subr_autoconf.c revision 1.217 1 /* $NetBSD: subr_autoconf.c,v 1.217 2011/08/02 21:23:24 jmcneill Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.217 2011/08/02 21:23:24 jmcneill Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110
111 #include <sys/disk.h>
112
113 #include <machine/limits.h>
114
115 /*
116 * Autoconfiguration subroutines.
117 */
118
119 /*
120 * ioconf.c exports exactly two names: cfdata and cfroots. All system
121 * devices and drivers are found via these tables.
122 */
123 extern struct cfdata cfdata[];
124 extern const short cfroots[];
125
126 /*
127 * List of all cfdriver structures. We use this to detect duplicates
128 * when other cfdrivers are loaded.
129 */
130 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
131 extern struct cfdriver * const cfdriver_list_initial[];
132
133 /*
134 * Initial list of cfattach's.
135 */
136 extern const struct cfattachinit cfattachinit[];
137
138 /*
139 * List of cfdata tables. We always have one such list -- the one
140 * built statically when the kernel was configured.
141 */
142 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
143 static struct cftable initcftable;
144
145 #define ROOT ((device_t)NULL)
146
147 struct matchinfo {
148 cfsubmatch_t fn;
149 struct device *parent;
150 const int *locs;
151 void *aux;
152 struct cfdata *match;
153 int pri;
154 };
155
156 struct alldevs_foray {
157 int af_s;
158 struct devicelist af_garbage;
159 };
160
161 static char *number(char *, int);
162 static void mapply(struct matchinfo *, cfdata_t);
163 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
164 static void config_devdelete(device_t);
165 static void config_devunlink(device_t, struct devicelist *);
166 static void config_makeroom(int, struct cfdriver *);
167 static void config_devlink(device_t);
168 static void config_alldevs_unlock(int);
169 static int config_alldevs_lock(void);
170 static void config_alldevs_enter(struct alldevs_foray *);
171 static void config_alldevs_exit(struct alldevs_foray *);
172
173 static void config_collect_garbage(struct devicelist *);
174 static void config_dump_garbage(struct devicelist *);
175
176 static void pmflock_debug(device_t, const char *, int);
177
178 static device_t deviter_next1(deviter_t *);
179 static void deviter_reinit(deviter_t *);
180
181 struct deferred_config {
182 TAILQ_ENTRY(deferred_config) dc_queue;
183 device_t dc_dev;
184 void (*dc_func)(device_t);
185 };
186
187 TAILQ_HEAD(deferred_config_head, deferred_config);
188
189 struct deferred_config_head deferred_config_queue =
190 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
191 struct deferred_config_head interrupt_config_queue =
192 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
193 int interrupt_config_threads = 8;
194 struct deferred_config_head mountroot_config_queue =
195 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
196 int mountroot_config_threads = 2;
197 static bool root_is_mounted = false;
198
199 static void config_process_deferred(struct deferred_config_head *, device_t);
200
201 /* Hooks to finalize configuration once all real devices have been found. */
202 struct finalize_hook {
203 TAILQ_ENTRY(finalize_hook) f_list;
204 int (*f_func)(device_t);
205 device_t f_dev;
206 };
207 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
208 TAILQ_HEAD_INITIALIZER(config_finalize_list);
209 static int config_finalize_done;
210
211 /* list of all devices */
212 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
213 static kmutex_t alldevs_mtx;
214 static volatile bool alldevs_garbage = false;
215 static volatile devgen_t alldevs_gen = 1;
216 static volatile int alldevs_nread = 0;
217 static volatile int alldevs_nwrite = 0;
218
219 static int config_pending; /* semaphore for mountroot */
220 static kmutex_t config_misc_lock;
221 static kcondvar_t config_misc_cv;
222
223 static bool detachall = false;
224
225 #define STREQ(s1, s2) \
226 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
227
228 static bool config_initialized = false; /* config_init() has been called. */
229
230 static int config_do_twiddle;
231 static callout_t config_twiddle_ch;
232
233 static void sysctl_detach_setup(struct sysctllog **);
234
235 typedef int (*cfdriver_fn)(struct cfdriver *);
236 static int
237 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
238 cfdriver_fn drv_do, cfdriver_fn drv_undo,
239 const char *style, bool dopanic)
240 {
241 void (*pr)(const char *, ...) = dopanic ? panic : printf;
242 int i = 0, error = 0, e2;
243
244 for (i = 0; cfdriverv[i] != NULL; i++) {
245 if ((error = drv_do(cfdriverv[i])) != 0) {
246 pr("configure: `%s' driver %s failed: %d",
247 cfdriverv[i]->cd_name, style, error);
248 goto bad;
249 }
250 }
251
252 KASSERT(error == 0);
253 return 0;
254
255 bad:
256 printf("\n");
257 for (i--; i >= 0; i--) {
258 e2 = drv_undo(cfdriverv[i]);
259 KASSERT(e2 == 0);
260 }
261
262 return error;
263 }
264
265 typedef int (*cfattach_fn)(const char *, struct cfattach *);
266 static int
267 frob_cfattachvec(const struct cfattachinit *cfattachv,
268 cfattach_fn att_do, cfattach_fn att_undo,
269 const char *style, bool dopanic)
270 {
271 const struct cfattachinit *cfai = NULL;
272 void (*pr)(const char *, ...) = dopanic ? panic : printf;
273 int j = 0, error = 0, e2;
274
275 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
276 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
277 if ((error = att_do(cfai->cfai_name,
278 cfai->cfai_list[j])) != 0) {
279 pr("configure: attachment `%s' "
280 "of `%s' driver %s failed: %d",
281 cfai->cfai_list[j]->ca_name,
282 cfai->cfai_name, style, error);
283 goto bad;
284 }
285 }
286 }
287
288 KASSERT(error == 0);
289 return 0;
290
291 bad:
292 /*
293 * Rollback in reverse order. dunno if super-important, but
294 * do that anyway. Although the code looks a little like
295 * someone did a little integration (in the math sense).
296 */
297 printf("\n");
298 if (cfai) {
299 bool last;
300
301 for (last = false; last == false; ) {
302 if (cfai == &cfattachv[0])
303 last = true;
304 for (j--; j >= 0; j--) {
305 e2 = att_undo(cfai->cfai_name,
306 cfai->cfai_list[j]);
307 KASSERT(e2 == 0);
308 }
309 if (!last) {
310 cfai--;
311 for (j = 0; cfai->cfai_list[j] != NULL; j++)
312 ;
313 }
314 }
315 }
316
317 return error;
318 }
319
320 /*
321 * Initialize the autoconfiguration data structures. Normally this
322 * is done by configure(), but some platforms need to do this very
323 * early (to e.g. initialize the console).
324 */
325 void
326 config_init(void)
327 {
328
329 KASSERT(config_initialized == false);
330
331 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
332
333 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
334 cv_init(&config_misc_cv, "cfgmisc");
335
336 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
337
338 frob_cfdrivervec(cfdriver_list_initial,
339 config_cfdriver_attach, NULL, "bootstrap", true);
340 frob_cfattachvec(cfattachinit,
341 config_cfattach_attach, NULL, "bootstrap", true);
342
343 initcftable.ct_cfdata = cfdata;
344 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
345
346 config_initialized = true;
347 }
348
349 /*
350 * Init or fini drivers and attachments. Either all or none
351 * are processed (via rollback). It would be nice if this were
352 * atomic to outside consumers, but with the current state of
353 * locking ...
354 */
355 int
356 config_init_component(struct cfdriver * const *cfdriverv,
357 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
358 {
359 int error;
360
361 if ((error = frob_cfdrivervec(cfdriverv,
362 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
363 return error;
364 if ((error = frob_cfattachvec(cfattachv,
365 config_cfattach_attach, config_cfattach_detach,
366 "init", false)) != 0) {
367 frob_cfdrivervec(cfdriverv,
368 config_cfdriver_detach, NULL, "init rollback", true);
369 return error;
370 }
371 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
372 frob_cfattachvec(cfattachv,
373 config_cfattach_detach, NULL, "init rollback", true);
374 frob_cfdrivervec(cfdriverv,
375 config_cfdriver_detach, NULL, "init rollback", true);
376 return error;
377 }
378
379 return 0;
380 }
381
382 int
383 config_fini_component(struct cfdriver * const *cfdriverv,
384 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
385 {
386 int error;
387
388 if ((error = config_cfdata_detach(cfdatav)) != 0)
389 return error;
390 if ((error = frob_cfattachvec(cfattachv,
391 config_cfattach_detach, config_cfattach_attach,
392 "fini", false)) != 0) {
393 if (config_cfdata_attach(cfdatav, 0) != 0)
394 panic("config_cfdata fini rollback failed");
395 return error;
396 }
397 if ((error = frob_cfdrivervec(cfdriverv,
398 config_cfdriver_detach, config_cfdriver_attach,
399 "fini", false)) != 0) {
400 frob_cfattachvec(cfattachv,
401 config_cfattach_attach, NULL, "fini rollback", true);
402 if (config_cfdata_attach(cfdatav, 0) != 0)
403 panic("config_cfdata fini rollback failed");
404 return error;
405 }
406
407 return 0;
408 }
409
410 void
411 config_init_mi(void)
412 {
413
414 if (!config_initialized)
415 config_init();
416
417 sysctl_detach_setup(NULL);
418 }
419
420 void
421 config_deferred(device_t dev)
422 {
423 config_process_deferred(&deferred_config_queue, dev);
424 config_process_deferred(&interrupt_config_queue, dev);
425 config_process_deferred(&mountroot_config_queue, dev);
426 }
427
428 static void
429 config_interrupts_thread(void *cookie)
430 {
431 struct deferred_config *dc;
432
433 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
434 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
435 (*dc->dc_func)(dc->dc_dev);
436 kmem_free(dc, sizeof(*dc));
437 config_pending_decr();
438 }
439 kthread_exit(0);
440 }
441
442 void
443 config_create_interruptthreads()
444 {
445 int i;
446
447 for (i = 0; i < interrupt_config_threads; i++) {
448 (void)kthread_create(PRI_NONE, 0, NULL,
449 config_interrupts_thread, NULL, NULL, "config");
450 }
451 }
452
453 static void
454 config_mountroot_thread(void *cookie)
455 {
456 struct deferred_config *dc;
457
458 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
459 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
460 (*dc->dc_func)(dc->dc_dev);
461 kmem_free(dc, sizeof(*dc));
462 }
463 kthread_exit(0);
464 }
465
466 void
467 config_create_mountrootthreads()
468 {
469 int i;
470
471 if (!root_is_mounted)
472 root_is_mounted = true;
473
474 for (i = 0; i < mountroot_config_threads; i++) {
475 (void)kthread_create(PRI_NONE, 0, NULL,
476 config_mountroot_thread, NULL, NULL, "config");
477 }
478 }
479
480 /*
481 * Announce device attach/detach to userland listeners.
