Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.223.2.3
      1 /* $NetBSD: subr_autoconf.c,v 1.223.2.3 2013/02/25 00:29:52 tls Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.223.2.3 2013/02/25 00:29:52 tls Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/disklabel.h>
     90 #include <sys/conf.h>
     91 #include <sys/kauth.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/mount.h>
    102 #include <sys/namei.h>
    103 #include <sys/unistd.h>
    104 #include <sys/fcntl.h>
    105 #include <sys/lockf.h>
    106 #include <sys/callout.h>
    107 #include <sys/devmon.h>
    108 #include <sys/cpu.h>
    109 #include <sys/sysctl.h>
    110 
    111 #include <sys/disk.h>
    112 
    113 #include <machine/limits.h>
    114 
    115 /*
    116  * Autoconfiguration subroutines.
    117  */
    118 
    119 /*
    120  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    121  * devices and drivers are found via these tables.
    122  */
    123 extern struct cfdata cfdata[];
    124 extern const short cfroots[];
    125 
    126 /*
    127  * List of all cfdriver structures.  We use this to detect duplicates
    128  * when other cfdrivers are loaded.
    129  */
    130 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    131 extern struct cfdriver * const cfdriver_list_initial[];
    132 
    133 /*
    134  * Initial list of cfattach's.
    135  */
    136 extern const struct cfattachinit cfattachinit[];
    137 
    138 /*
    139  * List of cfdata tables.  We always have one such list -- the one
    140  * built statically when the kernel was configured.
    141  */
    142 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    143 static struct cftable initcftable;
    144 
    145 #define	ROOT ((device_t)NULL)
    146 
    147 struct matchinfo {
    148 	cfsubmatch_t fn;
    149 	device_t parent;
    150 	const int *locs;
    151 	void	*aux;
    152 	struct	cfdata *match;
    153 	int	pri;
    154 };
    155 
    156 struct alldevs_foray {
    157 	int			af_s;
    158 	struct devicelist	af_garbage;
    159 };
    160 
    161 static char *number(char *, int);
    162 static void mapply(struct matchinfo *, cfdata_t);
    163 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    164 static void config_devdelete(device_t);
    165 static void config_devunlink(device_t, struct devicelist *);
    166 static void config_makeroom(int, struct cfdriver *);
    167 static void config_devlink(device_t);
    168 static void config_alldevs_unlock(int);
    169 static int config_alldevs_lock(void);
    170 static void config_alldevs_enter(struct alldevs_foray *);
    171 static void config_alldevs_exit(struct alldevs_foray *);
    172 static void config_add_attrib_dict(device_t);
    173 
    174 static void config_collect_garbage(struct devicelist *);
    175 static void config_dump_garbage(struct devicelist *);
    176 
    177 static void pmflock_debug(device_t, const char *, int);
    178 
    179 static device_t deviter_next1(deviter_t *);
    180 static void deviter_reinit(deviter_t *);
    181 
    182 struct deferred_config {
    183 	TAILQ_ENTRY(deferred_config) dc_queue;
    184 	device_t dc_dev;
    185 	void (*dc_func)(device_t);
    186 };
    187 
    188 TAILQ_HEAD(deferred_config_head, deferred_config);
    189 
    190 struct deferred_config_head deferred_config_queue =
    191 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    192 struct deferred_config_head interrupt_config_queue =
    193 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    194 int interrupt_config_threads = 8;
    195 struct deferred_config_head mountroot_config_queue =
    196 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    197 int mountroot_config_threads = 2;
    198 static bool root_is_mounted = false;
    199 
    200 static void config_process_deferred(struct deferred_config_head *, device_t);
    201 
    202 /* Hooks to finalize configuration once all real devices have been found. */
    203 struct finalize_hook {
    204 	TAILQ_ENTRY(finalize_hook) f_list;
    205 	int (*f_func)(device_t);
    206 	device_t f_dev;
    207 };
    208 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    209 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    210 static int config_finalize_done;
    211 
    212 /* list of all devices */
    213 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    214 static kmutex_t alldevs_mtx;
    215 static volatile bool alldevs_garbage = false;
    216 static volatile devgen_t alldevs_gen = 1;
    217 static volatile int alldevs_nread = 0;
    218 static volatile int alldevs_nwrite = 0;
    219 
    220 static int config_pending;		/* semaphore for mountroot */
    221 static kmutex_t config_misc_lock;
    222 static kcondvar_t config_misc_cv;
    223 
    224 static bool detachall = false;
    225 
    226 #define	STREQ(s1, s2)			\
    227 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    228 
    229 static bool config_initialized = false;	/* config_init() has been called. */
    230 
    231 static int config_do_twiddle;
    232 static callout_t config_twiddle_ch;
    233 
    234 static void sysctl_detach_setup(struct sysctllog **);
    235 
    236 typedef int (*cfdriver_fn)(struct cfdriver *);
    237 static int
    238 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    239 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    240 	const char *style, bool dopanic)
    241 {
    242 	void (*pr)(const char *, ...) __printflike(1, 2) =
    243 	    dopanic ? panic : printf;
    244 	int i = 0, error = 0, e2;
    245 
    246 	for (i = 0; cfdriverv[i] != NULL; i++) {
    247 		if ((error = drv_do(cfdriverv[i])) != 0) {
    248 			pr("configure: `%s' driver %s failed: %d",
    249 			    cfdriverv[i]->cd_name, style, error);
    250 			goto bad;
    251 		}
    252 	}
    253 
    254 	KASSERT(error == 0);
    255 	return 0;
    256 
    257  bad:
    258 	printf("\n");
    259 	for (i--; i >= 0; i--) {
    260 		e2 = drv_undo(cfdriverv[i]);
    261 		KASSERT(e2 == 0);
    262 	}
    263 
    264 	return error;
    265 }
    266 
    267 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    268 static int
    269 frob_cfattachvec(const struct cfattachinit *cfattachv,
    270 	cfattach_fn att_do, cfattach_fn att_undo,
    271 	const char *style, bool dopanic)
    272 {
    273 	const struct cfattachinit *cfai = NULL;
    274 	void (*pr)(const char *, ...) __printflike(1, 2) =
    275 	    dopanic ? panic : printf;
    276 	int j = 0, error = 0, e2;
    277 
    278 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    279 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    280 			if ((error = att_do(cfai->cfai_name,
    281 			    cfai->cfai_list[j])) != 0) {
    282 				pr("configure: attachment `%s' "
    283 				    "of `%s' driver %s failed: %d",
    284 				    cfai->cfai_list[j]->ca_name,
    285 				    cfai->cfai_name, style, error);
    286 				goto bad;
    287 			}
    288 		}
    289 	}
    290 
    291 	KASSERT(error == 0);
    292 	return 0;
    293 
    294  bad:
    295 	/*
    296 	 * Rollback in reverse order.  dunno if super-important, but
    297 	 * do that anyway.  Although the code looks a little like
    298 	 * someone did a little integration (in the math sense).
    299 	 */
    300 	printf("\n");
    301 	if (cfai) {
    302 		bool last;
    303 
    304 		for (last = false; last == false; ) {
    305 			if (cfai == &cfattachv[0])
    306 				last = true;
    307 			for (j--; j >= 0; j--) {
    308 				e2 = att_undo(cfai->cfai_name,
    309 				    cfai->cfai_list[j]);
    310 				KASSERT(e2 == 0);
    311 			}
    312 			if (!last) {
    313 				cfai--;
    314 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    315 					;
    316 			}
    317 		}
    318 	}
    319 
    320 	return error;
    321 }
    322 
    323 /*
    324  * Initialize the autoconfiguration data structures.  Normally this
    325  * is done by configure(), but some platforms need to do this very
    326  * early (to e.g. initialize the console).
    327  */
    328 void
    329 config_init(void)
    330 {
    331 
    332 	KASSERT(config_initialized == false);
    333 
    334 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
    335 
    336 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    337 	cv_init(&config_misc_cv, "cfgmisc");
    338 
    339 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    340 
    341 	frob_cfdrivervec(cfdriver_list_initial,
    342 	    config_cfdriver_attach, NULL, "bootstrap", true);
    343 	frob_cfattachvec(cfattachinit,
    344 	    config_cfattach_attach, NULL, "bootstrap", true);
    345 
    346 	initcftable.ct_cfdata = cfdata;
    347 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    348 
    349 	config_initialized = true;
    350 }
    351 
    352 /*
    353  * Init or fini drivers and attachments.  Either all or none
    354  * are processed (via rollback).  It would be nice if this were
    355  * atomic to outside consumers, but with the current state of
    356  * locking ...
