Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.207
      1 /* $NetBSD: subr_autoconf.c,v 1.207 2010/06/25 15:10:42 tsutsui Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.207 2010/06/25 15:10:42 tsutsui Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #endif
     85 
     86 #include <sys/param.h>
     87 #include <sys/device.h>
     88 #include <sys/disklabel.h>
     89 #include <sys/conf.h>
     90 #include <sys/kauth.h>
     91 #include <sys/malloc.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/vnode.h>
    102 #include <sys/mount.h>
    103 #include <sys/namei.h>
    104 #include <sys/unistd.h>
    105 #include <sys/fcntl.h>
    106 #include <sys/lockf.h>
    107 #include <sys/callout.h>
    108 #include <sys/devmon.h>
    109 #include <sys/cpu.h>
    110 #include <sys/sysctl.h>
    111 
    112 #include <sys/disk.h>
    113 
    114 #include <machine/limits.h>
    115 
    116 #if defined(__i386__) && defined(_KERNEL_OPT)
    117 #include "opt_splash.h"
    118 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
    119 #include <dev/splash/splash.h>
    120 extern struct splash_progress *splash_progress_state;
    121 #endif
    122 #endif
    123 
    124 /*
    125  * Autoconfiguration subroutines.
    126  */
    127 
    128 /*
    129  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    130  * devices and drivers are found via these tables.
    131  */
    132 extern struct cfdata cfdata[];
    133 extern const short cfroots[];
    134 
    135 /*
    136  * List of all cfdriver structures.  We use this to detect duplicates
    137  * when other cfdrivers are loaded.
    138  */
    139 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    140 extern struct cfdriver * const cfdriver_list_initial[];
    141 
    142 /*
    143  * Initial list of cfattach's.
    144  */
    145 extern const struct cfattachinit cfattachinit[];
    146 
    147 /*
    148  * List of cfdata tables.  We always have one such list -- the one
    149  * built statically when the kernel was configured.
    150  */
    151 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    152 static struct cftable initcftable;
    153 
    154 #define	ROOT ((device_t)NULL)
    155 
    156 struct matchinfo {
    157 	cfsubmatch_t fn;
    158 	struct	device *parent;
    159 	const int *locs;
    160 	void	*aux;
    161 	struct	cfdata *match;
    162 	int	pri;
    163 };
    164 
    165 struct alldevs_foray {
    166 	int			af_s;
    167 	struct devicelist	af_garbage;
    168 };
    169 
    170 static char *number(char *, int);
    171 static void mapply(struct matchinfo *, cfdata_t);
    172 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    173 static void config_devdelete(device_t);
    174 static void config_devunlink(device_t, struct devicelist *);
    175 static void config_makeroom(int, struct cfdriver *);
    176 static void config_devlink(device_t);
    177 static void config_alldevs_unlock(int);
    178 static int config_alldevs_lock(void);
    179 static void config_alldevs_enter(struct alldevs_foray *);
    180 static void config_alldevs_exit(struct alldevs_foray *);
    181 
    182 static void config_collect_garbage(struct devicelist *);
    183 static void config_dump_garbage(struct devicelist *);
    184 
    185 static void pmflock_debug(device_t, const char *, int);
    186 
    187 static device_t deviter_next1(deviter_t *);
    188 static void deviter_reinit(deviter_t *);
    189 
    190 struct deferred_config {
    191 	TAILQ_ENTRY(deferred_config) dc_queue;
    192 	device_t dc_dev;
    193 	void (*dc_func)(device_t);
    194 };
    195 
    196 TAILQ_HEAD(deferred_config_head, deferred_config);
    197 
    198 struct deferred_config_head deferred_config_queue =
    199 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    200 struct deferred_config_head interrupt_config_queue =
    201 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    202 int interrupt_config_threads = 8;
    203 struct deferred_config_head mountroot_config_queue =
    204 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    205 int mountroot_config_threads = 2;
    206 
    207 static void config_process_deferred(struct deferred_config_head *, device_t);
    208 
    209 /* Hooks to finalize configuration once all real devices have been found. */
    210 struct finalize_hook {
    211 	TAILQ_ENTRY(finalize_hook) f_list;
    212 	int (*f_func)(device_t);
    213 	device_t f_dev;
    214 };
    215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    216 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    217 static int config_finalize_done;
    218 
    219 /* list of all devices */
    220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    221 static kmutex_t alldevs_mtx;
    222 static volatile bool alldevs_garbage = false;
    223 static volatile devgen_t alldevs_gen = 1;
    224 static volatile int alldevs_nread = 0;
    225 static volatile int alldevs_nwrite = 0;
    226 
    227 static int config_pending;		/* semaphore for mountroot */
    228 static kmutex_t config_misc_lock;
    229 static kcondvar_t config_misc_cv;
    230 
    231 static int detachall = 0;
    232 
    233 #define	STREQ(s1, s2)			\
    234 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    235 
    236 static bool config_initialized = false;	/* config_init() has been called. */
    237 
    238 static int config_do_twiddle;
    239 static callout_t config_twiddle_ch;
    240 
    241 static void sysctl_detach_setup(struct sysctllog **);
    242 
    243 typedef int (*cfdriver_fn)(struct cfdriver *);
    244 static int
    245 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    246 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    247 	const char *style, bool dopanic)
    248 {
    249 	void (*pr)(const char *, ...) = dopanic ? panic : printf;
    250 	int i = 0, error = 0, e2;
    251 
    252 	for (i = 0; cfdriverv[i] != NULL; i++) {
    253 		if ((error = drv_do(cfdriverv[i])) != 0) {
    254 			pr("configure: `%s' driver %s failed: %d",
    255 			    cfdriverv[i]->cd_name, style, error);
    256 			goto bad;
    257 		}
    258 	}
    259 
    260 	KASSERT(error == 0);
    261 	return 0;
    262 
    263  bad:
    264 	printf("\n");
    265 	for (i--; i >= 0; i--) {
    266 		e2 = drv_undo(cfdriverv[i]);
    267 		KASSERT(e2 == 0);
    268 	}
    269 
    270 	return error;
    271 }
    272 
    273 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    274 static int
    275 frob_cfattachvec(const struct cfattachinit *cfattachv,
    276 	cfattach_fn att_do, cfattach_fn att_undo,
    277 	const char *style, bool dopanic)
    278 {
    279 	const struct cfattachinit *cfai = NULL;
    280 	void (*pr)(const char *, ...) = dopanic ? panic : printf;
    281 	int j = 0, error = 0, e2;
    282 
    283 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    284 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    285 			if ((error = att_do(cfai->cfai_name,
    286 			    cfai->cfai_list[j]) != 0)) {
    287 				pr("configure: attachment `%s' "
    288 				    "of `%s' driver %s failed: %d",
    289 				    cfai->cfai_list[j]->ca_name,
    290 				    cfai->cfai_name, style, error);
    291 				goto bad;
    292 			}
    293 		}
    294 	}
    295 
    296 	KASSERT(error == 0);
    297 	return 0;
    298 
    299  bad:
    300 	/*
    301 	 * Rollback in reverse order.  dunno if super-important, but
    302 	 * do that anyway.  Although the code looks a little like
    303 	 * someone did a little integration (in the math sense).
    304 	 */
    305 	printf("\n");
    306 	if (cfai) {
    307 		bool last;
    308 
    309 		for (last = false; last == false; ) {
    310 			if (cfai == &cfattachv[0])
    311 				last = true;
    312 			for (j--; j >= 0; j--) {
    313 				e2 = att_undo(cfai->cfai_name,
    314 				    cfai->cfai_list[j]);
    315 				KASSERT(e2 == 0);
    316 			}
    317 			if (!last) {
    318 				cfai--;
    319 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    320 					;
    321 			}
    322 		}
    323 	}
    324 
    325 	return error;
    326 }
    327 
    328 /*
    329  * Initialize the autoconfiguration data structures.  Normally this
    330  * is done by configure(), but some platforms need to do this very
    331  * early (to e.g. initialize the console).
    332  */
    333 void
    334 config_init(void)
    335 {
    336 
    337 	KASSERT(config_initialized == false);
    338 
    339 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
    340 
    341 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    342 	cv_init(&config_misc_cv, "cfgmisc");
    343 
    344 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    345 
    346 	frob_cfdrivervec(cfdriver_list_initial,
    347 	    config_cfdriver_attach, NULL, "bootstrap", true);
    348 	frob_cfattachvec(cfattachinit,
    349 	    config_cfattach_attach, NULL, "bootstrap", true);
    350 
    351 	initcftable.ct_cfdata = cfdata;
    352 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    353 
    354 	config_initialized = true;
    355 }
    356 
    357 /*
    358  * Init or fini drivers and attachments.  Either all or none
    359  * are processed (via rollback).  It would be nice if this were
    360  * atomic to outside consumers, but with the current state of
    361  * locking ...
