subr_autoconf.c revision 1.214 1 /* $NetBSD: subr_autoconf.c,v 1.214 2011/04/02 08:11:31 mbalmer Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.214 2011/04/02 08:11:31 mbalmer Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #endif
85
86 #include <sys/param.h>
87 #include <sys/device.h>
88 #include <sys/disklabel.h>
89 #include <sys/conf.h>
90 #include <sys/kauth.h>
91 #include <sys/malloc.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110
111 #include <sys/disk.h>
112
113 #include <machine/limits.h>
114
115 /*
116 * Autoconfiguration subroutines.
117 */
118
119 /*
120 * ioconf.c exports exactly two names: cfdata and cfroots. All system
121 * devices and drivers are found via these tables.
122 */
123 extern struct cfdata cfdata[];
124 extern const short cfroots[];
125
126 /*
127 * List of all cfdriver structures. We use this to detect duplicates
128 * when other cfdrivers are loaded.
129 */
130 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
131 extern struct cfdriver * const cfdriver_list_initial[];
132
133 /*
134 * Initial list of cfattach's.
135 */
136 extern const struct cfattachinit cfattachinit[];
137
138 /*
139 * List of cfdata tables. We always have one such list -- the one
140 * built statically when the kernel was configured.
141 */
142 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
143 static struct cftable initcftable;
144
145 #define ROOT ((device_t)NULL)
146
147 struct matchinfo {
148 cfsubmatch_t fn;
149 struct device *parent;
150 const int *locs;
151 void *aux;
152 struct cfdata *match;
153 int pri;
154 };
155
156 struct alldevs_foray {
157 int af_s;
158 struct devicelist af_garbage;
159 };
160
161 static char *number(char *, int);
162 static void mapply(struct matchinfo *, cfdata_t);
163 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
164 static void config_devdelete(device_t);
165 static void config_devunlink(device_t, struct devicelist *);
166 static void config_makeroom(int, struct cfdriver *);
167 static void config_devlink(device_t);
168 static void config_alldevs_unlock(int);
169 static int config_alldevs_lock(void);
170 static void config_alldevs_enter(struct alldevs_foray *);
171 static void config_alldevs_exit(struct alldevs_foray *);
172
173 static void config_collect_garbage(struct devicelist *);
174 static void config_dump_garbage(struct devicelist *);
175
176 static void pmflock_debug(device_t, const char *, int);
177
178 static device_t deviter_next1(deviter_t *);
179 static void deviter_reinit(deviter_t *);
180
181 struct deferred_config {
182 TAILQ_ENTRY(deferred_config) dc_queue;
183 device_t dc_dev;
184 void (*dc_func)(device_t);
185 };
186
187 TAILQ_HEAD(deferred_config_head, deferred_config);
188
189 struct deferred_config_head deferred_config_queue =
190 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
191 struct deferred_config_head interrupt_config_queue =
192 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
193 int interrupt_config_threads = 8;
194 struct deferred_config_head mountroot_config_queue =
195 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
196 int mountroot_config_threads = 2;
197 static bool root_is_mounted = false;
198
199 static void config_process_deferred(struct deferred_config_head *, device_t);
200
201 /* Hooks to finalize configuration once all real devices have been found. */
202 struct finalize_hook {
203 TAILQ_ENTRY(finalize_hook) f_list;
204 int (*f_func)(device_t);
205 device_t f_dev;
206 };
207 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
208 TAILQ_HEAD_INITIALIZER(config_finalize_list);
209 static int config_finalize_done;
210
211 /* list of all devices */
212 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
213 static kmutex_t alldevs_mtx;
214 static volatile bool alldevs_garbage = false;
215 static volatile devgen_t alldevs_gen = 1;
216 static volatile int alldevs_nread = 0;
217 static volatile int alldevs_nwrite = 0;
218
219 static int config_pending; /* semaphore for mountroot */
220 static kmutex_t config_misc_lock;
221 static kcondvar_t config_misc_cv;
222
223 static bool detachall = false;
224
225 #define STREQ(s1, s2) \
226 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
227
228 static bool config_initialized = false; /* config_init() has been called. */
229
230 static int config_do_twiddle;
231 static callout_t config_twiddle_ch;
232
233 static void sysctl_detach_setup(struct sysctllog **);
234
235 typedef int (*cfdriver_fn)(struct cfdriver *);
236 static int
237 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
238 cfdriver_fn drv_do, cfdriver_fn drv_undo,
239 const char *style, bool dopanic)
240 {
241 void (*pr)(const char *, ...) = dopanic ? panic : printf;
242 int i = 0, error = 0, e2;
243
244 for (i = 0; cfdriverv[i] != NULL; i++) {
245 if ((error = drv_do(cfdriverv[i])) != 0) {
246 pr("configure: `%s' driver %s failed: %d",
247 cfdriverv[i]->cd_name, style, error);
248 goto bad;
249 }
250 }
251
252 KASSERT(error == 0);
253 return 0;
254
255 bad:
256 printf("\n");
257 for (i--; i >= 0; i--) {
258 e2 = drv_undo(cfdriverv[i]);
259 KASSERT(e2 == 0);
260 }
261
262 return error;
263 }
264
265 typedef int (*cfattach_fn)(const char *, struct cfattach *);
266 static int
267 frob_cfattachvec(const struct cfattachinit *cfattachv,
268 cfattach_fn att_do, cfattach_fn att_undo,
269 const char *style, bool dopanic)
270 {
271 const struct cfattachinit *cfai = NULL;
272 void (*pr)(const char *, ...) = dopanic ? panic : printf;
273 int j = 0, error = 0, e2;
274
275 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
276 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
277 if ((error = att_do(cfai->cfai_name,
278 cfai->cfai_list[j])) != 0) {
279 pr("configure: attachment `%s' "
280 "of `%s' driver %s failed: %d",
281 cfai->cfai_list[j]->ca_name,
282 cfai->cfai_name, style, error);
283 goto bad;
284 }
285 }
286 }
287
288 KASSERT(error == 0);
289 return 0;
290
291 bad:
292 /*
293 * Rollback in reverse order. dunno if super-important, but
294 * do that anyway. Although the code looks a little like
295 * someone did a little integration (in the math sense).
296 */
297 printf("\n");
298 if (cfai) {
299 bool last;
300
301 for (last = false; last == false; ) {
302 if (cfai == &cfattachv[0])
303 last = true;
304 for (j--; j >= 0; j--) {
305 e2 = att_undo(cfai->cfai_name,
306 cfai->cfai_list[j]);
307 KASSERT(e2 == 0);
308 }
309 if (!last) {
310 cfai--;
311 for (j = 0; cfai->cfai_list[j] != NULL; j++)
312 ;
313 }
314 }
315 }
316
317 return error;
318 }
319
320 /*
321 * Initialize the autoconfiguration data structures. Normally this
322 * is done by configure(), but some platforms need to do this very
323 * early (to e.g. initialize the console).
324 */
325 void
326 config_init(void)
327 {
328
329 KASSERT(config_initialized == false);
330
331 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
332
333 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
334 cv_init(&config_misc_cv, "cfgmisc");
335
336 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
337
338 frob_cfdrivervec(cfdriver_list_initial,
339 config_cfdriver_attach, NULL, "bootstrap", true);
340 frob_cfattachvec(cfattachinit,
341 config_cfattach_attach, NULL, "bootstrap", true);
342
343 initcftable.ct_cfdata = cfdata;
344 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
345
346 config_initialized = true;
347 }
348
349 /*
350 * Init or fini drivers and attachments. Either all or none
351 * are processed (via rollback). It would be nice if this were
352 * atomic to outside consumers, but with the current state of
353 * locking ...
354 */
355 int
356 config_init_component(struct cfdriver * const *cfdriverv,
357 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
358 {
359 int error;
360
361 if ((error = frob_cfdrivervec(cfdriverv,
362 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
363 return error;
364 if ((error = frob_cfattachvec(cfattachv,
365 config_cfattach_attach, config_cfattach_detach,
366 "init", false)) != 0) {
367 frob_cfdrivervec(cfdriverv,
368 config_cfdriver_detach, NULL, "init rollback", true);
369 return error;
370 }
371 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
372 frob_cfattachvec(cfattachv,
373 config_cfattach_detach, NULL, "init rollback", true);
374 frob_cfdrivervec(cfdriverv,
375 config_cfdriver_detach, NULL, "init rollback", true);
376 return error;
377 }
378
379 return 0;
380 }
381
382 int
383 config_fini_component(struct cfdriver * const *cfdriverv,
384 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
385 {
386 int error;
387
388 if ((error = config_cfdata_detach(cfdatav)) != 0)
389 return error;
390 if ((error = frob_cfattachvec(cfattachv,
391 config_cfattach_detach, config_cfattach_attach,
392 "fini", false)) != 0) {
393 if (config_cfdata_attach(cfdatav, 0) != 0)
394 panic("config_cfdata fini rollback failed");
395 return error;
396 }
397 if ((error = frob_cfdrivervec(cfdriverv,
398 config_cfdriver_detach, config_cfdriver_attach,
399 "fini", false)) != 0) {
400 frob_cfattachvec(cfattachv,
401 config_cfattach_attach, NULL, "fini rollback", true);
402 if (config_cfdata_attach(cfdatav, 0) != 0)
403 panic("config_cfdata fini rollback failed");
404 return error;
405 }
406
407 return 0;
408 }
409
410 void
411 config_init_mi(void)
412 {
413
414 if (!config_initialized)
415 config_init();
416
417 sysctl_detach_setup(NULL);
418 }
419
420 void
421 config_deferred(device_t dev)
422 {
423 config_process_deferred(&deferred_config_queue, dev);
424 config_process_deferred(&interrupt_config_queue, dev);
425 config_process_deferred(&mountroot_config_queue, dev);
426 }
427
428 static void
429 config_interrupts_thread(void *cookie)
430 {
431 struct deferred_config *dc;
432
433 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
434 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
435 (*dc->dc_func)(dc->dc_dev);
436 kmem_free(dc, sizeof(*dc));
437 config_pending_decr();
438 }
439 kthread_exit(0);
440 }
441
442 void
443 config_create_interruptthreads()
444 {
445 int i;
446
447 for (i = 0; i < interrupt_config_threads; i++) {
448 (void)kthread_create(PRI_NONE, 0, NULL,
449 config_interrupts_thread, NULL, NULL, "config");
450 }
451 }
452
453 static void
454 config_mountroot_thread(void *cookie)
455 {
456 struct deferred_config *dc;
457
458 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
459 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
460 (*dc->dc_func)(dc->dc_dev);
461 kmem_free(dc, sizeof(*dc));
462 }
463 kthread_exit(0);
464 }
465
466 void
467 config_create_mountrootthreads()
468 {
469 int i;
470
471 if (!root_is_mounted)
472 root_is_mounted = true;
473
474 for (i = 0; i < mountroot_config_threads; i++) {
475 (void)kthread_create(PRI_NONE, 0, NULL,
476 config_mountroot_thread, NULL, NULL, "config");
477 }
478 }
479
480 /*
481 * Announce device attach/detach to userland listeners.
