subr_autoconf.c revision 1.203.2.1 1 /* $NetBSD: subr_autoconf.c,v 1.203.2.1 2010/05/30 05:17:57 rmind Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.203.2.1 2010/05/30 05:17:57 rmind Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #endif
85
86 #include <sys/param.h>
87 #include <sys/device.h>
88 #include <sys/disklabel.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91 #include <sys/malloc.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/vnode.h>
102 #include <sys/mount.h>
103 #include <sys/namei.h>
104 #include <sys/unistd.h>
105 #include <sys/fcntl.h>
106 #include <sys/lockf.h>
107 #include <sys/callout.h>
108 #include <sys/devmon.h>
109 #include <sys/cpu.h>
110 #include <sys/sysctl.h>
111
112 #include <sys/disk.h>
113
114 #include <machine/limits.h>
115
116 #if defined(__i386__) && defined(_KERNEL_OPT)
117 #include "opt_splash.h"
118 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
119 #include <dev/splash/splash.h>
120 extern struct splash_progress *splash_progress_state;
121 #endif
122 #endif
123
124 /*
125 * Autoconfiguration subroutines.
126 */
127
128 /*
129 * ioconf.c exports exactly two names: cfdata and cfroots. All system
130 * devices and drivers are found via these tables.
131 */
132 extern struct cfdata cfdata[];
133 extern const short cfroots[];
134
135 /*
136 * List of all cfdriver structures. We use this to detect duplicates
137 * when other cfdrivers are loaded.
138 */
139 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
140 extern struct cfdriver * const cfdriver_list_initial[];
141
142 /*
143 * Initial list of cfattach's.
144 */
145 extern const struct cfattachinit cfattachinit[];
146
147 /*
148 * List of cfdata tables. We always have one such list -- the one
149 * built statically when the kernel was configured.
150 */
151 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
152 static struct cftable initcftable;
153
154 #define ROOT ((device_t)NULL)
155
156 struct matchinfo {
157 cfsubmatch_t fn;
158 struct device *parent;
159 const int *locs;
160 void *aux;
161 struct cfdata *match;
162 int pri;
163 };
164
165 struct alldevs_foray {
166 int af_s;
167 struct devicelist af_garbage;
168 };
169
170 static char *number(char *, int);
171 static void mapply(struct matchinfo *, cfdata_t);
172 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
173 static void config_devdelete(device_t);
174 static void config_devunlink(device_t, struct devicelist *);
175 static void config_makeroom(int, struct cfdriver *);
176 static void config_devlink(device_t);
177 static void config_alldevs_unlock(int);
178 static int config_alldevs_lock(void);
179 static void config_alldevs_enter(struct alldevs_foray *);
180 static void config_alldevs_exit(struct alldevs_foray *);
181
182 static void config_collect_garbage(struct devicelist *);
183 static void config_dump_garbage(struct devicelist *);
184
185 static void pmflock_debug(device_t, const char *, int);
186
187 static device_t deviter_next1(deviter_t *);
188 static void deviter_reinit(deviter_t *);
189
190 struct deferred_config {
191 TAILQ_ENTRY(deferred_config) dc_queue;
192 device_t dc_dev;
193 void (*dc_func)(device_t);
194 };
195
196 TAILQ_HEAD(deferred_config_head, deferred_config);
197
198 struct deferred_config_head deferred_config_queue =
199 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
200 struct deferred_config_head interrupt_config_queue =
201 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
202 int interrupt_config_threads = 8;
203
204 static void config_process_deferred(struct deferred_config_head *, device_t);
205
206 /* Hooks to finalize configuration once all real devices have been found. */
207 struct finalize_hook {
208 TAILQ_ENTRY(finalize_hook) f_list;
209 int (*f_func)(device_t);
210 device_t f_dev;
211 };
212 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
213 TAILQ_HEAD_INITIALIZER(config_finalize_list);
214 static int config_finalize_done;
215
216 /* list of all devices */
217 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
218 static kmutex_t alldevs_mtx;
219 static volatile bool alldevs_garbage = false;
220 static volatile devgen_t alldevs_gen = 1;
221 static volatile int alldevs_nread = 0;
222 static volatile int alldevs_nwrite = 0;
223
224 static int config_pending; /* semaphore for mountroot */
225 static kmutex_t config_misc_lock;
226 static kcondvar_t config_misc_cv;
227
228 static int detachall = 0;
229
230 #define STREQ(s1, s2) \
231 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
232
233 static bool config_initialized = false; /* config_init() has been called. */
234
235 static int config_do_twiddle;
236 static callout_t config_twiddle_ch;
237
238 static void sysctl_detach_setup(struct sysctllog **);
239
240 typedef int (*cfdriver_fn)(struct cfdriver *);
241 static int
242 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
243 cfdriver_fn drv_do, cfdriver_fn drv_undo,
244 const char *style, bool dopanic)
245 {
246 void (*pr)(const char *, ...) = dopanic ? panic : printf;
247 int i = 0, error = 0, e2;
248
249 for (i = 0; cfdriverv[i] != NULL; i++) {
250 if ((error = drv_do(cfdriverv[i])) != 0) {
251 pr("configure: `%s' driver %s failed: %d",
252 cfdriverv[i]->cd_name, style, error);
253 goto bad;
254 }
255 }
256
257 KASSERT(error == 0);
258 return 0;
259
260 bad:
261 printf("\n");
262 for (i--; i >= 0; i--) {
263 e2 = drv_undo(cfdriverv[i]);
264 KASSERT(e2 == 0);
265 }
266
267 return error;
268 }
269
270 typedef int (*cfattach_fn)(const char *, struct cfattach *);
271 static int
272 frob_cfattachvec(const struct cfattachinit *cfattachv,
273 cfattach_fn att_do, cfattach_fn att_undo,
274 const char *style, bool dopanic)
275 {
276 const struct cfattachinit *cfai = NULL;
277 void (*pr)(const char *, ...) = dopanic ? panic : printf;
278 int j = 0, error = 0, e2;
279
280 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
281 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
282 if ((error = att_do(cfai->cfai_name,
283 cfai->cfai_list[j]) != 0)) {
284 pr("configure: attachment `%s' "
285 "of `%s' driver %s failed: %d",
286 cfai->cfai_list[j]->ca_name,
287 cfai->cfai_name, style, error);
288 goto bad;
289 }
290 }
291 }
292
293 KASSERT(error == 0);
294 return 0;
295
296 bad:
297 /*
298 * Rollback in reverse order. dunno if super-important, but
299 * do that anyway. Although the code looks a little like
300 * someone did a little integration (in the math sense).
301 */
302 printf("\n");
303 if (cfai) {
304 bool last;
305
306 for (last = false; last == false; ) {
307 if (cfai == &cfattachv[0])
308 last = true;
309 for (j--; j >= 0; j--) {
310 e2 = att_undo(cfai->cfai_name,
311 cfai->cfai_list[j]);
312 KASSERT(e2 == 0);
313 }
314 if (!last) {
315 cfai--;
316 for (j = 0; cfai->cfai_list[j] != NULL; j++)
317 ;
318 }
319 }
320 }
321
322 return error;
323 }
324
325 /*
326 * Initialize the autoconfiguration data structures. Normally this
327 * is done by configure(), but some platforms need to do this very
328 * early (to e.g. initialize the console).
329 */
330 void
331 config_init(void)
332 {
333
334 KASSERT(config_initialized == false);
335
336 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
337
338 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
339 cv_init(&config_misc_cv, "cfgmisc");
340
341 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
342
343 frob_cfdrivervec(cfdriver_list_initial,
344 config_cfdriver_attach, NULL, "bootstrap", true);
345 frob_cfattachvec(cfattachinit,
346 config_cfattach_attach, NULL, "bootstrap", true);
347
348 initcftable.ct_cfdata = cfdata;
349 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
350
351 config_initialized = true;
352 }
353
354 /*
355 * Init or fini drivers and attachments. Either all or none
356 * are processed (via rollback). It would be nice if this were
357 * atomic to outside consumers, but with the current state of
358 * locking ...
