Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.203.2.5
      1 /* $NetBSD: subr_autoconf.c,v 1.203.2.5 2011/05/31 03:05:02 rmind Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.203.2.5 2011/05/31 03:05:02 rmind Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #endif
     85 
     86 #include <sys/param.h>
     87 #include <sys/device.h>
     88 #include <sys/disklabel.h>
     89 #include <sys/conf.h>
     90 #include <sys/kauth.h>
     91 #include <sys/kmem.h>
     92 #include <sys/systm.h>
     93 #include <sys/kernel.h>
     94 #include <sys/errno.h>
     95 #include <sys/proc.h>
     96 #include <sys/reboot.h>
     97 #include <sys/kthread.h>
     98 #include <sys/buf.h>
     99 #include <sys/dirent.h>
    100 #include <sys/mount.h>
    101 #include <sys/namei.h>
    102 #include <sys/unistd.h>
    103 #include <sys/fcntl.h>
    104 #include <sys/lockf.h>
    105 #include <sys/callout.h>
    106 #include <sys/devmon.h>
    107 #include <sys/cpu.h>
    108 #include <sys/sysctl.h>
    109 
    110 #include <sys/disk.h>
    111 
    112 #include <machine/limits.h>
    113 
    114 /*
    115  * Autoconfiguration subroutines.
    116  */
    117 
    118 /*
    119  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    120  * devices and drivers are found via these tables.
    121  */
    122 extern struct cfdata cfdata[];
    123 extern const short cfroots[];
    124 
    125 /*
    126  * List of all cfdriver structures.  We use this to detect duplicates
    127  * when other cfdrivers are loaded.
    128  */
    129 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    130 extern struct cfdriver * const cfdriver_list_initial[];
    131 
    132 /*
    133  * Initial list of cfattach's.
    134  */
    135 extern const struct cfattachinit cfattachinit[];
    136 
    137 /*
    138  * List of cfdata tables.  We always have one such list -- the one
    139  * built statically when the kernel was configured.
    140  */
    141 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    142 static struct cftable initcftable;
    143 
    144 #define	ROOT ((device_t)NULL)
    145 
    146 struct matchinfo {
    147 	cfsubmatch_t fn;
    148 	struct	device *parent;
    149 	const int *locs;
    150 	void	*aux;
    151 	struct	cfdata *match;
    152 	int	pri;
    153 };
    154 
    155 struct alldevs_foray {
    156 	int			af_s;
    157 	struct devicelist	af_garbage;
    158 };
    159 
    160 static char *number(char *, int);
    161 static void mapply(struct matchinfo *, cfdata_t);
    162 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    163 static void config_devdelete(device_t);
    164 static void config_devunlink(device_t, struct devicelist *);
    165 static void config_makeroom(int, struct cfdriver *);
    166 static void config_devlink(device_t);
    167 static void config_alldevs_unlock(int);
    168 static int config_alldevs_lock(void);
    169 static void config_alldevs_enter(struct alldevs_foray *);
    170 static void config_alldevs_exit(struct alldevs_foray *);
    171 
    172 static void config_collect_garbage(struct devicelist *);
    173 static void config_dump_garbage(struct devicelist *);
    174 
    175 static void pmflock_debug(device_t, const char *, int);
    176 
    177 static device_t deviter_next1(deviter_t *);
    178 static void deviter_reinit(deviter_t *);
    179 
    180 struct deferred_config {
    181 	TAILQ_ENTRY(deferred_config) dc_queue;
    182 	device_t dc_dev;
    183 	void (*dc_func)(device_t);
    184 };
    185 
    186 TAILQ_HEAD(deferred_config_head, deferred_config);
    187 
    188 struct deferred_config_head deferred_config_queue =
    189 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    190 struct deferred_config_head interrupt_config_queue =
    191 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    192 int interrupt_config_threads = 8;
    193 struct deferred_config_head mountroot_config_queue =
    194 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    195 int mountroot_config_threads = 2;
    196 static bool root_is_mounted = false;
    197 
    198 static void config_process_deferred(struct deferred_config_head *, device_t);
    199 
    200 /* Hooks to finalize configuration once all real devices have been found. */
    201 struct finalize_hook {
    202 	TAILQ_ENTRY(finalize_hook) f_list;
    203 	int (*f_func)(device_t);
    204 	device_t f_dev;
    205 };
    206 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    207 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    208 static int config_finalize_done;
    209 
    210 /* list of all devices */
    211 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    212 static kmutex_t alldevs_mtx;
    213 static volatile bool alldevs_garbage = false;
    214 static volatile devgen_t alldevs_gen = 1;
    215 static volatile int alldevs_nread = 0;
    216 static volatile int alldevs_nwrite = 0;
    217 
    218 static int config_pending;		/* semaphore for mountroot */
    219 static kmutex_t config_misc_lock;
    220 static kcondvar_t config_misc_cv;
    221 
    222 static bool detachall = false;
    223 
    224 #define	STREQ(s1, s2)			\
    225 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    226 
    227 static bool config_initialized = false;	/* config_init() has been called. */
    228 
    229 static int config_do_twiddle;
    230 static callout_t config_twiddle_ch;
    231 
    232 static void sysctl_detach_setup(struct sysctllog **);
    233 
    234 typedef int (*cfdriver_fn)(struct cfdriver *);
    235 static int
    236 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    237 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    238 	const char *style, bool dopanic)
    239 {
    240 	void (*pr)(const char *, ...) = dopanic ? panic : printf;
    241 	int i = 0, error = 0, e2;
    242 
    243 	for (i = 0; cfdriverv[i] != NULL; i++) {
    244 		if ((error = drv_do(cfdriverv[i])) != 0) {
    245 			pr("configure: `%s' driver %s failed: %d",
    246 			    cfdriverv[i]->cd_name, style, error);
    247 			goto bad;
    248 		}
    249 	}
    250 
    251 	KASSERT(error == 0);
    252 	return 0;
    253 
    254  bad:
    255 	printf("\n");
    256 	for (i--; i >= 0; i--) {
    257 		e2 = drv_undo(cfdriverv[i]);
    258 		KASSERT(e2 == 0);
    259 	}
    260 
    261 	return error;
    262 }
    263 
    264 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    265 static int
    266 frob_cfattachvec(const struct cfattachinit *cfattachv,
    267 	cfattach_fn att_do, cfattach_fn att_undo,
    268 	const char *style, bool dopanic)
    269 {
    270 	const struct cfattachinit *cfai = NULL;
    271 	void (*pr)(const char *, ...) = dopanic ? panic : printf;
    272 	int j = 0, error = 0, e2;
    273 
    274 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    275 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    276 			if ((error = att_do(cfai->cfai_name,
    277 			    cfai->cfai_list[j])) != 0) {
    278 				pr("configure: attachment `%s' "
    279 				    "of `%s' driver %s failed: %d",
    280 				    cfai->cfai_list[j]->ca_name,
    281 				    cfai->cfai_name, style, error);
    282 				goto bad;
    283 			}
    284 		}
    285 	}
    286 
    287 	KASSERT(error == 0);
    288 	return 0;
    289 
    290  bad:
    291 	/*
    292 	 * Rollback in reverse order.  dunno if super-important, but
    293 	 * do that anyway.  Although the code looks a little like
    294 	 * someone did a little integration (in the math sense).
    295 	 */
    296 	printf("\n");
    297 	if (cfai) {
    298 		bool last;
    299 
    300 		for (last = false; last == false; ) {
    301 			if (cfai == &cfattachv[0])
    302 				last = true;
    303 			for (j--; j >= 0; j--) {
    304 				e2 = att_undo(cfai->cfai_name,
    305 				    cfai->cfai_list[j]);
    306 				KASSERT(e2 == 0);
    307 			}
    308 			if (!last) {
    309 				cfai--;
    310 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    311 					;
    312 			}
    313 		}
    314 	}
    315 
    316 	return error;
    317 }
    318 
    319 /*
    320  * Initialize the autoconfiguration data structures.  Normally this
    321  * is done by configure(), but some platforms need to do this very
    322  * early (to e.g. initialize the console).
    323  */
    324 void
    325 config_init(void)
    326 {
    327 
    328 	KASSERT(config_initialized == false);
    329 
    330 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
    331 
    332 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    333 	cv_init(&config_misc_cv, "cfgmisc");
    334 
    335 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    336 
    337 	frob_cfdrivervec(cfdriver_list_initial,
    338 	    config_cfdriver_attach, NULL, "bootstrap", true);
    339 	frob_cfattachvec(cfattachinit,
    340 	    config_cfattach_attach, NULL, "bootstrap", true);
    341 
    342 	initcftable.ct_cfdata = cfdata;
    343 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    344 
    345 	config_initialized = true;
    346 }
    347 
    348 /*
    349  * Init or fini drivers and attachments.  Either all or none
    350  * are processed (via rollback).  It would be nice if this were
    351  * atomic to outside consumers, but with the current state of
    352  * locking ...