482 */
483 static void
484 devmon_report_device(device_t dev, bool isattach)
485 {
486 #if NDRVCTL > 0
487 prop_dictionary_t ev;
488 const char *parent;
489 const char *what;
490 device_t pdev = device_parent(dev);
491
492 ev = prop_dictionary_create();
493 if (ev == NULL)
494 return;
495
496 what = (isattach ? "device-attach" : "device-detach");
497 parent = (pdev == NULL ? "root" : device_xname(pdev));
498 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
499 !prop_dictionary_set_cstring(ev, "parent", parent)) {
500 prop_object_release(ev);
501 return;
502 }
503
504 devmon_insert(what, ev);
505 #endif
506 }
507
508 /*
509 * Add a cfdriver to the system.
510 */
511 int
512 config_cfdriver_attach(struct cfdriver *cd)
513 {
514 struct cfdriver *lcd;
515
516 /* Make sure this driver isn't already in the system. */
517 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
518 if (STREQ(lcd->cd_name, cd->cd_name))
519 return EEXIST;
520 }
521
522 LIST_INIT(&cd->cd_attach);
523 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
524
525 return 0;
526 }
527
528 /*
529 * Remove a cfdriver from the system.
530 */
531 int
532 config_cfdriver_detach(struct cfdriver *cd)
533 {
534 struct alldevs_foray af;
535 int i, rc = 0;
536
537 config_alldevs_enter(&af);
538 /* Make sure there are no active instances. */
539 for (i = 0; i < cd->cd_ndevs; i++) {
540 if (cd->cd_devs[i] != NULL) {
541 rc = EBUSY;
542 break;
543 }
544 }
545 config_alldevs_exit(&af);
546
547 if (rc != 0)
548 return rc;
549
550 /* ...and no attachments loaded. */
551 if (LIST_EMPTY(&cd->cd_attach) == 0)
552 return EBUSY;
553
554 LIST_REMOVE(cd, cd_list);
555
556 KASSERT(cd->cd_devs == NULL);
557
558 return 0;
559 }
560
561 /*
562 * Look up a cfdriver by name.
563 */
564 struct cfdriver *
565 config_cfdriver_lookup(const char *name)
566 {
567 struct cfdriver *cd;
568
569 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
570 if (STREQ(cd->cd_name, name))
571 return cd;
572 }
573
574 return NULL;
575 }
576
577 /*
578 * Add a cfattach to the specified driver.
579 */
580 int
581 config_cfattach_attach(const char *driver, struct cfattach *ca)
582 {
583 struct cfattach *lca;
584 struct cfdriver *cd;
585
586 cd = config_cfdriver_lookup(driver);
587 if (cd == NULL)
588 return ESRCH;
589
590 /* Make sure this attachment isn't already on this driver. */
591 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
592 if (STREQ(lca->ca_name, ca->ca_name))
593 return EEXIST;
594 }
595
596 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
597
598 return 0;
599 }
600
601 /*
602 * Remove a cfattach from the specified driver.
603 */
604 int
605 config_cfattach_detach(const char *driver, struct cfattach *ca)
606 {
607 struct alldevs_foray af;
608 struct cfdriver *cd;
609 device_t dev;
610 int i, rc = 0;
611
612 cd = config_cfdriver_lookup(driver);
613 if (cd == NULL)
614 return ESRCH;
615
616 config_alldevs_enter(&af);
617 /* Make sure there are no active instances. */
618 for (i = 0; i < cd->cd_ndevs; i++) {
619 if ((dev = cd->cd_devs[i]) == NULL)
620 continue;
621 if (dev->dv_cfattach == ca) {
622 rc = EBUSY;
623 break;
624 }
625 }
626 config_alldevs_exit(&af);
627
628 if (rc != 0)
629 return rc;
630
631 LIST_REMOVE(ca, ca_list);
632
633 return 0;
634 }
635
636 /*
637 * Look up a cfattach by name.
638 */
639 static struct cfattach *
640 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
641 {
642 struct cfattach *ca;
643
644 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
645 if (STREQ(ca->ca_name, atname))
646 return ca;
647 }
648
649 return NULL;
650 }
651
652 /*
653 * Look up a cfattach by driver/attachment name.
654 */
655 struct cfattach *
656 config_cfattach_lookup(const char *name, const char *atname)
657 {
658 struct cfdriver *cd;
659
660 cd = config_cfdriver_lookup(name);
661 if (cd == NULL)
662 return NULL;
663
664 return config_cfattach_lookup_cd(cd, atname);
665 }
666
667 /*
668 * Apply the matching function and choose the best. This is used
669 * a few times and we want to keep the code small.
670 */
671 static void
672 mapply(struct matchinfo *m, cfdata_t cf)
673 {
674 int pri;
675
676 if (m->fn != NULL) {
677 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
678 } else {
679 pri = config_match(m->parent, cf, m->aux);
680 }
681 if (pri > m->pri) {
682 m->match = cf;
683 m->pri = pri;
684 }
685 }
686
687 int
688 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
689 {
690 const struct cfiattrdata *ci;
691 const struct cflocdesc *cl;
692 int nlocs, i;
693
694 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
695 KASSERT(ci);
696 nlocs = ci->ci_loclen;
697 KASSERT(!nlocs || locs);
698 for (i = 0; i < nlocs; i++) {
699 cl = &ci->ci_locdesc[i];
700 /* !cld_defaultstr means no default value */
701 if ((!(cl->cld_defaultstr)
702 || (cf->cf_loc[i] != cl->cld_default))
703 && cf->cf_loc[i] != locs[i])
704 return 0;
705 }
706
707 return config_match(parent, cf, aux);
708 }
709
710 /*
711 * Helper function: check whether the driver supports the interface attribute
712 * and return its descriptor structure.
713 */
714 static const struct cfiattrdata *
715 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
716 {
717 const struct cfiattrdata * const *cpp;
718
719 if (cd->cd_attrs == NULL)
720 return 0;
721
722 for (cpp = cd->cd_attrs; *cpp; cpp++) {
723 if (STREQ((*cpp)->ci_name, ia)) {
724 /* Match. */
725 return *cpp;
726 }
727 }
728 return 0;
729 }
730
731 /*
732 * Lookup an interface attribute description by name.
733 * If the driver is given, consider only its supported attributes.
734 */
735 const struct cfiattrdata *
736 cfiattr_lookup(const char *name, const struct cfdriver *cd)
737 {
738 const struct cfdriver *d;
739 const struct cfiattrdata *ia;
740
741 if (cd)
742 return cfdriver_get_iattr(cd, name);
743
744 LIST_FOREACH(d, &allcfdrivers, cd_list) {
745 ia = cfdriver_get_iattr(d, name);
746 if (ia)
747 return ia;
748 }
749 return 0;
750 }
751
752 /*
753 * Determine if `parent' is a potential parent for a device spec based
754 * on `cfp'.
755 */
756 static int
757 cfparent_match(const device_t parent, const struct cfparent *cfp)
758 {
759 struct cfdriver *pcd;
760
761 /* We don't match root nodes here. */
762 if (cfp == NULL)
763 return 0;
764
765 pcd = parent->dv_cfdriver;
766 KASSERT(pcd != NULL);
767
768 /*
769 * First, ensure this parent has the correct interface
770 * attribute.
771 */
772 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
773 return 0;
774
775 /*
776 * If no specific parent device instance was specified (i.e.
777 * we're attaching to the attribute only), we're done!
778 */
779 if (cfp->cfp_parent == NULL)
780 return 1;
781
782 /*
783 * Check the parent device's name.
784 */
785 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
786 return 0; /* not the same parent */
787
788 /*
789 * Make sure the unit number matches.
790 */
791 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
792 cfp->cfp_unit == parent->dv_unit)
793 return 1;
794
795 /* Unit numbers don't match. */
796 return 0;
797 }
798
799 /*
800 * Helper for config_cfdata_attach(): check all devices whether it could be
801 * parent any attachment in the config data table passed, and rescan.
