subr_autoconf.c revision 1.203.2.5 1 /* $NetBSD: subr_autoconf.c,v 1.203.2.5 2011/05/31 03:05:02 rmind Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.203.2.5 2011/05/31 03:05:02 rmind Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #endif
85
86 #include <sys/param.h>
87 #include <sys/device.h>
88 #include <sys/disklabel.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91 #include <sys/kmem.h>
92 #include <sys/systm.h>
93 #include <sys/kernel.h>
94 #include <sys/errno.h>
95 #include <sys/proc.h>
96 #include <sys/reboot.h>
97 #include <sys/kthread.h>
98 #include <sys/buf.h>
99 #include <sys/dirent.h>
100 #include <sys/mount.h>
101 #include <sys/namei.h>
102 #include <sys/unistd.h>
103 #include <sys/fcntl.h>
104 #include <sys/lockf.h>
105 #include <sys/callout.h>
106 #include <sys/devmon.h>
107 #include <sys/cpu.h>
108 #include <sys/sysctl.h>
109
110 #include <sys/disk.h>
111
112 #include <machine/limits.h>
113
114 /*
115 * Autoconfiguration subroutines.
116 */
117
118 /*
119 * ioconf.c exports exactly two names: cfdata and cfroots. All system
120 * devices and drivers are found via these tables.
121 */
122 extern struct cfdata cfdata[];
123 extern const short cfroots[];
124
125 /*
126 * List of all cfdriver structures. We use this to detect duplicates
127 * when other cfdrivers are loaded.
128 */
129 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
130 extern struct cfdriver * const cfdriver_list_initial[];
131
132 /*
133 * Initial list of cfattach's.
134 */
135 extern const struct cfattachinit cfattachinit[];
136
137 /*
138 * List of cfdata tables. We always have one such list -- the one
139 * built statically when the kernel was configured.
140 */
141 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
142 static struct cftable initcftable;
143
144 #define ROOT ((device_t)NULL)
145
146 struct matchinfo {
147 cfsubmatch_t fn;
148 struct device *parent;
149 const int *locs;
150 void *aux;
151 struct cfdata *match;
152 int pri;
153 };
154
155 struct alldevs_foray {
156 int af_s;
157 struct devicelist af_garbage;
158 };
159
160 static char *number(char *, int);
161 static void mapply(struct matchinfo *, cfdata_t);
162 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
163 static void config_devdelete(device_t);
164 static void config_devunlink(device_t, struct devicelist *);
165 static void config_makeroom(int, struct cfdriver *);
166 static void config_devlink(device_t);
167 static void config_alldevs_unlock(int);
168 static int config_alldevs_lock(void);
169 static void config_alldevs_enter(struct alldevs_foray *);
170 static void config_alldevs_exit(struct alldevs_foray *);
171
172 static void config_collect_garbage(struct devicelist *);
173 static void config_dump_garbage(struct devicelist *);
174
175 static void pmflock_debug(device_t, const char *, int);
176
177 static device_t deviter_next1(deviter_t *);
178 static void deviter_reinit(deviter_t *);
179
180 struct deferred_config {
181 TAILQ_ENTRY(deferred_config) dc_queue;
182 device_t dc_dev;
183 void (*dc_func)(device_t);
184 };
185
186 TAILQ_HEAD(deferred_config_head, deferred_config);
187
188 struct deferred_config_head deferred_config_queue =
189 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
190 struct deferred_config_head interrupt_config_queue =
191 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
192 int interrupt_config_threads = 8;
193 struct deferred_config_head mountroot_config_queue =
194 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
195 int mountroot_config_threads = 2;
196 static bool root_is_mounted = false;
197
198 static void config_process_deferred(struct deferred_config_head *, device_t);
199
200 /* Hooks to finalize configuration once all real devices have been found. */
201 struct finalize_hook {
202 TAILQ_ENTRY(finalize_hook) f_list;
203 int (*f_func)(device_t);
204 device_t f_dev;
205 };
206 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
207 TAILQ_HEAD_INITIALIZER(config_finalize_list);
208 static int config_finalize_done;
209
210 /* list of all devices */
211 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
212 static kmutex_t alldevs_mtx;
213 static volatile bool alldevs_garbage = false;
214 static volatile devgen_t alldevs_gen = 1;
215 static volatile int alldevs_nread = 0;
216 static volatile int alldevs_nwrite = 0;
217
218 static int config_pending; /* semaphore for mountroot */
219 static kmutex_t config_misc_lock;
220 static kcondvar_t config_misc_cv;
221
222 static bool detachall = false;
223
224 #define STREQ(s1, s2) \
225 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
226
227 static bool config_initialized = false; /* config_init() has been called. */
228
229 static int config_do_twiddle;
230 static callout_t config_twiddle_ch;
231
232 static void sysctl_detach_setup(struct sysctllog **);
233
234 typedef int (*cfdriver_fn)(struct cfdriver *);
235 static int
236 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
237 cfdriver_fn drv_do, cfdriver_fn drv_undo,
238 const char *style, bool dopanic)
239 {
240 void (*pr)(const char *, ...) = dopanic ? panic : printf;
241 int i = 0, error = 0, e2;
242
243 for (i = 0; cfdriverv[i] != NULL; i++) {
244 if ((error = drv_do(cfdriverv[i])) != 0) {
245 pr("configure: `%s' driver %s failed: %d",
246 cfdriverv[i]->cd_name, style, error);
247 goto bad;
248 }
249 }
250
251 KASSERT(error == 0);
252 return 0;
253
254 bad:
255 printf("\n");
256 for (i--; i >= 0; i--) {
257 e2 = drv_undo(cfdriverv[i]);
258 KASSERT(e2 == 0);
259 }
260
261 return error;
262 }
263
264 typedef int (*cfattach_fn)(const char *, struct cfattach *);
265 static int
266 frob_cfattachvec(const struct cfattachinit *cfattachv,
267 cfattach_fn att_do, cfattach_fn att_undo,
268 const char *style, bool dopanic)
269 {
270 const struct cfattachinit *cfai = NULL;
271 void (*pr)(const char *, ...) = dopanic ? panic : printf;
272 int j = 0, error = 0, e2;
273
274 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
275 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
276 if ((error = att_do(cfai->cfai_name,
277 cfai->cfai_list[j])) != 0) {
278 pr("configure: attachment `%s' "
279 "of `%s' driver %s failed: %d",
280 cfai->cfai_list[j]->ca_name,
281 cfai->cfai_name, style, error);
282 goto bad;
283 }
284 }
285 }
286
287 KASSERT(error == 0);
288 return 0;
289
290 bad:
291 /*
292 * Rollback in reverse order. dunno if super-important, but
293 * do that anyway. Although the code looks a little like
294 * someone did a little integration (in the math sense).
295 */
296 printf("\n");
297 if (cfai) {
298 bool last;
299
300 for (last = false; last == false; ) {
301 if (cfai == &cfattachv[0])
302 last = true;
303 for (j--; j >= 0; j--) {
304 e2 = att_undo(cfai->cfai_name,
305 cfai->cfai_list[j]);
306 KASSERT(e2 == 0);
307 }
308 if (!last) {
309 cfai--;
310 for (j = 0; cfai->cfai_list[j] != NULL; j++)
311 ;
312 }
313 }
314 }
315
316 return error;
317 }
318
319 /*
320 * Initialize the autoconfiguration data structures. Normally this
321 * is done by configure(), but some platforms need to do this very
322 * early (to e.g. initialize the console).
323 */
324 void
325 config_init(void)
326 {
327
328 KASSERT(config_initialized == false);
329
330 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
331
332 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
333 cv_init(&config_misc_cv, "cfgmisc");
334
335 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
336
337 frob_cfdrivervec(cfdriver_list_initial,
338 config_cfdriver_attach, NULL, "bootstrap", true);
339 frob_cfattachvec(cfattachinit,
340 config_cfattach_attach, NULL, "bootstrap", true);
341
342 initcftable.ct_cfdata = cfdata;
343 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
344
345 config_initialized = true;
346 }
347
348 /*
349 * Init or fini drivers and attachments. Either all or none
350 * are processed (via rollback). It would be nice if this were
351 * atomic to outside consumers, but with the current state of
352 * locking ...