    353  */
    354 int
    355 config_init_component(struct cfdriver * const *cfdriverv,
    356 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    357 {
    358 	int error;
    359 
    360 	if ((error = frob_cfdrivervec(cfdriverv,
    361 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    362 		return error;
    363 	if ((error = frob_cfattachvec(cfattachv,
    364 	    config_cfattach_attach, config_cfattach_detach,
    365 	    "init", false)) != 0) {
    366 		frob_cfdrivervec(cfdriverv,
    367 	            config_cfdriver_detach, NULL, "init rollback", true);
    368 		return error;
    369 	}
    370 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    371 		frob_cfattachvec(cfattachv,
    372 		    config_cfattach_detach, NULL, "init rollback", true);
    373 		frob_cfdrivervec(cfdriverv,
    374 	            config_cfdriver_detach, NULL, "init rollback", true);
    375 		return error;
    376 	}
    377 
    378 	return 0;
    379 }
    380 
    381 int
    382 config_fini_component(struct cfdriver * const *cfdriverv,
    383 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    384 {
    385 	int error;
    386 
    387 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    388 		return error;
    389 	if ((error = frob_cfattachvec(cfattachv,
    390 	    config_cfattach_detach, config_cfattach_attach,
    391 	    "fini", false)) != 0) {
    392 		if (config_cfdata_attach(cfdatav, 0) != 0)
    393 			panic("config_cfdata fini rollback failed");
    394 		return error;
    395 	}
    396 	if ((error = frob_cfdrivervec(cfdriverv,
    397 	    config_cfdriver_detach, config_cfdriver_attach,
    398 	    "fini", false)) != 0) {
    399 		frob_cfattachvec(cfattachv,
    400 	            config_cfattach_attach, NULL, "fini rollback", true);
    401 		if (config_cfdata_attach(cfdatav, 0) != 0)
    402 			panic("config_cfdata fini rollback failed");
    403 		return error;
    404 	}
    405 
    406 	return 0;
    407 }
    408 
    409 void
    410 config_init_mi(void)
    411 {
    412 
    413 	if (!config_initialized)
    414 		config_init();
    415 
    416 	sysctl_detach_setup(NULL);
    417 }
    418 
    419 void
    420 config_deferred(device_t dev)
    421 {
    422 	config_process_deferred(&deferred_config_queue, dev);
    423 	config_process_deferred(&interrupt_config_queue, dev);
    424 	config_process_deferred(&mountroot_config_queue, dev);
    425 }
    426 
    427 static void
    428 config_interrupts_thread(void *cookie)
    429 {
    430 	struct deferred_config *dc;
    431 
    432 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    433 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    434 		(*dc->dc_func)(dc->dc_dev);
    435 		kmem_free(dc, sizeof(*dc));
    436 		config_pending_decr();
    437 	}
    438 	kthread_exit(0);
    439 }
    440 
    441 void
    442 config_create_interruptthreads()
    443 {
    444 	int i;
    445 
    446 	for (i = 0; i < interrupt_config_threads; i++) {
    447 		(void)kthread_create(PRI_NONE, 0, NULL,
    448 		    config_interrupts_thread, NULL, NULL, "config");
    449 	}
    450 }
    451 
    452 static void
    453 config_mountroot_thread(void *cookie)
    454 {
    455 	struct deferred_config *dc;
    456 
    457 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    458 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    459 		(*dc->dc_func)(dc->dc_dev);
    460 		kmem_free(dc, sizeof(*dc));
    461 	}
    462 	kthread_exit(0);
    463 }
    464 
    465 void
    466 config_create_mountrootthreads()
    467 {
    468 	int i;
    469 
    470 	if (!root_is_mounted)
    471 		root_is_mounted = true;
    472 
    473 	for (i = 0; i < mountroot_config_threads; i++) {
    474 		(void)kthread_create(PRI_NONE, 0, NULL,
    475 		    config_mountroot_thread, NULL, NULL, "config");
    476 	}
    477 }
    478 
    479 /*
    480  * Announce device attach/detach to userland listeners.
    481  */
    482 static void
    483 devmon_report_device(device_t dev, bool isattach)
    484 {
    485 #if NDRVCTL > 0
    486 	prop_dictionary_t ev;
    487 	const char *parent;
    488 	const char *what;
    489 	device_t pdev = device_parent(dev);
    490 
    491 	ev = prop_dictionary_create();
    492 	if (ev == NULL)
    493 		return;
    494 
    495 	what = (isattach ? "device-attach" : "device-detach");
    496 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    497 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
    498 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
    499 		prop_object_release(ev);
    500 		return;
    501 	}
    502 
    503 	devmon_insert(what, ev);
    504 #endif
    505 }
    506 
    507 /*
    508  * Add a cfdriver to the system.
    509  */
    510 int
    511 config_cfdriver_attach(struct cfdriver *cd)
    512 {
    513 	struct cfdriver *lcd;
    514 
    515 	/* Make sure this driver isn't already in the system. */
    516 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    517 		if (STREQ(lcd->cd_name, cd->cd_name))
    518 			return EEXIST;
    519 	}
    520 
    521 	LIST_INIT(&cd->cd_attach);
    522 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    523 
    524 	return 0;
    525 }
    526 
    527 /*
    528  * Remove a cfdriver from the system.
    529  */
    530 int
    531 config_cfdriver_detach(struct cfdriver *cd)
    532 {
    533 	struct alldevs_foray af;
    534 	int i, rc = 0;
    535 
    536 	config_alldevs_enter(&af);
    537 	/* Make sure there are no active instances. */
    538 	for (i = 0; i < cd->cd_ndevs; i++) {
    539 		if (cd->cd_devs[i] != NULL) {
    540 			rc = EBUSY;
    541 			break;
    542 		}
    543 	}
    544 	config_alldevs_exit(&af);
    545 
    546 	if (rc != 0)
    547 		return rc;
    548 
    549 	/* ...and no attachments loaded. */
    550 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    551 		return EBUSY;
    552 
    553 	LIST_REMOVE(cd, cd_list);
    554 
    555 	KASSERT(cd->cd_devs == NULL);
    556 
    557 	return 0;
    558 }
    559 
    560 /*
    561  * Look up a cfdriver by name.
    562  */
    563 struct cfdriver *
    564 config_cfdriver_lookup(const char *name)
    565 {
    566 	struct cfdriver *cd;
    567 
    568 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    569 		if (STREQ(cd->cd_name, name))
    570 			return cd;
    571 	}
    572 
    573 	return NULL;
    574 }
    575 
    576 /*
    577  * Add a cfattach to the specified driver.
    578  */
    579 int
    580 config_cfattach_attach(const char *driver, struct cfattach *ca)
    581 {
    582 	struct cfattach *lca;
    583 	struct cfdriver *cd;
    584 
    585 	cd = config_cfdriver_lookup(driver);
    586 	if (cd == NULL)
    587 		return ESRCH;
    588 
    589 	/* Make sure this attachment isn't already on this driver. */
    590 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    591 		if (STREQ(lca->ca_name, ca->ca_name))
    592 			return EEXIST;
    593 	}
    594 
    595 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    596 
    597 	return 0;
    598 }
    599 
    600 /*
    601  * Remove a cfattach from the specified driver.
    602  */
    603 int
    604 config_cfattach_detach(const char *driver, struct cfattach *ca)
    605 {
    606 	struct alldevs_foray af;
    607 	struct cfdriver *cd;
    608 	device_t dev;
    609 	int i, rc = 0;
    610 
    611 	cd = config_cfdriver_lookup(driver);
    612 	if (cd == NULL)
    613 		return ESRCH;
    614 
    615 	config_alldevs_enter(&af);
    616 	/* Make sure there are no active instances. */
    617 	for (i = 0; i < cd->cd_ndevs; i++) {
    618 		if ((dev = cd->cd_devs[i]) == NULL)
    619 			continue;
    620 		if (dev->dv_cfattach == ca) {
    621 			rc = EBUSY;
    622 			break;
    623 		}
    624 	}
    625 	config_alldevs_exit(&af);
    626 
    627 	if (rc != 0)
    628 		return rc;
    629 
    630 	LIST_REMOVE(ca, ca_list);
    631 
    632 	return 0;
    633 }
    634 
    635 /*
    636  * Look up a cfattach by name.
    637  */
    638 static struct cfattach *
    639 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    640 {
    641 	struct cfattach *ca;
    642 
    643 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    644 		if (STREQ(ca->ca_name, atname))
    645 			return ca;
    646 	}
    647 
    648 	return NULL;
    649 }
    650 
    651 /*
    652  * Look up a cfattach by driver/attachment name.
    653  */
    654 struct cfattach *
    655 config_cfattach_lookup(const char *name, const char *atname)
    656 {
    657 	struct cfdriver *cd;
    658 
    659 	cd = config_cfdriver_lookup(name);
    660 	if (cd == NULL)
    661 		return NULL;
    662 
    663 	return config_cfattach_lookup_cd(cd, atname);
    664 }
    665 
    666 /*
    667  * Apply the matching function and choose the best.  This is used
    668  * a few times and we want to keep the code small.
    669  */
    670 static void
    671 mapply(struct matchinfo *m, cfdata_t cf)
    672 {
    673 	int pri;
    674 
    675 	if (m->fn != NULL) {
    676 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    677 	} else {
    678 		pri = config_match(m->parent, cf, m->aux);
    679 	}
    680 	if (pri > m->pri) {
    681 		m->match = cf;
    682 		m->pri = pri;
    683 	}
    684 }
    685 
    686 int
    687 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    688 {
    689 	const struct cfiattrdata *ci;
    690 	const struct cflocdesc *cl;
    691 	int nlocs, i;
    692 
    693 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    694 	KASSERT(ci);
    695 	nlocs = ci->ci_loclen;
    696 	KASSERT(!nlocs || locs);
    697 	for (i = 0; i < nlocs; i++) {
    698 		cl = &ci->ci_locdesc[i];
    699 		/* !cld_defaultstr means no default value */
    700 		if ((!(cl->cld_defaultstr)
    701 		     || (cf->cf_loc[i] != cl->cld_default))
    702 		    && cf->cf_loc[i] != locs[i])
    703 			return 0;
    704 	}
    705 
    706 	return config_match(parent, cf, aux);
    707 }
    708 
    709 /*
    710  * Helper function: check whether the driver supports the interface attribute
    711  * and return its descriptor structure.
    712  */
    713 static const struct cfiattrdata *
    714 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    715 {
    716 	const struct cfiattrdata * const *cpp;
    717 
    718 	if (cd->cd_attrs == NULL)
    719 		return 0;
    720 
    721 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    722 		if (STREQ((*cpp)->ci_name, ia)) {
    723 			/* Match. */
    724 			return *cpp;
    725 		}
    726 	}
    727 	return 0;
    728 }
    729 
    730 /*
    731  * Lookup an interface attribute description by name.
    732  * If the driver is given, consider only its supported attributes.
    733  */
    734 const struct cfiattrdata *
    735 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    736 {
    737 	const struct cfdriver *d;
    738 	const struct cfiattrdata *ia;
    739 
    740 	if (cd)
    741 		return cfdriver_get_iattr(cd, name);
    742 
    743 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    744 		ia = cfdriver_get_iattr(d, name);
    745 		if (ia)
    746 			return ia;
    747 	}
    748 	return 0;
    749 }
    750 
    751 /*
    752  * Determine if `parent' is a potential parent for a device spec based
    753  * on `cfp'.
    754  */
    755 static int
    756 cfparent_match(const device_t parent, const struct cfparent *cfp)
    757 {
    758 	struct cfdriver *pcd;
    759 
    760 	/* We don't match root nodes here. */
    761 	if (cfp == NULL)
    762 		return 0;
    763 
    764 	pcd = parent->dv_cfdriver;
    765 	KASSERT(pcd != NULL);
    766 
    767 	/*
    768 	 * First, ensure this parent has the correct interface
    769 	 * attribute.
    770 	 */
    771 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    772 		return 0;
    773 
    774 	/*
    775 	 * If no specific parent device instance was specified (i.e.
    776 	 * we're attaching to the attribute only), we're done!
