subr_autoconf.c revision 1.208 1 /* $NetBSD: subr_autoconf.c,v 1.208 2010/06/26 06:43:13 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.208 2010/06/26 06:43:13 tsutsui Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #endif
85
86 #include <sys/param.h>
87 #include <sys/device.h>
88 #include <sys/disklabel.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91 #include <sys/malloc.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110
111 #include <sys/disk.h>
112
113 #include <machine/limits.h>
114
115 #if defined(__i386__) && defined(_KERNEL_OPT)
116 #include "opt_splash.h"
117 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
118 #include <dev/splash/splash.h>
119 extern struct splash_progress *splash_progress_state;
120 #endif
121 #endif
122
123 /*
124 * Autoconfiguration subroutines.
125 */
126
127 /*
128 * ioconf.c exports exactly two names: cfdata and cfroots. All system
129 * devices and drivers are found via these tables.
130 */
131 extern struct cfdata cfdata[];
132 extern const short cfroots[];
133
134 /*
135 * List of all cfdriver structures. We use this to detect duplicates
136 * when other cfdrivers are loaded.
137 */
138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
139 extern struct cfdriver * const cfdriver_list_initial[];
140
141 /*
142 * Initial list of cfattach's.
143 */
144 extern const struct cfattachinit cfattachinit[];
145
146 /*
147 * List of cfdata tables. We always have one such list -- the one
148 * built statically when the kernel was configured.
149 */
150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
151 static struct cftable initcftable;
152
153 #define ROOT ((device_t)NULL)
154
155 struct matchinfo {
156 cfsubmatch_t fn;
157 struct device *parent;
158 const int *locs;
159 void *aux;
160 struct cfdata *match;
161 int pri;
162 };
163
164 struct alldevs_foray {
165 int af_s;
166 struct devicelist af_garbage;
167 };
168
169 static char *number(char *, int);
170 static void mapply(struct matchinfo *, cfdata_t);
171 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
172 static void config_devdelete(device_t);
173 static void config_devunlink(device_t, struct devicelist *);
174 static void config_makeroom(int, struct cfdriver *);
175 static void config_devlink(device_t);
176 static void config_alldevs_unlock(int);
177 static int config_alldevs_lock(void);
178 static void config_alldevs_enter(struct alldevs_foray *);
179 static void config_alldevs_exit(struct alldevs_foray *);
180
181 static void config_collect_garbage(struct devicelist *);
182 static void config_dump_garbage(struct devicelist *);
183
184 static void pmflock_debug(device_t, const char *, int);
185
186 static device_t deviter_next1(deviter_t *);
187 static void deviter_reinit(deviter_t *);
188
189 struct deferred_config {
190 TAILQ_ENTRY(deferred_config) dc_queue;
191 device_t dc_dev;
192 void (*dc_func)(device_t);
193 };
194
195 TAILQ_HEAD(deferred_config_head, deferred_config);
196
197 struct deferred_config_head deferred_config_queue =
198 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
199 struct deferred_config_head interrupt_config_queue =
200 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
201 int interrupt_config_threads = 8;
202 struct deferred_config_head mountroot_config_queue =
203 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
204 int mountroot_config_threads = 2;
205 static bool root_is_mounted = false;
206
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 TAILQ_ENTRY(finalize_hook) f_list;
212 int (*f_func)(device_t);
213 device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218
219 /* list of all devices */
220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
221 static kmutex_t alldevs_mtx;
222 static volatile bool alldevs_garbage = false;
223 static volatile devgen_t alldevs_gen = 1;
224 static volatile int alldevs_nread = 0;
225 static volatile int alldevs_nwrite = 0;
226
227 static int config_pending; /* semaphore for mountroot */
228 static kmutex_t config_misc_lock;
229 static kcondvar_t config_misc_cv;
230
231 static int detachall = 0;
232
233 #define STREQ(s1, s2) \
234 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
235
236 static bool config_initialized = false; /* config_init() has been called. */
237
238 static int config_do_twiddle;
239 static callout_t config_twiddle_ch;
240
241 static void sysctl_detach_setup(struct sysctllog **);
242
243 typedef int (*cfdriver_fn)(struct cfdriver *);
244 static int
245 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
246 cfdriver_fn drv_do, cfdriver_fn drv_undo,
247 const char *style, bool dopanic)
248 {
249 void (*pr)(const char *, ...) = dopanic ? panic : printf;
250 int i = 0, error = 0, e2;
251
252 for (i = 0; cfdriverv[i] != NULL; i++) {
253 if ((error = drv_do(cfdriverv[i])) != 0) {
254 pr("configure: `%s' driver %s failed: %d",
255 cfdriverv[i]->cd_name, style, error);
256 goto bad;
257 }
258 }
259
260 KASSERT(error == 0);
261 return 0;
262
263 bad:
264 printf("\n");
265 for (i--; i >= 0; i--) {
266 e2 = drv_undo(cfdriverv[i]);
267 KASSERT(e2 == 0);
268 }
269
270 return error;
271 }
272
273 typedef int (*cfattach_fn)(const char *, struct cfattach *);
274 static int
275 frob_cfattachvec(const struct cfattachinit *cfattachv,
276 cfattach_fn att_do, cfattach_fn att_undo,
277 const char *style, bool dopanic)
278 {
279 const struct cfattachinit *cfai = NULL;
280 void (*pr)(const char *, ...) = dopanic ? panic : printf;
281 int j = 0, error = 0, e2;
282
283 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
284 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
285 if ((error = att_do(cfai->cfai_name,
286 cfai->cfai_list[j]) != 0)) {
287 pr("configure: attachment `%s' "
288 "of `%s' driver %s failed: %d",
289 cfai->cfai_list[j]->ca_name,
290 cfai->cfai_name, style, error);
291 goto bad;
292 }
293 }
294 }
295
296 KASSERT(error == 0);
297 return 0;
298
299 bad:
300 /*
301 * Rollback in reverse order. dunno if super-important, but
302 * do that anyway. Although the code looks a little like
303 * someone did a little integration (in the math sense).
304 */
305 printf("\n");
306 if (cfai) {
307 bool last;
308
309 for (last = false; last == false; ) {
310 if (cfai == &cfattachv[0])
311 last = true;
312 for (j--; j >= 0; j--) {
313 e2 = att_undo(cfai->cfai_name,
314 cfai->cfai_list[j]);
315 KASSERT(e2 == 0);
316 }
317 if (!last) {
318 cfai--;
319 for (j = 0; cfai->cfai_list[j] != NULL; j++)
320 ;
321 }
322 }
323 }
324
325 return error;
326 }
327
328 /*
329 * Initialize the autoconfiguration data structures. Normally this
330 * is done by configure(), but some platforms need to do this very
331 * early (to e.g. initialize the console).
332 */
333 void
334 config_init(void)
335 {
336
337 KASSERT(config_initialized == false);
338
339 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
340
341 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
342 cv_init(&config_misc_cv, "cfgmisc");
343
344 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
345
346 frob_cfdrivervec(cfdriver_list_initial,
347 config_cfdriver_attach, NULL, "bootstrap", true);
348 frob_cfattachvec(cfattachinit,
349 config_cfattach_attach, NULL, "bootstrap", true);
350
351 initcftable.ct_cfdata = cfdata;
352 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
353
354 config_initialized = true;
355 }
356
357 /*
358 * Init or fini drivers and attachments. Either all or none
359 * are processed (via rollback). It would be nice if this were
360 * atomic to outside consumers, but with the current state of
361 * locking ...
362 */
363 int
364 config_init_component(struct cfdriver * const *cfdriverv,
365 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
366 {
367 int error;
368
369 if ((error = frob_cfdrivervec(cfdriverv,
370 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
371 return error;
372 if ((error = frob_cfattachvec(cfattachv,
373 config_cfattach_attach, config_cfattach_detach,
374 "init", false)) != 0) {
375 frob_cfdrivervec(cfdriverv,
376 config_cfdriver_detach, NULL, "init rollback", true);
377 return error;
378 }
379 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
380 frob_cfattachvec(cfattachv,
381 config_cfattach_detach, NULL, "init rollback", true);
382 frob_cfdrivervec(cfdriverv,
383 config_cfdriver_detach, NULL, "init rollback", true);
384 return error;
385 }
386
387 return 0;
388 }
389
390 int
391 config_fini_component(struct cfdriver * const *cfdriverv,
392 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
393 {
394 int error;
395
396 if ((error = config_cfdata_detach(cfdatav)) != 0)
397 return error;
398 if ((error = frob_cfattachvec(cfattachv,
399 config_cfattach_detach, config_cfattach_attach,
400 "fini", false)) != 0) {
401 if (config_cfdata_attach(cfdatav, 0) != 0)
402 panic("config_cfdata fini rollback failed");
403 return error;
404 }
405 if ((error = frob_cfdrivervec(cfdriverv,
406 config_cfdriver_detach, config_cfdriver_attach,
407 "fini", false)) != 0) {
408 frob_cfattachvec(cfattachv,
409 config_cfattach_attach, NULL, "fini rollback", true);
410 if (config_cfdata_attach(cfdatav, 0) != 0)
411 panic("config_cfdata fini rollback failed");
412 return error;
413 }
414
415 return 0;
416 }
417
418 void
419 config_init_mi(void)
420 {
421
422 if (!config_initialized)
423 config_init();
424
425 sysctl_detach_setup(NULL);
426 }
427
428 void
429 config_deferred(device_t dev)
430 {
431 config_process_deferred(&deferred_config_queue, dev);
432 config_process_deferred(&interrupt_config_queue, dev);
433 config_process_deferred(&mountroot_config_queue, dev);
434 }
435
436 static void
437 config_interrupts_thread(void *cookie)
438 {
439 struct deferred_config *dc;
440
441 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
442 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
443 (*dc->dc_func)(dc->dc_dev);
444 kmem_free(dc, sizeof(*dc));
445 config_pending_decr();
446 }
447 kthread_exit(0);
448 }
449
450 void
451 config_create_interruptthreads()
452 {
453 int i;
454
455 for (i = 0; i < interrupt_config_threads; i++) {
456 (void)kthread_create(PRI_NONE, 0, NULL,
457 config_interrupts_thread, NULL, NULL, "config");
458 }
459 }
460
461 static void
462 config_mountroot_thread(void *cookie)
463 {
464 struct deferred_config *dc;
465
466 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
467 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
468 (*dc->dc_func)(dc->dc_dev);
469 kmem_free(dc, sizeof(*dc));
470 }
471 kthread_exit(0);
472 }
473
474 void
475 config_create_mountrootthreads()
476 {
477 int i;
478
479 if (!root_is_mounted)
480 root_is_mounted = true;
481
482 for (i = 0; i < mountroot_config_threads; i++) {
483 (void)kthread_create(PRI_NONE, 0, NULL,
484 config_mountroot_thread, NULL, NULL, "config");
485 }
486 }
487
488 /*
489 * Announce device attach/detach to userland listeners.