    362  */
    363 int
    364 config_init_component(struct cfdriver * const *cfdriverv,
    365 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    366 {
    367 	int error;
    368 
    369 	if ((error = frob_cfdrivervec(cfdriverv,
    370 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    371 		return error;
    372 	if ((error = frob_cfattachvec(cfattachv,
    373 	    config_cfattach_attach, config_cfattach_detach,
    374 	    "init", false)) != 0) {
    375 		frob_cfdrivervec(cfdriverv,
    376 	            config_cfdriver_detach, NULL, "init rollback", true);
    377 		return error;
    378 	}
    379 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    380 		frob_cfattachvec(cfattachv,
    381 		    config_cfattach_detach, NULL, "init rollback", true);
    382 		frob_cfdrivervec(cfdriverv,
    383 	            config_cfdriver_detach, NULL, "init rollback", true);
    384 		return error;
    385 	}
    386 
    387 	return 0;
    388 }
    389 
    390 int
    391 config_fini_component(struct cfdriver * const *cfdriverv,
    392 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    393 {
    394 	int error;
    395 
    396 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    397 		return error;
    398 	if ((error = frob_cfattachvec(cfattachv,
    399 	    config_cfattach_detach, config_cfattach_attach,
    400 	    "fini", false)) != 0) {
    401 		if (config_cfdata_attach(cfdatav, 0) != 0)
    402 			panic("config_cfdata fini rollback failed");
    403 		return error;
    404 	}
    405 	if ((error = frob_cfdrivervec(cfdriverv,
    406 	    config_cfdriver_detach, config_cfdriver_attach,
    407 	    "fini", false)) != 0) {
    408 		frob_cfattachvec(cfattachv,
    409 	            config_cfattach_attach, NULL, "fini rollback", true);
    410 		if (config_cfdata_attach(cfdatav, 0) != 0)
    411 			panic("config_cfdata fini rollback failed");
    412 		return error;
    413 	}
    414 
    415 	return 0;
    416 }
    417 
    418 void
    419 config_init_mi(void)
    420 {
    421 
    422 	if (!config_initialized)
    423 		config_init();
    424 
    425 	sysctl_detach_setup(NULL);
    426 }
    427 
    428 void
    429 config_deferred(device_t dev)
    430 {
    431 	config_process_deferred(&deferred_config_queue, dev);
    432 	config_process_deferred(&interrupt_config_queue, dev);
    433 	config_process_deferred(&mountroot_config_queue, dev);
    434 }
    435 
    436 static void
    437 config_interrupts_thread(void *cookie)
    438 {
    439 	struct deferred_config *dc;
    440 
    441 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    442 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    443 		(*dc->dc_func)(dc->dc_dev);
    444 		kmem_free(dc, sizeof(*dc));
    445 		config_pending_decr();
    446 	}
    447 	kthread_exit(0);
    448 }
    449 
    450 void
    451 config_create_interruptthreads()
    452 {
    453 	int i;
    454 
    455 	for (i = 0; i < interrupt_config_threads; i++) {
    456 		(void)kthread_create(PRI_NONE, 0, NULL,
    457 		    config_interrupts_thread, NULL, NULL, "config");
    458 	}
    459 }
    460 
    461 static void
    462 config_mountroot_thread(void *cookie)
    463 {
    464 	struct deferred_config *dc;
    465 
    466 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    467 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    468 		(*dc->dc_func)(dc->dc_dev);
    469 		kmem_free(dc, sizeof(*dc));
    470 	}
    471 	kthread_exit(0);
    472 }
    473 
    474 void
    475 config_create_mountrootthreads()
    476 {
    477 	int i;
    478 
    479 	for (i = 0; i < mountroot_config_threads; i++) {
    480 		(void)kthread_create(PRI_NONE, 0, NULL,
    481 		    config_mountroot_thread, NULL, NULL, "config");
    482 	}
    483 }
    484 
    485 /*
    486  * Announce device attach/detach to userland listeners.
    487  */
    488 static void
    489 devmon_report_device(device_t dev, bool isattach)
    490 {
    491 #if NDRVCTL > 0
    492 	prop_dictionary_t ev;
    493 	const char *parent;
    494 	const char *what;
    495 	device_t pdev = device_parent(dev);
    496 
    497 	ev = prop_dictionary_create();
    498 	if (ev == NULL)
    499 		return;
    500 
    501 	what = (isattach ? "device-attach" : "device-detach");
    502 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    503 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
    504 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
    505 		prop_object_release(ev);
    506 		return;
    507 	}
    508 
    509 	devmon_insert(what, ev);
    510 #endif
    511 }
    512 
    513 /*
    514  * Add a cfdriver to the system.
    515  */
    516 int
    517 config_cfdriver_attach(struct cfdriver *cd)
    518 {
    519 	struct cfdriver *lcd;
    520 
    521 	/* Make sure this driver isn't already in the system. */
    522 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    523 		if (STREQ(lcd->cd_name, cd->cd_name))
    524 			return EEXIST;
    525 	}
    526 
    527 	LIST_INIT(&cd->cd_attach);
    528 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    529 
    530 	return 0;
    531 }
    532 
    533 /*
    534  * Remove a cfdriver from the system.
    535  */
    536 int
    537 config_cfdriver_detach(struct cfdriver *cd)
    538 {
    539 	struct alldevs_foray af;
    540 	int i, rc = 0;
    541 
    542 	config_alldevs_enter(&af);
    543 	/* Make sure there are no active instances. */
    544 	for (i = 0; i < cd->cd_ndevs; i++) {
    545 		if (cd->cd_devs[i] != NULL) {
    546 			rc = EBUSY;
    547 			break;
    548 		}
    549 	}
    550 	config_alldevs_exit(&af);
    551 
    552 	if (rc != 0)
    553 		return rc;
    554 
    555 	/* ...and no attachments loaded. */
    556 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    557 		return EBUSY;
    558 
    559 	LIST_REMOVE(cd, cd_list);
    560 
    561 	KASSERT(cd->cd_devs == NULL);
    562 
    563 	return 0;
    564 }
    565 
    566 /*
    567  * Look up a cfdriver by name.
    568  */
    569 struct cfdriver *
    570 config_cfdriver_lookup(const char *name)
    571 {
    572 	struct cfdriver *cd;
    573 
    574 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    575 		if (STREQ(cd->cd_name, name))
    576 			return cd;
    577 	}
    578 
    579 	return NULL;
    580 }
    581 
    582 /*
    583  * Add a cfattach to the specified driver.
    584  */
    585 int
    586 config_cfattach_attach(const char *driver, struct cfattach *ca)
    587 {
    588 	struct cfattach *lca;
    589 	struct cfdriver *cd;
    590 
    591 	cd = config_cfdriver_lookup(driver);
    592 	if (cd == NULL)
    593 		return ESRCH;
    594 
    595 	/* Make sure this attachment isn't already on this driver. */
    596 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    597 		if (STREQ(lca->ca_name, ca->ca_name))
    598 			return EEXIST;
    599 	}
    600 
    601 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    602 
    603 	return 0;
    604 }
    605 
    606 /*
    607  * Remove a cfattach from the specified driver.
    608  */
    609 int
    610 config_cfattach_detach(const char *driver, struct cfattach *ca)
    611 {
    612 	struct alldevs_foray af;
    613 	struct cfdriver *cd;
    614 	device_t dev;
    615 	int i, rc = 0;
    616 
    617 	cd = config_cfdriver_lookup(driver);
    618 	if (cd == NULL)
    619 		return ESRCH;
    620 
    621 	config_alldevs_enter(&af);
    622 	/* Make sure there are no active instances. */
    623 	for (i = 0; i < cd->cd_ndevs; i++) {
    624 		if ((dev = cd->cd_devs[i]) == NULL)
    625 			continue;
    626 		if (dev->dv_cfattach == ca) {
    627 			rc = EBUSY;
    628 			break;
    629 		}
    630 	}
    631 	config_alldevs_exit(&af);
    632 
    633 	if (rc != 0)
    634 		return rc;
    635 
    636 	LIST_REMOVE(ca, ca_list);
    637 
    638 	return 0;
    639 }
    640 
    641 /*
    642  * Look up a cfattach by name.
    643  */
    644 static struct cfattach *
    645 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    646 {
    647 	struct cfattach *ca;
    648 
    649 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    650 		if (STREQ(ca->ca_name, atname))
    651 			return ca;
    652 	}
    653 
    654 	return NULL;
    655 }
    656 
    657 /*
    658  * Look up a cfattach by driver/attachment name.
    659  */
    660 struct cfattach *
    661 config_cfattach_lookup(const char *name, const char *atname)
    662 {
    663 	struct cfdriver *cd;
    664 
    665 	cd = config_cfdriver_lookup(name);
    666 	if (cd == NULL)
    667 		return NULL;
    668 
    669 	return config_cfattach_lookup_cd(cd, atname);
    670 }
    671 
    672 /*
    673  * Apply the matching function and choose the best.  This is used
    674  * a few times and we want to keep the code small.
    675  */
    676 static void
    677 mapply(struct matchinfo *m, cfdata_t cf)
    678 {
    679 	int pri;
    680 
    681 	if (m->fn != NULL) {
    682 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    683 	} else {
    684 		pri = config_match(m->parent, cf, m->aux);
    685 	}
    686 	if (pri > m->pri) {
    687 		m->match = cf;
    688 		m->pri = pri;
    689 	}
    690 }
    691 
    692 int
    693 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    694 {
    695 	const struct cfiattrdata *ci;
    696 	const struct cflocdesc *cl;
    697 	int nlocs, i;
    698 
    699 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    700 	KASSERT(ci);
    701 	nlocs = ci->ci_loclen;
    702 	KASSERT(!nlocs || locs);
    703 	for (i = 0; i < nlocs; i++) {
    704 		cl = &ci->ci_locdesc[i];
    705 		/* !cld_defaultstr means no default value */
    706 		if ((!(cl->cld_defaultstr)
    707 		     || (cf->cf_loc[i] != cl->cld_default))
    708 		    && cf->cf_loc[i] != locs[i])
    709 			return 0;
    710 	}
    711 
    712 	return config_match(parent, cf, aux);
    713 }
    714 
    715 /*
    716  * Helper function: check whether the driver supports the interface attribute
    717  * and return its descriptor structure.
    718  */
    719 static const struct cfiattrdata *
    720 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    721 {
    722 	const struct cfiattrdata * const *cpp;
    723 
    724 	if (cd->cd_attrs == NULL)
    725 		return 0;
    726 
    727 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    728 		if (STREQ((*cpp)->ci_name, ia)) {
    729 			/* Match. */
    730 			return *cpp;
    731 		}
    732 	}
    733 	return 0;
    734 }
    735 
    736 /*
    737  * Lookup an interface attribute description by name.
    738  * If the driver is given, consider only its supported attributes.
    739  */
    740 const struct cfiattrdata *
    741 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    742 {
    743 	const struct cfdriver *d;
    744 	const struct cfiattrdata *ia;
    745 
    746 	if (cd)
    747 		return cfdriver_get_iattr(cd, name);
    748 
    749 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    750 		ia = cfdriver_get_iattr(d, name);
    751 		if (ia)
    752 			return ia;
    753 	}
    754 	return 0;
    755 }
    756 
    757 /*
    758  * Determine if `parent' is a potential parent for a device spec based
    759  * on `cfp'.
    760  */
    761 static int
    762 cfparent_match(const device_t parent, const struct cfparent *cfp)
    763 {
    764 	struct cfdriver *pcd;
    765 
    766 	/* We don't match root nodes here. */
    767 	if (cfp == NULL)
    768 		return 0;
    769 
    770 	pcd = parent->dv_cfdriver;
    771 	KASSERT(pcd != NULL);
    772 
    773 	/*
    774 	 * First, ensure this parent has the correct interface
    775 	 * attribute.
    776 	 */
    777 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    778 		return 0;
    779 
    780 	/*
    781 	 * If no specific parent device instance was specified (i.e.
    782 	 * we're attaching to the attribute only), we're done!
    783 	 */
    784 	if (cfp->cfp_parent == NULL)
    785 		return 1;
    786 
    787 	/*
    788 	 * Check the parent device's name.
    789 	 */
    790 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    791 		return 0;	/* not the same parent */
    792 
    793 	/*
    794 	 * Make sure the unit number matches.