    357  */
    358 int
    359 config_init_component(struct cfdriver * const *cfdriverv,
    360 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    361 {
    362 	int error;
    363 
    364 	if ((error = frob_cfdrivervec(cfdriverv,
    365 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    366 		return error;
    367 	if ((error = frob_cfattachvec(cfattachv,
    368 	    config_cfattach_attach, config_cfattach_detach,
    369 	    "init", false)) != 0) {
    370 		frob_cfdrivervec(cfdriverv,
    371 	            config_cfdriver_detach, NULL, "init rollback", true);
    372 		return error;
    373 	}
    374 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    375 		frob_cfattachvec(cfattachv,
    376 		    config_cfattach_detach, NULL, "init rollback", true);
    377 		frob_cfdrivervec(cfdriverv,
    378 	            config_cfdriver_detach, NULL, "init rollback", true);
    379 		return error;
    380 	}
    381 
    382 	return 0;
    383 }
    384 
    385 int
    386 config_fini_component(struct cfdriver * const *cfdriverv,
    387 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    388 {
    389 	int error;
    390 
    391 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    392 		return error;
    393 	if ((error = frob_cfattachvec(cfattachv,
    394 	    config_cfattach_detach, config_cfattach_attach,
    395 	    "fini", false)) != 0) {
    396 		if (config_cfdata_attach(cfdatav, 0) != 0)
    397 			panic("config_cfdata fini rollback failed");
    398 		return error;
    399 	}
    400 	if ((error = frob_cfdrivervec(cfdriverv,
    401 	    config_cfdriver_detach, config_cfdriver_attach,
    402 	    "fini", false)) != 0) {
    403 		frob_cfattachvec(cfattachv,
    404 	            config_cfattach_attach, NULL, "fini rollback", true);
    405 		if (config_cfdata_attach(cfdatav, 0) != 0)
    406 			panic("config_cfdata fini rollback failed");
    407 		return error;
    408 	}
    409 
    410 	return 0;
    411 }
    412 
    413 void
    414 config_init_mi(void)
    415 {
    416 
    417 	if (!config_initialized)
    418 		config_init();
    419 
    420 	sysctl_detach_setup(NULL);
    421 }
    422 
    423 void
    424 config_deferred(device_t dev)
    425 {
    426 	config_process_deferred(&deferred_config_queue, dev);
    427 	config_process_deferred(&interrupt_config_queue, dev);
    428 	config_process_deferred(&mountroot_config_queue, dev);
    429 }
    430 
    431 static void
    432 config_interrupts_thread(void *cookie)
    433 {
    434 	struct deferred_config *dc;
    435 
    436 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    437 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    438 		(*dc->dc_func)(dc->dc_dev);
    439 		kmem_free(dc, sizeof(*dc));
    440 		config_pending_decr();
    441 	}
    442 	kthread_exit(0);
    443 }
    444 
    445 void
    446 config_create_interruptthreads(void)
    447 {
    448 	int i;
    449 
    450 	for (i = 0; i < interrupt_config_threads; i++) {
    451 		(void)kthread_create(PRI_NONE, 0, NULL,
    452 		    config_interrupts_thread, NULL, NULL, "configintr");
    453 	}
    454 }
    455 
    456 static void
    457 config_mountroot_thread(void *cookie)
    458 {
    459 	struct deferred_config *dc;
    460 
    461 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    462 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    463 		(*dc->dc_func)(dc->dc_dev);
    464 		kmem_free(dc, sizeof(*dc));
    465 	}
    466 	kthread_exit(0);
    467 }
    468 
    469 void
    470 config_create_mountrootthreads(void)
    471 {
    472 	int i;
    473 
    474 	if (!root_is_mounted)
    475 		root_is_mounted = true;
    476 
    477 	for (i = 0; i < mountroot_config_threads; i++) {
    478 		(void)kthread_create(PRI_NONE, 0, NULL,
    479 		    config_mountroot_thread, NULL, NULL, "configroot");
    480 	}
    481 }
    482 
    483 /*
    484  * Announce device attach/detach to userland listeners.
    485  */
    486 static void
    487 devmon_report_device(device_t dev, bool isattach)
    488 {
    489 #if NDRVCTL > 0
    490 	prop_dictionary_t ev;
    491 	const char *parent;
    492 	const char *what;
    493 	device_t pdev = device_parent(dev);
    494 
    495 	ev = prop_dictionary_create();
    496 	if (ev == NULL)
    497 		return;
    498 
    499 	what = (isattach ? "device-attach" : "device-detach");
    500 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    501 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
    502 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
    503 		prop_object_release(ev);
    504 		return;
    505 	}
    506 
    507 	devmon_insert(what, ev);
    508 #endif
    509 }
    510 
    511 /*
    512  * Add a cfdriver to the system.
    513  */
    514 int
    515 config_cfdriver_attach(struct cfdriver *cd)
    516 {
    517 	struct cfdriver *lcd;
    518 
    519 	/* Make sure this driver isn't already in the system. */
    520 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    521 		if (STREQ(lcd->cd_name, cd->cd_name))
    522 			return EEXIST;
    523 	}
    524 
    525 	LIST_INIT(&cd->cd_attach);
    526 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    527 
    528 	return 0;
    529 }
    530 
    531 /*
    532  * Remove a cfdriver from the system.
    533  */
    534 int
    535 config_cfdriver_detach(struct cfdriver *cd)
    536 {
    537 	struct alldevs_foray af;
    538 	int i, rc = 0;
    539 
    540 	config_alldevs_enter(&af);
    541 	/* Make sure there are no active instances. */
    542 	for (i = 0; i < cd->cd_ndevs; i++) {
    543 		if (cd->cd_devs[i] != NULL) {
    544 			rc = EBUSY;
    545 			break;
    546 		}
    547 	}
    548 	config_alldevs_exit(&af);
    549 
    550 	if (rc != 0)
    551 		return rc;
    552 
    553 	/* ...and no attachments loaded. */
    554 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    555 		return EBUSY;
    556 
    557 	LIST_REMOVE(cd, cd_list);
    558 
    559 	KASSERT(cd->cd_devs == NULL);
    560 
    561 	return 0;
    562 }
    563 
    564 /*
    565  * Look up a cfdriver by name.
    566  */
    567 struct cfdriver *
    568 config_cfdriver_lookup(const char *name)
    569 {
    570 	struct cfdriver *cd;
    571 
    572 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    573 		if (STREQ(cd->cd_name, name))
    574 			return cd;
    575 	}
    576 
    577 	return NULL;
    578 }
    579 
    580 /*
    581  * Add a cfattach to the specified driver.
    582  */
    583 int
    584 config_cfattach_attach(const char *driver, struct cfattach *ca)
    585 {
    586 	struct cfattach *lca;
    587 	struct cfdriver *cd;
    588 
    589 	cd = config_cfdriver_lookup(driver);
    590 	if (cd == NULL)
    591 		return ESRCH;
    592 
    593 	/* Make sure this attachment isn't already on this driver. */
    594 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    595 		if (STREQ(lca->ca_name, ca->ca_name))
    596 			return EEXIST;
    597 	}
    598 
    599 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    600 
    601 	return 0;
    602 }
    603 
    604 /*
    605  * Remove a cfattach from the specified driver.
    606  */
    607 int
    608 config_cfattach_detach(const char *driver, struct cfattach *ca)
    609 {
    610 	struct alldevs_foray af;
    611 	struct cfdriver *cd;
    612 	device_t dev;
    613 	int i, rc = 0;
    614 
    615 	cd = config_cfdriver_lookup(driver);
    616 	if (cd == NULL)
    617 		return ESRCH;
    618 
    619 	config_alldevs_enter(&af);
    620 	/* Make sure there are no active instances. */
    621 	for (i = 0; i < cd->cd_ndevs; i++) {
    622 		if ((dev = cd->cd_devs[i]) == NULL)
    623 			continue;
    624 		if (dev->dv_cfattach == ca) {
    625 			rc = EBUSY;
    626 			break;
    627 		}
    628 	}
    629 	config_alldevs_exit(&af);
    630 
    631 	if (rc != 0)
    632 		return rc;
    633 
    634 	LIST_REMOVE(ca, ca_list);
    635 
    636 	return 0;
    637 }
    638 
    639 /*
    640  * Look up a cfattach by name.
    641  */
    642 static struct cfattach *
    643 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    644 {
    645 	struct cfattach *ca;
    646 
    647 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    648 		if (STREQ(ca->ca_name, atname))
    649 			return ca;
    650 	}
    651 
    652 	return NULL;
    653 }
    654 
    655 /*
    656  * Look up a cfattach by driver/attachment name.