490 */
491 static void
492 devmon_report_device(device_t dev, bool isattach)
493 {
494 #if NDRVCTL > 0
495 prop_dictionary_t ev;
496 const char *parent;
497 const char *what;
498 device_t pdev = device_parent(dev);
499
500 ev = prop_dictionary_create();
501 if (ev == NULL)
502 return;
503
504 what = (isattach ? "device-attach" : "device-detach");
505 parent = (pdev == NULL ? "root" : device_xname(pdev));
506 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
507 !prop_dictionary_set_cstring(ev, "parent", parent)) {
508 prop_object_release(ev);
509 return;
510 }
511
512 devmon_insert(what, ev);
513 #endif
514 }
515
516 /*
517 * Add a cfdriver to the system.
518 */
519 int
520 config_cfdriver_attach(struct cfdriver *cd)
521 {
522 struct cfdriver *lcd;
523
524 /* Make sure this driver isn't already in the system. */
525 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
526 if (STREQ(lcd->cd_name, cd->cd_name))
527 return EEXIST;
528 }
529
530 LIST_INIT(&cd->cd_attach);
531 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
532
533 return 0;
534 }
535
536 /*
537 * Remove a cfdriver from the system.
538 */
539 int
540 config_cfdriver_detach(struct cfdriver *cd)
541 {
542 struct alldevs_foray af;
543 int i, rc = 0;
544
545 config_alldevs_enter(&af);
546 /* Make sure there are no active instances. */
547 for (i = 0; i < cd->cd_ndevs; i++) {
548 if (cd->cd_devs[i] != NULL) {
549 rc = EBUSY;
550 break;
551 }
552 }
553 config_alldevs_exit(&af);
554
555 if (rc != 0)
556 return rc;
557
558 /* ...and no attachments loaded. */
559 if (LIST_EMPTY(&cd->cd_attach) == 0)
560 return EBUSY;
561
562 LIST_REMOVE(cd, cd_list);
563
564 KASSERT(cd->cd_devs == NULL);
565
566 return 0;
567 }
568
569 /*
570 * Look up a cfdriver by name.
571 */
572 struct cfdriver *
573 config_cfdriver_lookup(const char *name)
574 {
575 struct cfdriver *cd;
576
577 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
578 if (STREQ(cd->cd_name, name))
579 return cd;
580 }
581
582 return NULL;
583 }
584
585 /*
586 * Add a cfattach to the specified driver.
587 */
588 int
589 config_cfattach_attach(const char *driver, struct cfattach *ca)
590 {
591 struct cfattach *lca;
592 struct cfdriver *cd;
593
594 cd = config_cfdriver_lookup(driver);
595 if (cd == NULL)
596 return ESRCH;
597
598 /* Make sure this attachment isn't already on this driver. */
599 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
600 if (STREQ(lca->ca_name, ca->ca_name))
601 return EEXIST;
602 }
603
604 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
605
606 return 0;
607 }
608
609 /*
610 * Remove a cfattach from the specified driver.
611 */
612 int
613 config_cfattach_detach(const char *driver, struct cfattach *ca)
614 {
615 struct alldevs_foray af;
616 struct cfdriver *cd;
617 device_t dev;
618 int i, rc = 0;
619
620 cd = config_cfdriver_lookup(driver);
621 if (cd == NULL)
622 return ESRCH;
623
624 config_alldevs_enter(&af);
625 /* Make sure there are no active instances. */
626 for (i = 0; i < cd->cd_ndevs; i++) {
627 if ((dev = cd->cd_devs[i]) == NULL)
628 continue;
629 if (dev->dv_cfattach == ca) {
630 rc = EBUSY;
631 break;
632 }
633 }
634 config_alldevs_exit(&af);
635
636 if (rc != 0)
637 return rc;
638
639 LIST_REMOVE(ca, ca_list);
640
641 return 0;
642 }
643
644 /*
645 * Look up a cfattach by name.
646 */
647 static struct cfattach *
648 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
649 {
650 struct cfattach *ca;
651
652 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
653 if (STREQ(ca->ca_name, atname))
654 return ca;
655 }
656
657 return NULL;
658 }
659
660 /*
661 * Look up a cfattach by driver/attachment name.
662 */
663 struct cfattach *
664 config_cfattach_lookup(const char *name, const char *atname)
665 {
666 struct cfdriver *cd;
667
668 cd = config_cfdriver_lookup(name);
669 if (cd == NULL)
670 return NULL;
671
672 return config_cfattach_lookup_cd(cd, atname);
673 }
674
675 /*
676 * Apply the matching function and choose the best. This is used
677 * a few times and we want to keep the code small.
678 */
679 static void
680 mapply(struct matchinfo *m, cfdata_t cf)
681 {
682 int pri;
683
684 if (m->fn != NULL) {
685 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
686 } else {
687 pri = config_match(m->parent, cf, m->aux);
688 }
689 if (pri > m->pri) {
690 m->match = cf;
691 m->pri = pri;
692 }
693 }
694
695 int
696 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
697 {
698 const struct cfiattrdata *ci;
699 const struct cflocdesc *cl;
700 int nlocs, i;
701
702 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
703 KASSERT(ci);
704 nlocs = ci->ci_loclen;
705 KASSERT(!nlocs || locs);
706 for (i = 0; i < nlocs; i++) {
707 cl = &ci->ci_locdesc[i];
708 /* !cld_defaultstr means no default value */
709 if ((!(cl->cld_defaultstr)
710 || (cf->cf_loc[i] != cl->cld_default))
711 && cf->cf_loc[i] != locs[i])
712 return 0;
713 }
714
715 return config_match(parent, cf, aux);
716 }
717
718 /*
719 * Helper function: check whether the driver supports the interface attribute
720 * and return its descriptor structure.
721 */
722 static const struct cfiattrdata *
723 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
724 {
725 const struct cfiattrdata * const *cpp;
726
727 if (cd->cd_attrs == NULL)
728 return 0;
729
730 for (cpp = cd->cd_attrs; *cpp; cpp++) {
731 if (STREQ((*cpp)->ci_name, ia)) {
732 /* Match. */
733 return *cpp;
734 }
735 }
736 return 0;
737 }
738
739 /*
740 * Lookup an interface attribute description by name.
741 * If the driver is given, consider only its supported attributes.
742 */
743 const struct cfiattrdata *
744 cfiattr_lookup(const char *name, const struct cfdriver *cd)
745 {
746 const struct cfdriver *d;
747 const struct cfiattrdata *ia;
748
749 if (cd)
750 return cfdriver_get_iattr(cd, name);
751
752 LIST_FOREACH(d, &allcfdrivers, cd_list) {
753 ia = cfdriver_get_iattr(d, name);
754 if (ia)
755 return ia;
756 }
757 return 0;
758 }
759
760 /*
761 * Determine if `parent' is a potential parent for a device spec based
762 * on `cfp'.
763 */
764 static int
765 cfparent_match(const device_t parent, const struct cfparent *cfp)
766 {
767 struct cfdriver *pcd;
768
769 /* We don't match root nodes here. */
770 if (cfp == NULL)
771 return 0;
772
773 pcd = parent->dv_cfdriver;
774 KASSERT(pcd != NULL);
775
776 /*
777 * First, ensure this parent has the correct interface
778 * attribute.
779 */
780 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
781 return 0;
782
783 /*
784 * If no specific parent device instance was specified (i.e.
785 * we're attaching to the attribute only), we're done!
786 */
787 if (cfp->cfp_parent == NULL)
788 return 1;
789
790 /*
791 * Check the parent device's name.
792 */
793 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
794 return 0; /* not the same parent */
795
796 /*
797 * Make sure the unit number matches.
798 */
799 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
800 cfp->cfp_unit == parent->dv_unit)
801 return 1;
802
803 /* Unit numbers don't match. */
804 return 0;
805 }
806
807 /*
808 * Helper for config_cfdata_attach(): check all devices whether it could be
809 * parent any attachment in the config data table passed, and rescan.