353 */
354 int
355 config_init_component(struct cfdriver * const *cfdriverv,
356 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
357 {
358 int error;
359
360 if ((error = frob_cfdrivervec(cfdriverv,
361 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
362 return error;
363 if ((error = frob_cfattachvec(cfattachv,
364 config_cfattach_attach, config_cfattach_detach,
365 "init", false)) != 0) {
366 frob_cfdrivervec(cfdriverv,
367 config_cfdriver_detach, NULL, "init rollback", true);
368 return error;
369 }
370 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
371 frob_cfattachvec(cfattachv,
372 config_cfattach_detach, NULL, "init rollback", true);
373 frob_cfdrivervec(cfdriverv,
374 config_cfdriver_detach, NULL, "init rollback", true);
375 return error;
376 }
377
378 return 0;
379 }
380
381 int
382 config_fini_component(struct cfdriver * const *cfdriverv,
383 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
384 {
385 int error;
386
387 if ((error = config_cfdata_detach(cfdatav)) != 0)
388 return error;
389 if ((error = frob_cfattachvec(cfattachv,
390 config_cfattach_detach, config_cfattach_attach,
391 "fini", false)) != 0) {
392 if (config_cfdata_attach(cfdatav, 0) != 0)
393 panic("config_cfdata fini rollback failed");
394 return error;
395 }
396 if ((error = frob_cfdrivervec(cfdriverv,
397 config_cfdriver_detach, config_cfdriver_attach,
398 "fini", false)) != 0) {
399 frob_cfattachvec(cfattachv,
400 config_cfattach_attach, NULL, "fini rollback", true);
401 if (config_cfdata_attach(cfdatav, 0) != 0)
402 panic("config_cfdata fini rollback failed");
403 return error;
404 }
405
406 return 0;
407 }
408
409 void
410 config_init_mi(void)
411 {
412
413 if (!config_initialized)
414 config_init();
415
416 sysctl_detach_setup(NULL);
417 }
418
419 void
420 config_deferred(device_t dev)
421 {
422 config_process_deferred(&deferred_config_queue, dev);
423 config_process_deferred(&interrupt_config_queue, dev);
424 config_process_deferred(&mountroot_config_queue, dev);
425 }
426
427 static void
428 config_interrupts_thread(void *cookie)
429 {
430 struct deferred_config *dc;
431
432 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
433 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
434 (*dc->dc_func)(dc->dc_dev);
435 kmem_free(dc, sizeof(*dc));
436 config_pending_decr();
437 }
438 kthread_exit(0);
439 }
440
441 void
442 config_create_interruptthreads()
443 {
444 int i;
445
446 for (i = 0; i < interrupt_config_threads; i++) {
447 (void)kthread_create(PRI_NONE, 0, NULL,
448 config_interrupts_thread, NULL, NULL, "config");
449 }
450 }
451
452 static void
453 config_mountroot_thread(void *cookie)
454 {
455 struct deferred_config *dc;
456
457 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
458 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
459 (*dc->dc_func)(dc->dc_dev);
460 kmem_free(dc, sizeof(*dc));
461 }
462 kthread_exit(0);
463 }
464
465 void
466 config_create_mountrootthreads()
467 {
468 int i;
469
470 if (!root_is_mounted)
471 root_is_mounted = true;
472
473 for (i = 0; i < mountroot_config_threads; i++) {
474 (void)kthread_create(PRI_NONE, 0, NULL,
475 config_mountroot_thread, NULL, NULL, "config");
476 }
477 }
478
479 /*
480 * Announce device attach/detach to userland listeners.
481 */
482 static void
483 devmon_report_device(device_t dev, bool isattach)
484 {
485 #if NDRVCTL > 0
486 prop_dictionary_t ev;
487 const char *parent;
488 const char *what;
489 device_t pdev = device_parent(dev);
490
491 ev = prop_dictionary_create();
492 if (ev == NULL)
493 return;
494
495 what = (isattach ? "device-attach" : "device-detach");
496 parent = (pdev == NULL ? "root" : device_xname(pdev));
497 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
498 !prop_dictionary_set_cstring(ev, "parent", parent)) {
499 prop_object_release(ev);
500 return;
501 }
502
503 devmon_insert(what, ev);
504 #endif
505 }
506
507 /*
508 * Add a cfdriver to the system.
509 */
510 int
511 config_cfdriver_attach(struct cfdriver *cd)
512 {
513 struct cfdriver *lcd;
514
515 /* Make sure this driver isn't already in the system. */
516 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
517 if (STREQ(lcd->cd_name, cd->cd_name))
518 return EEXIST;
519 }
520
521 LIST_INIT(&cd->cd_attach);
522 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
523
524 return 0;
525 }
526
527 /*
528 * Remove a cfdriver from the system.
529 */
530 int
531 config_cfdriver_detach(struct cfdriver *cd)
532 {
533 struct alldevs_foray af;
534 int i, rc = 0;
535
536 config_alldevs_enter(&af);
537 /* Make sure there are no active instances. */
538 for (i = 0; i < cd->cd_ndevs; i++) {
539 if (cd->cd_devs[i] != NULL) {
540 rc = EBUSY;
541 break;
542 }
543 }
544 config_alldevs_exit(&af);
545
546 if (rc != 0)
547 return rc;
548
549 /* ...and no attachments loaded. */
550 if (LIST_EMPTY(&cd->cd_attach) == 0)
551 return EBUSY;
552
553 LIST_REMOVE(cd, cd_list);
554
555 KASSERT(cd->cd_devs == NULL);
556
557 return 0;
558 }
559
560 /*
561 * Look up a cfdriver by name.
562 */
563 struct cfdriver *
564 config_cfdriver_lookup(const char *name)
565 {
566 struct cfdriver *cd;
567
568 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
569 if (STREQ(cd->cd_name, name))
570 return cd;
571 }
572
573 return NULL;
574 }
575
576 /*
577 * Add a cfattach to the specified driver.
578 */
579 int
580 config_cfattach_attach(const char *driver, struct cfattach *ca)
581 {
582 struct cfattach *lca;
583 struct cfdriver *cd;
584
585 cd = config_cfdriver_lookup(driver);
586 if (cd == NULL)
587 return ESRCH;
588
589 /* Make sure this attachment isn't already on this driver. */
590 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
591 if (STREQ(lca->ca_name, ca->ca_name))
592 return EEXIST;
593 }
594
595 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
596
597 return 0;
598 }
599
600 /*
601 * Remove a cfattach from the specified driver.
602 */
603 int
604 config_cfattach_detach(const char *driver, struct cfattach *ca)
605 {
606 struct alldevs_foray af;
607 struct cfdriver *cd;
608 device_t dev;
609 int i, rc = 0;
610
611 cd = config_cfdriver_lookup(driver);
612 if (cd == NULL)
613 return ESRCH;
614
615 config_alldevs_enter(&af);
616 /* Make sure there are no active instances. */
617 for (i = 0; i < cd->cd_ndevs; i++) {
618 if ((dev = cd->cd_devs[i]) == NULL)
619 continue;
620 if (dev->dv_cfattach == ca) {
621 rc = EBUSY;
622 break;
623 }
624 }
625 config_alldevs_exit(&af);
626
627 if (rc != 0)
628 return rc;
629
630 LIST_REMOVE(ca, ca_list);
631
632 return 0;
633 }
634
635 /*
636 * Look up a cfattach by name.
637 */
638 static struct cfattach *
639 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
640 {
641 struct cfattach *ca;
642
643 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
644 if (STREQ(ca->ca_name, atname))
645 return ca;
646 }
647
648 return NULL;
649 }
650
651 /*
652 * Look up a cfattach by driver/attachment name.
653 */
654 struct cfattach *
655 config_cfattach_lookup(const char *name, const char *atname)
656 {
657 struct cfdriver *cd;
658
659 cd = config_cfdriver_lookup(name);
660 if (cd == NULL)
661 return NULL;
662
663 return config_cfattach_lookup_cd(cd, atname);
664 }
665
666 /*
667 * Apply the matching function and choose the best. This is used
668 * a few times and we want to keep the code small.
669 */
670 static void
671 mapply(struct matchinfo *m, cfdata_t cf)
672 {
673 int pri;
674
675 if (m->fn != NULL) {
676 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
677 } else {
678 pri = config_match(m->parent, cf, m->aux);
679 }
680 if (pri > m->pri) {
681 m->match = cf;
682 m->pri = pri;
683 }
684 }
685
686 int
687 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
688 {
689 const struct cfiattrdata *ci;
690 const struct cflocdesc *cl;
691 int nlocs, i;
692
693 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
694 KASSERT(ci);
695 nlocs = ci->ci_loclen;
696 KASSERT(!nlocs || locs);
697 for (i = 0; i < nlocs; i++) {
698 cl = &ci->ci_locdesc[i];
699 /* !cld_defaultstr means no default value */
700 if ((!(cl->cld_defaultstr)
701 || (cf->cf_loc[i] != cl->cld_default))
702 && cf->cf_loc[i] != locs[i])
703 return 0;
704 }
705
706 return config_match(parent, cf, aux);
707 }
708
709 /*
710 * Helper function: check whether the driver supports the interface attribute
711 * and return its descriptor structure.
712 */
713 static const struct cfiattrdata *
714 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
715 {
716 const struct cfiattrdata * const *cpp;
717
718 if (cd->cd_attrs == NULL)
719 return 0;
720
721 for (cpp = cd->cd_attrs; *cpp; cpp++) {
722 if (STREQ((*cpp)->ci_name, ia)) {
723 /* Match. */
724 return *cpp;
725 }
726 }
727 return 0;
728 }
729
730 /*
731 * Lookup an interface attribute description by name.
732 * If the driver is given, consider only its supported attributes.
733 */
734 const struct cfiattrdata *
735 cfiattr_lookup(const char *name, const struct cfdriver *cd)
736 {
737 const struct cfdriver *d;
738 const struct cfiattrdata *ia;
739
740 if (cd)
741 return cfdriver_get_iattr(cd, name);
742
743 LIST_FOREACH(d, &allcfdrivers, cd_list) {
744 ia = cfdriver_get_iattr(d, name);
745 if (ia)
746 return ia;
747 }
748 return 0;
749 }
750
751 /*
752 * Determine if `parent' is a potential parent for a device spec based
753 * on `cfp'.
754 */
755 static int
756 cfparent_match(const device_t parent, const struct cfparent *cfp)
757 {
758 struct cfdriver *pcd;
759
760 /* We don't match root nodes here. */
761 if (cfp == NULL)
762 return 0;
763
764 pcd = parent->dv_cfdriver;
765 KASSERT(pcd != NULL);
766
767 /*
768 * First, ensure this parent has the correct interface
769 * attribute.