    777 	 */
    778 	if (cfp->cfp_parent == NULL)
    779 		return 1;
    780 
    781 	/*
    782 	 * Check the parent device's name.
    783 	 */
    784 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    785 		return 0;	/* not the same parent */
    786 
    787 	/*
    788 	 * Make sure the unit number matches.
    789 	 */
    790 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    791 	    cfp->cfp_unit == parent->dv_unit)
    792 		return 1;
    793 
    794 	/* Unit numbers don't match. */
    795 	return 0;
    796 }
    797 
    798 /*
    799  * Helper for config_cfdata_attach(): check all devices whether it could be
    800  * parent any attachment in the config data table passed, and rescan.
    801  */
    802 static void
    803 rescan_with_cfdata(const struct cfdata *cf)
    804 {
    805 	device_t d;
    806 	const struct cfdata *cf1;
    807 	deviter_t di;
    808 
    809 
    810 	/*
    811 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    812 	 * the outer loop.
    813 	 */
    814 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    815 
    816 		if (!(d->dv_cfattach->ca_rescan))
    817 			continue;
    818 
    819 		for (cf1 = cf; cf1->cf_name; cf1++) {
    820 
    821 			if (!cfparent_match(d, cf1->cf_pspec))
    822 				continue;
    823 
    824 			(*d->dv_cfattach->ca_rescan)(d,
    825 				cfdata_ifattr(cf1), cf1->cf_loc);
    826 
    827 			config_deferred(d);
    828 		}
    829 	}
    830 	deviter_release(&di);
    831 }
    832 
    833 /*
    834  * Attach a supplemental config data table and rescan potential
    835  * parent devices if required.
    836  */
    837 int
    838 config_cfdata_attach(cfdata_t cf, int scannow)
    839 {
    840 	struct cftable *ct;
    841 
    842 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    843 	ct->ct_cfdata = cf;
    844 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    845 
    846 	if (scannow)
    847 		rescan_with_cfdata(cf);
    848 
    849 	return 0;
    850 }
    851 
    852 /*
    853  * Helper for config_cfdata_detach: check whether a device is
    854  * found through any attachment in the config data table.
    855  */
    856 static int
    857 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
    858 {
    859 	const struct cfdata *cf1;
    860 
    861 	for (cf1 = cf; cf1->cf_name; cf1++)
    862 		if (d->dv_cfdata == cf1)
    863 			return 1;
    864 
    865 	return 0;
    866 }
    867 
    868 /*
    869  * Detach a supplemental config data table. Detach all devices found
    870  * through that table (and thus keeping references to it) before.
    871  */
    872 int
    873 config_cfdata_detach(cfdata_t cf)
    874 {
    875 	device_t d;
    876 	int error = 0;
    877 	struct cftable *ct;
    878 	deviter_t di;
    879 
    880 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    881 	     d = deviter_next(&di)) {
    882 		if (!dev_in_cfdata(d, cf))
    883 			continue;
    884 		if ((error = config_detach(d, 0)) != 0)
    885 			break;
    886 	}
    887 	deviter_release(&di);
    888 	if (error) {
    889 		aprint_error_dev(d, "unable to detach instance\n");
    890 		return error;
    891 	}
    892 
    893 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    894 		if (ct->ct_cfdata == cf) {
    895 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    896 			kmem_free(ct, sizeof(*ct));
    897 			return 0;
    898 		}
    899 	}
    900 
    901 	/* not found -- shouldn't happen */
    902 	return EINVAL;
    903 }
    904 
    905 /*
    906  * Invoke the "match" routine for a cfdata entry on behalf of
    907  * an external caller, usually a "submatch" routine.
    908  */
    909 int
    910 config_match(device_t parent, cfdata_t cf, void *aux)
    911 {
    912 	struct cfattach *ca;
    913 
    914 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    915 	if (ca == NULL) {
    916 		/* No attachment for this entry, oh well. */
    917 		return 0;
    918 	}
    919 
    920 	return (*ca->ca_match)(parent, cf, aux);
    921 }
    922 
    923 /*
    924  * Iterate over all potential children of some device, calling the given
    925  * function (default being the child's match function) for each one.
    926  * Nonzero returns are matches; the highest value returned is considered
    927  * the best match.  Return the `found child' if we got a match, or NULL
    928  * otherwise.  The `aux' pointer is simply passed on through.
    929  *
    930  * Note that this function is designed so that it can be used to apply
    931  * an arbitrary function to all potential children (its return value
    932  * can be ignored).
    933  */
    934 cfdata_t
    935 config_search_loc(cfsubmatch_t fn, device_t parent,
    936 		  const char *ifattr, const int *locs, void *aux)
    937 {
    938 	struct cftable *ct;
    939 	cfdata_t cf;
    940 	struct matchinfo m;
    941 
    942 	KASSERT(config_initialized);
    943 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
    944 
    945 	m.fn = fn;
    946 	m.parent = parent;
    947 	m.locs = locs;
    948 	m.aux = aux;
    949 	m.match = NULL;
    950 	m.pri = 0;
    951 
    952 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    953 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
    954 
    955 			/* We don't match root nodes here. */
    956 			if (!cf->cf_pspec)
    957 				continue;
    958 
    959 			/*
    960 			 * Skip cf if no longer eligible, otherwise scan
    961 			 * through parents for one matching `parent', and
    962 			 * try match function.
    963 			 */
    964 			if (cf->cf_fstate == FSTATE_FOUND)
    965 				continue;
    966 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
    967 			    cf->cf_fstate == FSTATE_DSTAR)
    968 				continue;
    969 
    970 			/*
    971 			 * If an interface attribute was specified,
    972 			 * consider only children which attach to
    973 			 * that attribute.
    974 			 */
    975 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
    976 				continue;
    977 
    978 			if (cfparent_match(parent, cf->cf_pspec))
    979 				mapply(&m, cf);
    980 		}
    981 	}
    982 	return m.match;
    983 }
    984 
    985 cfdata_t
    986 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
    987     void *aux)
    988 {
    989 
    990 	return config_search_loc(fn, parent, ifattr, NULL, aux);
    991 }
    992 
    993 /*
    994  * Find the given root device.
    995  * This is much like config_search, but there is no parent.
    996  * Don't bother with multiple cfdata tables; the root node
    997  * must always be in the initial table.
    998  */
    999 cfdata_t
   1000 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1001 {
   1002 	cfdata_t cf;
   1003 	const short *p;
   1004 	struct matchinfo m;
   1005 
   1006 	m.fn = fn;
   1007 	m.parent = ROOT;
   1008 	m.aux = aux;
   1009 	m.match = NULL;
   1010 	m.pri = 0;
   1011 	m.locs = 0;
   1012 	/*
   1013 	 * Look at root entries for matching name.  We do not bother
   1014 	 * with found-state here since only one root should ever be
   1015 	 * searched (and it must be done first).
   1016 	 */
   1017 	for (p = cfroots; *p >= 0; p++) {
   1018 		cf = &cfdata[*p];
   1019 		if (strcmp(cf->cf_name, rootname) == 0)
   1020 			mapply(&m, cf);
   1021 	}
   1022 	return m.match;
   1023 }
   1024 
   1025 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1026 
   1027 /*
   1028  * The given `aux' argument describes a device that has been found
   1029  * on the given parent, but not necessarily configured.  Locate the
   1030  * configuration data for that device (using the submatch function
   1031  * provided, or using candidates' cd_match configuration driver
   1032  * functions) and attach it, and return true.  If the device was
   1033  * not configured, call the given `print' function and return 0.
   1034  */
   1035 device_t
   1036 config_found_sm_loc(device_t parent,
   1037 		const char *ifattr, const int *locs, void *aux,
   1038 		cfprint_t print, cfsubmatch_t submatch)
   1039 {
   1040 	cfdata_t cf;
   1041 
   1042 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
   1043 		return(config_attach_loc(parent, cf, locs, aux, print));
   1044 	if (print) {
   1045 		if (config_do_twiddle && cold)
   1046 			twiddle();
   1047 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1048 	}
   1049 
   1050 	return NULL;
   1051 }
   1052 
   1053 device_t
   1054 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1055     cfprint_t print)
   1056 {
   1057 
   1058 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
   1059 }
   1060 
   1061 device_t
   1062 config_found(device_t parent, void *aux, cfprint_t print)
   1063 {
   1064 
   1065 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
   1066 }
   1067 
   1068 /*
   1069  * As above, but for root devices.
   1070  */
   1071 device_t
   1072 config_rootfound(const char *rootname, void *aux)
   1073 {
   1074 	cfdata_t cf;
   1075 
   1076 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
   1077 		return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
   1078 	aprint_error("root device %s not configured\n", rootname);
   1079 	return NULL;
   1080 }
   1081 
   1082 /* just like sprintf(buf, "%d") except that it works from the end */
   1083 static char *
   1084 number(char *ep, int n)
   1085 {
   1086 
   1087 	*--ep = 0;
   1088 	while (n >= 10) {
   1089 		*--ep = (n % 10) + '0';
   1090 		n /= 10;
   1091 	}
   1092 	*--ep = n + '0';
   1093 	return ep;
   1094 }
   1095 
   1096 /*
   1097  * Expand the size of the cd_devs array if necessary.
   1098  *
   1099  * The caller must hold alldevs_mtx. config_makeroom() may release and
   1100  * re-acquire alldevs_mtx, so callers should re-check conditions such
   1101  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1102  * returns.
   1103  */
   1104 static void
   1105 config_makeroom(int n, struct cfdriver *cd)
   1106 {
   1107 	int old, new;
   1108 	device_t *osp, *nsp;
   1109 
   1110 	alldevs_nwrite++;
   1111 
   1112 	for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
   1113 		;
   1114 
   1115 	while (n >= cd->cd_ndevs) {
   1116 		/*
   1117 		 * Need to expand the array.
   1118 		 */
   1119 		old = cd->cd_ndevs;
   1120 		osp = cd->cd_devs;
   1121 
   1122 		/* Release alldevs_mtx around allocation, which may
   1123 		 * sleep.
   1124 		 */
   1125 		mutex_exit(&alldevs_mtx);
   1126 		nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
   1127 		if (nsp == NULL)
   1128 			panic("%s: could not expand cd_devs", __func__);
   1129 		mutex_enter(&alldevs_mtx);
   1130 
   1131 		/* If another thread moved the array while we did
   1132 		 * not hold alldevs_mtx, try again.