810 */
811 static void
812 rescan_with_cfdata(const struct cfdata *cf)
813 {
814 device_t d;
815 const struct cfdata *cf1;
816 deviter_t di;
817
818
819 /*
820 * "alldevs" is likely longer than a modules's cfdata, so make it
821 * the outer loop.
822 */
823 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
824
825 if (!(d->dv_cfattach->ca_rescan))
826 continue;
827
828 for (cf1 = cf; cf1->cf_name; cf1++) {
829
830 if (!cfparent_match(d, cf1->cf_pspec))
831 continue;
832
833 (*d->dv_cfattach->ca_rescan)(d,
834 cfdata_ifattr(cf1), cf1->cf_loc);
835 }
836 }
837 deviter_release(&di);
838 }
839
840 /*
841 * Attach a supplemental config data table and rescan potential
842 * parent devices if required.
843 */
844 int
845 config_cfdata_attach(cfdata_t cf, int scannow)
846 {
847 struct cftable *ct;
848
849 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
850 ct->ct_cfdata = cf;
851 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
852
853 if (scannow)
854 rescan_with_cfdata(cf);
855
856 return 0;
857 }
858
859 /*
860 * Helper for config_cfdata_detach: check whether a device is
861 * found through any attachment in the config data table.
862 */
863 static int
864 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
865 {
866 const struct cfdata *cf1;
867
868 for (cf1 = cf; cf1->cf_name; cf1++)
869 if (d->dv_cfdata == cf1)
870 return 1;
871
872 return 0;
873 }
874
875 /*
876 * Detach a supplemental config data table. Detach all devices found
877 * through that table (and thus keeping references to it) before.
878 */
879 int
880 config_cfdata_detach(cfdata_t cf)
881 {
882 device_t d;
883 int error = 0;
884 struct cftable *ct;
885 deviter_t di;
886
887 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
888 d = deviter_next(&di)) {
889 if (!dev_in_cfdata(d, cf))
890 continue;
891 if ((error = config_detach(d, 0)) != 0)
892 break;
893 }
894 deviter_release(&di);
895 if (error) {
896 aprint_error_dev(d, "unable to detach instance\n");
897 return error;
898 }
899
900 TAILQ_FOREACH(ct, &allcftables, ct_list) {
901 if (ct->ct_cfdata == cf) {
902 TAILQ_REMOVE(&allcftables, ct, ct_list);
903 kmem_free(ct, sizeof(*ct));
904 return 0;
905 }
906 }
907
908 /* not found -- shouldn't happen */
909 return EINVAL;
910 }
911
912 /*
913 * Invoke the "match" routine for a cfdata entry on behalf of
914 * an external caller, usually a "submatch" routine.
915 */
916 int
917 config_match(device_t parent, cfdata_t cf, void *aux)
918 {
919 struct cfattach *ca;
920
921 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
922 if (ca == NULL) {
923 /* No attachment for this entry, oh well. */
924 return 0;
925 }
926
927 return (*ca->ca_match)(parent, cf, aux);
928 }
929
930 /*
931 * Iterate over all potential children of some device, calling the given
932 * function (default being the child's match function) for each one.
933 * Nonzero returns are matches; the highest value returned is considered
934 * the best match. Return the `found child' if we got a match, or NULL
935 * otherwise. The `aux' pointer is simply passed on through.
936 *
937 * Note that this function is designed so that it can be used to apply
938 * an arbitrary function to all potential children (its return value
939 * can be ignored).
940 */
941 cfdata_t
942 config_search_loc(cfsubmatch_t fn, device_t parent,
943 const char *ifattr, const int *locs, void *aux)
944 {
945 struct cftable *ct;
946 cfdata_t cf;
947 struct matchinfo m;
948
949 KASSERT(config_initialized);
950 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
951
952 m.fn = fn;
953 m.parent = parent;
954 m.locs = locs;
955 m.aux = aux;
956 m.match = NULL;
957 m.pri = 0;
958
959 TAILQ_FOREACH(ct, &allcftables, ct_list) {
960 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
961
962 /* We don't match root nodes here. */
963 if (!cf->cf_pspec)
964 continue;
965
966 /*
967 * Skip cf if no longer eligible, otherwise scan
968 * through parents for one matching `parent', and
969 * try match function.
970 */
971 if (cf->cf_fstate == FSTATE_FOUND)
972 continue;
973 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
974 cf->cf_fstate == FSTATE_DSTAR)
975 continue;
976
977 /*
978 * If an interface attribute was specified,
979 * consider only children which attach to
980 * that attribute.
981 */
982 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
983 continue;
984
985 if (cfparent_match(parent, cf->cf_pspec))
986 mapply(&m, cf);
987 }
988 }
989 return m.match;
990 }
991
992 cfdata_t
993 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
994 void *aux)
995 {
996
997 return config_search_loc(fn, parent, ifattr, NULL, aux);
998 }
999
1000 /*
1001 * Find the given root device.
1002 * This is much like config_search, but there is no parent.
1003 * Don't bother with multiple cfdata tables; the root node
1004 * must always be in the initial table.
1005 */
1006 cfdata_t
1007 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1008 {
1009 cfdata_t cf;
1010 const short *p;
1011 struct matchinfo m;
1012
1013 m.fn = fn;
1014 m.parent = ROOT;
1015 m.aux = aux;
1016 m.match = NULL;
1017 m.pri = 0;
1018 m.locs = 0;
1019 /*
1020 * Look at root entries for matching name. We do not bother
1021 * with found-state here since only one root should ever be
1022 * searched (and it must be done first).
1023 */
1024 for (p = cfroots; *p >= 0; p++) {
1025 cf = &cfdata[*p];
1026 if (strcmp(cf->cf_name, rootname) == 0)
1027 mapply(&m, cf);
1028 }
1029 return m.match;
1030 }
1031
1032 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1033
1034 /*
1035 * The given `aux' argument describes a device that has been found
1036 * on the given parent, but not necessarily configured. Locate the
1037 * configuration data for that device (using the submatch function
1038 * provided, or using candidates' cd_match configuration driver
1039 * functions) and attach it, and return true. If the device was
1040 * not configured, call the given `print' function and return 0.
1041 */
1042 device_t
1043 config_found_sm_loc(device_t parent,
1044 const char *ifattr, const int *locs, void *aux,
1045 cfprint_t print, cfsubmatch_t submatch)
1046 {
1047 cfdata_t cf;
1048
1049 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1050 if (splash_progress_state)
1051 splash_progress_update(splash_progress_state);
1052 #endif
1053
1054 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1055 return(config_attach_loc(parent, cf, locs, aux, print));
1056 if (print) {
1057 if (config_do_twiddle && cold)
1058 twiddle();
1059 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1060 }
1061
1062 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1063 if (splash_progress_state)
1064 splash_progress_update(splash_progress_state);
1065 #endif
1066
1067 return NULL;
1068 }
1069
1070 device_t
1071 config_found_ia(device_t parent, const char *ifattr, void *aux,
1072 cfprint_t print)
1073 {
1074
1075 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1076 }
1077
1078 device_t
1079 config_found(device_t parent, void *aux, cfprint_t print)
1080 {
1081
1082 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1083 }
1084
1085 /*
1086 * As above, but for root devices.
1087 */
1088 device_t
1089 config_rootfound(const char *rootname, void *aux)
1090 {
1091 cfdata_t cf;
1092
1093 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1094 return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
1095 aprint_error("root device %s not configured\n", rootname);
1096 return NULL;
1097 }
1098
1099 /* just like sprintf(buf, "%d") except that it works from the end */
1100 static char *
1101 number(char *ep, int n)
1102 {
1103
1104 *--ep = 0;
1105 while (n >= 10) {
1106 *--ep = (n % 10) + '0';
1107 n /= 10;
1108 }
1109 *--ep = n + '0';
1110 return ep;
1111 }
1112
1113 /*
1114 * Expand the size of the cd_devs array if necessary.
1115 *
1116 * The caller must hold alldevs_mtx. config_makeroom() may release and
1117 * re-acquire alldevs_mtx, so callers should re-check conditions such
1118 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1119 * returns.
1120 */
1121 static void
1122 config_makeroom(int n, struct cfdriver *cd)
1123 {
1124 int old, new;
1125 device_t *osp, *nsp;
1126
1127 alldevs_nwrite++;
1128
1129 for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
1130 ;
1131
1132 while (n >= cd->cd_ndevs) {
1133 /*
1134 * Need to expand the array.
1135 */
1136 old = cd->cd_ndevs;
1137 osp = cd->cd_devs;
1138
1139 /* Release alldevs_mtx around allocation, which may
1140 * sleep.
1141 */
1142 mutex_exit(&alldevs_mtx);
1143 nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
1144 if (nsp == NULL)
1145 panic("%s: could not expand cd_devs", __func__);
1146 mutex_enter(&alldevs_mtx);
1147
1148 /* If another thread moved the array while we did
1149 * not hold alldevs_mtx, try again.
1150 */
1151 if (cd->cd_devs != osp) {
1152 mutex_exit(&alldevs_mtx);
1153 kmem_free(nsp, sizeof(device_t[new]));
1154 mutex_enter(&alldevs_mtx);
1155 continue;
1156 }
1157
1158 memset(nsp + old, 0, sizeof(device_t[new - old]));
1159 if (old != 0)
1160 memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
1161
1162 cd->cd_ndevs = new;
1163 cd->cd_devs = nsp;
1164 if (old != 0) {
1165 mutex_exit(&alldevs_mtx);
1166 kmem_free(osp, sizeof(device_t[old]));
1167 mutex_enter(&alldevs_mtx);
1168 }
1169 }
1170 alldevs_nwrite--;
1171 }
1172
1173 /*
1174 * Put dev into the devices list.