482 */
483 static void
484 devmon_report_device(device_t dev, bool isattach)
485 {
486 #if NDRVCTL > 0
487 prop_dictionary_t ev;
488 const char *parent;
489 const char *what;
490 device_t pdev = device_parent(dev);
491
492 ev = prop_dictionary_create();
493 if (ev == NULL)
494 return;
495
496 what = (isattach ? "device-attach" : "device-detach");
497 parent = (pdev == NULL ? "root" : device_xname(pdev));
498 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
499 !prop_dictionary_set_cstring(ev, "parent", parent)) {
500 prop_object_release(ev);
501 return;
502 }
503
504 devmon_insert(what, ev);
505 #endif
506 }
507
508 /*
509 * Add a cfdriver to the system.
510 */
511 int
512 config_cfdriver_attach(struct cfdriver *cd)
513 {
514 struct cfdriver *lcd;
515
516 /* Make sure this driver isn't already in the system. */
517 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
518 if (STREQ(lcd->cd_name, cd->cd_name))
519 return EEXIST;
520 }
521
522 LIST_INIT(&cd->cd_attach);
523 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
524
525 return 0;
526 }
527
528 /*
529 * Remove a cfdriver from the system.
530 */
531 int
532 config_cfdriver_detach(struct cfdriver *cd)
533 {
534 struct alldevs_foray af;
535 int i, rc = 0;
536
537 config_alldevs_enter(&af);
538 /* Make sure there are no active instances. */
539 for (i = 0; i < cd->cd_ndevs; i++) {
540 if (cd->cd_devs[i] != NULL) {
541 rc = EBUSY;
542 break;
543 }
544 }
545 config_alldevs_exit(&af);
546
547 if (rc != 0)
548 return rc;
549
550 /* ...and no attachments loaded. */
551 if (LIST_EMPTY(&cd->cd_attach) == 0)
552 return EBUSY;
553
554 LIST_REMOVE(cd, cd_list);
555
556 KASSERT(cd->cd_devs == NULL);
557
558 return 0;
559 }
560
561 /*
562 * Look up a cfdriver by name.
563 */
564 struct cfdriver *
565 config_cfdriver_lookup(const char *name)
566 {
567 struct cfdriver *cd;
568
569 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
570 if (STREQ(cd->cd_name, name))
571 return cd;
572 }
573
574 return NULL;
575 }
576
577 /*
578 * Add a cfattach to the specified driver.
579 */
580 int
581 config_cfattach_attach(const char *driver, struct cfattach *ca)
582 {
583 struct cfattach *lca;
584 struct cfdriver *cd;
585
586 cd = config_cfdriver_lookup(driver);
587 if (cd == NULL)
588 return ESRCH;
589
590 /* Make sure this attachment isn't already on this driver. */
591 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
592 if (STREQ(lca->ca_name, ca->ca_name))
593 return EEXIST;
594 }
595
596 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
597
598 return 0;
599 }
600
601 /*
602 * Remove a cfattach from the specified driver.
603 */
604 int
605 config_cfattach_detach(const char *driver, struct cfattach *ca)
606 {
607 struct alldevs_foray af;
608 struct cfdriver *cd;
609 device_t dev;
610 int i, rc = 0;
611
612 cd = config_cfdriver_lookup(driver);
613 if (cd == NULL)
614 return ESRCH;
615
616 config_alldevs_enter(&af);
617 /* Make sure there are no active instances. */
618 for (i = 0; i < cd->cd_ndevs; i++) {
619 if ((dev = cd->cd_devs[i]) == NULL)
620 continue;
621 if (dev->dv_cfattach == ca) {
622 rc = EBUSY;
623 break;
624 }
625 }
626 config_alldevs_exit(&af);
627
628 if (rc != 0)
629 return rc;
630
631 LIST_REMOVE(ca, ca_list);
632
633 return 0;
634 }
635
636 /*
637 * Look up a cfattach by name.
638 */
639 static struct cfattach *
640 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
641 {
642 struct cfattach *ca;
643
644 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
645 if (STREQ(ca->ca_name, atname))
646 return ca;
647 }
648
649 return NULL;
650 }
651
652 /*
653 * Look up a cfattach by driver/attachment name.
654 */
655 struct cfattach *
656 config_cfattach_lookup(const char *name, const char *atname)
657 {
658 struct cfdriver *cd;
659
660 cd = config_cfdriver_lookup(name);
661 if (cd == NULL)
662 return NULL;
663
664 return config_cfattach_lookup_cd(cd, atname);
665 }
666
667 /*
668 * Apply the matching function and choose the best. This is used
669 * a few times and we want to keep the code small.
670 */
671 static void
672 mapply(struct matchinfo *m, cfdata_t cf)
673 {
674 int pri;
675
676 if (m->fn != NULL) {
677 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
678 } else {
679 pri = config_match(m->parent, cf, m->aux);
680 }
681 if (pri > m->pri) {
682 m->match = cf;
683 m->pri = pri;
684 }
685 }
686
687 int
688 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
689 {
690 const struct cfiattrdata *ci;
691 const struct cflocdesc *cl;
692 int nlocs, i;
693
694 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
695 KASSERT(ci);
696 nlocs = ci->ci_loclen;
697 KASSERT(!nlocs || locs);
698 for (i = 0; i < nlocs; i++) {
699 cl = &ci->ci_locdesc[i];
700 /* !cld_defaultstr means no default value */
701 if ((!(cl->cld_defaultstr)
702 || (cf->cf_loc[i] != cl->cld_default))
703 && cf->cf_loc[i] != locs[i])
704 return 0;
705 }
706
707 return config_match(parent, cf, aux);
708 }
709
710 /*
711 * Helper function: check whether the driver supports the interface attribute
712 * and return its descriptor structure.
713 */
714 static const struct cfiattrdata *
715 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
716 {
717 const struct cfiattrdata * const *cpp;
718
719 if (cd->cd_attrs == NULL)
720 return 0;
721
722 for (cpp = cd->cd_attrs; *cpp; cpp++) {
723 if (STREQ((*cpp)->ci_name, ia)) {
724 /* Match. */
725 return *cpp;
726 }
727 }
728 return 0;
729 }
730
731 /*
732 * Lookup an interface attribute description by name.
733 * If the driver is given, consider only its supported attributes.
734 */
735 const struct cfiattrdata *
736 cfiattr_lookup(const char *name, const struct cfdriver *cd)
737 {
738 const struct cfdriver *d;
739 const struct cfiattrdata *ia;
740
741 if (cd)
742 return cfdriver_get_iattr(cd, name);
743
744 LIST_FOREACH(d, &allcfdrivers, cd_list) {
745 ia = cfdriver_get_iattr(d, name);
746 if (ia)
747 return ia;
748 }
749 return 0;
750 }
751
752 /*
753 * Determine if `parent' is a potential parent for a device spec based
754 * on `cfp'.
755 */
756 static int
757 cfparent_match(const device_t parent, const struct cfparent *cfp)
758 {
759 struct cfdriver *pcd;
760
761 /* We don't match root nodes here. */
762 if (cfp == NULL)
763 return 0;
764
765 pcd = parent->dv_cfdriver;
766 KASSERT(pcd != NULL);
767
768 /*
769 * First, ensure this parent has the correct interface
770 * attribute.
771 */
772 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
773 return 0;
774
775 /*
776 * If no specific parent device instance was specified (i.e.
777 * we're attaching to the attribute only), we're done!
778 */
779 if (cfp->cfp_parent == NULL)
780 return 1;
781
782 /*
783 * Check the parent device's name.
784 */
785 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
786 return 0; /* not the same parent */
787
788 /*
789 * Make sure the unit number matches.