770 */
771 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
772 return 0;
773
774 /*
775 * If no specific parent device instance was specified (i.e.
776 * we're attaching to the attribute only), we're done!
777 */
778 if (cfp->cfp_parent == NULL)
779 return 1;
780
781 /*
782 * Check the parent device's name.
783 */
784 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
785 return 0; /* not the same parent */
786
787 /*
788 * Make sure the unit number matches.
789 */
790 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
791 cfp->cfp_unit == parent->dv_unit)
792 return 1;
793
794 /* Unit numbers don't match. */
795 return 0;
796 }
797
798 /*
799 * Helper for config_cfdata_attach(): check all devices whether it could be
800 * parent any attachment in the config data table passed, and rescan.
801 */
802 static void
803 rescan_with_cfdata(const struct cfdata *cf)
804 {
805 device_t d;
806 const struct cfdata *cf1;
807 deviter_t di;
808
809
810 /*
811 * "alldevs" is likely longer than a modules's cfdata, so make it
812 * the outer loop.
813 */
814 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
815
816 if (!(d->dv_cfattach->ca_rescan))
817 continue;
818
819 for (cf1 = cf; cf1->cf_name; cf1++) {
820
821 if (!cfparent_match(d, cf1->cf_pspec))
822 continue;
823
824 (*d->dv_cfattach->ca_rescan)(d,
825 cfdata_ifattr(cf1), cf1->cf_loc);
826
827 config_deferred(d);
828 }
829 }
830 deviter_release(&di);
831 }
832
833 /*
834 * Attach a supplemental config data table and rescan potential
835 * parent devices if required.
836 */
837 int
838 config_cfdata_attach(cfdata_t cf, int scannow)
839 {
840 struct cftable *ct;
841
842 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
843 ct->ct_cfdata = cf;
844 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
845
846 if (scannow)
847 rescan_with_cfdata(cf);
848
849 return 0;
850 }
851
852 /*
853 * Helper for config_cfdata_detach: check whether a device is
854 * found through any attachment in the config data table.
855 */
856 static int
857 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
858 {
859 const struct cfdata *cf1;
860
861 for (cf1 = cf; cf1->cf_name; cf1++)
862 if (d->dv_cfdata == cf1)
863 return 1;
864
865 return 0;
866 }
867
868 /*
869 * Detach a supplemental config data table. Detach all devices found
870 * through that table (and thus keeping references to it) before.
871 */
872 int
873 config_cfdata_detach(cfdata_t cf)
874 {
875 device_t d;
876 int error = 0;
877 struct cftable *ct;
878 deviter_t di;
879
880 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
881 d = deviter_next(&di)) {
882 if (!dev_in_cfdata(d, cf))
883 continue;
884 if ((error = config_detach(d, 0)) != 0)
885 break;
886 }
887 deviter_release(&di);
888 if (error) {
889 aprint_error_dev(d, "unable to detach instance\n");
890 return error;
891 }
892
893 TAILQ_FOREACH(ct, &allcftables, ct_list) {
894 if (ct->ct_cfdata == cf) {
895 TAILQ_REMOVE(&allcftables, ct, ct_list);
896 kmem_free(ct, sizeof(*ct));
897 return 0;
898 }
899 }
900
901 /* not found -- shouldn't happen */
902 return EINVAL;
903 }
904
905 /*
906 * Invoke the "match" routine for a cfdata entry on behalf of
907 * an external caller, usually a "submatch" routine.
908 */
909 int
910 config_match(device_t parent, cfdata_t cf, void *aux)
911 {
912 struct cfattach *ca;
913
914 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
915 if (ca == NULL) {
916 /* No attachment for this entry, oh well. */
917 return 0;
918 }
919
920 return (*ca->ca_match)(parent, cf, aux);
921 }
922
923 /*
924 * Iterate over all potential children of some device, calling the given
925 * function (default being the child's match function) for each one.
926 * Nonzero returns are matches; the highest value returned is considered
927 * the best match. Return the `found child' if we got a match, or NULL
928 * otherwise. The `aux' pointer is simply passed on through.
929 *
930 * Note that this function is designed so that it can be used to apply
931 * an arbitrary function to all potential children (its return value
932 * can be ignored).
933 */
934 cfdata_t
935 config_search_loc(cfsubmatch_t fn, device_t parent,
936 const char *ifattr, const int *locs, void *aux)
937 {
938 struct cftable *ct;
939 cfdata_t cf;
940 struct matchinfo m;
941
942 KASSERT(config_initialized);
943 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
944
945 m.fn = fn;
946 m.parent = parent;
947 m.locs = locs;
948 m.aux = aux;
949 m.match = NULL;
950 m.pri = 0;
951
952 TAILQ_FOREACH(ct, &allcftables, ct_list) {
953 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
954
955 /* We don't match root nodes here. */
956 if (!cf->cf_pspec)
957 continue;
958
959 /*
960 * Skip cf if no longer eligible, otherwise scan
961 * through parents for one matching `parent', and
962 * try match function.
963 */
964 if (cf->cf_fstate == FSTATE_FOUND)
965 continue;
966 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
967 cf->cf_fstate == FSTATE_DSTAR)
968 continue;
969
970 /*
971 * If an interface attribute was specified,
972 * consider only children which attach to
973 * that attribute.
974 */
975 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
976 continue;
977
978 if (cfparent_match(parent, cf->cf_pspec))
979 mapply(&m, cf);
980 }
981 }
982 return m.match;
983 }
984
985 cfdata_t
986 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
987 void *aux)
988 {
989
990 return config_search_loc(fn, parent, ifattr, NULL, aux);
991 }
992
993 /*
994 * Find the given root device.
995 * This is much like config_search, but there is no parent.
996 * Don't bother with multiple cfdata tables; the root node
997 * must always be in the initial table.
998 */
999 cfdata_t
1000 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1001 {
1002 cfdata_t cf;
1003 const short *p;
1004 struct matchinfo m;
1005
1006 m.fn = fn;
1007 m.parent = ROOT;
1008 m.aux = aux;
1009 m.match = NULL;
1010 m.pri = 0;
1011 m.locs = 0;
1012 /*
1013 * Look at root entries for matching name. We do not bother
1014 * with found-state here since only one root should ever be
1015 * searched (and it must be done first).
1016 */
1017 for (p = cfroots; *p >= 0; p++) {
1018 cf = &cfdata[*p];
1019 if (strcmp(cf->cf_name, rootname) == 0)
1020 mapply(&m, cf);
1021 }
1022 return m.match;
1023 }
1024
1025 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1026
1027 /*
1028 * The given `aux' argument describes a device that has been found
1029 * on the given parent, but not necessarily configured. Locate the
1030 * configuration data for that device (using the submatch function
1031 * provided, or using candidates' cd_match configuration driver
1032 * functions) and attach it, and return true. If the device was
1033 * not configured, call the given `print' function and return 0.
1034 */
1035 device_t
1036 config_found_sm_loc(device_t parent,
1037 const char *ifattr, const int *locs, void *aux,
1038 cfprint_t print, cfsubmatch_t submatch)
1039 {
1040 cfdata_t cf;
1041
1042 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1043 return(config_attach_loc(parent, cf, locs, aux, print));
1044 if (print) {
1045 if (config_do_twiddle && cold)
1046 twiddle();
1047 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1048 }
1049
1050 return NULL;
1051 }
1052
1053 device_t
1054 config_found_ia(device_t parent, const char *ifattr, void *aux,
1055 cfprint_t print)
1056 {
1057
1058 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1059 }
1060
1061 device_t
1062 config_found(device_t parent, void *aux, cfprint_t print)
1063 {
1064
1065 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1066 }
1067
1068 /*
1069 * As above, but for root devices.
1070 */
1071 device_t
1072 config_rootfound(const char *rootname, void *aux)
1073 {
1074 cfdata_t cf;
1075
1076 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1077 return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
1078 aprint_error("root device %s not configured\n", rootname);
1079 return NULL;
1080 }
1081
1082 /* just like sprintf(buf, "%d") except that it works from the end */
1083 static char *
1084 number(char *ep, int n)
1085 {
1086
1087 *--ep = 0;
1088 while (n >= 10) {
1089 *--ep = (n % 10) + '0';
1090 n /= 10;
1091 }
1092 *--ep = n + '0';
1093 return ep;
1094 }
1095
1096 /*
1097 * Expand the size of the cd_devs array if necessary.
1098 *
1099 * The caller must hold alldevs_mtx. config_makeroom() may release and
1100 * re-acquire alldevs_mtx, so callers should re-check conditions such
1101 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1102 * returns.
1103 */
1104 static void
1105 config_makeroom(int n, struct cfdriver *cd)
1106 {
1107 int old, new;
1108 device_t *osp, *nsp;
1109
1110 alldevs_nwrite++;
1111
1112 for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
1113 ;
1114
1115 while (n >= cd->cd_ndevs) {
1116 /*
1117 * Need to expand the array.
1118 */
1119 old = cd->cd_ndevs;
1120 osp = cd->cd_devs;
1121
1122 /* Release alldevs_mtx around allocation, which may
1123 * sleep.
1124 */
1125 mutex_exit(&alldevs_mtx);
1126 nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
1127 if (nsp == NULL)
1128 panic("%s: could not expand cd_devs", __func__);
1129 mutex_enter(&alldevs_mtx);
1130
1131 /* If another thread moved the array while we did
1132 * not hold alldevs_mtx, try again.