    795 	 */
    796 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    797 	    cfp->cfp_unit == parent->dv_unit)
    798 		return 1;
    799 
    800 	/* Unit numbers don't match. */
    801 	return 0;
    802 }
    803 
    804 /*
    805  * Helper for config_cfdata_attach(): check all devices whether it could be
    806  * parent any attachment in the config data table passed, and rescan.
    807  */
    808 static void
    809 rescan_with_cfdata(const struct cfdata *cf)
    810 {
    811 	device_t d;
    812 	const struct cfdata *cf1;
    813 	deviter_t di;
    814 
    815 
    816 	/*
    817 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    818 	 * the outer loop.
    819 	 */
    820 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    821 
    822 		if (!(d->dv_cfattach->ca_rescan))
    823 			continue;
    824 
    825 		for (cf1 = cf; cf1->cf_name; cf1++) {
    826 
    827 			if (!cfparent_match(d, cf1->cf_pspec))
    828 				continue;
    829 
    830 			(*d->dv_cfattach->ca_rescan)(d,
    831 				cfdata_ifattr(cf1), cf1->cf_loc);
    832 		}
    833 	}
    834 	deviter_release(&di);
    835 }
    836 
    837 /*
    838  * Attach a supplemental config data table and rescan potential
    839  * parent devices if required.
    840  */
    841 int
    842 config_cfdata_attach(cfdata_t cf, int scannow)
    843 {
    844 	struct cftable *ct;
    845 
    846 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    847 	ct->ct_cfdata = cf;
    848 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    849 
    850 	if (scannow)
    851 		rescan_with_cfdata(cf);
    852 
    853 	return 0;
    854 }
    855 
    856 /*
    857  * Helper for config_cfdata_detach: check whether a device is
    858  * found through any attachment in the config data table.
    859  */
    860 static int
    861 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
    862 {
    863 	const struct cfdata *cf1;
    864 
    865 	for (cf1 = cf; cf1->cf_name; cf1++)
    866 		if (d->dv_cfdata == cf1)
    867 			return 1;
    868 
    869 	return 0;
    870 }
    871 
    872 /*
    873  * Detach a supplemental config data table. Detach all devices found
    874  * through that table (and thus keeping references to it) before.
    875  */
    876 int
    877 config_cfdata_detach(cfdata_t cf)
    878 {
    879 	device_t d;
    880 	int error = 0;
    881 	struct cftable *ct;
    882 	deviter_t di;
    883 
    884 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    885 	     d = deviter_next(&di)) {
    886 		if (!dev_in_cfdata(d, cf))
    887 			continue;
    888 		if ((error = config_detach(d, 0)) != 0)
    889 			break;
    890 	}
    891 	deviter_release(&di);
    892 	if (error) {
    893 		aprint_error_dev(d, "unable to detach instance\n");
    894 		return error;
    895 	}
    896 
    897 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    898 		if (ct->ct_cfdata == cf) {
    899 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    900 			kmem_free(ct, sizeof(*ct));
    901 			return 0;
    902 		}
    903 	}
    904 
    905 	/* not found -- shouldn't happen */
    906 	return EINVAL;
    907 }
    908 
    909 /*
    910  * Invoke the "match" routine for a cfdata entry on behalf of
    911  * an external caller, usually a "submatch" routine.
    912  */
    913 int
    914 config_match(device_t parent, cfdata_t cf, void *aux)
    915 {
    916 	struct cfattach *ca;
    917 
    918 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    919 	if (ca == NULL) {
    920 		/* No attachment for this entry, oh well. */
    921 		return 0;
    922 	}
    923 
    924 	return (*ca->ca_match)(parent, cf, aux);
    925 }
    926 
    927 /*
    928  * Iterate over all potential children of some device, calling the given
    929  * function (default being the child's match function) for each one.
    930  * Nonzero returns are matches; the highest value returned is considered
    931  * the best match.  Return the `found child' if we got a match, or NULL
    932  * otherwise.  The `aux' pointer is simply passed on through.
    933  *
    934  * Note that this function is designed so that it can be used to apply
    935  * an arbitrary function to all potential children (its return value
    936  * can be ignored).
    937  */
    938 cfdata_t
    939 config_search_loc(cfsubmatch_t fn, device_t parent,
    940 		  const char *ifattr, const int *locs, void *aux)
    941 {
    942 	struct cftable *ct;
    943 	cfdata_t cf;
    944 	struct matchinfo m;
    945 
    946 	KASSERT(config_initialized);
    947 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
    948 
    949 	m.fn = fn;
    950 	m.parent = parent;
    951 	m.locs = locs;
    952 	m.aux = aux;
    953 	m.match = NULL;
    954 	m.pri = 0;
    955 
    956 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    957 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
    958 
    959 			/* We don't match root nodes here. */
    960 			if (!cf->cf_pspec)
    961 				continue;
    962 
    963 			/*
    964 			 * Skip cf if no longer eligible, otherwise scan
    965 			 * through parents for one matching `parent', and
    966 			 * try match function.
    967 			 */
    968 			if (cf->cf_fstate == FSTATE_FOUND)
    969 				continue;
    970 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
    971 			    cf->cf_fstate == FSTATE_DSTAR)
    972 				continue;
    973 
    974 			/*
    975 			 * If an interface attribute was specified,
    976 			 * consider only children which attach to
    977 			 * that attribute.
    978 			 */
    979 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
    980 				continue;
    981 
    982 			if (cfparent_match(parent, cf->cf_pspec))
    983 				mapply(&m, cf);
    984 		}
    985 	}
    986 	return m.match;
    987 }
    988 
    989 cfdata_t
    990 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
    991     void *aux)
    992 {
    993 
    994 	return config_search_loc(fn, parent, ifattr, NULL, aux);
    995 }
    996 
    997 /*
    998  * Find the given root device.
    999  * This is much like config_search, but there is no parent.
   1000  * Don't bother with multiple cfdata tables; the root node
   1001  * must always be in the initial table.
   1002  */
   1003 cfdata_t
   1004 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1005 {
   1006 	cfdata_t cf;
   1007 	const short *p;
   1008 	struct matchinfo m;
   1009 
   1010 	m.fn = fn;
   1011 	m.parent = ROOT;
   1012 	m.aux = aux;
   1013 	m.match = NULL;
   1014 	m.pri = 0;
   1015 	m.locs = 0;
   1016 	/*
   1017 	 * Look at root entries for matching name.  We do not bother
   1018 	 * with found-state here since only one root should ever be
   1019 	 * searched (and it must be done first).
   1020 	 */
   1021 	for (p = cfroots; *p >= 0; p++) {
   1022 		cf = &cfdata[*p];
   1023 		if (strcmp(cf->cf_name, rootname) == 0)
   1024 			mapply(&m, cf);
   1025 	}
   1026 	return m.match;
   1027 }
   1028 
   1029 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1030 
   1031 /*
   1032  * The given `aux' argument describes a device that has been found
   1033  * on the given parent, but not necessarily configured.  Locate the
   1034  * configuration data for that device (using the submatch function
   1035  * provided, or using candidates' cd_match configuration driver
   1036  * functions) and attach it, and return true.  If the device was
   1037  * not configured, call the given `print' function and return 0.
   1038  */
   1039 device_t
   1040 config_found_sm_loc(device_t parent,
   1041 		const char *ifattr, const int *locs, void *aux,
   1042 		cfprint_t print, cfsubmatch_t submatch)
   1043 {
   1044 	cfdata_t cf;
   1045 
   1046 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1047 	if (splash_progress_state)
   1048 		splash_progress_update(splash_progress_state);
   1049 #endif
   1050 
   1051 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
   1052 		return(config_attach_loc(parent, cf, locs, aux, print));
   1053 	if (print) {
   1054 		if (config_do_twiddle && cold)
   1055 			twiddle();
   1056 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1057 	}
   1058 
   1059 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1060 	if (splash_progress_state)
   1061 		splash_progress_update(splash_progress_state);
   1062 #endif
   1063 
   1064 	return NULL;
   1065 }
   1066 
   1067 device_t
   1068 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1069     cfprint_t print)
   1070 {
   1071 
   1072 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
   1073 }
   1074 
   1075 device_t
   1076 config_found(device_t parent, void *aux, cfprint_t print)
   1077 {
   1078 
   1079 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
   1080 }
   1081 
   1082 /*
   1083  * As above, but for root devices.
   1084  */
   1085 device_t
   1086 config_rootfound(const char *rootname, void *aux)
   1087 {
   1088 	cfdata_t cf;
   1089 
   1090 	if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
   1091 		return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
   1092 	aprint_error("root device %s not configured\n", rootname);
   1093 	return NULL;
   1094 }
   1095 
   1096 /* just like sprintf(buf, "%d") except that it works from the end */
   1097 static char *
   1098 number(char *ep, int n)
   1099 {
   1100 
   1101 	*--ep = 0;
   1102 	while (n >= 10) {
   1103 		*--ep = (n % 10) + '0';
   1104 		n /= 10;
   1105 	}
   1106 	*--ep = n + '0';
   1107 	return ep;
   1108 }
   1109 
   1110 /*
   1111  * Expand the size of the cd_devs array if necessary.
   1112  *
   1113  * The caller must hold alldevs_mtx. config_makeroom() may release and
   1114  * re-acquire alldevs_mtx, so callers should re-check conditions such
   1115  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1116  * returns.
   1117  */
   1118 static void
   1119 config_makeroom(int n, struct cfdriver *cd)
   1120 {
   1121 	int old, new;
   1122 	device_t *osp, *nsp;
   1123 
   1124 	alldevs_nwrite++;
   1125 
   1126 	for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
   1127 		;
   1128 
   1129 	while (n >= cd->cd_ndevs) {
   1130 		/*
   1131 		 * Need to expand the array.
   1132 		 */
   1133 		old = cd->cd_ndevs;
   1134 		osp = cd->cd_devs;
   1135 
   1136 		/* Release alldevs_mtx around allocation, which may
   1137 		 * sleep.
   1138 		 */
   1139 		mutex_exit(&alldevs_mtx);
   1140 		nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
   1141 		if (nsp == NULL)
   1142 			panic("%s: could not expand cd_devs", __func__);
   1143 		mutex_enter(&alldevs_mtx);
   1144 
   1145 		/* If another thread moved the array while we did
   1146 		 * not hold alldevs_mtx, try again.