802 */
803 static void
804 rescan_with_cfdata(const struct cfdata *cf)
805 {
806 device_t d;
807 const struct cfdata *cf1;
808 deviter_t di;
809
810
811 /*
812 * "alldevs" is likely longer than a modules's cfdata, so make it
813 * the outer loop.
814 */
815 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
816
817 if (!(d->dv_cfattach->ca_rescan))
818 continue;
819
820 for (cf1 = cf; cf1->cf_name; cf1++) {
821
822 if (!cfparent_match(d, cf1->cf_pspec))
823 continue;
824
825 (*d->dv_cfattach->ca_rescan)(d,
826 cfdata_ifattr(cf1), cf1->cf_loc);
827
828 config_deferred(d);
829 }
830 }
831 deviter_release(&di);
832 }
833
834 /*
835 * Attach a supplemental config data table and rescan potential
836 * parent devices if required.
837 */
838 int
839 config_cfdata_attach(cfdata_t cf, int scannow)
840 {
841 struct cftable *ct;
842
843 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
844 ct->ct_cfdata = cf;
845 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
846
847 if (scannow)
848 rescan_with_cfdata(cf);
849
850 return 0;
851 }
852
853 /*
854 * Helper for config_cfdata_detach: check whether a device is
855 * found through any attachment in the config data table.
856 */
857 static int
858 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
859 {
860 const struct cfdata *cf1;
861
862 for (cf1 = cf; cf1->cf_name; cf1++)
863 if (d->dv_cfdata == cf1)
864 return 1;
865
866 return 0;
867 }
868
869 /*
870 * Detach a supplemental config data table. Detach all devices found
871 * through that table (and thus keeping references to it) before.
872 */
873 int
874 config_cfdata_detach(cfdata_t cf)
875 {
876 device_t d;
877 int error = 0;
878 struct cftable *ct;
879 deviter_t di;
880
881 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
882 d = deviter_next(&di)) {
883 if (!dev_in_cfdata(d, cf))
884 continue;
885 if ((error = config_detach(d, 0)) != 0)
886 break;
887 }
888 deviter_release(&di);
889 if (error) {
890 aprint_error_dev(d, "unable to detach instance\n");
891 return error;
892 }
893
894 TAILQ_FOREACH(ct, &allcftables, ct_list) {
895 if (ct->ct_cfdata == cf) {
896 TAILQ_REMOVE(&allcftables, ct, ct_list);
897 kmem_free(ct, sizeof(*ct));
898 return 0;
899 }
900 }
901
902 /* not found -- shouldn't happen */
903 return EINVAL;
904 }
905
906 /*
907 * Invoke the "match" routine for a cfdata entry on behalf of
908 * an external caller, usually a "submatch" routine.
909 */
910 int
911 config_match(device_t parent, cfdata_t cf, void *aux)
912 {
913 struct cfattach *ca;
914
915 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
916 if (ca == NULL) {
917 /* No attachment for this entry, oh well. */
918 return 0;
919 }
920
921 return (*ca->ca_match)(parent, cf, aux);
922 }
923
924 /*
925 * Iterate over all potential children of some device, calling the given
926 * function (default being the child's match function) for each one.
927 * Nonzero returns are matches; the highest value returned is considered
928 * the best match. Return the `found child' if we got a match, or NULL
929 * otherwise. The `aux' pointer is simply passed on through.
930 *
931 * Note that this function is designed so that it can be used to apply
932 * an arbitrary function to all potential children (its return value
933 * can be ignored).
934 */
935 cfdata_t
936 config_search_loc(cfsubmatch_t fn, device_t parent,
937 const char *ifattr, const int *locs, void *aux)
938 {
939 struct cftable *ct;
940 cfdata_t cf;
941 struct matchinfo m;
942
943 KASSERT(config_initialized);
944 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
945
946 m.fn = fn;
947 m.parent = parent;
948 m.locs = locs;
949 m.aux = aux;
950 m.match = NULL;
951 m.pri = 0;
952
953 TAILQ_FOREACH(ct, &allcftables, ct_list) {
954 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
955
956 /* We don't match root nodes here. */
957 if (!cf->cf_pspec)
958 continue;
959
960 /*
961 * Skip cf if no longer eligible, otherwise scan
962 * through parents for one matching `parent', and
963 * try match function.
964 */
965 if (cf->cf_fstate == FSTATE_FOUND)
966 continue;
967 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
968 cf->cf_fstate == FSTATE_DSTAR)
969 continue;
970
971 /*
972 * If an interface attribute was specified,
973 * consider only children which attach to
974 * that attribute.
975 */
976 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
977 continue;
978
979 if (cfparent_match(parent, cf->cf_pspec))
980 mapply(&m, cf);
981 }
982 }
983 return m.match;
984 }
985
986 cfdata_t
987 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
988 void *aux)
989 {
990
991 return config_search_loc(fn, parent, ifattr, NULL, aux);
992 }
993
994 /*
995 * Find the given root device.
996 * This is much like config_search, but there is no parent.
997 * Don't bother with multiple cfdata tables; the root node
998 * must always be in the initial table.
999 */
1000 cfdata_t
1001 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1002 {
1003 cfdata_t cf;
1004 const short *p;
1005 struct matchinfo m;
1006
1007 m.fn = fn;
1008 m.parent = ROOT;
1009 m.aux = aux;
1010 m.match = NULL;
1011 m.pri = 0;
1012 m.locs = 0;
1013 /*
1014 * Look at root entries for matching name. We do not bother
1015 * with found-state here since only one root should ever be
1016 * searched (and it must be done first).
1017 */
1018 for (p = cfroots; *p >= 0; p++) {
1019 cf = &cfdata[*p];
1020 if (strcmp(cf->cf_name, rootname) == 0)
1021 mapply(&m, cf);
1022 }
1023 return m.match;
1024 }
1025
1026 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1027
1028 /*
1029 * The given `aux' argument describes a device that has been found
1030 * on the given parent, but not necessarily configured. Locate the
1031 * configuration data for that device (using the submatch function
1032 * provided, or using candidates' cd_match configuration driver
1033 * functions) and attach it, and return true. If the device was
1034 * not configured, call the given `print' function and return 0.
1035 */
1036 device_t
1037 config_found_sm_loc(device_t parent,
1038 const char *ifattr, const int *locs, void *aux,
1039 cfprint_t print, cfsubmatch_t submatch)
1040 {
1041 cfdata_t cf;
1042
1043 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1044 return(config_attach_loc(parent, cf, locs, aux, print));
1045 if (print) {
1046 if (config_do_twiddle && cold)
1047 twiddle();
1048 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1049 }
1050
1051 return NULL;
1052 }
1053
1054 device_t
1055 config_found_ia(device_t parent, const char *ifattr, void *aux,
1056 cfprint_t print)
1057 {
1058
1059 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1060 }
1061
1062 device_t
1063 config_found(device_t parent, void *aux, cfprint_t print)
1064 {
1065
1066 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1067 }
1068
1069 /*
1070 * As above, but for root devices.
1071 */
1072 device_t
1073 config_rootfound(const char *rootname, void *aux)
1074 {
1075 cfdata_t cf;
1076
1077 if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
1078 return config_attach(ROOT, cf, aux, (cfprint_t)NULL);
1079 aprint_error("root device %s not configured\n", rootname);
1080 return NULL;
1081 }
1082
1083 /* just like sprintf(buf, "%d") except that it works from the end */
1084 static char *
1085 number(char *ep, int n)
1086 {
1087
1088 *--ep = 0;
1089 while (n >= 10) {
1090 *--ep = (n % 10) + '0';
1091 n /= 10;
1092 }
1093 *--ep = n + '0';
1094 return ep;
1095 }
1096
1097 /*
1098 * Expand the size of the cd_devs array if necessary.
1099 *
1100 * The caller must hold alldevs_mtx. config_makeroom() may release and
1101 * re-acquire alldevs_mtx, so callers should re-check conditions such
1102 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1103 * returns.
1104 */
1105 static void
1106 config_makeroom(int n, struct cfdriver *cd)
1107 {
1108 int old, new;
1109 device_t *osp, *nsp;
1110
1111 alldevs_nwrite++;
1112
1113 for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
1114 ;
1115
1116 while (n >= cd->cd_ndevs) {
1117 /*
1118 * Need to expand the array.
1119 */
1120 old = cd->cd_ndevs;
1121 osp = cd->cd_devs;
1122
1123 /* Release alldevs_mtx around allocation, which may
1124 * sleep.
1125 */
1126 mutex_exit(&alldevs_mtx);
1127 nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
1128 if (nsp == NULL)
1129 panic("%s: could not expand cd_devs", __func__);
1130 mutex_enter(&alldevs_mtx);
1131
1132 /* If another thread moved the array while we did
1133 * not hold alldevs_mtx, try again.
1134 */
1135 if (cd->cd_devs != osp) {
1136 mutex_exit(&alldevs_mtx);
1137 kmem_free(nsp, sizeof(device_t[new]));
1138 mutex_enter(&alldevs_mtx);
1139 continue;
1140 }
1141
1142 memset(nsp + old, 0, sizeof(device_t[new - old]));
1143 if (old != 0)
1144 memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
1145
1146 cd->cd_ndevs = new;
1147 cd->cd_devs = nsp;
1148 if (old != 0) {
1149 mutex_exit(&alldevs_mtx);
1150 kmem_free(osp, sizeof(device_t[old]));
1151 mutex_enter(&alldevs_mtx);
1152 }
1153 }
1154 alldevs_nwrite--;
1155 }
1156
1157 /*
1158 * Put dev into the devices list.