1133 */
1134 if (cd->cd_devs != osp) {
1135 mutex_exit(&alldevs_mtx);
1136 kmem_free(nsp, sizeof(device_t[new]));
1137 mutex_enter(&alldevs_mtx);
1138 continue;
1139 }
1140
1141 memset(nsp + old, 0, sizeof(device_t[new - old]));
1142 if (old != 0)
1143 memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
1144
1145 cd->cd_ndevs = new;
1146 cd->cd_devs = nsp;
1147 if (old != 0) {
1148 mutex_exit(&alldevs_mtx);
1149 kmem_free(osp, sizeof(device_t[old]));
1150 mutex_enter(&alldevs_mtx);
1151 }
1152 }
1153 alldevs_nwrite--;
1154 }
1155
1156 /*
1157 * Put dev into the devices list.
1158 */
1159 static void
1160 config_devlink(device_t dev)
1161 {
1162 int s;
1163
1164 s = config_alldevs_lock();
1165
1166 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1167
1168 dev->dv_add_gen = alldevs_gen;
1169 /* It is safe to add a device to the tail of the list while
1170 * readers and writers are in the list.
1171 */
1172 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1173 config_alldevs_unlock(s);
1174 }
1175
1176 static void
1177 config_devfree(device_t dev)
1178 {
1179 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1180
1181 if (dev->dv_cfattach->ca_devsize > 0)
1182 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1183 if (priv)
1184 kmem_free(dev, sizeof(*dev));
1185 }
1186
1187 /*
1188 * Caller must hold alldevs_mtx.
1189 */
1190 static void
1191 config_devunlink(device_t dev, struct devicelist *garbage)
1192 {
1193 struct device_garbage *dg = &dev->dv_garbage;
1194 cfdriver_t cd = device_cfdriver(dev);
1195 int i;
1196
1197 KASSERT(mutex_owned(&alldevs_mtx));
1198
1199 /* Unlink from device list. Link to garbage list. */
1200 TAILQ_REMOVE(&alldevs, dev, dv_list);
1201 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1202
1203 /* Remove from cfdriver's array. */
1204 cd->cd_devs[dev->dv_unit] = NULL;
1205
1206 /*
1207 * If the device now has no units in use, unlink its softc array.
1208 */
1209 for (i = 0; i < cd->cd_ndevs; i++) {
1210 if (cd->cd_devs[i] != NULL)
1211 break;
1212 }
1213 /* Nothing found. Unlink, now. Deallocate, later. */
1214 if (i == cd->cd_ndevs) {
1215 dg->dg_ndevs = cd->cd_ndevs;
1216 dg->dg_devs = cd->cd_devs;
1217 cd->cd_devs = NULL;
1218 cd->cd_ndevs = 0;
1219 }
1220 }
1221
1222 static void
1223 config_devdelete(device_t dev)
1224 {
1225 struct device_garbage *dg = &dev->dv_garbage;
1226 device_lock_t dvl = device_getlock(dev);
1227
1228 if (dg->dg_devs != NULL)
1229 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1230
1231 cv_destroy(&dvl->dvl_cv);
1232 mutex_destroy(&dvl->dvl_mtx);
1233
1234 KASSERT(dev->dv_properties != NULL);
1235 prop_object_release(dev->dv_properties);
1236
1237 if (dev->dv_activity_handlers)
1238 panic("%s with registered handlers", __func__);
1239
1240 if (dev->dv_locators) {
1241 size_t amount = *--dev->dv_locators;
1242 kmem_free(dev->dv_locators, amount);
1243 }
1244
1245 config_devfree(dev);
1246 }
1247
1248 static int
1249 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1250 {
1251 int unit;
1252
1253 if (cf->cf_fstate == FSTATE_STAR) {
1254 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1255 if (cd->cd_devs[unit] == NULL)
1256 break;
1257 /*
1258 * unit is now the unit of the first NULL device pointer,
1259 * or max(cd->cd_ndevs,cf->cf_unit).
1260 */
1261 } else {
1262 unit = cf->cf_unit;
1263 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1264 unit = -1;
1265 }
1266 return unit;
1267 }
1268
1269 static int
1270 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1271 {
1272 struct alldevs_foray af;
1273 int unit;
1274
1275 config_alldevs_enter(&af);
1276 for (;;) {
1277 unit = config_unit_nextfree(cd, cf);
1278 if (unit == -1)
1279 break;
1280 if (unit < cd->cd_ndevs) {
1281 cd->cd_devs[unit] = dev;
1282 dev->dv_unit = unit;
1283 break;
1284 }
1285 config_makeroom(unit, cd);
1286 }
1287 config_alldevs_exit(&af);
1288
1289 return unit;
1290 }
1291
1292 static device_t
1293 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1294 {
1295 cfdriver_t cd;
1296 cfattach_t ca;
1297 size_t lname, lunit;
1298 const char *xunit;
1299 int myunit;
1300 char num[10];
1301 device_t dev;
1302 void *dev_private;
1303 const struct cfiattrdata *ia;
1304 device_lock_t dvl;
1305
1306 cd = config_cfdriver_lookup(cf->cf_name);
1307 if (cd == NULL)
1308 return NULL;
1309
1310 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1311 if (ca == NULL)
1312 return NULL;
1313
1314 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1315 ca->ca_devsize < sizeof(struct device))
1316 panic("config_devalloc: %s", cf->cf_atname);
1317
1318 /* get memory for all device vars */
1319 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1320 if (ca->ca_devsize > 0) {
1321 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1322 if (dev_private == NULL)
1323 panic("config_devalloc: memory allocation for device softc failed");
1324 } else {
1325 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1326 dev_private = NULL;
1327 }
1328
1329 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1330 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1331 } else {
1332 dev = dev_private;
1333 }
1334 if (dev == NULL)
1335 panic("config_devalloc: memory allocation for device_t failed");
1336
1337 dev->dv_class = cd->cd_class;
1338 dev->dv_cfdata = cf;
1339 dev->dv_cfdriver = cd;
1340 dev->dv_cfattach = ca;
1341 dev->dv_activity_count = 0;
1342 dev->dv_activity_handlers = NULL;
1343 dev->dv_private = dev_private;
1344 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1345
1346 myunit = config_unit_alloc(dev, cd, cf);
1347 if (myunit == -1) {
1348 config_devfree(dev);
1349 return NULL;
1350 }
1351
1352 /* compute length of name and decimal expansion of unit number */
1353 lname = strlen(cd->cd_name);
1354 xunit = number(&num[sizeof(num)], myunit);
1355 lunit = &num[sizeof(num)] - xunit;
1356 if (lname + lunit > sizeof(dev->dv_xname))
1357 panic("config_devalloc: device name too long");
1358
1359 dvl = device_getlock(dev);
1360
1361 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1362 cv_init(&dvl->dvl_cv, "pmfsusp");
1363
1364 memcpy(dev->dv_xname, cd->cd_name, lname);
1365 memcpy(dev->dv_xname + lname, xunit, lunit);
1366 dev->dv_parent = parent;
1367 if (parent != NULL)
1368 dev->dv_depth = parent->dv_depth + 1;
1369 else
1370 dev->dv_depth = 0;
1371 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1372 if (locs) {
1373 KASSERT(parent); /* no locators at root */
1374 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1375 dev->dv_locators =
1376 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1377 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1378 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1379 }
1380 dev->dv_properties = prop_dictionary_create();
1381 KASSERT(dev->dv_properties != NULL);
1382
1383 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1384 "device-driver", dev->dv_cfdriver->cd_name);
1385 prop_dictionary_set_uint16(dev->dv_properties,
1386 "device-unit", dev->dv_unit);
1387
1388 return dev;
1389 }
1390
1391 /*
1392 * Attach a found device.
1393 */
1394 device_t
1395 config_attach_loc(device_t parent, cfdata_t cf,
1396 const int *locs, void *aux, cfprint_t print)
1397 {
1398 device_t dev;
1399 struct cftable *ct;
1400 const char *drvname;
1401
1402 dev = config_devalloc(parent, cf, locs);
1403 if (!dev)
1404 panic("config_attach: allocation of device softc failed");
1405
1406 /* XXX redundant - see below? */
1407 if (cf->cf_fstate != FSTATE_STAR) {
1408 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1409 cf->cf_fstate = FSTATE_FOUND;
1410 }
1411
1412 config_devlink(dev);
1413
1414 if (config_do_twiddle && cold)
1415 twiddle();
1416 else
1417 aprint_naive("Found ");
1418 /*
1419 * We want the next two printfs for normal, verbose, and quiet,
1420 * but not silent (in which case, we're twiddling, instead).
1421 */
1422 if (parent == ROOT) {
1423 aprint_naive("%s (root)", device_xname(dev));
1424 aprint_normal("%s (root)", device_xname(dev));
1425 } else {
1426 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1427 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1428 if (print)
1429 (void) (*print)(aux, NULL);
1430 }
1431
1432 /*
1433 * Before attaching, clobber any unfound devices that are
1434 * otherwise identical.
1435 * XXX code above is redundant?
1436 */
1437 drvname = dev->dv_cfdriver->cd_name;
1438 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1439 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1440 if (STREQ(cf->cf_name, drvname) &&
1441 cf->cf_unit == dev->dv_unit) {
1442 if (cf->cf_fstate == FSTATE_NOTFOUND)
1443 cf->cf_fstate = FSTATE_FOUND;
1444 }
1445 }
1446 }
1447 device_register(dev, aux);
1448
1449 /* Let userland know */
1450 devmon_report_device(dev, true);
1451
1452 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1453
1454 if (!device_pmf_is_registered(dev))
1455 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1456
1457 config_process_deferred(&deferred_config_queue, dev);
1458
1459 device_register_post_config(dev, aux);
1460 return dev;
1461 }
1462
1463 device_t
1464 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1465 {
1466
1467 return config_attach_loc(parent, cf, NULL, aux, print);
1468 }
1469
1470 /*
1471 * As above, but for pseudo-devices. Pseudo-devices attached in this
1472 * way are silently inserted into the device tree, and their children
1473 * attached.
