subr_autoconf.c revision 1.221 1 /* $NetBSD: subr_autoconf.c,v 1.221 2012/01/16 19:42:40 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.221 2012/01/16 19:42:40 pgoyette Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110
111 #include <sys/disk.h>
112
113 #include <machine/limits.h>
114
115 /*
116 * Autoconfiguration subroutines.
117 */
118
119 /*
120 * ioconf.c exports exactly two names: cfdata and cfroots. All system
121 * devices and drivers are found via these tables.
122 */
123 extern struct cfdata cfdata[];
124 extern const short cfroots[];
125
126 /*
127 * List of all cfdriver structures. We use this to detect duplicates
128 * when other cfdrivers are loaded.
129 */
130 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
131 extern struct cfdriver * const cfdriver_list_initial[];
132
133 /*
134 * Initial list of cfattach's.
135 */
136 extern const struct cfattachinit cfattachinit[];
137
138 /*
139 * List of cfdata tables. We always have one such list -- the one
140 * built statically when the kernel was configured.
141 */
142 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
143 static struct cftable initcftable;
144
145 #define ROOT ((device_t)NULL)
146
147 struct matchinfo {
148 cfsubmatch_t fn;
149 struct device *parent;
150 const int *locs;
151 void *aux;
152 struct cfdata *match;
153 int pri;
154 };
155
156 struct alldevs_foray {
157 int af_s;
158 struct devicelist af_garbage;
159 };
160
161 static char *number(char *, int);
162 static void mapply(struct matchinfo *, cfdata_t);
163 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
164 static void config_devdelete(device_t);
165 static void config_devunlink(device_t, struct devicelist *);
166 static void config_makeroom(int, struct cfdriver *);
167 static void config_devlink(device_t);
168 static void config_alldevs_unlock(int);
169 static int config_alldevs_lock(void);
170 static void config_alldevs_enter(struct alldevs_foray *);
171 static void config_alldevs_exit(struct alldevs_foray *);
172 static void config_add_attrib_dict(device_t);
173
174 static void config_collect_garbage(struct devicelist *);
175 static void config_dump_garbage(struct devicelist *);
176
177 static void pmflock_debug(device_t, const char *, int);
178
179 static device_t deviter_next1(deviter_t *);
180 static void deviter_reinit(deviter_t *);
181
182 struct deferred_config {
183 TAILQ_ENTRY(deferred_config) dc_queue;
184 device_t dc_dev;
185 void (*dc_func)(device_t);
186 };
187
188 TAILQ_HEAD(deferred_config_head, deferred_config);
189
190 struct deferred_config_head deferred_config_queue =
191 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
192 struct deferred_config_head interrupt_config_queue =
193 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
194 int interrupt_config_threads = 8;
195 struct deferred_config_head mountroot_config_queue =
196 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
197 int mountroot_config_threads = 2;
198 static bool root_is_mounted = false;
199
200 static void config_process_deferred(struct deferred_config_head *, device_t);
201
202 /* Hooks to finalize configuration once all real devices have been found. */
203 struct finalize_hook {
204 TAILQ_ENTRY(finalize_hook) f_list;
205 int (*f_func)(device_t);
206 device_t f_dev;
207 };
208 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
209 TAILQ_HEAD_INITIALIZER(config_finalize_list);
210 static int config_finalize_done;
211
212 /* list of all devices */
213 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
214 static kmutex_t alldevs_mtx;
215 static volatile bool alldevs_garbage = false;
216 static volatile devgen_t alldevs_gen = 1;
217 static volatile int alldevs_nread = 0;
218 static volatile int alldevs_nwrite = 0;
219
220 static int config_pending; /* semaphore for mountroot */
221 static kmutex_t config_misc_lock;
222 static kcondvar_t config_misc_cv;
223
224 static bool detachall = false;
225
226 #define STREQ(s1, s2) \
227 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
228
229 static bool config_initialized = false; /* config_init() has been called. */
230
231 static int config_do_twiddle;
232 static callout_t config_twiddle_ch;
233
234 static void sysctl_detach_setup(struct sysctllog **);
235
236 typedef int (*cfdriver_fn)(struct cfdriver *);
237 static int
238 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
239 cfdriver_fn drv_do, cfdriver_fn drv_undo,
240 const char *style, bool dopanic)
241 {
242 void (*pr)(const char *, ...) = dopanic ? panic : printf;
243 int i = 0, error = 0, e2;
244
245 for (i = 0; cfdriverv[i] != NULL; i++) {
246 if ((error = drv_do(cfdriverv[i])) != 0) {
247 pr("configure: `%s' driver %s failed: %d",
248 cfdriverv[i]->cd_name, style, error);
249 goto bad;
250 }
251 }
252
253 KASSERT(error == 0);
254 return 0;
255
256 bad:
257 printf("\n");
258 for (i--; i >= 0; i--) {
259 e2 = drv_undo(cfdriverv[i]);
260 KASSERT(e2 == 0);
261 }
262
263 return error;
264 }
265
266 typedef int (*cfattach_fn)(const char *, struct cfattach *);
267 static int
268 frob_cfattachvec(const struct cfattachinit *cfattachv,
269 cfattach_fn att_do, cfattach_fn att_undo,
270 const char *style, bool dopanic)
271 {
272 const struct cfattachinit *cfai = NULL;
273 void (*pr)(const char *, ...) = dopanic ? panic : printf;
274 int j = 0, error = 0, e2;
275
276 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
277 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
278 if ((error = att_do(cfai->cfai_name,
279 cfai->cfai_list[j])) != 0) {
280 pr("configure: attachment `%s' "
281 "of `%s' driver %s failed: %d",
282 cfai->cfai_list[j]->ca_name,
283 cfai->cfai_name, style, error);
284 goto bad;
285 }
286 }
287 }
288
289 KASSERT(error == 0);
290 return 0;
291
292 bad:
293 /*
294 * Rollback in reverse order. dunno if super-important, but
295 * do that anyway. Although the code looks a little like
296 * someone did a little integration (in the math sense).
297 */
298 printf("\n");
299 if (cfai) {
300 bool last;
301
302 for (last = false; last == false; ) {
303 if (cfai == &cfattachv[0])
304 last = true;
305 for (j--; j >= 0; j--) {
306 e2 = att_undo(cfai->cfai_name,
307 cfai->cfai_list[j]);
308 KASSERT(e2 == 0);
309 }
310 if (!last) {
311 cfai--;
312 for (j = 0; cfai->cfai_list[j] != NULL; j++)
313 ;
314 }
315 }
316 }
317
318 return error;
319 }
320
321 /*
322 * Initialize the autoconfiguration data structures. Normally this
323 * is done by configure(), but some platforms need to do this very
324 * early (to e.g. initialize the console).
325 */
326 void
327 config_init(void)
328 {
329
330 KASSERT(config_initialized == false);
331
332 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
333
334 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
335 cv_init(&config_misc_cv, "cfgmisc");
336
337 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
338
339 frob_cfdrivervec(cfdriver_list_initial,
340 config_cfdriver_attach, NULL, "bootstrap", true);
341 frob_cfattachvec(cfattachinit,
342 config_cfattach_attach, NULL, "bootstrap", true);
343
344 initcftable.ct_cfdata = cfdata;
345 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
346
347 config_initialized = true;
348 }
349
350 /*
351 * Init or fini drivers and attachments. Either all or none
352 * are processed (via rollback). It would be nice if this were
353 * atomic to outside consumers, but with the current state of
354 * locking ...
355 */
356 int
357 config_init_component(struct cfdriver * const *cfdriverv,
358 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
359 {
360 int error;
361
362 if ((error = frob_cfdrivervec(cfdriverv,
363 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
364 return error;
365 if ((error = frob_cfattachvec(cfattachv,
366 config_cfattach_attach, config_cfattach_detach,
367 "init", false)) != 0) {
368 frob_cfdrivervec(cfdriverv,
369 config_cfdriver_detach, NULL, "init rollback", true);
370 return error;
371 }
372 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
373 frob_cfattachvec(cfattachv,
374 config_cfattach_detach, NULL, "init rollback", true);
375 frob_cfdrivervec(cfdriverv,
376 config_cfdriver_detach, NULL, "init rollback", true);
377 return error;
378 }
379
380 return 0;
381 }
382
383 int
384 config_fini_component(struct cfdriver * const *cfdriverv,
385 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
386 {
387 int error;
388
389 if ((error = config_cfdata_detach(cfdatav)) != 0)
390 return error;
391 if ((error = frob_cfattachvec(cfattachv,
392 config_cfattach_detach, config_cfattach_attach,
393 "fini", false)) != 0) {
394 if (config_cfdata_attach(cfdatav, 0) != 0)
395 panic("config_cfdata fini rollback failed");
396 return error;
397 }
398 if ((error = frob_cfdrivervec(cfdriverv,
399 config_cfdriver_detach, config_cfdriver_attach,
400 "fini", false)) != 0) {
401 frob_cfattachvec(cfattachv,
402 config_cfattach_attach, NULL, "fini rollback", true);
403 if (config_cfdata_attach(cfdatav, 0) != 0)
404 panic("config_cfdata fini rollback failed");
405 return error;
406 }
407
408 return 0;
409 }
410
411 void
412 config_init_mi(void)
413 {
414
415 if (!config_initialized)
416 config_init();
417
418 sysctl_detach_setup(NULL);
419 }
420
421 void
422 config_deferred(device_t dev)
423 {
424 config_process_deferred(&deferred_config_queue, dev);
425 config_process_deferred(&interrupt_config_queue, dev);
426 config_process_deferred(&mountroot_config_queue, dev);
427 }
428
429 static void
430 config_interrupts_thread(void *cookie)
431 {
432 struct deferred_config *dc;
433
434 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
435 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
436 (*dc->dc_func)(dc->dc_dev);
437 kmem_free(dc, sizeof(*dc));
438 config_pending_decr();
439 }
440 kthread_exit(0);
441 }
442
443 void
444 config_create_interruptthreads()
445 {
446 int i;
447
448 for (i = 0; i < interrupt_config_threads; i++) {
449 (void)kthread_create(PRI_NONE, 0, NULL,
450 config_interrupts_thread, NULL, NULL, "config");
451 }
452 }
453
454 static void
455 config_mountroot_thread(void *cookie)
456 {
457 struct deferred_config *dc;
458
459 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
460 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
461 (*dc->dc_func)(dc->dc_dev);
462 kmem_free(dc, sizeof(*dc));
463 }
464 kthread_exit(0);
465 }
466
467 void
468 config_create_mountrootthreads()
469 {
470 int i;
471
472 if (!root_is_mounted)
473 root_is_mounted = true;
474
475 for (i = 0; i < mountroot_config_threads; i++) {
476 (void)kthread_create(PRI_NONE, 0, NULL,
477 config_mountroot_thread, NULL, NULL, "config");
478 }
479 }
480
481 /*
482 * Announce device attach/detach to userland listeners.