1159 */
1160 static void
1161 config_devlink(device_t dev)
1162 {
1163 int s;
1164
1165 s = config_alldevs_lock();
1166
1167 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1168
1169 dev->dv_add_gen = alldevs_gen;
1170 /* It is safe to add a device to the tail of the list while
1171 * readers and writers are in the list.
1172 */
1173 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1174 config_alldevs_unlock(s);
1175 }
1176
1177 static void
1178 config_devfree(device_t dev)
1179 {
1180 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1181
1182 if (dev->dv_cfattach->ca_devsize > 0)
1183 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1184 if (priv)
1185 kmem_free(dev, sizeof(*dev));
1186 }
1187
1188 /*
1189 * Caller must hold alldevs_mtx.
1190 */
1191 static void
1192 config_devunlink(device_t dev, struct devicelist *garbage)
1193 {
1194 struct device_garbage *dg = &dev->dv_garbage;
1195 cfdriver_t cd = device_cfdriver(dev);
1196 int i;
1197
1198 KASSERT(mutex_owned(&alldevs_mtx));
1199
1200 /* Unlink from device list. Link to garbage list. */
1201 TAILQ_REMOVE(&alldevs, dev, dv_list);
1202 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1203
1204 /* Remove from cfdriver's array. */
1205 cd->cd_devs[dev->dv_unit] = NULL;
1206
1207 /*
1208 * If the device now has no units in use, unlink its softc array.
1209 */
1210 for (i = 0; i < cd->cd_ndevs; i++) {
1211 if (cd->cd_devs[i] != NULL)
1212 break;
1213 }
1214 /* Nothing found. Unlink, now. Deallocate, later. */
1215 if (i == cd->cd_ndevs) {
1216 dg->dg_ndevs = cd->cd_ndevs;
1217 dg->dg_devs = cd->cd_devs;
1218 cd->cd_devs = NULL;
1219 cd->cd_ndevs = 0;
1220 }
1221 }
1222
1223 static void
1224 config_devdelete(device_t dev)
1225 {
1226 struct device_garbage *dg = &dev->dv_garbage;
1227 device_lock_t dvl = device_getlock(dev);
1228
1229 if (dg->dg_devs != NULL)
1230 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1231
1232 cv_destroy(&dvl->dvl_cv);
1233 mutex_destroy(&dvl->dvl_mtx);
1234
1235 KASSERT(dev->dv_properties != NULL);
1236 prop_object_release(dev->dv_properties);
1237
1238 if (dev->dv_activity_handlers)
1239 panic("%s with registered handlers", __func__);
1240
1241 if (dev->dv_locators) {
1242 size_t amount = *--dev->dv_locators;
1243 kmem_free(dev->dv_locators, amount);
1244 }
1245
1246 config_devfree(dev);
1247 }
1248
1249 static int
1250 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1251 {
1252 int unit;
1253
1254 if (cf->cf_fstate == FSTATE_STAR) {
1255 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1256 if (cd->cd_devs[unit] == NULL)
1257 break;
1258 /*
1259 * unit is now the unit of the first NULL device pointer,
1260 * or max(cd->cd_ndevs,cf->cf_unit).
1261 */
1262 } else {
1263 unit = cf->cf_unit;
1264 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1265 unit = -1;
1266 }
1267 return unit;
1268 }
1269
1270 static int
1271 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1272 {
1273 struct alldevs_foray af;
1274 int unit;
1275
1276 config_alldevs_enter(&af);
1277 for (;;) {
1278 unit = config_unit_nextfree(cd, cf);
1279 if (unit == -1)
1280 break;
1281 if (unit < cd->cd_ndevs) {
1282 cd->cd_devs[unit] = dev;
1283 dev->dv_unit = unit;
1284 break;
1285 }
1286 config_makeroom(unit, cd);
1287 }
1288 config_alldevs_exit(&af);
1289
1290 return unit;
1291 }
1292
1293 static device_t
1294 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1295 {
1296 cfdriver_t cd;
1297 cfattach_t ca;
1298 size_t lname, lunit;
1299 const char *xunit;
1300 int myunit;
1301 char num[10];
1302 device_t dev;
1303 void *dev_private;
1304 const struct cfiattrdata *ia;
1305 device_lock_t dvl;
1306
1307 cd = config_cfdriver_lookup(cf->cf_name);
1308 if (cd == NULL)
1309 return NULL;
1310
1311 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1312 if (ca == NULL)
1313 return NULL;
1314
1315 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1316 ca->ca_devsize < sizeof(struct device))
1317 panic("config_devalloc: %s", cf->cf_atname);
1318
1319 /* get memory for all device vars */
1320 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1321 if (ca->ca_devsize > 0) {
1322 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1323 if (dev_private == NULL)
1324 panic("config_devalloc: memory allocation for device softc failed");
1325 } else {
1326 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1327 dev_private = NULL;
1328 }
1329
1330 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1331 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1332 } else {
1333 dev = dev_private;
1334 #ifdef DIAGNOSTIC
1335 printf("%s has not been converted to device_t\n", cd->cd_name);
1336 #endif
1337 }
1338 if (dev == NULL)
1339 panic("config_devalloc: memory allocation for device_t failed");
1340
1341 dev->dv_class = cd->cd_class;
1342 dev->dv_cfdata = cf;
1343 dev->dv_cfdriver = cd;
1344 dev->dv_cfattach = ca;
1345 dev->dv_activity_count = 0;
1346 dev->dv_activity_handlers = NULL;
1347 dev->dv_private = dev_private;
1348 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1349
1350 myunit = config_unit_alloc(dev, cd, cf);
1351 if (myunit == -1) {
1352 config_devfree(dev);
1353 return NULL;
1354 }
1355
1356 /* compute length of name and decimal expansion of unit number */
1357 lname = strlen(cd->cd_name);
1358 xunit = number(&num[sizeof(num)], myunit);
1359 lunit = &num[sizeof(num)] - xunit;
1360 if (lname + lunit > sizeof(dev->dv_xname))
1361 panic("config_devalloc: device name too long");
1362
1363 dvl = device_getlock(dev);
1364
1365 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1366 cv_init(&dvl->dvl_cv, "pmfsusp");
1367
1368 memcpy(dev->dv_xname, cd->cd_name, lname);
1369 memcpy(dev->dv_xname + lname, xunit, lunit);
1370 dev->dv_parent = parent;
1371 if (parent != NULL)
1372 dev->dv_depth = parent->dv_depth + 1;
1373 else
1374 dev->dv_depth = 0;
1375 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1376 if (locs) {
1377 KASSERT(parent); /* no locators at root */
1378 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1379 dev->dv_locators =
1380 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1381 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1382 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1383 }
1384 dev->dv_properties = prop_dictionary_create();
1385 KASSERT(dev->dv_properties != NULL);
1386
1387 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1388 "device-driver", dev->dv_cfdriver->cd_name);
1389 prop_dictionary_set_uint16(dev->dv_properties,
1390 "device-unit", dev->dv_unit);
1391
1392 return dev;
1393 }
1394
1395 /*
1396 * Attach a found device.
1397 */
1398 device_t
1399 config_attach_loc(device_t parent, cfdata_t cf,
1400 const int *locs, void *aux, cfprint_t print)
1401 {
1402 device_t dev;
1403 struct cftable *ct;
1404 const char *drvname;
1405
1406 dev = config_devalloc(parent, cf, locs);
1407 if (!dev)
1408 panic("config_attach: allocation of device softc failed");
1409
1410 /* XXX redundant - see below? */
1411 if (cf->cf_fstate != FSTATE_STAR) {
1412 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1413 cf->cf_fstate = FSTATE_FOUND;
1414 }
1415
1416 config_devlink(dev);
1417
1418 if (config_do_twiddle && cold)
1419 twiddle();
1420 else
1421 aprint_naive("Found ");
1422 /*
1423 * We want the next two printfs for normal, verbose, and quiet,
1424 * but not silent (in which case, we're twiddling, instead).
1425 */
1426 if (parent == ROOT) {
1427 aprint_naive("%s (root)", device_xname(dev));
1428 aprint_normal("%s (root)", device_xname(dev));
1429 } else {
1430 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1431 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1432 if (print)
1433 (void) (*print)(aux, NULL);
1434 }
1435
1436 /*
1437 * Before attaching, clobber any unfound devices that are
1438 * otherwise identical.
1439 * XXX code above is redundant?
1440 */
1441 drvname = dev->dv_cfdriver->cd_name;
1442 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1443 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1444 if (STREQ(cf->cf_name, drvname) &&
1445 cf->cf_unit == dev->dv_unit) {
1446 if (cf->cf_fstate == FSTATE_NOTFOUND)
1447 cf->cf_fstate = FSTATE_FOUND;
1448 }
1449 }
1450 }
1451 device_register(dev, aux);
1452
1453 /* Let userland know */
1454 devmon_report_device(dev, true);
1455
1456 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1457
1458 if (!device_pmf_is_registered(dev))
1459 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1460
1461 config_process_deferred(&deferred_config_queue, dev);
1462
1463 device_register_post_config(dev, aux);
1464 return dev;
1465 }
1466
1467 device_t
1468 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1469 {
1470
1471 return config_attach_loc(parent, cf, NULL, aux, print);
1472 }
1473
1474 /*
1475 * As above, but for pseudo-devices. Pseudo-devices attached in this
1476 * way are silently inserted into the device tree, and their children
1477 * attached.