790 */
791 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
792 cfp->cfp_unit == parent->dv_unit)
793 return 1;
794
795 /* Unit numbers don't match. */
796 return 0;
797 }
798
799 /*
800 * Helper for config_cfdata_attach(): check all devices whether it could be
801 * parent any attachment in the config data table passed, and rescan.
802 */
803 static void
804 rescan_with_cfdata(const struct cfdata *cf)
805 {
806 device_t d;
807 const struct cfdata *cf1;
808 deviter_t di;
809
810
811 /*
812 * "alldevs" is likely longer than a modules's cfdata, so make it
813 * the outer loop.
814 */
815 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
816
817 if (!(d->dv_cfattach->ca_rescan))
818 continue;
819
820 for (cf1 = cf; cf1->cf_name; cf1++) {
821
822 if (!cfparent_match(d, cf1->cf_pspec))
823 continue;
824
825 (*d->dv_cfattach->ca_rescan)(d,
826 cfdata_ifattr(cf1), cf1->cf_loc);
827
828 config_deferred(d);
829 }
830 }
831 deviter_release(&di);
832 }
833
834 /*
835 * Attach a supplemental config data table and rescan potential
836 * parent devices if required.
837 */
838 int
839 config_cfdata_attach(cfdata_t cf, int scannow)
840 {
841 struct cftable *ct;
842
843 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
844 ct->ct_cfdata = cf;
845 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
846
847 if (scannow)
848 rescan_with_cfdata(cf);
849
850 return 0;
851 }
852
853 /*
854 * Helper for config_cfdata_detach: check whether a device is
855 * found through any attachment in the config data table.
856 */
857 static int
858 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
859 {
860 const struct cfdata *cf1;
861
862 for (cf1 = cf; cf1->cf_name; cf1++)
863 if (d->dv_cfdata == cf1)
864 return 1;
865
866 return 0;
867 }
868
869 /*
870 * Detach a supplemental config data table. Detach all devices found
871 * through that table (and thus keeping references to it) before.
872 */
873 int
874 config_cfdata_detach(cfdata_t cf)
875 {
876 device_t d;
877 int error = 0;
878 struct cftable *ct;
879 deviter_t di;
880
881 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
882 d = deviter_next(&di)) {
883 if (!dev_in_cfdata(d, cf))
884 continue;
885 if ((error = config_detach(d, 0)) != 0)
886 break;
887 }
888 deviter_release(&di);
889 if (error) {
890 aprint_error_dev(d, "unable to detach instance\n");
891 return error;
892 }
893
894 TAILQ_FOREACH(ct, &allcftables, ct_list) {
895 if (ct->ct_cfdata == cf) {
896 TAILQ_REMOVE(&allcftables, ct, ct_list);
897 kmem_free(ct, sizeof(*ct));
898 return 0;
899 }
900 }
901
902 /* not found -- shouldn't happen */
903 return EINVAL;
904 }
905
906 /*
907 * Invoke the "match" routine for a cfdata entry on behalf of
908 * an external caller, usually a "submatch" routine.
909 */
910 int
911 config_match(device_t parent, cfdata_t cf, void *aux)
912 {
913 struct cfattach *ca;
914
915 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
916 if (ca == NULL) {
917 /* No attachment for this entry, oh well. */
918 return 0;
919 }
920
921 return (*ca->ca_match)(parent, cf, aux);
922 }
923
924 /*
925 * Iterate over all potential children of some device, calling the given
926 * function (default being the child's match function) for each one.
927 * Nonzero returns are matches; the highest value returned is considered
928 * the best match. Return the `found child' if we got a match, or NULL
929 * otherwise. The `aux' pointer is simply passed on through.
930 *
931 * Note that this function is designed so that it can be used to apply
932 * an arbitrary function to all potential children (its return value
933 * can be ignored).
934 */
935 cfdata_t
936 config_search_loc(cfsubmatch_t fn, device_t parent,
937 const char *ifattr, const int *locs, void *aux)
938 {
939 struct cftable *ct;
940 cfdata_t cf;
941 struct matchinfo m;
942
943 KASSERT(config_initialized);
944 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
945
946 m.fn = fn;
947 m.parent = parent;
948 m.locs = locs;
949 m.aux = aux;
950 m.match = NULL;
951 m.pri = 0;
952
953 TAILQ_FOREACH(ct, &allcftables, ct_list) {
954 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
955
956 /* We don't match root nodes here. */
957 if (!cf->cf_pspec)
958 continue;
959
960 /*
961 * Skip cf if no longer eligible, otherwise scan
962 * through parents for one matching `parent', and
963 * try match function.
964 */
965 if (cf->cf_fstate == FSTATE_FOUND)
966 continue;
967 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
968 cf->cf_fstate == FSTATE_DSTAR)
969 continue;
970
971 /*
972 * If an interface attribute was specified,
973 * consider only children which attach to
974 * that attribute.
975 */
976 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
977 continue;
978
979 if (cfparent_match(parent, cf->cf_pspec))
980 mapply(&m, cf);
981 }
982 }
983 return m.match;
984 }
985
986 cfdata_t
987 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
988 void *aux)
989 {
990
991 return config_search_loc(fn, parent, ifattr, NULL, aux);
992 }
993
994 /*
995 * Find the given root device.
996 * This is much like config_search, but there is no parent.
997 * Don't bother with multiple cfdata tables; the root node
998 * must always be in the initial table.
999 */
1000 cfdata_t
1001 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1002 {
1003 cfdata_t cf;
1004 const short *p;
1005 struct matchinfo m;
1006
1007 m.fn = fn;
1008 m.parent = ROOT;
1009 m.aux = aux;
1010 m.match = NULL;
1011 m.pri = 0;
1012 m.locs = 0;
1013 /*
1014 * Look at root entries for matching name. We do not bother
1015 * with found-state here since only one root should ever be
1016 * searched (and it must be done first).
1017 */
1018 for (p = cfroots; *p >= 0; p++) {
1019 cf = &cfdata[*p];
1020 if (strcmp(cf->cf_name, rootname) == 0)
1021 mapply(&m, cf);
1022 }
1023 return m.match;
1024 }
1025
1026 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1027
1028 /*
1029 * The given `aux' argument describes a device that has been found
1030 * on the given parent, but not necessarily configured. Locate the
1031 * configuration data for that device (using the submatch function
1032 * provided, or using candidates' cd_match configuration driver
1033 * functions) and attach it, and return true. If the device was
1034 * not configured, call the given `print' function and return 0.
1035 */
1036 device_t
1037 config_found_sm_loc(device_t parent,
1038 const char *ifattr, const int *locs, void *aux,
1039 cfprint_t print, cfsubmatch_t submatch)
1040 {
1041 cfdata_t cf;
1042
1043 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1044 return(config_attach_loc(parent, cf, locs, aux, print));
1045 if (print) {
1046 if (config_do_twiddle && cold)
1047 twiddle();
1048 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1049 }
1050
1051 return NULL;
1052 }
1053
1054 device_t
1055 config_found_ia(device_t parent, const char *ifattr, void *aux,
1056 cfprint_t print)
1057 {
1058
1059 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1060 }
1061
1062 device_t
1063 config_found(device_t parent, void *aux, cfprint_t print)
1064 {
1065
1066 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1067 }
1068
1069 /*
1070 * As above, but for root devices.
1071 */
1072 device_t
1073 config_rootfound(const char *rootname, void *aux)
1074 {
1075 cfdata_t cf;
1076
1077 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1078 return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
1079 aprint_error("root device %s not configured\n", rootname);
1080 return NULL;
1081 }
1082
1083 /* just like sprintf(buf, "%d") except that it works from the end */
1084 static char *
1085 number(char *ep, int n)
1086 {
1087
1088 *--ep = 0;
1089 while (n >= 10) {
1090 *--ep = (n % 10) + '0';
1091 n /= 10;
1092 }
1093 *--ep = n + '0';
1094 return ep;
1095 }
1096
1097 /*
1098 * Expand the size of the cd_devs array if necessary.
1099 *
1100 * The caller must hold alldevs_mtx. config_makeroom() may release and
1101 * re-acquire alldevs_mtx, so callers should re-check conditions such
1102 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1103 * returns.
1104 */
1105 static void
1106 config_makeroom(int n, struct cfdriver *cd)
1107 {
1108 int old, new;
1109 device_t *osp, *nsp;
1110
1111 alldevs_nwrite++;
1112
1113 for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
1114 ;
1115
1116 while (n >= cd->cd_ndevs) {
1117 /*
1118 * Need to expand the array.
1119 */
1120 old = cd->cd_ndevs;
1121 osp = cd->cd_devs;
1122
1123 /* Release alldevs_mtx around allocation, which may
1124 * sleep.
1125 */
1126 mutex_exit(&alldevs_mtx);
1127 nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
1128 if (nsp == NULL)
1129 panic("%s: could not expand cd_devs", __func__);
1130 mutex_enter(&alldevs_mtx);
1131
1132 /* If another thread moved the array while we did
1133 * not hold alldevs_mtx, try again.
1134 */
1135 if (cd->cd_devs != osp) {
1136 mutex_exit(&alldevs_mtx);
1137 kmem_free(nsp, sizeof(device_t[new]));
1138 mutex_enter(&alldevs_mtx);
1139 continue;
1140 }
1141
1142 memset(nsp + old, 0, sizeof(device_t[new - old]));
1143 if (old != 0)
1144 memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
1145
1146 cd->cd_ndevs = new;
1147 cd->cd_devs = nsp;
1148 if (old != 0) {
1149 mutex_exit(&alldevs_mtx);
1150 kmem_free(osp, sizeof(device_t[old]));
1151 mutex_enter(&alldevs_mtx);
1152 }
1153 }
1154 alldevs_nwrite--;
1155 }
1156
1157 /*
1158 * Put dev into the devices list.