483 */
484 static void
485 devmon_report_device(device_t dev, bool isattach)
486 {
487 #if NDRVCTL > 0
488 prop_dictionary_t ev;
489 const char *parent;
490 const char *what;
491 device_t pdev = device_parent(dev);
492
493 ev = prop_dictionary_create();
494 if (ev == NULL)
495 return;
496
497 what = (isattach ? "device-attach" : "device-detach");
498 parent = (pdev == NULL ? "root" : device_xname(pdev));
499 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
500 !prop_dictionary_set_cstring(ev, "parent", parent)) {
501 prop_object_release(ev);
502 return;
503 }
504
505 devmon_insert(what, ev);
506 #endif
507 }
508
509 /*
510 * Add a cfdriver to the system.
511 */
512 int
513 config_cfdriver_attach(struct cfdriver *cd)
514 {
515 struct cfdriver *lcd;
516
517 /* Make sure this driver isn't already in the system. */
518 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
519 if (STREQ(lcd->cd_name, cd->cd_name))
520 return EEXIST;
521 }
522
523 LIST_INIT(&cd->cd_attach);
524 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
525
526 return 0;
527 }
528
529 /*
530 * Remove a cfdriver from the system.
531 */
532 int
533 config_cfdriver_detach(struct cfdriver *cd)
534 {
535 struct alldevs_foray af;
536 int i, rc = 0;
537
538 config_alldevs_enter(&af);
539 /* Make sure there are no active instances. */
540 for (i = 0; i < cd->cd_ndevs; i++) {
541 if (cd->cd_devs[i] != NULL) {
542 rc = EBUSY;
543 break;
544 }
545 }
546 config_alldevs_exit(&af);
547
548 if (rc != 0)
549 return rc;
550
551 /* ...and no attachments loaded. */
552 if (LIST_EMPTY(&cd->cd_attach) == 0)
553 return EBUSY;
554
555 LIST_REMOVE(cd, cd_list);
556
557 KASSERT(cd->cd_devs == NULL);
558
559 return 0;
560 }
561
562 /*
563 * Look up a cfdriver by name.
564 */
565 struct cfdriver *
566 config_cfdriver_lookup(const char *name)
567 {
568 struct cfdriver *cd;
569
570 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
571 if (STREQ(cd->cd_name, name))
572 return cd;
573 }
574
575 return NULL;
576 }
577
578 /*
579 * Add a cfattach to the specified driver.
580 */
581 int
582 config_cfattach_attach(const char *driver, struct cfattach *ca)
583 {
584 struct cfattach *lca;
585 struct cfdriver *cd;
586
587 cd = config_cfdriver_lookup(driver);
588 if (cd == NULL)
589 return ESRCH;
590
591 /* Make sure this attachment isn't already on this driver. */
592 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
593 if (STREQ(lca->ca_name, ca->ca_name))
594 return EEXIST;
595 }
596
597 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
598
599 return 0;
600 }
601
602 /*
603 * Remove a cfattach from the specified driver.
604 */
605 int
606 config_cfattach_detach(const char *driver, struct cfattach *ca)
607 {
608 struct alldevs_foray af;
609 struct cfdriver *cd;
610 device_t dev;
611 int i, rc = 0;
612
613 cd = config_cfdriver_lookup(driver);
614 if (cd == NULL)
615 return ESRCH;
616
617 config_alldevs_enter(&af);
618 /* Make sure there are no active instances. */
619 for (i = 0; i < cd->cd_ndevs; i++) {
620 if ((dev = cd->cd_devs[i]) == NULL)
621 continue;
622 if (dev->dv_cfattach == ca) {
623 rc = EBUSY;
624 break;
625 }
626 }
627 config_alldevs_exit(&af);
628
629 if (rc != 0)
630 return rc;
631
632 LIST_REMOVE(ca, ca_list);
633
634 return 0;
635 }
636
637 /*
638 * Look up a cfattach by name.
639 */
640 static struct cfattach *
641 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
642 {
643 struct cfattach *ca;
644
645 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
646 if (STREQ(ca->ca_name, atname))
647 return ca;
648 }
649
650 return NULL;
651 }
652
653 /*
654 * Look up a cfattach by driver/attachment name.
655 */
656 struct cfattach *
657 config_cfattach_lookup(const char *name, const char *atname)
658 {
659 struct cfdriver *cd;
660
661 cd = config_cfdriver_lookup(name);
662 if (cd == NULL)
663 return NULL;
664
665 return config_cfattach_lookup_cd(cd, atname);
666 }
667
668 /*
669 * Apply the matching function and choose the best. This is used
670 * a few times and we want to keep the code small.
671 */
672 static void
673 mapply(struct matchinfo *m, cfdata_t cf)
674 {
675 int pri;
676
677 if (m->fn != NULL) {
678 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
679 } else {
680 pri = config_match(m->parent, cf, m->aux);
681 }
682 if (pri > m->pri) {
683 m->match = cf;
684 m->pri = pri;
685 }
686 }
687
688 int
689 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
690 {
691 const struct cfiattrdata *ci;
692 const struct cflocdesc *cl;
693 int nlocs, i;
694
695 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
696 KASSERT(ci);
697 nlocs = ci->ci_loclen;
698 KASSERT(!nlocs || locs);
699 for (i = 0; i < nlocs; i++) {
700 cl = &ci->ci_locdesc[i];
701 /* !cld_defaultstr means no default value */
702 if ((!(cl->cld_defaultstr)
703 || (cf->cf_loc[i] != cl->cld_default))
704 && cf->cf_loc[i] != locs[i])
705 return 0;
706 }
707
708 return config_match(parent, cf, aux);
709 }
710
711 /*
712 * Helper function: check whether the driver supports the interface attribute
713 * and return its descriptor structure.
714 */
715 static const struct cfiattrdata *
716 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
717 {
718 const struct cfiattrdata * const *cpp;
719
720 if (cd->cd_attrs == NULL)
721 return 0;
722
723 for (cpp = cd->cd_attrs; *cpp; cpp++) {
724 if (STREQ((*cpp)->ci_name, ia)) {
725 /* Match. */
726 return *cpp;
727 }
728 }
729 return 0;
730 }
731
732 /*
733 * Lookup an interface attribute description by name.
734 * If the driver is given, consider only its supported attributes.
735 */
736 const struct cfiattrdata *
737 cfiattr_lookup(const char *name, const struct cfdriver *cd)
738 {
739 const struct cfdriver *d;
740 const struct cfiattrdata *ia;
741
742 if (cd)
743 return cfdriver_get_iattr(cd, name);
744
745 LIST_FOREACH(d, &allcfdrivers, cd_list) {
746 ia = cfdriver_get_iattr(d, name);
747 if (ia)
748 return ia;
749 }
750 return 0;
751 }
752
753 /*
754 * Determine if `parent' is a potential parent for a device spec based
755 * on `cfp'.
756 */
757 static int
758 cfparent_match(const device_t parent, const struct cfparent *cfp)
759 {
760 struct cfdriver *pcd;
761
762 /* We don't match root nodes here. */
763 if (cfp == NULL)
764 return 0;
765
766 pcd = parent->dv_cfdriver;
767 KASSERT(pcd != NULL);
768
769 /*
770 * First, ensure this parent has the correct interface
771 * attribute.
772 */
773 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
774 return 0;
775
776 /*
777 * If no specific parent device instance was specified (i.e.
778 * we're attaching to the attribute only), we're done!
779 */
780 if (cfp->cfp_parent == NULL)
781 return 1;
782
783 /*
784 * Check the parent device's name.
785 */
786 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
787 return 0; /* not the same parent */
788
789 /*
790 * Make sure the unit number matches.
791 */
792 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
793 cfp->cfp_unit == parent->dv_unit)
794 return 1;
795
796 /* Unit numbers don't match. */
797 return 0;
798 }
799
800 /*
801 * Helper for config_cfdata_attach(): check all devices whether it could be
802 * parent any attachment in the config data table passed, and rescan.
803 */
804 static void
805 rescan_with_cfdata(const struct cfdata *cf)
806 {
807 device_t d;
808 const struct cfdata *cf1;
809 deviter_t di;
810
811
812 /*
813 * "alldevs" is likely longer than a modules's cfdata, so make it
814 * the outer loop.
815 */
816 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
817
818 if (!(d->dv_cfattach->ca_rescan))
819 continue;
820
821 for (cf1 = cf; cf1->cf_name; cf1++) {
822
823 if (!cfparent_match(d, cf1->cf_pspec))
824 continue;
825
826 (*d->dv_cfattach->ca_rescan)(d,
827 cfdata_ifattr(cf1), cf1->cf_loc);
828
829 config_deferred(d);
830 }
831 }
832 deviter_release(&di);
833 }
834
835 /*
836 * Attach a supplemental config data table and rescan potential
837 * parent devices if required.