   1147 		 */
   1148 		if (cd->cd_devs != osp) {
   1149 			mutex_exit(&alldevs_mtx);
   1150 			kmem_free(nsp, sizeof(device_t[new]));
   1151 			mutex_enter(&alldevs_mtx);
   1152 			continue;
   1153 		}
   1154 
   1155 		memset(nsp + old, 0, sizeof(device_t[new - old]));
   1156 		if (old != 0)
   1157 			memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
   1158 
   1159 		cd->cd_ndevs = new;
   1160 		cd->cd_devs = nsp;
   1161 		if (old != 0) {
   1162 			mutex_exit(&alldevs_mtx);
   1163 			kmem_free(osp, sizeof(device_t[old]));
   1164 			mutex_enter(&alldevs_mtx);
   1165 		}
   1166 	}
   1167 	alldevs_nwrite--;
   1168 }
   1169 
   1170 /*
   1171  * Put dev into the devices list.
   1172  */
   1173 static void
   1174 config_devlink(device_t dev)
   1175 {
   1176 	int s;
   1177 
   1178 	s = config_alldevs_lock();
   1179 
   1180 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1181 
   1182 	dev->dv_add_gen = alldevs_gen;
   1183 	/* It is safe to add a device to the tail of the list while
   1184 	 * readers and writers are in the list.
   1185 	 */
   1186 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1187 	config_alldevs_unlock(s);
   1188 }
   1189 
   1190 static void
   1191 config_devfree(device_t dev)
   1192 {
   1193 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
   1194 
   1195 	if (dev->dv_cfattach->ca_devsize > 0)
   1196 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1197 	if (priv)
   1198 		kmem_free(dev, sizeof(*dev));
   1199 }
   1200 
   1201 /*
   1202  * Caller must hold alldevs_mtx.
   1203  */
   1204 static void
   1205 config_devunlink(device_t dev, struct devicelist *garbage)
   1206 {
   1207 	struct device_garbage *dg = &dev->dv_garbage;
   1208 	cfdriver_t cd = device_cfdriver(dev);
   1209 	int i;
   1210 
   1211 	KASSERT(mutex_owned(&alldevs_mtx));
   1212 
   1213  	/* Unlink from device list.  Link to garbage list. */
   1214 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1215 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1216 
   1217 	/* Remove from cfdriver's array. */
   1218 	cd->cd_devs[dev->dv_unit] = NULL;
   1219 
   1220 	/*
   1221 	 * If the device now has no units in use, unlink its softc array.
   1222 	 */
   1223 	for (i = 0; i < cd->cd_ndevs; i++) {
   1224 		if (cd->cd_devs[i] != NULL)
   1225 			break;
   1226 	}
   1227 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1228 	if (i == cd->cd_ndevs) {
   1229 		dg->dg_ndevs = cd->cd_ndevs;
   1230 		dg->dg_devs = cd->cd_devs;
   1231 		cd->cd_devs = NULL;
   1232 		cd->cd_ndevs = 0;
   1233 	}
   1234 }
   1235 
   1236 static void
   1237 config_devdelete(device_t dev)
   1238 {
   1239 	struct device_garbage *dg = &dev->dv_garbage;
   1240 	device_lock_t dvl = device_getlock(dev);
   1241 
   1242 	if (dg->dg_devs != NULL)
   1243 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
   1244 
   1245 	cv_destroy(&dvl->dvl_cv);
   1246 	mutex_destroy(&dvl->dvl_mtx);
   1247 
   1248 	KASSERT(dev->dv_properties != NULL);
   1249 	prop_object_release(dev->dv_properties);
   1250 
   1251 	if (dev->dv_activity_handlers)
   1252 		panic("%s with registered handlers", __func__);
   1253 
   1254 	if (dev->dv_locators) {
   1255 		size_t amount = *--dev->dv_locators;
   1256 		kmem_free(dev->dv_locators, amount);
   1257 	}
   1258 
   1259 	config_devfree(dev);
   1260 }
   1261 
   1262 static int
   1263 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1264 {
   1265 	int unit;
   1266 
   1267 	if (cf->cf_fstate == FSTATE_STAR) {
   1268 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1269 			if (cd->cd_devs[unit] == NULL)
   1270 				break;
   1271 		/*
   1272 		 * unit is now the unit of the first NULL device pointer,
   1273 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1274 		 */
   1275 	} else {
   1276 		unit = cf->cf_unit;
   1277 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1278 			unit = -1;
   1279 	}
   1280 	return unit;
   1281 }
   1282 
   1283 static int
   1284 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1285 {
   1286 	struct alldevs_foray af;
   1287 	int unit;
   1288 
   1289 	config_alldevs_enter(&af);
   1290 	for (;;) {
   1291 		unit = config_unit_nextfree(cd, cf);
   1292 		if (unit == -1)
   1293 			break;
   1294 		if (unit < cd->cd_ndevs) {
   1295 			cd->cd_devs[unit] = dev;
   1296 			dev->dv_unit = unit;
   1297 			break;
   1298 		}
   1299 		config_makeroom(unit, cd);
   1300 	}
   1301 	config_alldevs_exit(&af);
   1302 
   1303 	return unit;
   1304 }
   1305 
   1306 static device_t
   1307 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1308 {
   1309 	cfdriver_t cd;
   1310 	cfattach_t ca;
   1311 	size_t lname, lunit;
   1312 	const char *xunit;
   1313 	int myunit;
   1314 	char num[10];
   1315 	device_t dev;
   1316 	void *dev_private;
   1317 	const struct cfiattrdata *ia;
   1318 	device_lock_t dvl;
   1319 
   1320 	cd = config_cfdriver_lookup(cf->cf_name);
   1321 	if (cd == NULL)
   1322 		return NULL;
   1323 
   1324 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1325 	if (ca == NULL)
   1326 		return NULL;
   1327 
   1328 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
   1329 	    ca->ca_devsize < sizeof(struct device))
   1330 		panic("config_devalloc: %s", cf->cf_atname);
   1331 
   1332 	/* get memory for all device vars */
   1333 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
   1334 	if (ca->ca_devsize > 0) {
   1335 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1336 		if (dev_private == NULL)
   1337 			panic("config_devalloc: memory allocation for device softc failed");
   1338 	} else {
   1339 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1340 		dev_private = NULL;
   1341 	}
   1342 
   1343 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1344 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1345 	} else {
   1346 		dev = dev_private;
   1347 	}
   1348 	if (dev == NULL)
   1349 		panic("config_devalloc: memory allocation for device_t failed");
   1350 
   1351 	dev->dv_class = cd->cd_class;
   1352 	dev->dv_cfdata = cf;
   1353 	dev->dv_cfdriver = cd;
   1354 	dev->dv_cfattach = ca;
   1355 	dev->dv_activity_count = 0;
   1356 	dev->dv_activity_handlers = NULL;
   1357 	dev->dv_private = dev_private;
   1358 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1359 
   1360 	myunit = config_unit_alloc(dev, cd, cf);
   1361 	if (myunit == -1) {
   1362 		config_devfree(dev);
   1363 		return NULL;
   1364 	}
   1365 
   1366 	/* compute length of name and decimal expansion of unit number */
   1367 	lname = strlen(cd->cd_name);
   1368 	xunit = number(&num[sizeof(num)], myunit);
   1369 	lunit = &num[sizeof(num)] - xunit;
   1370 	if (lname + lunit > sizeof(dev->dv_xname))
   1371 		panic("config_devalloc: device name too long");
   1372 
   1373 	dvl = device_getlock(dev);
   1374 
   1375 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1376 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1377 
   1378 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1379 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1380 	dev->dv_parent = parent;
   1381 	if (parent != NULL)
   1382 		dev->dv_depth = parent->dv_depth + 1;
   1383 	else
   1384 		dev->dv_depth = 0;
   1385 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1386 	if (locs) {
   1387 		KASSERT(parent); /* no locators at root */
   1388 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1389 		dev->dv_locators =
   1390 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
   1391 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
   1392 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
   1393 	}
   1394 	dev->dv_properties = prop_dictionary_create();
   1395 	KASSERT(dev->dv_properties != NULL);
   1396 
   1397 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
   1398 	    "device-driver", dev->dv_cfdriver->cd_name);
   1399 	prop_dictionary_set_uint16(dev->dv_properties,
   1400 	    "device-unit", dev->dv_unit);
   1401 
   1402 	return dev;
   1403 }
   1404 
   1405 /*
   1406  * Attach a found device.
   1407  */
   1408 device_t
   1409 config_attach_loc(device_t parent, cfdata_t cf,
   1410 	const int *locs, void *aux, cfprint_t print)
   1411 {
   1412 	device_t dev;
   1413 	struct cftable *ct;
   1414 	const char *drvname;
   1415 
   1416 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1417 	if (splash_progress_state)
   1418 		splash_progress_update(splash_progress_state);
   1419 #endif
   1420 
   1421 	dev = config_devalloc(parent, cf, locs);
   1422 	if (!dev)
   1423 		panic("config_attach: allocation of device softc failed");
   1424 
   1425 	/* XXX redundant - see below? */
   1426 	if (cf->cf_fstate != FSTATE_STAR) {
   1427 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1428 		cf->cf_fstate = FSTATE_FOUND;
   1429 	}
   1430 
   1431 	config_devlink(dev);
   1432 
   1433 	if (config_do_twiddle && cold)
   1434 		twiddle();
   1435 	else
   1436 		aprint_naive("Found ");
   1437 	/*
   1438 	 * We want the next two printfs for normal, verbose, and quiet,
   1439 	 * but not silent (in which case, we're twiddling, instead).
   1440 	 */
   1441 	if (parent == ROOT) {
   1442 		aprint_naive("%s (root)", device_xname(dev));
   1443 		aprint_normal("%s (root)", device_xname(dev));
   1444 	} else {
   1445 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
   1446 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
   1447 		if (print)
   1448 			(void) (*print)(aux, NULL);
   1449 	}
   1450 
   1451 	/*
   1452 	 * Before attaching, clobber any unfound devices that are
   1453 	 * otherwise identical.
   1454 	 * XXX code above is redundant?