1478 *
1479 * Note that because pseudo-devices are attached silently, any information
1480 * the attach routine wishes to print should be prefixed with the device
1481 * name by the attach routine.
1482 */
1483 device_t
1484 config_attach_pseudo(cfdata_t cf)
1485 {
1486 device_t dev;
1487
1488 dev = config_devalloc(ROOT, cf, NULL);
1489 if (!dev)
1490 return NULL;
1491
1492 /* XXX mark busy in cfdata */
1493
1494 if (cf->cf_fstate != FSTATE_STAR) {
1495 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1496 cf->cf_fstate = FSTATE_FOUND;
1497 }
1498
1499 config_devlink(dev);
1500
1501 #if 0 /* XXXJRT not yet */
1502 device_register(dev, NULL); /* like a root node */
1503 #endif
1504 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1505 config_process_deferred(&deferred_config_queue, dev);
1506 return dev;
1507 }
1508
1509 /*
1510 * Caller must hold alldevs_mtx.
1511 */
1512 static void
1513 config_collect_garbage(struct devicelist *garbage)
1514 {
1515 device_t dv;
1516
1517 KASSERT(!cpu_intr_p());
1518 KASSERT(!cpu_softintr_p());
1519 KASSERT(mutex_owned(&alldevs_mtx));
1520
1521 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1522 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1523 if (dv->dv_del_gen != 0)
1524 break;
1525 }
1526 if (dv == NULL) {
1527 alldevs_garbage = false;
1528 break;
1529 }
1530 config_devunlink(dv, garbage);
1531 }
1532 KASSERT(mutex_owned(&alldevs_mtx));
1533 }
1534
1535 static void
1536 config_dump_garbage(struct devicelist *garbage)
1537 {
1538 device_t dv;
1539
1540 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1541 TAILQ_REMOVE(garbage, dv, dv_list);
1542 config_devdelete(dv);
1543 }
1544 }
1545
1546 /*
1547 * Detach a device. Optionally forced (e.g. because of hardware
1548 * removal) and quiet. Returns zero if successful, non-zero
1549 * (an error code) otherwise.
1550 *
1551 * Note that this code wants to be run from a process context, so
1552 * that the detach can sleep to allow processes which have a device
1553 * open to run and unwind their stacks.
1554 */
1555 int
1556 config_detach(device_t dev, int flags)
1557 {
1558 struct alldevs_foray af;
1559 struct cftable *ct;
1560 cfdata_t cf;
1561 const struct cfattach *ca;
1562 struct cfdriver *cd;
1563 #ifdef DIAGNOSTIC
1564 device_t d;
1565 #endif
1566 int rv = 0, s;
1567
1568 #ifdef DIAGNOSTIC
1569 cf = dev->dv_cfdata;
1570 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1571 cf->cf_fstate != FSTATE_STAR)
1572 panic("config_detach: %s: bad device fstate %d",
1573 device_xname(dev), cf ? cf->cf_fstate : -1);
1574 #endif
1575 cd = dev->dv_cfdriver;
1576 KASSERT(cd != NULL);
1577
1578 ca = dev->dv_cfattach;
1579 KASSERT(ca != NULL);
1580
1581 s = config_alldevs_lock();
1582 if (dev->dv_del_gen != 0) {
1583 config_alldevs_unlock(s);
1584 #ifdef DIAGNOSTIC
1585 printf("%s: %s is already detached\n", __func__,
1586 device_xname(dev));
1587 #endif /* DIAGNOSTIC */
1588 return ENOENT;
1589 }
1590 alldevs_nwrite++;
1591 config_alldevs_unlock(s);
1592
1593 if (!detachall &&
1594 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1595 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1596 rv = EOPNOTSUPP;
1597 } else if (ca->ca_detach != NULL) {
1598 rv = (*ca->ca_detach)(dev, flags);
1599 } else
1600 rv = EOPNOTSUPP;
1601
1602 /*
1603 * If it was not possible to detach the device, then we either
1604 * panic() (for the forced but failed case), or return an error.
1605 *
1606 * If it was possible to detach the device, ensure that the
1607 * device is deactivated.
1608 */
1609 if (rv == 0)
1610 dev->dv_flags &= ~DVF_ACTIVE;
1611 else if ((flags & DETACH_FORCE) == 0)
1612 goto out;
1613 else {
1614 panic("config_detach: forced detach of %s failed (%d)",
1615 device_xname(dev), rv);
1616 }
1617
1618 /*
1619 * The device has now been successfully detached.
1620 */
1621
1622 /* Let userland know */
1623 devmon_report_device(dev, false);
1624
1625 #ifdef DIAGNOSTIC
1626 /*
1627 * Sanity: If you're successfully detached, you should have no
1628 * children. (Note that because children must be attached
1629 * after parents, we only need to search the latter part of
1630 * the list.)
1631 */
1632 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1633 d = TAILQ_NEXT(d, dv_list)) {
1634 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1635 printf("config_detach: detached device %s"
1636 " has children %s\n", device_xname(dev), device_xname(d));
1637 panic("config_detach");
1638 }
1639 }
1640 #endif
1641
1642 /* notify the parent that the child is gone */
1643 if (dev->dv_parent) {
1644 device_t p = dev->dv_parent;
1645 if (p->dv_cfattach->ca_childdetached)
1646 (*p->dv_cfattach->ca_childdetached)(p, dev);
1647 }
1648
1649 /*
1650 * Mark cfdata to show that the unit can be reused, if possible.
1651 */
1652 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1653 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1654 if (STREQ(cf->cf_name, cd->cd_name)) {
1655 if (cf->cf_fstate == FSTATE_FOUND &&
1656 cf->cf_unit == dev->dv_unit)
1657 cf->cf_fstate = FSTATE_NOTFOUND;
1658 }
1659 }
1660 }
1661
1662 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1663 aprint_normal_dev(dev, "detached\n");
1664
1665 out:
1666 config_alldevs_enter(&af);
1667 KASSERT(alldevs_nwrite != 0);
1668 --alldevs_nwrite;
1669 if (rv == 0 && dev->dv_del_gen == 0) {
1670 if (alldevs_nwrite == 0 && alldevs_nread == 0)
1671 config_devunlink(dev, &af.af_garbage);
1672 else {
1673 dev->dv_del_gen = alldevs_gen;
1674 alldevs_garbage = true;
1675 }
1676 }
1677 config_alldevs_exit(&af);
1678
1679 return rv;
1680 }
1681
1682 int
1683 config_detach_children(device_t parent, int flags)
1684 {
1685 device_t dv;
1686 deviter_t di;
1687 int error = 0;
1688
1689 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1690 dv = deviter_next(&di)) {
1691 if (device_parent(dv) != parent)
1692 continue;
1693 if ((error = config_detach(dv, flags)) != 0)
1694 break;
1695 }
1696 deviter_release(&di);
1697 return error;
1698 }
1699
1700 device_t
1701 shutdown_first(struct shutdown_state *s)
1702 {
1703 if (!s->initialized) {
1704 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1705 s->initialized = true;
1706 }
1707 return shutdown_next(s);
1708 }
1709
1710 device_t
1711 shutdown_next(struct shutdown_state *s)
1712 {
1713 device_t dv;
1714
1715 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1716 ;
1717
1718 if (dv == NULL)
1719 s->initialized = false;
1720
1721 return dv;
1722 }
1723
1724 bool
1725 config_detach_all(int how)
1726 {
1727 static struct shutdown_state s;
1728 device_t curdev;
1729 bool progress = false;
1730
1731 if ((how & RB_NOSYNC) != 0)
1732 return false;
1733
1734 for (curdev = shutdown_first(&s); curdev != NULL;
1735 curdev = shutdown_next(&s)) {
1736 aprint_debug(" detaching %s, ", device_xname(curdev));
1737 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1738 progress = true;
1739 aprint_debug("success.");
1740 } else
1741 aprint_debug("failed.");
1742 }
1743 return progress;
1744 }
1745
1746 static bool
1747 device_is_ancestor_of(device_t ancestor, device_t descendant)
1748 {
1749 device_t dv;
1750
1751 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1752 if (device_parent(dv) == ancestor)
1753 return true;
1754 }
1755 return false;
1756 }
1757
1758 int
1759 config_deactivate(device_t dev)
1760 {
1761 deviter_t di;
1762 const struct cfattach *ca;
1763 device_t descendant;
1764 int s, rv = 0, oflags;
1765
1766 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1767 descendant != NULL;
1768 descendant = deviter_next(&di)) {
1769 if (dev != descendant &&
1770 !device_is_ancestor_of(dev, descendant))
1771 continue;
1772
1773 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1774 continue;
1775
1776 ca = descendant->dv_cfattach;
1777 oflags = descendant->dv_flags;
1778
1779 descendant->dv_flags &= ~DVF_ACTIVE;
1780 if (ca->ca_activate == NULL)
1781 continue;
1782 s = splhigh();
1783 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1784 splx(s);
1785 if (rv != 0)
1786 descendant->dv_flags = oflags;
1787 }
1788 deviter_release(&di);
1789 return rv;
1790 }
1791
1792 /*
1793 * Defer the configuration of the specified device until all
1794 * of its parent's devices have been attached.