1175 */
1176 static void
1177 config_devlink(device_t dev)
1178 {
1179 int s;
1180
1181 s = config_alldevs_lock();
1182
1183 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1184
1185 dev->dv_add_gen = alldevs_gen;
1186 /* It is safe to add a device to the tail of the list while
1187 * readers and writers are in the list.
1188 */
1189 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1190 config_alldevs_unlock(s);
1191 }
1192
1193 static void
1194 config_devfree(device_t dev)
1195 {
1196 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1197
1198 if (dev->dv_cfattach->ca_devsize > 0)
1199 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1200 if (priv)
1201 kmem_free(dev, sizeof(*dev));
1202 }
1203
1204 /*
1205 * Caller must hold alldevs_mtx.
1206 */
1207 static void
1208 config_devunlink(device_t dev, struct devicelist *garbage)
1209 {
1210 struct device_garbage *dg = &dev->dv_garbage;
1211 cfdriver_t cd = device_cfdriver(dev);
1212 int i;
1213
1214 KASSERT(mutex_owned(&alldevs_mtx));
1215
1216 /* Unlink from device list. Link to garbage list. */
1217 TAILQ_REMOVE(&alldevs, dev, dv_list);
1218 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1219
1220 /* Remove from cfdriver's array. */
1221 cd->cd_devs[dev->dv_unit] = NULL;
1222
1223 /*
1224 * If the device now has no units in use, unlink its softc array.
1225 */
1226 for (i = 0; i < cd->cd_ndevs; i++) {
1227 if (cd->cd_devs[i] != NULL)
1228 break;
1229 }
1230 /* Nothing found. Unlink, now. Deallocate, later. */
1231 if (i == cd->cd_ndevs) {
1232 dg->dg_ndevs = cd->cd_ndevs;
1233 dg->dg_devs = cd->cd_devs;
1234 cd->cd_devs = NULL;
1235 cd->cd_ndevs = 0;
1236 }
1237 }
1238
1239 static void
1240 config_devdelete(device_t dev)
1241 {
1242 struct device_garbage *dg = &dev->dv_garbage;
1243 device_lock_t dvl = device_getlock(dev);
1244
1245 if (dg->dg_devs != NULL)
1246 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1247
1248 cv_destroy(&dvl->dvl_cv);
1249 mutex_destroy(&dvl->dvl_mtx);
1250
1251 KASSERT(dev->dv_properties != NULL);
1252 prop_object_release(dev->dv_properties);
1253
1254 if (dev->dv_activity_handlers)
1255 panic("%s with registered handlers", __func__);
1256
1257 if (dev->dv_locators) {
1258 size_t amount = *--dev->dv_locators;
1259 kmem_free(dev->dv_locators, amount);
1260 }
1261
1262 config_devfree(dev);
1263 }
1264
1265 static int
1266 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1267 {
1268 int unit;
1269
1270 if (cf->cf_fstate == FSTATE_STAR) {
1271 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1272 if (cd->cd_devs[unit] == NULL)
1273 break;
1274 /*
1275 * unit is now the unit of the first NULL device pointer,
1276 * or max(cd->cd_ndevs,cf->cf_unit).
1277 */
1278 } else {
1279 unit = cf->cf_unit;
1280 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1281 unit = -1;
1282 }
1283 return unit;
1284 }
1285
1286 static int
1287 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1288 {
1289 struct alldevs_foray af;
1290 int unit;
1291
1292 config_alldevs_enter(&af);
1293 for (;;) {
1294 unit = config_unit_nextfree(cd, cf);
1295 if (unit == -1)
1296 break;
1297 if (unit < cd->cd_ndevs) {
1298 cd->cd_devs[unit] = dev;
1299 dev->dv_unit = unit;
1300 break;
1301 }
1302 config_makeroom(unit, cd);
1303 }
1304 config_alldevs_exit(&af);
1305
1306 return unit;
1307 }
1308
1309 static device_t
1310 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1311 {
1312 cfdriver_t cd;
1313 cfattach_t ca;
1314 size_t lname, lunit;
1315 const char *xunit;
1316 int myunit;
1317 char num[10];
1318 device_t dev;
1319 void *dev_private;
1320 const struct cfiattrdata *ia;
1321 device_lock_t dvl;
1322
1323 cd = config_cfdriver_lookup(cf->cf_name);
1324 if (cd == NULL)
1325 return NULL;
1326
1327 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1328 if (ca == NULL)
1329 return NULL;
1330
1331 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1332 ca->ca_devsize < sizeof(struct device))
1333 panic("config_devalloc: %s", cf->cf_atname);
1334
1335 /* get memory for all device vars */
1336 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1337 if (ca->ca_devsize > 0) {
1338 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1339 if (dev_private == NULL)
1340 panic("config_devalloc: memory allocation for device softc failed");
1341 } else {
1342 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1343 dev_private = NULL;
1344 }
1345
1346 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1347 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1348 } else {
1349 dev = dev_private;
1350 }
1351 if (dev == NULL)
1352 panic("config_devalloc: memory allocation for device_t failed");
1353
1354 dev->dv_class = cd->cd_class;
1355 dev->dv_cfdata = cf;
1356 dev->dv_cfdriver = cd;
1357 dev->dv_cfattach = ca;
1358 dev->dv_activity_count = 0;
1359 dev->dv_activity_handlers = NULL;
1360 dev->dv_private = dev_private;
1361 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1362
1363 myunit = config_unit_alloc(dev, cd, cf);
1364 if (myunit == -1) {
1365 config_devfree(dev);
1366 return NULL;
1367 }
1368
1369 /* compute length of name and decimal expansion of unit number */
1370 lname = strlen(cd->cd_name);
1371 xunit = number(&num[sizeof(num)], myunit);
1372 lunit = &num[sizeof(num)] - xunit;
1373 if (lname + lunit > sizeof(dev->dv_xname))
1374 panic("config_devalloc: device name too long");
1375
1376 dvl = device_getlock(dev);
1377
1378 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1379 cv_init(&dvl->dvl_cv, "pmfsusp");
1380
1381 memcpy(dev->dv_xname, cd->cd_name, lname);
1382 memcpy(dev->dv_xname + lname, xunit, lunit);
1383 dev->dv_parent = parent;
1384 if (parent != NULL)
1385 dev->dv_depth = parent->dv_depth + 1;
1386 else
1387 dev->dv_depth = 0;
1388 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1389 if (locs) {
1390 KASSERT(parent); /* no locators at root */
1391 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1392 dev->dv_locators =
1393 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1394 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1395 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1396 }
1397 dev->dv_properties = prop_dictionary_create();
1398 KASSERT(dev->dv_properties != NULL);
1399
1400 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1401 "device-driver", dev->dv_cfdriver->cd_name);
1402 prop_dictionary_set_uint16(dev->dv_properties,
1403 "device-unit", dev->dv_unit);
1404
1405 return dev;
1406 }
1407
1408 /*
1409 * Attach a found device.
1410 */
1411 device_t
1412 config_attach_loc(device_t parent, cfdata_t cf,
1413 const int *locs, void *aux, cfprint_t print)
1414 {
1415 device_t dev;
1416 struct cftable *ct;
1417 const char *drvname;
1418
1419 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1420 if (splash_progress_state)
1421 splash_progress_update(splash_progress_state);
1422 #endif
1423
1424 dev = config_devalloc(parent, cf, locs);
1425 if (!dev)
1426 panic("config_attach: allocation of device softc failed");
1427
1428 /* XXX redundant - see below? */
1429 if (cf->cf_fstate != FSTATE_STAR) {
1430 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1431 cf->cf_fstate = FSTATE_FOUND;
1432 }
1433
1434 config_devlink(dev);
1435
1436 if (config_do_twiddle && cold)
1437 twiddle();
1438 else
1439 aprint_naive("Found ");
1440 /*
1441 * We want the next two printfs for normal, verbose, and quiet,
1442 * but not silent (in which case, we're twiddling, instead).
1443 */
1444 if (parent == ROOT) {
1445 aprint_naive("%s (root)", device_xname(dev));
1446 aprint_normal("%s (root)", device_xname(dev));
1447 } else {
1448 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1449 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1450 if (print)
1451 (void) (*print)(aux, NULL);
1452 }
1453
1454 /*
1455 * Before attaching, clobber any unfound devices that are
1456 * otherwise identical.
1457 * XXX code above is redundant?
1458 */
1459 drvname = dev->dv_cfdriver->cd_name;
1460 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1461 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1462 if (STREQ(cf->cf_name, drvname) &&
1463 cf->cf_unit == dev->dv_unit) {
1464 if (cf->cf_fstate == FSTATE_NOTFOUND)
1465 cf->cf_fstate = FSTATE_FOUND;
1466 }
1467 }
1468 }
1469 #ifdef __HAVE_DEVICE_REGISTER
1470 device_register(dev, aux);
1471 #endif
1472
1473 /* Let userland know */
1474 devmon_report_device(dev, true);
1475
1476 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1477 if (splash_progress_state)
1478 splash_progress_update(splash_progress_state);
1479 #endif
1480 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1481 #if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
1482 if (splash_progress_state)
1483 splash_progress_update(splash_progress_state);
1484 #endif
1485
1486 if (!device_pmf_is_registered(dev))
1487 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1488
1489 config_process_deferred(&deferred_config_queue, dev);
1490
1491 #ifdef __HAVE_DEVICE_REGISTER_POSTCONFIG
1492 device_register_post_config(dev, aux);
1493 #endif
1494 return dev;
1495 }
1496
1497 device_t
1498 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1499 {
1500
1501 return config_attach_loc(parent, cf, NULL, aux, print);
1502 }
1503
1504 /*
1505 * As above, but for pseudo-devices. Pseudo-devices attached in this
1506 * way are silently inserted into the device tree, and their children
1507 * attached.
