subr_autoconf.c revision 1.203.2.6 1 /* $NetBSD: subr_autoconf.c,v 1.203.2.6 2011/06/12 00:24:29 rmind Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.203.2.6 2011/06/12 00:24:29 rmind Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #endif
85
86 #include <sys/param.h>
87 #include <sys/device.h>
88 #include <sys/disklabel.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91 #include <sys/kmem.h>
92 #include <sys/systm.h>
93 #include <sys/kernel.h>
94 #include <sys/errno.h>
95 #include <sys/proc.h>
96 #include <sys/reboot.h>
97 #include <sys/kthread.h>
98 #include <sys/buf.h>
99 #include <sys/dirent.h>
100 #include <sys/mount.h>
101 #include <sys/namei.h>
102 #include <sys/unistd.h>
103 #include <sys/fcntl.h>
104 #include <sys/lockf.h>
105 #include <sys/callout.h>
106 #include <sys/devmon.h>
107 #include <sys/cpu.h>
108 #include <sys/sysctl.h>
109
110 #include <sys/disk.h>
111
112 #include <machine/limits.h>
113
114 /*
115 * Autoconfiguration subroutines.
116 */
117
118 /*
119 * ioconf.c exports exactly two names: cfdata and cfroots. All system
120 * devices and drivers are found via these tables.
121 */
122 extern struct cfdata cfdata[];
123 extern const short cfroots[];
124
125 /*
126 * List of all cfdriver structures. We use this to detect duplicates
127 * when other cfdrivers are loaded.
128 */
129 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
130 extern struct cfdriver * const cfdriver_list_initial[];
131
132 /*
133 * Initial list of cfattach's.
134 */
135 extern const struct cfattachinit cfattachinit[];
136
137 /*
138 * List of cfdata tables. We always have one such list -- the one
139 * built statically when the kernel was configured.
140 */
141 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
142 static struct cftable initcftable;
143
144 #define ROOT ((device_t)NULL)
145
146 struct matchinfo {
147 cfsubmatch_t fn;
148 struct device *parent;
149 const int *locs;
150 void *aux;
151 struct cfdata *match;
152 int pri;
153 };
154
155 struct alldevs_foray {
156 int af_s;
157 struct devicelist af_garbage;
158 };
159
160 static char *number(char *, int);
161 static void mapply(struct matchinfo *, cfdata_t);
162 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
163 static void config_devdelete(device_t);
164 static void config_devunlink(device_t, struct devicelist *);
165 static void config_makeroom(int, struct cfdriver *);
166 static void config_devlink(device_t);
167 static void config_alldevs_unlock(int);
168 static int config_alldevs_lock(void);
169 static void config_alldevs_enter(struct alldevs_foray *);
170 static void config_alldevs_exit(struct alldevs_foray *);
171
172 static void config_collect_garbage(struct devicelist *);
173 static void config_dump_garbage(struct devicelist *);
174
175 static void pmflock_debug(device_t, const char *, int);
176
177 static device_t deviter_next1(deviter_t *);
178 static void deviter_reinit(deviter_t *);
179
180 struct deferred_config {
181 TAILQ_ENTRY(deferred_config) dc_queue;
182 device_t dc_dev;
183 void (*dc_func)(device_t);
184 };
185
186 TAILQ_HEAD(deferred_config_head, deferred_config);
187
188 struct deferred_config_head deferred_config_queue =
189 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
190 struct deferred_config_head interrupt_config_queue =
191 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
192 int interrupt_config_threads = 8;
193 struct deferred_config_head mountroot_config_queue =
194 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
195 int mountroot_config_threads = 2;
196 static bool root_is_mounted = false;
197
198 static void config_process_deferred(struct deferred_config_head *, device_t);
199
200 /* Hooks to finalize configuration once all real devices have been found. */
201 struct finalize_hook {
202 TAILQ_ENTRY(finalize_hook) f_list;
203 int (*f_func)(device_t);
204 device_t f_dev;
205 };
206 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
207 TAILQ_HEAD_INITIALIZER(config_finalize_list);
208 static int config_finalize_done;
209
210 /* list of all devices */
211 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
212 static kmutex_t alldevs_mtx;
213 static volatile bool alldevs_garbage = false;
214 static volatile devgen_t alldevs_gen = 1;
215 static volatile int alldevs_nread = 0;
216 static volatile int alldevs_nwrite = 0;
217
218 static int config_pending; /* semaphore for mountroot */
219 static kmutex_t config_misc_lock;
220 static kcondvar_t config_misc_cv;
221
222 static bool detachall = false;
223
224 #define STREQ(s1, s2) \
225 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
226
227 static bool config_initialized = false; /* config_init() has been called. */
228
229 static int config_do_twiddle;
230 static callout_t config_twiddle_ch;
231
232 static void sysctl_detach_setup(struct sysctllog **);
233
234 typedef int (*cfdriver_fn)(struct cfdriver *);
235 static int
236 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
237 cfdriver_fn drv_do, cfdriver_fn drv_undo,
238 const char *style, bool dopanic)
239 {
240 void (*pr)(const char *, ...) = dopanic ? panic : printf;
241 int i = 0, error = 0, e2;
242
243 for (i = 0; cfdriverv[i] != NULL; i++) {
244 if ((error = drv_do(cfdriverv[i])) != 0) {
245 pr("configure: `%s' driver %s failed: %d",
246 cfdriverv[i]->cd_name, style, error);
247 goto bad;
248 }
249 }
250
251 KASSERT(error == 0);
252 return 0;
253
254 bad:
255 printf("\n");
256 for (i--; i >= 0; i--) {
257 e2 = drv_undo(cfdriverv[i]);
258 KASSERT(e2 == 0);
259 }
260
261 return error;
262 }
263
264 typedef int (*cfattach_fn)(const char *, struct cfattach *);
265 static int
266 frob_cfattachvec(const struct cfattachinit *cfattachv,
267 cfattach_fn att_do, cfattach_fn att_undo,
268 const char *style, bool dopanic)
269 {
270 const struct cfattachinit *cfai = NULL;
271 void (*pr)(const char *, ...) = dopanic ? panic : printf;
272 int j = 0, error = 0, e2;
273
274 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
275 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
276 if ((error = att_do(cfai->cfai_name,
277 cfai->cfai_list[j])) != 0) {
278 pr("configure: attachment `%s' "
279 "of `%s' driver %s failed: %d",
280 cfai->cfai_list[j]->ca_name,
281 cfai->cfai_name, style, error);
282 goto bad;
283 }
284 }
285 }
286
287 KASSERT(error == 0);
288 return 0;
289
290 bad:
291 /*
292 * Rollback in reverse order. dunno if super-important, but
293 * do that anyway. Although the code looks a little like
294 * someone did a little integration (in the math sense).
295 */
296 printf("\n");
297 if (cfai) {
298 bool last;
299
300 for (last = false; last == false; ) {
301 if (cfai == &cfattachv[0])
302 last = true;
303 for (j--; j >= 0; j--) {
304 e2 = att_undo(cfai->cfai_name,
305 cfai->cfai_list[j]);
306 KASSERT(e2 == 0);
307 }
308 if (!last) {
309 cfai--;
310 for (j = 0; cfai->cfai_list[j] != NULL; j++)
311 ;
312 }
313 }
314 }
315
316 return error;
317 }
318
319 /*
320 * Initialize the autoconfiguration data structures. Normally this
321 * is done by configure(), but some platforms need to do this very
322 * early (to e.g. initialize the console).
323 */
324 void
325 config_init(void)
326 {
327
328 KASSERT(config_initialized == false);
329
330 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
331
332 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
333 cv_init(&config_misc_cv, "cfgmisc");
334
335 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
336
337 frob_cfdrivervec(cfdriver_list_initial,
338 config_cfdriver_attach, NULL, "bootstrap", true);
339 frob_cfattachvec(cfattachinit,
340 config_cfattach_attach, NULL, "bootstrap", true);
341
342 initcftable.ct_cfdata = cfdata;
343 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
344
345 config_initialized = true;
346 }
347
348 /*
349 * Init or fini drivers and attachments. Either all or none
350 * are processed (via rollback). It would be nice if this were
351 * atomic to outside consumers, but with the current state of
352 * locking ...