838 */
839 int
840 config_cfdata_attach(cfdata_t cf, int scannow)
841 {
842 struct cftable *ct;
843
844 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
845 ct->ct_cfdata = cf;
846 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
847
848 if (scannow)
849 rescan_with_cfdata(cf);
850
851 return 0;
852 }
853
854 /*
855 * Helper for config_cfdata_detach: check whether a device is
856 * found through any attachment in the config data table.
857 */
858 static int
859 dev_in_cfdata(const struct device *d, const struct cfdata *cf)
860 {
861 const struct cfdata *cf1;
862
863 for (cf1 = cf; cf1->cf_name; cf1++)
864 if (d->dv_cfdata == cf1)
865 return 1;
866
867 return 0;
868 }
869
870 /*
871 * Detach a supplemental config data table. Detach all devices found
872 * through that table (and thus keeping references to it) before.
873 */
874 int
875 config_cfdata_detach(cfdata_t cf)
876 {
877 device_t d;
878 int error = 0;
879 struct cftable *ct;
880 deviter_t di;
881
882 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
883 d = deviter_next(&di)) {
884 if (!dev_in_cfdata(d, cf))
885 continue;
886 if ((error = config_detach(d, 0)) != 0)
887 break;
888 }
889 deviter_release(&di);
890 if (error) {
891 aprint_error_dev(d, "unable to detach instance\n");
892 return error;
893 }
894
895 TAILQ_FOREACH(ct, &allcftables, ct_list) {
896 if (ct->ct_cfdata == cf) {
897 TAILQ_REMOVE(&allcftables, ct, ct_list);
898 kmem_free(ct, sizeof(*ct));
899 return 0;
900 }
901 }
902
903 /* not found -- shouldn't happen */
904 return EINVAL;
905 }
906
907 /*
908 * Invoke the "match" routine for a cfdata entry on behalf of
909 * an external caller, usually a "submatch" routine.
910 */
911 int
912 config_match(device_t parent, cfdata_t cf, void *aux)
913 {
914 struct cfattach *ca;
915
916 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
917 if (ca == NULL) {
918 /* No attachment for this entry, oh well. */
919 return 0;
920 }
921
922 return (*ca->ca_match)(parent, cf, aux);
923 }
924
925 /*
926 * Iterate over all potential children of some device, calling the given
927 * function (default being the child's match function) for each one.
928 * Nonzero returns are matches; the highest value returned is considered
929 * the best match. Return the `found child' if we got a match, or NULL
930 * otherwise. The `aux' pointer is simply passed on through.
931 *
932 * Note that this function is designed so that it can be used to apply
933 * an arbitrary function to all potential children (its return value
934 * can be ignored).
935 */
936 cfdata_t
937 config_search_loc(cfsubmatch_t fn, device_t parent,
938 const char *ifattr, const int *locs, void *aux)
939 {
940 struct cftable *ct;
941 cfdata_t cf;
942 struct matchinfo m;
943
944 KASSERT(config_initialized);
945 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
946
947 m.fn = fn;
948 m.parent = parent;
949 m.locs = locs;
950 m.aux = aux;
951 m.match = NULL;
952 m.pri = 0;
953
954 TAILQ_FOREACH(ct, &allcftables, ct_list) {
955 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
956
957 /* We don't match root nodes here. */
958 if (!cf->cf_pspec)
959 continue;
960
961 /*
962 * Skip cf if no longer eligible, otherwise scan
963 * through parents for one matching `parent', and
964 * try match function.
965 */
966 if (cf->cf_fstate == FSTATE_FOUND)
967 continue;
968 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
969 cf->cf_fstate == FSTATE_DSTAR)
970 continue;
971
972 /*
973 * If an interface attribute was specified,
974 * consider only children which attach to
975 * that attribute.
976 */
977 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
978 continue;
979
980 if (cfparent_match(parent, cf->cf_pspec))
981 mapply(&m, cf);
982 }
983 }
984 return m.match;
985 }
986
987 cfdata_t
988 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
989 void *aux)
990 {
991
992 return config_search_loc(fn, parent, ifattr, NULL, aux);
993 }
994
995 /*
996 * Find the given root device.
997 * This is much like config_search, but there is no parent.
998 * Don't bother with multiple cfdata tables; the root node
999 * must always be in the initial table.
1000 */
1001 cfdata_t
1002 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1003 {
1004 cfdata_t cf;
1005 const short *p;
1006 struct matchinfo m;
1007
1008 m.fn = fn;
1009 m.parent = ROOT;
1010 m.aux = aux;
1011 m.match = NULL;
1012 m.pri = 0;
1013 m.locs = 0;
1014 /*
1015 * Look at root entries for matching name. We do not bother
1016 * with found-state here since only one root should ever be
1017 * searched (and it must be done first).
1018 */
1019 for (p = cfroots; *p >= 0; p++) {
1020 cf = &cfdata[*p];
1021 if (strcmp(cf->cf_name, rootname) == 0)
1022 mapply(&m, cf);
1023 }
1024 return m.match;
1025 }
1026
1027 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1028
1029 /*
1030 * The given `aux' argument describes a device that has been found
1031 * on the given parent, but not necessarily configured. Locate the
1032 * configuration data for that device (using the submatch function
1033 * provided, or using candidates' cd_match configuration driver
1034 * functions) and attach it, and return its device_t. If the device was
1035 * not configured, call the given `print' function and return NULL.
1036 */
1037 device_t
1038 config_found_sm_loc(device_t parent,
1039 const char *ifattr, const int *locs, void *aux,
1040 cfprint_t print, cfsubmatch_t submatch)
1041 {
1042 cfdata_t cf;
1043
1044 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1045 return(config_attach_loc(parent, cf, locs, aux, print));
1046 if (print) {
1047 if (config_do_twiddle && cold)
1048 twiddle();
1049 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1050 }
1051
1052 return NULL;
1053 }
1054
1055 device_t
1056 config_found_ia(device_t parent, const char *ifattr, void *aux,
1057 cfprint_t print)
1058 {
1059
1060 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1061 }
1062
1063 device_t
1064 config_found(device_t parent, void *aux, cfprint_t print)
1065 {
1066
1067 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1068 }
1069
1070 /*
1071 * As above, but for root devices.
1072 */
1073 device_t
1074 config_rootfound(const char *rootname, void *aux)
1075 {
1076 cfdata_t cf;
1077
1078 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1079 return config_attach(ROOT, cf, aux, NULL);
1080 aprint_error("root device %s not configured\n", rootname);
1081 return NULL;
1082 }
1083
1084 /* just like sprintf(buf, "%d") except that it works from the end */
1085 static char *
1086 number(char *ep, int n)
1087 {
1088
1089 *--ep = 0;
1090 while (n >= 10) {
1091 *--ep = (n % 10) + '0';
1092 n /= 10;
1093 }
1094 *--ep = n + '0';
1095 return ep;
1096 }
1097
1098 /*
1099 * Expand the size of the cd_devs array if necessary.
1100 *
1101 * The caller must hold alldevs_mtx. config_makeroom() may release and
1102 * re-acquire alldevs_mtx, so callers should re-check conditions such
1103 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1104 * returns.
1105 */
1106 static void
1107 config_makeroom(int n, struct cfdriver *cd)
1108 {
1109 int old, new;
1110 device_t *osp, *nsp;
1111
1112 alldevs_nwrite++;
1113
1114 for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
1115 ;
1116
1117 while (n >= cd->cd_ndevs) {
1118 /*
1119 * Need to expand the array.
1120 */
1121 old = cd->cd_ndevs;
1122 osp = cd->cd_devs;
1123
1124 /* Release alldevs_mtx around allocation, which may
1125 * sleep.
1126 */
1127 mutex_exit(&alldevs_mtx);
1128 nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
1129 if (nsp == NULL)
1130 panic("%s: could not expand cd_devs", __func__);
1131 mutex_enter(&alldevs_mtx);
1132
1133 /* If another thread moved the array while we did
1134 * not hold alldevs_mtx, try again.
1135 */
1136 if (cd->cd_devs != osp) {
1137 mutex_exit(&alldevs_mtx);
1138 kmem_free(nsp, sizeof(device_t[new]));
1139 mutex_enter(&alldevs_mtx);
1140 continue;
1141 }
1142
1143 memset(nsp + old, 0, sizeof(device_t[new - old]));
1144 if (old != 0)
1145 memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
1146
1147 cd->cd_ndevs = new;
1148 cd->cd_devs = nsp;
1149 if (old != 0) {
1150 mutex_exit(&alldevs_mtx);
1151 kmem_free(osp, sizeof(device_t[old]));
1152 mutex_enter(&alldevs_mtx);
1153 }
1154 }
1155 alldevs_nwrite--;
1156 }
1157
1158 /*
1159 * Put dev into the devices list.
1160 */
1161 static void
1162 config_devlink(device_t dev)
1163 {
1164 int s;
1165
1166 s = config_alldevs_lock();
1167
1168 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1169
1170 dev->dv_add_gen = alldevs_gen;
1171 /* It is safe to add a device to the tail of the list while
1172 * readers and writers are in the list.
1173 */
1174 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1175 config_alldevs_unlock(s);
1176 }
1177
1178 static void
1179 config_devfree(device_t dev)
1180 {
1181 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1182
1183 if (dev->dv_cfattach->ca_devsize > 0)
1184 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1185 if (priv)
1186 kmem_free(dev, sizeof(*dev));
1187 }
1188
1189 /*
1190 * Caller must hold alldevs_mtx.