   1455 	 */
   1456 	drvname = dev->dv_cfdriver->cd_name;
   1457 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1458 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1459 			if (STREQ(cf->cf_name, drvname) &&
   1460 			    cf->cf_unit == dev->dv_unit) {
   1461 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1462 					cf->cf_fstate = FSTATE_FOUND;
   1463 			}
   1464 		}
   1465 	}
   1466 #ifdef __HAVE_DEVICE_REGISTER
   1467 	device_register(dev, aux);
   1468 #endif
   1469 
   1470 	/* Let userland know */
   1471 	devmon_report_device(dev, true);
   1472 
   1473 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1474 	if (splash_progress_state)
   1475 		splash_progress_update(splash_progress_state);
   1476 #endif
   1477 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1478 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
   1479 	if (splash_progress_state)
   1480 		splash_progress_update(splash_progress_state);
   1481 #endif
   1482 
   1483 	if (!device_pmf_is_registered(dev))
   1484 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
   1485 
   1486 	config_process_deferred(&deferred_config_queue, dev);
   1487 
   1488 #ifdef __HAVE_DEVICE_REGISTER_POSTCONFIG
   1489 	device_register_post_config(dev, aux);
   1490 #endif
   1491 	return dev;
   1492 }
   1493 
   1494 device_t
   1495 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1496 {
   1497 
   1498 	return config_attach_loc(parent, cf, NULL, aux, print);
   1499 }
   1500 
   1501 /*
   1502  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1503  * way are silently inserted into the device tree, and their children
   1504  * attached.
   1505  *
   1506  * Note that because pseudo-devices are attached silently, any information
   1507  * the attach routine wishes to print should be prefixed with the device
   1508  * name by the attach routine.
   1509  */
   1510 device_t
   1511 config_attach_pseudo(cfdata_t cf)
   1512 {
   1513 	device_t dev;
   1514 
   1515 	dev = config_devalloc(ROOT, cf, NULL);
   1516 	if (!dev)
   1517 		return NULL;
   1518 
   1519 	/* XXX mark busy in cfdata */
   1520 
   1521 	if (cf->cf_fstate != FSTATE_STAR) {
   1522 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1523 		cf->cf_fstate = FSTATE_FOUND;
   1524 	}
   1525 
   1526 	config_devlink(dev);
   1527 
   1528 #if 0	/* XXXJRT not yet */
   1529 #ifdef __HAVE_DEVICE_REGISTER
   1530 	device_register(dev, NULL);	/* like a root node */
   1531 #endif
   1532 #endif
   1533 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1534 	config_process_deferred(&deferred_config_queue, dev);
   1535 	return dev;
   1536 }
   1537 
   1538 /*
   1539  * Caller must hold alldevs_mtx.
   1540  */
   1541 static void
   1542 config_collect_garbage(struct devicelist *garbage)
   1543 {
   1544 	device_t dv;
   1545 
   1546 	KASSERT(!cpu_intr_p());
   1547 	KASSERT(!cpu_softintr_p());
   1548 	KASSERT(mutex_owned(&alldevs_mtx));
   1549 
   1550 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1551 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1552 			if (dv->dv_del_gen != 0)
   1553 				break;
   1554 		}
   1555 		if (dv == NULL) {
   1556 			alldevs_garbage = false;
   1557 			break;
   1558 		}
   1559 		config_devunlink(dv, garbage);
   1560 	}
   1561 	KASSERT(mutex_owned(&alldevs_mtx));
   1562 }
   1563 
   1564 static void
   1565 config_dump_garbage(struct devicelist *garbage)
   1566 {
   1567 	device_t dv;
   1568 
   1569 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1570 		TAILQ_REMOVE(garbage, dv, dv_list);
   1571 		config_devdelete(dv);
   1572 	}
   1573 }
   1574 
   1575 /*
   1576  * Detach a device.  Optionally forced (e.g. because of hardware
   1577  * removal) and quiet.  Returns zero if successful, non-zero
   1578  * (an error code) otherwise.
   1579  *
   1580  * Note that this code wants to be run from a process context, so
   1581  * that the detach can sleep to allow processes which have a device
   1582  * open to run and unwind their stacks.
   1583  */
   1584 int
   1585 config_detach(device_t dev, int flags)
   1586 {
   1587 	struct alldevs_foray af;
   1588 	struct cftable *ct;
   1589 	cfdata_t cf;
   1590 	const struct cfattach *ca;
   1591 	struct cfdriver *cd;
   1592 #ifdef DIAGNOSTIC
   1593 	device_t d;
   1594 #endif
   1595 	int rv = 0, s;
   1596 
   1597 #ifdef DIAGNOSTIC
   1598 	cf = dev->dv_cfdata;
   1599 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
   1600 	    cf->cf_fstate != FSTATE_STAR)
   1601 		panic("config_detach: %s: bad device fstate %d",
   1602 		    device_xname(dev), cf ? cf->cf_fstate : -1);
   1603 #endif
   1604 	cd = dev->dv_cfdriver;
   1605 	KASSERT(cd != NULL);
   1606 
   1607 	ca = dev->dv_cfattach;
   1608 	KASSERT(ca != NULL);
   1609 
   1610 	s = config_alldevs_lock();
   1611 	if (dev->dv_del_gen != 0) {
   1612 		config_alldevs_unlock(s);
   1613 #ifdef DIAGNOSTIC
   1614 		printf("%s: %s is already detached\n", __func__,
   1615 		    device_xname(dev));
   1616 #endif /* DIAGNOSTIC */
   1617 		return ENOENT;
   1618 	}
   1619 	alldevs_nwrite++;
   1620 	config_alldevs_unlock(s);
   1621 
   1622 	if (!detachall &&
   1623 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1624 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1625 		rv = EOPNOTSUPP;
   1626 	} else if (ca->ca_detach != NULL) {
   1627 		rv = (*ca->ca_detach)(dev, flags);
   1628 	} else
   1629 		rv = EOPNOTSUPP;
   1630 
   1631 	/*
   1632 	 * If it was not possible to detach the device, then we either
   1633 	 * panic() (for the forced but failed case), or return an error.
   1634 	 *
   1635 	 * If it was possible to detach the device, ensure that the
   1636 	 * device is deactivated.
   1637 	 */
   1638 	if (rv == 0)
   1639 		dev->dv_flags &= ~DVF_ACTIVE;
   1640 	else if ((flags & DETACH_FORCE) == 0)
   1641 		goto out;
   1642 	else {
   1643 		panic("config_detach: forced detach of %s failed (%d)",
   1644 		    device_xname(dev), rv);
   1645 	}
   1646 
   1647 	/*
   1648 	 * The device has now been successfully detached.
   1649 	 */
   1650 
   1651 	/* Let userland know */
   1652 	devmon_report_device(dev, false);
   1653 
   1654 #ifdef DIAGNOSTIC
   1655 	/*
   1656 	 * Sanity: If you're successfully detached, you should have no
   1657 	 * children.  (Note that because children must be attached
   1658 	 * after parents, we only need to search the latter part of
   1659 	 * the list.)
   1660 	 */
   1661 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1662 	    d = TAILQ_NEXT(d, dv_list)) {
   1663 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1664 			printf("config_detach: detached device %s"
   1665 			    " has children %s\n", device_xname(dev), device_xname(d));
   1666 			panic("config_detach");
   1667 		}
   1668 	}
   1669 #endif
   1670 
   1671 	/* notify the parent that the child is gone */
   1672 	if (dev->dv_parent) {
   1673 		device_t p = dev->dv_parent;
   1674 		if (p->dv_cfattach->ca_childdetached)
   1675 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1676 	}
   1677 
   1678 	/*
   1679 	 * Mark cfdata to show that the unit can be reused, if possible.
   1680 	 */
   1681 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1682 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1683 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1684 				if (cf->cf_fstate == FSTATE_FOUND &&
   1685 				    cf->cf_unit == dev->dv_unit)
   1686 					cf->cf_fstate = FSTATE_NOTFOUND;
   1687 			}
   1688 		}
   1689 	}
   1690 
   1691 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1692 		aprint_normal_dev(dev, "detached\n");
   1693 
   1694 out:
   1695 	config_alldevs_enter(&af);
   1696 	KASSERT(alldevs_nwrite != 0);
   1697 	--alldevs_nwrite;
   1698 	if (rv == 0 && dev->dv_del_gen == 0)
   1699 		config_devunlink(dev, &af.af_garbage);
   1700 	config_alldevs_exit(&af);
   1701 
   1702 	return rv;
   1703 }
   1704 
   1705 int
   1706 config_detach_children(device_t parent, int flags)
   1707 {
   1708 	device_t dv;
   1709 	deviter_t di;
   1710 	int error = 0;
   1711 
   1712 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1713 	     dv = deviter_next(&di)) {
   1714 		if (device_parent(dv) != parent)
   1715 			continue;
   1716 		if ((error = config_detach(dv, flags)) != 0)
   1717 			break;
   1718 	}
   1719 	deviter_release(&di);
   1720 	return error;
   1721 }
   1722 
   1723 device_t
   1724 shutdown_first(struct shutdown_state *s)
   1725 {
   1726 	if (!s->initialized) {
   1727 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1728 		s->initialized = true;
   1729 	}
   1730 	return shutdown_next(s);
   1731 }
   1732 
   1733 device_t
   1734 shutdown_next(struct shutdown_state *s)
   1735 {
   1736 	device_t dv;
   1737 
   1738 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1739 		;
   1740 
   1741 	if (dv == NULL)
   1742 		s->initialized = false;
   1743 
   1744 	return dv;
   1745 }
   1746 
   1747 bool
   1748 config_detach_all(int how)
   1749 {
   1750 	static struct shutdown_state s;
   1751 	device_t curdev;
   1752 	bool progress = false;
   1753 
   1754 	if ((how & RB_NOSYNC) != 0)
   1755 		return false;
   1756 
   1757 	for (curdev = shutdown_first(&s); curdev != NULL;
   1758 	     curdev = shutdown_next(&s)) {
   1759 		aprint_debug(" detaching %s, ", device_xname(curdev));
   1760 		if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
   1761 			progress = true;
   1762 			aprint_debug("success.");
   1763 		} else
   1764 			aprint_debug("failed.");
   1765 	}
   1766 	return progress;
   1767 }
   1768 
   1769 static bool
   1770 device_is_ancestor_of(device_t ancestor, device_t descendant)
   1771 {
   1772 	device_t dv;
   1773 
   1774 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   1775 		if (device_parent(dv) == ancestor)
   1776 			return true;
   1777 	}
   1778 	return false;
   1779 }
   1780 
   1781 int
   1782 config_deactivate(device_t dev)
   1783 {
   1784 	deviter_t di;
   1785 	const struct cfattach *ca;
   1786 	device_t descendant;
   1787 	int s, rv = 0, oflags;
   1788 
   1789 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   1790 	     descendant != NULL;
   1791 	     descendant = deviter_next(&di)) {
   1792 		if (dev != descendant &&
   1793 		    !device_is_ancestor_of(dev, descendant))
   1794 			continue;
   1795 
   1796 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   1797 			continue;
   1798 
   1799 		ca = descendant->dv_cfattach;
   1800 		oflags = descendant->dv_flags;
   1801 
   1802 		descendant->dv_flags &= ~DVF_ACTIVE;
   1803 		if (ca->ca_activate == NULL)
   1804 			continue;
   1805 		s = splhigh();
   1806 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   1807 		splx(s);
   1808 		if (rv != 0)
   1809 			descendant->dv_flags = oflags;
   1810 	}
   1811 	deviter_release(&di);
   1812 	return rv;
   1813 }
   1814 
   1815 /*
   1816  * Defer the configuration of the specified device until all
   1817  * of its parent's devices have been attached.
