
1962 }
1963
1964 cfattach_t
1965 device_cfattach(device_t dev)
1966 {
1967
1968 return dev->dv_cfattach;
1969 }
1970
1971 int
1972 device_unit(device_t dev)
1973 {
1974
1975 return dev->dv_unit;
1976 }
1977
1978 const char *
1979 device_xname(device_t dev)
1980 {
1981
1982 return dev->dv_xname;
1983 }
1984
1985 device_t
1986 device_parent(device_t dev)
1987 {
1988
1989 return dev->dv_parent;
1990 }
1991
1992 bool
1993 device_activation(device_t dev, devact_level_t level)
1994 {
1995 int active_flags;
1996
1997 active_flags = DVF_ACTIVE;
1998 switch (level) {
1999 case DEVACT_LEVEL_FULL:
2000 active_flags |= DVF_CLASS_SUSPENDED;
2001 /*FALLTHROUGH*/
2002 case DEVACT_LEVEL_DRIVER:
2003 active_flags |= DVF_DRIVER_SUSPENDED;
2004 /*FALLTHROUGH*/
2005 case DEVACT_LEVEL_BUS:
2006 active_flags |= DVF_BUS_SUSPENDED;
2007 break;
2008 }
2009
2010 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
2011 }
2012
2013 bool
2014 device_is_active(device_t dev)
2015 {
2016 int active_flags;
2017
2018 active_flags = DVF_ACTIVE;
2019 active_flags |= DVF_CLASS_SUSPENDED;
2020 active_flags |= DVF_DRIVER_SUSPENDED;
2021 active_flags |= DVF_BUS_SUSPENDED;
2022
2023 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
2024 }
2025
2026 bool
2027 device_is_enabled(device_t dev)
2028 {
2029 return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
2030 }
2031
2032 bool
2033 device_has_power(device_t dev)
2034 {
2035 int active_flags;
2036
2037 active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
2038
2039 return (dev->dv_flags & active_flags) == DVF_ACTIVE;
2040 }
2041
2042 int
2043 device_locator(device_t dev, u_int locnum)
2044 {
2045
2046 KASSERT(dev->dv_locators != NULL);
2047 return dev->dv_locators[locnum];
2048 }
2049
2050 void *
2051 device_private(device_t dev)
2052 {
2053
2054 /*
2055 * The reason why device_private(NULL) is allowed is to simplify the
2056 * work of a lot of userspace request handlers (i.e., c/bdev
2057 * handlers) which grab cfdriver_t->cd_units[n].
2058 * It avoids having them test for it to be NULL and only then calling
2059 * device_private.
2060 */
2061 return dev == NULL ? NULL : dev->dv_private;
2062 }
2063
2064 prop_dictionary_t
2065 device_properties(device_t dev)
2066 {
2067
2068 return dev->dv_properties;
2069 }
2070
2071 /*
2072 * device_is_a:
2073 *
2074 * Returns true if the device is an instance of the specified
2075 * driver.
2076 */
2077 bool
2078 device_is_a(device_t dev, const char *dname)
2079 {
2080
2081 return strcmp(dev->dv_cfdriver->cd_name, dname) == 0;
2082 }
2083
2084 /*
2085 * device_find_by_xname:
2086 *
2087 * Returns the device of the given name or NULL if it doesn't exist.
2088 */
2089 device_t
2090 device_find_by_xname(const char *name)
2091 {
2092 device_t dv;
2093 deviter_t di;
2094
2095 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2096 if (strcmp(device_xname(dv), name) == 0)
2097 break;
2098 }
2099 deviter_release(&di);
2100
2101 return dv;
2102 }
2103
2104 /*
2105 * device_find_by_driver_unit:
2106 *
2107 * Returns the device of the given driver name and unit or
2108 * NULL if it doesn't exist.