1474 *
1475 * Note that because pseudo-devices are attached silently, any information
1476 * the attach routine wishes to print should be prefixed with the device
1477 * name by the attach routine.
1478 */
1479 device_t
1480 config_attach_pseudo(cfdata_t cf)
1481 {
1482 device_t dev;
1483
1484 dev = config_devalloc(ROOT, cf, NULL);
1485 if (!dev)
1486 return NULL;
1487
1488 /* XXX mark busy in cfdata */
1489
1490 if (cf->cf_fstate != FSTATE_STAR) {
1491 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1492 cf->cf_fstate = FSTATE_FOUND;
1493 }
1494
1495 config_devlink(dev);
1496
1497 #if 0 /* XXXJRT not yet */
1498 device_register(dev, NULL); /* like a root node */
1499 #endif
1500 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1501 config_process_deferred(&deferred_config_queue, dev);
1502 return dev;
1503 }
1504
1505 /*
1506 * Caller must hold alldevs_mtx.
1507 */
1508 static void
1509 config_collect_garbage(struct devicelist *garbage)
1510 {
1511 device_t dv;
1512
1513 KASSERT(!cpu_intr_p());
1514 KASSERT(!cpu_softintr_p());
1515 KASSERT(mutex_owned(&alldevs_mtx));
1516
1517 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1518 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1519 if (dv->dv_del_gen != 0)
1520 break;
1521 }
1522 if (dv == NULL) {
1523 alldevs_garbage = false;
1524 break;
1525 }
1526 config_devunlink(dv, garbage);
1527 }
1528 KASSERT(mutex_owned(&alldevs_mtx));
1529 }
1530
1531 static void
1532 config_dump_garbage(struct devicelist *garbage)
1533 {
1534 device_t dv;
1535
1536 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1537 TAILQ_REMOVE(garbage, dv, dv_list);
1538 config_devdelete(dv);
1539 }
1540 }
1541
1542 /*
1543 * Detach a device. Optionally forced (e.g. because of hardware
1544 * removal) and quiet. Returns zero if successful, non-zero
1545 * (an error code) otherwise.
1546 *
1547 * Note that this code wants to be run from a process context, so
1548 * that the detach can sleep to allow processes which have a device
1549 * open to run and unwind their stacks.
1550 */
1551 int
1552 config_detach(device_t dev, int flags)
1553 {
1554 struct alldevs_foray af;
1555 struct cftable *ct;
1556 cfdata_t cf;
1557 const struct cfattach *ca;
1558 struct cfdriver *cd;
1559 #ifdef DIAGNOSTIC
1560 device_t d;
1561 #endif
1562 int rv = 0, s;
1563
1564 #ifdef DIAGNOSTIC
1565 cf = dev->dv_cfdata;
1566 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1567 cf->cf_fstate != FSTATE_STAR)
1568 panic("config_detach: %s: bad device fstate %d",
1569 device_xname(dev), cf ? cf->cf_fstate : -1);
1570 #endif
1571 cd = dev->dv_cfdriver;
1572 KASSERT(cd != NULL);
1573
1574 ca = dev->dv_cfattach;
1575 KASSERT(ca != NULL);
1576
1577 s = config_alldevs_lock();
1578 if (dev->dv_del_gen != 0) {
1579 config_alldevs_unlock(s);
1580 #ifdef DIAGNOSTIC
1581 printf("%s: %s is already detached\n", __func__,
1582 device_xname(dev));
1583 #endif /* DIAGNOSTIC */
1584 return ENOENT;
1585 }
1586 alldevs_nwrite++;
1587 config_alldevs_unlock(s);
1588
1589 if (!detachall &&
1590 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1591 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1592 rv = EOPNOTSUPP;
1593 } else if (ca->ca_detach != NULL) {
1594 rv = (*ca->ca_detach)(dev, flags);
1595 } else
1596 rv = EOPNOTSUPP;
1597
1598 /*
1599 * If it was not possible to detach the device, then we either
1600 * panic() (for the forced but failed case), or return an error.
1601 *
1602 * If it was possible to detach the device, ensure that the
1603 * device is deactivated.
1604 */
1605 if (rv == 0)
1606 dev->dv_flags &= ~DVF_ACTIVE;
1607 else if ((flags & DETACH_FORCE) == 0)
1608 goto out;
1609 else {
1610 panic("config_detach: forced detach of %s failed (%d)",
1611 device_xname(dev), rv);
1612 }
1613
1614 /*
1615 * The device has now been successfully detached.
1616 */
1617
1618 /* Let userland know */
1619 devmon_report_device(dev, false);
1620
1621 #ifdef DIAGNOSTIC
1622 /*
1623 * Sanity: If you're successfully detached, you should have no
1624 * children. (Note that because children must be attached
1625 * after parents, we only need to search the latter part of
1626 * the list.)
1627 */
1628 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1629 d = TAILQ_NEXT(d, dv_list)) {
1630 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1631 printf("config_detach: detached device %s"
1632 " has children %s\n", device_xname(dev), device_xname(d));
1633 panic("config_detach");
1634 }
1635 }
1636 #endif
1637
1638 /* notify the parent that the child is gone */
1639 if (dev->dv_parent) {
1640 device_t p = dev->dv_parent;
1641 if (p->dv_cfattach->ca_childdetached)
1642 (*p->dv_cfattach->ca_childdetached)(p, dev);
1643 }
1644
1645 /*
1646 * Mark cfdata to show that the unit can be reused, if possible.
1647 */
1648 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1649 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1650 if (STREQ(cf->cf_name, cd->cd_name)) {
1651 if (cf->cf_fstate == FSTATE_FOUND &&
1652 cf->cf_unit == dev->dv_unit)
1653 cf->cf_fstate = FSTATE_NOTFOUND;
1654 }
1655 }
1656 }
1657
1658 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1659 aprint_normal_dev(dev, "detached\n");
1660
1661 out:
1662 config_alldevs_enter(&af);
1663 KASSERT(alldevs_nwrite != 0);
1664 --alldevs_nwrite;
1665 if (rv == 0 && dev->dv_del_gen == 0) {
1666 if (alldevs_nwrite == 0 && alldevs_nread == 0)
1667 config_devunlink(dev, &af.af_garbage);
1668 else {
1669 dev->dv_del_gen = alldevs_gen;
1670 alldevs_garbage = true;
1671 }
1672 }
1673 config_alldevs_exit(&af);
1674
1675 return rv;
1676 }
1677
1678 int
1679 config_detach_children(device_t parent, int flags)
1680 {
1681 device_t dv;
1682 deviter_t di;
1683 int error = 0;
1684
1685 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1686 dv = deviter_next(&di)) {
1687 if (device_parent(dv) != parent)
1688 continue;
1689 if ((error = config_detach(dv, flags)) != 0)
1690 break;
1691 }
1692 deviter_release(&di);
1693 return error;
1694 }
1695
1696 device_t
1697 shutdown_first(struct shutdown_state *s)
1698 {
1699 if (!s->initialized) {
1700 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1701 s->initialized = true;
1702 }
1703 return shutdown_next(s);
1704 }
1705
1706 device_t
1707 shutdown_next(struct shutdown_state *s)
1708 {
1709 device_t dv;
1710
1711 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1712 ;
1713
1714 if (dv == NULL)
1715 s->initialized = false;
1716
1717 return dv;
1718 }
1719
1720 bool
1721 config_detach_all(int how)
1722 {
1723 static struct shutdown_state s;
1724 device_t curdev;
1725 bool progress = false;
1726
1727 if ((how & RB_NOSYNC) != 0)
1728 return false;
1729
1730 for (curdev = shutdown_first(&s); curdev != NULL;
1731 curdev = shutdown_next(&s)) {
1732 aprint_debug(" detaching %s, ", device_xname(curdev));
1733 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1734 progress = true;
1735 aprint_debug("success.");
1736 } else
1737 aprint_debug("failed.");
1738 }
1739 return progress;
1740 }
1741
1742 static bool
1743 device_is_ancestor_of(device_t ancestor, device_t descendant)
1744 {
1745 device_t dv;
1746
1747 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1748 if (device_parent(dv) == ancestor)
1749 return true;
1750 }
1751 return false;
1752 }
1753
1754 int
1755 config_deactivate(device_t dev)
1756 {
1757 deviter_t di;
1758 const struct cfattach *ca;
1759 device_t descendant;
1760 int s, rv = 0, oflags;
1761
1762 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1763 descendant != NULL;
1764 descendant = deviter_next(&di)) {
1765 if (dev != descendant &&
1766 !device_is_ancestor_of(dev, descendant))
1767 continue;
1768
1769 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1770 continue;
1771
1772 ca = descendant->dv_cfattach;
1773 oflags = descendant->dv_flags;
1774
1775 descendant->dv_flags &= ~DVF_ACTIVE;
1776 if (ca->ca_activate == NULL)
1777 continue;
1778 s = splhigh();
1779 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1780 splx(s);
1781 if (rv != 0)
1782 descendant->dv_flags = oflags;
1783 }
1784 deviter_release(&di);
1785 return rv;
1786 }
1787
1788 /*
1789 * Defer the configuration of the specified device until all
1790 * of its parent's devices have been attached.