   1818  */
   1819 void
   1820 config_defer(device_t dev, void (*func)(device_t))
   1821 {
   1822 	struct deferred_config *dc;
   1823 
   1824 	if (dev->dv_parent == NULL)
   1825 		panic("config_defer: can't defer config of a root device");
   1826 
   1827 #ifdef DIAGNOSTIC
   1828 	TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
   1829 		if (dc->dc_dev == dev)
   1830 			panic("config_defer: deferred twice");
   1831 	}
   1832 #endif
   1833 
   1834 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1835 	if (dc == NULL)
   1836 		panic("config_defer: unable to allocate callback");
   1837 
   1838 	dc->dc_dev = dev;
   1839 	dc->dc_func = func;
   1840 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1841 	config_pending_incr();
   1842 }
   1843 
   1844 /*
   1845  * Defer some autoconfiguration for a device until after interrupts
   1846  * are enabled.
   1847  */
   1848 void
   1849 config_interrupts(device_t dev, void (*func)(device_t))
   1850 {
   1851 	struct deferred_config *dc;
   1852 
   1853 	/*
   1854 	 * If interrupts are enabled, callback now.
   1855 	 */
   1856 	if (cold == 0) {
   1857 		(*func)(dev);
   1858 		return;
   1859 	}
   1860 
   1861 #ifdef DIAGNOSTIC
   1862 	TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
   1863 		if (dc->dc_dev == dev)
   1864 			panic("config_interrupts: deferred twice");
   1865 	}
   1866 #endif
   1867 
   1868 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1869 	if (dc == NULL)
   1870 		panic("config_interrupts: unable to allocate callback");
   1871 
   1872 	dc->dc_dev = dev;
   1873 	dc->dc_func = func;
   1874 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   1875 	config_pending_incr();
   1876 }
   1877 
   1878 /*
   1879  * Defer some autoconfiguration for a device until after root file system
   1880  * is mounted (to load firmware etc).
   1881  */
   1882 void
   1883 config_mountroot(device_t dev, void (*func)(device_t))
   1884 {
   1885 	struct deferred_config *dc;
   1886 
   1887 	/*
   1888 	 * If root file system is mounted, callback now.
   1889 	 */
   1890 	if (rootvnode != NULL) {
   1891 		(*func)(dev);
   1892 		return;
   1893 	}
   1894 
   1895 #ifdef DIAGNOSTIC
   1896 	TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
   1897 		if (dc->dc_dev == dev)
   1898 			panic("%s: deferred twice", __func__);
   1899 	}
   1900 #endif
   1901 
   1902 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1903 	if (dc == NULL)
   1904 		panic("%s: unable to allocate callback", __func__);
   1905 
   1906 	dc->dc_dev = dev;
   1907 	dc->dc_func = func;
   1908 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   1909 }
   1910 
   1911 /*
   1912  * Process a deferred configuration queue.
   1913  */
   1914 static void
   1915 config_process_deferred(struct deferred_config_head *queue,
   1916     device_t parent)
   1917 {
   1918 	struct deferred_config *dc, *ndc;
   1919 
   1920 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   1921 		ndc = TAILQ_NEXT(dc, dc_queue);
   1922 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   1923 			TAILQ_REMOVE(queue, dc, dc_queue);
   1924 			(*dc->dc_func)(dc->dc_dev);
   1925 			kmem_free(dc, sizeof(*dc));
   1926 			config_pending_decr();
   1927 		}
   1928 	}
   1929 }
   1930 
   1931 /*
   1932  * Manipulate the config_pending semaphore.
   1933  */
   1934 void
   1935 config_pending_incr(void)
   1936 {
   1937 
   1938 	mutex_enter(&config_misc_lock);
   1939 	config_pending++;
   1940 	mutex_exit(&config_misc_lock);
   1941 }
   1942 
   1943 void
   1944 config_pending_decr(void)
   1945 {
   1946 
   1947 #ifdef DIAGNOSTIC
   1948 	if (config_pending == 0)
   1949 		panic("config_pending_decr: config_pending == 0");
   1950 #endif
   1951 	mutex_enter(&config_misc_lock);
   1952 	config_pending--;
   1953 	if (config_pending == 0)
   1954 		cv_broadcast(&config_misc_cv);
   1955 	mutex_exit(&config_misc_lock);
   1956 }
   1957 
   1958 /*
   1959  * Register a "finalization" routine.  Finalization routines are
   1960  * called iteratively once all real devices have been found during
   1961  * autoconfiguration, for as long as any one finalizer has done
   1962  * any work.
   1963  */
   1964 int
   1965 config_finalize_register(device_t dev, int (*fn)(device_t))
   1966 {
   1967 	struct finalize_hook *f;
   1968 
   1969 	/*
   1970 	 * If finalization has already been done, invoke the
   1971 	 * callback function now.
   1972 	 */
   1973 	if (config_finalize_done) {
   1974 		while ((*fn)(dev) != 0)
   1975 			/* loop */ ;
   1976 	}
   1977 
   1978 	/* Ensure this isn't already on the list. */
   1979 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   1980 		if (f->f_func == fn && f->f_dev == dev)
   1981 			return EEXIST;
   1982 	}
   1983 
   1984 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   1985 	f->f_func = fn;
   1986 	f->f_dev = dev;
   1987 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   1988 
   1989 	return 0;
   1990 }
   1991 
   1992 void
   1993 config_finalize(void)
   1994 {
   1995 	struct finalize_hook *f;
   1996 	struct pdevinit *pdev;
   1997 	extern struct pdevinit pdevinit[];
   1998 	int errcnt, rv;
   1999 
   2000 	/*
   2001 	 * Now that device driver threads have been created, wait for
   2002 	 * them to finish any deferred autoconfiguration.
   2003 	 */
   2004 	mutex_enter(&config_misc_lock);
   2005 	while (config_pending != 0)
   2006 		cv_wait(&config_misc_cv, &config_misc_lock);
   2007 	mutex_exit(&config_misc_lock);
   2008 
   2009 	KERNEL_LOCK(1, NULL);
   2010 
   2011 	/* Attach pseudo-devices. */
   2012 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2013 		(*pdev->pdev_attach)(pdev->pdev_count);
   2014 
   2015 	/* Run the hooks until none of them does any work. */
   2016 	do {
   2017 		rv = 0;
   2018 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2019 			rv |= (*f->f_func)(f->f_dev);
   2020 	} while (rv != 0);
   2021 
   2022 	config_finalize_done = 1;
   2023 
   2024 	/* Now free all the hooks. */
   2025 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2026 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2027 		kmem_free(f, sizeof(*f));
   2028 	}
   2029 
   2030 	KERNEL_UNLOCK_ONE(NULL);
   2031 
   2032 	errcnt = aprint_get_error_count();
   2033 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2034 	    (boothowto & AB_VERBOSE) == 0) {
   2035 		mutex_enter(&config_misc_lock);
   2036 		if (config_do_twiddle) {
   2037 			config_do_twiddle = 0;
   2038 			printf_nolog(" done.\n");
   2039 		}
   2040 		mutex_exit(&config_misc_lock);
   2041 		if (errcnt != 0) {
   2042 			printf("WARNING: %d error%s while detecting hardware; "
   2043 			    "check system log.\n", errcnt,
   2044 			    errcnt == 1 ? "" : "s");
   2045 		}
   2046 	}
   2047 }
   2048 
   2049 void
   2050 config_twiddle_init()
   2051 {
   2052 
   2053 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2054 		config_do_twiddle = 1;
   2055 	}
   2056 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2057 }
   2058 
   2059 void
   2060 config_twiddle_fn(void *cookie)
   2061 {
   2062 
   2063 	mutex_enter(&config_misc_lock);
   2064 	if (config_do_twiddle) {
   2065 		twiddle();
   2066 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2067 	}
   2068 	mutex_exit(&config_misc_lock);
   2069 }
   2070 
   2071 static int
   2072 config_alldevs_lock(void)
   2073 {
   2074 	mutex_enter(&alldevs_mtx);
   2075 	return 0;
   2076 }
   2077 
   2078 static void
   2079 config_alldevs_enter(struct alldevs_foray *af)
   2080 {
   2081 	TAILQ_INIT(&af->af_garbage);
   2082 	af->af_s = config_alldevs_lock();
   2083 	config_collect_garbage(&af->af_garbage);
   2084 }
   2085 
   2086 static void
   2087 config_alldevs_exit(struct alldevs_foray *af)
   2088 {
   2089 	config_alldevs_unlock(af->af_s);
   2090 	config_dump_garbage(&af->af_garbage);
   2091 }
   2092 
   2093 /*ARGSUSED*/
   2094 static void
   2095 config_alldevs_unlock(int s)
   2096 {
   2097 	mutex_exit(&alldevs_mtx);
   2098 }
   2099 
   2100 /*
   2101  * device_lookup:
   2102  *
   2103  *	Look up a device instance for a given driver.
   2104  */
   2105 device_t
   2106 device_lookup(cfdriver_t cd, int unit)
   2107 {
   2108 	device_t dv;
   2109 	int s;
   2110 
   2111 	s = config_alldevs_lock();
   2112 	KASSERT(mutex_owned(&alldevs_mtx));
   2113 	if (unit < 0 || unit >= cd->cd_ndevs)
   2114 		dv = NULL;
   2115 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2116 		dv = NULL;
   2117 	config_alldevs_unlock(s);
   2118 
   2119 	return dv;
   2120 }
   2121 
   2122 /*
   2123  * device_lookup_private:
   2124  *
   2125  *	Look up a softc instance for a given driver.
   2126  */
   2127 void *
   2128 device_lookup_private(cfdriver_t cd, int unit)
   2129 {
   2130 
   2131 	return device_private(device_lookup(cd, unit));
   2132 }
   2133 
   2134 /*
   2135  * device_find_by_xname:
   2136  *
   2137  *	Returns the device of the given name or NULL if it doesn't exist.