359 */
360 int
361 config_init_component(struct cfdriver * const *cfdriverv,
362 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
363 {
364 int error;
365
366 if ((error = frob_cfdrivervec(cfdriverv,
367 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
368 return error;
369 if ((error = frob_cfattachvec(cfattachv,
370 config_cfattach_attach, config_cfattach_detach,
371 "init", false)) != 0) {
372 frob_cfdrivervec(cfdriverv,
373 config_cfdriver_detach, NULL, "init rollback", true);
374 return error;
375 }
376 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
377 frob_cfattachvec(cfattachv,
378 config_cfattach_detach, NULL, "init rollback", true);
379 frob_cfdrivervec(cfdriverv,
380 config_cfdriver_detach, NULL, "init rollback", true);
381 return error;
382 }
383
384 return 0;
385 }
386
387 int
388 config_fini_component(struct cfdriver * const *cfdriverv,
389 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
390 {
391 int error;
392
393 if ((error = config_cfdata_detach(cfdatav)) != 0)
394 return error;
395 if ((error = frob_cfattachvec(cfattachv,
396 config_cfattach_detach, config_cfattach_attach,
397 "fini", false)) != 0) {
398 if (config_cfdata_attach(cfdatav, 0) != 0)
399 panic("config_cfdata fini rollback failed");
400 return error;
401 }
402 if ((error = frob_cfdrivervec(cfdriverv,
403 config_cfdriver_detach, config_cfdriver_attach,
404 "fini", false)) != 0) {
405 frob_cfattachvec(cfattachv,
406 config_cfattach_attach, NULL, "fini rollback", true);
407 if (config_cfdata_attach(cfdatav, 0) != 0)
408 panic("config_cfdata fini rollback failed");
409 return error;
410 }
411
412 return 0;
413 }
414
415 void
416 config_init_mi(void)
417 {
418
419 if (!config_initialized)
420 config_init();
421
422 sysctl_detach_setup(NULL);
423 }
424
425 void
426 config_deferred(device_t dev)
427 {
428 config_process_deferred(&deferred_config_queue, dev);
429 config_process_deferred(&interrupt_config_queue, dev);
430 }
431
432 static void
433 config_interrupts_thread(void *cookie)
434 {
435 struct deferred_config *dc;
436
437 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
438 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
439 (*dc->dc_func)(dc->dc_dev);
440 kmem_free(dc, sizeof(*dc));
441 config_pending_decr();
442 }
443 kthread_exit(0);
444 }
445
446 void
447 config_create_interruptthreads()
448 {
449 int i;
450
451 for (i = 0; i < interrupt_config_threads; i++) {
452 (void)kthread_create(PRI_NONE, 0, NULL,
453 config_interrupts_thread, NULL, NULL, "config");
454 }
455 }
456
457 /*
458 * Announce device attach/detach to userland listeners.
459 */
460 static void
461 devmon_report_device(device_t dev, bool isattach)
462 {
463 #if NDRVCTL > 0
464 prop_dictionary_t ev;
465 const char *parent;
466 const char *what;
467 device_t pdev = device_parent(dev);
468
469 ev = prop_dictionary_create();
470 if (ev == NULL)
471 return;
472
473 what = (isattach ? "device-attach" : "device-detach");
474 parent = (pdev == NULL ? "root" : device_xname(pdev));
475 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
476 !prop_dictionary_set_cstring(ev, "parent", parent)) {
477 prop_object_release(ev);
478 return;
479 }
480
481 devmon_insert(what, ev);
482 #endif
483 }
484
485 /*
486 * Add a cfdriver to the system.
487 */
488 int
489 config_cfdriver_attach(struct cfdriver *cd)
490 {
491 struct cfdriver *lcd;
492
493 /* Make sure this driver isn't already in the system. */
494 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
495 if (STREQ(lcd->cd_name, cd->cd_name))
496 return EEXIST;
497 }
498
499 LIST_INIT(&cd->cd_attach);
500 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
501
502 return 0;
503 }
504
505 /*
506 * Remove a cfdriver from the system.
507 */
508 int
509 config_cfdriver_detach(struct cfdriver *cd)
510 {
511 struct alldevs_foray af;
512 int i, rc = 0;
513
514 config_alldevs_enter(&af);
515 /* Make sure there are no active instances. */
516 for (i = 0; i < cd->cd_ndevs; i++) {
517 if (cd->cd_devs[i] != NULL) {
518 rc = EBUSY;
519 break;
520 }
521 }
522 config_alldevs_exit(&af);
523
524 if (rc != 0)
525 return rc;
526
527 /* ...and no attachments loaded. */
528 if (LIST_EMPTY(&cd->cd_attach) == 0)
529 return EBUSY;
530
531 LIST_REMOVE(cd, cd_list);
532
533 KASSERT(cd->cd_devs == NULL);
534
535 return 0;
536 }
537
538 /*
539 * Look up a cfdriver by name.
540 */
541 struct cfdriver *
542 config_cfdriver_lookup(const char *name)
543 {
544 struct cfdriver *cd;
545
546 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
547 if (STREQ(cd->cd_name, name))
548 return cd;
549 }
550
551 return NULL;
552 }
553
554 /*
555 * Add a cfattach to the specified driver.
556 */
557 int
558 config_cfattach_attach(const char *driver, struct cfattach *ca)
559 {
560 struct cfattach *lca;
561 struct cfdriver *cd;
562
563 cd = config_cfdriver_lookup(driver);
564 if (cd == NULL)
565 return ESRCH;
566
567 /* Make sure this attachment isn't already on this driver. */
568 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
569 if (STREQ(lca->ca_name, ca->ca_name))
570 return EEXIST;
571 }
572
573 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
574
575 return 0;
576 }
577
578 /*
579 * Remove a cfattach from the specified driver.
580 */
581 int
582 config_cfattach_detach(const char *driver, struct cfattach *ca)
583 {
584 struct alldevs_foray af;
585 struct cfdriver *cd;
586 device_t dev;
587 int i, rc = 0;
588
589 cd = config_cfdriver_lookup(driver);
590 if (cd == NULL)
591 return ESRCH;
592
593 config_alldevs_enter(&af);
594 /* Make sure there are no active instances. */
595 for (i = 0; i < cd->cd_ndevs; i++) {
596 if ((dev = cd->cd_devs[i]) == NULL)
597 continue;
598 if (dev->dv_cfattach == ca) {
599 rc = EBUSY;
600 break;
601 }
602 }
603 config_alldevs_exit(&af);
604
605 if (rc != 0)
606 return rc;
607
608 LIST_REMOVE(ca, ca_list);
609
610 return 0;
611 }
612
613 /*
614 * Look up a cfattach by name.
615 */
616 static struct cfattach *
617 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
618 {
619 struct cfattach *ca;
620
621 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
622 if (STREQ(ca->ca_name, atname))
623 return ca;
624 }
625
626 return NULL;
627 }
628
629 /*
630 * Look up a cfattach by driver/attachment name.
631 */
632 struct cfattach *
633 config_cfattach_lookup(const char *name, const char *atname)
634 {
635 struct cfdriver *cd;
636
637 cd = config_cfdriver_lookup(name);
638 if (cd == NULL)
639 return NULL;
640
641 return config_cfattach_lookup_cd(cd, atname);
642 }
643
644 /*
645 * Apply the matching function and choose the best. This is used
646 * a few times and we want to keep the code small.
647 */
648 static void
649 mapply(struct matchinfo *m, cfdata_t cf)
650 {
651 int pri;
652
653 if (m->fn != NULL) {
654 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
655 } else {
656 pri = config_match(m->parent, cf, m->aux);
657 }
658 if (pri > m->pri) {
659 m->match = cf;
660 m->pri = pri;
661 }
662 }
663
664 int
665 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
666 {
667 const struct cfiattrdata *ci;
668 const struct cflocdesc *cl;
669 int nlocs, i;
670
671 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
672 KASSERT(ci);
673 nlocs = ci->ci_loclen;
674 KASSERT(!nlocs || locs);
675 for (i = 0; i < nlocs; i++) {
676 cl = &ci->ci_locdesc[i];
677 /* !cld_defaultstr means no default value */
678 if ((!(cl->cld_defaultstr)
679 || (cf->cf_loc[i] != cl->cld_default))
680 && cf->cf_loc[i] != locs[i])
681 return 0;
682 }
683
684 return config_match(parent, cf, aux);
685 }
686
687 /*
688 * Helper function: check whether the driver supports the interface attribute
689 * and return its descriptor structure.
690 */
691 static const struct cfiattrdata *
692 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
693 {
694 const struct cfiattrdata * const *cpp;
695
696 if (cd->cd_attrs == NULL)
697 return 0;
698
699 for (cpp = cd->cd_attrs; *cpp; cpp++) {
700 if (STREQ((*cpp)->ci_name, ia)) {
701 /* Match. */
702 return *cpp;
703 }
704 }
705 return 0;
706 }
707
708 /*
709 * Lookup an interface attribute description by name.
710 * If the driver is given, consider only its supported attributes.
711 */
712 const struct cfiattrdata *
713 cfiattr_lookup(const char *name, const struct cfdriver *cd)
714 {
715 const struct cfdriver *d;
716 const struct cfiattrdata *ia;
717
718 if (cd)
719 return cfdriver_get_iattr(cd, name);
720
721 LIST_FOREACH(d, &allcfdrivers, cd_list) {
722 ia = cfdriver_get_iattr(d, name);
723 if (ia)
724 return ia;
725 }
726 return 0;
727 }
728
729 /*
730 * Determine if `parent' is a potential parent for a device spec based
731 * on `cfp'.
732 */
733 static int
734 cfparent_match(const device_t parent, const struct cfparent *cfp)
735 {
736 struct cfdriver *pcd;
737
738 /* We don't match root nodes here. */
739 if (cfp == NULL)
740 return 0;
741
742 pcd = parent->dv_cfdriver;
743 KASSERT(pcd != NULL);
744
745 /*
746 * First, ensure this parent has the correct interface
747 * attribute.
748 */
749 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
750 return 0;
751
752 /*
753 * If no specific parent device instance was specified (i.e.
754 * we're attaching to the attribute only), we're done!
755 */
756 if (cfp->cfp_parent == NULL)
757 return 1;
758
759 /*
760 * Check the parent device's name.
761 */
762 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
763 return 0; /* not the same parent */
764
765 /*
766 * Make sure the unit number matches.
767 */
768 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
769 cfp->cfp_unit == parent->dv_unit)
770 return 1;
771
772 /* Unit numbers don't match. */
773 return 0;
774 }
775
776 /*
777 * Helper for config_cfdata_attach(): check all devices whether it could be
778 * parent any attachment in the config data table passed, and rescan.