1791 */
1792 void
1793 config_defer(device_t dev, void (*func)(device_t))
1794 {
1795 struct deferred_config *dc;
1796
1797 if (dev->dv_parent == NULL)
1798 panic("config_defer: can't defer config of a root device");
1799
1800 #ifdef DIAGNOSTIC
1801 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1802 if (dc->dc_dev == dev)
1803 panic("config_defer: deferred twice");
1804 }
1805 #endif
1806
1807 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1808 if (dc == NULL)
1809 panic("config_defer: unable to allocate callback");
1810
1811 dc->dc_dev = dev;
1812 dc->dc_func = func;
1813 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1814 config_pending_incr();
1815 }
1816
1817 /*
1818 * Defer some autoconfiguration for a device until after interrupts
1819 * are enabled.
1820 */
1821 void
1822 config_interrupts(device_t dev, void (*func)(device_t))
1823 {
1824 struct deferred_config *dc;
1825
1826 /*
1827 * If interrupts are enabled, callback now.
1828 */
1829 if (cold == 0) {
1830 (*func)(dev);
1831 return;
1832 }
1833
1834 #ifdef DIAGNOSTIC
1835 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1836 if (dc->dc_dev == dev)
1837 panic("config_interrupts: deferred twice");
1838 }
1839 #endif
1840
1841 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1842 if (dc == NULL)
1843 panic("config_interrupts: unable to allocate callback");
1844
1845 dc->dc_dev = dev;
1846 dc->dc_func = func;
1847 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1848 config_pending_incr();
1849 }
1850
1851 /*
1852 * Defer some autoconfiguration for a device until after root file system
1853 * is mounted (to load firmware etc).
1854 */
1855 void
1856 config_mountroot(device_t dev, void (*func)(device_t))
1857 {
1858 struct deferred_config *dc;
1859
1860 /*
1861 * If root file system is mounted, callback now.
1862 */
1863 if (root_is_mounted) {
1864 (*func)(dev);
1865 return;
1866 }
1867
1868 #ifdef DIAGNOSTIC
1869 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
1870 if (dc->dc_dev == dev)
1871 panic("%s: deferred twice", __func__);
1872 }
1873 #endif
1874
1875 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1876 if (dc == NULL)
1877 panic("%s: unable to allocate callback", __func__);
1878
1879 dc->dc_dev = dev;
1880 dc->dc_func = func;
1881 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
1882 }
1883
1884 /*
1885 * Process a deferred configuration queue.
1886 */
1887 static void
1888 config_process_deferred(struct deferred_config_head *queue,
1889 device_t parent)
1890 {
1891 struct deferred_config *dc, *ndc;
1892
1893 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1894 ndc = TAILQ_NEXT(dc, dc_queue);
1895 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1896 TAILQ_REMOVE(queue, dc, dc_queue);
1897 (*dc->dc_func)(dc->dc_dev);
1898 kmem_free(dc, sizeof(*dc));
1899 config_pending_decr();
1900 }
1901 }
1902 }
1903
1904 /*
1905 * Manipulate the config_pending semaphore.
1906 */
1907 void
1908 config_pending_incr(void)
1909 {
1910
1911 mutex_enter(&config_misc_lock);
1912 config_pending++;
1913 mutex_exit(&config_misc_lock);
1914 }
1915
1916 void
1917 config_pending_decr(void)
1918 {
1919
1920 #ifdef DIAGNOSTIC
1921 if (config_pending == 0)
1922 panic("config_pending_decr: config_pending == 0");
1923 #endif
1924 mutex_enter(&config_misc_lock);
1925 config_pending--;
1926 if (config_pending == 0)
1927 cv_broadcast(&config_misc_cv);
1928 mutex_exit(&config_misc_lock);
1929 }
1930
1931 /*
1932 * Register a "finalization" routine. Finalization routines are
1933 * called iteratively once all real devices have been found during
1934 * autoconfiguration, for as long as any one finalizer has done
1935 * any work.
1936 */
1937 int
1938 config_finalize_register(device_t dev, int (*fn)(device_t))
1939 {
1940 struct finalize_hook *f;
1941
1942 /*
1943 * If finalization has already been done, invoke the
1944 * callback function now.
1945 */
1946 if (config_finalize_done) {
1947 while ((*fn)(dev) != 0)
1948 /* loop */ ;
1949 }
1950
1951 /* Ensure this isn't already on the list. */
1952 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1953 if (f->f_func == fn && f->f_dev == dev)
1954 return EEXIST;
1955 }
1956
1957 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1958 f->f_func = fn;
1959 f->f_dev = dev;
1960 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1961
1962 return 0;
1963 }
1964
1965 void
1966 config_finalize(void)
1967 {
1968 struct finalize_hook *f;
1969 struct pdevinit *pdev;
1970 extern struct pdevinit pdevinit[];
1971 int errcnt, rv;
1972
1973 /*
1974 * Now that device driver threads have been created, wait for
1975 * them to finish any deferred autoconfiguration.
1976 */
1977 mutex_enter(&config_misc_lock);
1978 while (config_pending != 0)
1979 cv_wait(&config_misc_cv, &config_misc_lock);
1980 mutex_exit(&config_misc_lock);
1981
1982 KERNEL_LOCK(1, NULL);
1983
1984 /* Attach pseudo-devices. */
1985 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1986 (*pdev->pdev_attach)(pdev->pdev_count);
1987
1988 /* Run the hooks until none of them does any work. */
1989 do {
1990 rv = 0;
1991 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1992 rv |= (*f->f_func)(f->f_dev);
1993 } while (rv != 0);
1994
1995 config_finalize_done = 1;
1996
1997 /* Now free all the hooks. */
1998 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
1999 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2000 kmem_free(f, sizeof(*f));
2001 }
2002
2003 KERNEL_UNLOCK_ONE(NULL);
2004
2005 errcnt = aprint_get_error_count();
2006 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2007 (boothowto & AB_VERBOSE) == 0) {
2008 mutex_enter(&config_misc_lock);
2009 if (config_do_twiddle) {
2010 config_do_twiddle = 0;
2011 printf_nolog(" done.\n");
2012 }
2013 mutex_exit(&config_misc_lock);
2014 if (errcnt != 0) {
2015 printf("WARNING: %d error%s while detecting hardware; "
2016 "check system log.\n", errcnt,
2017 errcnt == 1 ? "" : "s");
2018 }
2019 }
2020 }
2021
2022 void
2023 config_twiddle_init()
2024 {
2025
2026 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2027 config_do_twiddle = 1;
2028 }
2029 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2030 }
2031
2032 void
2033 config_twiddle_fn(void *cookie)
2034 {
2035
2036 mutex_enter(&config_misc_lock);
2037 if (config_do_twiddle) {
2038 twiddle();
2039 callout_schedule(&config_twiddle_ch, mstohz(100));
2040 }
2041 mutex_exit(&config_misc_lock);
2042 }
2043
2044 static int
2045 config_alldevs_lock(void)
2046 {
2047 mutex_enter(&alldevs_mtx);
2048 return 0;
2049 }
2050
2051 static void
2052 config_alldevs_enter(struct alldevs_foray *af)
2053 {
2054 TAILQ_INIT(&af->af_garbage);
2055 af->af_s = config_alldevs_lock();
2056 config_collect_garbage(&af->af_garbage);
2057 }
2058
2059 static void
2060 config_alldevs_exit(struct alldevs_foray *af)
2061 {
2062 config_alldevs_unlock(af->af_s);
2063 config_dump_garbage(&af->af_garbage);
2064 }
2065
2066 /*ARGSUSED*/
2067 static void
2068 config_alldevs_unlock(int s)
2069 {
2070 mutex_exit(&alldevs_mtx);
2071 }
2072
2073 /*
2074 * device_lookup:
2075 *
2076 * Look up a device instance for a given driver.
2077 */
2078 device_t
2079 device_lookup(cfdriver_t cd, int unit)
2080 {
2081 device_t dv;
2082 int s;
2083
2084 s = config_alldevs_lock();
2085 KASSERT(mutex_owned(&alldevs_mtx));
2086 if (unit < 0 || unit >= cd->cd_ndevs)
2087 dv = NULL;
2088 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2089 dv = NULL;
2090 config_alldevs_unlock(s);
2091
2092 return dv;
2093 }
2094
2095 /*
2096 * device_lookup_private:
2097 *
2098 * Look up a softc instance for a given driver.
2099 */
2100 void *
2101 device_lookup_private(cfdriver_t cd, int unit)
2102 {
2103
2104 return device_private(device_lookup(cd, unit));
2105 }
2106
2107 /*
2108 * device_find_by_xname:
2109 *
2110 * Returns the device of the given name or NULL if it doesn't exist.
2111 */
2112 device_t
2113 device_find_by_xname(const char *name)
2114 {
2115 device_t dv;
2116 deviter_t di;
2117
2118 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2119 if (strcmp(device_xname(dv), name) == 0)
2120 break;
2121 }
2122 deviter_release(&di);
2123
2124 return dv;
2125 }
2126
2127 /*
2128 * device_find_by_driver_unit:
2129 *
2130 * Returns the device of the given driver name and unit or
2131 * NULL if it doesn't exist.