   1133 		 */
   1134 		if (cd->cd_devs != osp) {
   1135 			mutex_exit(&alldevs_mtx);
   1136 			kmem_free(nsp, sizeof(device_t[new]));
   1137 			mutex_enter(&alldevs_mtx);
   1138 			continue;
   1139 		}
   1140 
   1141 		memset(nsp + old, 0, sizeof(device_t[new - old]));
   1142 		if (old != 0)
   1143 			memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
   1144 
   1145 		cd->cd_ndevs = new;
   1146 		cd->cd_devs = nsp;
   1147 		if (old != 0) {
   1148 			mutex_exit(&alldevs_mtx);
   1149 			kmem_free(osp, sizeof(device_t[old]));
   1150 			mutex_enter(&alldevs_mtx);
   1151 		}
   1152 	}
   1153 	alldevs_nwrite--;
   1154 }
   1155 
   1156 /*
   1157  * Put dev into the devices list.
   1158  */
   1159 static void
   1160 config_devlink(device_t dev)
   1161 {
   1162 	int s;
   1163 
   1164 	s = config_alldevs_lock();
   1165 
   1166 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1167 
   1168 	dev->dv_add_gen = alldevs_gen;
   1169 	/* It is safe to add a device to the tail of the list while
   1170 	 * readers and writers are in the list.
   1171 	 */
   1172 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1173 	config_alldevs_unlock(s);
   1174 }
   1175 
   1176 static void
   1177 config_devfree(device_t dev)
   1178 {
   1179 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
   1180 
   1181 	if (dev->dv_cfattach->ca_devsize > 0)
   1182 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1183 	if (priv)
   1184 		kmem_free(dev, sizeof(*dev));
   1185 }
   1186 
   1187 /*
   1188  * Caller must hold alldevs_mtx.
   1189  */
   1190 static void
   1191 config_devunlink(device_t dev, struct devicelist *garbage)
   1192 {
   1193 	struct device_garbage *dg = &dev->dv_garbage;
   1194 	cfdriver_t cd = device_cfdriver(dev);
   1195 	int i;
   1196 
   1197 	KASSERT(mutex_owned(&alldevs_mtx));
   1198 
   1199  	/* Unlink from device list.  Link to garbage list. */
   1200 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1201 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1202 
   1203 	/* Remove from cfdriver's array. */
   1204 	cd->cd_devs[dev->dv_unit] = NULL;
   1205 
   1206 	/*
   1207 	 * If the device now has no units in use, unlink its softc array.
   1208 	 */
   1209 	for (i = 0; i < cd->cd_ndevs; i++) {
   1210 		if (cd->cd_devs[i] != NULL)
   1211 			break;
   1212 	}
   1213 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1214 	if (i == cd->cd_ndevs) {
   1215 		dg->dg_ndevs = cd->cd_ndevs;
   1216 		dg->dg_devs = cd->cd_devs;
   1217 		cd->cd_devs = NULL;
   1218 		cd->cd_ndevs = 0;
   1219 	}
   1220 }
   1221 
   1222 static void
   1223 config_devdelete(device_t dev)
   1224 {
   1225 	struct device_garbage *dg = &dev->dv_garbage;
   1226 	device_lock_t dvl = device_getlock(dev);
   1227 
   1228 	if (dg->dg_devs != NULL)
   1229 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
   1230 
   1231 	cv_destroy(&dvl->dvl_cv);
   1232 	mutex_destroy(&dvl->dvl_mtx);
   1233 
   1234 	KASSERT(dev->dv_properties != NULL);
   1235 	prop_object_release(dev->dv_properties);
   1236 
   1237 	if (dev->dv_activity_handlers)
   1238 		panic("%s with registered handlers", __func__);
   1239 
   1240 	if (dev->dv_locators) {
   1241 		size_t amount = *--dev->dv_locators;
   1242 		kmem_free(dev->dv_locators, amount);
   1243 	}
   1244 
   1245 	config_devfree(dev);
   1246 }
   1247 
   1248 static int
   1249 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1250 {
   1251 	int unit;
   1252 
   1253 	if (cf->cf_fstate == FSTATE_STAR) {
   1254 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1255 			if (cd->cd_devs[unit] == NULL)
   1256 				break;
   1257 		/*
   1258 		 * unit is now the unit of the first NULL device pointer,
   1259 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1260 		 */
   1261 	} else {
   1262 		unit = cf->cf_unit;
   1263 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1264 			unit = -1;
   1265 	}
   1266 	return unit;
   1267 }
   1268 
   1269 static int
   1270 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1271 {
   1272 	struct alldevs_foray af;
   1273 	int unit;
   1274 
   1275 	config_alldevs_enter(&af);
   1276 	for (;;) {
   1277 		unit = config_unit_nextfree(cd, cf);
   1278 		if (unit == -1)
   1279 			break;
   1280 		if (unit < cd->cd_ndevs) {
   1281 			cd->cd_devs[unit] = dev;
   1282 			dev->dv_unit = unit;
   1283 			break;
   1284 		}
   1285 		config_makeroom(unit, cd);
   1286 	}
   1287 	config_alldevs_exit(&af);
   1288 
   1289 	return unit;
   1290 }
   1291 
   1292 static device_t
   1293 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1294 {
   1295 	cfdriver_t cd;
   1296 	cfattach_t ca;
   1297 	size_t lname, lunit;
   1298 	const char *xunit;
   1299 	int myunit;
   1300 	char num[10];
   1301 	device_t dev;
   1302 	void *dev_private;
   1303 	const struct cfiattrdata *ia;
   1304 	device_lock_t dvl;
   1305 
   1306 	cd = config_cfdriver_lookup(cf->cf_name);
   1307 	if (cd == NULL)
   1308 		return NULL;
   1309 
   1310 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1311 	if (ca == NULL)
   1312 		return NULL;
   1313 
   1314 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
   1315 	    ca->ca_devsize < sizeof(struct device))
   1316 		panic("config_devalloc: %s", cf->cf_atname);
   1317 
   1318 	/* get memory for all device vars */
   1319 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
   1320 	if (ca->ca_devsize > 0) {
   1321 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1322 		if (dev_private == NULL)
   1323 			panic("config_devalloc: memory allocation for device softc failed");
   1324 	} else {
   1325 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1326 		dev_private = NULL;
   1327 	}
   1328 
   1329 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1330 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1331 	} else {
   1332 		dev = dev_private;
   1333 	}
   1334 	if (dev == NULL)
   1335 		panic("config_devalloc: memory allocation for device_t failed");
   1336 
   1337 	dev->dv_class = cd->cd_class;
   1338 	dev->dv_cfdata = cf;
   1339 	dev->dv_cfdriver = cd;
   1340 	dev->dv_cfattach = ca;
   1341 	dev->dv_activity_count = 0;
   1342 	dev->dv_activity_handlers = NULL;
   1343 	dev->dv_private = dev_private;
   1344 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1345 
   1346 	myunit = config_unit_alloc(dev, cd, cf);
   1347 	if (myunit == -1) {
   1348 		config_devfree(dev);
   1349 		return NULL;
   1350 	}
   1351 
   1352 	/* compute length of name and decimal expansion of unit number */
   1353 	lname = strlen(cd->cd_name);
   1354 	xunit = number(&num[sizeof(num)], myunit);
   1355 	lunit = &num[sizeof(num)] - xunit;
   1356 	if (lname + lunit > sizeof(dev->dv_xname))
   1357 		panic("config_devalloc: device name too long");
   1358 
   1359 	dvl = device_getlock(dev);
   1360 
   1361 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1362 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1363 
   1364 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1365 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1366 	dev->dv_parent = parent;
   1367 	if (parent != NULL)
   1368 		dev->dv_depth = parent->dv_depth + 1;
   1369 	else
   1370 		dev->dv_depth = 0;
   1371 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1372 	if (locs) {
   1373 		KASSERT(parent); /* no locators at root */
   1374 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1375 		dev->dv_locators =
   1376 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
   1377 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
   1378 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
   1379 	}
   1380 	dev->dv_properties = prop_dictionary_create();
   1381 	KASSERT(dev->dv_properties != NULL);
   1382 
   1383 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
   1384 	    "device-driver", dev->dv_cfdriver->cd_name);
   1385 	prop_dictionary_set_uint16(dev->dv_properties,
   1386 	    "device-unit", dev->dv_unit);
   1387 
   1388 	return dev;
   1389 }
   1390 
   1391 /*
   1392  * Attach a found device.
   1393  */
   1394 device_t
   1395 config_attach_loc(device_t parent, cfdata_t cf,
   1396 	const int *locs, void *aux, cfprint_t print)
   1397 {
   1398 	device_t dev;
   1399 	struct cftable *ct;
   1400 	const char *drvname;
   1401 
   1402 	dev = config_devalloc(parent, cf, locs);
   1403 	if (!dev)
   1404 		panic("config_attach: allocation of device softc failed");
   1405 
   1406 	/* XXX redundant - see below? */
   1407 	if (cf->cf_fstate != FSTATE_STAR) {
   1408 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1409 		cf->cf_fstate = FSTATE_FOUND;
   1410 	}
   1411 
   1412 	config_devlink(dev);
   1413 
   1414 	if (config_do_twiddle && cold)
   1415 		twiddle();
   1416 	else
   1417 		aprint_naive("Found ");
   1418 	/*
   1419 	 * We want the next two printfs for normal, verbose, and quiet,
   1420 	 * but not silent (in which case, we're twiddling, instead).
   1421 	 */
   1422 	if (parent == ROOT) {
   1423 		aprint_naive("%s (root)", device_xname(dev));
   1424 		aprint_normal("%s (root)", device_xname(dev));
   1425 	} else {
   1426 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
   1427 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
   1428 		if (print)
   1429 			(void) (*print)(aux, NULL);
   1430 	}
   1431 
   1432 	/*
   1433 	 * Before attaching, clobber any unfound devices that are
   1434 	 * otherwise identical.
   1435 	 * XXX code above is redundant?
   1436 	 */
   1437 	drvname = dev->dv_cfdriver->cd_name;
   1438 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1439 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1440 			if (STREQ(cf->cf_name, drvname) &&
   1441 			    cf->cf_unit == dev->dv_unit) {
   1442 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1443 					cf->cf_fstate = FSTATE_FOUND;
   1444 			}
   1445 		}
   1446 	}
   1447 	device_register(dev, aux);
   1448 
   1449 	/* Let userland know */
   1450 	devmon_report_device(dev, true);
   1451 
   1452 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1453 
   1454 	if (!device_pmf_is_registered(dev))
   1455 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
   1456 
   1457 	config_process_deferred(&deferred_config_queue, dev);
   1458 
   1459 	device_register_post_config(dev, aux);
   1460 	return dev;
   1461 }
   1462 
   1463 device_t
   1464 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1465 {
   1466 
   1467 	return config_attach_loc(parent, cf, NULL, aux, print);
   1468 }
   1469 
   1470 /*
   1471  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1472  * way are silently inserted into the device tree, and their children
   1473  * attached.