2109 */
2110 device_t
2111 device_find_by_driver_unit(const char *name, int unit)
2112 {
2113 struct cfdriver *cd;
2114
2115 if ((cd = config_cfdriver_lookup(name)) == NULL)
2116 return NULL;
2117 return device_lookup(cd, unit);
2118 }
2119
2120 /*
2121 * Power management related functions.
2122 */
2123
2124 bool
2125 device_pmf_is_registered(device_t dev)
2126 {
2127 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2128 }
2129
2130 bool
2131 device_pmf_driver_suspend(device_t dev, pmf_qual_t qual)
2132 {
2133 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2134 return true;
2135 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2136 return false;
2137 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2138 dev->dv_driver_suspend != NULL &&
2139 !(*dev->dv_driver_suspend)(dev, qual))
2140 return false;
2141
2142 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2143 return true;
2144 }
2145
2146 bool
2147 device_pmf_driver_resume(device_t dev, pmf_qual_t qual)
2148 {
2149 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2150 return true;
2151 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2152 return false;
2153 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2154 dev->dv_driver_resume != NULL &&
2155 !(*dev->dv_driver_resume)(dev, qual))
2156 return false;
2157
2158 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2159 return true;
2160 }
2161
2162 bool
2163 device_pmf_driver_shutdown(device_t dev, int how)
2164 {
2165
2166 if (*dev->dv_driver_shutdown != NULL &&
2167 !(*dev->dv_driver_shutdown)(dev, how))
2168 return false;
2169 return true;
2170 }
2171
2172 bool
2173 device_pmf_driver_register(device_t dev,
2174 bool (*suspend)(device_t, pmf_qual_t),
2175 bool (*resume)(device_t, pmf_qual_t),
2176 bool (*shutdown)(device_t, int))
2177 {
2178 dev->dv_driver_suspend = suspend;
2179 dev->dv_driver_resume = resume;
2180 dev->dv_driver_shutdown = shutdown;
2181 dev->dv_flags |= DVF_POWER_HANDLERS;
2182 return true;
2183 }
2184
2185 static const char *
2186 curlwp_name(void)
2187 {
2188 if (curlwp->l_name != NULL)
2189 return curlwp->l_name;
2190 else
2191 return curlwp->l_proc->p_comm;
2192 }
2193
2194 void
2195 device_pmf_driver_deregister(device_t dev)
2196 {
2197 device_lock_t dvl = device_getlock(dev);
2198
2199 dev->dv_driver_suspend = NULL;
2200 dev->dv_driver_resume = NULL;
2201
2202 mutex_enter(&dvl->dvl_mtx);
2203 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2204 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2205 /* Wake a thread that waits for the lock. That
2206 * thread will fail to acquire the lock, and then
2207 * it will wake the next thread that waits for the
2208 * lock, or else it will wake us.
2209 */
2210 cv_signal(&dvl->dvl_cv);
2211 pmflock_debug(dev, __func__, __LINE__);
2212 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2213 pmflock_debug(dev, __func__, __LINE__);
2214 }
2215 mutex_exit(&dvl->dvl_mtx);
2216 }
2217
2218 bool
2219 device_pmf_driver_child_register(device_t dev)
2220 {
2221 device_t parent = device_parent(dev);
2222
2223 if (parent == NULL || parent->dv_driver_child_register == NULL)
2224 return true;
2225 return (*parent->dv_driver_child_register)(dev);
2226 }
2227
2228 void
2229 device_pmf_driver_set_child_register(device_t dev,
2230 bool (*child_register)(device_t))
2231 {
2232 dev->dv_driver_child_register = child_register;
2233 }
2234
2235 static void
2236 pmflock_debug(device_t dev, const char *func, int line)
2237 {
2238 device_lock_t dvl = device_getlock(dev);
2239
2240 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2241 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2242 dev->dv_flags);
2243 }
2244
2245 static bool
2246 device_pmf_lock1(device_t dev)
2247 {
2248 device_lock_t dvl = device_getlock(dev);
2249
2250 while (device_pmf_is_registered(dev) &&
2251 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2252 dvl->dvl_nwait++;
2253 pmflock_debug(dev, __func__, __LINE__);
2254 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2255 pmflock_debug(dev, __func__, __LINE__);
2256 dvl->dvl_nwait--;
2257 }
2258 if (!device_pmf_is_registered(dev)) {
2259 pmflock_debug(dev, __func__, __LINE__);
2260 /* We could not acquire the lock, but some other thread may
2261 * wait for it, also. Wake that thread.