    657  */
    658 struct cfattach *
    659 config_cfattach_lookup(const char *name, const char *atname)
    660 {
    661 	struct cfdriver *cd;
    662 
    663 	cd = config_cfdriver_lookup(name);
    664 	if (cd == NULL)
    665 		return NULL;
    666 
    667 	return config_cfattach_lookup_cd(cd, atname);
    668 }
    669 
    670 /*
    671  * Apply the matching function and choose the best.  This is used
    672  * a few times and we want to keep the code small.
    673  */
    674 static void
    675 mapply(struct matchinfo *m, cfdata_t cf)
    676 {
    677 	int pri;
    678 
    679 	if (m->fn != NULL) {
    680 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    681 	} else {
    682 		pri = config_match(m->parent, cf, m->aux);
    683 	}
    684 	if (pri > m->pri) {
    685 		m->match = cf;
    686 		m->pri = pri;
    687 	}
    688 }
    689 
    690 int
    691 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    692 {
    693 	const struct cfiattrdata *ci;
    694 	const struct cflocdesc *cl;
    695 	int nlocs, i;
    696 
    697 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    698 	KASSERT(ci);
    699 	nlocs = ci->ci_loclen;
    700 	KASSERT(!nlocs || locs);
    701 	for (i = 0; i < nlocs; i++) {
    702 		cl = &ci->ci_locdesc[i];
    703 		/* !cld_defaultstr means no default value */
    704 		if ((!(cl->cld_defaultstr)
    705 		     || (cf->cf_loc[i] != cl->cld_default))
    706 		    && cf->cf_loc[i] != locs[i])
    707 			return 0;
    708 	}
    709 
    710 	return config_match(parent, cf, aux);
    711 }
    712 
    713 /*
    714  * Helper function: check whether the driver supports the interface attribute
    715  * and return its descriptor structure.
    716  */
    717 static const struct cfiattrdata *
    718 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    719 {
    720 	const struct cfiattrdata * const *cpp;
    721 
    722 	if (cd->cd_attrs == NULL)
    723 		return 0;
    724 
    725 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    726 		if (STREQ((*cpp)->ci_name, ia)) {
    727 			/* Match. */
    728 			return *cpp;
    729 		}
    730 	}
    731 	return 0;
    732 }
    733 
    734 /*
    735  * Lookup an interface attribute description by name.
    736  * If the driver is given, consider only its supported attributes.
    737  */
    738 const struct cfiattrdata *
    739 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    740 {
    741 	const struct cfdriver *d;
    742 	const struct cfiattrdata *ia;
    743 
    744 	if (cd)
    745 		return cfdriver_get_iattr(cd, name);
    746 
    747 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    748 		ia = cfdriver_get_iattr(d, name);
    749 		if (ia)
    750 			return ia;
    751 	}
    752 	return 0;
    753 }
    754 
    755 /*
    756  * Determine if `parent' is a potential parent for a device spec based
    757  * on `cfp'.
    758  */
    759 static int
    760 cfparent_match(const device_t parent, const struct cfparent *cfp)
    761 {
    762 	struct cfdriver *pcd;
    763 
    764 	/* We don't match root nodes here. */
    765 	if (cfp == NULL)
    766 		return 0;
    767 
    768 	pcd = parent->dv_cfdriver;
    769 	KASSERT(pcd != NULL);
    770 
    771 	/*
    772 	 * First, ensure this parent has the correct interface
    773 	 * attribute.
    774 	 */
    775 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    776 		return 0;
    777 
    778 	/*
    779 	 * If no specific parent device instance was specified (i.e.
    780 	 * we're attaching to the attribute only), we're done!
    781 	 */
    782 	if (cfp->cfp_parent == NULL)
    783 		return 1;
    784 
    785 	/*
    786 	 * Check the parent device's name.
    787 	 */
    788 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    789 		return 0;	/* not the same parent */
    790 
    791 	/*
    792 	 * Make sure the unit number matches.
    793 	 */
    794 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    795 	    cfp->cfp_unit == parent->dv_unit)
    796 		return 1;
    797 
    798 	/* Unit numbers don't match. */
    799 	return 0;
    800 }
    801 
    802 /*
    803  * Helper for config_cfdata_attach(): check all devices whether it could be
    804  * parent any attachment in the config data table passed, and rescan.
    805  */
    806 static void
    807 rescan_with_cfdata(const struct cfdata *cf)
    808 {
    809 	device_t d;
    810 	const struct cfdata *cf1;
    811 	deviter_t di;
    812 
    813 
    814 	/*
    815 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    816 	 * the outer loop.
    817 	 */
    818 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    819 
    820 		if (!(d->dv_cfattach->ca_rescan))
    821 			continue;
    822 
    823 		for (cf1 = cf; cf1->cf_name; cf1++) {
    824 
    825 			if (!cfparent_match(d, cf1->cf_pspec))
    826 				continue;
    827 
    828 			(*d->dv_cfattach->ca_rescan)(d,
    829 				cfdata_ifattr(cf1), cf1->cf_loc);
    830 
    831 			config_deferred(d);
    832 		}
    833 	}
    834 	deviter_release(&di);
    835 }
    836 
    837 /*
    838  * Attach a supplemental config data table and rescan potential
    839  * parent devices if required.
    840  */
    841 int
    842 config_cfdata_attach(cfdata_t cf, int scannow)
    843 {
    844 	struct cftable *ct;
    845 
    846 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    847 	ct->ct_cfdata = cf;
    848 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    849 
    850 	if (scannow)
    851 		rescan_with_cfdata(cf);
    852 
    853 	return 0;
    854 }
    855 
    856 /*
    857  * Helper for config_cfdata_detach: check whether a device is
    858  * found through any attachment in the config data table.
    859  */
    860 static int
    861 dev_in_cfdata(device_t d, cfdata_t cf)
    862 {
    863 	const struct cfdata *cf1;
    864 
    865 	for (cf1 = cf; cf1->cf_name; cf1++)
    866 		if (d->dv_cfdata == cf1)
    867 			return 1;
    868 
    869 	return 0;
    870 }
    871 
    872 /*
    873  * Detach a supplemental config data table. Detach all devices found
    874  * through that table (and thus keeping references to it) before.
    875  */
    876 int
    877 config_cfdata_detach(cfdata_t cf)
    878 {
    879 	device_t d;
    880 	int error = 0;
    881 	struct cftable *ct;
    882 	deviter_t di;
    883 
    884 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    885 	     d = deviter_next(&di)) {
    886 		if (!dev_in_cfdata(d, cf))
    887 			continue;
    888 		if ((error = config_detach(d, 0)) != 0)
    889 			break;
    890 	}
    891 	deviter_release(&di);
    892 	if (error) {
    893 		aprint_error_dev(d, "unable to detach instance\n");
    894 		return error;
    895 	}
    896 
    897 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    898 		if (ct->ct_cfdata == cf) {
    899 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    900 			kmem_free(ct, sizeof(*ct));
    901 			return 0;
    902 		}
    903 	}
    904 
    905 	/* not found -- shouldn't happen */
    906 	return EINVAL;
    907 }
    908 
    909 /*
    910  * Invoke the "match" routine for a cfdata entry on behalf of
    911  * an external caller, usually a "submatch" routine.
    912  */
    913 int
    914 config_match(device_t parent, cfdata_t cf, void *aux)
    915 {
    916 	struct cfattach *ca;
    917 
    918 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    919 	if (ca == NULL) {
    920 		/* No attachment for this entry, oh well. */
    921 		return 0;
    922 	}
    923 
    924 	return (*ca->ca_match)(parent, cf, aux);
    925 }
    926 
    927 /*
    928  * Iterate over all potential children of some device, calling the given
    929  * function (default being the child's match function) for each one.
    930  * Nonzero returns are matches; the highest value returned is considered
    931  * the best match.  Return the `found child' if we got a match, or NULL
    932  * otherwise.  The `aux' pointer is simply passed on through.
    933  *
    934  * Note that this function is designed so that it can be used to apply
    935  * an arbitrary function to all potential children (its return value
    936  * can be ignored).