1159 */
1160 static void
1161 config_devlink(device_t dev)
1162 {
1163 int s;
1164
1165 s = config_alldevs_lock();
1166
1167 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1168
1169 dev->dv_add_gen = alldevs_gen;
1170 /* It is safe to add a device to the tail of the list while
1171 * readers and writers are in the list.
1172 */
1173 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1174 config_alldevs_unlock(s);
1175 }
1176
1177 static void
1178 config_devfree(device_t dev)
1179 {
1180 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1181
1182 if (dev->dv_cfattach->ca_devsize > 0)
1183 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1184 if (priv)
1185 kmem_free(dev, sizeof(*dev));
1186 }
1187
1188 /*
1189 * Caller must hold alldevs_mtx.
1190 */
1191 static void
1192 config_devunlink(device_t dev, struct devicelist *garbage)
1193 {
1194 struct device_garbage *dg = &dev->dv_garbage;
1195 cfdriver_t cd = device_cfdriver(dev);
1196 int i;
1197
1198 KASSERT(mutex_owned(&alldevs_mtx));
1199
1200 /* Unlink from device list. Link to garbage list. */
1201 TAILQ_REMOVE(&alldevs, dev, dv_list);
1202 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1203
1204 /* Remove from cfdriver's array. */
1205 cd->cd_devs[dev->dv_unit] = NULL;
1206
1207 /*
1208 * If the device now has no units in use, unlink its softc array.
1209 */
1210 for (i = 0; i < cd->cd_ndevs; i++) {
1211 if (cd->cd_devs[i] != NULL)
1212 break;
1213 }
1214 /* Nothing found. Unlink, now. Deallocate, later. */
1215 if (i == cd->cd_ndevs) {
1216 dg->dg_ndevs = cd->cd_ndevs;
1217 dg->dg_devs = cd->cd_devs;
1218 cd->cd_devs = NULL;
1219 cd->cd_ndevs = 0;
1220 }
1221 }
1222
1223 static void
1224 config_devdelete(device_t dev)
1225 {
1226 struct device_garbage *dg = &dev->dv_garbage;
1227 device_lock_t dvl = device_getlock(dev);
1228
1229 if (dg->dg_devs != NULL)
1230 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1231
1232 cv_destroy(&dvl->dvl_cv);
1233 mutex_destroy(&dvl->dvl_mtx);
1234
1235 KASSERT(dev->dv_properties != NULL);
1236 prop_object_release(dev->dv_properties);
1237
1238 if (dev->dv_activity_handlers)
1239 panic("%s with registered handlers", __func__);
1240
1241 if (dev->dv_locators) {
1242 size_t amount = *--dev->dv_locators;
1243 kmem_free(dev->dv_locators, amount);
1244 }
1245
1246 config_devfree(dev);
1247 }
1248
1249 static int
1250 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1251 {
1252 int unit;
1253
1254 if (cf->cf_fstate == FSTATE_STAR) {
1255 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1256 if (cd->cd_devs[unit] == NULL)
1257 break;
1258 /*
1259 * unit is now the unit of the first NULL device pointer,
1260 * or max(cd->cd_ndevs,cf->cf_unit).
1261 */
1262 } else {
1263 unit = cf->cf_unit;
1264 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1265 unit = -1;
1266 }
1267 return unit;
1268 }
1269
1270 static int
1271 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1272 {
1273 struct alldevs_foray af;
1274 int unit;
1275
1276 config_alldevs_enter(&af);
1277 for (;;) {
1278 unit = config_unit_nextfree(cd, cf);
1279 if (unit == -1)
1280 break;
1281 if (unit < cd->cd_ndevs) {
1282 cd->cd_devs[unit] = dev;
1283 dev->dv_unit = unit;
1284 break;
1285 }
1286 config_makeroom(unit, cd);
1287 }
1288 config_alldevs_exit(&af);
1289
1290 return unit;
1291 }
1292
1293 static device_t
1294 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1295 {
1296 cfdriver_t cd;
1297 cfattach_t ca;
1298 size_t lname, lunit;
1299 const char *xunit;
1300 int myunit;
1301 char num[10];
1302 device_t dev;
1303 void *dev_private;
1304 const struct cfiattrdata *ia;
1305 device_lock_t dvl;
1306
1307 cd = config_cfdriver_lookup(cf->cf_name);
1308 if (cd == NULL)
1309 return NULL;
1310
1311 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1312 if (ca == NULL)
1313 return NULL;
1314
1315 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1316 ca->ca_devsize < sizeof(struct device))
1317 panic("config_devalloc: %s", cf->cf_atname);
1318
1319 /* get memory for all device vars */
1320 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1321 if (ca->ca_devsize > 0) {
1322 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1323 if (dev_private == NULL)
1324 panic("config_devalloc: memory allocation for device softc failed");
1325 } else {
1326 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1327 dev_private = NULL;
1328 }
1329
1330 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1331 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1332 } else {
1333 dev = dev_private;
1334 }
1335 if (dev == NULL)
1336 panic("config_devalloc: memory allocation for device_t failed");
1337
1338 dev->dv_class = cd->cd_class;
1339 dev->dv_cfdata = cf;
1340 dev->dv_cfdriver = cd;
1341 dev->dv_cfattach = ca;
1342 dev->dv_activity_count = 0;
1343 dev->dv_activity_handlers = NULL;
1344 dev->dv_private = dev_private;
1345 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1346
1347 myunit = config_unit_alloc(dev, cd, cf);
1348 if (myunit == -1) {
1349 config_devfree(dev);
1350 return NULL;
1351 }
1352
1353 /* compute length of name and decimal expansion of unit number */
1354 lname = strlen(cd->cd_name);
1355 xunit = number(&num[sizeof(num)], myunit);
1356 lunit = &num[sizeof(num)] - xunit;
1357 if (lname + lunit > sizeof(dev->dv_xname))
1358 panic("config_devalloc: device name too long");
1359
1360 dvl = device_getlock(dev);
1361
1362 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1363 cv_init(&dvl->dvl_cv, "pmfsusp");
1364
1365 memcpy(dev->dv_xname, cd->cd_name, lname);
1366 memcpy(dev->dv_xname + lname, xunit, lunit);
1367 dev->dv_parent = parent;
1368 if (parent != NULL)
1369 dev->dv_depth = parent->dv_depth + 1;
1370 else
1371 dev->dv_depth = 0;
1372 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1373 if (locs) {
1374 KASSERT(parent); /* no locators at root */
1375 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1376 dev->dv_locators =
1377 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1378 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1379 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1380 }
1381 dev->dv_properties = prop_dictionary_create();
1382 KASSERT(dev->dv_properties != NULL);
1383
1384 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1385 "device-driver", dev->dv_cfdriver->cd_name);
1386 prop_dictionary_set_uint16(dev->dv_properties,
1387 "device-unit", dev->dv_unit);
1388
1389 return dev;
1390 }
1391
1392 /*
1393 * Attach a found device.
1394 */
1395 device_t
1396 config_attach_loc(device_t parent, cfdata_t cf,
1397 const int *locs, void *aux, cfprint_t print)
1398 {
1399 device_t dev;
1400 struct cftable *ct;
1401 const char *drvname;
1402
1403 dev = config_devalloc(parent, cf, locs);
1404 if (!dev)
1405 panic("config_attach: allocation of device softc failed");
1406
1407 /* XXX redundant - see below? */
1408 if (cf->cf_fstate != FSTATE_STAR) {
1409 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1410 cf->cf_fstate = FSTATE_FOUND;
1411 }
1412
1413 config_devlink(dev);
1414
1415 if (config_do_twiddle && cold)
1416 twiddle();
1417 else
1418 aprint_naive("Found ");
1419 /*
1420 * We want the next two printfs for normal, verbose, and quiet,
1421 * but not silent (in which case, we're twiddling, instead).
1422 */
1423 if (parent == ROOT) {
1424 aprint_naive("%s (root)", device_xname(dev));
1425 aprint_normal("%s (root)", device_xname(dev));
1426 } else {
1427 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1428 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1429 if (print)
1430 (void) (*print)(aux, NULL);
1431 }
1432
1433 /*
1434 * Before attaching, clobber any unfound devices that are
1435 * otherwise identical.
1436 * XXX code above is redundant?
1437 */
1438 drvname = dev->dv_cfdriver->cd_name;
1439 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1440 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1441 if (STREQ(cf->cf_name, drvname) &&
1442 cf->cf_unit == dev->dv_unit) {
1443 if (cf->cf_fstate == FSTATE_NOTFOUND)
1444 cf->cf_fstate = FSTATE_FOUND;
1445 }
1446 }
1447 }
1448 device_register(dev, aux);
1449
1450 /* Let userland know */
1451 devmon_report_device(dev, true);
1452
1453 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1454
1455 if (!device_pmf_is_registered(dev))
1456 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1457
1458 config_process_deferred(&deferred_config_queue, dev);
1459
1460 device_register_post_config(dev, aux);
1461 return dev;
1462 }
1463
1464 device_t
1465 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1466 {
1467
1468 return config_attach_loc(parent, cf, NULL, aux, print);
1469 }
1470
1471 /*
1472 * As above, but for pseudo-devices. Pseudo-devices attached in this
1473 * way are silently inserted into the device tree, and their children
1474 * attached.