2262 */
2263 cv_signal(&dvl->dvl_cv);
2264 return false;
2265 }
2266 dvl->dvl_nlock++;
2267 dvl->dvl_holder = curlwp;
2268 pmflock_debug(dev, __func__, __LINE__);
2269 return true;
2270 }
2271
2272 bool
2273 device_pmf_lock(device_t dev)
2274 {
2275 bool rc;
2276 device_lock_t dvl = device_getlock(dev);
2277
2278 mutex_enter(&dvl->dvl_mtx);
2279 rc = device_pmf_lock1(dev);
2280 mutex_exit(&dvl->dvl_mtx);
2281
2282 return rc;
2283 }
2284
2285 void
2286 device_pmf_unlock(device_t dev)
2287 {
2288 device_lock_t dvl = device_getlock(dev);
2289
2290 KASSERT(dvl->dvl_nlock > 0);
2291 mutex_enter(&dvl->dvl_mtx);
2292 if (--dvl->dvl_nlock == 0)
2293 dvl->dvl_holder = NULL;
2294 cv_signal(&dvl->dvl_cv);
2295 pmflock_debug(dev, __func__, __LINE__);
2296 mutex_exit(&dvl->dvl_mtx);
2297 }
2298
2299 device_lock_t
2300 device_getlock(device_t dev)
2301 {
2302 return &dev->dv_lock;
2303 }
2304
2305 void *
2306 device_pmf_bus_private(device_t dev)
2307 {
2308 return dev->dv_bus_private;
2309 }
2310
2311 bool
2312 device_pmf_bus_suspend(device_t dev, pmf_qual_t qual)
2313 {
2314 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2315 return true;
2316 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2317 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2318 return false;
2319 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2320 dev->dv_bus_suspend != NULL &&
2321 !(*dev->dv_bus_suspend)(dev, qual))
2322 return false;
2323
2324 dev->dv_flags |= DVF_BUS_SUSPENDED;
2325 return true;
2326 }
2327
2328 bool
2329 device_pmf_bus_resume(device_t dev, pmf_qual_t qual)
2330 {
2331 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2332 return true;
2333 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2334 dev->dv_bus_resume != NULL &&
2335 !(*dev->dv_bus_resume)(dev, qual))
2336 return false;
2337
2338 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2339 return true;
2340 }
2341
2342 bool
2343 device_pmf_bus_shutdown(device_t dev, int how)
2344 {
2345
2346 if (*dev->dv_bus_shutdown != NULL &&
2347 !(*dev->dv_bus_shutdown)(dev, how))
2348 return false;
2349 return true;
2350 }
2351
2352 void
2353 device_pmf_bus_register(device_t dev, void *priv,
2354 bool (*suspend)(device_t, pmf_qual_t),
2355 bool (*resume)(device_t, pmf_qual_t),
2356 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2357 {
2358 dev->dv_bus_private = priv;
2359 dev->dv_bus_resume = resume;
2360 dev->dv_bus_suspend = suspend;
2361 dev->dv_bus_shutdown = shutdown;
2362 dev->dv_bus_deregister = deregister;
2363 }
2364
2365 void
2366 device_pmf_bus_deregister(device_t dev)
2367 {
2368 if (dev->dv_bus_deregister == NULL)
2369 return;
2370 (*dev->dv_bus_deregister)(dev);
2371 dev->dv_bus_private = NULL;
2372 dev->dv_bus_suspend = NULL;
2373 dev->dv_bus_resume = NULL;
2374 dev->dv_bus_deregister = NULL;
2375 }
2376
2377 void *
2378 device_pmf_class_private(device_t dev)
2379 {
2380 return dev->dv_class_private;
2381 }
2382
2383 bool
2384 device_pmf_class_suspend(device_t dev, pmf_qual_t qual)
2385 {
2386 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2387 return true;
2388 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2389 dev->dv_class_suspend != NULL &&