1508 *
1509 * Note that because pseudo-devices are attached silently, any information
1510 * the attach routine wishes to print should be prefixed with the device
1511 * name by the attach routine.
1512 */
1513 device_t
1514 config_attach_pseudo(cfdata_t cf)
1515 {
1516 device_t dev;
1517
1518 dev = config_devalloc(ROOT, cf, NULL);
1519 if (!dev)
1520 return NULL;
1521
1522 /* XXX mark busy in cfdata */
1523
1524 if (cf->cf_fstate != FSTATE_STAR) {
1525 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1526 cf->cf_fstate = FSTATE_FOUND;
1527 }
1528
1529 config_devlink(dev);
1530
1531 #if 0 /* XXXJRT not yet */
1532 #ifdef __HAVE_DEVICE_REGISTER
1533 device_register(dev, NULL); /* like a root node */
1534 #endif
1535 #endif
1536 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1537 config_process_deferred(&deferred_config_queue, dev);
1538 return dev;
1539 }
1540
1541 /*
1542 * Caller must hold alldevs_mtx.
1543 */
1544 static void
1545 config_collect_garbage(struct devicelist *garbage)
1546 {
1547 device_t dv;
1548
1549 KASSERT(!cpu_intr_p());
1550 KASSERT(!cpu_softintr_p());
1551 KASSERT(mutex_owned(&alldevs_mtx));
1552
1553 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1554 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1555 if (dv->dv_del_gen != 0)
1556 break;
1557 }
1558 if (dv == NULL) {
1559 alldevs_garbage = false;
1560 break;
1561 }
1562 config_devunlink(dv, garbage);
1563 }
1564 KASSERT(mutex_owned(&alldevs_mtx));
1565 }
1566
1567 static void
1568 config_dump_garbage(struct devicelist *garbage)
1569 {
1570 device_t dv;
1571
1572 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1573 TAILQ_REMOVE(garbage, dv, dv_list);
1574 config_devdelete(dv);
1575 }
1576 }
1577
1578 /*
1579 * Detach a device. Optionally forced (e.g. because of hardware
1580 * removal) and quiet. Returns zero if successful, non-zero
1581 * (an error code) otherwise.
1582 *
1583 * Note that this code wants to be run from a process context, so
1584 * that the detach can sleep to allow processes which have a device
1585 * open to run and unwind their stacks.
1586 */
1587 int
1588 config_detach(device_t dev, int flags)
1589 {
1590 struct alldevs_foray af;
1591 struct cftable *ct;
1592 cfdata_t cf;
1593 const struct cfattach *ca;
1594 struct cfdriver *cd;
1595 #ifdef DIAGNOSTIC
1596 device_t d;
1597 #endif
1598 int rv = 0, s;
1599
1600 #ifdef DIAGNOSTIC
1601 cf = dev->dv_cfdata;
1602 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1603 cf->cf_fstate != FSTATE_STAR)
1604 panic("config_detach: %s: bad device fstate %d",
1605 device_xname(dev), cf ? cf->cf_fstate : -1);
1606 #endif
1607 cd = dev->dv_cfdriver;
1608 KASSERT(cd != NULL);
1609
1610 ca = dev->dv_cfattach;
1611 KASSERT(ca != NULL);
1612
1613 s = config_alldevs_lock();
1614 if (dev->dv_del_gen != 0) {
1615 config_alldevs_unlock(s);
1616 #ifdef DIAGNOSTIC
1617 printf("%s: %s is already detached\n", __func__,
1618 device_xname(dev));
1619 #endif /* DIAGNOSTIC */
1620 return ENOENT;
1621 }
1622 alldevs_nwrite++;
1623 config_alldevs_unlock(s);
1624
1625 if (!detachall &&
1626 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1627 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1628 rv = EOPNOTSUPP;
1629 } else if (ca->ca_detach != NULL) {
1630 rv = (*ca->ca_detach)(dev, flags);
1631 } else
1632 rv = EOPNOTSUPP;
1633
1634 /*
1635 * If it was not possible to detach the device, then we either
1636 * panic() (for the forced but failed case), or return an error.
1637 *
1638 * If it was possible to detach the device, ensure that the
1639 * device is deactivated.
1640 */
1641 if (rv == 0)
1642 dev->dv_flags &= ~DVF_ACTIVE;
1643 else if ((flags & DETACH_FORCE) == 0)
1644 goto out;
1645 else {
1646 panic("config_detach: forced detach of %s failed (%d)",
1647 device_xname(dev), rv);
1648 }
1649
1650 /*
1651 * The device has now been successfully detached.
1652 */
1653
1654 /* Let userland know */
1655 devmon_report_device(dev, false);
1656
1657 #ifdef DIAGNOSTIC
1658 /*
1659 * Sanity: If you're successfully detached, you should have no
1660 * children. (Note that because children must be attached
1661 * after parents, we only need to search the latter part of
1662 * the list.)
1663 */
1664 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1665 d = TAILQ_NEXT(d, dv_list)) {
1666 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1667 printf("config_detach: detached device %s"
1668 " has children %s\n", device_xname(dev), device_xname(d));
1669 panic("config_detach");
1670 }
1671 }
1672 #endif
1673
1674 /* notify the parent that the child is gone */
1675 if (dev->dv_parent) {
1676 device_t p = dev->dv_parent;
1677 if (p->dv_cfattach->ca_childdetached)
1678 (*p->dv_cfattach->ca_childdetached)(p, dev);
1679 }
1680
1681 /*
1682 * Mark cfdata to show that the unit can be reused, if possible.
1683 */
1684 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1685 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1686 if (STREQ(cf->cf_name, cd->cd_name)) {
1687 if (cf->cf_fstate == FSTATE_FOUND &&
1688 cf->cf_unit == dev->dv_unit)
1689 cf->cf_fstate = FSTATE_NOTFOUND;
1690 }
1691 }
1692 }
1693
1694 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1695 aprint_normal_dev(dev, "detached\n");
1696
1697 out:
1698 config_alldevs_enter(&af);
1699 KASSERT(alldevs_nwrite != 0);
1700 --alldevs_nwrite;
1701 if (rv == 0 && dev->dv_del_gen == 0)
1702 config_devunlink(dev, &af.af_garbage);
1703 config_alldevs_exit(&af);
1704
1705 return rv;
1706 }
1707
1708 int
1709 config_detach_children(device_t parent, int flags)
1710 {
1711 device_t dv;
1712 deviter_t di;
1713 int error = 0;
1714
1715 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1716 dv = deviter_next(&di)) {
1717 if (device_parent(dv) != parent)
1718 continue;
1719 if ((error = config_detach(dv, flags)) != 0)
1720 break;
1721 }
1722 deviter_release(&di);
1723 return error;
1724 }
1725
1726 device_t
1727 shutdown_first(struct shutdown_state *s)
1728 {
1729 if (!s->initialized) {
1730 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1731 s->initialized = true;
1732 }
1733 return shutdown_next(s);
1734 }
1735
1736 device_t
1737 shutdown_next(struct shutdown_state *s)
1738 {
1739 device_t dv;
1740
1741 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1742 ;
1743
1744 if (dv == NULL)
1745 s->initialized = false;
1746
1747 return dv;
1748 }
1749
1750 bool
1751 config_detach_all(int how)
1752 {
1753 static struct shutdown_state s;
1754 device_t curdev;
1755 bool progress = false;
1756
1757 if ((how & RB_NOSYNC) != 0)
1758 return false;
1759
1760 for (curdev = shutdown_first(&s); curdev != NULL;
1761 curdev = shutdown_next(&s)) {
1762 aprint_debug(" detaching %s, ", device_xname(curdev));
1763 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1764 progress = true;
1765 aprint_debug("success.");
1766 } else
1767 aprint_debug("failed.");
1768 }
1769 return progress;
1770 }
1771
1772 static bool
1773 device_is_ancestor_of(device_t ancestor, device_t descendant)
1774 {
1775 device_t dv;
1776
1777 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1778 if (device_parent(dv) == ancestor)
1779 return true;
1780 }
1781 return false;
1782 }
1783
1784 int
1785 config_deactivate(device_t dev)
1786 {
1787 deviter_t di;
1788 const struct cfattach *ca;
1789 device_t descendant;
1790 int s, rv = 0, oflags;
1791
1792 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1793 descendant != NULL;
1794 descendant = deviter_next(&di)) {
1795 if (dev != descendant &&
1796 !device_is_ancestor_of(dev, descendant))
1797 continue;
1798
1799 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1800 continue;
1801
1802 ca = descendant->dv_cfattach;
1803 oflags = descendant->dv_flags;
1804
1805 descendant->dv_flags &= ~DVF_ACTIVE;
1806 if (ca->ca_activate == NULL)
1807 continue;
1808 s = splhigh();
1809 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1810 splx(s);
1811 if (rv != 0)
1812 descendant->dv_flags = oflags;
1813 }
1814 deviter_release(&di);
1815 return rv;
1816 }
1817
1818 /*
1819 * Defer the configuration of the specified device until all
1820 * of its parent's devices have been attached.