    937  */
    938 cfdata_t
    939 config_search_loc(cfsubmatch_t fn, device_t parent,
    940 		  const char *ifattr, const int *locs, void *aux)
    941 {
    942 	struct cftable *ct;
    943 	cfdata_t cf;
    944 	struct matchinfo m;
    945 
    946 	KASSERT(config_initialized);
    947 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
    948 
    949 	m.fn = fn;
    950 	m.parent = parent;
    951 	m.locs = locs;
    952 	m.aux = aux;
    953 	m.match = NULL;
    954 	m.pri = 0;
    955 
    956 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    957 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
    958 
    959 			/* We don't match root nodes here. */
    960 			if (!cf->cf_pspec)
    961 				continue;
    962 
    963 			/*
    964 			 * Skip cf if no longer eligible, otherwise scan
    965 			 * through parents for one matching `parent', and
    966 			 * try match function.
    967 			 */
    968 			if (cf->cf_fstate == FSTATE_FOUND)
    969 				continue;
    970 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
    971 			    cf->cf_fstate == FSTATE_DSTAR)
    972 				continue;
    973 
    974 			/*
    975 			 * If an interface attribute was specified,
    976 			 * consider only children which attach to
    977 			 * that attribute.
    978 			 */
    979 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
    980 				continue;
    981 
    982 			if (cfparent_match(parent, cf->cf_pspec))
    983 				mapply(&m, cf);
    984 		}
    985 	}
    986 	return m.match;
    987 }
    988 
    989 cfdata_t
    990 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
    991     void *aux)
    992 {
    993 
    994 	return config_search_loc(fn, parent, ifattr, NULL, aux);
    995 }
    996 
    997 /*
    998  * Find the given root device.
    999  * This is much like config_search, but there is no parent.
   1000  * Don't bother with multiple cfdata tables; the root node
   1001  * must always be in the initial table.
   1002  */
   1003 cfdata_t
   1004 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1005 {
   1006 	cfdata_t cf;
   1007 	const short *p;
   1008 	struct matchinfo m;
   1009 
   1010 	m.fn = fn;
   1011 	m.parent = ROOT;
   1012 	m.aux = aux;
   1013 	m.match = NULL;
   1014 	m.pri = 0;
   1015 	m.locs = 0;
   1016 	/*
   1017 	 * Look at root entries for matching name.  We do not bother
   1018 	 * with found-state here since only one root should ever be
   1019 	 * searched (and it must be done first).
   1020 	 */
   1021 	for (p = cfroots; *p >= 0; p++) {
   1022 		cf = &cfdata[*p];
   1023 		if (strcmp(cf->cf_name, rootname) == 0)
   1024 			mapply(&m, cf);
   1025 	}
   1026 	return m.match;
   1027 }
   1028 
   1029 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1030 
   1031 /*
   1032  * The given `aux' argument describes a device that has been found
   1033  * on the given parent, but not necessarily configured.  Locate the
   1034  * configuration data for that device (using the submatch function
   1035  * provided, or using candidates' cd_match configuration driver
   1036  * functions) and attach it, and return its device_t.  If the device was
   1037  * not configured, call the given `print' function and return NULL.
   1038  */
   1039 device_t
   1040 config_found_sm_loc(device_t parent,
   1041 		const char *ifattr, const int *locs, void *aux,
   1042 		cfprint_t print, cfsubmatch_t submatch)
   1043 {
   1044 	cfdata_t cf;
   1045 
   1046 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
   1047 		return(config_attach_loc(parent, cf, locs, aux, print));
   1048 	if (print) {
   1049 		if (config_do_twiddle && cold)
   1050 			twiddle();
   1051 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1052 	}
   1053 
   1054 	return NULL;
   1055 }
   1056 
   1057 device_t
   1058 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1059     cfprint_t print)
   1060 {
   1061 
   1062 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
   1063 }
   1064 
   1065 device_t
   1066 config_found(device_t parent, void *aux, cfprint_t print)
   1067 {
   1068 
   1069 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
   1070 }
   1071 
   1072 /*
   1073  * As above, but for root devices.
   1074  */
   1075 device_t
   1076 config_rootfound(const char *rootname, void *aux)
   1077 {
   1078 	cfdata_t cf;
   1079 
   1080 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1081 		return config_attach(ROOT, cf, aux, NULL);
   1082 	aprint_error("root device %s not configured\n", rootname);
   1083 	return NULL;
   1084 }
   1085 
   1086 /* just like sprintf(buf, "%d") except that it works from the end */
   1087 static char *
   1088 number(char *ep, int n)
   1089 {
   1090 
   1091 	*--ep = 0;
   1092 	while (n >= 10) {
   1093 		*--ep = (n % 10) + '0';
   1094 		n /= 10;
   1095 	}
   1096 	*--ep = n + '0';
   1097 	return ep;
   1098 }
   1099 
   1100 /*
   1101  * Expand the size of the cd_devs array if necessary.
   1102  *
   1103  * The caller must hold alldevs_mtx. config_makeroom() may release and
   1104  * re-acquire alldevs_mtx, so callers should re-check conditions such
   1105  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1106  * returns.
   1107  */
   1108 static void
   1109 config_makeroom(int n, struct cfdriver *cd)
   1110 {
   1111 	int old, new;
   1112 	device_t *osp, *nsp;
   1113 
   1114 	alldevs_nwrite++;
   1115 
   1116 	for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
   1117 		;
   1118 
   1119 	while (n >= cd->cd_ndevs) {
   1120 		/*
   1121 		 * Need to expand the array.
   1122 		 */
   1123 		old = cd->cd_ndevs;
   1124 		osp = cd->cd_devs;
   1125 
   1126 		/* Release alldevs_mtx around allocation, which may
   1127 		 * sleep.
   1128 		 */
   1129 		mutex_exit(&alldevs_mtx);
   1130 		nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
   1131 		if (nsp == NULL)
   1132 			panic("%s: could not expand cd_devs", __func__);
   1133 		mutex_enter(&alldevs_mtx);
   1134 
   1135 		/* If another thread moved the array while we did
   1136 		 * not hold alldevs_mtx, try again.
   1137 		 */
   1138 		if (cd->cd_devs != osp) {
   1139 			mutex_exit(&alldevs_mtx);
   1140 			kmem_free(nsp, sizeof(device_t[new]));
   1141 			mutex_enter(&alldevs_mtx);
   1142 			continue;
   1143 		}
   1144 
   1145 		memset(nsp + old, 0, sizeof(device_t[new - old]));
   1146 		if (old != 0)
   1147 			memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
   1148 
   1149 		cd->cd_ndevs = new;
   1150 		cd->cd_devs = nsp;
   1151 		if (old != 0) {
   1152 			mutex_exit(&alldevs_mtx);
   1153 			kmem_free(osp, sizeof(device_t[old]));
   1154 			mutex_enter(&alldevs_mtx);
   1155 		}
   1156 	}
   1157 	alldevs_nwrite--;
   1158 }
   1159 
   1160 /*
   1161  * Put dev into the devices list.
   1162  */
   1163 static void
   1164 config_devlink(device_t dev)
   1165 {
   1166 	int s;
   1167 
   1168 	s = config_alldevs_lock();
   1169 
   1170 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1171 
   1172 	dev->dv_add_gen = alldevs_gen;
   1173 	/* It is safe to add a device to the tail of the list while
   1174 	 * readers and writers are in the list.
   1175 	 */
   1176 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1177 	config_alldevs_unlock(s);
   1178 }
   1179 
   1180 static void
   1181 config_devfree(device_t dev)
   1182 {
   1183 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
   1184 
   1185 	if (dev->dv_cfattach->ca_devsize > 0)
   1186 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1187 	if (priv)
   1188 		kmem_free(dev, sizeof(*dev));
   1189 }
   1190 
   1191 /*
   1192  * Caller must hold alldevs_mtx.
   1193  */
   1194 static void
   1195 config_devunlink(device_t dev, struct devicelist *garbage)
   1196 {
   1197 	struct device_garbage *dg = &dev->dv_garbage;
   1198 	cfdriver_t cd = device_cfdriver(dev);
   1199 	int i;
   1200 
   1201 	KASSERT(mutex_owned(&alldevs_mtx));
   1202 
   1203  	/* Unlink from device list.  Link to garbage list. */
   1204 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1205 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1206 
   1207 	/* Remove from cfdriver's array. */
   1208 	cd->cd_devs[dev->dv_unit] = NULL;
   1209 
   1210 	/*
   1211 	 * If the device now has no units in use, unlink its softc array.