2390 !(*dev->dv_class_suspend)(dev, qual))
2391 return false;
2392
2393 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2394 return true;
2395 }
2396
2397 bool
2398 device_pmf_class_resume(device_t dev, pmf_qual_t qual)
2399 {
2400 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2401 return true;
2402 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2403 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2404 return false;
2405 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2406 dev->dv_class_resume != NULL &&
2407 !(*dev->dv_class_resume)(dev, qual))
2408 return false;
2409
2410 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2411 return true;
2412 }
2413
2414 void
2415 device_pmf_class_register(device_t dev, void *priv,
2416 bool (*suspend)(device_t, pmf_qual_t),
2417 bool (*resume)(device_t, pmf_qual_t),
2418 void (*deregister)(device_t))
2419 {
2420 dev->dv_class_private = priv;
2421 dev->dv_class_suspend = suspend;
2422 dev->dv_class_resume = resume;
2423 dev->dv_class_deregister = deregister;
2424 }
2425
2426 void
2427 device_pmf_class_deregister(device_t dev)
2428 {
2429 if (dev->dv_class_deregister == NULL)
2430 return;
2431 (*dev->dv_class_deregister)(dev);
2432 dev->dv_class_private = NULL;
2433 dev->dv_class_suspend = NULL;
2434 dev->dv_class_resume = NULL;
2435 dev->dv_class_deregister = NULL;
2436 }
2437
2438 bool
2439 device_active(device_t dev, devactive_t type)
2440 {
2441 size_t i;
2442
2443 if (dev->dv_activity_count == 0)
2444 return false;
2445
2446 for (i = 0; i < dev->dv_activity_count; ++i) {
2447 if (dev->dv_activity_handlers[i] == NULL)
2448 break;
2449 (*dev->dv_activity_handlers[i])(dev, type);
2450 }
2451
2452 return true;
2453 }
2454
2455 bool
2456 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2457 {
2458 void (**new_handlers)(device_t, devactive_t);
2459 void (**old_handlers)(device_t, devactive_t);
2460 size_t i, old_size, new_size;
2461 int s;
2462
2463 old_handlers = dev->dv_activity_handlers;
2464 old_size = dev->dv_activity_count;
2465
2466 for (i = 0; i < old_size; ++i) {
2467 KASSERT(old_handlers[i] != handler);
2468 if (old_handlers[i] == NULL) {
2469 old_handlers[i] = handler;
2470 return true;
2471 }
2472 }
2473
2474 new_size = old_size + 4;
2475 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2476
2477 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2478 new_handlers[old_size] = handler;
2479 memset(new_handlers + old_size + 1, 0,
2480 sizeof(int [new_size - (old_size+1)]));
2481
2482 s = splhigh();
2483 dev->dv_activity_count = new_size;
2484 dev->dv_activity_handlers = new_handlers;
2485 splx(s);
2486
2487 if (old_handlers != NULL)
2488 kmem_free(old_handlers, sizeof(void * [old_size]));
2489
2490 return true;
2491 }
2492
2493 void
2494 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2495 {
2496 void (**old_handlers)(device_t, devactive_t);
2497 size_t i, old_size;
2498 int s;
2499
2500 old_handlers = dev->dv_activity_handlers;
2501 old_size = dev->dv_activity_count;
2502
2503 for (i = 0; i < old_size; ++i) {
2504 if (old_handlers[i] == handler)
2505 break;
2506 if (old_handlers[i] == NULL)
2507 return; /* XXX panic? */