1475 *
1476 * Note that because pseudo-devices are attached silently, any information
1477 * the attach routine wishes to print should be prefixed with the device
1478 * name by the attach routine.
1479 */
1480 device_t
1481 config_attach_pseudo(cfdata_t cf)
1482 {
1483 device_t dev;
1484
1485 dev = config_devalloc(ROOT, cf, NULL);
1486 if (!dev)
1487 return NULL;
1488
1489 /* XXX mark busy in cfdata */
1490
1491 if (cf->cf_fstate != FSTATE_STAR) {
1492 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1493 cf->cf_fstate = FSTATE_FOUND;
1494 }
1495
1496 config_devlink(dev);
1497
1498 #if 0 /* XXXJRT not yet */
1499 device_register(dev, NULL); /* like a root node */
1500 #endif
1501 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1502 config_process_deferred(&deferred_config_queue, dev);
1503 return dev;
1504 }
1505
1506 /*
1507 * Caller must hold alldevs_mtx.
1508 */
1509 static void
1510 config_collect_garbage(struct devicelist *garbage)
1511 {
1512 device_t dv;
1513
1514 KASSERT(!cpu_intr_p());
1515 KASSERT(!cpu_softintr_p());
1516 KASSERT(mutex_owned(&alldevs_mtx));
1517
1518 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1519 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1520 if (dv->dv_del_gen != 0)
1521 break;
1522 }
1523 if (dv == NULL) {
1524 alldevs_garbage = false;
1525 break;
1526 }
1527 config_devunlink(dv, garbage);
1528 }
1529 KASSERT(mutex_owned(&alldevs_mtx));
1530 }
1531
1532 static void
1533 config_dump_garbage(struct devicelist *garbage)
1534 {
1535 device_t dv;
1536
1537 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1538 TAILQ_REMOVE(garbage, dv, dv_list);
1539 config_devdelete(dv);
1540 }
1541 }
1542
1543 /*
1544 * Detach a device. Optionally forced (e.g. because of hardware
1545 * removal) and quiet. Returns zero if successful, non-zero
1546 * (an error code) otherwise.
1547 *
1548 * Note that this code wants to be run from a process context, so
1549 * that the detach can sleep to allow processes which have a device
1550 * open to run and unwind their stacks.
1551 */
1552 int
1553 config_detach(device_t dev, int flags)
1554 {
1555 struct alldevs_foray af;
1556 struct cftable *ct;
1557 cfdata_t cf;
1558 const struct cfattach *ca;
1559 struct cfdriver *cd;
1560 #ifdef DIAGNOSTIC
1561 device_t d;
1562 #endif
1563 int rv = 0, s;
1564
1565 #ifdef DIAGNOSTIC
1566 cf = dev->dv_cfdata;
1567 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1568 cf->cf_fstate != FSTATE_STAR)
1569 panic("config_detach: %s: bad device fstate %d",
1570 device_xname(dev), cf ? cf->cf_fstate : -1);
1571 #endif
1572 cd = dev->dv_cfdriver;
1573 KASSERT(cd != NULL);
1574
1575 ca = dev->dv_cfattach;
1576 KASSERT(ca != NULL);
1577
1578 s = config_alldevs_lock();
1579 if (dev->dv_del_gen != 0) {
1580 config_alldevs_unlock(s);
1581 #ifdef DIAGNOSTIC
1582 printf("%s: %s is already detached\n", __func__,
1583 device_xname(dev));
1584 #endif /* DIAGNOSTIC */
1585 return ENOENT;
1586 }
1587 alldevs_nwrite++;
1588 config_alldevs_unlock(s);
1589
1590 if (!detachall &&
1591 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1592 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1593 rv = EOPNOTSUPP;
1594 } else if (ca->ca_detach != NULL) {
1595 rv = (*ca->ca_detach)(dev, flags);
1596 } else
1597 rv = EOPNOTSUPP;
1598
1599 /*
1600 * If it was not possible to detach the device, then we either
1601 * panic() (for the forced but failed case), or return an error.
1602 *
1603 * If it was possible to detach the device, ensure that the
1604 * device is deactivated.
1605 */
1606 if (rv == 0)
1607 dev->dv_flags &= ~DVF_ACTIVE;
1608 else if ((flags & DETACH_FORCE) == 0)
1609 goto out;
1610 else {
1611 panic("config_detach: forced detach of %s failed (%d)",
1612 device_xname(dev), rv);
1613 }
1614
1615 /*
1616 * The device has now been successfully detached.
1617 */
1618
1619 /* Let userland know */
1620 devmon_report_device(dev, false);
1621
1622 #ifdef DIAGNOSTIC
1623 /*
1624 * Sanity: If you're successfully detached, you should have no
1625 * children. (Note that because children must be attached
1626 * after parents, we only need to search the latter part of
1627 * the list.)
1628 */
1629 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1630 d = TAILQ_NEXT(d, dv_list)) {
1631 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1632 printf("config_detach: detached device %s"
1633 " has children %s\n", device_xname(dev), device_xname(d));
1634 panic("config_detach");
1635 }
1636 }
1637 #endif
1638
1639 /* notify the parent that the child is gone */
1640 if (dev->dv_parent) {
1641 device_t p = dev->dv_parent;
1642 if (p->dv_cfattach->ca_childdetached)
1643 (*p->dv_cfattach->ca_childdetached)(p, dev);
1644 }
1645
1646 /*
1647 * Mark cfdata to show that the unit can be reused, if possible.
1648 */
1649 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1650 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1651 if (STREQ(cf->cf_name, cd->cd_name)) {
1652 if (cf->cf_fstate == FSTATE_FOUND &&
1653 cf->cf_unit == dev->dv_unit)
1654 cf->cf_fstate = FSTATE_NOTFOUND;
1655 }
1656 }
1657 }
1658
1659 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1660 aprint_normal_dev(dev, "detached\n");
1661
1662 out:
1663 config_alldevs_enter(&af);
1664 KASSERT(alldevs_nwrite != 0);
1665 --alldevs_nwrite;
1666 if (rv == 0 && dev->dv_del_gen == 0) {
1667 if (alldevs_nwrite == 0 && alldevs_nread == 0)
1668 config_devunlink(dev, &af.af_garbage);
1669 else {
1670 dev->dv_del_gen = alldevs_gen;
1671 alldevs_garbage = true;
1672 }
1673 }
1674 config_alldevs_exit(&af);
1675
1676 return rv;
1677 }
1678
1679 int
1680 config_detach_children(device_t parent, int flags)
1681 {
1682 device_t dv;
1683 deviter_t di;
1684 int error = 0;
1685
1686 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1687 dv = deviter_next(&di)) {
1688 if (device_parent(dv) != parent)
1689 continue;
1690 if ((error = config_detach(dv, flags)) != 0)
1691 break;
1692 }
1693 deviter_release(&di);
1694 return error;
1695 }
1696
1697 device_t
1698 shutdown_first(struct shutdown_state *s)
1699 {
1700 if (!s->initialized) {
1701 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1702 s->initialized = true;
1703 }
1704 return shutdown_next(s);
1705 }
1706
1707 device_t
1708 shutdown_next(struct shutdown_state *s)
1709 {
1710 device_t dv;
1711
1712 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1713 ;
1714
1715 if (dv == NULL)
1716 s->initialized = false;
1717
1718 return dv;
1719 }
1720
1721 bool
1722 config_detach_all(int how)
1723 {
1724 static struct shutdown_state s;
1725 device_t curdev;
1726 bool progress = false;
1727
1728 if ((how & RB_NOSYNC) != 0)
1729 return false;
1730
1731 for (curdev = shutdown_first(&s); curdev != NULL;
1732 curdev = shutdown_next(&s)) {
1733 aprint_debug(" detaching %s, ", device_xname(curdev));
1734 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1735 progress = true;
1736 aprint_debug("success.");
1737 } else
1738 aprint_debug("failed.");
1739 }
1740 return progress;
1741 }
1742
1743 static bool
1744 device_is_ancestor_of(device_t ancestor, device_t descendant)
1745 {
1746 device_t dv;
1747
1748 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1749 if (device_parent(dv) == ancestor)
1750 return true;
1751 }
1752 return false;
1753 }
1754
1755 int
1756 config_deactivate(device_t dev)
1757 {
1758 deviter_t di;
1759 const struct cfattach *ca;
1760 device_t descendant;
1761 int s, rv = 0, oflags;
1762
1763 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1764 descendant != NULL;
1765 descendant = deviter_next(&di)) {
1766 if (dev != descendant &&
1767 !device_is_ancestor_of(dev, descendant))
1768 continue;
1769
1770 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1771 continue;
1772
1773 ca = descendant->dv_cfattach;
1774 oflags = descendant->dv_flags;
1775
1776 descendant->dv_flags &= ~DVF_ACTIVE;
1777 if (ca->ca_activate == NULL)
1778 continue;
1779 s = splhigh();
1780 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1781 splx(s);
1782 if (rv != 0)
1783 descendant->dv_flags = oflags;
1784 }
1785 deviter_release(&di);
1786 return rv;
1787 }
1788
1789 /*
1790 * Defer the configuration of the specified device until all
1791 * of its parent's devices have been attached.