   1212 	 */
   1213 	for (i = 0; i < cd->cd_ndevs; i++) {
   1214 		if (cd->cd_devs[i] != NULL)
   1215 			break;
   1216 	}
   1217 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1218 	if (i == cd->cd_ndevs) {
   1219 		dg->dg_ndevs = cd->cd_ndevs;
   1220 		dg->dg_devs = cd->cd_devs;
   1221 		cd->cd_devs = NULL;
   1222 		cd->cd_ndevs = 0;
   1223 	}
   1224 }
   1225 
   1226 static void
   1227 config_devdelete(device_t dev)
   1228 {
   1229 	struct device_garbage *dg = &dev->dv_garbage;
   1230 	device_lock_t dvl = device_getlock(dev);
   1231 
   1232 	if (dg->dg_devs != NULL)
   1233 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
   1234 
   1235 	cv_destroy(&dvl->dvl_cv);
   1236 	mutex_destroy(&dvl->dvl_mtx);
   1237 
   1238 	KASSERT(dev->dv_properties != NULL);
   1239 	prop_object_release(dev->dv_properties);
   1240 
   1241 	if (dev->dv_activity_handlers)
   1242 		panic("%s with registered handlers", __func__);
   1243 
   1244 	if (dev->dv_locators) {
   1245 		size_t amount = *--dev->dv_locators;
   1246 		kmem_free(dev->dv_locators, amount);
   1247 	}
   1248 
   1249 	config_devfree(dev);
   1250 }
   1251 
   1252 static int
   1253 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1254 {
   1255 	int unit;
   1256 
   1257 	if (cf->cf_fstate == FSTATE_STAR) {
   1258 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1259 			if (cd->cd_devs[unit] == NULL)
   1260 				break;
   1261 		/*
   1262 		 * unit is now the unit of the first NULL device pointer,
   1263 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1264 		 */
   1265 	} else {
   1266 		unit = cf->cf_unit;
   1267 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1268 			unit = -1;
   1269 	}
   1270 	return unit;
   1271 }
   1272 
   1273 static int
   1274 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1275 {
   1276 	struct alldevs_foray af;
   1277 	int unit;
   1278 
   1279 	config_alldevs_enter(&af);
   1280 	for (;;) {
   1281 		unit = config_unit_nextfree(cd, cf);
   1282 		if (unit == -1)
   1283 			break;
   1284 		if (unit < cd->cd_ndevs) {
   1285 			cd->cd_devs[unit] = dev;
   1286 			dev->dv_unit = unit;
   1287 			break;
   1288 		}
   1289 		config_makeroom(unit, cd);
   1290 	}
   1291 	config_alldevs_exit(&af);
   1292 
   1293 	return unit;
   1294 }
   1295 
   1296 static device_t
   1297 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1298 {
   1299 	cfdriver_t cd;
   1300 	cfattach_t ca;
   1301 	size_t lname, lunit;
   1302 	const char *xunit;
   1303 	int myunit;
   1304 	char num[10];
   1305 	device_t dev;
   1306 	void *dev_private;
   1307 	const struct cfiattrdata *ia;
   1308 	device_lock_t dvl;
   1309 
   1310 	cd = config_cfdriver_lookup(cf->cf_name);
   1311 	if (cd == NULL)
   1312 		return NULL;
   1313 
   1314 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1315 	if (ca == NULL)
   1316 		return NULL;
   1317 
   1318 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
   1319 	    ca->ca_devsize < sizeof(struct device))
   1320 		panic("config_devalloc: %s (%zu < %zu)", cf->cf_atname,
   1321 		    ca->ca_devsize, sizeof(struct device));
   1322 
   1323 	/* get memory for all device vars */
   1324 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
   1325 	if (ca->ca_devsize > 0) {
   1326 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1327 		if (dev_private == NULL)
   1328 			panic("config_devalloc: memory allocation for device softc failed");
   1329 	} else {
   1330 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1331 		dev_private = NULL;
   1332 	}
   1333 
   1334 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1335 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1336 	} else {
   1337 		dev = dev_private;
   1338 #ifdef DIAGNOSTIC
   1339 		printf("%s has not been converted to device_t\n", cd->cd_name);
   1340 #endif
   1341 	}
   1342 	if (dev == NULL)
   1343 		panic("config_devalloc: memory allocation for device_t failed");
   1344 
   1345 	dev->dv_class = cd->cd_class;
   1346 	dev->dv_cfdata = cf;
   1347 	dev->dv_cfdriver = cd;
   1348 	dev->dv_cfattach = ca;
   1349 	dev->dv_activity_count = 0;
   1350 	dev->dv_activity_handlers = NULL;
   1351 	dev->dv_private = dev_private;
   1352 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1353 
   1354 	myunit = config_unit_alloc(dev, cd, cf);
   1355 	if (myunit == -1) {
   1356 		config_devfree(dev);
   1357 		return NULL;
   1358 	}
   1359 
   1360 	/* compute length of name and decimal expansion of unit number */
   1361 	lname = strlen(cd->cd_name);
   1362 	xunit = number(&num[sizeof(num)], myunit);
   1363 	lunit = &num[sizeof(num)] - xunit;
   1364 	if (lname + lunit > sizeof(dev->dv_xname))
   1365 		panic("config_devalloc: device name too long");
   1366 
   1367 	dvl = device_getlock(dev);
   1368 
   1369 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1370 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1371 
   1372 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1373 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1374 	dev->dv_parent = parent;
   1375 	if (parent != NULL) {
   1376 		dev->dv_depth = parent->dv_depth + 1;
   1377 		dev->dv_maxphys = parent->dv_maxphys;
   1378 	} else {
   1379 		dev->dv_depth = 0;
   1380 		dev->dv_maxphys = MACHINE_MAXPHYS;
   1381 	}
   1382 	aprint_debug_dev(dev, "dv_maxphys = %d", dev->dv_maxphys);
   1383 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1384 	if (locs) {
   1385 		KASSERT(parent); /* no locators at root */
   1386 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1387 		dev->dv_locators =
   1388 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
   1389 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
   1390 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
   1391 	}
   1392 	dev->dv_properties = prop_dictionary_create();
   1393 	KASSERT(dev->dv_properties != NULL);
   1394 
   1395 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
   1396 	    "device-driver", dev->dv_cfdriver->cd_name);
   1397 	prop_dictionary_set_uint16(dev->dv_properties,
   1398 	    "device-unit", dev->dv_unit);
   1399 
   1400 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1401 		config_add_attrib_dict(dev);
   1402 
   1403 	return dev;
   1404 }
   1405 
   1406 /*
   1407  * Create an array of device attach attributes and add it
   1408  * to the device's dv_properties dictionary.
   1409  *
   1410  * <key>interface-attributes</key>
   1411  * <array>
   1412  *    <dict>
   1413  *       <key>attribute-name</key>
   1414  *       <string>foo</string>
   1415  *       <key>locators</key>
   1416  *       <array>
   1417  *          <dict>
   1418  *             <key>loc-name</key>
   1419  *             <string>foo-loc1</string>
   1420  *          </dict>
   1421  *          <dict>
   1422  *             <key>loc-name</key>
   1423  *             <string>foo-loc2</string>
   1424  *             <key>default</key>
   1425  *             <string>foo-loc2-default</string>
   1426  *          </dict>
   1427  *          ...
   1428  *       </array>
   1429  *    </dict>
   1430  *    ...
   1431  * </array>
   1432  */
   1433 
   1434 static void
   1435 config_add_attrib_dict(device_t dev)
   1436 {
   1437 	int i, j;
   1438 	const struct cfiattrdata *ci;
   1439 	prop_dictionary_t attr_dict, loc_dict;
   1440 	prop_array_t attr_array, loc_array;
   1441 
   1442 	if ((attr_array = prop_array_create()) == NULL)
   1443 		return;
   1444 
   1445 	for (i = 0; ; i++) {
   1446 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1447 			break;
   1448 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1449 			break;
   1450 		prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
   1451 		    ci->ci_name);
   1452 
   1453 		/* Create an array of the locator names and defaults */
   1454 
   1455 		if (ci->ci_loclen != 0 &&
   1456 		    (loc_array = prop_array_create()) != NULL) {
   1457 			for (j = 0; j < ci->ci_loclen; j++) {
   1458 				loc_dict = prop_dictionary_create();
   1459 				if (loc_dict == NULL)
   1460 					continue;
   1461 				prop_dictionary_set_cstring_nocopy(loc_dict,
   1462 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1463 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1464 					prop_dictionary_set_cstring_nocopy(
   1465 					    loc_dict, "default",
   1466 					    ci->ci_locdesc[j].cld_defaultstr);
   1467 				prop_array_set(loc_array, j, loc_dict);
   1468 				prop_object_release(loc_dict);
   1469 			}
   1470 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1471 			    loc_array);
   1472 		}
   1473 		prop_array_add(attr_array, attr_dict);
   1474 		prop_object_release(attr_dict);
   1475 	}
   1476 	if (i == 0)
   1477 		prop_object_release(attr_array);
   1478 	else
   1479 		prop_dictionary_set_and_rel(dev->dv_properties,
   1480 		    "interface-attributes", attr_array);
   1481 
   1482 	return;
   1483 }
   1484 
   1485 /*
   1486  * Attach a found device.