1795 */
1796 void
1797 config_defer(device_t dev, void (*func)(device_t))
1798 {
1799 struct deferred_config *dc;
1800
1801 if (dev->dv_parent == NULL)
1802 panic("config_defer: can't defer config of a root device");
1803
1804 #ifdef DIAGNOSTIC
1805 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1806 if (dc->dc_dev == dev)
1807 panic("config_defer: deferred twice");
1808 }
1809 #endif
1810
1811 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1812 if (dc == NULL)
1813 panic("config_defer: unable to allocate callback");
1814
1815 dc->dc_dev = dev;
1816 dc->dc_func = func;
1817 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1818 config_pending_incr();
1819 }
1820
1821 /*
1822 * Defer some autoconfiguration for a device until after interrupts
1823 * are enabled.
1824 */
1825 void
1826 config_interrupts(device_t dev, void (*func)(device_t))
1827 {
1828 struct deferred_config *dc;
1829
1830 /*
1831 * If interrupts are enabled, callback now.
1832 */
1833 if (cold == 0) {
1834 (*func)(dev);
1835 return;
1836 }
1837
1838 #ifdef DIAGNOSTIC
1839 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1840 if (dc->dc_dev == dev)
1841 panic("config_interrupts: deferred twice");
1842 }
1843 #endif
1844
1845 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1846 if (dc == NULL)
1847 panic("config_interrupts: unable to allocate callback");
1848
1849 dc->dc_dev = dev;
1850 dc->dc_func = func;
1851 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1852 config_pending_incr();
1853 }
1854
1855 /*
1856 * Defer some autoconfiguration for a device until after root file system
1857 * is mounted (to load firmware etc).
1858 */
1859 void
1860 config_mountroot(device_t dev, void (*func)(device_t))
1861 {
1862 struct deferred_config *dc;
1863
1864 /*
1865 * If root file system is mounted, callback now.
1866 */
1867 if (root_is_mounted) {
1868 (*func)(dev);
1869 return;
1870 }
1871
1872 #ifdef DIAGNOSTIC
1873 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
1874 if (dc->dc_dev == dev)
1875 panic("%s: deferred twice", __func__);
1876 }
1877 #endif
1878
1879 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1880 if (dc == NULL)
1881 panic("%s: unable to allocate callback", __func__);
1882
1883 dc->dc_dev = dev;
1884 dc->dc_func = func;
1885 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
1886 }
1887
1888 /*
1889 * Process a deferred configuration queue.
1890 */
1891 static void
1892 config_process_deferred(struct deferred_config_head *queue,
1893 device_t parent)
1894 {
1895 struct deferred_config *dc, *ndc;
1896
1897 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1898 ndc = TAILQ_NEXT(dc, dc_queue);
1899 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1900 TAILQ_REMOVE(queue, dc, dc_queue);
1901 (*dc->dc_func)(dc->dc_dev);
1902 kmem_free(dc, sizeof(*dc));
1903 config_pending_decr();
1904 }
1905 }
1906 }
1907
1908 /*
1909 * Manipulate the config_pending semaphore.
1910 */
1911 void
1912 config_pending_incr(void)
1913 {
1914
1915 mutex_enter(&config_misc_lock);
1916 config_pending++;
1917 mutex_exit(&config_misc_lock);
1918 }
1919
1920 void
1921 config_pending_decr(void)
1922 {
1923
1924 #ifdef DIAGNOSTIC
1925 if (config_pending == 0)
1926 panic("config_pending_decr: config_pending == 0");
1927 #endif
1928 mutex_enter(&config_misc_lock);
1929 config_pending--;
1930 if (config_pending == 0)
1931 cv_broadcast(&config_misc_cv);
1932 mutex_exit(&config_misc_lock);
1933 }
1934
1935 /*
1936 * Register a "finalization" routine. Finalization routines are
1937 * called iteratively once all real devices have been found during
1938 * autoconfiguration, for as long as any one finalizer has done
1939 * any work.
1940 */
1941 int
1942 config_finalize_register(device_t dev, int (*fn)(device_t))
1943 {
1944 struct finalize_hook *f;
1945
1946 /*
1947 * If finalization has already been done, invoke the
1948 * callback function now.
1949 */
1950 if (config_finalize_done) {
1951 while ((*fn)(dev) != 0)
1952 /* loop */ ;
1953 }
1954
1955 /* Ensure this isn't already on the list. */
1956 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
1957 if (f->f_func == fn && f->f_dev == dev)
1958 return EEXIST;
1959 }
1960
1961 f = kmem_alloc(sizeof(*f), KM_SLEEP);
1962 f->f_func = fn;
1963 f->f_dev = dev;
1964 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
1965
1966 return 0;
1967 }
1968
1969 void
1970 config_finalize(void)
1971 {
1972 struct finalize_hook *f;
1973 struct pdevinit *pdev;
1974 extern struct pdevinit pdevinit[];
1975 int errcnt, rv;
1976
1977 /*
1978 * Now that device driver threads have been created, wait for
1979 * them to finish any deferred autoconfiguration.
1980 */
1981 mutex_enter(&config_misc_lock);
1982 while (config_pending != 0)
1983 cv_wait(&config_misc_cv, &config_misc_lock);
1984 mutex_exit(&config_misc_lock);
1985
1986 KERNEL_LOCK(1, NULL);
1987
1988 /* Attach pseudo-devices. */
1989 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
1990 (*pdev->pdev_attach)(pdev->pdev_count);
1991
1992 /* Run the hooks until none of them does any work. */
1993 do {
1994 rv = 0;
1995 TAILQ_FOREACH(f, &config_finalize_list, f_list)
1996 rv |= (*f->f_func)(f->f_dev);
1997 } while (rv != 0);
1998
1999 config_finalize_done = 1;
2000
2001 /* Now free all the hooks. */
2002 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2003 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2004 kmem_free(f, sizeof(*f));
2005 }
2006
2007 KERNEL_UNLOCK_ONE(NULL);
2008
2009 errcnt = aprint_get_error_count();
2010 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2011 (boothowto & AB_VERBOSE) == 0) {
2012 mutex_enter(&config_misc_lock);
2013 if (config_do_twiddle) {
2014 config_do_twiddle = 0;
2015 printf_nolog(" done.\n");
2016 }
2017 mutex_exit(&config_misc_lock);
2018 if (errcnt != 0) {
2019 printf("WARNING: %d error%s while detecting hardware; "
2020 "check system log.\n", errcnt,
2021 errcnt == 1 ? "" : "s");
2022 }
2023 }
2024 }
2025
2026 void
2027 config_twiddle_init()
2028 {
2029
2030 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2031 config_do_twiddle = 1;
2032 }
2033 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2034 }
2035
2036 void
2037 config_twiddle_fn(void *cookie)
2038 {
2039
2040 mutex_enter(&config_misc_lock);
2041 if (config_do_twiddle) {
2042 twiddle();
2043 callout_schedule(&config_twiddle_ch, mstohz(100));
2044 }
2045 mutex_exit(&config_misc_lock);
2046 }
2047
2048 static int
2049 config_alldevs_lock(void)
2050 {
2051 mutex_enter(&alldevs_mtx);
2052 return 0;
2053 }
2054
2055 static void
2056 config_alldevs_enter(struct alldevs_foray *af)
2057 {
2058 TAILQ_INIT(&af->af_garbage);
2059 af->af_s = config_alldevs_lock();
2060 config_collect_garbage(&af->af_garbage);
2061 }
2062
2063 static void
2064 config_alldevs_exit(struct alldevs_foray *af)
2065 {
2066 config_alldevs_unlock(af->af_s);
2067 config_dump_garbage(&af->af_garbage);
2068 }
2069
2070 /*ARGSUSED*/
2071 static void
2072 config_alldevs_unlock(int s)
2073 {
2074 mutex_exit(&alldevs_mtx);
2075 }
2076
2077 /*
2078 * device_lookup:
2079 *
2080 * Look up a device instance for a given driver.
2081 */
2082 device_t
2083 device_lookup(cfdriver_t cd, int unit)
2084 {
2085 device_t dv;
2086 int s;
2087
2088 s = config_alldevs_lock();
2089 KASSERT(mutex_owned(&alldevs_mtx));
2090 if (unit < 0 || unit >= cd->cd_ndevs)
2091 dv = NULL;
2092 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2093 dv = NULL;
2094 config_alldevs_unlock(s);
2095
2096 return dv;
2097 }
2098
2099 /*
2100 * device_lookup_private:
2101 *
2102 * Look up a softc instance for a given driver.
2103 */
2104 void *
2105 device_lookup_private(cfdriver_t cd, int unit)
2106 {
2107
2108 return device_private(device_lookup(cd, unit));
2109 }
2110
2111 /*
2112 * device_find_by_xname:
2113 *
2114 * Returns the device of the given name or NULL if it doesn't exist.
2115 */
2116 device_t
2117 device_find_by_xname(const char *name)
2118 {
2119 device_t dv;
2120 deviter_t di;
2121
2122 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2123 if (strcmp(device_xname(dv), name) == 0)
2124 break;
2125 }
2126 deviter_release(&di);
2127
2128 return dv;
2129 }
2130
2131 /*
2132 * device_find_by_driver_unit:
2133 *
2134 * Returns the device of the given driver name and unit or
2135 * NULL if it doesn't exist.
2136 */
2137 device_t
2138 device_find_by_driver_unit(const char *name, int unit)
2139 {
2140 struct cfdriver *cd;
2141
2142 if ((cd = config_cfdriver_lookup(name)) == NULL)
2143 return NULL;
2144 return device_lookup(cd, unit);
2145 }
2146
2147 /*
2148 * Power management related functions.