353 */
354 int
355 config_init_component(struct cfdriver * const *cfdriverv,
356 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
357 {
358 int error;
359
360 if ((error = frob_cfdrivervec(cfdriverv,
361 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
362 return error;
363 if ((error = frob_cfattachvec(cfattachv,
364 config_cfattach_attach, config_cfattach_detach,
365 "init", false)) != 0) {
366 frob_cfdrivervec(cfdriverv,
367 config_cfdriver_detach, NULL, "init rollback", true);
368 return error;
369 }
370 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
371 frob_cfattachvec(cfattachv,
372 config_cfattach_detach, NULL, "init rollback", true);
373 frob_cfdrivervec(cfdriverv,
374 config_cfdriver_detach, NULL, "init rollback", true);
375 return error;
376 }
377
378 return 0;
379 }
380
381 int
382 config_fini_component(struct cfdriver * const *cfdriverv,
383 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
384 {
385 int error;
386
387 if ((error = config_cfdata_detach(cfdatav)) != 0)
388 return error;
389 if ((error = frob_cfattachvec(cfattachv,
390 config_cfattach_detach, config_cfattach_attach,
391 "fini", false)) != 0) {
392 if (config_cfdata_attach(cfdatav, 0) != 0)
393 panic("config_cfdata fini rollback failed");
394 return error;
395 }
396 if ((error = frob_cfdrivervec(cfdriverv,
397 config_cfdriver_detach, config_cfdriver_attach,
398 "fini", false)) != 0) {
399 frob_cfattachvec(cfattachv,
400 config_cfattach_attach, NULL, "fini rollback", true);
401 if (config_cfdata_attach(cfdatav, 0) != 0)
402 panic("config_cfdata fini rollback failed");
403 return error;
404 }
405
406 return 0;
407 }
408
409 void
410 config_init_mi(void)
411 {
412
413 if (!config_initialized)
414 config_init();
415
416 sysctl_detach_setup(NULL);
417 }
418
419 void
420 config_deferred(device_t dev)
421 {
422 config_process_deferred(&deferred_config_queue, dev);
423 config_process_deferred(&interrupt_config_queue, dev);
424 config_process_deferred(&mountroot_config_queue, dev);
425 }
426
427 static void
428 config_interrupts_thread(void *cookie)
429 {
430 struct deferred_config *dc;
431
432 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
433 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
434 (*dc->dc_func)(dc->dc_dev);
435 kmem_free(dc, sizeof(*dc));
436 config_pending_decr();
437 }
438 kthread_exit(0);
439 }
440
441 void
442 config_create_interruptthreads()
443 {
444 int i;
445
446 for (i = 0; i < interrupt_config_threads; i++) {
447 (void)kthread_create(PRI_NONE, 0, NULL,
448 config_interrupts_thread, NULL, NULL, "config");
449 }
450 }
451
452 static void
453 config_mountroot_thread(void *cookie)
454 {
455 struct deferred_config *dc;
456
457 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
458 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
459 (*dc->dc_func)(dc->dc_dev);
460 kmem_free(dc, sizeof(*dc));
461 }
462 kthread_exit(0);
463 }
464
465 void
466 config_create_mountrootthreads()
467 {
468 int i;
469
470 if (!root_is_mounted)
471 root_is_mounted = true;
472
473 for (i = 0; i < mountroot_config_threads; i++) {
474 (void)kthread_create(PRI_NONE, 0, NULL,
475 config_mountroot_thread, NULL, NULL, "config");
476 }
477 }
478
479 /*
480 * Announce device attach/detach to userland listeners.
481 */
482 static void
483 devmon_report_device(device_t dev, bool isattach)
484 {
485 #if NDRVCTL > 0
486 prop_dictionary_t ev;
487 const char *parent;
488 const char *what;
489 device_t pdev = device_parent(dev);
490
491 ev = prop_dictionary_create();
492 if (ev == NULL)
493 return;
494
495 what = (isattach ? "device-attach" : "device-detach");
496 parent = (pdev == NULL ? "root" : device_xname(pdev));
497 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
498 !prop_dictionary_set_cstring(ev, "parent", parent)) {
499 prop_object_release(ev);
500 return;
501 }
502
503 devmon_insert(what, ev);
504 #endif
505 }
506
507 /*
508 * Add a cfdriver to the system.
509 */
510 int
511 config_cfdriver_attach(struct cfdriver *cd)
512 {
513 struct cfdriver *lcd;
514
515 /* Make sure this driver isn't already in the system. */
516 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
517 if (STREQ(lcd->cd_name, cd->cd_name))
518 return EEXIST;
519 }
520
521 LIST_INIT(&cd->cd_attach);
522 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
523
524 return 0;
525 }
526
527 /*
528 * Remove a cfdriver from the system.
529 */
530 int
531 config_cfdriver_detach(struct cfdriver *cd)
532 {
533 struct alldevs_foray af;
534 int i, rc = 0;
535
536 config_alldevs_enter(&af);
537 /* Make sure there are no active instances. */
538 for (i = 0; i < cd->cd_ndevs; i++) {
539 if (cd->cd_devs[i] != NULL) {
540 rc = EBUSY;
541 break;
542 }
543 }
544 config_alldevs_exit(&af);
545
546 if (rc != 0)
547 return rc;
548
549 /* ...and no attachments loaded. */
550 if (LIST_EMPTY(&cd->cd_attach) == 0)
551 return EBUSY;
552
553 LIST_REMOVE(cd, cd_list);
554
555 KASSERT(cd->cd_devs == NULL);
556
557 return 0;
558 }
559
560 /*
561 * Look up a cfdriver by name.
562 */
563 struct cfdriver *
564 config_cfdriver_lookup(const char *name)
565 {
566 struct cfdriver *cd;
567
568 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
569 if (STREQ(cd->cd_name, name))
570 return cd;
571 }
572
573 return NULL;
574 }
575
576 /*
577 * Add a cfattach to the specified driver.
578 */
579 int
580 config_cfattach_attach(const char *driver, struct cfattach *ca)
581 {
582 struct cfattach *lca;
583 struct cfdriver *cd;
584
585 cd = config_cfdriver_lookup(driver);
586 if (cd == NULL)
587 return ESRCH;
588
589 /* Make sure this attachment isn't already on this driver. */
590 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
591 if (STREQ(lca->ca_name, ca->ca_name))
592 return EEXIST;
593 }
594
595 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
596
597 return 0;
598 }
599
600 /*
601 * Remove a cfattach from the specified driver.
602 */
603 int
604 config_cfattach_detach(const char *driver, struct cfattach *ca)
605 {
606 struct alldevs_foray af;
607 struct cfdriver *cd;
608 device_t dev;
609 int i, rc = 0;
610
611 cd = config_cfdriver_lookup(driver);
612 if (cd == NULL)
613 return ESRCH;
614
615 config_alldevs_enter(&af);
616 /* Make sure there are no active instances. */
617 for (i = 0; i < cd->cd_ndevs; i++) {
618 if ((dev = cd->cd_devs[i]) == NULL)
619 continue;
620 if (dev->dv_cfattach == ca) {
621 rc = EBUSY;
622 break;
623 }
624 }
625 config_alldevs_exit(&af);
626
627 if (rc != 0)
628 return rc;
629
630 LIST_REMOVE(ca, ca_list);
631
632 return 0;
633 }
634
635 /*
636 * Look up a cfattach by name.
637 */
638 static struct cfattach *
639 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
640 {
641 struct cfattach *ca;
642
643 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
644 if (STREQ(ca->ca_name, atname))
645 return ca;
646 }
647
648 return NULL;
649 }
650
651 /*
652 * Look up a cfattach by driver/attachment name.
653 */
654 struct cfattach *
655 config_cfattach_lookup(const char *name, const char *atname)
656 {
657 struct cfdriver *cd;
658
659 cd = config_cfdriver_lookup(name);
660 if (cd == NULL)
661 return NULL;
662
663 return config_cfattach_lookup_cd(cd, atname);
664 }
665
666 /*
667 * Apply the matching function and choose the best. This is used
668 * a few times and we want to keep the code small.
669 */
670 static void
671 mapply(struct matchinfo *m, cfdata_t cf)
672 {
673 int pri;
674
675 if (m->fn != NULL) {
676 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
677 } else {
678 pri = config_match(m->parent, cf, m->aux);
679 }
680 if (pri > m->pri) {
681 m->match = cf;
682 m->pri = pri;
683 }
684 }
685
686 int
687 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
688 {
689 const struct cfiattrdata *ci;
690 const struct cflocdesc *cl;
691 int nlocs, i;
692
693 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
694 KASSERT(ci);
695 nlocs = ci->ci_loclen;
696 KASSERT(!nlocs || locs);
697 for (i = 0; i < nlocs; i++) {
698 cl = &ci->ci_locdesc[i];
699 /* !cld_defaultstr means no default value */
700 if ((!(cl->cld_defaultstr)
701 || (cf->cf_loc[i] != cl->cld_default))
702 && cf->cf_loc[i] != locs[i])
703 return 0;
704 }
705
706 return config_match(parent, cf, aux);
707 }
708
709 /*
710 * Helper function: check whether the driver supports the interface attribute
711 * and return its descriptor structure.
712 */
713 static const struct cfiattrdata *
714 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
715 {
716 const struct cfiattrdata * const *cpp;
717
718 if (cd->cd_attrs == NULL)
719 return 0;
720
721 for (cpp = cd->cd_attrs; *cpp; cpp++) {
722 if (STREQ((*cpp)->ci_name, ia)) {
723 /* Match. */
724 return *cpp;
725 }
726 }
727 return 0;
728 }
729
730 /*
731 * Lookup an interface attribute description by name.
732 * If the driver is given, consider only its supported attributes.
733 */
734 const struct cfiattrdata *
735 cfiattr_lookup(const char *name, const struct cfdriver *cd)
736 {
737 const struct cfdriver *d;
738 const struct cfiattrdata *ia;
739
740 if (cd)
741 return cfdriver_get_iattr(cd, name);
742
743 LIST_FOREACH(d, &allcfdrivers, cd_list) {
744 ia = cfdriver_get_iattr(d, name);
745 if (ia)
746 return ia;
747 }
748 return 0;
749 }
750
751 /*
752 * Determine if `parent' is a potential parent for a device spec based
753 * on `cfp'.
754 */
755 static int
756 cfparent_match(const device_t parent, const struct cfparent *cfp)
757 {
758 struct cfdriver *pcd;
759
760 /* We don't match root nodes here. */
761 if (cfp == NULL)
762 return 0;
763
764 pcd = parent->dv_cfdriver;
765 KASSERT(pcd != NULL);
766
767 /*
768 * First, ensure this parent has the correct interface
769 * attribute.
770 */
771 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
772 return 0;
773
774 /*
775 * If no specific parent device instance was specified (i.e.