779 */
780 static void
781 rescan_with_cfdata(const struct cfdata *cf)
782 {
783 device_t d;
784 const struct cfdata *cf1;
785 deviter_t di;
786
787
788 /*
789 * "alldevs" is likely longer than a modules's cfdata, so make it
790 * the outer loop.
791 */
792 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
793
794 if (!(d->dv_cfattach->ca_rescan))
795 continue;
796
797 for (cf1 = cf; cf1->cf_name; cf1++) {
798
799 if (!cfparent_match(d, cf1->cf_pspec))
800 continue;
801
802 (*d->dv_cfattach->ca_rescan)(d,
803 cfdata_ifattr(cf1), cf1->cf_loc);
804 }
805 }
806 deviter_release(&di);
807 }
808
809 /*
810 * Attach a supplemental config data table and rescan potential
811 * parent devices if required.
812 */
813 int
814 config_cfdata_attach(cfdata_t cf, int scannow)
815 {
816 struct cftable *ct;
817
818 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
819 ct->ct_cfdata = cf;
820 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
821
822 if (scannow)
823 rescan_with_cfdata(cf);
824
825 return 0;
826 }
827
828 /*
829 * Helper for config_cfdata_detach: check whether a device is
830 * found through any attachment in the config data table.
831 */
832 static int
833 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
834 {
835 const struct cfdata *cf1;
836
837 for (cf1 = cf; cf1->cf_name; cf1++)
838 if (d->dv_cfdata == cf1)
839 return 1;
840
841 return 0;
842 }
843
844 /*
845 * Detach a supplemental config data table. Detach all devices found
846 * through that table (and thus keeping references to it) before.
847 */
848 int
849 config_cfdata_detach(cfdata_t cf)
850 {
851 device_t d;
852 int error = 0;
853 struct cftable *ct;
854 deviter_t di;
855
856 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
857 d = deviter_next(&di)) {
858 if (!dev_in_cfdata(d, cf))
859 continue;
860 if ((error = config_detach(d, 0)) != 0)
861 break;
862 }
863 deviter_release(&di);
864 if (error) {
865 aprint_error_dev(d, "unable to detach instance\n");
866 return error;
867 }
868
869 TAILQ_FOREACH(ct, &allcftables, ct_list) {
870 if (ct->ct_cfdata == cf) {
871 TAILQ_REMOVE(&allcftables, ct, ct_list);
872 kmem_free(ct, sizeof(*ct));
873 return 0;
874 }
875 }
876
877 /* not found -- shouldn't happen */
878 return EINVAL;
879 }
880
881 /*
882 * Invoke the "match" routine for a cfdata entry on behalf of
883 * an external caller, usually a "submatch" routine.
884 */
885 int
886 config_match(device_t parent, cfdata_t cf, void *aux)
887 {
888 struct cfattach *ca;
889
890 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
891 if (ca == NULL) {
892 /* No attachment for this entry, oh well. */
893 return 0;
894 }
895
896 return (*ca->ca_match)(parent, cf, aux);
897 }
898
899 /*
900 * Iterate over all potential children of some device, calling the given
901 * function (default being the child's match function) for each one.
902 * Nonzero returns are matches; the highest value returned is considered
903 * the best match. Return the `found child' if we got a match, or NULL
904 * otherwise. The `aux' pointer is simply passed on through.
905 *
906 * Note that this function is designed so that it can be used to apply
907 * an arbitrary function to all potential children (its return value
908 * can be ignored).
909 */
910 cfdata_t
911 config_search_loc(cfsubmatch_t fn, device_t parent,
912 const char *ifattr, const int *locs, void *aux)
913 {
914 struct cftable *ct;
915 cfdata_t cf;
916 struct matchinfo m;
917
918 KASSERT(config_initialized);
919 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
920
921 m.fn = fn;
922 m.parent = parent;
923 m.locs = locs;
924 m.aux = aux;
925 m.match = NULL;
926 m.pri = 0;
927
928 TAILQ_FOREACH(ct, &allcftables, ct_list) {
929 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
930
931 /* We don't match root nodes here. */
932 if (!cf->cf_pspec)
933 continue;
934
935 /*
936 * Skip cf if no longer eligible, otherwise scan
937 * through parents for one matching `parent', and
938 * try match function.
939 */
940 if (cf->cf_fstate == FSTATE_FOUND)
941 continue;
942 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
943 cf->cf_fstate == FSTATE_DSTAR)
944 continue;
945
946 /*
947 * If an interface attribute was specified,
948 * consider only children which attach to
949 * that attribute.
950 */
951 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
952 continue;
953
954 if (cfparent_match(parent, cf->cf_pspec))
955 mapply(&m, cf);
956 }
957 }
958 return m.match;
959 }
960
961 cfdata_t
962 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
963 void *aux)
964 {
965
966 return config_search_loc(fn, parent, ifattr, NULL, aux);
967 }
968
969 /*
970 * Find the given root device.
971 * This is much like config_search, but there is no parent.
972 * Don't bother with multiple cfdata tables; the root node
973 * must always be in the initial table.
974 */
975 cfdata_t
976 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
977 {
978 cfdata_t cf;
979 const short *p;
980 struct matchinfo m;
981
982 m.fn = fn;
983 m.parent = ROOT;
984 m.aux = aux;
985 m.match = NULL;
986 m.pri = 0;
987 m.locs = 0;
988 /*
989 * Look at root entries for matching name. We do not bother
990 * with found-state here since only one root should ever be
991 * searched (and it must be done first).
992 */
993 for (p = cfroots; *p >= 0; p++) {
994 cf = &cfdata[*p];
995 if (strcmp(cf->cf_name, rootname) == 0)
996 mapply(&m, cf);
997 }
998 return m.match;
999 }
1000
1001 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1002
1003 /*
1004 * The given `aux' argument describes a device that has been found
1005 * on the given parent, but not necessarily configured. Locate the
1006 * configuration data for that device (using the submatch function
1007 * provided, or using candidates' cd_match configuration driver
1008 * functions) and attach it, and return true. If the device was
1009 * not configured, call the given `print' function and return 0.
1010 */
1011 device_t
1012 config_found_sm_loc(device_t parent,
1013 const char *ifattr, const int *locs, void *aux,
1014 cfprint_t print, cfsubmatch_t submatch)
1015 {
1016 cfdata_t cf;
1017
1018 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1019 if (splash_progress_state)
1020 splash_progress_update(splash_progress_state);
1021 #endif
1022
1023 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1024 return(config_attach_loc(parent, cf, locs, aux, print));
1025 if (print) {
1026 if (config_do_twiddle && cold)
1027 twiddle();
1028 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1029 }
1030
1031 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1032 if (splash_progress_state)
1033 splash_progress_update(splash_progress_state);
1034 #endif
1035
1036 return NULL;
1037 }
1038
1039 device_t
1040 config_found_ia(device_t parent, const char *ifattr, void *aux,
1041 cfprint_t print)
1042 {
1043
1044 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1045 }
1046
1047 device_t
1048 config_found(device_t parent, void *aux, cfprint_t print)
1049 {
1050
1051 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1052 }
1053
1054 /*
1055 * As above, but for root devices.
1056 */
1057 device_t
1058 config_rootfound(const char *rootname, void *aux)
1059 {
1060 cfdata_t cf;
1061
1062 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1063 return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
1064 aprint_error("root device %s not configured\n", rootname);
1065 return NULL;
1066 }
1067
1068 /* just like sprintf(buf, "%d") except that it works from the end */
1069 static char *
1070 number(char *ep, int n)
1071 {
1072
1073 *--ep = 0;
1074 while (n >= 10) {
1075 *--ep = (n % 10) + '0';
1076 n /= 10;
1077 }
1078 *--ep = n + '0';
1079 return ep;
1080 }
1081
1082 /*
1083 * Expand the size of the cd_devs array if necessary.
1084 *
1085 * The caller must hold alldevs_mtx. config_makeroom() may release and
1086 * re-acquire alldevs_mtx, so callers should re-check conditions such
1087 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1088 * returns.
1089 */
1090 static void
1091 config_makeroom(int n, struct cfdriver *cd)
1092 {
1093 int old, new;
1094 device_t *osp, *nsp;
1095
1096 alldevs_nwrite++;
1097
1098 for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
1099 ;
1100
1101 while (n >= cd->cd_ndevs) {
1102 /*
1103 * Need to expand the array.
1104 */
1105 old = cd->cd_ndevs;
1106 osp = cd->cd_devs;
1107
1108 /* Release alldevs_mtx around allocation, which may
1109 * sleep.
1110 */
1111 mutex_exit(&alldevs_mtx);
1112 nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
1113 if (nsp == NULL)
1114 panic("%s: could not expand cd_devs", __func__);
1115 mutex_enter(&alldevs_mtx);
1116
1117 /* If another thread moved the array while we did
1118 * not hold alldevs_mtx, try again.
1119 */
1120 if (cd->cd_devs != osp) {
1121 mutex_exit(&alldevs_mtx);
1122 kmem_free(nsp, sizeof(device_t[new]));
1123 mutex_enter(&alldevs_mtx);
1124 continue;
1125 }
1126
1127 memset(nsp + old, 0, sizeof(device_t[new - old]));
1128 if (old != 0)
1129 memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
1130
1131 cd->cd_ndevs = new;
1132 cd->cd_devs = nsp;
1133 if (old != 0) {
1134 mutex_exit(&alldevs_mtx);
1135 kmem_free(osp, sizeof(device_t[old]));
1136 mutex_enter(&alldevs_mtx);
1137 }
1138 }
1139 alldevs_nwrite--;
1140 }
1141
1142 /*
1143 * Put dev into the devices list.