   1487  */
   1488 device_t
   1489 config_attach_loc(device_t parent, cfdata_t cf,
   1490 	const int *locs, void *aux, cfprint_t print)
   1491 {
   1492 	device_t dev;
   1493 	struct cftable *ct;
   1494 	const char *drvname;
   1495 
   1496 	dev = config_devalloc(parent, cf, locs);
   1497 	if (!dev)
   1498 		panic("config_attach: allocation of device softc failed");
   1499 
   1500 	/* XXX redundant - see below? */
   1501 	if (cf->cf_fstate != FSTATE_STAR) {
   1502 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1503 		cf->cf_fstate = FSTATE_FOUND;
   1504 	}
   1505 
   1506 	config_devlink(dev);
   1507 
   1508 	if (config_do_twiddle && cold)
   1509 		twiddle();
   1510 	else
   1511 		aprint_naive("Found ");
   1512 	/*
   1513 	 * We want the next two printfs for normal, verbose, and quiet,
   1514 	 * but not silent (in which case, we're twiddling, instead).
   1515 	 */
   1516 	if (parent == ROOT) {
   1517 		aprint_naive("%s (root)", device_xname(dev));
   1518 		aprint_normal("%s (root)", device_xname(dev));
   1519 	} else {
   1520 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
   1521 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
   1522 		if (print)
   1523 			(void) (*print)(aux, NULL);
   1524 	}
   1525 
   1526 	/*
   1527 	 * Before attaching, clobber any unfound devices that are
   1528 	 * otherwise identical.
   1529 	 * XXX code above is redundant?
   1530 	 */
   1531 	drvname = dev->dv_cfdriver->cd_name;
   1532 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1533 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1534 			if (STREQ(cf->cf_name, drvname) &&
   1535 			    cf->cf_unit == dev->dv_unit) {
   1536 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1537 					cf->cf_fstate = FSTATE_FOUND;
   1538 			}
   1539 		}
   1540 	}
   1541 	device_register(dev, aux);
   1542 
   1543 	/* Let userland know */
   1544 	devmon_report_device(dev, true);
   1545 
   1546 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1547 
   1548 	if (!device_pmf_is_registered(dev))
   1549 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
   1550 
   1551 	config_process_deferred(&deferred_config_queue, dev);
   1552 
   1553 	device_register_post_config(dev, aux);
   1554 	return dev;
   1555 }
   1556 
   1557 device_t
   1558 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1559 {
   1560 
   1561 	return config_attach_loc(parent, cf, NULL, aux, print);
   1562 }
   1563 
   1564 /*
   1565  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1566  * way are silently inserted into the device tree, and their children
   1567  * attached.
   1568  *
   1569  * Note that because pseudo-devices are attached silently, any information
   1570  * the attach routine wishes to print should be prefixed with the device
   1571  * name by the attach routine.
   1572  */
   1573 device_t
   1574 config_attach_pseudo(cfdata_t cf)
   1575 {
   1576 	device_t dev;
   1577 
   1578 	dev = config_devalloc(ROOT, cf, NULL);
   1579 	if (!dev)
   1580 		return NULL;
   1581 
   1582 	/* XXX mark busy in cfdata */
   1583 
   1584 	if (cf->cf_fstate != FSTATE_STAR) {
   1585 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1586 		cf->cf_fstate = FSTATE_FOUND;
   1587 	}
   1588 
   1589 	config_devlink(dev);
   1590 
   1591 #if 0	/* XXXJRT not yet */
   1592 	device_register(dev, NULL);	/* like a root node */
   1593 #endif
   1594 
   1595 	/* Let userland know */
   1596 	devmon_report_device(dev, true);
   1597 
   1598 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1599 
   1600 	config_process_deferred(&deferred_config_queue, dev);
   1601 	return dev;
   1602 }
   1603 
   1604 /*
   1605  * Caller must hold alldevs_mtx.
   1606  */
   1607 static void
   1608 config_collect_garbage(struct devicelist *garbage)
   1609 {
   1610 	device_t dv;
   1611 
   1612 	KASSERT(!cpu_intr_p());
   1613 	KASSERT(!cpu_softintr_p());
   1614 	KASSERT(mutex_owned(&alldevs_mtx));
   1615 
   1616 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1617 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1618 			if (dv->dv_del_gen != 0)
   1619 				break;
   1620 		}
   1621 		if (dv == NULL) {
   1622 			alldevs_garbage = false;
   1623 			break;
   1624 		}
   1625 		config_devunlink(dv, garbage);
   1626 	}
   1627 	KASSERT(mutex_owned(&alldevs_mtx));
   1628 }
   1629 
   1630 static void
   1631 config_dump_garbage(struct devicelist *garbage)
   1632 {
   1633 	device_t dv;
   1634 
   1635 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1636 		TAILQ_REMOVE(garbage, dv, dv_list);
   1637 		config_devdelete(dv);
   1638 	}
   1639 }
   1640 
   1641 /*
   1642  * Detach a device.  Optionally forced (e.g. because of hardware
   1643  * removal) and quiet.  Returns zero if successful, non-zero
   1644  * (an error code) otherwise.
   1645  *
   1646  * Note that this code wants to be run from a process context, so
   1647  * that the detach can sleep to allow processes which have a device
   1648  * open to run and unwind their stacks.
   1649  */
   1650 int
   1651 config_detach(device_t dev, int flags)
   1652 {
   1653 	struct alldevs_foray af;
   1654 	struct cftable *ct;
   1655 	cfdata_t cf;
   1656 	const struct cfattach *ca;
   1657 	struct cfdriver *cd;
   1658 #ifdef DIAGNOSTIC
   1659 	device_t d;
   1660 #endif
   1661 	int rv = 0, s;
   1662 
   1663 #ifdef DIAGNOSTIC
   1664 	cf = dev->dv_cfdata;
   1665 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
   1666 	    cf->cf_fstate != FSTATE_STAR)
   1667 		panic("config_detach: %s: bad device fstate %d",
   1668 		    device_xname(dev), cf ? cf->cf_fstate : -1);
   1669 #endif
   1670 	cd = dev->dv_cfdriver;
   1671 	KASSERT(cd != NULL);
   1672 
   1673 	ca = dev->dv_cfattach;
   1674 	KASSERT(ca != NULL);
   1675 
   1676 	s = config_alldevs_lock();
   1677 	if (dev->dv_del_gen != 0) {
   1678 		config_alldevs_unlock(s);
   1679 #ifdef DIAGNOSTIC
   1680 		printf("%s: %s is already detached\n", __func__,
   1681 		    device_xname(dev));
   1682 #endif /* DIAGNOSTIC */
   1683 		return ENOENT;
   1684 	}
   1685 	alldevs_nwrite++;
   1686 	config_alldevs_unlock(s);
   1687 
   1688 	if (!detachall &&
   1689 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1690 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1691 		rv = EOPNOTSUPP;
   1692 	} else if (ca->ca_detach != NULL) {
   1693 		rv = (*ca->ca_detach)(dev, flags);
   1694 	} else
   1695 		rv = EOPNOTSUPP;
   1696 
   1697 	/*
   1698 	 * If it was not possible to detach the device, then we either
   1699 	 * panic() (for the forced but failed case), or return an error.
   1700 	 *
   1701 	 * If it was possible to detach the device, ensure that the
   1702 	 * device is deactivated.
   1703 	 */
   1704 	if (rv == 0)
   1705 		dev->dv_flags &= ~DVF_ACTIVE;
   1706 	else if ((flags & DETACH_FORCE) == 0)
   1707 		goto out;
   1708 	else {
   1709 		panic("config_detach: forced detach of %s failed (%d)",
   1710 		    device_xname(dev), rv);
   1711 	}
   1712 
   1713 	/*
   1714 	 * The device has now been successfully detached.
   1715 	 */
   1716 
   1717 	/* Let userland know */
   1718 	devmon_report_device(dev, false);
   1719 
   1720 #ifdef DIAGNOSTIC
   1721 	/*
   1722 	 * Sanity: If you're successfully detached, you should have no
   1723 	 * children.  (Note that because children must be attached
   1724 	 * after parents, we only need to search the latter part of
   1725 	 * the list.)