2508 }
2509
2510 if (i == old_size)
2511 return; /* XXX panic? */
2512
2513 for (; i < old_size - 1; ++i) {
2514 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2515 continue;
2516
2517 if (i == 0) {
2518 s = splhigh();
2519 dev->dv_activity_count = 0;
2520 dev->dv_activity_handlers = NULL;
2521 splx(s);
2522 kmem_free(old_handlers, sizeof(void *[old_size]));
2523 }
2524 return;
2525 }
2526 old_handlers[i] = NULL;
2527 }
2528
2529 /* Return true iff the device_t `dev' exists at generation `gen'. */
2530 static bool
2531 device_exists_at(device_t dv, devgen_t gen)
2532 {
2533 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2534 dv->dv_add_gen <= gen;
2535 }
2536
2537 static bool
2538 deviter_visits(const deviter_t *di, device_t dv)
2539 {
2540 return device_exists_at(dv, di->di_gen);
2541 }
2542
2543 /*
2544 * Device Iteration
2545 *
2546 * deviter_t: a device iterator. Holds state for a "walk" visiting
2547 * each device_t's in the device tree.
2548 *
2549 * deviter_init(di, flags): initialize the device iterator `di'
2550 * to "walk" the device tree. deviter_next(di) will return
2551 * the first device_t in the device tree, or NULL if there are
2552 * no devices.
2553 *
2554 * `flags' is one or more of DEVITER_F_RW, indicating that the
2555 * caller intends to modify the device tree by calling
2556 * config_detach(9) on devices in the order that the iterator
2557 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2558 * nearest the "root" of the device tree to be returned, first;
2559 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2560 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2561 * indicating both that deviter_init() should not respect any
2562 * locks on the device tree, and that deviter_next(di) may run
2563 * in more than one LWP before the walk has finished.
2564 *
2565 * Only one DEVITER_F_RW iterator may be in the device tree at
2566 * once.
2567 *
2568 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2569 *
2570 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2571 * DEVITER_F_LEAVES_FIRST are used in combination.
2572 *
2573 * deviter_first(di, flags): initialize the device iterator `di'
2574 * and return the first device_t in the device tree, or NULL
2575 * if there are no devices. The statement
2576 *
2577 * dv = deviter_first(di);
2578 *
2579 * is shorthand for
2580 *
2581 * deviter_init(di);
2582 * dv = deviter_next(di);
2583 *
2584 * deviter_next(di): return the next device_t in the device tree,
2585 * or NULL if there are no more devices. deviter_next(di)
2586 * is undefined if `di' was not initialized with deviter_init() or
2587 * deviter_first().
2588 *
2589 * deviter_release(di): stops iteration (subsequent calls to
2590 * deviter_next() will return NULL), releases any locks and
2591 * resources held by the device iterator.
2592 *
2593 * Device iteration does not return device_t's in any particular
2594 * order. An iterator will never return the same device_t twice.
2595 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2596 * is called repeatedly on the same `di', it will eventually return
2597 * NULL. It is ok to attach/detach devices during device iteration.