1792 */
1793 void
1794 config_defer(device_t dev, void (*func)(device_t))
1795 {
1796 struct deferred_config *dc;
1797
1798 if (dev->dv_parent == NULL)
1799 panic("config_defer: can't defer config of a root device");
1800
1801 #ifdef DIAGNOSTIC
1802 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1803 if (dc->dc_dev == dev)
1804 panic("config_defer: deferred twice");
1805 }
1806 #endif
1807
1808 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1809 if (dc == NULL)
1810 panic("config_defer: unable to allocate callback");
1811
1812 dc->dc_dev = dev;
1813 dc->dc_func = func;
1814 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1815 config_pending_incr();
1816 }
1817
1818 /*
1819 * Defer some autoconfiguration for a device until after interrupts
1820 * are enabled.
1821 */
1822 void
1823 config_interrupts(device_t dev, void (*func)(device_t))
1824 {
1825 struct deferred_config *dc;
1826
1827 /*
1828 * If interrupts are enabled, callback now.
1829 */
1830 if (cold == 0) {
1831 (*func)(dev);
1832 return;
1833 }
1834
1835 #ifdef DIAGNOSTIC
1836 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1837 if (dc->dc_dev == dev)
1838 panic("config_interrupts: deferred twice");
1839 }
1840 #endif
1841
1842 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1843 if (dc == NULL)
1844 panic("config_interrupts: unable to allocate callback");
1845
1846 dc->dc_dev = dev;
1847 dc->dc_func = func;
1848 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1849 config_pending_incr();
1850 }
1851
1852 /*
1853 * Defer some autoconfiguration for a device until after root file system
1854 * is mounted (to load firmware etc).
1855 */
1856 void
1857 config_mountroot(device_t dev, void (*func)(device_t))
1858 {
1859 struct deferred_config *dc;
1860
1861 /*
1862 * If root file system is mounted, callback now.
1863 */
1864 if (root_is_mounted) {
1865 (*func)(dev);
1866 return;
1867 }
1868
1869 #ifdef DIAGNOSTIC
1870 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
1871 if (dc->dc_dev == dev)
1872 panic("%s: deferred twice", __func__);
1873 }
1874 #endif
1875
1876 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1877 if (dc == NULL)
1878 panic("%s: unable to allocate callback", __func__);
1879
1880 dc->dc_dev = dev;
1881 dc->dc_func = func;
1882 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
1883 }
1884
1885 /*
1886 * Process a deferred configuration queue.
1887 */
1888 static void
1889 config_process_deferred(struct deferred_config_head *queue,
1890 device_t parent)
1891 {
1892 struct deferred_config *dc, *ndc;
1893
1894 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1895 ndc = TAILQ_NEXT(dc, dc_queue);
1896 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1897 TAILQ_REMOVE(queue, dc, dc_queue);
1898 (*dc->dc_func)(dc->dc_dev);
1899 kmem_free(dc, sizeof(*dc));
1900 config_pending_decr();
1901 }
1902 }
1903 }
1904
1905 /*
1906 * Manipulate the config_pending semaphore.
1907 */
1908 void
1909 config_pending_incr(void)
1910 {
1911
1912 mutex_enter(&config_misc_lock);
1913 config_pending++;
1914 mutex_exit(&config_misc_lock);
1915 }
1916
1917 void
1918 config_pending_decr(void)
1919 {
1920
1921 #ifdef DIAGNOSTIC
1922 if (config_pending == 0)
1923 panic("config_pending_decr: config_pending == 0");
1924 #endif
1925 mutex_enter(&config_misc_lock);
1926 config_pending--;
1927 if (config_pending == 0)
1928 cv_broadcast(&config_misc_cv);
1929 mutex_exit(&config_misc_lock);
1930 }
1931
1932 /*
1933 * Register a "finalization" routine. Finalization routines are
1934 * called iteratively once all real devices have been found during
1935 * autoconfiguration, for as long as any one finalizer has done
1936 * any work.
1937 */
1938 int
1939 config_finalize_register(device_t dev, int (*fn)(device_t))
1940 {
1941 struct finalize_hook *f;
1942
1943 /*
1944 * If finalization has already been done, invoke the
1945 * callback function now.
1946 */
1947 if (config_finalize_done) {
1948 while ((*fn)(dev) != 0)
1949 /* loop */ ;
1950 }
1951
1952 /* Ensure this isn't already on the list. */
1953 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1954 if (f->f_func == fn && f->f_dev == dev)
1955 return EEXIST;
1956 }
1957
1958 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1959 f->f_func = fn;
1960 f->f_dev = dev;
1961 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1962
1963 return 0;
1964 }
1965
1966 void
1967 config_finalize(void)
1968 {
1969 struct finalize_hook *f;
1970 struct pdevinit *pdev;
1971 extern struct pdevinit pdevinit[];
1972 int errcnt, rv;
1973
1974 /*
1975 * Now that device driver threads have been created, wait for
1976 * them to finish any deferred autoconfiguration.
1977 */
1978 mutex_enter(&config_misc_lock);
1979 while (config_pending != 0)
1980 cv_wait(&config_misc_cv, &config_misc_lock);
1981 mutex_exit(&config_misc_lock);
1982
1983 KERNEL_LOCK(1, NULL);
1984
1985 /* Attach pseudo-devices. */
1986 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1987 (*pdev->pdev_attach)(pdev->pdev_count);
1988
1989 /* Run the hooks until none of them does any work. */
1990 do {
1991 rv = 0;
1992 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1993 rv |= (*f->f_func)(f->f_dev);
1994 } while (rv != 0);
1995
1996 config_finalize_done = 1;
1997
1998 /* Now free all the hooks. */
1999 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2000 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2001 kmem_free(f, sizeof(*f));
2002 }
2003
2004 KERNEL_UNLOCK_ONE(NULL);
2005
2006 errcnt = aprint_get_error_count();
2007 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2008 (boothowto & AB_VERBOSE) == 0) {
2009 mutex_enter(&config_misc_lock);
2010 if (config_do_twiddle) {
2011 config_do_twiddle = 0;
2012 printf_nolog(" done.\n");
2013 }
2014 mutex_exit(&config_misc_lock);
2015 if (errcnt != 0) {
2016 printf("WARNING: %d error%s while detecting hardware; "
2017 "check system log.\n", errcnt,
2018 errcnt == 1 ? "" : "s");
2019 }
2020 }
2021 }
2022
2023 void
2024 config_twiddle_init()
2025 {
2026
2027 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2028 config_do_twiddle = 1;
2029 }
2030 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2031 }
2032
2033 void
2034 config_twiddle_fn(void *cookie)
2035 {
2036
2037 mutex_enter(&config_misc_lock);
2038 if (config_do_twiddle) {
2039 twiddle();
2040 callout_schedule(&config_twiddle_ch, mstohz(100));
2041 }
2042 mutex_exit(&config_misc_lock);
2043 }
2044
2045 static int
2046 config_alldevs_lock(void)
2047 {
2048 mutex_enter(&alldevs_mtx);
2049 return 0;
2050 }
2051
2052 static void
2053 config_alldevs_enter(struct alldevs_foray *af)
2054 {
2055 TAILQ_INIT(&af->af_garbage);
2056 af->af_s = config_alldevs_lock();
2057 config_collect_garbage(&af->af_garbage);
2058 }
2059
2060 static void
2061 config_alldevs_exit(struct alldevs_foray *af)
2062 {
2063 config_alldevs_unlock(af->af_s);
2064 config_dump_garbage(&af->af_garbage);
2065 }
2066
2067 /*ARGSUSED*/
2068 static void
2069 config_alldevs_unlock(int s)
2070 {
2071 mutex_exit(&alldevs_mtx);
2072 }
2073
2074 /*
2075 * device_lookup:
2076 *
2077 * Look up a device instance for a given driver.
2078 */
2079 device_t
2080 device_lookup(cfdriver_t cd, int unit)
2081 {
2082 device_t dv;
2083 int s;
2084
2085 s = config_alldevs_lock();
2086 KASSERT(mutex_owned(&alldevs_mtx));
2087 if (unit < 0 || unit >= cd->cd_ndevs)
2088 dv = NULL;
2089 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2090 dv = NULL;
2091 config_alldevs_unlock(s);
2092
2093 return dv;
2094 }
2095
2096 /*
2097 * device_lookup_private:
2098 *
2099 * Look up a softc instance for a given driver.
2100 */
2101 void *
2102 device_lookup_private(cfdriver_t cd, int unit)
2103 {
2104
2105 return device_private(device_lookup(cd, unit));
2106 }
2107
2108 /*
2109 * device_find_by_xname:
2110 *
2111 * Returns the device of the given name or NULL if it doesn't exist.
2112 */
2113 device_t
2114 device_find_by_xname(const char *name)
2115 {
2116 device_t dv;
2117 deviter_t di;
2118
2119 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2120 if (strcmp(device_xname(dv), name) == 0)
2121 break;
2122 }
2123 deviter_release(&di);
2124
2125 return dv;
2126 }
2127
2128 /*
2129 * device_find_by_driver_unit:
2130 *
2131 * Returns the device of the given driver name and unit or
2132 * NULL if it doesn't exist.
2133 */
2134 device_t
2135 device_find_by_driver_unit(const char *name, int unit)
2136 {
2137 struct cfdriver *cd;
2138
2139 if ((cd = config_cfdriver_lookup(name)) == NULL)
2140 return NULL;
2141 return device_lookup(cd, unit);
2142 }
2143
2144 /*
2145 * Power management related functions.