   2138  */
   2139 device_t
   2140 device_find_by_xname(const char *name)
   2141 {
   2142 	device_t dv;
   2143 	deviter_t di;
   2144 
   2145 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2146 		if (strcmp(device_xname(dv), name) == 0)
   2147 			break;
   2148 	}
   2149 	deviter_release(&di);
   2150 
   2151 	return dv;
   2152 }
   2153 
   2154 /*
   2155  * device_find_by_driver_unit:
   2156  *
   2157  *	Returns the device of the given driver name and unit or
   2158  *	NULL if it doesn't exist.
   2159  */
   2160 device_t
   2161 device_find_by_driver_unit(const char *name, int unit)
   2162 {
   2163 	struct cfdriver *cd;
   2164 
   2165 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2166 		return NULL;
   2167 	return device_lookup(cd, unit);
   2168 }
   2169 
   2170 /*
   2171  * Power management related functions.
   2172  */
   2173 
   2174 bool
   2175 device_pmf_is_registered(device_t dev)
   2176 {
   2177 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2178 }
   2179 
   2180 bool
   2181 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2182 {
   2183 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2184 		return true;
   2185 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2186 		return false;
   2187 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2188 	    dev->dv_driver_suspend != NULL &&
   2189 	    !(*dev->dv_driver_suspend)(dev, qual))
   2190 		return false;
   2191 
   2192 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2193 	return true;
   2194 }
   2195 
   2196 bool
   2197 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2198 {
   2199 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2200 		return true;
   2201 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2202 		return false;
   2203 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2204 	    dev->dv_driver_resume != NULL &&
   2205 	    !(*dev->dv_driver_resume)(dev, qual))
   2206 		return false;
   2207 
   2208 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2209 	return true;
   2210 }
   2211 
   2212 bool
   2213 device_pmf_driver_shutdown(device_t dev, int how)
   2214 {
   2215 
   2216 	if (*dev->dv_driver_shutdown != NULL &&
   2217 	    !(*dev->dv_driver_shutdown)(dev, how))
   2218 		return false;
   2219 	return true;
   2220 }
   2221 
   2222 bool
   2223 device_pmf_driver_register(device_t dev,
   2224     bool (*suspend)(device_t, const pmf_qual_t *),
   2225     bool (*resume)(device_t, const pmf_qual_t *),
   2226     bool (*shutdown)(device_t, int))
   2227 {
   2228 	dev->dv_driver_suspend = suspend;
   2229 	dev->dv_driver_resume = resume;
   2230 	dev->dv_driver_shutdown = shutdown;
   2231 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2232 	return true;
   2233 }
   2234 
   2235 static const char *
   2236 curlwp_name(void)
   2237 {
   2238 	if (curlwp->l_name != NULL)
   2239 		return curlwp->l_name;
   2240 	else
   2241 		return curlwp->l_proc->p_comm;
   2242 }
   2243 
   2244 void
   2245 device_pmf_driver_deregister(device_t dev)
   2246 {
   2247 	device_lock_t dvl = device_getlock(dev);
   2248 
   2249 	dev->dv_driver_suspend = NULL;
   2250 	dev->dv_driver_resume = NULL;
   2251 
   2252 	mutex_enter(&dvl->dvl_mtx);
   2253 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2254 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2255 		/* Wake a thread that waits for the lock.  That
   2256 		 * thread will fail to acquire the lock, and then
   2257 		 * it will wake the next thread that waits for the
   2258 		 * lock, or else it will wake us.
   2259 		 */
   2260 		cv_signal(&dvl->dvl_cv);
   2261 		pmflock_debug(dev, __func__, __LINE__);
   2262 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2263 		pmflock_debug(dev, __func__, __LINE__);
   2264 	}
   2265 	mutex_exit(&dvl->dvl_mtx);
   2266 }
   2267 
   2268 bool
   2269 device_pmf_driver_child_register(device_t dev)
   2270 {
   2271 	device_t parent = device_parent(dev);
   2272 
   2273 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2274 		return true;
   2275 	return (*parent->dv_driver_child_register)(dev);
   2276 }
   2277 
   2278 void
   2279 device_pmf_driver_set_child_register(device_t dev,
   2280     bool (*child_register)(device_t))
   2281 {
   2282 	dev->dv_driver_child_register = child_register;
   2283 }
   2284 
   2285 static void
   2286 pmflock_debug(device_t dev, const char *func, int line)
   2287 {
   2288 	device_lock_t dvl = device_getlock(dev);
   2289 
   2290 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
   2291 	    func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
   2292 	    dev->dv_flags);
   2293 }
   2294 
   2295 static bool
   2296 device_pmf_lock1(device_t dev)
   2297 {
   2298 	device_lock_t dvl = device_getlock(dev);
   2299 
   2300 	while (device_pmf_is_registered(dev) &&
   2301 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2302 		dvl->dvl_nwait++;
   2303 		pmflock_debug(dev, __func__, __LINE__);
   2304 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2305 		pmflock_debug(dev, __func__, __LINE__);
   2306 		dvl->dvl_nwait--;
   2307 	}
   2308 	if (!device_pmf_is_registered(dev)) {
   2309 		pmflock_debug(dev, __func__, __LINE__);
   2310 		/* We could not acquire the lock, but some other thread may
   2311 		 * wait for it, also.  Wake that thread.
   2312 		 */
   2313 		cv_signal(&dvl->dvl_cv);
   2314 		return false;
   2315 	}
   2316 	dvl->dvl_nlock++;
   2317 	dvl->dvl_holder = curlwp;
   2318 	pmflock_debug(dev, __func__, __LINE__);
   2319 	return true;
   2320 }
   2321 
   2322 bool
   2323 device_pmf_lock(device_t dev)
   2324 {
   2325 	bool rc;
   2326 	device_lock_t dvl = device_getlock(dev);
   2327 
   2328 	mutex_enter(&dvl->dvl_mtx);
   2329 	rc = device_pmf_lock1(dev);
   2330 	mutex_exit(&dvl->dvl_mtx);
   2331 
   2332 	return rc;
   2333 }
   2334 
   2335 void
   2336 device_pmf_unlock(device_t dev)
   2337 {
   2338 	device_lock_t dvl = device_getlock(dev);
   2339 
   2340 	KASSERT(dvl->dvl_nlock > 0);
   2341 	mutex_enter(&dvl->dvl_mtx);
   2342 	if (--dvl->dvl_nlock == 0)
   2343 		dvl->dvl_holder = NULL;
   2344 	cv_signal(&dvl->dvl_cv);
   2345 	pmflock_debug(dev, __func__, __LINE__);
   2346 	mutex_exit(&dvl->dvl_mtx);
   2347 }
   2348 
   2349 device_lock_t
   2350 device_getlock(device_t dev)
   2351 {
   2352 	return &dev->dv_lock;
   2353 }
   2354 
   2355 void *
   2356 device_pmf_bus_private(device_t dev)
   2357 {
   2358 	return dev->dv_bus_private;
   2359 }
   2360 
   2361 bool
   2362 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   2363 {
   2364 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2365 		return true;
   2366 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2367 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2368 		return false;
   2369 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2370 	    dev->dv_bus_suspend != NULL &&
   2371 	    !(*dev->dv_bus_suspend)(dev, qual))
   2372 		return false;
   2373 
   2374 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2375 	return true;
   2376 }
   2377 
   2378 bool
   2379 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   2380 {
   2381 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2382 		return true;
   2383 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2384 	    dev->dv_bus_resume != NULL &&
   2385 	    !(*dev->dv_bus_resume)(dev, qual))
   2386 		return false;
   2387 
   2388 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2389 	return true;
   2390 }
   2391 
   2392 bool
   2393 device_pmf_bus_shutdown(device_t dev, int how)
   2394 {
   2395 
   2396 	if (*dev->dv_bus_shutdown != NULL &&
   2397 	    !(*dev->dv_bus_shutdown)(dev, how))
   2398 		return false;
   2399 	return true;
   2400 }
   2401 
   2402 void
   2403 device_pmf_bus_register(device_t dev, void *priv,
   2404     bool (*suspend)(device_t, const pmf_qual_t *),
   2405     bool (*resume)(device_t, const pmf_qual_t *),
   2406     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2407 {
   2408 	dev->dv_bus_private = priv;
   2409 	dev->dv_bus_resume = resume;
   2410 	dev->dv_bus_suspend = suspend;
   2411 	dev->dv_bus_shutdown = shutdown;
   2412 	dev->dv_bus_deregister = deregister;
   2413 }
   2414 
   2415 void
   2416 device_pmf_bus_deregister(device_t dev)
   2417 {
   2418 	if (dev->dv_bus_deregister == NULL)
   2419 		return;
   2420 	(*dev->dv_bus_deregister)(dev);
   2421 	dev->dv_bus_private = NULL;
   2422 	dev->dv_bus_suspend = NULL;
   2423 	dev->dv_bus_resume = NULL;
   2424 	dev->dv_bus_deregister = NULL;
   2425 }
   2426 
   2427 void *
   2428 device_pmf_class_private(device_t dev)
   2429 {
   2430 	return dev->dv_class_private;
   2431 }
   2432 
   2433 bool
   2434 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   2435 {
   2436 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2437 		return true;
   2438 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2439 	    dev->dv_class_suspend != NULL &&
   2440 	    !(*dev->dv_class_suspend)(dev, qual))
   2441 		return false;
   2442 
   2443 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2444 	return true;
   2445 }
   2446 
   2447 bool
   2448 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   2449 {
   2450 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2451 		return true;
   2452 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2453 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2454 		return false;
   2455 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2456 	    dev->dv_class_resume != NULL &&
   2457 	    !(*dev->dv_class_resume)(dev, qual))
   2458 		return false;
   2459 
   2460 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2461 	return true;
   2462 }
   2463 
   2464 void
   2465 device_pmf_class_register(device_t dev, void *priv,
   2466     bool (*suspend)(device_t, const pmf_qual_t *),
   2467     bool (*resume)(device_t, const pmf_qual_t *),
   2468     void (*deregister)(device_t))
   2469 {
   2470 	dev->dv_class_private = priv;
   2471 	dev->dv_class_suspend = suspend;
   2472 	dev->dv_class_resume = resume;
   2473 	dev->dv_class_deregister = deregister;
   2474 }
   2475 
   2476 void
   2477 device_pmf_class_deregister(device_t dev)
   2478 {
   2479 	if (dev->dv_class_deregister == NULL)
   2480 		return;
   2481 	(*dev->dv_class_deregister)(dev);
   2482 	dev->dv_class_private = NULL;