1191 */
1192 static void
1193 config_devunlink(device_t dev, struct devicelist *garbage)
1194 {
1195 struct device_garbage *dg = &dev->dv_garbage;
1196 cfdriver_t cd = device_cfdriver(dev);
1197 int i;
1198
1199 KASSERT(mutex_owned(&alldevs_mtx));
1200
1201 /* Unlink from device list. Link to garbage list. */
1202 TAILQ_REMOVE(&alldevs, dev, dv_list);
1203 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1204
1205 /* Remove from cfdriver's array. */
1206 cd->cd_devs[dev->dv_unit] = NULL;
1207
1208 /*
1209 * If the device now has no units in use, unlink its softc array.
1210 */
1211 for (i = 0; i < cd->cd_ndevs; i++) {
1212 if (cd->cd_devs[i] != NULL)
1213 break;
1214 }
1215 /* Nothing found. Unlink, now. Deallocate, later. */
1216 if (i == cd->cd_ndevs) {
1217 dg->dg_ndevs = cd->cd_ndevs;
1218 dg->dg_devs = cd->cd_devs;
1219 cd->cd_devs = NULL;
1220 cd->cd_ndevs = 0;
1221 }
1222 }
1223
1224 static void
1225 config_devdelete(device_t dev)
1226 {
1227 struct device_garbage *dg = &dev->dv_garbage;
1228 device_lock_t dvl = device_getlock(dev);
1229
1230 if (dg->dg_devs != NULL)
1231 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1232
1233 cv_destroy(&dvl->dvl_cv);
1234 mutex_destroy(&dvl->dvl_mtx);
1235
1236 KASSERT(dev->dv_properties != NULL);
1237 prop_object_release(dev->dv_properties);
1238
1239 if (dev->dv_activity_handlers)
1240 panic("%s with registered handlers", __func__);
1241
1242 if (dev->dv_locators) {
1243 size_t amount = *--dev->dv_locators;
1244 kmem_free(dev->dv_locators, amount);
1245 }
1246
1247 config_devfree(dev);
1248 }
1249
1250 static int
1251 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1252 {
1253 int unit;
1254
1255 if (cf->cf_fstate == FSTATE_STAR) {
1256 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1257 if (cd->cd_devs[unit] == NULL)
1258 break;
1259 /*
1260 * unit is now the unit of the first NULL device pointer,
1261 * or max(cd->cd_ndevs,cf->cf_unit).
1262 */
1263 } else {
1264 unit = cf->cf_unit;
1265 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1266 unit = -1;
1267 }
1268 return unit;
1269 }
1270
1271 static int
1272 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1273 {
1274 struct alldevs_foray af;
1275 int unit;
1276
1277 config_alldevs_enter(&af);
1278 for (;;) {
1279 unit = config_unit_nextfree(cd, cf);
1280 if (unit == -1)
1281 break;
1282 if (unit < cd->cd_ndevs) {
1283 cd->cd_devs[unit] = dev;
1284 dev->dv_unit = unit;
1285 break;
1286 }
1287 config_makeroom(unit, cd);
1288 }
1289 config_alldevs_exit(&af);
1290
1291 return unit;
1292 }
1293
1294 static device_t
1295 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1296 {
1297 cfdriver_t cd;
1298 cfattach_t ca;
1299 size_t lname, lunit;
1300 const char *xunit;
1301 int myunit;
1302 char num[10];
1303 device_t dev;
1304 void *dev_private;
1305 const struct cfiattrdata *ia;
1306 device_lock_t dvl;
1307
1308 cd = config_cfdriver_lookup(cf->cf_name);
1309 if (cd == NULL)
1310 return NULL;
1311
1312 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1313 if (ca == NULL)
1314 return NULL;
1315
1316 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1317 ca->ca_devsize < sizeof(struct device))
1318 panic("config_devalloc: %s (%zu < %zu)", cf->cf_atname,
1319 ca->ca_devsize, sizeof(struct device));
1320
1321 /* get memory for all device vars */
1322 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1323 if (ca->ca_devsize > 0) {
1324 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1325 if (dev_private == NULL)
1326 panic("config_devalloc: memory allocation for device softc failed");
1327 } else {
1328 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1329 dev_private = NULL;
1330 }
1331
1332 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1333 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1334 } else {
1335 dev = dev_private;
1336 #ifdef DIAGNOSTIC
1337 printf("%s has not been converted to device_t\n", cd->cd_name);
1338 #endif
1339 }
1340 if (dev == NULL)
1341 panic("config_devalloc: memory allocation for device_t failed");
1342
1343 dev->dv_class = cd->cd_class;
1344 dev->dv_cfdata = cf;
1345 dev->dv_cfdriver = cd;
1346 dev->dv_cfattach = ca;
1347 dev->dv_activity_count = 0;
1348 dev->dv_activity_handlers = NULL;
1349 dev->dv_private = dev_private;
1350 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1351
1352 myunit = config_unit_alloc(dev, cd, cf);
1353 if (myunit == -1) {
1354 config_devfree(dev);
1355 return NULL;
1356 }
1357
1358 /* compute length of name and decimal expansion of unit number */
1359 lname = strlen(cd->cd_name);
1360 xunit = number(&num[sizeof(num)], myunit);
1361 lunit = &num[sizeof(num)] - xunit;
1362 if (lname + lunit > sizeof(dev->dv_xname))
1363 panic("config_devalloc: device name too long");
1364
1365 dvl = device_getlock(dev);
1366
1367 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1368 cv_init(&dvl->dvl_cv, "pmfsusp");
1369
1370 memcpy(dev->dv_xname, cd->cd_name, lname);
1371 memcpy(dev->dv_xname + lname, xunit, lunit);
1372 dev->dv_parent = parent;
1373 if (parent != NULL)
1374 dev->dv_depth = parent->dv_depth + 1;
1375 else
1376 dev->dv_depth = 0;
1377 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1378 if (locs) {
1379 KASSERT(parent); /* no locators at root */
1380 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1381 dev->dv_locators =
1382 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1383 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1384 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1385 }
1386 dev->dv_properties = prop_dictionary_create();
1387 KASSERT(dev->dv_properties != NULL);
1388
1389 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1390 "device-driver", dev->dv_cfdriver->cd_name);
1391 prop_dictionary_set_uint16(dev->dv_properties,
1392 "device-unit", dev->dv_unit);
1393
1394 if (dev->dv_cfdriver->cd_attrs != NULL)
1395 config_add_attrib_dict(dev);
1396
1397 return dev;
1398 }
1399
1400 /*
1401 * Create an array of device attach attributes and add it
1402 * to the device's dv_properties dictionary.
1403 *
1404 * <key>interface-attributes</key>
1405 * <array>
1406 * <dict>
1407 * <key>attribute-name</key>
1408 * <string>foo</string>
1409 * <key>locators</key>
1410 * <array>
1411 * <dict>
1412 * <key>loc-name</key>
1413 * <string>foo-loc1</string>
1414 * </dict>
1415 * <dict>
1416 * <key>loc-name</key>
1417 * <string>foo-loc2</string>
1418 * <key>default</key>
1419 * <string>foo-loc2-default</string>
1420 * </dict>
1421 * ...
1422 * </array>
1423 * </dict>
1424 * ...
1425 * </array>
1426 */
1427
1428 static void
1429 config_add_attrib_dict(device_t dev)
1430 {
1431 int i, j;
1432 const struct cfiattrdata *ci;
1433 prop_dictionary_t attr_dict, loc_dict;
1434 prop_array_t attr_array, loc_array;
1435
1436 if ((attr_array = prop_array_create()) == NULL)
1437 return;
1438
1439 for (i = 0; ; i++) {
1440 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1441 break;
1442 if ((attr_dict = prop_dictionary_create()) == NULL)
1443 break;
1444 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1445 ci->ci_name);
1446
1447 /* Create an array of the locator names and defaults */
1448
1449 if (ci->ci_loclen != 0 &&
1450 (loc_array = prop_array_create()) != NULL) {
1451 for (j = 0; j < ci->ci_loclen; j++) {
1452 loc_dict = prop_dictionary_create();
1453 if (loc_dict == NULL)
1454 continue;
1455 prop_dictionary_set_cstring_nocopy(loc_dict,
1456 "loc-name", ci->ci_locdesc[j].cld_name);
1457 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1458 prop_dictionary_set_cstring_nocopy(
1459 loc_dict, "default",
1460 ci->ci_locdesc[j].cld_defaultstr);
1461 prop_array_set(loc_array, j, loc_dict);
1462 prop_object_release(loc_dict);
1463 }
1464 prop_dictionary_set_and_rel(attr_dict, "locators",
1465 loc_array);
1466 }
1467 prop_array_add(attr_array, attr_dict);
1468 prop_object_release(attr_dict);
1469 }
1470 if (i == 0)
1471 prop_object_release(attr_array);
1472 else
1473 prop_dictionary_set_and_rel(dev->dv_properties,
1474 "interface-attributes", attr_array);
1475
1476 return;
1477 }
1478
1479 /*
1480 * Attach a found device.
1481 */
1482 device_t
1483 config_attach_loc(device_t parent, cfdata_t cf,
1484 const int *locs, void *aux, cfprint_t print)
1485 {
1486 device_t dev;
1487 struct cftable *ct;
1488 const char *drvname;
1489
1490 dev = config_devalloc(parent, cf, locs);
1491 if (!dev)
1492 panic("config_attach: allocation of device softc failed");
1493
1494 /* XXX redundant - see below? */
1495 if (cf->cf_fstate != FSTATE_STAR) {
1496 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1497 cf->cf_fstate = FSTATE_FOUND;
1498 }
1499
1500 config_devlink(dev);
1501
1502 if (config_do_twiddle && cold)
1503 twiddle();
1504 else
1505 aprint_naive("Found ");
1506 /*
1507 * We want the next two printfs for normal, verbose, and quiet,
1508 * but not silent (in which case, we're twiddling, instead).