776 * we're attaching to the attribute only), we're done!
777 */
778 if (cfp->cfp_parent == NULL)
779 return 1;
780
781 /*
782 * Check the parent device's name.
783 */
784 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
785 return 0; /* not the same parent */
786
787 /*
788 * Make sure the unit number matches.
789 */
790 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
791 cfp->cfp_unit == parent->dv_unit)
792 return 1;
793
794 /* Unit numbers don't match. */
795 return 0;
796 }
797
798 /*
799 * Helper for config_cfdata_attach(): check all devices whether it could be
800 * parent any attachment in the config data table passed, and rescan.
801 */
802 static void
803 rescan_with_cfdata(const struct cfdata *cf)
804 {
805 device_t d;
806 const struct cfdata *cf1;
807 deviter_t di;
808
809
810 /*
811 * "alldevs" is likely longer than a modules's cfdata, so make it
812 * the outer loop.
813 */
814 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
815
816 if (!(d->dv_cfattach->ca_rescan))
817 continue;
818
819 for (cf1 = cf; cf1->cf_name; cf1++) {
820
821 if (!cfparent_match(d, cf1->cf_pspec))
822 continue;
823
824 (*d->dv_cfattach->ca_rescan)(d,
825 cfdata_ifattr(cf1), cf1->cf_loc);
826
827 config_deferred(d);
828 }
829 }
830 deviter_release(&di);
831 }
832
833 /*
834 * Attach a supplemental config data table and rescan potential
835 * parent devices if required.
836 */
837 int
838 config_cfdata_attach(cfdata_t cf, int scannow)
839 {
840 struct cftable *ct;
841
842 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
843 ct->ct_cfdata = cf;
844 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
845
846 if (scannow)
847 rescan_with_cfdata(cf);
848
849 return 0;
850 }
851
852 /*
853 * Helper for config_cfdata_detach: check whether a device is
854 * found through any attachment in the config data table.
855 */
856 static int
857 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
858 {
859 const struct cfdata *cf1;
860
861 for (cf1 = cf; cf1->cf_name; cf1++)
862 if (d->dv_cfdata == cf1)
863 return 1;
864
865 return 0;
866 }
867
868 /*
869 * Detach a supplemental config data table. Detach all devices found
870 * through that table (and thus keeping references to it) before.
871 */
872 int
873 config_cfdata_detach(cfdata_t cf)
874 {
875 device_t d;
876 int error = 0;
877 struct cftable *ct;
878 deviter_t di;
879
880 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
881 d = deviter_next(&di)) {
882 if (!dev_in_cfdata(d, cf))
883 continue;
884 if ((error = config_detach(d, 0)) != 0)
885 break;
886 }
887 deviter_release(&di);
888 if (error) {
889 aprint_error_dev(d, "unable to detach instance\n");
890 return error;
891 }
892
893 TAILQ_FOREACH(ct, &allcftables, ct_list) {
894 if (ct->ct_cfdata == cf) {
895 TAILQ_REMOVE(&allcftables, ct, ct_list);
896 kmem_free(ct, sizeof(*ct));
897 return 0;
898 }
899 }
900
901 /* not found -- shouldn't happen */
902 return EINVAL;
903 }
904
905 /*
906 * Invoke the "match" routine for a cfdata entry on behalf of
907 * an external caller, usually a "submatch" routine.
908 */
909 int
910 config_match(device_t parent, cfdata_t cf, void *aux)
911 {
912 struct cfattach *ca;
913
914 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
915 if (ca == NULL) {
916 /* No attachment for this entry, oh well. */
917 return 0;
918 }
919
920 return (*ca->ca_match)(parent, cf, aux);
921 }
922
923 /*
924 * Iterate over all potential children of some device, calling the given
925 * function (default being the child's match function) for each one.
926 * Nonzero returns are matches; the highest value returned is considered
927 * the best match. Return the `found child' if we got a match, or NULL
928 * otherwise. The `aux' pointer is simply passed on through.
929 *
930 * Note that this function is designed so that it can be used to apply
931 * an arbitrary function to all potential children (its return value
932 * can be ignored).
933 */
934 cfdata_t
935 config_search_loc(cfsubmatch_t fn, device_t parent,
936 const char *ifattr, const int *locs, void *aux)
937 {
938 struct cftable *ct;
939 cfdata_t cf;
940 struct matchinfo m;
941
942 KASSERT(config_initialized);
943 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
944
945 m.fn = fn;
946 m.parent = parent;
947 m.locs = locs;
948 m.aux = aux;
949 m.match = NULL;
950 m.pri = 0;
951
952 TAILQ_FOREACH(ct, &allcftables, ct_list) {
953 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
954
955 /* We don't match root nodes here. */
956 if (!cf->cf_pspec)
957 continue;
958
959 /*
960 * Skip cf if no longer eligible, otherwise scan
961 * through parents for one matching `parent', and
962 * try match function.
963 */
964 if (cf->cf_fstate == FSTATE_FOUND)
965 continue;
966 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
967 cf->cf_fstate == FSTATE_DSTAR)
968 continue;
969
970 /*
971 * If an interface attribute was specified,
972 * consider only children which attach to
973 * that attribute.
974 */
975 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
976 continue;
977
978 if (cfparent_match(parent, cf->cf_pspec))
979 mapply(&m, cf);
980 }
981 }
982 return m.match;
983 }
984
985 cfdata_t
986 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
987 void *aux)
988 {
989
990 return config_search_loc(fn, parent, ifattr, NULL, aux);
991 }
992
993 /*
994 * Find the given root device.
995 * This is much like config_search, but there is no parent.
996 * Don't bother with multiple cfdata tables; the root node
997 * must always be in the initial table.
998 */
999 cfdata_t
1000 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1001 {
1002 cfdata_t cf;
1003 const short *p;
1004 struct matchinfo m;
1005
1006 m.fn = fn;
1007 m.parent = ROOT;
1008 m.aux = aux;
1009 m.match = NULL;
1010 m.pri = 0;
1011 m.locs = 0;
1012 /*
1013 * Look at root entries for matching name. We do not bother
1014 * with found-state here since only one root should ever be
1015 * searched (and it must be done first).
1016 */
1017 for (p = cfroots; *p >= 0; p++) {
1018 cf = &cfdata[*p];
1019 if (strcmp(cf->cf_name, rootname) == 0)
1020 mapply(&m, cf);
1021 }
1022 return m.match;
1023 }
1024
1025 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1026
1027 /*
1028 * The given `aux' argument describes a device that has been found
1029 * on the given parent, but not necessarily configured. Locate the
1030 * configuration data for that device (using the submatch function
1031 * provided, or using candidates' cd_match configuration driver
1032 * functions) and attach it, and return true. If the device was
1033 * not configured, call the given `print' function and return 0.
1034 */
1035 device_t
1036 config_found_sm_loc(device_t parent,
1037 const char *ifattr, const int *locs, void *aux,
1038 cfprint_t print, cfsubmatch_t submatch)
1039 {
1040 cfdata_t cf;
1041
1042 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1043 return(config_attach_loc(parent, cf, locs, aux, print));
1044 if (print) {
1045 if (config_do_twiddle && cold)
1046 twiddle();
1047 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1048 }
1049
1050 return NULL;
1051 }
1052
1053 device_t
1054 config_found_ia(device_t parent, const char *ifattr, void *aux,
1055 cfprint_t print)
1056 {
1057
1058 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1059 }
1060
1061 device_t
1062 config_found(device_t parent, void *aux, cfprint_t print)
1063 {
1064
1065 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1066 }
1067
1068 /*
1069 * As above, but for root devices.
1070 */
1071 device_t
1072 config_rootfound(const char *rootname, void *aux)
1073 {
1074 cfdata_t cf;
1075
1076 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1077 return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
1078 aprint_error("root device %s not configured\n", rootname);
1079 return NULL;
1080 }
1081
1082 /* just like sprintf(buf, "%d") except that it works from the end */
1083 static char *
1084 number(char *ep, int n)
1085 {
1086
1087 *--ep = 0;
1088 while (n >= 10) {
1089 *--ep = (n % 10) + '0';
1090 n /= 10;
1091 }
1092 *--ep = n + '0';
1093 return ep;
1094 }
1095
1096 /*
1097 * Expand the size of the cd_devs array if necessary.
1098 *
1099 * The caller must hold alldevs_mtx. config_makeroom() may release and
1100 * re-acquire alldevs_mtx, so callers should re-check conditions such
1101 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1102 * returns.
1103 */
1104 static void
1105 config_makeroom(int n, struct cfdriver *cd)
1106 {
1107 int old, new;
1108 device_t *osp, *nsp;
1109
1110 alldevs_nwrite++;
1111
1112 for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
1113 ;
1114
1115 while (n >= cd->cd_ndevs) {
1116 /*
1117 * Need to expand the array.
1118 */
1119 old = cd->cd_ndevs;
1120 osp = cd->cd_devs;
1121
1122 /* Release alldevs_mtx around allocation, which may
1123 * sleep.
1124 */
1125 mutex_exit(&alldevs_mtx);
1126 nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
1127 if (nsp == NULL)
1128 panic("%s: could not expand cd_devs", __func__);
1129 mutex_enter(&alldevs_mtx);
1130
1131 /* If another thread moved the array while we did
1132 * not hold alldevs_mtx, try again.