   1726 	 */
   1727 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1728 	    d = TAILQ_NEXT(d, dv_list)) {
   1729 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1730 			printf("config_detach: detached device %s"
   1731 			    " has children %s\n", device_xname(dev), device_xname(d));
   1732 			panic("config_detach");
   1733 		}
   1734 	}
   1735 #endif
   1736 
   1737 	/* notify the parent that the child is gone */
   1738 	if (dev->dv_parent) {
   1739 		device_t p = dev->dv_parent;
   1740 		if (p->dv_cfattach->ca_childdetached)
   1741 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1742 	}
   1743 
   1744 	/*
   1745 	 * Mark cfdata to show that the unit can be reused, if possible.
   1746 	 */
   1747 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1748 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1749 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1750 				if (cf->cf_fstate == FSTATE_FOUND &&
   1751 				    cf->cf_unit == dev->dv_unit)
   1752 					cf->cf_fstate = FSTATE_NOTFOUND;
   1753 			}
   1754 		}
   1755 	}
   1756 
   1757 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1758 		aprint_normal_dev(dev, "detached\n");
   1759 
   1760 out:
   1761 	config_alldevs_enter(&af);
   1762 	KASSERT(alldevs_nwrite != 0);
   1763 	--alldevs_nwrite;
   1764 	if (rv == 0 && dev->dv_del_gen == 0) {
   1765 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   1766 			config_devunlink(dev, &af.af_garbage);
   1767 		else {
   1768 			dev->dv_del_gen = alldevs_gen;
   1769 			alldevs_garbage = true;
   1770 		}
   1771 	}
   1772 	config_alldevs_exit(&af);
   1773 
   1774 	return rv;
   1775 }
   1776 
   1777 int
   1778 config_detach_children(device_t parent, int flags)
   1779 {
   1780 	device_t dv;
   1781 	deviter_t di;
   1782 	int error = 0;
   1783 
   1784 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1785 	     dv = deviter_next(&di)) {
   1786 		if (device_parent(dv) != parent)
   1787 			continue;
   1788 		if ((error = config_detach(dv, flags)) != 0)
   1789 			break;
   1790 	}
   1791 	deviter_release(&di);
   1792 	return error;
   1793 }
   1794 
   1795 device_t
   1796 shutdown_first(struct shutdown_state *s)
   1797 {
   1798 	if (!s->initialized) {
   1799 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1800 		s->initialized = true;
   1801 	}
   1802 	return shutdown_next(s);
   1803 }
   1804 
   1805 device_t
   1806 shutdown_next(struct shutdown_state *s)
   1807 {
   1808 	device_t dv;
   1809 
   1810 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1811 		;
   1812 
   1813 	if (dv == NULL)
   1814 		s->initialized = false;
   1815 
   1816 	return dv;
   1817 }
   1818 
   1819 bool
   1820 config_detach_all(int how)
   1821 {
   1822 	static struct shutdown_state s;
   1823 	device_t curdev;
   1824 	bool progress = false;
   1825 
   1826 	if ((how & RB_NOSYNC) != 0)
   1827 		return false;
   1828 
   1829 	for (curdev = shutdown_first(&s); curdev != NULL;
   1830 	     curdev = shutdown_next(&s)) {
   1831 		aprint_debug(" detaching %s, ", device_xname(curdev));
   1832 		if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
   1833 			progress = true;
   1834 			aprint_debug("success.");
   1835 		} else
   1836 			aprint_debug("failed.");
   1837 	}
   1838 	return progress;
   1839 }
   1840 
   1841 static bool
   1842 device_is_ancestor_of(device_t ancestor, device_t descendant)
   1843 {
   1844 	device_t dv;
   1845 
   1846 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   1847 		if (device_parent(dv) == ancestor)
   1848 			return true;
   1849 	}
   1850 	return false;
   1851 }
   1852 
   1853 int
   1854 config_deactivate(device_t dev)
   1855 {
   1856 	deviter_t di;
   1857 	const struct cfattach *ca;
   1858 	device_t descendant;
   1859 	int s, rv = 0, oflags;
   1860 
   1861 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   1862 	     descendant != NULL;
   1863 	     descendant = deviter_next(&di)) {
   1864 		if (dev != descendant &&
   1865 		    !device_is_ancestor_of(dev, descendant))
   1866 			continue;
   1867 
   1868 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   1869 			continue;
   1870 
   1871 		ca = descendant->dv_cfattach;
   1872 		oflags = descendant->dv_flags;
   1873 
   1874 		descendant->dv_flags &= ~DVF_ACTIVE;
   1875 		if (ca->ca_activate == NULL)
   1876 			continue;
   1877 		s = splhigh();
   1878 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   1879 		splx(s);
   1880 		if (rv != 0)
   1881 			descendant->dv_flags = oflags;
   1882 	}
   1883 	deviter_release(&di);
   1884 	return rv;
   1885 }
   1886 
   1887 /*
   1888  * Defer the configuration of the specified device until all
   1889  * of its parent's devices have been attached.
   1890  */
   1891 void
   1892 config_defer(device_t dev, void (*func)(device_t))
   1893 {
   1894 	struct deferred_config *dc;
   1895 
   1896 	if (dev->dv_parent == NULL)
   1897 		panic("config_defer: can't defer config of a root device");
   1898 
   1899 #ifdef DIAGNOSTIC
   1900 	TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
   1901 		if (dc->dc_dev == dev)
   1902 			panic("config_defer: deferred twice");
   1903 	}
   1904 #endif
   1905 
   1906 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1907 	if (dc == NULL)
   1908 		panic("config_defer: unable to allocate callback");
   1909 
   1910 	dc->dc_dev = dev;
   1911 	dc->dc_func = func;
   1912 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1913 	config_pending_incr();
   1914 }
   1915 
   1916 /*
   1917  * Defer some autoconfiguration for a device until after interrupts
   1918  * are enabled.
   1919  */
   1920 void
   1921 config_interrupts(device_t dev, void (*func)(device_t))
   1922 {
   1923 	struct deferred_config *dc;
   1924 
   1925 	/*
   1926 	 * If interrupts are enabled, callback now.
   1927 	 */
   1928 	if (cold == 0) {
   1929 		(*func)(dev);
   1930 		return;
   1931 	}
   1932 
   1933 #ifdef DIAGNOSTIC
   1934 	TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
   1935 		if (dc->dc_dev == dev)
   1936 			panic("config_interrupts: deferred twice");
   1937 	}
   1938 #endif
   1939 
   1940 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1941 	if (dc == NULL)
   1942 		panic("config_interrupts: unable to allocate callback");
   1943 
   1944 	dc->dc_dev = dev;
   1945 	dc->dc_func = func;
   1946 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   1947 	config_pending_incr();
   1948 }
   1949 
   1950 /*
   1951  * Defer some autoconfiguration for a device until after root file system
   1952  * is mounted (to load firmware etc).
   1953  */
   1954 void
   1955 config_mountroot(device_t dev, void (*func)(device_t))
   1956 {
   1957 	struct deferred_config *dc;
   1958 
   1959 	/*
   1960 	 * If root file system is mounted, callback now.
   1961 	 */
   1962 	if (root_is_mounted) {
   1963 		(*func)(dev);
   1964 		return;
   1965 	}
   1966 
   1967 #ifdef DIAGNOSTIC
   1968 	TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
   1969 		if (dc->dc_dev == dev)
   1970 			panic("%s: deferred twice", __func__);
   1971 	}
   1972 #endif
   1973 
   1974 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1975 	if (dc == NULL)
   1976 		panic("%s: unable to allocate callback", __func__);
   1977 
   1978 	dc->dc_dev = dev;
   1979 	dc->dc_func = func;
   1980 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   1981 }
   1982 
   1983 /*
   1984  * Process a deferred configuration queue.
   1985  */
   1986 static void
   1987 config_process_deferred(struct deferred_config_head *queue,
   1988     device_t parent)
   1989 {
   1990 	struct deferred_config *dc, *ndc;
   1991 
   1992 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   1993 		ndc = TAILQ_NEXT(dc, dc_queue);
   1994 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   1995 			TAILQ_REMOVE(queue, dc, dc_queue);
   1996 			(*dc->dc_func)(dc->dc_dev);
   1997 			kmem_free(dc, sizeof(*dc));
   1998 			config_pending_decr();
   1999 		}
   2000 	}
   2001 }
   2002 
   2003 /*
   2004  * Manipulate the config_pending semaphore.