2149 */
2150
2151 bool
2152 device_pmf_is_registered(device_t dev)
2153 {
2154 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2155 }
2156
2157 bool
2158 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2159 {
2160 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2161 return true;
2162 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2163 return false;
2164 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2165 dev->dv_driver_suspend != NULL &&
2166 !(*dev->dv_driver_suspend)(dev, qual))
2167 return false;
2168
2169 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2170 return true;
2171 }
2172
2173 bool
2174 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2175 {
2176 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2177 return true;
2178 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2179 return false;
2180 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2181 dev->dv_driver_resume != NULL &&
2182 !(*dev->dv_driver_resume)(dev, qual))
2183 return false;
2184
2185 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2186 return true;
2187 }
2188
2189 bool
2190 device_pmf_driver_shutdown(device_t dev, int how)
2191 {
2192
2193 if (*dev->dv_driver_shutdown != NULL &&
2194 !(*dev->dv_driver_shutdown)(dev, how))
2195 return false;
2196 return true;
2197 }
2198
2199 bool
2200 device_pmf_driver_register(device_t dev,
2201 bool (*suspend)(device_t, const pmf_qual_t *),
2202 bool (*resume)(device_t, const pmf_qual_t *),
2203 bool (*shutdown)(device_t, int))
2204 {
2205 dev->dv_driver_suspend = suspend;
2206 dev->dv_driver_resume = resume;
2207 dev->dv_driver_shutdown = shutdown;
2208 dev->dv_flags |= DVF_POWER_HANDLERS;
2209 return true;
2210 }
2211
2212 static const char *
2213 curlwp_name(void)
2214 {
2215 if (curlwp->l_name != NULL)
2216 return curlwp->l_name;
2217 else
2218 return curlwp->l_proc->p_comm;
2219 }
2220
2221 void
2222 device_pmf_driver_deregister(device_t dev)
2223 {
2224 device_lock_t dvl = device_getlock(dev);
2225
2226 dev->dv_driver_suspend = NULL;
2227 dev->dv_driver_resume = NULL;
2228
2229 mutex_enter(&dvl->dvl_mtx);
2230 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2231 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2232 /* Wake a thread that waits for the lock. That
2233 * thread will fail to acquire the lock, and then
2234 * it will wake the next thread that waits for the
2235 * lock, or else it will wake us.
2236 */
2237 cv_signal(&dvl->dvl_cv);
2238 pmflock_debug(dev, __func__, __LINE__);
2239 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2240 pmflock_debug(dev, __func__, __LINE__);
2241 }
2242 mutex_exit(&dvl->dvl_mtx);
2243 }
2244
2245 bool
2246 device_pmf_driver_child_register(device_t dev)
2247 {
2248 device_t parent = device_parent(dev);
2249
2250 if (parent == NULL || parent->dv_driver_child_register == NULL)
2251 return true;
2252 return (*parent->dv_driver_child_register)(dev);
2253 }
2254
2255 void
2256 device_pmf_driver_set_child_register(device_t dev,
2257 bool (*child_register)(device_t))
2258 {
2259 dev->dv_driver_child_register = child_register;
2260 }
2261
2262 static void
2263 pmflock_debug(device_t dev, const char *func, int line)
2264 {
2265 device_lock_t dvl = device_getlock(dev);
2266
2267 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2268 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2269 dev->dv_flags);
2270 }
2271
2272 static bool
2273 device_pmf_lock1(device_t dev)
2274 {
2275 device_lock_t dvl = device_getlock(dev);
2276
2277 while (device_pmf_is_registered(dev) &&
2278 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2279 dvl->dvl_nwait++;
2280 pmflock_debug(dev, __func__, __LINE__);
2281 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2282 pmflock_debug(dev, __func__, __LINE__);
2283 dvl->dvl_nwait--;
2284 }
2285 if (!device_pmf_is_registered(dev)) {
2286 pmflock_debug(dev, __func__, __LINE__);
2287 /* We could not acquire the lock, but some other thread may
2288 * wait for it, also. Wake that thread.
2289 */
2290 cv_signal(&dvl->dvl_cv);
2291 return false;
2292 }
2293 dvl->dvl_nlock++;
2294 dvl->dvl_holder = curlwp;
2295 pmflock_debug(dev, __func__, __LINE__);
2296 return true;
2297 }
2298
2299 bool
2300 device_pmf_lock(device_t dev)
2301 {
2302 bool rc;
2303 device_lock_t dvl = device_getlock(dev);
2304
2305 mutex_enter(&dvl->dvl_mtx);
2306 rc = device_pmf_lock1(dev);
2307 mutex_exit(&dvl->dvl_mtx);
2308
2309 return rc;
2310 }
2311
2312 void
2313 device_pmf_unlock(device_t dev)
2314 {
2315 device_lock_t dvl = device_getlock(dev);
2316
2317 KASSERT(dvl->dvl_nlock > 0);
2318 mutex_enter(&dvl->dvl_mtx);
2319 if (--dvl->dvl_nlock == 0)
2320 dvl->dvl_holder = NULL;
2321 cv_signal(&dvl->dvl_cv);
2322 pmflock_debug(dev, __func__, __LINE__);
2323 mutex_exit(&dvl->dvl_mtx);
2324 }
2325
2326 device_lock_t
2327 device_getlock(device_t dev)
2328 {
2329 return &dev->dv_lock;
2330 }
2331
2332 void *
2333 device_pmf_bus_private(device_t dev)
2334 {
2335 return dev->dv_bus_private;
2336 }
2337
2338 bool
2339 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2340 {
2341 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2342 return true;
2343 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2344 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2345 return false;
2346 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2347 dev->dv_bus_suspend != NULL &&
2348 !(*dev->dv_bus_suspend)(dev, qual))
2349 return false;
2350
2351 dev->dv_flags |= DVF_BUS_SUSPENDED;
2352 return true;
2353 }
2354
2355 bool
2356 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2357 {
2358 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2359 return true;
2360 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2361 dev->dv_bus_resume != NULL &&
2362 !(*dev->dv_bus_resume)(dev, qual))
2363 return false;
2364
2365 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2366 return true;
2367 }
2368
2369 bool
2370 device_pmf_bus_shutdown(device_t dev, int how)
2371 {
2372
2373 if (*dev->dv_bus_shutdown != NULL &&
2374 !(*dev->dv_bus_shutdown)(dev, how))
2375 return false;
2376 return true;
2377 }
2378
2379 void
2380 device_pmf_bus_register(device_t dev, void *priv,
2381 bool (*suspend)(device_t, const pmf_qual_t *),
2382 bool (*resume)(device_t, const pmf_qual_t *),
2383 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2384 {
2385 dev->dv_bus_private = priv;
2386 dev->dv_bus_resume = resume;
2387 dev->dv_bus_suspend = suspend;
2388 dev->dv_bus_shutdown = shutdown;
2389 dev->dv_bus_deregister = deregister;
2390 }
2391
2392 void
2393 device_pmf_bus_deregister(device_t dev)
2394 {
2395 if (dev->dv_bus_deregister == NULL)
2396 return;
2397 (*dev->dv_bus_deregister)(dev);
2398 dev->dv_bus_private = NULL;
2399 dev->dv_bus_suspend = NULL;
2400 dev->dv_bus_resume = NULL;
2401 dev->dv_bus_deregister = NULL;
2402 }
2403
2404 void *
2405 device_pmf_class_private(device_t dev)
2406 {
2407 return dev->dv_class_private;
2408 }
2409
2410 bool
2411 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2412 {
2413 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2414 return true;
2415 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2416 dev->dv_class_suspend != NULL &&
2417 !(*dev->dv_class_suspend)(dev, qual))
2418 return false;
2419
2420 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2421 return true;
2422 }
2423
2424 bool
2425 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2426 {
2427 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2428 return true;
2429 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2430 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2431 return false;
2432 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2433 dev->dv_class_resume != NULL &&
2434 !(*dev->dv_class_resume)(dev, qual))
2435 return false;
2436
2437 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2438 return true;
2439 }
2440
2441 void
2442 device_pmf_class_register(device_t dev, void *priv,
2443 bool (*suspend)(device_t, const pmf_qual_t *),
2444 bool (*resume)(device_t, const pmf_qual_t *),
2445 void (*deregister)(device_t))
2446 {
2447 dev->dv_class_private = priv;
2448 dev->dv_class_suspend = suspend;
2449 dev->dv_class_resume = resume;
2450 dev->dv_class_deregister = deregister;
2451 }
2452
2453 void
2454 device_pmf_class_deregister(device_t dev)
2455 {
2456 if (dev->dv_class_deregister == NULL)
2457 return;
2458 (*dev->dv_class_deregister)(dev);
2459 dev->dv_class_private = NULL;
2460 dev->dv_class_suspend = NULL;
2461 dev->dv_class_resume = NULL;
2462 dev->dv_class_deregister = NULL;
2463 }
2464
2465 bool
2466 device_active(device_t dev, devactive_t type)
2467 {
2468 size_t i;
2469
2470 if (dev->dv_activity_count == 0)
2471 return false;
2472
2473 for (i = 0; i < dev->dv_activity_count; ++i) {
2474 if (dev->dv_activity_handlers[i] == NULL)
2475 break;
2476 (*dev->dv_activity_handlers[i])(dev, type);
2477 }
2478
2479 return true;
2480 }
2481
2482 bool
2483 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2484 {
2485 void (**new_handlers)(device_t, devactive_t);
2486 void (**old_handlers)(device_t, devactive_t);
2487 size_t i, old_size, new_size;
2488 int s;
2489
2490 old_handlers = dev->dv_activity_handlers;
2491 old_size = dev->dv_activity_count;
2492
2493 for (i = 0; i < old_size; ++i) {
2494 KASSERT(old_handlers[i] != handler);
2495 if (old_handlers[i] == NULL) {
2496 old_handlers[i] = handler;
2497 return true;
2498 }
2499 }
2500
2501 new_size = old_size + 4;
2502 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2503
2504 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2505 new_handlers[old_size] = handler;
2506 memset(new_handlers + old_size + 1, 0,
2507 sizeof(int [new_size - (old_size+1)]));
2508
2509 s = splhigh();
2510 dev->dv_activity_count = new_size;
2511 dev->dv_activity_handlers = new_handlers;
2512 splx(s);
2513
2514 if (old_handlers != NULL)
2515 kmem_free(old_handlers, sizeof(void * [old_size]));
2516
2517 return true;
2518 }
2519
2520 void
2521 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2522 {
2523 void (**old_handlers)(device_t, devactive_t);
2524 size_t i, old_size;
2525 int s;
2526
2527 old_handlers = dev->dv_activity_handlers;
2528 old_size = dev->dv_activity_count;
2529
2530 for (i = 0; i < old_size; ++i) {
2531 if (old_handlers[i] == handler)
2532 break;
2533 if (old_handlers[i] == NULL)
2534 return; /* XXX panic? */
2535 }
2536
2537 if (i == old_size)
2538 return; /* XXX panic? */
2539
2540 for (; i < old_size - 1; ++i) {
2541 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2542 continue;
2543
2544 if (i == 0) {
2545 s = splhigh();
2546 dev->dv_activity_count = 0;
2547 dev->dv_activity_handlers = NULL;
2548 splx(s);
2549 kmem_free(old_handlers, sizeof(void *[old_size]));
2550 }
2551 return;
2552 }
2553 old_handlers[i] = NULL;
2554 }
2555
2556 /* Return true iff the device_t `dev' exists at generation `gen'. */
2557 static bool
2558 device_exists_at(device_t dv, devgen_t gen)
2559 {
2560 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2561 dv->dv_add_gen <= gen;
2562 }
2563
2564 static bool
2565 deviter_visits(const deviter_t *di, device_t dv)
2566 {
2567 return device_exists_at(dv, di->di_gen);
2568 }
2569
2570 /*
2571 * Device Iteration
2572 *
2573 * deviter_t: a device iterator. Holds state for a "walk" visiting
2574 * each device_t's in the device tree.