1133 */
1134 if (cd->cd_devs != osp) {
1135 mutex_exit(&alldevs_mtx);
1136 kmem_free(nsp, sizeof(device_t[new]));
1137 mutex_enter(&alldevs_mtx);
1138 continue;
1139 }
1140
1141 memset(nsp + old, 0, sizeof(device_t[new - old]));
1142 if (old != 0)
1143 memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
1144
1145 cd->cd_ndevs = new;
1146 cd->cd_devs = nsp;
1147 if (old != 0) {
1148 mutex_exit(&alldevs_mtx);
1149 kmem_free(osp, sizeof(device_t[old]));
1150 mutex_enter(&alldevs_mtx);
1151 }
1152 }
1153 alldevs_nwrite--;
1154 }
1155
1156 /*
1157 * Put dev into the devices list.
1158 */
1159 static void
1160 config_devlink(device_t dev)
1161 {
1162 int s;
1163
1164 s = config_alldevs_lock();
1165
1166 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1167
1168 dev->dv_add_gen = alldevs_gen;
1169 /* It is safe to add a device to the tail of the list while
1170 * readers and writers are in the list.
1171 */
1172 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1173 config_alldevs_unlock(s);
1174 }
1175
1176 static void
1177 config_devfree(device_t dev)
1178 {
1179 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1180
1181 if (dev->dv_cfattach->ca_devsize > 0)
1182 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1183 if (priv)
1184 kmem_free(dev, sizeof(*dev));
1185 }
1186
1187 /*
1188 * Caller must hold alldevs_mtx.
1189 */
1190 static void
1191 config_devunlink(device_t dev, struct devicelist *garbage)
1192 {
1193 struct device_garbage *dg = &dev->dv_garbage;
1194 cfdriver_t cd = device_cfdriver(dev);
1195 int i;
1196
1197 KASSERT(mutex_owned(&alldevs_mtx));
1198
1199 /* Unlink from device list. Link to garbage list. */
1200 TAILQ_REMOVE(&alldevs, dev, dv_list);
1201 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1202
1203 /* Remove from cfdriver's array. */
1204 cd->cd_devs[dev->dv_unit] = NULL;
1205
1206 /*
1207 * If the device now has no units in use, unlink its softc array.
1208 */
1209 for (i = 0; i < cd->cd_ndevs; i++) {
1210 if (cd->cd_devs[i] != NULL)
1211 break;
1212 }
1213 /* Nothing found. Unlink, now. Deallocate, later. */
1214 if (i == cd->cd_ndevs) {
1215 dg->dg_ndevs = cd->cd_ndevs;
1216 dg->dg_devs = cd->cd_devs;
1217 cd->cd_devs = NULL;
1218 cd->cd_ndevs = 0;
1219 }
1220 }
1221
1222 static void
1223 config_devdelete(device_t dev)
1224 {
1225 struct device_garbage *dg = &dev->dv_garbage;
1226 device_lock_t dvl = device_getlock(dev);
1227
1228 if (dg->dg_devs != NULL)
1229 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1230
1231 cv_destroy(&dvl->dvl_cv);
1232 mutex_destroy(&dvl->dvl_mtx);
1233
1234 KASSERT(dev->dv_properties != NULL);
1235 prop_object_release(dev->dv_properties);
1236
1237 if (dev->dv_activity_handlers)
1238 panic("%s with registered handlers", __func__);
1239
1240 if (dev->dv_locators) {
1241 size_t amount = *--dev->dv_locators;
1242 kmem_free(dev->dv_locators, amount);
1243 }
1244
1245 config_devfree(dev);
1246 }
1247
1248 static int
1249 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1250 {
1251 int unit;
1252
1253 if (cf->cf_fstate == FSTATE_STAR) {
1254 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1255 if (cd->cd_devs[unit] == NULL)
1256 break;
1257 /*
1258 * unit is now the unit of the first NULL device pointer,
1259 * or max(cd->cd_ndevs,cf->cf_unit).
1260 */
1261 } else {
1262 unit = cf->cf_unit;
1263 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1264 unit = -1;
1265 }
1266 return unit;
1267 }
1268
1269 static int
1270 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1271 {
1272 struct alldevs_foray af;
1273 int unit;
1274
1275 config_alldevs_enter(&af);
1276 for (;;) {
1277 unit = config_unit_nextfree(cd, cf);
1278 if (unit == -1)
1279 break;
1280 if (unit < cd->cd_ndevs) {
1281 cd->cd_devs[unit] = dev;
1282 dev->dv_unit = unit;
1283 break;
1284 }
1285 config_makeroom(unit, cd);
1286 }
1287 config_alldevs_exit(&af);
1288
1289 return unit;
1290 }
1291
1292 static device_t
1293 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1294 {
1295 cfdriver_t cd;
1296 cfattach_t ca;
1297 size_t lname, lunit;
1298 const char *xunit;
1299 int myunit;
1300 char num[10];
1301 device_t dev;
1302 void *dev_private;
1303 const struct cfiattrdata *ia;
1304 device_lock_t dvl;
1305
1306 cd = config_cfdriver_lookup(cf->cf_name);
1307 if (cd == NULL)
1308 return NULL;
1309
1310 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1311 if (ca == NULL)
1312 return NULL;
1313
1314 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1315 ca->ca_devsize < sizeof(struct device))
1316 panic("config_devalloc: %s", cf->cf_atname);
1317
1318 /* get memory for all device vars */
1319 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1320 if (ca->ca_devsize > 0) {
1321 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1322 if (dev_private == NULL)
1323 panic("config_devalloc: memory allocation for device softc failed");
1324 } else {
1325 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1326 dev_private = NULL;
1327 }
1328
1329 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1330 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1331 } else {
1332 dev = dev_private;
1333 #ifdef DIAGNOSTIC
1334 printf("%s has not been converted to device_t\n", cd->cd_name);
1335 #endif
1336 }
1337 if (dev == NULL)
1338 panic("config_devalloc: memory allocation for device_t failed");
1339
1340 dev->dv_class = cd->cd_class;
1341 dev->dv_cfdata = cf;
1342 dev->dv_cfdriver = cd;
1343 dev->dv_cfattach = ca;
1344 dev->dv_activity_count = 0;
1345 dev->dv_activity_handlers = NULL;
1346 dev->dv_private = dev_private;
1347 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1348
1349 myunit = config_unit_alloc(dev, cd, cf);
1350 if (myunit == -1) {
1351 config_devfree(dev);
1352 return NULL;
1353 }
1354
1355 /* compute length of name and decimal expansion of unit number */
1356 lname = strlen(cd->cd_name);
1357 xunit = number(&num[sizeof(num)], myunit);
1358 lunit = &num[sizeof(num)] - xunit;
1359 if (lname + lunit > sizeof(dev->dv_xname))
1360 panic("config_devalloc: device name too long");
1361
1362 dvl = device_getlock(dev);
1363
1364 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1365 cv_init(&dvl->dvl_cv, "pmfsusp");
1366
1367 memcpy(dev->dv_xname, cd->cd_name, lname);
1368 memcpy(dev->dv_xname + lname, xunit, lunit);
1369 dev->dv_parent = parent;
1370 if (parent != NULL)
1371 dev->dv_depth = parent->dv_depth + 1;
1372 else
1373 dev->dv_depth = 0;
1374 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1375 if (locs) {
1376 KASSERT(parent); /* no locators at root */
1377 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1378 dev->dv_locators =
1379 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1380 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1381 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1382 }
1383 dev->dv_properties = prop_dictionary_create();
1384 KASSERT(dev->dv_properties != NULL);
1385
1386 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1387 "device-driver", dev->dv_cfdriver->cd_name);
1388 prop_dictionary_set_uint16(dev->dv_properties,
1389 "device-unit", dev->dv_unit);
1390
1391 return dev;
1392 }
1393
1394 /*
1395 * Attach a found device.
1396 */
1397 device_t
1398 config_attach_loc(device_t parent, cfdata_t cf,
1399 const int *locs, void *aux, cfprint_t print)
1400 {
1401 device_t dev;
1402 struct cftable *ct;
1403 const char *drvname;
1404
1405 dev = config_devalloc(parent, cf, locs);
1406 if (!dev)
1407 panic("config_attach: allocation of device softc failed");
1408
1409 /* XXX redundant - see below? */
1410 if (cf->cf_fstate != FSTATE_STAR) {
1411 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1412 cf->cf_fstate = FSTATE_FOUND;
1413 }
1414
1415 config_devlink(dev);
1416
1417 if (config_do_twiddle && cold)
1418 twiddle();
1419 else
1420 aprint_naive("Found ");
1421 /*
1422 * We want the next two printfs for normal, verbose, and quiet,
1423 * but not silent (in which case, we're twiddling, instead).
1424 */
1425 if (parent == ROOT) {
1426 aprint_naive("%s (root)", device_xname(dev));
1427 aprint_normal("%s (root)", device_xname(dev));
1428 } else {
1429 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1430 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1431 if (print)
1432 (void) (*print)(aux, NULL);
1433 }
1434
1435 /*
1436 * Before attaching, clobber any unfound devices that are
1437 * otherwise identical.
1438 * XXX code above is redundant?