1509 */
1510 if (parent == ROOT) {
1511 aprint_naive("%s (root)", device_xname(dev));
1512 aprint_normal("%s (root)", device_xname(dev));
1513 } else {
1514 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1515 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1516 if (print)
1517 (void) (*print)(aux, NULL);
1518 }
1519
1520 /*
1521 * Before attaching, clobber any unfound devices that are
1522 * otherwise identical.
1523 * XXX code above is redundant?
1524 */
1525 drvname = dev->dv_cfdriver->cd_name;
1526 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1527 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1528 if (STREQ(cf->cf_name, drvname) &&
1529 cf->cf_unit == dev->dv_unit) {
1530 if (cf->cf_fstate == FSTATE_NOTFOUND)
1531 cf->cf_fstate = FSTATE_FOUND;
1532 }
1533 }
1534 }
1535 device_register(dev, aux);
1536
1537 /* Let userland know */
1538 devmon_report_device(dev, true);
1539
1540 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1541
1542 if (!device_pmf_is_registered(dev))
1543 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1544
1545 config_process_deferred(&deferred_config_queue, dev);
1546
1547 device_register_post_config(dev, aux);
1548 return dev;
1549 }
1550
1551 device_t
1552 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1553 {
1554
1555 return config_attach_loc(parent, cf, NULL, aux, print);
1556 }
1557
1558 /*
1559 * As above, but for pseudo-devices. Pseudo-devices attached in this
1560 * way are silently inserted into the device tree, and their children
1561 * attached.
1562 *
1563 * Note that because pseudo-devices are attached silently, any information
1564 * the attach routine wishes to print should be prefixed with the device
1565 * name by the attach routine.
1566 */
1567 device_t
1568 config_attach_pseudo(cfdata_t cf)
1569 {
1570 device_t dev;
1571
1572 dev = config_devalloc(ROOT, cf, NULL);
1573 if (!dev)
1574 return NULL;
1575
1576 /* XXX mark busy in cfdata */
1577
1578 if (cf->cf_fstate != FSTATE_STAR) {
1579 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1580 cf->cf_fstate = FSTATE_FOUND;
1581 }
1582
1583 config_devlink(dev);
1584
1585 #if 0 /* XXXJRT not yet */
1586 device_register(dev, NULL); /* like a root node */
1587 #endif
1588 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1589 config_process_deferred(&deferred_config_queue, dev);
1590 return dev;
1591 }
1592
1593 /*
1594 * Caller must hold alldevs_mtx.
1595 */
1596 static void
1597 config_collect_garbage(struct devicelist *garbage)
1598 {
1599 device_t dv;
1600
1601 KASSERT(!cpu_intr_p());
1602 KASSERT(!cpu_softintr_p());
1603 KASSERT(mutex_owned(&alldevs_mtx));
1604
1605 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1606 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1607 if (dv->dv_del_gen != 0)
1608 break;
1609 }
1610 if (dv == NULL) {
1611 alldevs_garbage = false;
1612 break;
1613 }
1614 config_devunlink(dv, garbage);
1615 }
1616 KASSERT(mutex_owned(&alldevs_mtx));
1617 }
1618
1619 static void
1620 config_dump_garbage(struct devicelist *garbage)
1621 {
1622 device_t dv;
1623
1624 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1625 TAILQ_REMOVE(garbage, dv, dv_list);
1626 config_devdelete(dv);
1627 }
1628 }
1629
1630 /*
1631 * Detach a device. Optionally forced (e.g. because of hardware
1632 * removal) and quiet. Returns zero if successful, non-zero
1633 * (an error code) otherwise.
1634 *
1635 * Note that this code wants to be run from a process context, so
1636 * that the detach can sleep to allow processes which have a device
1637 * open to run and unwind their stacks.
1638 */
1639 int
1640 config_detach(device_t dev, int flags)
1641 {
1642 struct alldevs_foray af;
1643 struct cftable *ct;
1644 cfdata_t cf;
1645 const struct cfattach *ca;
1646 struct cfdriver *cd;
1647 #ifdef DIAGNOSTIC
1648 device_t d;
1649 #endif
1650 int rv = 0, s;
1651
1652 #ifdef DIAGNOSTIC
1653 cf = dev->dv_cfdata;
1654 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1655 cf->cf_fstate != FSTATE_STAR)
1656 panic("config_detach: %s: bad device fstate %d",
1657 device_xname(dev), cf ? cf->cf_fstate : -1);
1658 #endif
1659 cd = dev->dv_cfdriver;
1660 KASSERT(cd != NULL);
1661
1662 ca = dev->dv_cfattach;
1663 KASSERT(ca != NULL);
1664
1665 s = config_alldevs_lock();
1666 if (dev->dv_del_gen != 0) {
1667 config_alldevs_unlock(s);
1668 #ifdef DIAGNOSTIC
1669 printf("%s: %s is already detached\n", __func__,
1670 device_xname(dev));
1671 #endif /* DIAGNOSTIC */
1672 return ENOENT;
1673 }
1674 alldevs_nwrite++;
1675 config_alldevs_unlock(s);
1676
1677 if (!detachall &&
1678 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1679 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1680 rv = EOPNOTSUPP;
1681 } else if (ca->ca_detach != NULL) {
1682 rv = (*ca->ca_detach)(dev, flags);
1683 } else
1684 rv = EOPNOTSUPP;
1685
1686 /*
1687 * If it was not possible to detach the device, then we either
1688 * panic() (for the forced but failed case), or return an error.
1689 *
1690 * If it was possible to detach the device, ensure that the
1691 * device is deactivated.
1692 */
1693 if (rv == 0)
1694 dev->dv_flags &= ~DVF_ACTIVE;
1695 else if ((flags & DETACH_FORCE) == 0)
1696 goto out;
1697 else {
1698 panic("config_detach: forced detach of %s failed (%d)",
1699 device_xname(dev), rv);
1700 }
1701
1702 /*
1703 * The device has now been successfully detached.
1704 */
1705
1706 /* Let userland know */
1707 devmon_report_device(dev, false);
1708
1709 #ifdef DIAGNOSTIC
1710 /*
1711 * Sanity: If you're successfully detached, you should have no
1712 * children. (Note that because children must be attached
1713 * after parents, we only need to search the latter part of
1714 * the list.)
1715 */
1716 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1717 d = TAILQ_NEXT(d, dv_list)) {
1718 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1719 printf("config_detach: detached device %s"
1720 " has children %s\n", device_xname(dev), device_xname(d));
1721 panic("config_detach");
1722 }
1723 }
1724 #endif
1725
1726 /* notify the parent that the child is gone */
1727 if (dev->dv_parent) {
1728 device_t p = dev->dv_parent;
1729 if (p->dv_cfattach->ca_childdetached)
1730 (*p->dv_cfattach->ca_childdetached)(p, dev);
1731 }
1732
1733 /*
1734 * Mark cfdata to show that the unit can be reused, if possible.
1735 */
1736 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1737 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1738 if (STREQ(cf->cf_name, cd->cd_name)) {
1739 if (cf->cf_fstate == FSTATE_FOUND &&
1740 cf->cf_unit == dev->dv_unit)
1741 cf->cf_fstate = FSTATE_NOTFOUND;
1742 }
1743 }
1744 }
1745
1746 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1747 aprint_normal_dev(dev, "detached\n");
1748
1749 out:
1750 config_alldevs_enter(&af);
1751 KASSERT(alldevs_nwrite != 0);
1752 --alldevs_nwrite;
1753 if (rv == 0 && dev->dv_del_gen == 0) {
1754 if (alldevs_nwrite == 0 && alldevs_nread == 0)
1755 config_devunlink(dev, &af.af_garbage);
1756 else {
1757 dev->dv_del_gen = alldevs_gen;
1758 alldevs_garbage = true;
1759 }
1760 }
1761 config_alldevs_exit(&af);
1762
1763 return rv;
1764 }
1765
1766 int
1767 config_detach_children(device_t parent, int flags)
1768 {
1769 device_t dv;
1770 deviter_t di;
1771 int error = 0;
1772
1773 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1774 dv = deviter_next(&di)) {
1775 if (device_parent(dv) != parent)
1776 continue;
1777 if ((error = config_detach(dv, flags)) != 0)
1778 break;
1779 }
1780 deviter_release(&di);
1781 return error;
1782 }
1783
1784 device_t
1785 shutdown_first(struct shutdown_state *s)
1786 {
1787 if (!s->initialized) {
1788 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1789 s->initialized = true;
1790 }
1791 return shutdown_next(s);
1792 }
1793
1794 device_t
1795 shutdown_next(struct shutdown_state *s)
1796 {
1797 device_t dv;
1798
1799 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1800 ;
1801
1802 if (dv == NULL)
1803 s->initialized = false;
1804
1805 return dv;
1806 }
1807
1808 bool
1809 config_detach_all(int how)
1810 {
1811 static struct shutdown_state s;
1812 device_t curdev;
1813 bool progress = false;
1814
1815 if ((how & RB_NOSYNC) != 0)
1816 return false;
1817
1818 for (curdev = shutdown_first(&s); curdev != NULL;
1819 curdev = shutdown_next(&s)) {
1820 aprint_debug(" detaching %s, ", device_xname(curdev));
1821 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1822 progress = true;
1823 aprint_debug("success.");
1824 } else
1825 aprint_debug("failed.");
1826 }
1827 return progress;
1828 }
1829
1830 static bool
1831 device_is_ancestor_of(device_t ancestor, device_t descendant)
1832 {
1833 device_t dv;
1834
1835 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1836 if (device_parent(dv) == ancestor)
1837 return true;
1838 }
1839 return false;
1840 }
1841
1842 int
1843 config_deactivate(device_t dev)
1844 {
1845 deviter_t di;
1846 const struct cfattach *ca;
1847 device_t descendant;
1848 int s, rv = 0, oflags;
1849
1850 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1851 descendant != NULL;
1852 descendant = deviter_next(&di)) {
1853 if (dev != descendant &&
1854 !device_is_ancestor_of(dev, descendant))
1855 continue;
1856
1857 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1858 continue;
1859
1860 ca = descendant->dv_cfattach;
1861 oflags = descendant->dv_flags;
1862
1863 descendant->dv_flags &= ~DVF_ACTIVE;
1864 if (ca->ca_activate == NULL)
1865 continue;
1866 s = splhigh();
1867 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1868 splx(s);
1869 if (rv != 0)
1870 descendant->dv_flags = oflags;
1871 }
1872 deviter_release(&di);
1873 return rv;
1874 }
1875
1876 /*
1877 * Defer the configuration of the specified device until all
1878 * of its parent's devices have been attached.