2575 *
2576 * deviter_init(di, flags): initialize the device iterator `di'
2577 * to "walk" the device tree. deviter_next(di) will return
2578 * the first device_t in the device tree, or NULL if there are
2579 * no devices.
2580 *
2581 * `flags' is one or more of DEVITER_F_RW, indicating that the
2582 * caller intends to modify the device tree by calling
2583 * config_detach(9) on devices in the order that the iterator
2584 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2585 * nearest the "root" of the device tree to be returned, first;
2586 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2587 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2588 * indicating both that deviter_init() should not respect any
2589 * locks on the device tree, and that deviter_next(di) may run
2590 * in more than one LWP before the walk has finished.
2591 *
2592 * Only one DEVITER_F_RW iterator may be in the device tree at
2593 * once.
2594 *
2595 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2596 *
2597 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2598 * DEVITER_F_LEAVES_FIRST are used in combination.
2599 *
2600 * deviter_first(di, flags): initialize the device iterator `di'
2601 * and return the first device_t in the device tree, or NULL
2602 * if there are no devices. The statement
2603 *
2604 * dv = deviter_first(di);
2605 *
2606 * is shorthand for
2607 *
2608 * deviter_init(di);
2609 * dv = deviter_next(di);
2610 *
2611 * deviter_next(di): return the next device_t in the device tree,
2612 * or NULL if there are no more devices. deviter_next(di)
2613 * is undefined if `di' was not initialized with deviter_init() or
2614 * deviter_first().
2615 *
2616 * deviter_release(di): stops iteration (subsequent calls to
2617 * deviter_next() will return NULL), releases any locks and
2618 * resources held by the device iterator.
2619 *
2620 * Device iteration does not return device_t's in any particular
2621 * order. An iterator will never return the same device_t twice.
2622 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2623 * is called repeatedly on the same `di', it will eventually return
2624 * NULL. It is ok to attach/detach devices during device iteration.
2625 */
2626 void
2627 deviter_init(deviter_t *di, deviter_flags_t flags)
2628 {
2629 device_t dv;
2630 int s;
2631
2632 memset(di, 0, sizeof(*di));
2633
2634 s = config_alldevs_lock();
2635 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2636 flags |= DEVITER_F_RW;
2637
2638 if ((flags & DEVITER_F_RW) != 0)
2639 alldevs_nwrite++;
2640 else
2641 alldevs_nread++;
2642 di->di_gen = alldevs_gen++;
2643 config_alldevs_unlock(s);
2644
2645 di->di_flags = flags;
2646
2647 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2648 case DEVITER_F_LEAVES_FIRST:
2649 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2650 if (!deviter_visits(di, dv))
2651 continue;
2652 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2653 }
2654 break;
2655 case DEVITER_F_ROOT_FIRST:
2656 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2657 if (!deviter_visits(di, dv))
2658 continue;
2659 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2660 }
2661 break;
2662 default:
2663 break;
2664 }
2665
2666 deviter_reinit(di);
2667 }
2668
2669 static void
2670 deviter_reinit(deviter_t *di)
2671 {
2672 if ((di->di_flags & DEVITER_F_RW) != 0)
2673 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2674 else
2675 di->di_prev = TAILQ_FIRST(&alldevs);
2676 }
2677
2678 device_t
2679 deviter_first(deviter_t *di, deviter_flags_t flags)
2680 {
2681 deviter_init(di, flags);
2682 return deviter_next(di);
2683 }
2684
2685 static device_t
2686 deviter_next2(deviter_t *di)
2687 {
2688 device_t dv;
2689
2690 dv = di->di_prev;
2691
2692 if (dv == NULL)
2693 return NULL;
2694
2695 if ((di->di_flags & DEVITER_F_RW) != 0)
2696 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2697 else
2698 di->di_prev = TAILQ_NEXT(dv, dv_list);
2699
2700 return dv;
2701 }
2702
2703 static device_t
2704 deviter_next1(deviter_t *di)
2705 {
2706 device_t dv;
2707
2708 do {
2709 dv = deviter_next2(di);
2710 } while (dv != NULL && !deviter_visits(di, dv));
2711
2712 return dv;
2713 }
2714
2715 device_t
2716 deviter_next(deviter_t *di)
2717 {
2718 device_t dv = NULL;
2719
2720 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2721 case 0:
2722 return deviter_next1(di);
2723 case DEVITER_F_LEAVES_FIRST:
2724 while (di->di_curdepth >= 0) {
2725 if ((dv = deviter_next1(di)) == NULL) {
2726 di->di_curdepth--;
2727 deviter_reinit(di);
2728 } else if (dv->dv_depth == di->di_curdepth)
2729 break;
2730 }
2731 return dv;
2732 case DEVITER_F_ROOT_FIRST:
2733 while (di->di_curdepth <= di->di_maxdepth) {
2734 if ((dv = deviter_next1(di)) == NULL) {
2735 di->di_curdepth++;
2736 deviter_reinit(di);
2737 } else if (dv->dv_depth == di->di_curdepth)
2738 break;
2739 }
2740 return dv;
2741 default:
2742 return NULL;
2743 }
2744 }
2745
2746 void
2747 deviter_release(deviter_t *di)
2748 {
2749 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2750 int s;
2751
2752 s = config_alldevs_lock();
2753 if (rw)
2754 --alldevs_nwrite;
2755 else
2756 --alldevs_nread;
2757 /* XXX wake a garbage-collection thread */
2758 config_alldevs_unlock(s);
2759 }
2760
2761 const char *
2762 cfdata_ifattr(const struct cfdata *cf)
2763 {
2764 return cf->cf_pspec->cfp_iattr;
2765 }
2766
2767 bool
2768 ifattr_match(const char *snull, const char *t)
2769 {
2770 return (snull == NULL) || strcmp(snull, t) == 0;
2771 }
2772
2773 void
2774 null_childdetached(device_t self, device_t child)
2775 {
2776 /* do nothing */
2777 }
2778
2779 static void
2780 sysctl_detach_setup(struct sysctllog **clog)
2781 {
2782 const struct sysctlnode *node = NULL;
2783
2784 sysctl_createv(clog, 0, NULL, &node,
2785 CTLFLAG_PERMANENT,
2786 CTLTYPE_NODE, "kern", NULL,
2787 NULL, 0, NULL, 0,
2788 CTL_KERN, CTL_EOL);
2789
2790 if (node == NULL)
2791 return;
2792
2793 sysctl_createv(clog, 0, &node, NULL,
2794 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2795 CTLTYPE_BOOL, "detachall",
2796 SYSCTL_DESCR("Detach all devices at shutdown"),
2797 NULL, 0, &detachall, 0,
2798 CTL_CREATE, CTL_EOL);
2799 }
2800