1439 */
1440 drvname = dev->dv_cfdriver->cd_name;
1441 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1442 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1443 if (STREQ(cf->cf_name, drvname) &&
1444 cf->cf_unit == dev->dv_unit) {
1445 if (cf->cf_fstate == FSTATE_NOTFOUND)
1446 cf->cf_fstate = FSTATE_FOUND;
1447 }
1448 }
1449 }
1450 device_register(dev, aux);
1451
1452 /* Let userland know */
1453 devmon_report_device(dev, true);
1454
1455 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1456
1457 if (!device_pmf_is_registered(dev))
1458 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1459
1460 config_process_deferred(&deferred_config_queue, dev);
1461
1462 device_register_post_config(dev, aux);
1463 return dev;
1464 }
1465
1466 device_t
1467 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1468 {
1469
1470 return config_attach_loc(parent, cf, NULL, aux, print);
1471 }
1472
1473 /*
1474 * As above, but for pseudo-devices. Pseudo-devices attached in this
1475 * way are silently inserted into the device tree, and their children
1476 * attached.
1477 *
1478 * Note that because pseudo-devices are attached silently, any information
1479 * the attach routine wishes to print should be prefixed with the device
1480 * name by the attach routine.
1481 */
1482 device_t
1483 config_attach_pseudo(cfdata_t cf)
1484 {
1485 device_t dev;
1486
1487 dev = config_devalloc(ROOT, cf, NULL);
1488 if (!dev)
1489 return NULL;
1490
1491 /* XXX mark busy in cfdata */
1492
1493 if (cf->cf_fstate != FSTATE_STAR) {
1494 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1495 cf->cf_fstate = FSTATE_FOUND;
1496 }
1497
1498 config_devlink(dev);
1499
1500 #if 0 /* XXXJRT not yet */
1501 device_register(dev, NULL); /* like a root node */
1502 #endif
1503 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1504 config_process_deferred(&deferred_config_queue, dev);
1505 return dev;
1506 }
1507
1508 /*
1509 * Caller must hold alldevs_mtx.
1510 */
1511 static void
1512 config_collect_garbage(struct devicelist *garbage)
1513 {
1514 device_t dv;
1515
1516 KASSERT(!cpu_intr_p());
1517 KASSERT(!cpu_softintr_p());
1518 KASSERT(mutex_owned(&alldevs_mtx));
1519
1520 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1521 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1522 if (dv->dv_del_gen != 0)
1523 break;
1524 }
1525 if (dv == NULL) {
1526 alldevs_garbage = false;
1527 break;
1528 }
1529 config_devunlink(dv, garbage);
1530 }
1531 KASSERT(mutex_owned(&alldevs_mtx));
1532 }
1533
1534 static void
1535 config_dump_garbage(struct devicelist *garbage)
1536 {
1537 device_t dv;
1538
1539 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1540 TAILQ_REMOVE(garbage, dv, dv_list);
1541 config_devdelete(dv);
1542 }
1543 }
1544
1545 /*
1546 * Detach a device. Optionally forced (e.g. because of hardware
1547 * removal) and quiet. Returns zero if successful, non-zero
1548 * (an error code) otherwise.
1549 *
1550 * Note that this code wants to be run from a process context, so
1551 * that the detach can sleep to allow processes which have a device
1552 * open to run and unwind their stacks.
1553 */
1554 int
1555 config_detach(device_t dev, int flags)
1556 {
1557 struct alldevs_foray af;
1558 struct cftable *ct;
1559 cfdata_t cf;
1560 const struct cfattach *ca;
1561 struct cfdriver *cd;
1562 #ifdef DIAGNOSTIC
1563 device_t d;
1564 #endif
1565 int rv = 0, s;
1566
1567 #ifdef DIAGNOSTIC
1568 cf = dev->dv_cfdata;
1569 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1570 cf->cf_fstate != FSTATE_STAR)
1571 panic("config_detach: %s: bad device fstate %d",
1572 device_xname(dev), cf ? cf->cf_fstate : -1);
1573 #endif
1574 cd = dev->dv_cfdriver;
1575 KASSERT(cd != NULL);
1576
1577 ca = dev->dv_cfattach;
1578 KASSERT(ca != NULL);
1579
1580 s = config_alldevs_lock();
1581 if (dev->dv_del_gen != 0) {
1582 config_alldevs_unlock(s);
1583 #ifdef DIAGNOSTIC
1584 printf("%s: %s is already detached\n", __func__,
1585 device_xname(dev));
1586 #endif /* DIAGNOSTIC */
1587 return ENOENT;
1588 }
1589 alldevs_nwrite++;
1590 config_alldevs_unlock(s);
1591
1592 if (!detachall &&
1593 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1594 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1595 rv = EOPNOTSUPP;
1596 } else if (ca->ca_detach != NULL) {
1597 rv = (*ca->ca_detach)(dev, flags);
1598 } else
1599 rv = EOPNOTSUPP;
1600
1601 /*
1602 * If it was not possible to detach the device, then we either
1603 * panic() (for the forced but failed case), or return an error.
1604 *
1605 * If it was possible to detach the device, ensure that the
1606 * device is deactivated.
1607 */
1608 if (rv == 0)
1609 dev->dv_flags &= ~DVF_ACTIVE;
1610 else if ((flags & DETACH_FORCE) == 0)
1611 goto out;
1612 else {
1613 panic("config_detach: forced detach of %s failed (%d)",
1614 device_xname(dev), rv);
1615 }
1616
1617 /*
1618 * The device has now been successfully detached.
1619 */
1620
1621 /* Let userland know */
1622 devmon_report_device(dev, false);
1623
1624 #ifdef DIAGNOSTIC
1625 /*
1626 * Sanity: If you're successfully detached, you should have no
1627 * children. (Note that because children must be attached
1628 * after parents, we only need to search the latter part of
1629 * the list.)
1630 */
1631 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1632 d = TAILQ_NEXT(d, dv_list)) {
1633 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1634 printf("config_detach: detached device %s"
1635 " has children %s\n", device_xname(dev), device_xname(d));
1636 panic("config_detach");
1637 }
1638 }
1639 #endif
1640
1641 /* notify the parent that the child is gone */
1642 if (dev->dv_parent) {
1643 device_t p = dev->dv_parent;
1644 if (p->dv_cfattach->ca_childdetached)
1645 (*p->dv_cfattach->ca_childdetached)(p, dev);
1646 }
1647
1648 /*
1649 * Mark cfdata to show that the unit can be reused, if possible.
1650 */
1651 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1652 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1653 if (STREQ(cf->cf_name, cd->cd_name)) {
1654 if (cf->cf_fstate == FSTATE_FOUND &&
1655 cf->cf_unit == dev->dv_unit)
1656 cf->cf_fstate = FSTATE_NOTFOUND;
1657 }
1658 }
1659 }
1660
1661 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1662 aprint_normal_dev(dev, "detached\n");
1663
1664 out:
1665 config_alldevs_enter(&af);
1666 KASSERT(alldevs_nwrite != 0);
1667 --alldevs_nwrite;
1668 if (rv == 0 && dev->dv_del_gen == 0) {
1669 if (alldevs_nwrite == 0 && alldevs_nread == 0)
1670 config_devunlink(dev, &af.af_garbage);
1671 else {
1672 dev->dv_del_gen = alldevs_gen;
1673 alldevs_garbage = true;
1674 }
1675 }
1676 config_alldevs_exit(&af);
1677
1678 return rv;
1679 }
1680
1681 int
1682 config_detach_children(device_t parent, int flags)
1683 {
1684 device_t dv;
1685 deviter_t di;
1686 int error = 0;
1687
1688 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1689 dv = deviter_next(&di)) {
1690 if (device_parent(dv) != parent)
1691 continue;
1692 if ((error = config_detach(dv, flags)) != 0)
1693 break;
1694 }
1695 deviter_release(&di);
1696 return error;
1697 }
1698
1699 device_t
1700 shutdown_first(struct shutdown_state *s)
1701 {
1702 if (!s->initialized) {
1703 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1704 s->initialized = true;
1705 }
1706 return shutdown_next(s);
1707 }
1708
1709 device_t
1710 shutdown_next(struct shutdown_state *s)
1711 {
1712 device_t dv;
1713
1714 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1715 ;
1716
1717 if (dv == NULL)
1718 s->initialized = false;
1719
1720 return dv;
1721 }
1722
1723 bool
1724 config_detach_all(int how)
1725 {
1726 static struct shutdown_state s;
1727 device_t curdev;
1728 bool progress = false;
1729
1730 if ((how & RB_NOSYNC) != 0)
1731 return false;
1732
1733 for (curdev = shutdown_first(&s); curdev != NULL;
1734 curdev = shutdown_next(&s)) {
1735 aprint_debug(" detaching %s, ", device_xname(curdev));
1736 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1737 progress = true;
1738 aprint_debug("success.");
1739 } else
1740 aprint_debug("failed.");
1741 }
1742 return progress;
1743 }
1744
1745 static bool
1746 device_is_ancestor_of(device_t ancestor, device_t descendant)
1747 {
1748 device_t dv;
1749
1750 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1751 if (device_parent(dv) == ancestor)
1752 return true;
1753 }
1754 return false;
1755 }
1756
1757 int
1758 config_deactivate(device_t dev)
1759 {
1760 deviter_t di;
1761 const struct cfattach *ca;
1762 device_t descendant;
1763 int s, rv = 0, oflags;
1764
1765 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1766 descendant != NULL;
1767 descendant = deviter_next(&di)) {
1768 if (dev != descendant &&
1769 !device_is_ancestor_of(dev, descendant))
1770 continue;
1771
1772 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1773 continue;
1774
1775 ca = descendant->dv_cfattach;
1776 oflags = descendant->dv_flags;
1777
1778 descendant->dv_flags &= ~DVF_ACTIVE;
1779 if (ca->ca_activate == NULL)
1780 continue;
1781 s = splhigh();
1782 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1783 splx(s);
1784 if (rv != 0)
1785 descendant->dv_flags = oflags;
1786 }
1787 deviter_release(&di);
1788 return rv;
1789 }
1790
1791 /*
1792 * Defer the configuration of the specified device until all
1793 * of its parent's devices have been attached.