1879 */
1880 void
1881 config_defer(device_t dev, void (*func)(device_t))
1882 {
1883 struct deferred_config *dc;
1884
1885 if (dev->dv_parent == NULL)
1886 panic("config_defer: can't defer config of a root device");
1887
1888 #ifdef DIAGNOSTIC
1889 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1890 if (dc->dc_dev == dev)
1891 panic("config_defer: deferred twice");
1892 }
1893 #endif
1894
1895 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1896 if (dc == NULL)
1897 panic("config_defer: unable to allocate callback");
1898
1899 dc->dc_dev = dev;
1900 dc->dc_func = func;
1901 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1902 config_pending_incr();
1903 }
1904
1905 /*
1906 * Defer some autoconfiguration for a device until after interrupts
1907 * are enabled.
1908 */
1909 void
1910 config_interrupts(device_t dev, void (*func)(device_t))
1911 {
1912 struct deferred_config *dc;
1913
1914 /*
1915 * If interrupts are enabled, callback now.
1916 */
1917 if (cold == 0) {
1918 (*func)(dev);
1919 return;
1920 }
1921
1922 #ifdef DIAGNOSTIC
1923 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1924 if (dc->dc_dev == dev)
1925 panic("config_interrupts: deferred twice");
1926 }
1927 #endif
1928
1929 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1930 if (dc == NULL)
1931 panic("config_interrupts: unable to allocate callback");
1932
1933 dc->dc_dev = dev;
1934 dc->dc_func = func;
1935 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1936 config_pending_incr();
1937 }
1938
1939 /*
1940 * Defer some autoconfiguration for a device until after root file system
1941 * is mounted (to load firmware etc).
1942 */
1943 void
1944 config_mountroot(device_t dev, void (*func)(device_t))
1945 {
1946 struct deferred_config *dc;
1947
1948 /*
1949 * If root file system is mounted, callback now.
1950 */
1951 if (root_is_mounted) {
1952 (*func)(dev);
1953 return;
1954 }
1955
1956 #ifdef DIAGNOSTIC
1957 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
1958 if (dc->dc_dev == dev)
1959 panic("%s: deferred twice", __func__);
1960 }
1961 #endif
1962
1963 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1964 if (dc == NULL)
1965 panic("%s: unable to allocate callback", __func__);
1966
1967 dc->dc_dev = dev;
1968 dc->dc_func = func;
1969 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
1970 }
1971
1972 /*
1973 * Process a deferred configuration queue.
1974 */
1975 static void
1976 config_process_deferred(struct deferred_config_head *queue,
1977 device_t parent)
1978 {
1979 struct deferred_config *dc, *ndc;
1980
1981 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
1982 ndc = TAILQ_NEXT(dc, dc_queue);
1983 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
1984 TAILQ_REMOVE(queue, dc, dc_queue);
1985 (*dc->dc_func)(dc->dc_dev);
1986 kmem_free(dc, sizeof(*dc));
1987 config_pending_decr();
1988 }
1989 }
1990 }
1991
1992 /*
1993 * Manipulate the config_pending semaphore.
1994 */
1995 void
1996 config_pending_incr(void)
1997 {
1998
1999 mutex_enter(&config_misc_lock);
2000 config_pending++;
2001 mutex_exit(&config_misc_lock);
2002 }
2003
2004 void
2005 config_pending_decr(void)
2006 {
2007
2008 #ifdef DIAGNOSTIC
2009 if (config_pending == 0)
2010 panic("config_pending_decr: config_pending == 0");
2011 #endif
2012 mutex_enter(&config_misc_lock);
2013 config_pending--;
2014 if (config_pending == 0)
2015 cv_broadcast(&config_misc_cv);
2016 mutex_exit(&config_misc_lock);
2017 }
2018
2019 /*
2020 * Register a "finalization" routine. Finalization routines are
2021 * called iteratively once all real devices have been found during
2022 * autoconfiguration, for as long as any one finalizer has done
2023 * any work.
2024 */
2025 int
2026 config_finalize_register(device_t dev, int (*fn)(device_t))
2027 {
2028 struct finalize_hook *f;
2029
2030 /*
2031 * If finalization has already been done, invoke the
2032 * callback function now.
2033 */
2034 if (config_finalize_done) {
2035 while ((*fn)(dev) != 0)
2036 /* loop */ ;
2037 }
2038
2039 /* Ensure this isn't already on the list. */
2040 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2041 if (f->f_func == fn && f->f_dev == dev)
2042 return EEXIST;
2043 }
2044
2045 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2046 f->f_func = fn;
2047 f->f_dev = dev;
2048 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2049
2050 return 0;
2051 }
2052
2053 void
2054 config_finalize(void)
2055 {
2056 struct finalize_hook *f;
2057 struct pdevinit *pdev;
2058 extern struct pdevinit pdevinit[];
2059 int errcnt, rv;
2060
2061 /*
2062 * Now that device driver threads have been created, wait for
2063 * them to finish any deferred autoconfiguration.
2064 */
2065 mutex_enter(&config_misc_lock);
2066 while (config_pending != 0)
2067 cv_wait(&config_misc_cv, &config_misc_lock);
2068 mutex_exit(&config_misc_lock);
2069
2070 KERNEL_LOCK(1, NULL);
2071
2072 /* Attach pseudo-devices. */
2073 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2074 (*pdev->pdev_attach)(pdev->pdev_count);
2075
2076 /* Run the hooks until none of them does any work. */
2077 do {
2078 rv = 0;
2079 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2080 rv |= (*f->f_func)(f->f_dev);
2081 } while (rv != 0);
2082
2083 config_finalize_done = 1;
2084
2085 /* Now free all the hooks. */
2086 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2087 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2088 kmem_free(f, sizeof(*f));
2089 }
2090
2091 KERNEL_UNLOCK_ONE(NULL);
2092
2093 errcnt = aprint_get_error_count();
2094 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2095 (boothowto & AB_VERBOSE) == 0) {
2096 mutex_enter(&config_misc_lock);
2097 if (config_do_twiddle) {
2098 config_do_twiddle = 0;
2099 printf_nolog(" done.\n");
2100 }
2101 mutex_exit(&config_misc_lock);
2102 if (errcnt != 0) {
2103 printf("WARNING: %d error%s while detecting hardware; "
2104 "check system log.\n", errcnt,
2105 errcnt == 1 ? "" : "s");
2106 }
2107 }
2108 }
2109
2110 void
2111 config_twiddle_init()
2112 {
2113
2114 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2115 config_do_twiddle = 1;
2116 }
2117 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2118 }
2119
2120 void
2121 config_twiddle_fn(void *cookie)
2122 {
2123
2124 mutex_enter(&config_misc_lock);
2125 if (config_do_twiddle) {
2126 twiddle();
2127 callout_schedule(&config_twiddle_ch, mstohz(100));
2128 }
2129 mutex_exit(&config_misc_lock);
2130 }
2131
2132 static int
2133 config_alldevs_lock(void)
2134 {
2135 mutex_enter(&alldevs_mtx);
2136 return 0;
2137 }
2138
2139 static void
2140 config_alldevs_enter(struct alldevs_foray *af)
2141 {
2142 TAILQ_INIT(&af->af_garbage);
2143 af->af_s = config_alldevs_lock();
2144 config_collect_garbage(&af->af_garbage);
2145 }
2146
2147 static void
2148 config_alldevs_exit(struct alldevs_foray *af)
2149 {
2150 config_alldevs_unlock(af->af_s);
2151 config_dump_garbage(&af->af_garbage);
2152 }
2153
2154 /*ARGSUSED*/
2155 static void
2156 config_alldevs_unlock(int s)
2157 {
2158 mutex_exit(&alldevs_mtx);
2159 }
2160
2161 /*
2162 * device_lookup:
2163 *
2164 * Look up a device instance for a given driver.
2165 */
2166 device_t
2167 device_lookup(cfdriver_t cd, int unit)
2168 {
2169 device_t dv;
2170 int s;
2171
2172 s = config_alldevs_lock();
2173 KASSERT(mutex_owned(&alldevs_mtx));
2174 if (unit < 0 || unit >= cd->cd_ndevs)
2175 dv = NULL;
2176 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2177 dv = NULL;
2178 config_alldevs_unlock(s);
2179
2180 return dv;
2181 }
2182
2183 /*
2184 * device_lookup_private:
2185 *
2186 * Look up a softc instance for a given driver.
2187 */
2188 void *
2189 device_lookup_private(cfdriver_t cd, int unit)
2190 {
2191
2192 return device_private(device_lookup(cd, unit));
2193 }
2194
2195 /*
2196 * device_find_by_xname:
2197 *
2198 * Returns the device of the given name or NULL if it doesn't exist.