1821 */
1822 void
1823 config_defer(device_t dev, void (*func)(device_t))
1824 {
1825 struct deferred_config *dc;
1826
1827 if (dev->dv_parent == NULL)
1828 panic("config_defer: can't defer config of a root device");
1829
1830 #ifdef DIAGNOSTIC
1831 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1832 if (dc->dc_dev == dev)
1833 panic("config_defer: deferred twice");
1834 }
1835 #endif
1836
1837 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1838 if (dc == NULL)
1839 panic("config_defer: unable to allocate callback");
1840
1841 dc->dc_dev = dev;
1842 dc->dc_func = func;
1843 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1844 config_pending_incr();
1845 }
1846
1847 /*
1848 * Defer some autoconfiguration for a device until after interrupts
1849 * are enabled.
1850 */
1851 void
1852 config_interrupts(device_t dev, void (*func)(device_t))
1853 {
1854 struct deferred_config *dc;
1855
1856 /*
1857 * If interrupts are enabled, callback now.
1858 */
1859 if (cold == 0) {
1860 (*func)(dev);
1861 return;
1862 }
1863
1864 #ifdef DIAGNOSTIC
1865 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1866 if (dc->dc_dev == dev)
1867 panic("config_interrupts: deferred twice");
1868 }
1869 #endif
1870
1871 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1872 if (dc == NULL)
1873 panic("config_interrupts: unable to allocate callback");
1874
1875 dc->dc_dev = dev;
1876 dc->dc_func = func;
1877 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1878 config_pending_incr();
1879 }
1880
1881 /*
1882 * Defer some autoconfiguration for a device until after root file system
1883 * is mounted (to load firmware etc).
1884 */
1885 void
1886 config_mountroot(device_t dev, void (*func)(device_t))
1887 {
1888 struct deferred_config *dc;
1889
1890 /*
1891 * If root file system is mounted, callback now.
1892 */
1893 if (root_is_mounted) {
1894 (*func)(dev);
1895 return;
1896 }
1897
1898 #ifdef DIAGNOSTIC
1899 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
1900 if (dc->dc_dev == dev)
1901 panic("%s: deferred twice", __func__);
1902 }
1903 #endif
1904
1905 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1906 if (dc == NULL)
1907 panic("%s: unable to allocate callback", __func__);
1908
1909 dc->dc_dev = dev;
1910 dc->dc_func = func;
1911 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
1912 }
1913
1914 /*
1915 * Process a deferred configuration queue.
1916 */
1917 static void
1918 config_process_deferred(struct deferred_config_head *queue,
1919 device_t parent)
1920 {
1921 struct deferred_config *dc, *ndc;
1922
1923 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1924 ndc = TAILQ_NEXT(dc, dc_queue);
1925 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1926 TAILQ_REMOVE(queue, dc, dc_queue);
1927 (*dc->dc_func)(dc->dc_dev);
1928 kmem_free(dc, sizeof(*dc));
1929 config_pending_decr();
1930 }
1931 }
1932 }
1933
1934 /*
1935 * Manipulate the config_pending semaphore.
1936 */
1937 void
1938 config_pending_incr(void)
1939 {
1940
1941 mutex_enter(&config_misc_lock);
1942 config_pending++;
1943 mutex_exit(&config_misc_lock);
1944 }
1945
1946 void
1947 config_pending_decr(void)
1948 {
1949
1950 #ifdef DIAGNOSTIC
1951 if (config_pending == 0)
1952 panic("config_pending_decr: config_pending == 0");
1953 #endif
1954 mutex_enter(&config_misc_lock);
1955 config_pending--;
1956 if (config_pending == 0)
1957 cv_broadcast(&config_misc_cv);
1958 mutex_exit(&config_misc_lock);
1959 }
1960
1961 /*
1962 * Register a "finalization" routine. Finalization routines are
1963 * called iteratively once all real devices have been found during
1964 * autoconfiguration, for as long as any one finalizer has done
1965 * any work.
1966 */
1967 int
1968 config_finalize_register(device_t dev, int (*fn)(device_t))
1969 {
1970 struct finalize_hook *f;
1971
1972 /*
1973 * If finalization has already been done, invoke the
1974 * callback function now.
1975 */
1976 if (config_finalize_done) {
1977 while ((*fn)(dev) != 0)
1978 /* loop */ ;
1979 }
1980
1981 /* Ensure this isn't already on the list. */
1982 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1983 if (f->f_func == fn && f->f_dev == dev)
1984 return EEXIST;
1985 }
1986
1987 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1988 f->f_func = fn;
1989 f->f_dev = dev;
1990 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1991
1992 return 0;
1993 }
1994
1995 void
1996 config_finalize(void)
1997 {
1998 struct finalize_hook *f;
1999 struct pdevinit *pdev;
2000 extern struct pdevinit pdevinit[];
2001 int errcnt, rv;
2002
2003 /*
2004 * Now that device driver threads have been created, wait for
2005 * them to finish any deferred autoconfiguration.
2006 */
2007 mutex_enter(&config_misc_lock);
2008 while (config_pending != 0)
2009 cv_wait(&config_misc_cv, &config_misc_lock);
2010 mutex_exit(&config_misc_lock);
2011
2012 KERNEL_LOCK(1, NULL);
2013
2014 /* Attach pseudo-devices. */
2015 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2016 (*pdev->pdev_attach)(pdev->pdev_count);
2017
2018 /* Run the hooks until none of them does any work. */
2019 do {
2020 rv = 0;
2021 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2022 rv |= (*f->f_func)(f->f_dev);
2023 } while (rv != 0);
2024
2025 config_finalize_done = 1;
2026
2027 /* Now free all the hooks. */
2028 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2029 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2030 kmem_free(f, sizeof(*f));
2031 }
2032
2033 KERNEL_UNLOCK_ONE(NULL);
2034
2035 errcnt = aprint_get_error_count();
2036 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2037 (boothowto & AB_VERBOSE) == 0) {
2038 mutex_enter(&config_misc_lock);
2039 if (config_do_twiddle) {
2040 config_do_twiddle = 0;
2041 printf_nolog(" done.\n");
2042 }
2043 mutex_exit(&config_misc_lock);
2044 if (errcnt != 0) {
2045 printf("WARNING: %d error%s while detecting hardware; "
2046 "check system log.\n", errcnt,
2047 errcnt == 1 ? "" : "s");
2048 }
2049 }
2050 }
2051
2052 void
2053 config_twiddle_init()
2054 {
2055
2056 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2057 config_do_twiddle = 1;
2058 }
2059 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2060 }
2061
2062 void
2063 config_twiddle_fn(void *cookie)
2064 {
2065
2066 mutex_enter(&config_misc_lock);
2067 if (config_do_twiddle) {
2068 twiddle();
2069 callout_schedule(&config_twiddle_ch, mstohz(100));
2070 }
2071 mutex_exit(&config_misc_lock);
2072 }
2073
2074 static int
2075 config_alldevs_lock(void)
2076 {
2077 mutex_enter(&alldevs_mtx);
2078 return 0;
2079 }
2080
2081 static void
2082 config_alldevs_enter(struct alldevs_foray *af)
2083 {
2084 TAILQ_INIT(&af->af_garbage);
2085 af->af_s = config_alldevs_lock();
2086 config_collect_garbage(&af->af_garbage);
2087 }
2088
2089 static void
2090 config_alldevs_exit(struct alldevs_foray *af)
2091 {
2092 config_alldevs_unlock(af->af_s);
2093 config_dump_garbage(&af->af_garbage);
2094 }
2095
2096 /*ARGSUSED*/
2097 static void
2098 config_alldevs_unlock(int s)
2099 {
2100 mutex_exit(&alldevs_mtx);
2101 }
2102
2103 /*
2104 * device_lookup:
2105 *
2106 * Look up a device instance for a given driver.
2107 */
2108 device_t
2109 device_lookup(cfdriver_t cd, int unit)
2110 {
2111 device_t dv;
2112 int s;
2113
2114 s = config_alldevs_lock();
2115 KASSERT(mutex_owned(&alldevs_mtx));
2116 if (unit < 0 || unit >= cd->cd_ndevs)
2117 dv = NULL;
2118 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2119 dv = NULL;
2120 config_alldevs_unlock(s);
2121
2122 return dv;
2123 }
2124
2125 /*
2126 * device_lookup_private:
2127 *
2128 * Look up a softc instance for a given driver.
2129 */
2130 void *
2131 device_lookup_private(cfdriver_t cd, int unit)
2132 {
2133
2134 return device_private(device_lookup(cd, unit));
2135 }
2136
2137 /*
2138 * device_find_by_xname:
2139 *
2140 * Returns the device of the given name or NULL if it doesn't exist.
2141 */
2142 device_t
2143 device_find_by_xname(const char *name)
2144 {
2145 device_t dv;
2146 deviter_t di;
2147
2148 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2149 if (strcmp(device_xname(dv), name) == 0)
2150 break;
2151 }
2152 deviter_release(&di);
2153
2154 return dv;
2155 }
2156
2157 /*
2158 * device_find_by_driver_unit:
2159 *
2160 * Returns the device of the given driver name and unit or
2161 * NULL if it doesn't exist.