1794 */
1795 void
1796 config_defer(device_t dev, void (*func)(device_t))
1797 {
1798 struct deferred_config *dc;
1799
1800 if (dev->dv_parent == NULL)
1801 panic("config_defer: can't defer config of a root device");
1802
1803 #ifdef DIAGNOSTIC
1804 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1805 if (dc->dc_dev == dev)
1806 panic("config_defer: deferred twice");
1807 }
1808 #endif
1809
1810 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1811 if (dc == NULL)
1812 panic("config_defer: unable to allocate callback");
1813
1814 dc->dc_dev = dev;
1815 dc->dc_func = func;
1816 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1817 config_pending_incr();
1818 }
1819
1820 /*
1821 * Defer some autoconfiguration for a device until after interrupts
1822 * are enabled.
1823 */
1824 void
1825 config_interrupts(device_t dev, void (*func)(device_t))
1826 {
1827 struct deferred_config *dc;
1828
1829 /*
1830 * If interrupts are enabled, callback now.
1831 */
1832 if (cold == 0) {
1833 (*func)(dev);
1834 return;
1835 }
1836
1837 #ifdef DIAGNOSTIC
1838 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1839 if (dc->dc_dev == dev)
1840 panic("config_interrupts: deferred twice");
1841 }
1842 #endif
1843
1844 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1845 if (dc == NULL)
1846 panic("config_interrupts: unable to allocate callback");
1847
1848 dc->dc_dev = dev;
1849 dc->dc_func = func;
1850 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1851 config_pending_incr();
1852 }
1853
1854 /*
1855 * Defer some autoconfiguration for a device until after root file system
1856 * is mounted (to load firmware etc).
1857 */
1858 void
1859 config_mountroot(device_t dev, void (*func)(device_t))
1860 {
1861 struct deferred_config *dc;
1862
1863 /*
1864 * If root file system is mounted, callback now.
1865 */
1866 if (root_is_mounted) {
1867 (*func)(dev);
1868 return;
1869 }
1870
1871 #ifdef DIAGNOSTIC
1872 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
1873 if (dc->dc_dev == dev)
1874 panic("%s: deferred twice", __func__);
1875 }
1876 #endif
1877
1878 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1879 if (dc == NULL)
1880 panic("%s: unable to allocate callback", __func__);
1881
1882 dc->dc_dev = dev;
1883 dc->dc_func = func;
1884 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
1885 }
1886
1887 /*
1888 * Process a deferred configuration queue.
1889 */
1890 static void
1891 config_process_deferred(struct deferred_config_head *queue,
1892 device_t parent)
1893 {
1894 struct deferred_config *dc, *ndc;
1895
1896 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1897 ndc = TAILQ_NEXT(dc, dc_queue);
1898 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1899 TAILQ_REMOVE(queue, dc, dc_queue);
1900 (*dc->dc_func)(dc->dc_dev);
1901 kmem_free(dc, sizeof(*dc));
1902 config_pending_decr();
1903 }
1904 }
1905 }
1906
1907 /*
1908 * Manipulate the config_pending semaphore.
1909 */
1910 void
1911 config_pending_incr(void)
1912 {
1913
1914 mutex_enter(&config_misc_lock);
1915 config_pending++;
1916 mutex_exit(&config_misc_lock);
1917 }
1918
1919 void
1920 config_pending_decr(void)
1921 {
1922
1923 #ifdef DIAGNOSTIC
1924 if (config_pending == 0)
1925 panic("config_pending_decr: config_pending == 0");
1926 #endif
1927 mutex_enter(&config_misc_lock);
1928 config_pending--;
1929 if (config_pending == 0)
1930 cv_broadcast(&config_misc_cv);
1931 mutex_exit(&config_misc_lock);
1932 }
1933
1934 /*
1935 * Register a "finalization" routine. Finalization routines are
1936 * called iteratively once all real devices have been found during
1937 * autoconfiguration, for as long as any one finalizer has done
1938 * any work.
1939 */
1940 int
1941 config_finalize_register(device_t dev, int (*fn)(device_t))
1942 {
1943 struct finalize_hook *f;
1944
1945 /*
1946 * If finalization has already been done, invoke the
1947 * callback function now.
1948 */
1949 if (config_finalize_done) {
1950 while ((*fn)(dev) != 0)
1951 /* loop */ ;
1952 }
1953
1954 /* Ensure this isn't already on the list. */
1955 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1956 if (f->f_func == fn && f->f_dev == dev)
1957 return EEXIST;
1958 }
1959
1960 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1961 f->f_func = fn;
1962 f->f_dev = dev;
1963 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1964
1965 return 0;
1966 }
1967
1968 void
1969 config_finalize(void)
1970 {
1971 struct finalize_hook *f;
1972 struct pdevinit *pdev;
1973 extern struct pdevinit pdevinit[];
1974 int errcnt, rv;
1975
1976 /*
1977 * Now that device driver threads have been created, wait for
1978 * them to finish any deferred autoconfiguration.
1979 */
1980 mutex_enter(&config_misc_lock);
1981 while (config_pending != 0)
1982 cv_wait(&config_misc_cv, &config_misc_lock);
1983 mutex_exit(&config_misc_lock);
1984
1985 KERNEL_LOCK(1, NULL);
1986
1987 /* Attach pseudo-devices. */
1988 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1989 (*pdev->pdev_attach)(pdev->pdev_count);
1990
1991 /* Run the hooks until none of them does any work. */
1992 do {
1993 rv = 0;
1994 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1995 rv |= (*f->f_func)(f->f_dev);
1996 } while (rv != 0);
1997
1998 config_finalize_done = 1;
1999
2000 /* Now free all the hooks. */
2001 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2002 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2003 kmem_free(f, sizeof(*f));
2004 }
2005
2006 KERNEL_UNLOCK_ONE(NULL);
2007
2008 errcnt = aprint_get_error_count();
2009 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2010 (boothowto & AB_VERBOSE) == 0) {
2011 mutex_enter(&config_misc_lock);
2012 if (config_do_twiddle) {
2013 config_do_twiddle = 0;
2014 printf_nolog(" done.\n");
2015 }
2016 mutex_exit(&config_misc_lock);
2017 if (errcnt != 0) {
2018 printf("WARNING: %d error%s while detecting hardware; "
2019 "check system log.\n", errcnt,
2020 errcnt == 1 ? "" : "s");
2021 }
2022 }
2023 }
2024
2025 void
2026 config_twiddle_init()
2027 {
2028
2029 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2030 config_do_twiddle = 1;
2031 }
2032 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2033 }
2034
2035 void
2036 config_twiddle_fn(void *cookie)
2037 {
2038
2039 mutex_enter(&config_misc_lock);
2040 if (config_do_twiddle) {
2041 twiddle();
2042 callout_schedule(&config_twiddle_ch, mstohz(100));
2043 }
2044 mutex_exit(&config_misc_lock);
2045 }
2046
2047 static int
2048 config_alldevs_lock(void)
2049 {
2050 mutex_enter(&alldevs_mtx);
2051 return 0;
2052 }
2053
2054 static void
2055 config_alldevs_enter(struct alldevs_foray *af)
2056 {
2057 TAILQ_INIT(&af->af_garbage);
2058 af->af_s = config_alldevs_lock();
2059 config_collect_garbage(&af->af_garbage);
2060 }
2061
2062 static void
2063 config_alldevs_exit(struct alldevs_foray *af)
2064 {
2065 config_alldevs_unlock(af->af_s);
2066 config_dump_garbage(&af->af_garbage);
2067 }
2068
2069 /*ARGSUSED*/
2070 static void
2071 config_alldevs_unlock(int s)
2072 {
2073 mutex_exit(&alldevs_mtx);
2074 }
2075
2076 /*
2077 * device_lookup:
2078 *
2079 * Look up a device instance for a given driver.
2080 */
2081 device_t
2082 device_lookup(cfdriver_t cd, int unit)
2083 {
2084 device_t dv;
2085 int s;
2086
2087 s = config_alldevs_lock();
2088 KASSERT(mutex_owned(&alldevs_mtx));
2089 if (unit < 0 || unit >= cd->cd_ndevs)
2090 dv = NULL;
2091 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2092 dv = NULL;
2093 config_alldevs_unlock(s);
2094
2095 return dv;
2096 }
2097
2098 /*
2099 * device_lookup_private:
2100 *
2101 * Look up a softc instance for a given driver.
2102 */
2103 void *
2104 device_lookup_private(cfdriver_t cd, int unit)
2105 {
2106
2107 return device_private(device_lookup(cd, unit));
2108 }
2109
2110 /*
2111 * device_find_by_xname:
2112 *
2113 * Returns the device of the given name or NULL if it doesn't exist.
2114 */
2115 device_t
2116 device_find_by_xname(const char *name)
2117 {
2118 device_t dv;
2119 deviter_t di;
2120
2121 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2122 if (strcmp(device_xname(dv), name) == 0)
2123 break;
2124 }
2125 deviter_release(&di);
2126
2127 return dv;
2128 }
2129
2130 /*
2131 * device_find_by_driver_unit:
2132 *
2133 * Returns the device of the given driver name and unit or
2134 * NULL if it doesn't exist.