1144 */
1145 static void
1146 config_devlink(device_t dev)
1147 {
1148 int s;
1149
1150 s = config_alldevs_lock();
1151
1152 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1153
1154 dev->dv_add_gen = alldevs_gen;
1155 /* It is safe to add a device to the tail of the list while
1156 * readers and writers are in the list.
1157 */
1158 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1159 config_alldevs_unlock(s);
1160 }
1161
1162 static void
1163 config_devfree(device_t dev)
1164 {
1165 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1166
1167 if (dev->dv_cfattach->ca_devsize > 0)
1168 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1169 if (priv)
1170 kmem_free(dev, sizeof(*dev));
1171 }
1172
1173 /*
1174 * Caller must hold alldevs_mtx.
1175 */
1176 static void
1177 config_devunlink(device_t dev, struct devicelist *garbage)
1178 {
1179 struct device_garbage *dg = &dev->dv_garbage;
1180 cfdriver_t cd = device_cfdriver(dev);
1181 int i;
1182
1183 KASSERT(mutex_owned(&alldevs_mtx));
1184
1185 /* Unlink from device list. Link to garbage list. */
1186 TAILQ_REMOVE(&alldevs, dev, dv_list);
1187 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1188
1189 /* Remove from cfdriver's array. */
1190 cd->cd_devs[dev->dv_unit] = NULL;
1191
1192 /*
1193 * If the device now has no units in use, unlink its softc array.
1194 */
1195 for (i = 0; i < cd->cd_ndevs; i++) {
1196 if (cd->cd_devs[i] != NULL)
1197 break;
1198 }
1199 /* Nothing found. Unlink, now. Deallocate, later. */
1200 if (i == cd->cd_ndevs) {
1201 dg->dg_ndevs = cd->cd_ndevs;
1202 dg->dg_devs = cd->cd_devs;
1203 cd->cd_devs = NULL;
1204 cd->cd_ndevs = 0;
1205 }
1206 }
1207
1208 static void
1209 config_devdelete(device_t dev)
1210 {
1211 struct device_garbage *dg = &dev->dv_garbage;
1212 device_lock_t dvl = device_getlock(dev);
1213
1214 if (dg->dg_devs != NULL)
1215 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1216
1217 cv_destroy(&dvl->dvl_cv);
1218 mutex_destroy(&dvl->dvl_mtx);
1219
1220 KASSERT(dev->dv_properties != NULL);
1221 prop_object_release(dev->dv_properties);
1222
1223 if (dev->dv_activity_handlers)
1224 panic("%s with registered handlers", __func__);
1225
1226 if (dev->dv_locators) {
1227 size_t amount = *--dev->dv_locators;
1228 kmem_free(dev->dv_locators, amount);
1229 }
1230
1231 config_devfree(dev);
1232 }
1233
1234 static int
1235 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1236 {
1237 int unit;
1238
1239 if (cf->cf_fstate == FSTATE_STAR) {
1240 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1241 if (cd->cd_devs[unit] == NULL)
1242 break;
1243 /*
1244 * unit is now the unit of the first NULL device pointer,
1245 * or max(cd->cd_ndevs,cf->cf_unit).
1246 */
1247 } else {
1248 unit = cf->cf_unit;
1249 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1250 unit = -1;
1251 }
1252 return unit;
1253 }
1254
1255 static int
1256 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1257 {
1258 struct alldevs_foray af;
1259 int unit;
1260
1261 config_alldevs_enter(&af);
1262 for (;;) {
1263 unit = config_unit_nextfree(cd, cf);
1264 if (unit == -1)
1265 break;
1266 if (unit < cd->cd_ndevs) {
1267 cd->cd_devs[unit] = dev;
1268 dev->dv_unit = unit;
1269 break;
1270 }
1271 config_makeroom(unit, cd);
1272 }
1273 config_alldevs_exit(&af);
1274
1275 return unit;
1276 }
1277
1278 static device_t
1279 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1280 {
1281 cfdriver_t cd;
1282 cfattach_t ca;
1283 size_t lname, lunit;
1284 const char *xunit;
1285 int myunit;
1286 char num[10];
1287 device_t dev;
1288 void *dev_private;
1289 const struct cfiattrdata *ia;
1290 device_lock_t dvl;
1291
1292 cd = config_cfdriver_lookup(cf->cf_name);
1293 if (cd == NULL)
1294 return NULL;
1295
1296 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1297 if (ca == NULL)
1298 return NULL;
1299
1300 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1301 ca->ca_devsize < sizeof(struct device))
1302 panic("config_devalloc: %s", cf->cf_atname);
1303
1304 /* get memory for all device vars */
1305 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1306 if (ca->ca_devsize > 0) {
1307 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1308 if (dev_private == NULL)
1309 panic("config_devalloc: memory allocation for device softc failed");
1310 } else {
1311 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1312 dev_private = NULL;
1313 }
1314
1315 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1316 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1317 } else {
1318 dev = dev_private;
1319 }
1320 if (dev == NULL)
1321 panic("config_devalloc: memory allocation for device_t failed");
1322
1323 dev->dv_class = cd->cd_class;
1324 dev->dv_cfdata = cf;
1325 dev->dv_cfdriver = cd;
1326 dev->dv_cfattach = ca;
1327 dev->dv_activity_count = 0;
1328 dev->dv_activity_handlers = NULL;
1329 dev->dv_private = dev_private;
1330 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1331
1332 myunit = config_unit_alloc(dev, cd, cf);
1333 if (myunit == -1) {
1334 config_devfree(dev);
1335 return NULL;
1336 }
1337
1338 /* compute length of name and decimal expansion of unit number */
1339 lname = strlen(cd->cd_name);
1340 xunit = number(&num[sizeof(num)], myunit);
1341 lunit = &num[sizeof(num)] - xunit;
1342 if (lname + lunit > sizeof(dev->dv_xname))
1343 panic("config_devalloc: device name too long");
1344
1345 dvl = device_getlock(dev);
1346
1347 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1348 cv_init(&dvl->dvl_cv, "pmfsusp");
1349
1350 memcpy(dev->dv_xname, cd->cd_name, lname);
1351 memcpy(dev->dv_xname + lname, xunit, lunit);
1352 dev->dv_parent = parent;
1353 if (parent != NULL)
1354 dev->dv_depth = parent->dv_depth + 1;
1355 else
1356 dev->dv_depth = 0;
1357 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1358 if (locs) {
1359 KASSERT(parent); /* no locators at root */
1360 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1361 dev->dv_locators =
1362 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1363 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1364 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1365 }
1366 dev->dv_properties = prop_dictionary_create();
1367 KASSERT(dev->dv_properties != NULL);
1368
1369 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1370 "device-driver", dev->dv_cfdriver->cd_name);
1371 prop_dictionary_set_uint16(dev->dv_properties,
1372 "device-unit", dev->dv_unit);
1373
1374 return dev;
1375 }
1376
1377 /*
1378 * Attach a found device.
1379 */
1380 device_t
1381 config_attach_loc(device_t parent, cfdata_t cf,
1382 const int *locs, void *aux, cfprint_t print)
1383 {
1384 device_t dev;
1385 struct cftable *ct;
1386 const char *drvname;
1387
1388 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1389 if (splash_progress_state)
1390 splash_progress_update(splash_progress_state);
1391 #endif
1392
1393 dev = config_devalloc(parent, cf, locs);
1394 if (!dev)
1395 panic("config_attach: allocation of device softc failed");
1396
1397 /* XXX redundant - see below? */
1398 if (cf->cf_fstate != FSTATE_STAR) {
1399 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1400 cf->cf_fstate = FSTATE_FOUND;
1401 }
1402
1403 config_devlink(dev);
1404
1405 if (config_do_twiddle && cold)
1406 twiddle();
1407 else
1408 aprint_naive("Found ");
1409 /*
1410 * We want the next two printfs for normal, verbose, and quiet,
1411 * but not silent (in which case, we're twiddling, instead).
1412 */
1413 if (parent == ROOT) {
1414 aprint_naive("%s (root)", device_xname(dev));
1415 aprint_normal("%s (root)", device_xname(dev));
1416 } else {
1417 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1418 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1419 if (print)
1420 (void) (*print)(aux, NULL);
1421 }
1422
1423 /*
1424 * Before attaching, clobber any unfound devices that are
1425 * otherwise identical.
1426 * XXX code above is redundant?