   2483 	dev->dv_class_suspend = NULL;
   2484 	dev->dv_class_resume = NULL;
   2485 	dev->dv_class_deregister = NULL;
   2486 }
   2487 
   2488 bool
   2489 device_active(device_t dev, devactive_t type)
   2490 {
   2491 	size_t i;
   2492 
   2493 	if (dev->dv_activity_count == 0)
   2494 		return false;
   2495 
   2496 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2497 		if (dev->dv_activity_handlers[i] == NULL)
   2498 			break;
   2499 		(*dev->dv_activity_handlers[i])(dev, type);
   2500 	}
   2501 
   2502 	return true;
   2503 }
   2504 
   2505 bool
   2506 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2507 {
   2508 	void (**new_handlers)(device_t, devactive_t);
   2509 	void (**old_handlers)(device_t, devactive_t);
   2510 	size_t i, old_size, new_size;
   2511 	int s;
   2512 
   2513 	old_handlers = dev->dv_activity_handlers;
   2514 	old_size = dev->dv_activity_count;
   2515 
   2516 	for (i = 0; i < old_size; ++i) {
   2517 		KASSERT(old_handlers[i] != handler);
   2518 		if (old_handlers[i] == NULL) {
   2519 			old_handlers[i] = handler;
   2520 			return true;
   2521 		}
   2522 	}
   2523 
   2524 	new_size = old_size + 4;
   2525 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
   2526 
   2527 	memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
   2528 	new_handlers[old_size] = handler;
   2529 	memset(new_handlers + old_size + 1, 0,
   2530 	    sizeof(int [new_size - (old_size+1)]));
   2531 
   2532 	s = splhigh();
   2533 	dev->dv_activity_count = new_size;
   2534 	dev->dv_activity_handlers = new_handlers;
   2535 	splx(s);
   2536 
   2537 	if (old_handlers != NULL)
   2538 		kmem_free(old_handlers, sizeof(void * [old_size]));
   2539 
   2540 	return true;
   2541 }
   2542 
   2543 void
   2544 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2545 {
   2546 	void (**old_handlers)(device_t, devactive_t);
   2547 	size_t i, old_size;
   2548 	int s;
   2549 
   2550 	old_handlers = dev->dv_activity_handlers;
   2551 	old_size = dev->dv_activity_count;
   2552 
   2553 	for (i = 0; i < old_size; ++i) {
   2554 		if (old_handlers[i] == handler)
   2555 			break;
   2556 		if (old_handlers[i] == NULL)
   2557 			return; /* XXX panic? */
   2558 	}
   2559 
   2560 	if (i == old_size)
   2561 		return; /* XXX panic? */
   2562 
   2563 	for (; i < old_size - 1; ++i) {
   2564 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   2565 			continue;
   2566 
   2567 		if (i == 0) {
   2568 			s = splhigh();
   2569 			dev->dv_activity_count = 0;
   2570 			dev->dv_activity_handlers = NULL;
   2571 			splx(s);
   2572 			kmem_free(old_handlers, sizeof(void *[old_size]));
   2573 		}
   2574 		return;
   2575 	}
   2576 	old_handlers[i] = NULL;
   2577 }
   2578 
   2579 /* Return true iff the device_t `dev' exists at generation `gen'. */
   2580 static bool
   2581 device_exists_at(device_t dv, devgen_t gen)
   2582 {
   2583 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   2584 	    dv->dv_add_gen <= gen;
   2585 }
   2586 
   2587 static bool
   2588 deviter_visits(const deviter_t *di, device_t dv)
   2589 {
   2590 	return device_exists_at(dv, di->di_gen);
   2591 }
   2592 
   2593 /*
   2594  * Device Iteration
   2595  *
   2596  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2597  *     each device_t's in the device tree.
   2598  *
   2599  * deviter_init(di, flags): initialize the device iterator `di'
   2600  *     to "walk" the device tree.  deviter_next(di) will return
   2601  *     the first device_t in the device tree, or NULL if there are
   2602  *     no devices.
   2603  *
   2604  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2605  *     caller intends to modify the device tree by calling
   2606  *     config_detach(9) on devices in the order that the iterator
   2607  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2608  *     nearest the "root" of the device tree to be returned, first;
   2609  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2610  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2611  *     indicating both that deviter_init() should not respect any
   2612  *     locks on the device tree, and that deviter_next(di) may run
   2613  *     in more than one LWP before the walk has finished.
   2614  *
   2615  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2616  *     once.
   2617  *
   2618  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2619  *
   2620  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2621  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2622  *
   2623  * deviter_first(di, flags): initialize the device iterator `di'
   2624  *     and return the first device_t in the device tree, or NULL
   2625  *     if there are no devices.  The statement
   2626  *
   2627  *         dv = deviter_first(di);
   2628  *
   2629  *     is shorthand for
   2630  *
   2631  *         deviter_init(di);
   2632  *         dv = deviter_next(di);
   2633  *
   2634  * deviter_next(di): return the next device_t in the device tree,
   2635  *     or NULL if there are no more devices.  deviter_next(di)
   2636  *     is undefined if `di' was not initialized with deviter_init() or
   2637  *     deviter_first().
   2638  *
   2639  * deviter_release(di): stops iteration (subsequent calls to
   2640  *     deviter_next() will return NULL), releases any locks and
   2641  *     resources held by the device iterator.
   2642  *
   2643  * Device iteration does not return device_t's in any particular
   2644  * order.  An iterator will never return the same device_t twice.
   2645  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2646  * is called repeatedly on the same `di', it will eventually return
   2647  * NULL.  It is ok to attach/detach devices during device iteration.
   2648  */
   2649 void
   2650 deviter_init(deviter_t *di, deviter_flags_t flags)
   2651 {
   2652 	device_t dv;
   2653 	int s;
   2654 
   2655 	memset(di, 0, sizeof(*di));
   2656 
   2657 	s = config_alldevs_lock();
   2658 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   2659 		flags |= DEVITER_F_RW;
   2660 
   2661 	if ((flags & DEVITER_F_RW) != 0)
   2662 		alldevs_nwrite++;
   2663 	else
   2664 		alldevs_nread++;
   2665 	di->di_gen = alldevs_gen++;
   2666 	config_alldevs_unlock(s);
   2667 
   2668 	di->di_flags = flags;
   2669 
   2670 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2671 	case DEVITER_F_LEAVES_FIRST:
   2672 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2673 			if (!deviter_visits(di, dv))
   2674 				continue;
   2675 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2676 		}
   2677 		break;
   2678 	case DEVITER_F_ROOT_FIRST:
   2679 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2680 			if (!deviter_visits(di, dv))
   2681 				continue;
   2682 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2683 		}
   2684 		break;
   2685 	default:
   2686 		break;
   2687 	}
   2688 
   2689 	deviter_reinit(di);
   2690 }
   2691 
   2692 static void
   2693 deviter_reinit(deviter_t *di)
   2694 {
   2695 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2696 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2697 	else
   2698 		di->di_prev = TAILQ_FIRST(&alldevs);
   2699 }
   2700 
   2701 device_t
   2702 deviter_first(deviter_t *di, deviter_flags_t flags)
   2703 {
   2704 	deviter_init(di, flags);
   2705 	return deviter_next(di);
   2706 }
   2707 
   2708 static device_t
   2709 deviter_next2(deviter_t *di)
   2710 {
   2711 	device_t dv;
   2712 
   2713 	dv = di->di_prev;
   2714 
   2715 	if (dv == NULL)
   2716 		return NULL;
   2717 
   2718 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2719 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2720 	else
   2721 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2722 
   2723 	return dv;
   2724 }
   2725 
   2726 static device_t
   2727 deviter_next1(deviter_t *di)
   2728 {
   2729 	device_t dv;
   2730 
   2731 	do {
   2732 		dv = deviter_next2(di);
   2733 	} while (dv != NULL && !deviter_visits(di, dv));
   2734 
   2735 	return dv;
   2736 }
   2737 
   2738 device_t
   2739 deviter_next(deviter_t *di)
   2740 {
   2741 	device_t dv = NULL;
   2742 
   2743 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2744 	case 0:
   2745 		return deviter_next1(di);
   2746 	case DEVITER_F_LEAVES_FIRST:
   2747 		while (di->di_curdepth >= 0) {
   2748 			if ((dv = deviter_next1(di)) == NULL) {
   2749 				di->di_curdepth--;
   2750 				deviter_reinit(di);
   2751 			} else if (dv->dv_depth == di->di_curdepth)
   2752 				break;
   2753 		}
   2754 		return dv;
   2755 	case DEVITER_F_ROOT_FIRST:
   2756 		while (di->di_curdepth <= di->di_maxdepth) {
   2757 			if ((dv = deviter_next1(di)) == NULL) {
   2758 				di->di_curdepth++;
   2759 				deviter_reinit(di);
   2760 			} else if (dv->dv_depth == di->di_curdepth)
   2761 				break;
   2762 		}
   2763 		return dv;
   2764 	default:
   2765 		return NULL;
   2766 	}
   2767 }
   2768 
   2769 void
   2770 deviter_release(deviter_t *di)
   2771 {
   2772 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2773 	int s;
   2774 
   2775 	s = config_alldevs_lock();
   2776 	if (rw)
   2777 		--alldevs_nwrite;
   2778 	else
   2779 		--alldevs_nread;
   2780 	/* XXX wake a garbage-collection thread */
   2781 	config_alldevs_unlock(s);
   2782 }
   2783 
   2784 const char *
   2785 cfdata_ifattr(const struct cfdata *cf)
   2786 {
   2787 	return cf->cf_pspec->cfp_iattr;
   2788 }
   2789 
   2790 bool
   2791 ifattr_match(const char *snull, const char *t)
   2792 {
   2793 	return (snull == NULL) || strcmp(snull, t) == 0;
   2794 }
   2795 
   2796 void
   2797 null_childdetached(device_t self, device_t child)
   2798 {
   2799 	/* do nothing */
   2800 }
   2801 
   2802 static void
   2803 sysctl_detach_setup(struct sysctllog **clog)
   2804 {
   2805 	const struct sysctlnode *node = NULL;
   2806 
   2807 	sysctl_createv(clog, 0, NULL, &node,
   2808 		CTLFLAG_PERMANENT,
   2809 		CTLTYPE_NODE, "kern", NULL,
   2810 		NULL, 0, NULL, 0,
   2811 		CTL_KERN, CTL_EOL);
   2812 
   2813 	if (node == NULL)
   2814 		return;
   2815 
   2816 	sysctl_createv(clog, 0, &node, NULL,
   2817 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   2818 		CTLTYPE_BOOL, "detachall",
   2819 		SYSCTL_DESCR("Detach all devices at shutdown"),
   2820 		NULL, 0, &detachall, 0,
   2821 		CTL_CREATE, CTL_EOL);
   2822 }
   2823