2135 */
2136 device_t
2137 device_find_by_driver_unit(const char *name, int unit)
2138 {
2139 struct cfdriver *cd;
2140
2141 if ((cd = config_cfdriver_lookup(name)) == NULL)
2142 return NULL;
2143 return device_lookup(cd, unit);
2144 }
2145
2146 /*
2147 * Power management related functions.
2148 */
2149
2150 bool
2151 device_pmf_is_registered(device_t dev)
2152 {
2153 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2154 }
2155
2156 bool
2157 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2158 {
2159 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2160 return true;
2161 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2162 return false;
2163 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2164 dev->dv_driver_suspend != NULL &&
2165 !(*dev->dv_driver_suspend)(dev, qual))
2166 return false;
2167
2168 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2169 return true;
2170 }
2171
2172 bool
2173 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2174 {
2175 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2176 return true;
2177 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2178 return false;
2179 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2180 dev->dv_driver_resume != NULL &&
2181 !(*dev->dv_driver_resume)(dev, qual))
2182 return false;
2183
2184 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2185 return true;
2186 }
2187
2188 bool
2189 device_pmf_driver_shutdown(device_t dev, int how)
2190 {
2191
2192 if (*dev->dv_driver_shutdown != NULL &&
2193 !(*dev->dv_driver_shutdown)(dev, how))
2194 return false;
2195 return true;
2196 }
2197
2198 bool
2199 device_pmf_driver_register(device_t dev,
2200 bool (*suspend)(device_t, const pmf_qual_t *),
2201 bool (*resume)(device_t, const pmf_qual_t *),
2202 bool (*shutdown)(device_t, int))
2203 {
2204 dev->dv_driver_suspend = suspend;
2205 dev->dv_driver_resume = resume;
2206 dev->dv_driver_shutdown = shutdown;
2207 dev->dv_flags |= DVF_POWER_HANDLERS;
2208 return true;
2209 }
2210
2211 static const char *
2212 curlwp_name(void)
2213 {
2214 if (curlwp->l_name != NULL)
2215 return curlwp->l_name;
2216 else
2217 return curlwp->l_proc->p_comm;
2218 }
2219
2220 void
2221 device_pmf_driver_deregister(device_t dev)
2222 {
2223 device_lock_t dvl = device_getlock(dev);
2224
2225 dev->dv_driver_suspend = NULL;
2226 dev->dv_driver_resume = NULL;
2227
2228 mutex_enter(&dvl->dvl_mtx);
2229 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2230 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2231 /* Wake a thread that waits for the lock. That
2232 * thread will fail to acquire the lock, and then
2233 * it will wake the next thread that waits for the
2234 * lock, or else it will wake us.
2235 */
2236 cv_signal(&dvl->dvl_cv);
2237 pmflock_debug(dev, __func__, __LINE__);
2238 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2239 pmflock_debug(dev, __func__, __LINE__);
2240 }
2241 mutex_exit(&dvl->dvl_mtx);
2242 }
2243
2244 bool
2245 device_pmf_driver_child_register(device_t dev)
2246 {
2247 device_t parent = device_parent(dev);
2248
2249 if (parent == NULL || parent->dv_driver_child_register == NULL)
2250 return true;
2251 return (*parent->dv_driver_child_register)(dev);
2252 }
2253
2254 void
2255 device_pmf_driver_set_child_register(device_t dev,
2256 bool (*child_register)(device_t))
2257 {
2258 dev->dv_driver_child_register = child_register;
2259 }
2260
2261 static void
2262 pmflock_debug(device_t dev, const char *func, int line)
2263 {
2264 device_lock_t dvl = device_getlock(dev);
2265
2266 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2267 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2268 dev->dv_flags);
2269 }
2270
2271 static bool
2272 device_pmf_lock1(device_t dev)
2273 {
2274 device_lock_t dvl = device_getlock(dev);
2275
2276 while (device_pmf_is_registered(dev) &&
2277 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2278 dvl->dvl_nwait++;
2279 pmflock_debug(dev, __func__, __LINE__);
2280 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2281 pmflock_debug(dev, __func__, __LINE__);
2282 dvl->dvl_nwait--;
2283 }
2284 if (!device_pmf_is_registered(dev)) {
2285 pmflock_debug(dev, __func__, __LINE__);
2286 /* We could not acquire the lock, but some other thread may
2287 * wait for it, also. Wake that thread.
2288 */
2289 cv_signal(&dvl->dvl_cv);
2290 return false;
2291 }
2292 dvl->dvl_nlock++;
2293 dvl->dvl_holder = curlwp;
2294 pmflock_debug(dev, __func__, __LINE__);
2295 return true;
2296 }
2297
2298 bool
2299 device_pmf_lock(device_t dev)
2300 {
2301 bool rc;
2302 device_lock_t dvl = device_getlock(dev);
2303
2304 mutex_enter(&dvl->dvl_mtx);
2305 rc = device_pmf_lock1(dev);
2306 mutex_exit(&dvl->dvl_mtx);
2307
2308 return rc;
2309 }
2310
2311 void
2312 device_pmf_unlock(device_t dev)
2313 {
2314 device_lock_t dvl = device_getlock(dev);
2315
2316 KASSERT(dvl->dvl_nlock > 0);
2317 mutex_enter(&dvl->dvl_mtx);
2318 if (--dvl->dvl_nlock == 0)
2319 dvl->dvl_holder = NULL;
2320 cv_signal(&dvl->dvl_cv);
2321 pmflock_debug(dev, __func__, __LINE__);
2322 mutex_exit(&dvl->dvl_mtx);
2323 }
2324
2325 device_lock_t
2326 device_getlock(device_t dev)
2327 {
2328 return &dev->dv_lock;
2329 }
2330
2331 void *
2332 device_pmf_bus_private(device_t dev)
2333 {
2334 return dev->dv_bus_private;
2335 }
2336
2337 bool
2338 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2339 {
2340 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2341 return true;
2342 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2343 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2344 return false;
2345 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2346 dev->dv_bus_suspend != NULL &&
2347 !(*dev->dv_bus_suspend)(dev, qual))
2348 return false;
2349
2350 dev->dv_flags |= DVF_BUS_SUSPENDED;
2351 return true;
2352 }
2353
2354 bool
2355 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2356 {
2357 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2358 return true;
2359 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2360 dev->dv_bus_resume != NULL &&
2361 !(*dev->dv_bus_resume)(dev, qual))
2362 return false;
2363
2364 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2365 return true;
2366 }
2367
2368 bool
2369 device_pmf_bus_shutdown(device_t dev, int how)
2370 {
2371
2372 if (*dev->dv_bus_shutdown != NULL &&
2373 !(*dev->dv_bus_shutdown)(dev, how))
2374 return false;
2375 return true;
2376 }
2377
2378 void
2379 device_pmf_bus_register(device_t dev, void *priv,
2380 bool (*suspend)(device_t, const pmf_qual_t *),
2381 bool (*resume)(device_t, const pmf_qual_t *),
2382 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2383 {
2384 dev->dv_bus_private = priv;
2385 dev->dv_bus_resume = resume;
2386 dev->dv_bus_suspend = suspend;
2387 dev->dv_bus_shutdown = shutdown;
2388 dev->dv_bus_deregister = deregister;
2389 }
2390
2391 void
2392 device_pmf_bus_deregister(device_t dev)
2393 {
2394 if (dev->dv_bus_deregister == NULL)
2395 return;
2396 (*dev->dv_bus_deregister)(dev);
2397 dev->dv_bus_private = NULL;
2398 dev->dv_bus_suspend = NULL;
2399 dev->dv_bus_resume = NULL;
2400 dev->dv_bus_deregister = NULL;
2401 }
2402
2403 void *
2404 device_pmf_class_private(device_t dev)
2405 {
2406 return dev->dv_class_private;
2407 }
2408
2409 bool
2410 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2411 {
2412 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2413 return true;
2414 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2415 dev->dv_class_suspend != NULL &&
2416 !(*dev->dv_class_suspend)(dev, qual))
2417 return false;
2418
2419 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2420 return true;
2421 }
2422
2423 bool
2424 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2425 {
2426 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2427 return true;
2428 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2429 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2430 return false;
2431 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2432 dev->dv_class_resume != NULL &&
2433 !(*dev->dv_class_resume)(dev, qual))
2434 return false;
2435
2436 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2437 return true;
2438 }
2439
2440 void
2441 device_pmf_class_register(device_t dev, void *priv,
2442 bool (*suspend)(device_t, const pmf_qual_t *),
2443 bool (*resume)(device_t, const pmf_qual_t *),
2444 void (*deregister)(device_t))
2445 {
2446 dev->dv_class_private = priv;
2447 dev->dv_class_suspend = suspend;
2448 dev->dv_class_resume = resume;
2449 dev->dv_class_deregister = deregister;
2450 }
2451
2452 void
2453 device_pmf_class_deregister(device_t dev)
2454 {
2455 if (dev->dv_class_deregister == NULL)
2456 return;
2457 (*dev->dv_class_deregister)(dev);
2458 dev->dv_class_private = NULL;
2459 dev->dv_class_suspend = NULL;
2460 dev->dv_class_resume = NULL;
2461 dev->dv_class_deregister = NULL;
2462 }
2463
2464 bool
2465 device_active(device_t dev, devactive_t type)
2466 {
2467 size_t i;
2468
2469 if (dev->dv_activity_count == 0)
2470 return false;
2471
2472 for (i = 0; i < dev->dv_activity_count; ++i) {
2473 if (dev->dv_activity_handlers[i] == NULL)
2474 break;
2475 (*dev->dv_activity_handlers[i])(dev, type);
2476 }
2477
2478 return true;
2479 }
2480
2481 bool
2482 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2483 {
2484 void (**new_handlers)(device_t, devactive_t);
2485 void (**old_handlers)(device_t, devactive_t);
2486 size_t i, old_size, new_size;
2487 int s;
2488
2489 old_handlers = dev->dv_activity_handlers;
2490 old_size = dev->dv_activity_count;
2491
2492 for (i = 0; i < old_size; ++i) {
2493 KASSERT(old_handlers[i] != handler);
2494 if (old_handlers[i] == NULL) {
2495 old_handlers[i] = handler;
2496 return true;
2497 }
2498 }
2499
2500 new_size = old_size + 4;
2501 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2502
2503 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2504 new_handlers[old_size] = handler;
2505 memset(new_handlers + old_size + 1, 0,
2506 sizeof(int [new_size - (old_size+1)]));
2507
2508 s = splhigh();
2509 dev->dv_activity_count = new_size;
2510 dev->dv_activity_handlers = new_handlers;
2511 splx(s);
2512
2513 if (old_handlers != NULL)
2514 kmem_free(old_handlers, sizeof(void * [old_size]));
2515
2516 return true;
2517 }
2518
2519 void
2520 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2521 {
2522 void (**old_handlers)(device_t, devactive_t);
2523 size_t i, old_size;
2524 int s;
2525
2526 old_handlers = dev->dv_activity_handlers;
2527 old_size = dev->dv_activity_count;
2528
2529 for (i = 0; i < old_size; ++i) {
2530 if (old_handlers[i] == handler)
2531 break;
2532 if (old_handlers[i] == NULL)
2533 return; /* XXX panic? */
2534 }
2535
2536 if (i == old_size)
2537 return; /* XXX panic? */
2538
2539 for (; i < old_size - 1; ++i) {
2540 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2541 continue;
2542
2543 if (i == 0) {
2544 s = splhigh();
2545 dev->dv_activity_count = 0;
2546 dev->dv_activity_handlers = NULL;
2547 splx(s);
2548 kmem_free(old_handlers, sizeof(void *[old_size]));
2549 }
2550 return;
2551 }
2552 old_handlers[i] = NULL;
2553 }
2554
2555 /* Return true iff the device_t `dev' exists at generation `gen'. */
2556 static bool
2557 device_exists_at(device_t dv, devgen_t gen)
2558 {
2559 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2560 dv->dv_add_gen <= gen;
2561 }
2562
2563 static bool
2564 deviter_visits(const deviter_t *di, device_t dv)
2565 {
2566 return device_exists_at(dv, di->di_gen);
2567 }
2568
2569 /*
2570 * Device Iteration
2571 *
2572 * deviter_t: a device iterator. Holds state for a "walk" visiting
2573 * each device_t's in the device tree.