2162 */
2163 device_t
2164 device_find_by_driver_unit(const char *name, int unit)
2165 {
2166 struct cfdriver *cd;
2167
2168 if ((cd = config_cfdriver_lookup(name)) == NULL)
2169 return NULL;
2170 return device_lookup(cd, unit);
2171 }
2172
2173 /*
2174 * Power management related functions.
2175 */
2176
2177 bool
2178 device_pmf_is_registered(device_t dev)
2179 {
2180 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2181 }
2182
2183 bool
2184 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2185 {
2186 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2187 return true;
2188 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2189 return false;
2190 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2191 dev->dv_driver_suspend != NULL &&
2192 !(*dev->dv_driver_suspend)(dev, qual))
2193 return false;
2194
2195 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2196 return true;
2197 }
2198
2199 bool
2200 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2201 {
2202 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2203 return true;
2204 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2205 return false;
2206 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2207 dev->dv_driver_resume != NULL &&
2208 !(*dev->dv_driver_resume)(dev, qual))
2209 return false;
2210
2211 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2212 return true;
2213 }
2214
2215 bool
2216 device_pmf_driver_shutdown(device_t dev, int how)
2217 {
2218
2219 if (*dev->dv_driver_shutdown != NULL &&
2220 !(*dev->dv_driver_shutdown)(dev, how))
2221 return false;
2222 return true;
2223 }
2224
2225 bool
2226 device_pmf_driver_register(device_t dev,
2227 bool (*suspend)(device_t, const pmf_qual_t *),
2228 bool (*resume)(device_t, const pmf_qual_t *),
2229 bool (*shutdown)(device_t, int))
2230 {
2231 dev->dv_driver_suspend = suspend;
2232 dev->dv_driver_resume = resume;
2233 dev->dv_driver_shutdown = shutdown;
2234 dev->dv_flags |= DVF_POWER_HANDLERS;
2235 return true;
2236 }
2237
2238 static const char *
2239 curlwp_name(void)
2240 {
2241 if (curlwp->l_name != NULL)
2242 return curlwp->l_name;
2243 else
2244 return curlwp->l_proc->p_comm;
2245 }
2246
2247 void
2248 device_pmf_driver_deregister(device_t dev)
2249 {
2250 device_lock_t dvl = device_getlock(dev);
2251
2252 dev->dv_driver_suspend = NULL;
2253 dev->dv_driver_resume = NULL;
2254
2255 mutex_enter(&dvl->dvl_mtx);
2256 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2257 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2258 /* Wake a thread that waits for the lock. That
2259 * thread will fail to acquire the lock, and then
2260 * it will wake the next thread that waits for the
2261 * lock, or else it will wake us.
2262 */
2263 cv_signal(&dvl->dvl_cv);
2264 pmflock_debug(dev, __func__, __LINE__);
2265 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2266 pmflock_debug(dev, __func__, __LINE__);
2267 }
2268 mutex_exit(&dvl->dvl_mtx);
2269 }
2270
2271 bool
2272 device_pmf_driver_child_register(device_t dev)
2273 {
2274 device_t parent = device_parent(dev);
2275
2276 if (parent == NULL || parent->dv_driver_child_register == NULL)
2277 return true;
2278 return (*parent->dv_driver_child_register)(dev);
2279 }
2280
2281 void
2282 device_pmf_driver_set_child_register(device_t dev,
2283 bool (*child_register)(device_t))
2284 {
2285 dev->dv_driver_child_register = child_register;
2286 }
2287
2288 static void
2289 pmflock_debug(device_t dev, const char *func, int line)
2290 {
2291 device_lock_t dvl = device_getlock(dev);
2292
2293 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2294 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2295 dev->dv_flags);
2296 }
2297
2298 static bool
2299 device_pmf_lock1(device_t dev)
2300 {
2301 device_lock_t dvl = device_getlock(dev);
2302
2303 while (device_pmf_is_registered(dev) &&
2304 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2305 dvl->dvl_nwait++;
2306 pmflock_debug(dev, __func__, __LINE__);
2307 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2308 pmflock_debug(dev, __func__, __LINE__);
2309 dvl->dvl_nwait--;
2310 }
2311 if (!device_pmf_is_registered(dev)) {
2312 pmflock_debug(dev, __func__, __LINE__);
2313 /* We could not acquire the lock, but some other thread may
2314 * wait for it, also. Wake that thread.
2315 */
2316 cv_signal(&dvl->dvl_cv);
2317 return false;
2318 }
2319 dvl->dvl_nlock++;
2320 dvl->dvl_holder = curlwp;
2321 pmflock_debug(dev, __func__, __LINE__);
2322 return true;
2323 }
2324
2325 bool
2326 device_pmf_lock(device_t dev)
2327 {
2328 bool rc;
2329 device_lock_t dvl = device_getlock(dev);
2330
2331 mutex_enter(&dvl->dvl_mtx);
2332 rc = device_pmf_lock1(dev);
2333 mutex_exit(&dvl->dvl_mtx);
2334
2335 return rc;
2336 }
2337
2338 void
2339 device_pmf_unlock(device_t dev)
2340 {
2341 device_lock_t dvl = device_getlock(dev);
2342
2343 KASSERT(dvl->dvl_nlock > 0);
2344 mutex_enter(&dvl->dvl_mtx);
2345 if (--dvl->dvl_nlock == 0)
2346 dvl->dvl_holder = NULL;
2347 cv_signal(&dvl->dvl_cv);
2348 pmflock_debug(dev, __func__, __LINE__);
2349 mutex_exit(&dvl->dvl_mtx);
2350 }
2351
2352 device_lock_t
2353 device_getlock(device_t dev)
2354 {
2355 return &dev->dv_lock;
2356 }
2357
2358 void *
2359 device_pmf_bus_private(device_t dev)
2360 {
2361 return dev->dv_bus_private;
2362 }
2363
2364 bool
2365 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2366 {
2367 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2368 return true;
2369 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2370 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2371 return false;
2372 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2373 dev->dv_bus_suspend != NULL &&
2374 !(*dev->dv_bus_suspend)(dev, qual))
2375 return false;
2376
2377 dev->dv_flags |= DVF_BUS_SUSPENDED;
2378 return true;
2379 }
2380
2381 bool
2382 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2383 {
2384 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2385 return true;
2386 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2387 dev->dv_bus_resume != NULL &&
2388 !(*dev->dv_bus_resume)(dev, qual))
2389 return false;
2390
2391 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2392 return true;
2393 }
2394
2395 bool
2396 device_pmf_bus_shutdown(device_t dev, int how)
2397 {
2398
2399 if (*dev->dv_bus_shutdown != NULL &&
2400 !(*dev->dv_bus_shutdown)(dev, how))
2401 return false;
2402 return true;
2403 }
2404
2405 void
2406 device_pmf_bus_register(device_t dev, void *priv,
2407 bool (*suspend)(device_t, const pmf_qual_t *),
2408 bool (*resume)(device_t, const pmf_qual_t *),
2409 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2410 {
2411 dev->dv_bus_private = priv;
2412 dev->dv_bus_resume = resume;
2413 dev->dv_bus_suspend = suspend;
2414 dev->dv_bus_shutdown = shutdown;
2415 dev->dv_bus_deregister = deregister;
2416 }
2417
2418 void
2419 device_pmf_bus_deregister(device_t dev)
2420 {
2421 if (dev->dv_bus_deregister == NULL)
2422 return;
2423 (*dev->dv_bus_deregister)(dev);
2424 dev->dv_bus_private = NULL;
2425 dev->dv_bus_suspend = NULL;
2426 dev->dv_bus_resume = NULL;
2427 dev->dv_bus_deregister = NULL;
2428 }
2429
2430 void *
2431 device_pmf_class_private(device_t dev)
2432 {
2433 return dev->dv_class_private;
2434 }
2435
2436 bool
2437 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2438 {
2439 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2440 return true;
2441 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2442 dev->dv_class_suspend != NULL &&
2443 !(*dev->dv_class_suspend)(dev, qual))
2444 return false;
2445
2446 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2447 return true;
2448 }
2449
2450 bool
2451 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2452 {
2453 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2454 return true;
2455 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2456 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2457 return false;
2458 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2459 dev->dv_class_resume != NULL &&
2460 !(*dev->dv_class_resume)(dev, qual))
2461 return false;
2462
2463 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2464 return true;
2465 }
2466
2467 void
2468 device_pmf_class_register(device_t dev, void *priv,
2469 bool (*suspend)(device_t, const pmf_qual_t *),
2470 bool (*resume)(device_t, const pmf_qual_t *),
2471 void (*deregister)(device_t))
2472 {
2473 dev->dv_class_private = priv;
2474 dev->dv_class_suspend = suspend;
2475 dev->dv_class_resume = resume;
2476 dev->dv_class_deregister = deregister;
2477 }
2478
2479 void
2480 device_pmf_class_deregister(device_t dev)
2481 {
2482 if (dev->dv_class_deregister == NULL)
2483 return;
2484 (*dev->dv_class_deregister)(dev);
2485 dev->dv_class_private = NULL;
2486 dev->dv_class_suspend = NULL;
2487 dev->dv_class_resume = NULL;
2488 dev->dv_class_deregister = NULL;
2489 }
2490
2491 bool
2492 device_active(device_t dev, devactive_t type)
2493 {
2494 size_t i;
2495
2496 if (dev->dv_activity_count == 0)
2497 return false;
2498
2499 for (i = 0; i < dev->dv_activity_count; ++i) {
2500 if (dev->dv_activity_handlers[i] == NULL)
2501 break;
2502 (*dev->dv_activity_handlers[i])(dev, type);
2503 }
2504
2505 return true;
2506 }
2507
2508 bool
2509 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2510 {
2511 void (**new_handlers)(device_t, devactive_t);
2512 void (**old_handlers)(device_t, devactive_t);
2513 size_t i, old_size, new_size;
2514 int s;
2515
2516 old_handlers = dev->dv_activity_handlers;
2517 old_size = dev->dv_activity_count;
2518
2519 for (i = 0; i < old_size; ++i) {
2520 KASSERT(old_handlers[i] != handler);
2521 if (old_handlers[i] == NULL) {
2522 old_handlers[i] = handler;
2523 return true;
2524 }
2525 }
2526
2527 new_size = old_size + 4;
2528 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2529
2530 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2531 new_handlers[old_size] = handler;
2532 memset(new_handlers + old_size + 1, 0,
2533 sizeof(int [new_size - (old_size+1)]));
2534
2535 s = splhigh();
2536 dev->dv_activity_count = new_size;
2537 dev->dv_activity_handlers = new_handlers;
2538 splx(s);
2539
2540 if (old_handlers != NULL)
2541 kmem_free(old_handlers, sizeof(void * [old_size]));
2542
2543 return true;
2544 }
2545
2546 void
2547 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2548 {
2549 void (**old_handlers)(device_t, devactive_t);
2550 size_t i, old_size;
2551 int s;
2552
2553 old_handlers = dev->dv_activity_handlers;
2554 old_size = dev->dv_activity_count;
2555
2556 for (i = 0; i < old_size; ++i) {
2557 if (old_handlers[i] == handler)
2558 break;
2559 if (old_handlers[i] == NULL)
2560 return; /* XXX panic? */
2561 }
2562
2563 if (i == old_size)
2564 return; /* XXX panic? */
2565
2566 for (; i < old_size - 1; ++i) {
2567 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2568 continue;
2569
2570 if (i == 0) {
2571 s = splhigh();
2572 dev->dv_activity_count = 0;
2573 dev->dv_activity_handlers = NULL;
2574 splx(s);
2575 kmem_free(old_handlers, sizeof(void *[old_size]));
2576 }
2577 return;
2578 }
2579 old_handlers[i] = NULL;
2580 }
2581
2582 /* Return true iff the device_t `dev' exists at generation `gen'. */
2583 static bool
2584 device_exists_at(device_t dv, devgen_t gen)
2585 {
2586 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2587 dv->dv_add_gen <= gen;
2588 }
2589
2590 static bool
2591 deviter_visits(const deviter_t *di, device_t dv)
2592 {
2593 return device_exists_at(dv, di->di_gen);
2594 }
2595
2596 /*
2597 * Device Iteration
2598 *
2599 * deviter_t: a device iterator. Holds state for a "walk" visiting
2600 * each device_t's in the device tree.