1427 */
1428 drvname = dev->dv_cfdriver->cd_name;
1429 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1430 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1431 if (STREQ(cf->cf_name, drvname) &&
1432 cf->cf_unit == dev->dv_unit) {
1433 if (cf->cf_fstate == FSTATE_NOTFOUND)
1434 cf->cf_fstate = FSTATE_FOUND;
1435 }
1436 }
1437 }
1438 #ifdef __HAVE_DEVICE_REGISTER
1439 device_register(dev, aux);
1440 #endif
1441
1442 /* Let userland know */
1443 devmon_report_device(dev, true);
1444
1445 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1446 if (splash_progress_state)
1447 splash_progress_update(splash_progress_state);
1448 #endif
1449 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1450 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1451 if (splash_progress_state)
1452 splash_progress_update(splash_progress_state);
1453 #endif
1454
1455 if (!device_pmf_is_registered(dev))
1456 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1457
1458 config_process_deferred(&deferred_config_queue, dev);
1459
1460 #ifdef __HAVE_DEVICE_REGISTER_POSTCONFIG
1461 device_register_post_config(dev, aux);
1462 #endif
1463 return dev;
1464 }
1465
1466 device_t
1467 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1468 {
1469
1470 return config_attach_loc(parent, cf, NULL, aux, print);
1471 }
1472
1473 /*
1474 * As above, but for pseudo-devices. Pseudo-devices attached in this
1475 * way are silently inserted into the device tree, and their children
1476 * attached.
1477 *
1478 * Note that because pseudo-devices are attached silently, any information
1479 * the attach routine wishes to print should be prefixed with the device
1480 * name by the attach routine.
1481 */
1482 device_t
1483 config_attach_pseudo(cfdata_t cf)
1484 {
1485 device_t dev;
1486
1487 dev = config_devalloc(ROOT, cf, NULL);
1488 if (!dev)
1489 return NULL;
1490
1491 /* XXX mark busy in cfdata */
1492
1493 if (cf->cf_fstate != FSTATE_STAR) {
1494 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1495 cf->cf_fstate = FSTATE_FOUND;
1496 }
1497
1498 config_devlink(dev);
1499
1500 #if 0 /* XXXJRT not yet */
1501 #ifdef __HAVE_DEVICE_REGISTER
1502 device_register(dev, NULL); /* like a root node */
1503 #endif
1504 #endif
1505 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1506 config_process_deferred(&deferred_config_queue, dev);
1507 return dev;
1508 }
1509
1510 /*
1511 * Caller must hold alldevs_mtx.
1512 */
1513 static void
1514 config_collect_garbage(struct devicelist *garbage)
1515 {
1516 device_t dv;
1517
1518 KASSERT(!cpu_intr_p());
1519 KASSERT(!cpu_softintr_p());
1520 KASSERT(mutex_owned(&alldevs_mtx));
1521
1522 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1523 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1524 if (dv->dv_del_gen != 0)
1525 break;
1526 }
1527 if (dv == NULL) {
1528 alldevs_garbage = false;
1529 break;
1530 }
1531 config_devunlink(dv, garbage);
1532 }
1533 KASSERT(mutex_owned(&alldevs_mtx));
1534 }
1535
1536 static void
1537 config_dump_garbage(struct devicelist *garbage)
1538 {
1539 device_t dv;
1540
1541 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1542 TAILQ_REMOVE(garbage, dv, dv_list);
1543 config_devdelete(dv);
1544 }
1545 }
1546
1547 /*
1548 * Detach a device. Optionally forced (e.g. because of hardware
1549 * removal) and quiet. Returns zero if successful, non-zero
1550 * (an error code) otherwise.
1551 *
1552 * Note that this code wants to be run from a process context, so
1553 * that the detach can sleep to allow processes which have a device
1554 * open to run and unwind their stacks.
1555 */
1556 int
1557 config_detach(device_t dev, int flags)
1558 {
1559 struct alldevs_foray af;
1560 struct cftable *ct;
1561 cfdata_t cf;
1562 const struct cfattach *ca;
1563 struct cfdriver *cd;
1564 #ifdef DIAGNOSTIC
1565 device_t d;
1566 #endif
1567 int rv = 0, s;
1568
1569 #ifdef DIAGNOSTIC
1570 cf = dev->dv_cfdata;
1571 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1572 cf->cf_fstate != FSTATE_STAR)
1573 panic("config_detach: %s: bad device fstate %d",
1574 device_xname(dev), cf ? cf->cf_fstate : -1);
1575 #endif
1576 cd = dev->dv_cfdriver;
1577 KASSERT(cd != NULL);
1578
1579 ca = dev->dv_cfattach;
1580 KASSERT(ca != NULL);
1581
1582 s = config_alldevs_lock();
1583 if (dev->dv_del_gen != 0) {
1584 config_alldevs_unlock(s);
1585 #ifdef DIAGNOSTIC
1586 printf("%s: %s is already detached\n", __func__,
1587 device_xname(dev));
1588 #endif /* DIAGNOSTIC */
1589 return ENOENT;
1590 }
1591 alldevs_nwrite++;
1592 config_alldevs_unlock(s);
1593
1594 if (!detachall &&
1595 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1596 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1597 rv = EOPNOTSUPP;
1598 } else if (ca->ca_detach != NULL) {
1599 rv = (*ca->ca_detach)(dev, flags);
1600 } else
1601 rv = EOPNOTSUPP;
1602
1603 /*
1604 * If it was not possible to detach the device, then we either
1605 * panic() (for the forced but failed case), or return an error.
1606 *
1607 * If it was possible to detach the device, ensure that the
1608 * device is deactivated.
1609 */
1610 if (rv == 0)
1611 dev->dv_flags &= ~DVF_ACTIVE;
1612 else if ((flags & DETACH_FORCE) == 0)
1613 goto out;
1614 else {
1615 panic("config_detach: forced detach of %s failed (%d)",
1616 device_xname(dev), rv);
1617 }
1618
1619 /*
1620 * The device has now been successfully detached.
1621 */
1622
1623 /* Let userland know */
1624 devmon_report_device(dev, false);
1625
1626 #ifdef DIAGNOSTIC
1627 /*
1628 * Sanity: If you're successfully detached, you should have no
1629 * children. (Note that because children must be attached
1630 * after parents, we only need to search the latter part of
1631 * the list.)
1632 */
1633 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1634 d = TAILQ_NEXT(d, dv_list)) {
1635 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1636 printf("config_detach: detached device %s"
1637 " has children %s\n", device_xname(dev), device_xname(d));
1638 panic("config_detach");
1639 }
1640 }
1641 #endif
1642
1643 /* notify the parent that the child is gone */
1644 if (dev->dv_parent) {
1645 device_t p = dev->dv_parent;
1646 if (p->dv_cfattach->ca_childdetached)
1647 (*p->dv_cfattach->ca_childdetached)(p, dev);
1648 }
1649
1650 /*
1651 * Mark cfdata to show that the unit can be reused, if possible.
1652 */
1653 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1654 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1655 if (STREQ(cf->cf_name, cd->cd_name)) {
1656 if (cf->cf_fstate == FSTATE_FOUND &&
1657 cf->cf_unit == dev->dv_unit)
1658 cf->cf_fstate = FSTATE_NOTFOUND;
1659 }
1660 }
1661 }
1662
1663 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1664 aprint_normal_dev(dev, "detached\n");
1665
1666 out:
1667 config_alldevs_enter(&af);
1668 KASSERT(alldevs_nwrite != 0);
1669 --alldevs_nwrite;
1670 if (rv == 0 && dev->dv_del_gen == 0)
1671 config_devunlink(dev, &af.af_garbage);
1672 config_alldevs_exit(&af);
1673
1674 return rv;
1675 }
1676
1677 int
1678 config_detach_children(device_t parent, int flags)
1679 {
1680 device_t dv;
1681 deviter_t di;
1682 int error = 0;
1683
1684 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1685 dv = deviter_next(&di)) {
1686 if (device_parent(dv) != parent)
1687 continue;
1688 if ((error = config_detach(dv, flags)) != 0)
1689 break;
1690 }
1691 deviter_release(&di);
1692 return error;
1693 }
1694
1695 device_t
1696 shutdown_first(struct shutdown_state *s)
1697 {
1698 if (!s->initialized) {
1699 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1700 s->initialized = true;
1701 }
1702 return shutdown_next(s);
1703 }
1704
1705 device_t
1706 shutdown_next(struct shutdown_state *s)
1707 {
1708 device_t dv;
1709
1710 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1711 ;
1712
1713 if (dv == NULL)
1714 s->initialized = false;
1715
1716 return dv;
1717 }
1718
1719 bool
1720 config_detach_all(int how)
1721 {
1722 static struct shutdown_state s;
1723 device_t curdev;
1724 bool progress = false;
1725
1726 if ((how & RB_NOSYNC) != 0)
1727 return false;
1728
1729 for (curdev = shutdown_first(&s); curdev != NULL;
1730 curdev = shutdown_next(&s)) {
1731 aprint_debug(" detaching %s, ", device_xname(curdev));
1732 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1733 progress = true;
1734 aprint_debug("success.");
1735 } else
1736 aprint_debug("failed.");
1737 }
1738 return progress;
1739 }
1740
1741 static bool
1742 device_is_ancestor_of(device_t ancestor, device_t descendant)
1743 {
1744 device_t dv;
1745
1746 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1747 if (device_parent(dv) == ancestor)
1748 return true;
1749 }
1750 return false;
1751 }
1752
1753 int
1754 config_deactivate(device_t dev)
1755 {
1756 deviter_t di;
1757 const struct cfattach *ca;
1758 device_t descendant;
1759 int s, rv = 0, oflags;
1760
1761 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1762 descendant != NULL;
1763 descendant = deviter_next(&di)) {
1764 if (dev != descendant &&
1765 !device_is_ancestor_of(dev, descendant))
1766 continue;
1767
1768 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1769 continue;
1770
1771 ca = descendant->dv_cfattach;
1772 oflags = descendant->dv_flags;
1773
1774 descendant->dv_flags &= ~DVF_ACTIVE;
1775 if (ca->ca_activate == NULL)
1776 continue;
1777 s = splhigh();
1778 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1779 splx(s);
1780 if (rv != 0)
1781 descendant->dv_flags = oflags;
1782 }
1783 deviter_release(&di);
1784 return rv;
1785 }
1786
1787 /*
1788 * Defer the configuration of the specified device until all
1789 * of its parent's devices have been attached.