2574 *
2575 * deviter_init(di, flags): initialize the device iterator `di'
2576 * to "walk" the device tree. deviter_next(di) will return
2577 * the first device_t in the device tree, or NULL if there are
2578 * no devices.
2579 *
2580 * `flags' is one or more of DEVITER_F_RW, indicating that the
2581 * caller intends to modify the device tree by calling
2582 * config_detach(9) on devices in the order that the iterator
2583 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2584 * nearest the "root" of the device tree to be returned, first;
2585 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2586 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2587 * indicating both that deviter_init() should not respect any
2588 * locks on the device tree, and that deviter_next(di) may run
2589 * in more than one LWP before the walk has finished.
2590 *
2591 * Only one DEVITER_F_RW iterator may be in the device tree at
2592 * once.
2593 *
2594 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2595 *
2596 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2597 * DEVITER_F_LEAVES_FIRST are used in combination.
2598 *
2599 * deviter_first(di, flags): initialize the device iterator `di'
2600 * and return the first device_t in the device tree, or NULL
2601 * if there are no devices. The statement
2602 *
2603 * dv = deviter_first(di);
2604 *
2605 * is shorthand for
2606 *
2607 * deviter_init(di);
2608 * dv = deviter_next(di);
2609 *
2610 * deviter_next(di): return the next device_t in the device tree,
2611 * or NULL if there are no more devices. deviter_next(di)
2612 * is undefined if `di' was not initialized with deviter_init() or
2613 * deviter_first().
2614 *
2615 * deviter_release(di): stops iteration (subsequent calls to
2616 * deviter_next() will return NULL), releases any locks and
2617 * resources held by the device iterator.
2618 *
2619 * Device iteration does not return device_t's in any particular
2620 * order. An iterator will never return the same device_t twice.
2621 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2622 * is called repeatedly on the same `di', it will eventually return
2623 * NULL. It is ok to attach/detach devices during device iteration.
2624 */
2625 void
2626 deviter_init(deviter_t *di, deviter_flags_t flags)
2627 {
2628 device_t dv;
2629 int s;
2630
2631 memset(di, 0, sizeof(*di));
2632
2633 s = config_alldevs_lock();
2634 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2635 flags |= DEVITER_F_RW;
2636
2637 if ((flags & DEVITER_F_RW) != 0)
2638 alldevs_nwrite++;
2639 else
2640 alldevs_nread++;
2641 di->di_gen = alldevs_gen++;
2642 config_alldevs_unlock(s);
2643
2644 di->di_flags = flags;
2645
2646 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2647 case DEVITER_F_LEAVES_FIRST:
2648 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2649 if (!deviter_visits(di, dv))
2650 continue;
2651 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2652 }
2653 break;
2654 case DEVITER_F_ROOT_FIRST:
2655 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2656 if (!deviter_visits(di, dv))
2657 continue;
2658 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2659 }
2660 break;
2661 default:
2662 break;
2663 }
2664
2665 deviter_reinit(di);
2666 }
2667
2668 static void
2669 deviter_reinit(deviter_t *di)
2670 {
2671 if ((di->di_flags & DEVITER_F_RW) != 0)
2672 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2673 else
2674 di->di_prev = TAILQ_FIRST(&alldevs);
2675 }
2676
2677 device_t
2678 deviter_first(deviter_t *di, deviter_flags_t flags)
2679 {
2680 deviter_init(di, flags);
2681 return deviter_next(di);
2682 }
2683
2684 static device_t
2685 deviter_next2(deviter_t *di)
2686 {
2687 device_t dv;
2688
2689 dv = di->di_prev;
2690
2691 if (dv == NULL)
2692 return NULL;
2693
2694 if ((di->di_flags & DEVITER_F_RW) != 0)
2695 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2696 else
2697 di->di_prev = TAILQ_NEXT(dv, dv_list);
2698
2699 return dv;
2700 }
2701
2702 static device_t
2703 deviter_next1(deviter_t *di)
2704 {
2705 device_t dv;
2706
2707 do {
2708 dv = deviter_next2(di);
2709 } while (dv != NULL && !deviter_visits(di, dv));
2710
2711 return dv;
2712 }
2713
2714 device_t
2715 deviter_next(deviter_t *di)
2716 {
2717 device_t dv = NULL;
2718
2719 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2720 case 0:
2721 return deviter_next1(di);
2722 case DEVITER_F_LEAVES_FIRST:
2723 while (di->di_curdepth >= 0) {
2724 if ((dv = deviter_next1(di)) == NULL) {
2725 di->di_curdepth--;
2726 deviter_reinit(di);
2727 } else if (dv->dv_depth == di->di_curdepth)
2728 break;
2729 }
2730 return dv;
2731 case DEVITER_F_ROOT_FIRST:
2732 while (di->di_curdepth <= di->di_maxdepth) {
2733 if ((dv = deviter_next1(di)) == NULL) {
2734 di->di_curdepth++;
2735 deviter_reinit(di);
2736 } else if (dv->dv_depth == di->di_curdepth)
2737 break;
2738 }
2739 return dv;
2740 default:
2741 return NULL;
2742 }
2743 }
2744
2745 void
2746 deviter_release(deviter_t *di)
2747 {
2748 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2749 int s;
2750
2751 s = config_alldevs_lock();
2752 if (rw)
2753 --alldevs_nwrite;
2754 else
2755 --alldevs_nread;
2756 /* XXX wake a garbage-collection thread */
2757 config_alldevs_unlock(s);
2758 }
2759
2760 const char *
2761 cfdata_ifattr(const struct cfdata *cf)
2762 {
2763 return cf->cf_pspec->cfp_iattr;
2764 }
2765
2766 bool
2767 ifattr_match(const char *snull, const char *t)
2768 {
2769 return (snull == NULL) || strcmp(snull, t) == 0;
2770 }
2771
2772 void
2773 null_childdetached(device_t self, device_t child)
2774 {
2775 /* do nothing */
2776 }
2777
2778 static void
2779 sysctl_detach_setup(struct sysctllog **clog)
2780 {
2781 const struct sysctlnode *node = NULL;
2782
2783 sysctl_createv(clog, 0, NULL, &node,
2784 CTLFLAG_PERMANENT,
2785 CTLTYPE_NODE, "kern", NULL,
2786 NULL, 0, NULL, 0,
2787 CTL_KERN, CTL_EOL);
2788
2789 if (node == NULL)
2790 return;
2791
2792 sysctl_createv(clog, 0, &node, NULL,
2793 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2794 CTLTYPE_BOOL, "detachall",
2795 SYSCTL_DESCR("Detach all devices at shutdown"),
2796 NULL, 0, &detachall, 0,
2797 CTL_CREATE, CTL_EOL);
2798 }
2799