2146 */
2147
2148 bool
2149 device_pmf_is_registered(device_t dev)
2150 {
2151 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2152 }
2153
2154 bool
2155 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2156 {
2157 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2158 return true;
2159 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2160 return false;
2161 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2162 dev->dv_driver_suspend != NULL &&
2163 !(*dev->dv_driver_suspend)(dev, qual))
2164 return false;
2165
2166 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2167 return true;
2168 }
2169
2170 bool
2171 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2172 {
2173 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2174 return true;
2175 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2176 return false;
2177 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2178 dev->dv_driver_resume != NULL &&
2179 !(*dev->dv_driver_resume)(dev, qual))
2180 return false;
2181
2182 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2183 return true;
2184 }
2185
2186 bool
2187 device_pmf_driver_shutdown(device_t dev, int how)
2188 {
2189
2190 if (*dev->dv_driver_shutdown != NULL &&
2191 !(*dev->dv_driver_shutdown)(dev, how))
2192 return false;
2193 return true;
2194 }
2195
2196 bool
2197 device_pmf_driver_register(device_t dev,
2198 bool (*suspend)(device_t, const pmf_qual_t *),
2199 bool (*resume)(device_t, const pmf_qual_t *),
2200 bool (*shutdown)(device_t, int))
2201 {
2202 dev->dv_driver_suspend = suspend;
2203 dev->dv_driver_resume = resume;
2204 dev->dv_driver_shutdown = shutdown;
2205 dev->dv_flags |= DVF_POWER_HANDLERS;
2206 return true;
2207 }
2208
2209 static const char *
2210 curlwp_name(void)
2211 {
2212 if (curlwp->l_name != NULL)
2213 return curlwp->l_name;
2214 else
2215 return curlwp->l_proc->p_comm;
2216 }
2217
2218 void
2219 device_pmf_driver_deregister(device_t dev)
2220 {
2221 device_lock_t dvl = device_getlock(dev);
2222
2223 dev->dv_driver_suspend = NULL;
2224 dev->dv_driver_resume = NULL;
2225
2226 mutex_enter(&dvl->dvl_mtx);
2227 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2228 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2229 /* Wake a thread that waits for the lock. That
2230 * thread will fail to acquire the lock, and then
2231 * it will wake the next thread that waits for the
2232 * lock, or else it will wake us.
2233 */
2234 cv_signal(&dvl->dvl_cv);
2235 pmflock_debug(dev, __func__, __LINE__);
2236 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2237 pmflock_debug(dev, __func__, __LINE__);
2238 }
2239 mutex_exit(&dvl->dvl_mtx);
2240 }
2241
2242 bool
2243 device_pmf_driver_child_register(device_t dev)
2244 {
2245 device_t parent = device_parent(dev);
2246
2247 if (parent == NULL || parent->dv_driver_child_register == NULL)
2248 return true;
2249 return (*parent->dv_driver_child_register)(dev);
2250 }
2251
2252 void
2253 device_pmf_driver_set_child_register(device_t dev,
2254 bool (*child_register)(device_t))
2255 {
2256 dev->dv_driver_child_register = child_register;
2257 }
2258
2259 static void
2260 pmflock_debug(device_t dev, const char *func, int line)
2261 {
2262 device_lock_t dvl = device_getlock(dev);
2263
2264 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2265 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2266 dev->dv_flags);
2267 }
2268
2269 static bool
2270 device_pmf_lock1(device_t dev)
2271 {
2272 device_lock_t dvl = device_getlock(dev);
2273
2274 while (device_pmf_is_registered(dev) &&
2275 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2276 dvl->dvl_nwait++;
2277 pmflock_debug(dev, __func__, __LINE__);
2278 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2279 pmflock_debug(dev, __func__, __LINE__);
2280 dvl->dvl_nwait--;
2281 }
2282 if (!device_pmf_is_registered(dev)) {
2283 pmflock_debug(dev, __func__, __LINE__);
2284 /* We could not acquire the lock, but some other thread may
2285 * wait for it, also. Wake that thread.
2286 */
2287 cv_signal(&dvl->dvl_cv);
2288 return false;
2289 }
2290 dvl->dvl_nlock++;
2291 dvl->dvl_holder = curlwp;
2292 pmflock_debug(dev, __func__, __LINE__);
2293 return true;
2294 }
2295
2296 bool
2297 device_pmf_lock(device_t dev)
2298 {
2299 bool rc;
2300 device_lock_t dvl = device_getlock(dev);
2301
2302 mutex_enter(&dvl->dvl_mtx);
2303 rc = device_pmf_lock1(dev);
2304 mutex_exit(&dvl->dvl_mtx);
2305
2306 return rc;
2307 }
2308
2309 void
2310 device_pmf_unlock(device_t dev)
2311 {
2312 device_lock_t dvl = device_getlock(dev);
2313
2314 KASSERT(dvl->dvl_nlock > 0);
2315 mutex_enter(&dvl->dvl_mtx);
2316 if (--dvl->dvl_nlock == 0)
2317 dvl->dvl_holder = NULL;
2318 cv_signal(&dvl->dvl_cv);
2319 pmflock_debug(dev, __func__, __LINE__);
2320 mutex_exit(&dvl->dvl_mtx);
2321 }
2322
2323 device_lock_t
2324 device_getlock(device_t dev)
2325 {
2326 return &dev->dv_lock;
2327 }
2328
2329 void *
2330 device_pmf_bus_private(device_t dev)
2331 {
2332 return dev->dv_bus_private;
2333 }
2334
2335 bool
2336 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2337 {
2338 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2339 return true;
2340 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2341 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2342 return false;
2343 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2344 dev->dv_bus_suspend != NULL &&
2345 !(*dev->dv_bus_suspend)(dev, qual))
2346 return false;
2347
2348 dev->dv_flags |= DVF_BUS_SUSPENDED;
2349 return true;
2350 }
2351
2352 bool
2353 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2354 {
2355 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2356 return true;
2357 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2358 dev->dv_bus_resume != NULL &&
2359 !(*dev->dv_bus_resume)(dev, qual))
2360 return false;
2361
2362 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2363 return true;
2364 }
2365
2366 bool
2367 device_pmf_bus_shutdown(device_t dev, int how)
2368 {
2369
2370 if (*dev->dv_bus_shutdown != NULL &&
2371 !(*dev->dv_bus_shutdown)(dev, how))
2372 return false;
2373 return true;
2374 }
2375
2376 void
2377 device_pmf_bus_register(device_t dev, void *priv,
2378 bool (*suspend)(device_t, const pmf_qual_t *),
2379 bool (*resume)(device_t, const pmf_qual_t *),
2380 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2381 {
2382 dev->dv_bus_private = priv;
2383 dev->dv_bus_resume = resume;
2384 dev->dv_bus_suspend = suspend;
2385 dev->dv_bus_shutdown = shutdown;
2386 dev->dv_bus_deregister = deregister;
2387 }
2388
2389 void
2390 device_pmf_bus_deregister(device_t dev)
2391 {
2392 if (dev->dv_bus_deregister == NULL)
2393 return;
2394 (*dev->dv_bus_deregister)(dev);
2395 dev->dv_bus_private = NULL;
2396 dev->dv_bus_suspend = NULL;
2397 dev->dv_bus_resume = NULL;
2398 dev->dv_bus_deregister = NULL;
2399 }
2400
2401 void *
2402 device_pmf_class_private(device_t dev)
2403 {
2404 return dev->dv_class_private;
2405 }
2406
2407 bool
2408 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2409 {
2410 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2411 return true;
2412 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2413 dev->dv_class_suspend != NULL &&
2414 !(*dev->dv_class_suspend)(dev, qual))
2415 return false;
2416
2417 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2418 return true;
2419 }
2420
2421 bool
2422 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2423 {
2424 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2425 return true;
2426 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2427 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2428 return false;
2429 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2430 dev->dv_class_resume != NULL &&
2431 !(*dev->dv_class_resume)(dev, qual))
2432 return false;
2433
2434 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2435 return true;
2436 }
2437
2438 void
2439 device_pmf_class_register(device_t dev, void *priv,
2440 bool (*suspend)(device_t, const pmf_qual_t *),
2441 bool (*resume)(device_t, const pmf_qual_t *),
2442 void (*deregister)(device_t))
2443 {
2444 dev->dv_class_private = priv;
2445 dev->dv_class_suspend = suspend;
2446 dev->dv_class_resume = resume;
2447 dev->dv_class_deregister = deregister;
2448 }
2449
2450 void
2451 device_pmf_class_deregister(device_t dev)
2452 {
2453 if (dev->dv_class_deregister == NULL)
2454 return;
2455 (*dev->dv_class_deregister)(dev);
2456 dev->dv_class_private = NULL;
2457 dev->dv_class_suspend = NULL;
2458 dev->dv_class_resume = NULL;
2459 dev->dv_class_deregister = NULL;
2460 }
2461
2462 bool
2463 device_active(device_t dev, devactive_t type)
2464 {
2465 size_t i;
2466
2467 if (dev->dv_activity_count == 0)
2468 return false;
2469
2470 for (i = 0; i < dev->dv_activity_count; ++i) {
2471 if (dev->dv_activity_handlers[i] == NULL)
2472 break;
2473 (*dev->dv_activity_handlers[i])(dev, type);
2474 }
2475
2476 return true;
2477 }
2478
2479 bool
2480 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2481 {
2482 void (**new_handlers)(device_t, devactive_t);
2483 void (**old_handlers)(device_t, devactive_t);
2484 size_t i, old_size, new_size;
2485 int s;
2486
2487 old_handlers = dev->dv_activity_handlers;
2488 old_size = dev->dv_activity_count;
2489
2490 for (i = 0; i < old_size; ++i) {
2491 KASSERT(old_handlers[i] != handler);
2492 if (old_handlers[i] == NULL) {
2493 old_handlers[i] = handler;
2494 return true;
2495 }
2496 }
2497
2498 new_size = old_size + 4;
2499 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2500
2501 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2502 new_handlers[old_size] = handler;
2503 memset(new_handlers + old_size + 1, 0,
2504 sizeof(int [new_size - (old_size+1)]));
2505
2506 s = splhigh();
2507 dev->dv_activity_count = new_size;
2508 dev->dv_activity_handlers = new_handlers;
2509 splx(s);
2510
2511 if (old_handlers != NULL)
2512 kmem_free(old_handlers, sizeof(void * [old_size]));
2513
2514 return true;
2515 }
2516
2517 void
2518 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2519 {
2520 void (**old_handlers)(device_t, devactive_t);
2521 size_t i, old_size;
2522 int s;
2523
2524 old_handlers = dev->dv_activity_handlers;
2525 old_size = dev->dv_activity_count;
2526
2527 for (i = 0; i < old_size; ++i) {
2528 if (old_handlers[i] == handler)
2529 break;
2530 if (old_handlers[i] == NULL)
2531 return; /* XXX panic? */
2532 }
2533
2534 if (i == old_size)
2535 return; /* XXX panic? */
2536
2537 for (; i < old_size - 1; ++i) {
2538 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2539 continue;
2540
2541 if (i == 0) {
2542 s = splhigh();
2543 dev->dv_activity_count = 0;
2544 dev->dv_activity_handlers = NULL;
2545 splx(s);
2546 kmem_free(old_handlers, sizeof(void *[old_size]));
2547 }
2548 return;
2549 }
2550 old_handlers[i] = NULL;
2551 }
2552
2553 /* Return true iff the device_t `dev' exists at generation `gen'. */
2554 static bool
2555 device_exists_at(device_t dv, devgen_t gen)
2556 {
2557 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2558 dv->dv_add_gen <= gen;
2559 }
2560
2561 static bool
2562 deviter_visits(const deviter_t *di, device_t dv)
2563 {
2564 return device_exists_at(dv, di->di_gen);
2565 }
2566
2567 /*
2568 * Device Iteration
2569 *
2570 * deviter_t: a device iterator. Holds state for a "walk" visiting
2571 * each device_t's in the device tree.