1790 */
1791 void
1792 config_defer(device_t dev, void (*func)(device_t))
1793 {
1794 struct deferred_config *dc;
1795
1796 if (dev->dv_parent == NULL)
1797 panic("config_defer: can't defer config of a root device");
1798
1799 #ifdef DIAGNOSTIC
1800 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1801 if (dc->dc_dev == dev)
1802 panic("config_defer: deferred twice");
1803 }
1804 #endif
1805
1806 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1807 if (dc == NULL)
1808 panic("config_defer: unable to allocate callback");
1809
1810 dc->dc_dev = dev;
1811 dc->dc_func = func;
1812 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1813 config_pending_incr();
1814 }
1815
1816 /*
1817 * Defer some autoconfiguration for a device until after interrupts
1818 * are enabled.
1819 */
1820 void
1821 config_interrupts(device_t dev, void (*func)(device_t))
1822 {
1823 struct deferred_config *dc;
1824
1825 /*
1826 * If interrupts are enabled, callback now.
1827 */
1828 if (cold == 0) {
1829 (*func)(dev);
1830 return;
1831 }
1832
1833 #ifdef DIAGNOSTIC
1834 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1835 if (dc->dc_dev == dev)
1836 panic("config_interrupts: deferred twice");
1837 }
1838 #endif
1839
1840 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1841 if (dc == NULL)
1842 panic("config_interrupts: unable to allocate callback");
1843
1844 dc->dc_dev = dev;
1845 dc->dc_func = func;
1846 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1847 config_pending_incr();
1848 }
1849
1850 /*
1851 * Process a deferred configuration queue.
1852 */
1853 static void
1854 config_process_deferred(struct deferred_config_head *queue,
1855 device_t parent)
1856 {
1857 struct deferred_config *dc, *ndc;
1858
1859 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1860 ndc = TAILQ_NEXT(dc, dc_queue);
1861 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1862 TAILQ_REMOVE(queue, dc, dc_queue);
1863 (*dc->dc_func)(dc->dc_dev);
1864 kmem_free(dc, sizeof(*dc));
1865 config_pending_decr();
1866 }
1867 }
1868 }
1869
1870 /*
1871 * Manipulate the config_pending semaphore.
1872 */
1873 void
1874 config_pending_incr(void)
1875 {
1876
1877 mutex_enter(&config_misc_lock);
1878 config_pending++;
1879 mutex_exit(&config_misc_lock);
1880 }
1881
1882 void
1883 config_pending_decr(void)
1884 {
1885
1886 #ifdef DIAGNOSTIC
1887 if (config_pending == 0)
1888 panic("config_pending_decr: config_pending == 0");
1889 #endif
1890 mutex_enter(&config_misc_lock);
1891 config_pending--;
1892 if (config_pending == 0)
1893 cv_broadcast(&config_misc_cv);
1894 mutex_exit(&config_misc_lock);
1895 }
1896
1897 /*
1898 * Register a "finalization" routine. Finalization routines are
1899 * called iteratively once all real devices have been found during
1900 * autoconfiguration, for as long as any one finalizer has done
1901 * any work.
1902 */
1903 int
1904 config_finalize_register(device_t dev, int (*fn)(device_t))
1905 {
1906 struct finalize_hook *f;
1907
1908 /*
1909 * If finalization has already been done, invoke the
1910 * callback function now.
1911 */
1912 if (config_finalize_done) {
1913 while ((*fn)(dev) != 0)
1914 /* loop */ ;
1915 }
1916
1917 /* Ensure this isn't already on the list. */
1918 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1919 if (f->f_func == fn && f->f_dev == dev)
1920 return EEXIST;
1921 }
1922
1923 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1924 f->f_func = fn;
1925 f->f_dev = dev;
1926 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1927
1928 return 0;
1929 }
1930
1931 void
1932 config_finalize(void)
1933 {
1934 struct finalize_hook *f;
1935 struct pdevinit *pdev;
1936 extern struct pdevinit pdevinit[];
1937 int errcnt, rv;
1938
1939 /*
1940 * Now that device driver threads have been created, wait for
1941 * them to finish any deferred autoconfiguration.
1942 */
1943 mutex_enter(&config_misc_lock);
1944 while (config_pending != 0)
1945 cv_wait(&config_misc_cv, &config_misc_lock);
1946 mutex_exit(&config_misc_lock);
1947
1948 KERNEL_LOCK(1, NULL);
1949
1950 /* Attach pseudo-devices. */
1951 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1952 (*pdev->pdev_attach)(pdev->pdev_count);
1953
1954 /* Run the hooks until none of them does any work. */
1955 do {
1956 rv = 0;
1957 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1958 rv |= (*f->f_func)(f->f_dev);
1959 } while (rv != 0);
1960
1961 config_finalize_done = 1;
1962
1963 /* Now free all the hooks. */
1964 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1965 TAILQ_REMOVE(&config_finalize_list, f, f_list);
1966 kmem_free(f, sizeof(*f));
1967 }
1968
1969 KERNEL_UNLOCK_ONE(NULL);
1970
1971 errcnt = aprint_get_error_count();
1972 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
1973 (boothowto & AB_VERBOSE) == 0) {
1974 mutex_enter(&config_misc_lock);
1975 if (config_do_twiddle) {
1976 config_do_twiddle = 0;
1977 printf_nolog(" done.\n");
1978 }
1979 mutex_exit(&config_misc_lock);
1980 if (errcnt != 0) {
1981 printf("WARNING: %d error%s while detecting hardware; "
1982 "check system log.\n", errcnt,
1983 errcnt == 1 ? "" : "s");
1984 }
1985 }
1986 }
1987
1988 void
1989 config_twiddle_init()
1990 {
1991
1992 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
1993 config_do_twiddle = 1;
1994 }
1995 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
1996 }
1997
1998 void
1999 config_twiddle_fn(void *cookie)
2000 {
2001
2002 mutex_enter(&config_misc_lock);
2003 if (config_do_twiddle) {
2004 twiddle();
2005 callout_schedule(&config_twiddle_ch, mstohz(100));
2006 }
2007 mutex_exit(&config_misc_lock);
2008 }
2009
2010 static int
2011 config_alldevs_lock(void)
2012 {
2013 mutex_enter(&alldevs_mtx);
2014 return 0;
2015 }
2016
2017 static void
2018 config_alldevs_enter(struct alldevs_foray *af)
2019 {
2020 TAILQ_INIT(&af->af_garbage);
2021 af->af_s = config_alldevs_lock();
2022 config_collect_garbage(&af->af_garbage);
2023 }
2024
2025 static void
2026 config_alldevs_exit(struct alldevs_foray *af)
2027 {
2028 config_alldevs_unlock(af->af_s);
2029 config_dump_garbage(&af->af_garbage);
2030 }
2031
2032 /*ARGSUSED*/
2033 static void
2034 config_alldevs_unlock(int s)
2035 {
2036 mutex_exit(&alldevs_mtx);
2037 }
2038
2039 /*
2040 * device_lookup:
2041 *
2042 * Look up a device instance for a given driver.
2043 */
2044 device_t
2045 device_lookup(cfdriver_t cd, int unit)
2046 {
2047 device_t dv;
2048 int s;
2049
2050 s = config_alldevs_lock();
2051 KASSERT(mutex_owned(&alldevs_mtx));
2052 if (unit < 0 || unit >= cd->cd_ndevs)
2053 dv = NULL;
2054 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2055 dv = NULL;
2056 config_alldevs_unlock(s);
2057
2058 return dv;
2059 }
2060
2061 /*
2062 * device_lookup_private:
2063 *
2064 * Look up a softc instance for a given driver.
2065 */
2066 void *
2067 device_lookup_private(cfdriver_t cd, int unit)
2068 {
2069
2070 return device_private(device_lookup(cd, unit));
2071 }
2072
2073 /*
2074 * device_find_by_xname:
2075 *
2076 * Returns the device of the given name or NULL if it doesn't exist.
2077 */
2078 device_t
2079 device_find_by_xname(const char *name)
2080 {
2081 device_t dv;
2082 deviter_t di;
2083
2084 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2085 if (strcmp(device_xname(dv), name) == 0)
2086 break;
2087 }
2088 deviter_release(&di);
2089
2090 return dv;
2091 }
2092
2093 /*
2094 * device_find_by_driver_unit:
2095 *
2096 * Returns the device of the given driver name and unit or
2097 * NULL if it doesn't exist.
2098 */
2099 device_t
2100 device_find_by_driver_unit(const char *name, int unit)
2101 {
2102 struct cfdriver *cd;
2103
2104 if ((cd = config_cfdriver_lookup(name)) == NULL)
2105 return NULL;
2106 return device_lookup(cd, unit);
2107 }
2108
2109 /*
2110 * Power management related functions.