2199 */
2200 device_t
2201 device_find_by_xname(const char *name)
2202 {
2203 device_t dv;
2204 deviter_t di;
2205
2206 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2207 if (strcmp(device_xname(dv), name) == 0)
2208 break;
2209 }
2210 deviter_release(&di);
2211
2212 return dv;
2213 }
2214
2215 /*
2216 * device_find_by_driver_unit:
2217 *
2218 * Returns the device of the given driver name and unit or
2219 * NULL if it doesn't exist.
2220 */
2221 device_t
2222 device_find_by_driver_unit(const char *name, int unit)
2223 {
2224 struct cfdriver *cd;
2225
2226 if ((cd = config_cfdriver_lookup(name)) == NULL)
2227 return NULL;
2228 return device_lookup(cd, unit);
2229 }
2230
2231 /*
2232 * Power management related functions.
2233 */
2234
2235 bool
2236 device_pmf_is_registered(device_t dev)
2237 {
2238 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2239 }
2240
2241 bool
2242 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2243 {
2244 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2245 return true;
2246 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2247 return false;
2248 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2249 dev->dv_driver_suspend != NULL &&
2250 !(*dev->dv_driver_suspend)(dev, qual))
2251 return false;
2252
2253 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2254 return true;
2255 }
2256
2257 bool
2258 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2259 {
2260 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2261 return true;
2262 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2263 return false;
2264 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2265 dev->dv_driver_resume != NULL &&
2266 !(*dev->dv_driver_resume)(dev, qual))
2267 return false;
2268
2269 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2270 return true;
2271 }
2272
2273 bool
2274 device_pmf_driver_shutdown(device_t dev, int how)
2275 {
2276
2277 if (*dev->dv_driver_shutdown != NULL &&
2278 !(*dev->dv_driver_shutdown)(dev, how))
2279 return false;
2280 return true;
2281 }
2282
2283 bool
2284 device_pmf_driver_register(device_t dev,
2285 bool (*suspend)(device_t, const pmf_qual_t *),
2286 bool (*resume)(device_t, const pmf_qual_t *),
2287 bool (*shutdown)(device_t, int))
2288 {
2289 dev->dv_driver_suspend = suspend;
2290 dev->dv_driver_resume = resume;
2291 dev->dv_driver_shutdown = shutdown;
2292 dev->dv_flags |= DVF_POWER_HANDLERS;
2293 return true;
2294 }
2295
2296 static const char *
2297 curlwp_name(void)
2298 {
2299 if (curlwp->l_name != NULL)
2300 return curlwp->l_name;
2301 else
2302 return curlwp->l_proc->p_comm;
2303 }
2304
2305 void
2306 device_pmf_driver_deregister(device_t dev)
2307 {
2308 device_lock_t dvl = device_getlock(dev);
2309
2310 dev->dv_driver_suspend = NULL;
2311 dev->dv_driver_resume = NULL;
2312
2313 mutex_enter(&dvl->dvl_mtx);
2314 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2315 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2316 /* Wake a thread that waits for the lock. That
2317 * thread will fail to acquire the lock, and then
2318 * it will wake the next thread that waits for the
2319 * lock, or else it will wake us.
2320 */
2321 cv_signal(&dvl->dvl_cv);
2322 pmflock_debug(dev, __func__, __LINE__);
2323 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2324 pmflock_debug(dev, __func__, __LINE__);
2325 }
2326 mutex_exit(&dvl->dvl_mtx);
2327 }
2328
2329 bool
2330 device_pmf_driver_child_register(device_t dev)
2331 {
2332 device_t parent = device_parent(dev);
2333
2334 if (parent == NULL || parent->dv_driver_child_register == NULL)
2335 return true;
2336 return (*parent->dv_driver_child_register)(dev);
2337 }
2338
2339 void
2340 device_pmf_driver_set_child_register(device_t dev,
2341 bool (*child_register)(device_t))
2342 {
2343 dev->dv_driver_child_register = child_register;
2344 }
2345
2346 static void
2347 pmflock_debug(device_t dev, const char *func, int line)
2348 {
2349 device_lock_t dvl = device_getlock(dev);
2350
2351 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2352 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2353 dev->dv_flags);
2354 }
2355
2356 static bool
2357 device_pmf_lock1(device_t dev)
2358 {
2359 device_lock_t dvl = device_getlock(dev);
2360
2361 while (device_pmf_is_registered(dev) &&
2362 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2363 dvl->dvl_nwait++;
2364 pmflock_debug(dev, __func__, __LINE__);
2365 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2366 pmflock_debug(dev, __func__, __LINE__);
2367 dvl->dvl_nwait--;
2368 }
2369 if (!device_pmf_is_registered(dev)) {
2370 pmflock_debug(dev, __func__, __LINE__);
2371 /* We could not acquire the lock, but some other thread may
2372 * wait for it, also. Wake that thread.
2373 */
2374 cv_signal(&dvl->dvl_cv);
2375 return false;
2376 }
2377 dvl->dvl_nlock++;
2378 dvl->dvl_holder = curlwp;
2379 pmflock_debug(dev, __func__, __LINE__);
2380 return true;
2381 }
2382
2383 bool
2384 device_pmf_lock(device_t dev)
2385 {
2386 bool rc;
2387 device_lock_t dvl = device_getlock(dev);
2388
2389 mutex_enter(&dvl->dvl_mtx);
2390 rc = device_pmf_lock1(dev);
2391 mutex_exit(&dvl->dvl_mtx);
2392
2393 return rc;
2394 }
2395
2396 void
2397 device_pmf_unlock(device_t dev)
2398 {
2399 device_lock_t dvl = device_getlock(dev);
2400
2401 KASSERT(dvl->dvl_nlock > 0);
2402 mutex_enter(&dvl->dvl_mtx);
2403 if (--dvl->dvl_nlock == 0)
2404 dvl->dvl_holder = NULL;
2405 cv_signal(&dvl->dvl_cv);
2406 pmflock_debug(dev, __func__, __LINE__);
2407 mutex_exit(&dvl->dvl_mtx);
2408 }
2409
2410 device_lock_t
2411 device_getlock(device_t dev)
2412 {
2413 return &dev->dv_lock;
2414 }
2415
2416 void *
2417 device_pmf_bus_private(device_t dev)
2418 {
2419 return dev->dv_bus_private;
2420 }
2421
2422 bool
2423 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2424 {
2425 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2426 return true;
2427 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2428 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2429 return false;
2430 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2431 dev->dv_bus_suspend != NULL &&
2432 !(*dev->dv_bus_suspend)(dev, qual))
2433 return false;
2434
2435 dev->dv_flags |= DVF_BUS_SUSPENDED;
2436 return true;
2437 }
2438
2439 bool
2440 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2441 {
2442 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2443 return true;
2444 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2445 dev->dv_bus_resume != NULL &&
2446 !(*dev->dv_bus_resume)(dev, qual))
2447 return false;
2448
2449 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2450 return true;
2451 }
2452
2453 bool
2454 device_pmf_bus_shutdown(device_t dev, int how)
2455 {
2456
2457 if (*dev->dv_bus_shutdown != NULL &&
2458 !(*dev->dv_bus_shutdown)(dev, how))
2459 return false;
2460 return true;
2461 }
2462
2463 void
2464 device_pmf_bus_register(device_t dev, void *priv,
2465 bool (*suspend)(device_t, const pmf_qual_t *),
2466 bool (*resume)(device_t, const pmf_qual_t *),
2467 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2468 {
2469 dev->dv_bus_private = priv;
2470 dev->dv_bus_resume = resume;
2471 dev->dv_bus_suspend = suspend;
2472 dev->dv_bus_shutdown = shutdown;
2473 dev->dv_bus_deregister = deregister;
2474 }
2475
2476 void
2477 device_pmf_bus_deregister(device_t dev)
2478 {
2479 if (dev->dv_bus_deregister == NULL)
2480 return;
2481 (*dev->dv_bus_deregister)(dev);
2482 dev->dv_bus_private = NULL;
2483 dev->dv_bus_suspend = NULL;
2484 dev->dv_bus_resume = NULL;
2485 dev->dv_bus_deregister = NULL;
2486 }
2487
2488 void *
2489 device_pmf_class_private(device_t dev)
2490 {
2491 return dev->dv_class_private;
2492 }
2493
2494 bool
2495 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2496 {
2497 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2498 return true;
2499 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2500 dev->dv_class_suspend != NULL &&
2501 !(*dev->dv_class_suspend)(dev, qual))
2502 return false;
2503
2504 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2505 return true;
2506 }
2507
2508 bool
2509 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2510 {
2511 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2512 return true;
2513 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2514 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2515 return false;
2516 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2517 dev->dv_class_resume != NULL &&
2518 !(*dev->dv_class_resume)(dev, qual))
2519 return false;
2520
2521 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2522 return true;
2523 }
2524
2525 void
2526 device_pmf_class_register(device_t dev, void *priv,
2527 bool (*suspend)(device_t, const pmf_qual_t *),
2528 bool (*resume)(device_t, const pmf_qual_t *),
2529 void (*deregister)(device_t))
2530 {
2531 dev->dv_class_private = priv;
2532 dev->dv_class_suspend = suspend;
2533 dev->dv_class_resume = resume;
2534 dev->dv_class_deregister = deregister;
2535 }
2536
2537 void
2538 device_pmf_class_deregister(device_t dev)
2539 {
2540 if (dev->dv_class_deregister == NULL)
2541 return;