   1474  *
   1475  * Note that because pseudo-devices are attached silently, any information
   1476  * the attach routine wishes to print should be prefixed with the device
   1477  * name by the attach routine.
   1478  */
   1479 device_t
   1480 config_attach_pseudo(cfdata_t cf)
   1481 {
   1482 	device_t dev;
   1483 
   1484 	dev = config_devalloc(ROOT, cf, NULL);
   1485 	if (!dev)
   1486 		return NULL;
   1487 
   1488 	/* XXX mark busy in cfdata */
   1489 
   1490 	if (cf->cf_fstate != FSTATE_STAR) {
   1491 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1492 		cf->cf_fstate = FSTATE_FOUND;
   1493 	}
   1494 
   1495 	config_devlink(dev);
   1496 
   1497 #if 0	/* XXXJRT not yet */
   1498 	device_register(dev, NULL);	/* like a root node */
   1499 #endif
   1500 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1501 	config_process_deferred(&deferred_config_queue, dev);
   1502 	return dev;
   1503 }
   1504 
   1505 /*
   1506  * Caller must hold alldevs_mtx.
   1507  */
   1508 static void
   1509 config_collect_garbage(struct devicelist *garbage)
   1510 {
   1511 	device_t dv;
   1512 
   1513 	KASSERT(!cpu_intr_p());
   1514 	KASSERT(!cpu_softintr_p());
   1515 	KASSERT(mutex_owned(&alldevs_mtx));
   1516 
   1517 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1518 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1519 			if (dv->dv_del_gen != 0)
   1520 				break;
   1521 		}
   1522 		if (dv == NULL) {
   1523 			alldevs_garbage = false;
   1524 			break;
   1525 		}
   1526 		config_devunlink(dv, garbage);
   1527 	}
   1528 	KASSERT(mutex_owned(&alldevs_mtx));
   1529 }
   1530 
   1531 static void
   1532 config_dump_garbage(struct devicelist *garbage)
   1533 {
   1534 	device_t dv;
   1535 
   1536 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1537 		TAILQ_REMOVE(garbage, dv, dv_list);
   1538 		config_devdelete(dv);
   1539 	}
   1540 }
   1541 
   1542 /*
   1543  * Detach a device.  Optionally forced (e.g. because of hardware
   1544  * removal) and quiet.  Returns zero if successful, non-zero
   1545  * (an error code) otherwise.
   1546  *
   1547  * Note that this code wants to be run from a process context, so
   1548  * that the detach can sleep to allow processes which have a device
   1549  * open to run and unwind their stacks.
   1550  */
   1551 int
   1552 config_detach(device_t dev, int flags)
   1553 {
   1554 	struct alldevs_foray af;
   1555 	struct cftable *ct;
   1556 	cfdata_t cf;
   1557 	const struct cfattach *ca;
   1558 	struct cfdriver *cd;
   1559 #ifdef DIAGNOSTIC
   1560 	device_t d;
   1561 #endif
   1562 	int rv = 0, s;
   1563 
   1564 #ifdef DIAGNOSTIC
   1565 	cf = dev->dv_cfdata;
   1566 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
   1567 	    cf->cf_fstate != FSTATE_STAR)
   1568 		panic("config_detach: %s: bad device fstate %d",
   1569 		    device_xname(dev), cf ? cf->cf_fstate : -1);
   1570 #endif
   1571 	cd = dev->dv_cfdriver;
   1572 	KASSERT(cd != NULL);
   1573 
   1574 	ca = dev->dv_cfattach;
   1575 	KASSERT(ca != NULL);
   1576 
   1577 	s = config_alldevs_lock();
   1578 	if (dev->dv_del_gen != 0) {
   1579 		config_alldevs_unlock(s);
   1580 #ifdef DIAGNOSTIC
   1581 		printf("%s: %s is already detached\n", __func__,
   1582 		    device_xname(dev));
   1583 #endif /* DIAGNOSTIC */
   1584 		return ENOENT;
   1585 	}
   1586 	alldevs_nwrite++;
   1587 	config_alldevs_unlock(s);
   1588 
   1589 	if (!detachall &&
   1590 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1591 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1592 		rv = EOPNOTSUPP;
   1593 	} else if (ca->ca_detach != NULL) {
   1594 		rv = (*ca->ca_detach)(dev, flags);
   1595 	} else
   1596 		rv = EOPNOTSUPP;
   1597 
   1598 	/*
   1599 	 * If it was not possible to detach the device, then we either
   1600 	 * panic() (for the forced but failed case), or return an error.
   1601 	 *
   1602 	 * If it was possible to detach the device, ensure that the
   1603 	 * device is deactivated.
   1604 	 */
   1605 	if (rv == 0)
   1606 		dev->dv_flags &= ~DVF_ACTIVE;
   1607 	else if ((flags & DETACH_FORCE) == 0)
   1608 		goto out;
   1609 	else {
   1610 		panic("config_detach: forced detach of %s failed (%d)",
   1611 		    device_xname(dev), rv);
   1612 	}
   1613 
   1614 	/*
   1615 	 * The device has now been successfully detached.
   1616 	 */
   1617 
   1618 	/* Let userland know */
   1619 	devmon_report_device(dev, false);
   1620 
   1621 #ifdef DIAGNOSTIC
   1622 	/*
   1623 	 * Sanity: If you're successfully detached, you should have no
   1624 	 * children.  (Note that because children must be attached
   1625 	 * after parents, we only need to search the latter part of
   1626 	 * the list.)
   1627 	 */
   1628 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1629 	    d = TAILQ_NEXT(d, dv_list)) {
   1630 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1631 			printf("config_detach: detached device %s"
   1632 			    " has children %s\n", device_xname(dev), device_xname(d));
   1633 			panic("config_detach");
   1634 		}
   1635 	}
   1636 #endif
   1637 
   1638 	/* notify the parent that the child is gone */
   1639 	if (dev->dv_parent) {
   1640 		device_t p = dev->dv_parent;
   1641 		if (p->dv_cfattach->ca_childdetached)
   1642 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1643 	}
   1644 
   1645 	/*
   1646 	 * Mark cfdata to show that the unit can be reused, if possible.
   1647 	 */
   1648 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1649 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1650 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1651 				if (cf->cf_fstate == FSTATE_FOUND &&
   1652 				    cf->cf_unit == dev->dv_unit)
   1653 					cf->cf_fstate = FSTATE_NOTFOUND;
   1654 			}
   1655 		}
   1656 	}
   1657 
   1658 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1659 		aprint_normal_dev(dev, "detached\n");
   1660 
   1661 out:
   1662 	config_alldevs_enter(&af);
   1663 	KASSERT(alldevs_nwrite != 0);
   1664 	--alldevs_nwrite;
   1665 	if (rv == 0 && dev->dv_del_gen == 0) {
   1666 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   1667 			config_devunlink(dev, &af.af_garbage);
   1668 		else {
   1669 			dev->dv_del_gen = alldevs_gen;
   1670 			alldevs_garbage = true;
   1671 		}
   1672 	}
   1673 	config_alldevs_exit(&af);
   1674 
   1675 	return rv;
   1676 }
   1677 
   1678 int
   1679 config_detach_children(device_t parent, int flags)
   1680 {
   1681 	device_t dv;
   1682 	deviter_t di;
   1683 	int error = 0;
   1684 
   1685 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1686 	     dv = deviter_next(&di)) {
   1687 		if (device_parent(dv) != parent)
   1688 			continue;
   1689 		if ((error = config_detach(dv, flags)) != 0)
   1690 			break;
   1691 	}
   1692 	deviter_release(&di);
   1693 	return error;
   1694 }
   1695 
   1696 device_t
   1697 shutdown_first(struct shutdown_state *s)
   1698 {
   1699 	if (!s->initialized) {
   1700 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1701 		s->initialized = true;
   1702 	}
   1703 	return shutdown_next(s);
   1704 }
   1705 
   1706 device_t
   1707 shutdown_next(struct shutdown_state *s)
   1708 {
   1709 	device_t dv;
   1710 
   1711 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1712 		;
   1713 
   1714 	if (dv == NULL)
   1715 		s->initialized = false;
   1716 
   1717 	return dv;
   1718 }
   1719 
   1720 bool
   1721 config_detach_all(int how)
   1722 {
   1723 	static struct shutdown_state s;
   1724 	device_t curdev;
   1725 	bool progress = false;
   1726 
   1727 	if ((how & RB_NOSYNC) != 0)
   1728 		return false;
   1729 
   1730 	for (curdev = shutdown_first(&s); curdev != NULL;
   1731 	     curdev = shutdown_next(&s)) {
   1732 		aprint_debug(" detaching %s, ", device_xname(curdev));
   1733 		if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
   1734 			progress = true;
   1735 			aprint_debug("success.");
   1736 		} else
   1737 			aprint_debug("failed.");
   1738 	}
   1739 	return progress;
   1740 }
   1741 
   1742 static bool
   1743 device_is_ancestor_of(device_t ancestor, device_t descendant)
   1744 {
   1745 	device_t dv;
   1746 
   1747 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   1748 		if (device_parent(dv) == ancestor)
   1749 			return true;
   1750 	}
   1751 	return false;
   1752 }
   1753 
   1754 int
   1755 config_deactivate(device_t dev)
   1756 {
   1757 	deviter_t di;
   1758 	const struct cfattach *ca;
   1759 	device_t descendant;
   1760 	int s, rv = 0, oflags;
   1761 
   1762 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   1763 	     descendant != NULL;
   1764 	     descendant = deviter_next(&di)) {
   1765 		if (dev != descendant &&
   1766 		    !device_is_ancestor_of(dev, descendant))
   1767 			continue;
   1768 
   1769 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   1770 			continue;
   1771 
   1772 		ca = descendant->dv_cfattach;
   1773 		oflags = descendant->dv_flags;
   1774 
   1775 		descendant->dv_flags &= ~DVF_ACTIVE;
   1776 		if (ca->ca_activate == NULL)
   1777 			continue;
   1778 		s = splhigh();
   1779 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   1780 		splx(s);
   1781 		if (rv != 0)
   1782 			descendant->dv_flags = oflags;
   1783 	}
   1784 	deviter_release(&di);
   1785 	return rv;
   1786 }
   1787 
   1788 /*
   1789  * Defer the configuration of the specified device until all
   1790  * of its parent's devices have been attached.