2132 */
2133 device_t
2134 device_find_by_driver_unit(const char *name, int unit)
2135 {
2136 struct cfdriver *cd;
2137
2138 if ((cd = config_cfdriver_lookup(name)) == NULL)
2139 return NULL;
2140 return device_lookup(cd, unit);
2141 }
2142
2143 /*
2144 * Power management related functions.
2145 */
2146
2147 bool
2148 device_pmf_is_registered(device_t dev)
2149 {
2150 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2151 }
2152
2153 bool
2154 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2155 {
2156 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2157 return true;
2158 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2159 return false;
2160 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2161 dev->dv_driver_suspend != NULL &&
2162 !(*dev->dv_driver_suspend)(dev, qual))
2163 return false;
2164
2165 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2166 return true;
2167 }
2168
2169 bool
2170 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2171 {
2172 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2173 return true;
2174 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2175 return false;
2176 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2177 dev->dv_driver_resume != NULL &&
2178 !(*dev->dv_driver_resume)(dev, qual))
2179 return false;
2180
2181 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2182 return true;
2183 }
2184
2185 bool
2186 device_pmf_driver_shutdown(device_t dev, int how)
2187 {
2188
2189 if (*dev->dv_driver_shutdown != NULL &&
2190 !(*dev->dv_driver_shutdown)(dev, how))
2191 return false;
2192 return true;
2193 }
2194
2195 bool
2196 device_pmf_driver_register(device_t dev,
2197 bool (*suspend)(device_t, const pmf_qual_t *),
2198 bool (*resume)(device_t, const pmf_qual_t *),
2199 bool (*shutdown)(device_t, int))
2200 {
2201 dev->dv_driver_suspend = suspend;
2202 dev->dv_driver_resume = resume;
2203 dev->dv_driver_shutdown = shutdown;
2204 dev->dv_flags |= DVF_POWER_HANDLERS;
2205 return true;
2206 }
2207
2208 static const char *
2209 curlwp_name(void)
2210 {
2211 if (curlwp->l_name != NULL)
2212 return curlwp->l_name;
2213 else
2214 return curlwp->l_proc->p_comm;
2215 }
2216
2217 void
2218 device_pmf_driver_deregister(device_t dev)
2219 {
2220 device_lock_t dvl = device_getlock(dev);
2221
2222 dev->dv_driver_suspend = NULL;
2223 dev->dv_driver_resume = NULL;
2224
2225 mutex_enter(&dvl->dvl_mtx);
2226 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2227 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2228 /* Wake a thread that waits for the lock. That
2229 * thread will fail to acquire the lock, and then
2230 * it will wake the next thread that waits for the
2231 * lock, or else it will wake us.
2232 */
2233 cv_signal(&dvl->dvl_cv);
2234 pmflock_debug(dev, __func__, __LINE__);
2235 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2236 pmflock_debug(dev, __func__, __LINE__);
2237 }
2238 mutex_exit(&dvl->dvl_mtx);
2239 }
2240
2241 bool
2242 device_pmf_driver_child_register(device_t dev)
2243 {
2244 device_t parent = device_parent(dev);
2245
2246 if (parent == NULL || parent->dv_driver_child_register == NULL)
2247 return true;
2248 return (*parent->dv_driver_child_register)(dev);
2249 }
2250
2251 void
2252 device_pmf_driver_set_child_register(device_t dev,
2253 bool (*child_register)(device_t))
2254 {
2255 dev->dv_driver_child_register = child_register;
2256 }
2257
2258 static void
2259 pmflock_debug(device_t dev, const char *func, int line)
2260 {
2261 device_lock_t dvl = device_getlock(dev);
2262
2263 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2264 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2265 dev->dv_flags);
2266 }
2267
2268 static bool
2269 device_pmf_lock1(device_t dev)
2270 {
2271 device_lock_t dvl = device_getlock(dev);
2272
2273 while (device_pmf_is_registered(dev) &&
2274 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2275 dvl->dvl_nwait++;
2276 pmflock_debug(dev, __func__, __LINE__);
2277 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2278 pmflock_debug(dev, __func__, __LINE__);
2279 dvl->dvl_nwait--;
2280 }
2281 if (!device_pmf_is_registered(dev)) {
2282 pmflock_debug(dev, __func__, __LINE__);
2283 /* We could not acquire the lock, but some other thread may
2284 * wait for it, also. Wake that thread.
2285 */
2286 cv_signal(&dvl->dvl_cv);
2287 return false;
2288 }
2289 dvl->dvl_nlock++;
2290 dvl->dvl_holder = curlwp;
2291 pmflock_debug(dev, __func__, __LINE__);
2292 return true;
2293 }
2294
2295 bool
2296 device_pmf_lock(device_t dev)
2297 {
2298 bool rc;
2299 device_lock_t dvl = device_getlock(dev);
2300
2301 mutex_enter(&dvl->dvl_mtx);
2302 rc = device_pmf_lock1(dev);
2303 mutex_exit(&dvl->dvl_mtx);
2304
2305 return rc;
2306 }
2307
2308 void
2309 device_pmf_unlock(device_t dev)
2310 {
2311 device_lock_t dvl = device_getlock(dev);
2312
2313 KASSERT(dvl->dvl_nlock > 0);
2314 mutex_enter(&dvl->dvl_mtx);
2315 if (--dvl->dvl_nlock == 0)
2316 dvl->dvl_holder = NULL;
2317 cv_signal(&dvl->dvl_cv);
2318 pmflock_debug(dev, __func__, __LINE__);
2319 mutex_exit(&dvl->dvl_mtx);
2320 }
2321
2322 device_lock_t
2323 device_getlock(device_t dev)
2324 {
2325 return &dev->dv_lock;
2326 }
2327
2328 void *
2329 device_pmf_bus_private(device_t dev)
2330 {
2331 return dev->dv_bus_private;
2332 }
2333
2334 bool
2335 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2336 {
2337 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2338 return true;
2339 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2340 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2341 return false;
2342 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2343 dev->dv_bus_suspend != NULL &&
2344 !(*dev->dv_bus_suspend)(dev, qual))
2345 return false;
2346
2347 dev->dv_flags |= DVF_BUS_SUSPENDED;
2348 return true;
2349 }
2350
2351 bool
2352 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2353 {
2354 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2355 return true;
2356 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2357 dev->dv_bus_resume != NULL &&
2358 !(*dev->dv_bus_resume)(dev, qual))
2359 return false;
2360
2361 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2362 return true;
2363 }
2364
2365 bool
2366 device_pmf_bus_shutdown(device_t dev, int how)
2367 {
2368
2369 if (*dev->dv_bus_shutdown != NULL &&
2370 !(*dev->dv_bus_shutdown)(dev, how))
2371 return false;
2372 return true;
2373 }
2374
2375 void
2376 device_pmf_bus_register(device_t dev, void *priv,
2377 bool (*suspend)(device_t, const pmf_qual_t *),
2378 bool (*resume)(device_t, const pmf_qual_t *),
2379 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2380 {
2381 dev->dv_bus_private = priv;
2382 dev->dv_bus_resume = resume;
2383 dev->dv_bus_suspend = suspend;
2384 dev->dv_bus_shutdown = shutdown;
2385 dev->dv_bus_deregister = deregister;
2386 }
2387
2388 void
2389 device_pmf_bus_deregister(device_t dev)
2390 {
2391 if (dev->dv_bus_deregister == NULL)
2392 return;
2393 (*dev->dv_bus_deregister)(dev);
2394 dev->dv_bus_private = NULL;
2395 dev->dv_bus_suspend = NULL;
2396 dev->dv_bus_resume = NULL;
2397 dev->dv_bus_deregister = NULL;
2398 }
2399
2400 void *
2401 device_pmf_class_private(device_t dev)
2402 {
2403 return dev->dv_class_private;
2404 }
2405
2406 bool
2407 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2408 {
2409 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2410 return true;
2411 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2412 dev->dv_class_suspend != NULL &&
2413 !(*dev->dv_class_suspend)(dev, qual))
2414 return false;
2415
2416 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2417 return true;
2418 }
2419
2420 bool
2421 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2422 {
2423 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2424 return true;
2425 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2426 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2427 return false;
2428 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2429 dev->dv_class_resume != NULL &&
2430 !(*dev->dv_class_resume)(dev, qual))
2431 return false;
2432
2433 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2434 return true;
2435 }
2436
2437 void
2438 device_pmf_class_register(device_t dev, void *priv,
2439 bool (*suspend)(device_t, const pmf_qual_t *),
2440 bool (*resume)(device_t, const pmf_qual_t *),
2441 void (*deregister)(device_t))
2442 {
2443 dev->dv_class_private = priv;
2444 dev->dv_class_suspend = suspend;
2445 dev->dv_class_resume = resume;
2446 dev->dv_class_deregister = deregister;
2447 }
2448
2449 void
2450 device_pmf_class_deregister(device_t dev)
2451 {
2452 if (dev->dv_class_deregister == NULL)
2453 return;
2454 (*dev->dv_class_deregister)(dev);
2455 dev->dv_class_private = NULL;
2456 dev->dv_class_suspend = NULL;
2457 dev->dv_class_resume = NULL;
2458 dev->dv_class_deregister = NULL;
2459 }
2460
2461 bool
2462 device_active(device_t dev, devactive_t type)
2463 {
2464 size_t i;
2465
2466 if (dev->dv_activity_count == 0)
2467 return false;
2468
2469 for (i = 0; i < dev->dv_activity_count; ++i) {
2470 if (dev->dv_activity_handlers[i] == NULL)
2471 break;
2472 (*dev->dv_activity_handlers[i])(dev, type);
2473 }
2474
2475 return true;
2476 }
2477
2478 bool
2479 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2480 {
2481 void (**new_handlers)(device_t, devactive_t);
2482 void (**old_handlers)(device_t, devactive_t);
2483 size_t i, old_size, new_size;
2484 int s;
2485
2486 old_handlers = dev->dv_activity_handlers;
2487 old_size = dev->dv_activity_count;
2488
2489 for (i = 0; i < old_size; ++i) {
2490 KASSERT(old_handlers[i] != handler);
2491 if (old_handlers[i] == NULL) {
2492 old_handlers[i] = handler;
2493 return true;
2494 }
2495 }
2496
2497 new_size = old_size + 4;
2498 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2499
2500 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2501 new_handlers[old_size] = handler;
2502 memset(new_handlers + old_size + 1, 0,
2503 sizeof(int [new_size - (old_size+1)]));
2504
2505 s = splhigh();
2506 dev->dv_activity_count = new_size;
2507 dev->dv_activity_handlers = new_handlers;
2508 splx(s);
2509
2510 if (old_handlers != NULL)
2511 kmem_free(old_handlers, sizeof(void * [old_size]));
2512
2513 return true;
2514 }
2515
2516 void
2517 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2518 {
2519 void (**old_handlers)(device_t, devactive_t);
2520 size_t i, old_size;
2521 int s;
2522
2523 old_handlers = dev->dv_activity_handlers;
2524 old_size = dev->dv_activity_count;
2525
2526 for (i = 0; i < old_size; ++i) {
2527 if (old_handlers[i] == handler)
2528 break;
2529 if (old_handlers[i] == NULL)
2530 return; /* XXX panic? */
2531 }
2532
2533 if (i == old_size)
2534 return; /* XXX panic? */
2535
2536 for (; i < old_size - 1; ++i) {
2537 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2538 continue;
2539
2540 if (i == 0) {
2541 s = splhigh();
2542 dev->dv_activity_count = 0;
2543 dev->dv_activity_handlers = NULL;
2544 splx(s);
2545 kmem_free(old_handlers, sizeof(void *[old_size]));
2546 }
2547 return;
2548 }
2549 old_handlers[i] = NULL;
2550 }
2551
2552 /* Return true iff the device_t `dev' exists at generation `gen'. */
2553 static bool
2554 device_exists_at(device_t dv, devgen_t gen)
2555 {
2556 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2557 dv->dv_add_gen <= gen;
2558 }
2559
2560 static bool
2561 deviter_visits(const deviter_t *di, device_t dv)
2562 {
2563 return device_exists_at(dv, di->di_gen);
2564 }
2565
2566 /*
2567 * Device Iteration
2568 *
2569 * deviter_t: a device iterator. Holds state for a "walk" visiting
2570 * each device_t's in the device tree.