2598 */
2599 void
2600 deviter_init(deviter_t *di, deviter_flags_t flags)
2601 {
2602 device_t dv;
2603 int s;
2604
2605 memset(di, 0, sizeof(*di));
2606
2607 s = config_alldevs_lock();
2608 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2609 flags |= DEVITER_F_RW;
2610
2611 if ((flags & DEVITER_F_RW) != 0)
2612 alldevs_nwrite++;
2613 else
2614 alldevs_nread++;
2615 di->di_gen = alldevs_gen++;
2616 config_alldevs_unlock(s);
2617
2618 di->di_flags = flags;
2619
2620 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2621 case DEVITER_F_LEAVES_FIRST:
2622 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2623 if (!deviter_visits(di, dv))
2624 continue;
2625 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2626 }
2627 break;
2628 case DEVITER_F_ROOT_FIRST:
2629 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2630 if (!deviter_visits(di, dv))
2631 continue;
2632 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2633 }
2634 break;
2635 default:
2636 break;
2637 }
2638
2639 deviter_reinit(di);
2640 }
2641
2642 static void
2643 deviter_reinit(deviter_t *di)
2644 {
2645 if ((di->di_flags & DEVITER_F_RW) != 0)
2646 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2647 else
2648 di->di_prev = TAILQ_FIRST(&alldevs);
2649 }
2650
2651 device_t
2652 deviter_first(deviter_t *di, deviter_flags_t flags)
2653 {
2654 deviter_init(di, flags);
2655 return deviter_next(di);
2656 }
2657
2658 static device_t
2659 deviter_next2(deviter_t *di)
2660 {
2661 device_t dv;
2662
2663 dv = di->di_prev;
2664
2665 if (dv == NULL)
2666 return NULL;
2667
2668 if ((di->di_flags & DEVITER_F_RW) != 0)
2669 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2670 else
2671 di->di_prev = TAILQ_NEXT(dv, dv_list);
2672
2673 return dv;
2674 }
2675
2676 static device_t
2677 deviter_next1(deviter_t *di)
2678 {
2679 device_t dv;
2680
2681 do {
2682 dv = deviter_next2(di);
2683 } while (dv != NULL && !deviter_visits(di, dv));
2684
2685 return dv;
2686 }
2687
2688 device_t
2689 deviter_next(deviter_t *di)
2690 {
2691 device_t dv = NULL;
2692
2693 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2694 case 0:
2695 return deviter_next1(di);
2696 case DEVITER_F_LEAVES_FIRST:
2697 while (di->di_curdepth >= 0) {
2698 if ((dv = deviter_next1(di)) == NULL) {
2699 di->di_curdepth--;
2700 deviter_reinit(di);
2701 } else if (dv->dv_depth == di->di_curdepth)
2702 break;
2703 }
2704 return dv;
2705 case DEVITER_F_ROOT_FIRST:
2706 while (di->di_curdepth <= di->di_maxdepth) {
2707 if ((dv = deviter_next1(di)) == NULL) {
2708 di->di_curdepth++;
2709 deviter_reinit(di);
2710 } else if (dv->dv_depth == di->di_curdepth)
2711 break;
2712 }
2713 return dv;
2714 default:
2715 return NULL;
2716 }
2717 }
2718
2719 void
2720 deviter_release(deviter_t *di)
2721 {
2722 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2723 int s;
2724
2725 s = config_alldevs_lock();
2726 if (rw)
2727 --alldevs_nwrite;
2728 else
2729 --alldevs_nread;
2730 /* XXX wake a garbage-collection thread */
2731 config_alldevs_unlock(s);
2732 }
2733
2734 bool
2735 ifattr_match(const char *snull, const char *t)
2736 {
2737 return (snull == NULL) || strcmp(snull, t) == 0;
2738 }
2739
2740 void
2741 null_childdetached(device_t self, device_t child)
2742 {
2743 /* do nothing */
2744 }
2745
2746 static void
2747 sysctl_detach_setup(struct sysctllog **clog)
2748 {
2749 const struct sysctlnode *node = NULL;
2750
2751 sysctl_createv(clog, 0, NULL, &node,
2752 CTLFLAG_PERMANENT,
2753 CTLTYPE_NODE, "kern", NULL,
2754 NULL, 0, NULL, 0,
2755 CTL_KERN, CTL_EOL);
2756
2757 if (node == NULL)
2758 return;
2759
2760 sysctl_createv(clog, 0, &node, NULL,
2761 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2762 CTLTYPE_INT, "detachall",
2763 SYSCTL_DESCR("Detach all devices at shutdown"),
2764 NULL, 0, &detachall, 0,
2765 CTL_CREATE, CTL_EOL);
2766 }
2767