   1791  */
   1792 void
   1793 config_defer(device_t dev, void (*func)(device_t))
   1794 {
   1795 	struct deferred_config *dc;
   1796 
   1797 	if (dev->dv_parent == NULL)
   1798 		panic("config_defer: can't defer config of a root device");
   1799 
   1800 #ifdef DIAGNOSTIC
   1801 	TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
   1802 		if (dc->dc_dev == dev)
   1803 			panic("config_defer: deferred twice");
   1804 	}
   1805 #endif
   1806 
   1807 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1808 	if (dc == NULL)
   1809 		panic("config_defer: unable to allocate callback");
   1810 
   1811 	dc->dc_dev = dev;
   1812 	dc->dc_func = func;
   1813 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1814 	config_pending_incr();
   1815 }
   1816 
   1817 /*
   1818  * Defer some autoconfiguration for a device until after interrupts
   1819  * are enabled.
   1820  */
   1821 void
   1822 config_interrupts(device_t dev, void (*func)(device_t))
   1823 {
   1824 	struct deferred_config *dc;
   1825 
   1826 	/*
   1827 	 * If interrupts are enabled, callback now.
   1828 	 */
   1829 	if (cold == 0) {
   1830 		(*func)(dev);
   1831 		return;
   1832 	}
   1833 
   1834 #ifdef DIAGNOSTIC
   1835 	TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
   1836 		if (dc->dc_dev == dev)
   1837 			panic("config_interrupts: deferred twice");
   1838 	}
   1839 #endif
   1840 
   1841 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1842 	if (dc == NULL)
   1843 		panic("config_interrupts: unable to allocate callback");
   1844 
   1845 	dc->dc_dev = dev;
   1846 	dc->dc_func = func;
   1847 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   1848 	config_pending_incr();
   1849 }
   1850 
   1851 /*
   1852  * Defer some autoconfiguration for a device until after root file system
   1853  * is mounted (to load firmware etc).
   1854  */
   1855 void
   1856 config_mountroot(device_t dev, void (*func)(device_t))
   1857 {
   1858 	struct deferred_config *dc;
   1859 
   1860 	/*
   1861 	 * If root file system is mounted, callback now.
   1862 	 */
   1863 	if (root_is_mounted) {
   1864 		(*func)(dev);
   1865 		return;
   1866 	}
   1867 
   1868 #ifdef DIAGNOSTIC
   1869 	TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
   1870 		if (dc->dc_dev == dev)
   1871 			panic("%s: deferred twice", __func__);
   1872 	}
   1873 #endif
   1874 
   1875 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1876 	if (dc == NULL)
   1877 		panic("%s: unable to allocate callback", __func__);
   1878 
   1879 	dc->dc_dev = dev;
   1880 	dc->dc_func = func;
   1881 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   1882 }
   1883 
   1884 /*
   1885  * Process a deferred configuration queue.
   1886  */
   1887 static void
   1888 config_process_deferred(struct deferred_config_head *queue,
   1889     device_t parent)
   1890 {
   1891 	struct deferred_config *dc, *ndc;
   1892 
   1893 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   1894 		ndc = TAILQ_NEXT(dc, dc_queue);
   1895 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   1896 			TAILQ_REMOVE(queue, dc, dc_queue);
   1897 			(*dc->dc_func)(dc->dc_dev);
   1898 			kmem_free(dc, sizeof(*dc));
   1899 			config_pending_decr();
   1900 		}
   1901 	}
   1902 }
   1903 
   1904 /*
   1905  * Manipulate the config_pending semaphore.
   1906  */
   1907 void
   1908 config_pending_incr(void)
   1909 {
   1910 
   1911 	mutex_enter(&config_misc_lock);
   1912 	config_pending++;
   1913 	mutex_exit(&config_misc_lock);
   1914 }
   1915 
   1916 void
   1917 config_pending_decr(void)
   1918 {
   1919 
   1920 #ifdef DIAGNOSTIC
   1921 	if (config_pending == 0)
   1922 		panic("config_pending_decr: config_pending == 0");
   1923 #endif
   1924 	mutex_enter(&config_misc_lock);
   1925 	config_pending--;
   1926 	if (config_pending == 0)
   1927 		cv_broadcast(&config_misc_cv);
   1928 	mutex_exit(&config_misc_lock);
   1929 }
   1930 
   1931 /*
   1932  * Register a "finalization" routine.  Finalization routines are
   1933  * called iteratively once all real devices have been found during
   1934  * autoconfiguration, for as long as any one finalizer has done
   1935  * any work.
   1936  */
   1937 int
   1938 config_finalize_register(device_t dev, int (*fn)(device_t))
   1939 {
   1940 	struct finalize_hook *f;
   1941 
   1942 	/*
   1943 	 * If finalization has already been done, invoke the
   1944 	 * callback function now.
   1945 	 */
   1946 	if (config_finalize_done) {
   1947 		while ((*fn)(dev) != 0)
   1948 			/* loop */ ;
   1949 	}
   1950 
   1951 	/* Ensure this isn't already on the list. */
   1952 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   1953 		if (f->f_func == fn && f->f_dev == dev)
   1954 			return EEXIST;
   1955 	}
   1956 
   1957 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   1958 	f->f_func = fn;
   1959 	f->f_dev = dev;
   1960 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   1961 
   1962 	return 0;
   1963 }
   1964 
   1965 void
   1966 config_finalize(void)
   1967 {
   1968 	struct finalize_hook *f;
   1969 	struct pdevinit *pdev;
   1970 	extern struct pdevinit pdevinit[];
   1971 	int errcnt, rv;
   1972 
   1973 	/*
   1974 	 * Now that device driver threads have been created, wait for
   1975 	 * them to finish any deferred autoconfiguration.
   1976 	 */
   1977 	mutex_enter(&config_misc_lock);
   1978 	while (config_pending != 0)
   1979 		cv_wait(&config_misc_cv, &config_misc_lock);
   1980 	mutex_exit(&config_misc_lock);
   1981 
   1982 	KERNEL_LOCK(1, NULL);
   1983 
   1984 	/* Attach pseudo-devices. */
   1985 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   1986 		(*pdev->pdev_attach)(pdev->pdev_count);
   1987 
   1988 	/* Run the hooks until none of them does any work. */
   1989 	do {
   1990 		rv = 0;
   1991 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   1992 			rv |= (*f->f_func)(f->f_dev);
   1993 	} while (rv != 0);
   1994 
   1995 	config_finalize_done = 1;
   1996 
   1997 	/* Now free all the hooks. */
   1998 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   1999 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2000 		kmem_free(f, sizeof(*f));
   2001 	}
   2002 
   2003 	KERNEL_UNLOCK_ONE(NULL);
   2004 
   2005 	errcnt = aprint_get_error_count();
   2006 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2007 	    (boothowto & AB_VERBOSE) == 0) {
   2008 		mutex_enter(&config_misc_lock);
   2009 		if (config_do_twiddle) {
   2010 			config_do_twiddle = 0;
   2011 			printf_nolog(" done.\n");
   2012 		}
   2013 		mutex_exit(&config_misc_lock);
   2014 		if (errcnt != 0) {
   2015 			printf("WARNING: %d error%s while detecting hardware; "
   2016 			    "check system log.\n", errcnt,
   2017 			    errcnt == 1 ? "" : "s");
   2018 		}
   2019 	}
   2020 }
   2021 
   2022 void
   2023 config_twiddle_init()
   2024 {
   2025 
   2026 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2027 		config_do_twiddle = 1;
   2028 	}
   2029 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2030 }
   2031 
   2032 void
   2033 config_twiddle_fn(void *cookie)
   2034 {
   2035 
   2036 	mutex_enter(&config_misc_lock);
   2037 	if (config_do_twiddle) {
   2038 		twiddle();
   2039 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2040 	}
   2041 	mutex_exit(&config_misc_lock);
   2042 }
   2043 
   2044 static int
   2045 config_alldevs_lock(void)
   2046 {
   2047 	mutex_enter(&alldevs_mtx);
   2048 	return 0;
   2049 }
   2050 
   2051 static void
   2052 config_alldevs_enter(struct alldevs_foray *af)
   2053 {
   2054 	TAILQ_INIT(&af->af_garbage);
   2055 	af->af_s = config_alldevs_lock();
   2056 	config_collect_garbage(&af->af_garbage);
   2057 }
   2058 
   2059 static void
   2060 config_alldevs_exit(struct alldevs_foray *af)
   2061 {
   2062 	config_alldevs_unlock(af->af_s);
   2063 	config_dump_garbage(&af->af_garbage);
   2064 }
   2065 
   2066 /*ARGSUSED*/
   2067 static void
   2068 config_alldevs_unlock(int s)
   2069 {
   2070 	mutex_exit(&alldevs_mtx);
   2071 }
   2072 
   2073 /*
   2074  * device_lookup:
   2075  *
   2076  *	Look up a device instance for a given driver.
   2077  */
   2078 device_t
   2079 device_lookup(cfdriver_t cd, int unit)
   2080 {
   2081 	device_t dv;
   2082 	int s;
   2083 
   2084 	s = config_alldevs_lock();
   2085 	KASSERT(mutex_owned(&alldevs_mtx));
   2086 	if (unit < 0 || unit >= cd->cd_ndevs)
   2087 		dv = NULL;
   2088 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2089 		dv = NULL;
   2090 	config_alldevs_unlock(s);
   2091 
   2092 	return dv;
   2093 }
   2094 
   2095 /*
   2096  * device_lookup_private:
   2097  *
   2098  *	Look up a softc instance for a given driver.
   2099  */
   2100 void *
   2101 device_lookup_private(cfdriver_t cd, int unit)
   2102 {
   2103 
   2104 	return device_private(device_lookup(cd, unit));
   2105 }
   2106 
   2107 /*
   2108  * device_find_by_xname:
   2109  *
   2110  *	Returns the device of the given name or NULL if it doesn't exist.
   2111  */
   2112 device_t
   2113 device_find_by_xname(const char *name)
   2114 {
   2115 	device_t dv;
   2116 	deviter_t di;
   2117 
   2118 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2119 		if (strcmp(device_xname(dv), name) == 0)
   2120 			break;
   2121 	}
   2122 	deviter_release(&di);
   2123 
   2124 	return dv;
   2125 }
   2126 
   2127 /*
   2128  * device_find_by_driver_unit:
   2129  *
   2130  *	Returns the device of the given driver name and unit or
   2131  *	NULL if it doesn't exist.