2571 *
2572 * deviter_init(di, flags): initialize the device iterator `di'
2573 * to "walk" the device tree. deviter_next(di) will return
2574 * the first device_t in the device tree, or NULL if there are
2575 * no devices.
2576 *
2577 * `flags' is one or more of DEVITER_F_RW, indicating that the
2578 * caller intends to modify the device tree by calling
2579 * config_detach(9) on devices in the order that the iterator
2580 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2581 * nearest the "root" of the device tree to be returned, first;
2582 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2583 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2584 * indicating both that deviter_init() should not respect any
2585 * locks on the device tree, and that deviter_next(di) may run
2586 * in more than one LWP before the walk has finished.
2587 *
2588 * Only one DEVITER_F_RW iterator may be in the device tree at
2589 * once.
2590 *
2591 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2592 *
2593 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2594 * DEVITER_F_LEAVES_FIRST are used in combination.
2595 *
2596 * deviter_first(di, flags): initialize the device iterator `di'
2597 * and return the first device_t in the device tree, or NULL
2598 * if there are no devices. The statement
2599 *
2600 * dv = deviter_first(di);
2601 *
2602 * is shorthand for
2603 *
2604 * deviter_init(di);
2605 * dv = deviter_next(di);
2606 *
2607 * deviter_next(di): return the next device_t in the device tree,
2608 * or NULL if there are no more devices. deviter_next(di)
2609 * is undefined if `di' was not initialized with deviter_init() or
2610 * deviter_first().
2611 *
2612 * deviter_release(di): stops iteration (subsequent calls to
2613 * deviter_next() will return NULL), releases any locks and
2614 * resources held by the device iterator.
2615 *
2616 * Device iteration does not return device_t's in any particular
2617 * order. An iterator will never return the same device_t twice.
2618 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2619 * is called repeatedly on the same `di', it will eventually return
2620 * NULL. It is ok to attach/detach devices during device iteration.
2621 */
2622 void
2623 deviter_init(deviter_t *di, deviter_flags_t flags)
2624 {
2625 device_t dv;
2626 int s;
2627
2628 memset(di, 0, sizeof(*di));
2629
2630 s = config_alldevs_lock();
2631 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2632 flags |= DEVITER_F_RW;
2633
2634 if ((flags & DEVITER_F_RW) != 0)
2635 alldevs_nwrite++;
2636 else
2637 alldevs_nread++;
2638 di->di_gen = alldevs_gen++;
2639 config_alldevs_unlock(s);
2640
2641 di->di_flags = flags;
2642
2643 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2644 case DEVITER_F_LEAVES_FIRST:
2645 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2646 if (!deviter_visits(di, dv))
2647 continue;
2648 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2649 }
2650 break;
2651 case DEVITER_F_ROOT_FIRST:
2652 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2653 if (!deviter_visits(di, dv))
2654 continue;
2655 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2656 }
2657 break;
2658 default:
2659 break;
2660 }
2661
2662 deviter_reinit(di);
2663 }
2664
2665 static void
2666 deviter_reinit(deviter_t *di)
2667 {
2668 if ((di->di_flags & DEVITER_F_RW) != 0)
2669 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2670 else
2671 di->di_prev = TAILQ_FIRST(&alldevs);
2672 }
2673
2674 device_t
2675 deviter_first(deviter_t *di, deviter_flags_t flags)
2676 {
2677 deviter_init(di, flags);
2678 return deviter_next(di);
2679 }
2680
2681 static device_t
2682 deviter_next2(deviter_t *di)
2683 {
2684 device_t dv;
2685
2686 dv = di->di_prev;
2687
2688 if (dv == NULL)
2689 return NULL;
2690
2691 if ((di->di_flags & DEVITER_F_RW) != 0)
2692 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2693 else
2694 di->di_prev = TAILQ_NEXT(dv, dv_list);
2695
2696 return dv;
2697 }
2698
2699 static device_t
2700 deviter_next1(deviter_t *di)
2701 {
2702 device_t dv;
2703
2704 do {
2705 dv = deviter_next2(di);
2706 } while (dv != NULL && !deviter_visits(di, dv));
2707
2708 return dv;
2709 }
2710
2711 device_t
2712 deviter_next(deviter_t *di)
2713 {
2714 device_t dv = NULL;
2715
2716 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2717 case 0:
2718 return deviter_next1(di);
2719 case DEVITER_F_LEAVES_FIRST:
2720 while (di->di_curdepth >= 0) {
2721 if ((dv = deviter_next1(di)) == NULL) {
2722 di->di_curdepth--;
2723 deviter_reinit(di);
2724 } else if (dv->dv_depth == di->di_curdepth)
2725 break;
2726 }
2727 return dv;
2728 case DEVITER_F_ROOT_FIRST:
2729 while (di->di_curdepth <= di->di_maxdepth) {
2730 if ((dv = deviter_next1(di)) == NULL) {
2731 di->di_curdepth++;
2732 deviter_reinit(di);
2733 } else if (dv->dv_depth == di->di_curdepth)
2734 break;
2735 }
2736 return dv;
2737 default:
2738 return NULL;
2739 }
2740 }
2741
2742 void
2743 deviter_release(deviter_t *di)
2744 {
2745 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2746 int s;
2747
2748 s = config_alldevs_lock();
2749 if (rw)
2750 --alldevs_nwrite;
2751 else
2752 --alldevs_nread;
2753 /* XXX wake a garbage-collection thread */
2754 config_alldevs_unlock(s);
2755 }
2756
2757 const char *
2758 cfdata_ifattr(const struct cfdata *cf)
2759 {
2760 return cf->cf_pspec->cfp_iattr;
2761 }
2762
2763 bool
2764 ifattr_match(const char *snull, const char *t)
2765 {
2766 return (snull == NULL) || strcmp(snull, t) == 0;
2767 }
2768
2769 void
2770 null_childdetached(device_t self, device_t child)
2771 {
2772 /* do nothing */
2773 }
2774
2775 static void
2776 sysctl_detach_setup(struct sysctllog **clog)
2777 {
2778 const struct sysctlnode *node = NULL;
2779
2780 sysctl_createv(clog, 0, NULL, &node,
2781 CTLFLAG_PERMANENT,
2782 CTLTYPE_NODE, "kern", NULL,
2783 NULL, 0, NULL, 0,
2784 CTL_KERN, CTL_EOL);
2785
2786 if (node == NULL)
2787 return;
2788
2789 sysctl_createv(clog, 0, &node, NULL,
2790 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2791 CTLTYPE_BOOL, "detachall",
2792 SYSCTL_DESCR("Detach all devices at shutdown"),
2793 NULL, 0, &detachall, 0,
2794 CTL_CREATE, CTL_EOL);
2795 }
2796