2111 */
2112
2113 bool
2114 device_pmf_is_registered(device_t dev)
2115 {
2116 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2117 }
2118
2119 bool
2120 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2121 {
2122 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2123 return true;
2124 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2125 return false;
2126 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2127 dev->dv_driver_suspend != NULL &&
2128 !(*dev->dv_driver_suspend)(dev, qual))
2129 return false;
2130
2131 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2132 return true;
2133 }
2134
2135 bool
2136 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2137 {
2138 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2139 return true;
2140 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2141 return false;
2142 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2143 dev->dv_driver_resume != NULL &&
2144 !(*dev->dv_driver_resume)(dev, qual))
2145 return false;
2146
2147 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2148 return true;
2149 }
2150
2151 bool
2152 device_pmf_driver_shutdown(device_t dev, int how)
2153 {
2154
2155 if (*dev->dv_driver_shutdown != NULL &&
2156 !(*dev->dv_driver_shutdown)(dev, how))
2157 return false;
2158 return true;
2159 }
2160
2161 bool
2162 device_pmf_driver_register(device_t dev,
2163 bool (*suspend)(device_t, const pmf_qual_t *),
2164 bool (*resume)(device_t, const pmf_qual_t *),
2165 bool (*shutdown)(device_t, int))
2166 {
2167 dev->dv_driver_suspend = suspend;
2168 dev->dv_driver_resume = resume;
2169 dev->dv_driver_shutdown = shutdown;
2170 dev->dv_flags |= DVF_POWER_HANDLERS;
2171 return true;
2172 }
2173
2174 static const char *
2175 curlwp_name(void)
2176 {
2177 if (curlwp->l_name != NULL)
2178 return curlwp->l_name;
2179 else
2180 return curlwp->l_proc->p_comm;
2181 }
2182
2183 void
2184 device_pmf_driver_deregister(device_t dev)
2185 {
2186 device_lock_t dvl = device_getlock(dev);
2187
2188 dev->dv_driver_suspend = NULL;
2189 dev->dv_driver_resume = NULL;
2190
2191 mutex_enter(&dvl->dvl_mtx);
2192 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2193 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2194 /* Wake a thread that waits for the lock. That
2195 * thread will fail to acquire the lock, and then
2196 * it will wake the next thread that waits for the
2197 * lock, or else it will wake us.
2198 */
2199 cv_signal(&dvl->dvl_cv);
2200 pmflock_debug(dev, __func__, __LINE__);
2201 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2202 pmflock_debug(dev, __func__, __LINE__);
2203 }
2204 mutex_exit(&dvl->dvl_mtx);
2205 }
2206
2207 bool
2208 device_pmf_driver_child_register(device_t dev)
2209 {
2210 device_t parent = device_parent(dev);
2211
2212 if (parent == NULL || parent->dv_driver_child_register == NULL)
2213 return true;
2214 return (*parent->dv_driver_child_register)(dev);
2215 }
2216
2217 void
2218 device_pmf_driver_set_child_register(device_t dev,
2219 bool (*child_register)(device_t))
2220 {
2221 dev->dv_driver_child_register = child_register;
2222 }
2223
2224 static void
2225 pmflock_debug(device_t dev, const char *func, int line)
2226 {
2227 device_lock_t dvl = device_getlock(dev);
2228
2229 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2230 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2231 dev->dv_flags);
2232 }
2233
2234 static bool
2235 device_pmf_lock1(device_t dev)
2236 {
2237 device_lock_t dvl = device_getlock(dev);
2238
2239 while (device_pmf_is_registered(dev) &&
2240 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2241 dvl->dvl_nwait++;
2242 pmflock_debug(dev, __func__, __LINE__);
2243 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2244 pmflock_debug(dev, __func__, __LINE__);
2245 dvl->dvl_nwait--;
2246 }
2247 if (!device_pmf_is_registered(dev)) {
2248 pmflock_debug(dev, __func__, __LINE__);
2249 /* We could not acquire the lock, but some other thread may
2250 * wait for it, also. Wake that thread.
2251 */
2252 cv_signal(&dvl->dvl_cv);
2253 return false;
2254 }
2255 dvl->dvl_nlock++;
2256 dvl->dvl_holder = curlwp;
2257 pmflock_debug(dev, __func__, __LINE__);
2258 return true;
2259 }
2260
2261 bool
2262 device_pmf_lock(device_t dev)
2263 {
2264 bool rc;
2265 device_lock_t dvl = device_getlock(dev);
2266
2267 mutex_enter(&dvl->dvl_mtx);
2268 rc = device_pmf_lock1(dev);
2269 mutex_exit(&dvl->dvl_mtx);
2270
2271 return rc;
2272 }
2273
2274 void
2275 device_pmf_unlock(device_t dev)
2276 {
2277 device_lock_t dvl = device_getlock(dev);
2278
2279 KASSERT(dvl->dvl_nlock > 0);
2280 mutex_enter(&dvl->dvl_mtx);
2281 if (--dvl->dvl_nlock == 0)
2282 dvl->dvl_holder = NULL;
2283 cv_signal(&dvl->dvl_cv);
2284 pmflock_debug(dev, __func__, __LINE__);
2285 mutex_exit(&dvl->dvl_mtx);
2286 }
2287
2288 device_lock_t
2289 device_getlock(device_t dev)
2290 {
2291 return &dev->dv_lock;
2292 }
2293
2294 void *
2295 device_pmf_bus_private(device_t dev)
2296 {
2297 return dev->dv_bus_private;
2298 }
2299
2300 bool
2301 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2302 {
2303 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2304 return true;
2305 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2306 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2307 return false;
2308 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2309 dev->dv_bus_suspend != NULL &&
2310 !(*dev->dv_bus_suspend)(dev, qual))
2311 return false;
2312
2313 dev->dv_flags |= DVF_BUS_SUSPENDED;
2314 return true;
2315 }
2316
2317 bool
2318 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2319 {
2320 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2321 return true;
2322 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2323 dev->dv_bus_resume != NULL &&
2324 !(*dev->dv_bus_resume)(dev, qual))
2325 return false;
2326
2327 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2328 return true;
2329 }
2330
2331 bool
2332 device_pmf_bus_shutdown(device_t dev, int how)
2333 {
2334
2335 if (*dev->dv_bus_shutdown != NULL &&
2336 !(*dev->dv_bus_shutdown)(dev, how))
2337 return false;
2338 return true;
2339 }
2340
2341 void
2342 device_pmf_bus_register(device_t dev, void *priv,
2343 bool (*suspend)(device_t, const pmf_qual_t *),
2344 bool (*resume)(device_t, const pmf_qual_t *),
2345 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2346 {
2347 dev->dv_bus_private = priv;
2348 dev->dv_bus_resume = resume;
2349 dev->dv_bus_suspend = suspend;
2350 dev->dv_bus_shutdown = shutdown;
2351 dev->dv_bus_deregister = deregister;
2352 }
2353
2354 void
2355 device_pmf_bus_deregister(device_t dev)
2356 {
2357 if (dev->dv_bus_deregister == NULL)
2358 return;
2359 (*dev->dv_bus_deregister)(dev);
2360 dev->dv_bus_private = NULL;
2361 dev->dv_bus_suspend = NULL;
2362 dev->dv_bus_resume = NULL;
2363 dev->dv_bus_deregister = NULL;
2364 }
2365
2366 void *
2367 device_pmf_class_private(device_t dev)
2368 {
2369 return dev->dv_class_private;
2370 }
2371
2372 bool
2373 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2374 {
2375 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2376 return true;
2377 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2378 dev->dv_class_suspend != NULL &&
2379 !(*dev->dv_class_suspend)(dev, qual))
2380 return false;
2381
2382 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2383 return true;
2384 }
2385
2386 bool
2387 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2388 {
2389 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2390 return true;
2391 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2392 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2393 return false;
2394 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2395 dev->dv_class_resume != NULL &&
2396 !(*dev->dv_class_resume)(dev, qual))
2397 return false;
2398
2399 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2400 return true;
2401 }
2402
2403 void
2404 device_pmf_class_register(device_t dev, void *priv,
2405 bool (*suspend)(device_t, const pmf_qual_t *),
2406 bool (*resume)(device_t, const pmf_qual_t *),
2407 void (*deregister)(device_t))
2408 {
2409 dev->dv_class_private = priv;
2410 dev->dv_class_suspend = suspend;
2411 dev->dv_class_resume = resume;
2412 dev->dv_class_deregister = deregister;
2413 }
2414
2415 void
2416 device_pmf_class_deregister(device_t dev)
2417 {
2418 if (dev->dv_class_deregister == NULL)
2419 return;
2420 (*dev->dv_class_deregister)(dev);
2421 dev->dv_class_private = NULL;
2422 dev->dv_class_suspend = NULL;
2423 dev->dv_class_resume = NULL;
2424 dev->dv_class_deregister = NULL;
2425 }
2426
2427 bool
2428 device_active(device_t dev, devactive_t type)
2429 {
2430 size_t i;
2431
2432 if (dev->dv_activity_count == 0)
2433 return false;
2434
2435 for (i = 0; i < dev->dv_activity_count; ++i) {
2436 if (dev->dv_activity_handlers[i] == NULL)
2437 break;
2438 (*dev->dv_activity_handlers[i])(dev, type);
2439 }
2440
2441 return true;
2442 }
2443
2444 bool
2445 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2446 {
2447 void (**new_handlers)(device_t, devactive_t);
2448 void (**old_handlers)(device_t, devactive_t);
2449 size_t i, old_size, new_size;
2450 int s;
2451
2452 old_handlers = dev->dv_activity_handlers;
2453 old_size = dev->dv_activity_count;
2454
2455 for (i = 0; i < old_size; ++i) {
2456 KASSERT(old_handlers[i] != handler);
2457 if (old_handlers[i] == NULL) {
2458 old_handlers[i] = handler;
2459 return true;
2460 }
2461 }
2462
2463 new_size = old_size + 4;
2464 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2465
2466 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2467 new_handlers[old_size] = handler;
2468 memset(new_handlers + old_size + 1, 0,
2469 sizeof(int [new_size - (old_size+1)]));
2470
2471 s = splhigh();
2472 dev->dv_activity_count = new_size;
2473 dev->dv_activity_handlers = new_handlers;
2474 splx(s);
2475
2476 if (old_handlers != NULL)
2477 kmem_free(old_handlers, sizeof(void * [old_size]));
2478
2479 return true;
2480 }
2481
2482 void
2483 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2484 {
2485 void (**old_handlers)(device_t, devactive_t);
2486 size_t i, old_size;
2487 int s;
2488
2489 old_handlers = dev->dv_activity_handlers;
2490 old_size = dev->dv_activity_count;
2491
2492 for (i = 0; i < old_size; ++i) {
2493 if (old_handlers[i] == handler)
2494 break;
2495 if (old_handlers[i] == NULL)
2496 return; /* XXX panic? */
2497 }
2498
2499 if (i == old_size)
2500 return; /* XXX panic? */
2501
2502 for (; i < old_size - 1; ++i) {
2503 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2504 continue;
2505
2506 if (i == 0) {
2507 s = splhigh();
2508 dev->dv_activity_count = 0;
2509 dev->dv_activity_handlers = NULL;
2510 splx(s);
2511 kmem_free(old_handlers, sizeof(void *[old_size]));
2512 }
2513 return;
2514 }
2515 old_handlers[i] = NULL;
2516 }
2517
2518 /* Return true iff the device_t `dev' exists at generation `gen'. */
2519 static bool
2520 device_exists_at(device_t dv, devgen_t gen)
2521 {
2522 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2523 dv->dv_add_gen <= gen;
2524 }
2525
2526 static bool
2527 deviter_visits(const deviter_t *di, device_t dv)
2528 {
2529 return device_exists_at(dv, di->di_gen);
2530 }
2531
2532 /*
2533 * Device Iteration
2534 *
2535 * deviter_t: a device iterator. Holds state for a "walk" visiting
2536 * each device_t's in the device tree.