   2132  */
   2133 device_t
   2134 device_find_by_driver_unit(const char *name, int unit)
   2135 {
   2136 	struct cfdriver *cd;
   2137 
   2138 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2139 		return NULL;
   2140 	return device_lookup(cd, unit);
   2141 }
   2142 
   2143 /*
   2144  * Power management related functions.
   2145  */
   2146 
   2147 bool
   2148 device_pmf_is_registered(device_t dev)
   2149 {
   2150 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2151 }
   2152 
   2153 bool
   2154 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2155 {
   2156 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2157 		return true;
   2158 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2159 		return false;
   2160 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2161 	    dev->dv_driver_suspend != NULL &&
   2162 	    !(*dev->dv_driver_suspend)(dev, qual))
   2163 		return false;
   2164 
   2165 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2166 	return true;
   2167 }
   2168 
   2169 bool
   2170 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2171 {
   2172 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2173 		return true;
   2174 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2175 		return false;
   2176 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2177 	    dev->dv_driver_resume != NULL &&
   2178 	    !(*dev->dv_driver_resume)(dev, qual))
   2179 		return false;
   2180 
   2181 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2182 	return true;
   2183 }
   2184 
   2185 bool
   2186 device_pmf_driver_shutdown(device_t dev, int how)
   2187 {
   2188 
   2189 	if (*dev->dv_driver_shutdown != NULL &&
   2190 	    !(*dev->dv_driver_shutdown)(dev, how))
   2191 		return false;
   2192 	return true;
   2193 }
   2194 
   2195 bool
   2196 device_pmf_driver_register(device_t dev,
   2197     bool (*suspend)(device_t, const pmf_qual_t *),
   2198     bool (*resume)(device_t, const pmf_qual_t *),
   2199     bool (*shutdown)(device_t, int))
   2200 {
   2201 	dev->dv_driver_suspend = suspend;
   2202 	dev->dv_driver_resume = resume;
   2203 	dev->dv_driver_shutdown = shutdown;
   2204 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2205 	return true;
   2206 }
   2207 
   2208 static const char *
   2209 curlwp_name(void)
   2210 {
   2211 	if (curlwp->l_name != NULL)
   2212 		return curlwp->l_name;
   2213 	else
   2214 		return curlwp->l_proc->p_comm;
   2215 }
   2216 
   2217 void
   2218 device_pmf_driver_deregister(device_t dev)
   2219 {
   2220 	device_lock_t dvl = device_getlock(dev);
   2221 
   2222 	dev->dv_driver_suspend = NULL;
   2223 	dev->dv_driver_resume = NULL;
   2224 
   2225 	mutex_enter(&dvl->dvl_mtx);
   2226 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2227 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2228 		/* Wake a thread that waits for the lock.  That
   2229 		 * thread will fail to acquire the lock, and then
   2230 		 * it will wake the next thread that waits for the
   2231 		 * lock, or else it will wake us.
   2232 		 */
   2233 		cv_signal(&dvl->dvl_cv);
   2234 		pmflock_debug(dev, __func__, __LINE__);
   2235 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2236 		pmflock_debug(dev, __func__, __LINE__);
   2237 	}
   2238 	mutex_exit(&dvl->dvl_mtx);
   2239 }
   2240 
   2241 bool
   2242 device_pmf_driver_child_register(device_t dev)
   2243 {
   2244 	device_t parent = device_parent(dev);
   2245 
   2246 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2247 		return true;
   2248 	return (*parent->dv_driver_child_register)(dev);
   2249 }
   2250 
   2251 void
   2252 device_pmf_driver_set_child_register(device_t dev,
   2253     bool (*child_register)(device_t))
   2254 {
   2255 	dev->dv_driver_child_register = child_register;
   2256 }
   2257 
   2258 static void
   2259 pmflock_debug(device_t dev, const char *func, int line)
   2260 {
   2261 	device_lock_t dvl = device_getlock(dev);
   2262 
   2263 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
   2264 	    func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
   2265 	    dev->dv_flags);
   2266 }
   2267 
   2268 static bool
   2269 device_pmf_lock1(device_t dev)
   2270 {
   2271 	device_lock_t dvl = device_getlock(dev);
   2272 
   2273 	while (device_pmf_is_registered(dev) &&
   2274 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2275 		dvl->dvl_nwait++;
   2276 		pmflock_debug(dev, __func__, __LINE__);
   2277 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2278 		pmflock_debug(dev, __func__, __LINE__);
   2279 		dvl->dvl_nwait--;
   2280 	}
   2281 	if (!device_pmf_is_registered(dev)) {
   2282 		pmflock_debug(dev, __func__, __LINE__);
   2283 		/* We could not acquire the lock, but some other thread may
   2284 		 * wait for it, also.  Wake that thread.
   2285 		 */
   2286 		cv_signal(&dvl->dvl_cv);
   2287 		return false;
   2288 	}
   2289 	dvl->dvl_nlock++;
   2290 	dvl->dvl_holder = curlwp;
   2291 	pmflock_debug(dev, __func__, __LINE__);
   2292 	return true;
   2293 }
   2294 
   2295 bool
   2296 device_pmf_lock(device_t dev)
   2297 {
   2298 	bool rc;
   2299 	device_lock_t dvl = device_getlock(dev);
   2300 
   2301 	mutex_enter(&dvl->dvl_mtx);
   2302 	rc = device_pmf_lock1(dev);
   2303 	mutex_exit(&dvl->dvl_mtx);
   2304 
   2305 	return rc;
   2306 }
   2307 
   2308 void
   2309 device_pmf_unlock(device_t dev)
   2310 {
   2311 	device_lock_t dvl = device_getlock(dev);
   2312 
   2313 	KASSERT(dvl->dvl_nlock > 0);
   2314 	mutex_enter(&dvl->dvl_mtx);
   2315 	if (--dvl->dvl_nlock == 0)
   2316 		dvl->dvl_holder = NULL;
   2317 	cv_signal(&dvl->dvl_cv);
   2318 	pmflock_debug(dev, __func__, __LINE__);
   2319 	mutex_exit(&dvl->dvl_mtx);
   2320 }
   2321 
   2322 device_lock_t
   2323 device_getlock(device_t dev)
   2324 {
   2325 	return &dev->dv_lock;
   2326 }
   2327 
   2328 void *
   2329 device_pmf_bus_private(device_t dev)
   2330 {
   2331 	return dev->dv_bus_private;
   2332 }
   2333 
   2334 bool
   2335 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   2336 {
   2337 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2338 		return true;
   2339 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2340 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2341 		return false;
   2342 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2343 	    dev->dv_bus_suspend != NULL &&
   2344 	    !(*dev->dv_bus_suspend)(dev, qual))
   2345 		return false;
   2346 
   2347 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2348 	return true;
   2349 }
   2350 
   2351 bool
   2352 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   2353 {
   2354 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2355 		return true;
   2356 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2357 	    dev->dv_bus_resume != NULL &&
   2358 	    !(*dev->dv_bus_resume)(dev, qual))
   2359 		return false;
   2360 
   2361 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2362 	return true;
   2363 }
   2364 
   2365 bool
   2366 device_pmf_bus_shutdown(device_t dev, int how)
   2367 {
   2368 
   2369 	if (*dev->dv_bus_shutdown != NULL &&
   2370 	    !(*dev->dv_bus_shutdown)(dev, how))
   2371 		return false;
   2372 	return true;
   2373 }
   2374 
   2375 void
   2376 device_pmf_bus_register(device_t dev, void *priv,
   2377     bool (*suspend)(device_t, const pmf_qual_t *),
   2378     bool (*resume)(device_t, const pmf_qual_t *),
   2379     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2380 {
   2381 	dev->dv_bus_private = priv;
   2382 	dev->dv_bus_resume = resume;
   2383 	dev->dv_bus_suspend = suspend;
   2384 	dev->dv_bus_shutdown = shutdown;
   2385 	dev->dv_bus_deregister = deregister;
   2386 }
   2387 
   2388 void
   2389 device_pmf_bus_deregister(device_t dev)
   2390 {
   2391 	if (dev->dv_bus_deregister == NULL)
   2392 		return;
   2393 	(*dev->dv_bus_deregister)(dev);
   2394 	dev->dv_bus_private = NULL;
   2395 	dev->dv_bus_suspend = NULL;
   2396 	dev->dv_bus_resume = NULL;
   2397 	dev->dv_bus_deregister = NULL;
   2398 }
   2399 
   2400 void *
   2401 device_pmf_class_private(device_t dev)
   2402 {
   2403 	return dev->dv_class_private;
   2404 }
   2405 
   2406 bool
   2407 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   2408 {
   2409 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2410 		return true;
   2411 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2412 	    dev->dv_class_suspend != NULL &&
   2413 	    !(*dev->dv_class_suspend)(dev, qual))
   2414 		return false;
   2415 
   2416 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2417 	return true;
   2418 }
   2419 
   2420 bool
   2421 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   2422 {
   2423 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2424 		return true;
   2425 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2426 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2427 		return false;
   2428 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2429 	    dev->dv_class_resume != NULL &&
   2430 	    !(*dev->dv_class_resume)(dev, qual))
   2431 		return false;
   2432 
   2433 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2434 	return true;
   2435 }
   2436 
   2437 void
   2438 device_pmf_class_register(device_t dev, void *priv,
   2439     bool (*suspend)(device_t, const pmf_qual_t *),
   2440     bool (*resume)(device_t, const pmf_qual_t *),
   2441     void (*deregister)(device_t))
   2442 {
   2443 	dev->dv_class_private = priv;
   2444 	dev->dv_class_suspend = suspend;
   2445 	dev->dv_class_resume = resume;
   2446 	dev->dv_class_deregister = deregister;
   2447 }
   2448 
   2449 void
   2450 device_pmf_class_deregister(device_t dev)
   2451 {
   2452 	if (dev->dv_class_deregister == NULL)
   2453 		return;
   2454 	(*dev->dv_class_deregister)(dev);
   2455 	dev->dv_class_private = NULL;
   2456 	dev->dv_class_suspend = NULL;
   2457 	dev->dv_class_resume = NULL;
   2458 	dev->dv_class_deregister = NULL;
   2459 }
   2460 
   2461 bool
   2462 device_active(device_t dev, devactive_t type)
   2463 {
   2464 	size_t i;
   2465 