2572 *
2573 * deviter_init(di, flags): initialize the device iterator `di'
2574 * to "walk" the device tree. deviter_next(di) will return
2575 * the first device_t in the device tree, or NULL if there are
2576 * no devices.
2577 *
2578 * `flags' is one or more of DEVITER_F_RW, indicating that the
2579 * caller intends to modify the device tree by calling
2580 * config_detach(9) on devices in the order that the iterator
2581 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2582 * nearest the "root" of the device tree to be returned, first;
2583 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2584 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2585 * indicating both that deviter_init() should not respect any
2586 * locks on the device tree, and that deviter_next(di) may run
2587 * in more than one LWP before the walk has finished.
2588 *
2589 * Only one DEVITER_F_RW iterator may be in the device tree at
2590 * once.
2591 *
2592 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2593 *
2594 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2595 * DEVITER_F_LEAVES_FIRST are used in combination.
2596 *
2597 * deviter_first(di, flags): initialize the device iterator `di'
2598 * and return the first device_t in the device tree, or NULL
2599 * if there are no devices. The statement
2600 *
2601 * dv = deviter_first(di);
2602 *
2603 * is shorthand for
2604 *
2605 * deviter_init(di);
2606 * dv = deviter_next(di);
2607 *
2608 * deviter_next(di): return the next device_t in the device tree,
2609 * or NULL if there are no more devices. deviter_next(di)
2610 * is undefined if `di' was not initialized with deviter_init() or
2611 * deviter_first().
2612 *
2613 * deviter_release(di): stops iteration (subsequent calls to
2614 * deviter_next() will return NULL), releases any locks and
2615 * resources held by the device iterator.
2616 *
2617 * Device iteration does not return device_t's in any particular
2618 * order. An iterator will never return the same device_t twice.
2619 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2620 * is called repeatedly on the same `di', it will eventually return
2621 * NULL. It is ok to attach/detach devices during device iteration.
2622 */
2623 void
2624 deviter_init(deviter_t *di, deviter_flags_t flags)
2625 {
2626 device_t dv;
2627 int s;
2628
2629 memset(di, 0, sizeof(*di));
2630
2631 s = config_alldevs_lock();
2632 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2633 flags |= DEVITER_F_RW;
2634
2635 if ((flags & DEVITER_F_RW) != 0)
2636 alldevs_nwrite++;
2637 else
2638 alldevs_nread++;
2639 di->di_gen = alldevs_gen++;
2640 config_alldevs_unlock(s);
2641
2642 di->di_flags = flags;
2643
2644 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2645 case DEVITER_F_LEAVES_FIRST:
2646 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2647 if (!deviter_visits(di, dv))
2648 continue;
2649 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2650 }
2651 break;
2652 case DEVITER_F_ROOT_FIRST:
2653 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2654 if (!deviter_visits(di, dv))
2655 continue;
2656 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2657 }
2658 break;
2659 default:
2660 break;
2661 }
2662
2663 deviter_reinit(di);
2664 }
2665
2666 static void
2667 deviter_reinit(deviter_t *di)
2668 {
2669 if ((di->di_flags & DEVITER_F_RW) != 0)
2670 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2671 else
2672 di->di_prev = TAILQ_FIRST(&alldevs);
2673 }
2674
2675 device_t
2676 deviter_first(deviter_t *di, deviter_flags_t flags)
2677 {
2678 deviter_init(di, flags);
2679 return deviter_next(di);
2680 }
2681
2682 static device_t
2683 deviter_next2(deviter_t *di)
2684 {
2685 device_t dv;
2686
2687 dv = di->di_prev;
2688
2689 if (dv == NULL)
2690 return NULL;
2691
2692 if ((di->di_flags & DEVITER_F_RW) != 0)
2693 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2694 else
2695 di->di_prev = TAILQ_NEXT(dv, dv_list);
2696
2697 return dv;
2698 }
2699
2700 static device_t
2701 deviter_next1(deviter_t *di)
2702 {
2703 device_t dv;
2704
2705 do {
2706 dv = deviter_next2(di);
2707 } while (dv != NULL && !deviter_visits(di, dv));
2708
2709 return dv;
2710 }
2711
2712 device_t
2713 deviter_next(deviter_t *di)
2714 {
2715 device_t dv = NULL;
2716
2717 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2718 case 0:
2719 return deviter_next1(di);
2720 case DEVITER_F_LEAVES_FIRST:
2721 while (di->di_curdepth >= 0) {
2722 if ((dv = deviter_next1(di)) == NULL) {
2723 di->di_curdepth--;
2724 deviter_reinit(di);
2725 } else if (dv->dv_depth == di->di_curdepth)
2726 break;
2727 }
2728 return dv;
2729 case DEVITER_F_ROOT_FIRST:
2730 while (di->di_curdepth <= di->di_maxdepth) {
2731 if ((dv = deviter_next1(di)) == NULL) {
2732 di->di_curdepth++;
2733 deviter_reinit(di);
2734 } else if (dv->dv_depth == di->di_curdepth)
2735 break;
2736 }
2737 return dv;
2738 default:
2739 return NULL;
2740 }
2741 }
2742
2743 void
2744 deviter_release(deviter_t *di)
2745 {
2746 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2747 int s;
2748
2749 s = config_alldevs_lock();
2750 if (rw)
2751 --alldevs_nwrite;
2752 else
2753 --alldevs_nread;
2754 /* XXX wake a garbage-collection thread */
2755 config_alldevs_unlock(s);
2756 }
2757
2758 const char *
2759 cfdata_ifattr(const struct cfdata *cf)
2760 {
2761 return cf->cf_pspec->cfp_iattr;
2762 }
2763
2764 bool
2765 ifattr_match(const char *snull, const char *t)
2766 {
2767 return (snull == NULL) || strcmp(snull, t) == 0;
2768 }
2769
2770 void
2771 null_childdetached(device_t self, device_t child)
2772 {
2773 /* do nothing */
2774 }
2775
2776 static void
2777 sysctl_detach_setup(struct sysctllog **clog)
2778 {
2779 const struct sysctlnode *node = NULL;
2780
2781 sysctl_createv(clog, 0, NULL, &node,
2782 CTLFLAG_PERMANENT,
2783 CTLTYPE_NODE, "kern", NULL,
2784 NULL, 0, NULL, 0,
2785 CTL_KERN, CTL_EOL);
2786
2787 if (node == NULL)
2788 return;
2789
2790 sysctl_createv(clog, 0, &node, NULL,
2791 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2792 CTLTYPE_BOOL, "detachall",
2793 SYSCTL_DESCR("Detach all devices at shutdown"),
2794 NULL, 0, &detachall, 0,
2795 CTL_CREATE, CTL_EOL);
2796 }
2797