2537 *
2538 * deviter_init(di, flags): initialize the device iterator `di'
2539 * to "walk" the device tree. deviter_next(di) will return
2540 * the first device_t in the device tree, or NULL if there are
2541 * no devices.
2542 *
2543 * `flags' is one or more of DEVITER_F_RW, indicating that the
2544 * caller intends to modify the device tree by calling
2545 * config_detach(9) on devices in the order that the iterator
2546 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2547 * nearest the "root" of the device tree to be returned, first;
2548 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2549 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2550 * indicating both that deviter_init() should not respect any
2551 * locks on the device tree, and that deviter_next(di) may run
2552 * in more than one LWP before the walk has finished.
2553 *
2554 * Only one DEVITER_F_RW iterator may be in the device tree at
2555 * once.
2556 *
2557 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2558 *
2559 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2560 * DEVITER_F_LEAVES_FIRST are used in combination.
2561 *
2562 * deviter_first(di, flags): initialize the device iterator `di'
2563 * and return the first device_t in the device tree, or NULL
2564 * if there are no devices. The statement
2565 *
2566 * dv = deviter_first(di);
2567 *
2568 * is shorthand for
2569 *
2570 * deviter_init(di);
2571 * dv = deviter_next(di);
2572 *
2573 * deviter_next(di): return the next device_t in the device tree,
2574 * or NULL if there are no more devices. deviter_next(di)
2575 * is undefined if `di' was not initialized with deviter_init() or
2576 * deviter_first().
2577 *
2578 * deviter_release(di): stops iteration (subsequent calls to
2579 * deviter_next() will return NULL), releases any locks and
2580 * resources held by the device iterator.
2581 *
2582 * Device iteration does not return device_t's in any particular
2583 * order. An iterator will never return the same device_t twice.
2584 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2585 * is called repeatedly on the same `di', it will eventually return
2586 * NULL. It is ok to attach/detach devices during device iteration.
2587 */
2588 void
2589 deviter_init(deviter_t *di, deviter_flags_t flags)
2590 {
2591 device_t dv;
2592 int s;
2593
2594 memset(di, 0, sizeof(*di));
2595
2596 s = config_alldevs_lock();
2597 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2598 flags |= DEVITER_F_RW;
2599
2600 if ((flags & DEVITER_F_RW) != 0)
2601 alldevs_nwrite++;
2602 else
2603 alldevs_nread++;
2604 di->di_gen = alldevs_gen++;
2605 config_alldevs_unlock(s);
2606
2607 di->di_flags = flags;
2608
2609 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2610 case DEVITER_F_LEAVES_FIRST:
2611 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2612 if (!deviter_visits(di, dv))
2613 continue;
2614 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2615 }
2616 break;
2617 case DEVITER_F_ROOT_FIRST:
2618 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2619 if (!deviter_visits(di, dv))
2620 continue;
2621 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2622 }
2623 break;
2624 default:
2625 break;
2626 }
2627
2628 deviter_reinit(di);
2629 }
2630
2631 static void
2632 deviter_reinit(deviter_t *di)
2633 {
2634 if ((di->di_flags & DEVITER_F_RW) != 0)
2635 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2636 else
2637 di->di_prev = TAILQ_FIRST(&alldevs);
2638 }
2639
2640 device_t
2641 deviter_first(deviter_t *di, deviter_flags_t flags)
2642 {
2643 deviter_init(di, flags);
2644 return deviter_next(di);
2645 }
2646
2647 static device_t
2648 deviter_next2(deviter_t *di)
2649 {
2650 device_t dv;
2651
2652 dv = di->di_prev;
2653
2654 if (dv == NULL)
2655 return NULL;
2656
2657 if ((di->di_flags & DEVITER_F_RW) != 0)
2658 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2659 else
2660 di->di_prev = TAILQ_NEXT(dv, dv_list);
2661
2662 return dv;
2663 }
2664
2665 static device_t
2666 deviter_next1(deviter_t *di)
2667 {
2668 device_t dv;
2669
2670 do {
2671 dv = deviter_next2(di);
2672 } while (dv != NULL && !deviter_visits(di, dv));
2673
2674 return dv;
2675 }
2676
2677 device_t
2678 deviter_next(deviter_t *di)
2679 {
2680 device_t dv = NULL;
2681
2682 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2683 case 0:
2684 return deviter_next1(di);
2685 case DEVITER_F_LEAVES_FIRST:
2686 while (di->di_curdepth >= 0) {
2687 if ((dv = deviter_next1(di)) == NULL) {
2688 di->di_curdepth--;
2689 deviter_reinit(di);
2690 } else if (dv->dv_depth == di->di_curdepth)
2691 break;
2692 }
2693 return dv;
2694 case DEVITER_F_ROOT_FIRST:
2695 while (di->di_curdepth <= di->di_maxdepth) {
2696 if ((dv = deviter_next1(di)) == NULL) {
2697 di->di_curdepth++;
2698 deviter_reinit(di);
2699 } else if (dv->dv_depth == di->di_curdepth)
2700 break;
2701 }
2702 return dv;
2703 default:
2704 return NULL;
2705 }
2706 }
2707
2708 void
2709 deviter_release(deviter_t *di)
2710 {
2711 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2712 int s;
2713
2714 s = config_alldevs_lock();
2715 if (rw)
2716 --alldevs_nwrite;
2717 else
2718 --alldevs_nread;
2719 /* XXX wake a garbage-collection thread */
2720 config_alldevs_unlock(s);
2721 }
2722
2723 const char *
2724 cfdata_ifattr(const struct cfdata *cf)
2725 {
2726 return cf->cf_pspec->cfp_iattr;
2727 }
2728
2729 bool
2730 ifattr_match(const char *snull, const char *t)
2731 {
2732 return (snull == NULL) || strcmp(snull, t) == 0;
2733 }
2734
2735 void
2736 null_childdetached(device_t self, device_t child)
2737 {
2738 /* do nothing */
2739 }
2740
2741 static void
2742 sysctl_detach_setup(struct sysctllog **clog)
2743 {
2744 const struct sysctlnode *node = NULL;
2745
2746 sysctl_createv(clog, 0, NULL, &node,
2747 CTLFLAG_PERMANENT,
2748 CTLTYPE_NODE, "kern", NULL,
2749 NULL, 0, NULL, 0,
2750 CTL_KERN, CTL_EOL);
2751
2752 if (node == NULL)
2753 return;
2754
2755 sysctl_createv(clog, 0, &node, NULL,
2756 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2757 CTLTYPE_BOOL, "detachall",
2758 SYSCTL_DESCR("Detach all devices at shutdown"),
2759 NULL, 0, &detachall, 0,
2760 CTL_CREATE, CTL_EOL);
2761 }
2762