2601 *
2602 * deviter_init(di, flags): initialize the device iterator `di'
2603 * to "walk" the device tree. deviter_next(di) will return
2604 * the first device_t in the device tree, or NULL if there are
2605 * no devices.
2606 *
2607 * `flags' is one or more of DEVITER_F_RW, indicating that the
2608 * caller intends to modify the device tree by calling
2609 * config_detach(9) on devices in the order that the iterator
2610 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2611 * nearest the "root" of the device tree to be returned, first;
2612 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2613 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2614 * indicating both that deviter_init() should not respect any
2615 * locks on the device tree, and that deviter_next(di) may run
2616 * in more than one LWP before the walk has finished.
2617 *
2618 * Only one DEVITER_F_RW iterator may be in the device tree at
2619 * once.
2620 *
2621 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2622 *
2623 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2624 * DEVITER_F_LEAVES_FIRST are used in combination.
2625 *
2626 * deviter_first(di, flags): initialize the device iterator `di'
2627 * and return the first device_t in the device tree, or NULL
2628 * if there are no devices. The statement
2629 *
2630 * dv = deviter_first(di);
2631 *
2632 * is shorthand for
2633 *
2634 * deviter_init(di);
2635 * dv = deviter_next(di);
2636 *
2637 * deviter_next(di): return the next device_t in the device tree,
2638 * or NULL if there are no more devices. deviter_next(di)
2639 * is undefined if `di' was not initialized with deviter_init() or
2640 * deviter_first().
2641 *
2642 * deviter_release(di): stops iteration (subsequent calls to
2643 * deviter_next() will return NULL), releases any locks and
2644 * resources held by the device iterator.
2645 *
2646 * Device iteration does not return device_t's in any particular
2647 * order. An iterator will never return the same device_t twice.
2648 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2649 * is called repeatedly on the same `di', it will eventually return
2650 * NULL. It is ok to attach/detach devices during device iteration.
2651 */
2652 void
2653 deviter_init(deviter_t *di, deviter_flags_t flags)
2654 {
2655 device_t dv;
2656 int s;
2657
2658 memset(di, 0, sizeof(*di));
2659
2660 s = config_alldevs_lock();
2661 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2662 flags |= DEVITER_F_RW;
2663
2664 if ((flags & DEVITER_F_RW) != 0)
2665 alldevs_nwrite++;
2666 else
2667 alldevs_nread++;
2668 di->di_gen = alldevs_gen++;
2669 config_alldevs_unlock(s);
2670
2671 di->di_flags = flags;
2672
2673 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2674 case DEVITER_F_LEAVES_FIRST:
2675 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2676 if (!deviter_visits(di, dv))
2677 continue;
2678 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2679 }
2680 break;
2681 case DEVITER_F_ROOT_FIRST:
2682 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2683 if (!deviter_visits(di, dv))
2684 continue;
2685 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2686 }
2687 break;
2688 default:
2689 break;
2690 }
2691
2692 deviter_reinit(di);
2693 }
2694
2695 static void
2696 deviter_reinit(deviter_t *di)
2697 {
2698 if ((di->di_flags & DEVITER_F_RW) != 0)
2699 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2700 else
2701 di->di_prev = TAILQ_FIRST(&alldevs);
2702 }
2703
2704 device_t
2705 deviter_first(deviter_t *di, deviter_flags_t flags)
2706 {
2707 deviter_init(di, flags);
2708 return deviter_next(di);
2709 }
2710
2711 static device_t
2712 deviter_next2(deviter_t *di)
2713 {
2714 device_t dv;
2715
2716 dv = di->di_prev;
2717
2718 if (dv == NULL)
2719 return NULL;
2720
2721 if ((di->di_flags & DEVITER_F_RW) != 0)
2722 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2723 else
2724 di->di_prev = TAILQ_NEXT(dv, dv_list);
2725
2726 return dv;
2727 }
2728
2729 static device_t
2730 deviter_next1(deviter_t *di)
2731 {
2732 device_t dv;
2733
2734 do {
2735 dv = deviter_next2(di);
2736 } while (dv != NULL && !deviter_visits(di, dv));
2737
2738 return dv;
2739 }
2740
2741 device_t
2742 deviter_next(deviter_t *di)
2743 {
2744 device_t dv = NULL;
2745
2746 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2747 case 0:
2748 return deviter_next1(di);
2749 case DEVITER_F_LEAVES_FIRST:
2750 while (di->di_curdepth >= 0) {
2751 if ((dv = deviter_next1(di)) == NULL) {
2752 di->di_curdepth--;
2753 deviter_reinit(di);
2754 } else if (dv->dv_depth == di->di_curdepth)
2755 break;
2756 }
2757 return dv;
2758 case DEVITER_F_ROOT_FIRST:
2759 while (di->di_curdepth <= di->di_maxdepth) {
2760 if ((dv = deviter_next1(di)) == NULL) {
2761 di->di_curdepth++;
2762 deviter_reinit(di);
2763 } else if (dv->dv_depth == di->di_curdepth)
2764 break;
2765 }
2766 return dv;
2767 default:
2768 return NULL;
2769 }
2770 }
2771
2772 void
2773 deviter_release(deviter_t *di)
2774 {
2775 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2776 int s;
2777
2778 s = config_alldevs_lock();
2779 if (rw)
2780 --alldevs_nwrite;
2781 else
2782 --alldevs_nread;
2783 /* XXX wake a garbage-collection thread */
2784 config_alldevs_unlock(s);
2785 }
2786
2787 const char *
2788 cfdata_ifattr(const struct cfdata *cf)
2789 {
2790 return cf->cf_pspec->cfp_iattr;
2791 }
2792
2793 bool
2794 ifattr_match(const char *snull, const char *t)
2795 {
2796 return (snull == NULL) || strcmp(snull, t) == 0;
2797 }
2798
2799 void
2800 null_childdetached(device_t self, device_t child)
2801 {
2802 /* do nothing */
2803 }
2804
2805 static void
2806 sysctl_detach_setup(struct sysctllog **clog)
2807 {
2808 const struct sysctlnode *node = NULL;
2809
2810 sysctl_createv(clog, 0, NULL, &node,
2811 CTLFLAG_PERMANENT,
2812 CTLTYPE_NODE, "kern", NULL,
2813 NULL, 0, NULL, 0,
2814 CTL_KERN, CTL_EOL);
2815
2816 if (node == NULL)
2817 return;
2818
2819 sysctl_createv(clog, 0, &node, NULL,
2820 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2821 CTLTYPE_BOOL, "detachall",
2822 SYSCTL_DESCR("Detach all devices at shutdown"),
2823 NULL, 0, &detachall, 0,
2824 CTL_CREATE, CTL_EOL);
2825 }
2826