2542 (*dev->dv_class_deregister)(dev);
2543 dev->dv_class_private = NULL;
2544 dev->dv_class_suspend = NULL;
2545 dev->dv_class_resume = NULL;
2546 dev->dv_class_deregister = NULL;
2547 }
2548
2549 bool
2550 device_active(device_t dev, devactive_t type)
2551 {
2552 size_t i;
2553
2554 if (dev->dv_activity_count == 0)
2555 return false;
2556
2557 for (i = 0; i < dev->dv_activity_count; ++i) {
2558 if (dev->dv_activity_handlers[i] == NULL)
2559 break;
2560 (*dev->dv_activity_handlers[i])(dev, type);
2561 }
2562
2563 return true;
2564 }
2565
2566 bool
2567 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2568 {
2569 void (**new_handlers)(device_t, devactive_t);
2570 void (**old_handlers)(device_t, devactive_t);
2571 size_t i, old_size, new_size;
2572 int s;
2573
2574 old_handlers = dev->dv_activity_handlers;
2575 old_size = dev->dv_activity_count;
2576
2577 for (i = 0; i < old_size; ++i) {
2578 KASSERT(old_handlers[i] != handler);
2579 if (old_handlers[i] == NULL) {
2580 old_handlers[i] = handler;
2581 return true;
2582 }
2583 }
2584
2585 new_size = old_size + 4;
2586 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2587
2588 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2589 new_handlers[old_size] = handler;
2590 memset(new_handlers + old_size + 1, 0,
2591 sizeof(int [new_size - (old_size+1)]));
2592
2593 s = splhigh();
2594 dev->dv_activity_count = new_size;
2595 dev->dv_activity_handlers = new_handlers;
2596 splx(s);
2597
2598 if (old_handlers != NULL)
2599 kmem_free(old_handlers, sizeof(void * [old_size]));
2600
2601 return true;
2602 }
2603
2604 void
2605 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2606 {
2607 void (**old_handlers)(device_t, devactive_t);
2608 size_t i, old_size;
2609 int s;
2610
2611 old_handlers = dev->dv_activity_handlers;
2612 old_size = dev->dv_activity_count;
2613
2614 for (i = 0; i < old_size; ++i) {
2615 if (old_handlers[i] == handler)
2616 break;
2617 if (old_handlers[i] == NULL)
2618 return; /* XXX panic? */
2619 }
2620
2621 if (i == old_size)
2622 return; /* XXX panic? */
2623
2624 for (; i < old_size - 1; ++i) {
2625 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2626 continue;
2627
2628 if (i == 0) {
2629 s = splhigh();
2630 dev->dv_activity_count = 0;
2631 dev->dv_activity_handlers = NULL;
2632 splx(s);
2633 kmem_free(old_handlers, sizeof(void *[old_size]));
2634 }
2635 return;
2636 }
2637 old_handlers[i] = NULL;
2638 }
2639
2640 /* Return true iff the device_t `dev' exists at generation `gen'. */
2641 static bool
2642 device_exists_at(device_t dv, devgen_t gen)
2643 {
2644 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2645 dv->dv_add_gen <= gen;
2646 }
2647
2648 static bool
2649 deviter_visits(const deviter_t *di, device_t dv)
2650 {
2651 return device_exists_at(dv, di->di_gen);
2652 }
2653
2654 /*
2655 * Device Iteration
2656 *
2657 * deviter_t: a device iterator. Holds state for a "walk" visiting
2658 * each device_t's in the device tree.
2659 *
2660 * deviter_init(di, flags): initialize the device iterator `di'
2661 * to "walk" the device tree. deviter_next(di) will return
2662 * the first device_t in the device tree, or NULL if there are
2663 * no devices.
2664 *
2665 * `flags' is one or more of DEVITER_F_RW, indicating that the
2666 * caller intends to modify the device tree by calling
2667 * config_detach(9) on devices in the order that the iterator
2668 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2669 * nearest the "root" of the device tree to be returned, first;
2670 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2671 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2672 * indicating both that deviter_init() should not respect any
2673 * locks on the device tree, and that deviter_next(di) may run
2674 * in more than one LWP before the walk has finished.
2675 *
2676 * Only one DEVITER_F_RW iterator may be in the device tree at
2677 * once.
2678 *
2679 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2680 *
2681 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2682 * DEVITER_F_LEAVES_FIRST are used in combination.
2683 *
2684 * deviter_first(di, flags): initialize the device iterator `di'
2685 * and return the first device_t in the device tree, or NULL
2686 * if there are no devices. The statement
2687 *
2688 * dv = deviter_first(di);
2689 *
2690 * is shorthand for
2691 *
2692 * deviter_init(di);
2693 * dv = deviter_next(di);
2694 *
2695 * deviter_next(di): return the next device_t in the device tree,
2696 * or NULL if there are no more devices. deviter_next(di)
2697 * is undefined if `di' was not initialized with deviter_init() or
2698 * deviter_first().
2699 *
2700 * deviter_release(di): stops iteration (subsequent calls to
2701 * deviter_next() will return NULL), releases any locks and
2702 * resources held by the device iterator.
2703 *
2704 * Device iteration does not return device_t's in any particular
2705 * order. An iterator will never return the same device_t twice.
2706 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2707 * is called repeatedly on the same `di', it will eventually return
2708 * NULL. It is ok to attach/detach devices during device iteration.
2709 */
2710 void
2711 deviter_init(deviter_t *di, deviter_flags_t flags)
2712 {
2713 device_t dv;
2714 int s;
2715
2716 memset(di, 0, sizeof(*di));
2717
2718 s = config_alldevs_lock();
2719 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2720 flags |= DEVITER_F_RW;
2721
2722 if ((flags & DEVITER_F_RW) != 0)
2723 alldevs_nwrite++;
2724 else
2725 alldevs_nread++;
2726 di->di_gen = alldevs_gen++;
2727 config_alldevs_unlock(s);
2728
2729 di->di_flags = flags;
2730
2731 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2732 case DEVITER_F_LEAVES_FIRST:
2733 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2734 if (!deviter_visits(di, dv))
2735 continue;
2736 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2737 }
2738 break;
2739 case DEVITER_F_ROOT_FIRST:
2740 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2741 if (!deviter_visits(di, dv))
2742 continue;
2743 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2744 }
2745 break;
2746 default:
2747 break;
2748 }
2749
2750 deviter_reinit(di);
2751 }
2752
2753 static void
2754 deviter_reinit(deviter_t *di)
2755 {
2756 if ((di->di_flags & DEVITER_F_RW) != 0)
2757 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2758 else
2759 di->di_prev = TAILQ_FIRST(&alldevs);
2760 }
2761
2762 device_t
2763 deviter_first(deviter_t *di, deviter_flags_t flags)
2764 {
2765 deviter_init(di, flags);
2766 return deviter_next(di);
2767 }
2768
2769 static device_t
2770 deviter_next2(deviter_t *di)
2771 {
2772 device_t dv;
2773
2774 dv = di->di_prev;
2775
2776 if (dv == NULL)
2777 return NULL;
2778
2779 if ((di->di_flags & DEVITER_F_RW) != 0)
2780 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2781 else
2782 di->di_prev = TAILQ_NEXT(dv, dv_list);
2783
2784 return dv;
2785 }
2786
2787 static device_t
2788 deviter_next1(deviter_t *di)
2789 {
2790 device_t dv;
2791
2792 do {
2793 dv = deviter_next2(di);
2794 } while (dv != NULL && !deviter_visits(di, dv));
2795
2796 return dv;
2797 }
2798
2799 device_t
2800 deviter_next(deviter_t *di)
2801 {
2802 device_t dv = NULL;
2803
2804 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2805 case 0:
2806 return deviter_next1(di);
2807 case DEVITER_F_LEAVES_FIRST:
2808 while (di->di_curdepth >= 0) {
2809 if ((dv = deviter_next1(di)) == NULL) {
2810 di->di_curdepth--;
2811 deviter_reinit(di);
2812 } else if (dv->dv_depth == di->di_curdepth)
2813 break;
2814 }
2815 return dv;
2816 case DEVITER_F_ROOT_FIRST:
2817 while (di->di_curdepth <= di->di_maxdepth) {
2818 if ((dv = deviter_next1(di)) == NULL) {
2819 di->di_curdepth++;
2820 deviter_reinit(di);
2821 } else if (dv->dv_depth == di->di_curdepth)
2822 break;
2823 }
2824 return dv;
2825 default:
2826 return NULL;
2827 }
2828 }
2829
2830 void
2831 deviter_release(deviter_t *di)
2832 {
2833 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2834 int s;
2835
2836 s = config_alldevs_lock();
2837 if (rw)
2838 --alldevs_nwrite;
2839 else
2840 --alldevs_nread;
2841 /* XXX wake a garbage-collection thread */
2842 config_alldevs_unlock(s);
2843 }
2844
2845 const char *
2846 cfdata_ifattr(const struct cfdata *cf)
2847 {
2848 return cf->cf_pspec->cfp_iattr;
2849 }
2850
2851 bool
2852 ifattr_match(const char *snull, const char *t)
2853 {
2854 return (snull == NULL) || strcmp(snull, t) == 0;
2855 }
2856
2857 void
2858 null_childdetached(device_t self, device_t child)
2859 {
2860 /* do nothing */
2861 }
2862
2863 static void
2864 sysctl_detach_setup(struct sysctllog **clog)
2865 {
2866 const struct sysctlnode *node = NULL;
2867
2868 sysctl_createv(clog, 0, NULL, &node,
2869 CTLFLAG_PERMANENT,
2870 CTLTYPE_NODE, "kern", NULL,
2871 NULL, 0, NULL, 0,
2872 CTL_KERN, CTL_EOL);
2873
2874 if (node == NULL)
2875 return;
2876
2877 sysctl_createv(clog, 0, &node, NULL,
2878 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2879 CTLTYPE_BOOL, "detachall",
2880 SYSCTL_DESCR("Detach all devices at shutdown"),
2881 NULL, 0, &detachall, 0,
2882 CTL_CREATE, CTL_EOL);
2883 }
2884