   2466 	if (dev->dv_activity_count == 0)
   2467 		return false;
   2468 
   2469 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2470 		if (dev->dv_activity_handlers[i] == NULL)
   2471 			break;
   2472 		(*dev->dv_activity_handlers[i])(dev, type);
   2473 	}
   2474 
   2475 	return true;
   2476 }
   2477 
   2478 bool
   2479 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2480 {
   2481 	void (**new_handlers)(device_t, devactive_t);
   2482 	void (**old_handlers)(device_t, devactive_t);
   2483 	size_t i, old_size, new_size;
   2484 	int s;
   2485 
   2486 	old_handlers = dev->dv_activity_handlers;
   2487 	old_size = dev->dv_activity_count;
   2488 
   2489 	for (i = 0; i < old_size; ++i) {
   2490 		KASSERT(old_handlers[i] != handler);
   2491 		if (old_handlers[i] == NULL) {
   2492 			old_handlers[i] = handler;
   2493 			return true;
   2494 		}
   2495 	}
   2496 
   2497 	new_size = old_size + 4;
   2498 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
   2499 
   2500 	memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
   2501 	new_handlers[old_size] = handler;
   2502 	memset(new_handlers + old_size + 1, 0,
   2503 	    sizeof(int [new_size - (old_size+1)]));
   2504 
   2505 	s = splhigh();
   2506 	dev->dv_activity_count = new_size;
   2507 	dev->dv_activity_handlers = new_handlers;
   2508 	splx(s);
   2509 
   2510 	if (old_handlers != NULL)
   2511 		kmem_free(old_handlers, sizeof(void * [old_size]));
   2512 
   2513 	return true;
   2514 }
   2515 
   2516 void
   2517 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2518 {
   2519 	void (**old_handlers)(device_t, devactive_t);
   2520 	size_t i, old_size;
   2521 	int s;
   2522 
   2523 	old_handlers = dev->dv_activity_handlers;
   2524 	old_size = dev->dv_activity_count;
   2525 
   2526 	for (i = 0; i < old_size; ++i) {
   2527 		if (old_handlers[i] == handler)
   2528 			break;
   2529 		if (old_handlers[i] == NULL)
   2530 			return; /* XXX panic? */
   2531 	}
   2532 
   2533 	if (i == old_size)
   2534 		return; /* XXX panic? */
   2535 
   2536 	for (; i < old_size - 1; ++i) {
   2537 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   2538 			continue;
   2539 
   2540 		if (i == 0) {
   2541 			s = splhigh();
   2542 			dev->dv_activity_count = 0;
   2543 			dev->dv_activity_handlers = NULL;
   2544 			splx(s);
   2545 			kmem_free(old_handlers, sizeof(void *[old_size]));
   2546 		}
   2547 		return;
   2548 	}
   2549 	old_handlers[i] = NULL;
   2550 }
   2551 
   2552 /* Return true iff the device_t `dev' exists at generation `gen'. */
   2553 static bool
   2554 device_exists_at(device_t dv, devgen_t gen)
   2555 {
   2556 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   2557 	    dv->dv_add_gen <= gen;
   2558 }
   2559 
   2560 static bool
   2561 deviter_visits(const deviter_t *di, device_t dv)
   2562 {
   2563 	return device_exists_at(dv, di->di_gen);
   2564 }
   2565 
   2566 /*
   2567  * Device Iteration
   2568  *
   2569  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2570  *     each device_t's in the device tree.
   2571  *
   2572  * deviter_init(di, flags): initialize the device iterator `di'
   2573  *     to "walk" the device tree.  deviter_next(di) will return
   2574  *     the first device_t in the device tree, or NULL if there are
   2575  *     no devices.
   2576  *
   2577  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2578  *     caller intends to modify the device tree by calling
   2579  *     config_detach(9) on devices in the order that the iterator
   2580  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2581  *     nearest the "root" of the device tree to be returned, first;
   2582  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2583  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2584  *     indicating both that deviter_init() should not respect any
   2585  *     locks on the device tree, and that deviter_next(di) may run
   2586  *     in more than one LWP before the walk has finished.
   2587  *
   2588  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2589  *     once.
   2590  *
   2591  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2592  *
   2593  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2594  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2595  *
   2596  * deviter_first(di, flags): initialize the device iterator `di'
   2597  *     and return the first device_t in the device tree, or NULL
   2598  *     if there are no devices.  The statement
   2599  *
   2600  *         dv = deviter_first(di);
   2601  *
   2602  *     is shorthand for
   2603  *
   2604  *         deviter_init(di);
   2605  *         dv = deviter_next(di);
   2606  *
   2607  * deviter_next(di): return the next device_t in the device tree,
   2608  *     or NULL if there are no more devices.  deviter_next(di)
   2609  *     is undefined if `di' was not initialized with deviter_init() or
   2610  *     deviter_first().
   2611  *
   2612  * deviter_release(di): stops iteration (subsequent calls to
   2613  *     deviter_next() will return NULL), releases any locks and
   2614  *     resources held by the device iterator.
   2615  *
   2616  * Device iteration does not return device_t's in any particular
   2617  * order.  An iterator will never return the same device_t twice.
   2618  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2619  * is called repeatedly on the same `di', it will eventually return
   2620  * NULL.  It is ok to attach/detach devices during device iteration.
   2621  */
   2622 void
   2623 deviter_init(deviter_t *di, deviter_flags_t flags)
   2624 {
   2625 	device_t dv;
   2626 	int s;
   2627 
   2628 	memset(di, 0, sizeof(*di));
   2629 
   2630 	s = config_alldevs_lock();
   2631 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   2632 		flags |= DEVITER_F_RW;
   2633 
   2634 	if ((flags & DEVITER_F_RW) != 0)
   2635 		alldevs_nwrite++;
   2636 	else
   2637 		alldevs_nread++;
   2638 	di->di_gen = alldevs_gen++;
   2639 	config_alldevs_unlock(s);
   2640 
   2641 	di->di_flags = flags;
   2642 
   2643 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2644 	case DEVITER_F_LEAVES_FIRST:
   2645 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2646 			if (!deviter_visits(di, dv))
   2647 				continue;
   2648 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2649 		}
   2650 		break;
   2651 	case DEVITER_F_ROOT_FIRST:
   2652 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2653 			if (!deviter_visits(di, dv))
   2654 				continue;
   2655 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2656 		}
   2657 		break;
   2658 	default:
   2659 		break;
   2660 	}
   2661 
   2662 	deviter_reinit(di);
   2663 }
   2664 
   2665 static void
   2666 deviter_reinit(deviter_t *di)
   2667 {
   2668 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2669 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2670 	else
   2671 		di->di_prev = TAILQ_FIRST(&alldevs);
   2672 }
   2673 
   2674 device_t
   2675 deviter_first(deviter_t *di, deviter_flags_t flags)
   2676 {
   2677 	deviter_init(di, flags);
   2678 	return deviter_next(di);
   2679 }
   2680 
   2681 static device_t
   2682 deviter_next2(deviter_t *di)
   2683 {
   2684 	device_t dv;
   2685 
   2686 	dv = di->di_prev;
   2687 
   2688 	if (dv == NULL)
   2689 		return NULL;
   2690 
   2691 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2692 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2693 	else
   2694 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2695 
   2696 	return dv;
   2697 }
   2698 
   2699 static device_t
   2700 deviter_next1(deviter_t *di)
   2701 {
   2702 	device_t dv;
   2703 
   2704 	do {
   2705 		dv = deviter_next2(di);
   2706 	} while (dv != NULL && !deviter_visits(di, dv));
   2707 
   2708 	return dv;
   2709 }
   2710 
   2711 device_t
   2712 deviter_next(deviter_t *di)
   2713 {
   2714 	device_t dv = NULL;
   2715 
   2716 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2717 	case 0:
   2718 		return deviter_next1(di);
   2719 	case DEVITER_F_LEAVES_FIRST:
   2720 		while (di->di_curdepth >= 0) {
   2721 			if ((dv = deviter_next1(di)) == NULL) {
   2722 				di->di_curdepth--;
   2723 				deviter_reinit(di);
   2724 			} else if (dv->dv_depth == di->di_curdepth)
   2725 				break;
   2726 		}
   2727 		return dv;
   2728 	case DEVITER_F_ROOT_FIRST:
   2729 		while (di->di_curdepth <= di->di_maxdepth) {
   2730 			if ((dv = deviter_next1(di)) == NULL) {
   2731 				di->di_curdepth++;
   2732 				deviter_reinit(di);
   2733 			} else if (dv->dv_depth == di->di_curdepth)
   2734 				break;
   2735 		}
   2736 		return dv;
   2737 	default:
   2738 		return NULL;
   2739 	}
   2740 }
   2741 
   2742 void
   2743 deviter_release(deviter_t *di)
   2744 {
   2745 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2746 	int s;
   2747 
   2748 	s = config_alldevs_lock();
   2749 	if (rw)
   2750 		--alldevs_nwrite;
   2751 	else
   2752 		--alldevs_nread;
   2753 	/* XXX wake a garbage-collection thread */
   2754 	config_alldevs_unlock(s);
   2755 }
   2756 
   2757 const char *
   2758 cfdata_ifattr(const struct cfdata *cf)
   2759 {
   2760 	return cf->cf_pspec->cfp_iattr;
   2761 }
   2762 
   2763 bool
   2764 ifattr_match(const char *snull, const char *t)
   2765 {
   2766 	return (snull == NULL) || strcmp(snull, t) == 0;
   2767 }
   2768 
   2769 void
   2770 null_childdetached(device_t self, device_t child)
   2771 {
   2772 	/* do nothing */
   2773 }
   2774 
   2775 static void
   2776 sysctl_detach_setup(struct sysctllog **clog)
   2777 {
   2778 	const struct sysctlnode *node = NULL;
   2779 
   2780 	sysctl_createv(clog, 0, NULL, &node,
   2781 		CTLFLAG_PERMANENT,
   2782 		CTLTYPE_NODE, "kern", NULL,
   2783 		NULL, 0, NULL, 0,
   2784 		CTL_KERN, CTL_EOL);
   2785 
   2786 	if (node == NULL)
   2787 		return;
   2788 
   2789 	sysctl_createv(clog, 0, &node, NULL,
   2790 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   2791 		CTLTYPE_BOOL, "detachall",
   2792 		SYSCTL_DESCR("Detach all devices at shutdown"),
   2793 		NULL, 0, &detachall, 0,
   2794 		CTL_CREATE, CTL_EOL);
   2795 }
   2796