   2005  */
   2006 void
   2007 config_pending_incr(void)
   2008 {
   2009 
   2010 	mutex_enter(&config_misc_lock);
   2011 	config_pending++;
   2012 	mutex_exit(&config_misc_lock);
   2013 }
   2014 
   2015 void
   2016 config_pending_decr(void)
   2017 {
   2018 
   2019 #ifdef DIAGNOSTIC
   2020 	if (config_pending == 0)
   2021 		panic("config_pending_decr: config_pending == 0");
   2022 #endif
   2023 	mutex_enter(&config_misc_lock);
   2024 	config_pending--;
   2025 	if (config_pending == 0)
   2026 		cv_broadcast(&config_misc_cv);
   2027 	mutex_exit(&config_misc_lock);
   2028 }
   2029 
   2030 /*
   2031  * Register a "finalization" routine.  Finalization routines are
   2032  * called iteratively once all real devices have been found during
   2033  * autoconfiguration, for as long as any one finalizer has done
   2034  * any work.
   2035  */
   2036 int
   2037 config_finalize_register(device_t dev, int (*fn)(device_t))
   2038 {
   2039 	struct finalize_hook *f;
   2040 
   2041 	/*
   2042 	 * If finalization has already been done, invoke the
   2043 	 * callback function now.
   2044 	 */
   2045 	if (config_finalize_done) {
   2046 		while ((*fn)(dev) != 0)
   2047 			/* loop */ ;
   2048 	}
   2049 
   2050 	/* Ensure this isn't already on the list. */
   2051 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2052 		if (f->f_func == fn && f->f_dev == dev)
   2053 			return EEXIST;
   2054 	}
   2055 
   2056 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2057 	f->f_func = fn;
   2058 	f->f_dev = dev;
   2059 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2060 
   2061 	return 0;
   2062 }
   2063 
   2064 void
   2065 config_finalize(void)
   2066 {
   2067 	struct finalize_hook *f;
   2068 	struct pdevinit *pdev;
   2069 	extern struct pdevinit pdevinit[];
   2070 	int errcnt, rv;
   2071 
   2072 	/*
   2073 	 * Now that device driver threads have been created, wait for
   2074 	 * them to finish any deferred autoconfiguration.
   2075 	 */
   2076 	mutex_enter(&config_misc_lock);
   2077 	while (config_pending != 0)
   2078 		cv_wait(&config_misc_cv, &config_misc_lock);
   2079 	mutex_exit(&config_misc_lock);
   2080 
   2081 	KERNEL_LOCK(1, NULL);
   2082 
   2083 	/* Attach pseudo-devices. */
   2084 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2085 		(*pdev->pdev_attach)(pdev->pdev_count);
   2086 
   2087 	/* Run the hooks until none of them does any work. */
   2088 	do {
   2089 		rv = 0;
   2090 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2091 			rv |= (*f->f_func)(f->f_dev);
   2092 	} while (rv != 0);
   2093 
   2094 	config_finalize_done = 1;
   2095 
   2096 	/* Now free all the hooks. */
   2097 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2098 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2099 		kmem_free(f, sizeof(*f));
   2100 	}
   2101 
   2102 	KERNEL_UNLOCK_ONE(NULL);
   2103 
   2104 	errcnt = aprint_get_error_count();
   2105 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2106 	    (boothowto & AB_VERBOSE) == 0) {
   2107 		mutex_enter(&config_misc_lock);
   2108 		if (config_do_twiddle) {
   2109 			config_do_twiddle = 0;
   2110 			printf_nolog(" done.\n");
   2111 		}
   2112 		mutex_exit(&config_misc_lock);
   2113 		if (errcnt != 0) {
   2114 			printf("WARNING: %d error%s while detecting hardware; "
   2115 			    "check system log.\n", errcnt,
   2116 			    errcnt == 1 ? "" : "s");
   2117 		}
   2118 	}
   2119 }
   2120 
   2121 void
   2122 config_twiddle_init(void)
   2123 {
   2124 
   2125 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2126 		config_do_twiddle = 1;
   2127 	}
   2128 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2129 }
   2130 
   2131 void
   2132 config_twiddle_fn(void *cookie)
   2133 {
   2134 
   2135 	mutex_enter(&config_misc_lock);
   2136 	if (config_do_twiddle) {
   2137 		twiddle();
   2138 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2139 	}
   2140 	mutex_exit(&config_misc_lock);
   2141 }
   2142 
   2143 static int
   2144 config_alldevs_lock(void)
   2145 {
   2146 	mutex_enter(&alldevs_mtx);
   2147 	return 0;
   2148 }
   2149 
   2150 static void
   2151 config_alldevs_enter(struct alldevs_foray *af)
   2152 {
   2153 	TAILQ_INIT(&af->af_garbage);
   2154 	af->af_s = config_alldevs_lock();
   2155 	config_collect_garbage(&af->af_garbage);
   2156 }
   2157 
   2158 static void
   2159 config_alldevs_exit(struct alldevs_foray *af)
   2160 {
   2161 	config_alldevs_unlock(af->af_s);
   2162 	config_dump_garbage(&af->af_garbage);
   2163 }
   2164 
   2165 /*ARGSUSED*/
   2166 static void
   2167 config_alldevs_unlock(int s)
   2168 {
   2169 	mutex_exit(&alldevs_mtx);
   2170 }
   2171 
   2172 /*
   2173  * device_lookup:
   2174  *
   2175  *	Look up a device instance for a given driver.
   2176  */
   2177 device_t
   2178 device_lookup(cfdriver_t cd, int unit)
   2179 {
   2180 	device_t dv;
   2181 	int s;
   2182 
   2183 	s = config_alldevs_lock();
   2184 	KASSERT(mutex_owned(&alldevs_mtx));
   2185 	if (unit < 0 || unit >= cd->cd_ndevs)
   2186 		dv = NULL;
   2187 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2188 		dv = NULL;
   2189 	config_alldevs_unlock(s);
   2190 
   2191 	return dv;
   2192 }
   2193 
   2194 /*
   2195  * device_lookup_private:
   2196  *
   2197  *	Look up a softc instance for a given driver.
   2198  */
   2199 void *
   2200 device_lookup_private(cfdriver_t cd, int unit)
   2201 {
   2202 
   2203 	return device_private(device_lookup(cd, unit));
   2204 }
   2205 
   2206 /*
   2207  * device_find_by_xname:
   2208  *
   2209  *	Returns the device of the given name or NULL if it doesn't exist.
   2210  */
   2211 device_t
   2212 device_find_by_xname(const char *name)
   2213 {
   2214 	device_t dv;
   2215 	deviter_t di;
   2216 
   2217 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2218 		if (strcmp(device_xname(dv), name) == 0)
   2219 			break;
   2220 	}
   2221 	deviter_release(&di);
   2222 
   2223 	return dv;
   2224 }
   2225 
   2226 /*
   2227  * device_find_by_driver_unit:
   2228  *
   2229  *	Returns the device of the given driver name and unit or
   2230  *	NULL if it doesn't exist.
   2231  */
   2232 device_t
   2233 device_find_by_driver_unit(const char *name, int unit)
   2234 {
   2235 	struct cfdriver *cd;
   2236 
   2237 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2238 		return NULL;
   2239 	return device_lookup(cd, unit);
   2240 }
   2241 
   2242 /*
   2243  * Power management related functions.
   2244  */
   2245 
   2246 bool
   2247 device_pmf_is_registered(device_t dev)
   2248 {
   2249 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2250 }
   2251 
   2252 bool
   2253 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2254 {
   2255 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2256 		return true;
   2257 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2258 		return false;
   2259 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2260 	    dev->dv_driver_suspend != NULL &&
   2261 	    !(*dev->dv_driver_suspend)(dev, qual))
   2262 		return false;
   2263 
   2264 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2265 	return true;
   2266 }
   2267 
   2268 bool
   2269 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2270 {
   2271 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2272 		return true;
   2273 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2274 		return false;
   2275 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2276 	    dev->dv_driver_resume != NULL &&
   2277 	    !(*dev->dv_driver_resume)(dev, qual))
   2278 		return false;
   2279 
   2280 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2281 	return true;
   2282 }
   2283 
   2284 bool
   2285 device_pmf_driver_shutdown(device_t dev, int how)
   2286 {
   2287 
   2288 	if (*dev->dv_driver_shutdown != NULL &&
   2289 	    !(*dev->dv_driver_shutdown)(dev, how))
   2290 		return false;
   2291 	return true;
   2292 }
   2293 
   2294 bool
   2295 device_pmf_driver_register(device_t dev,
   2296     bool (*suspend)(device_t, const pmf_qual_t *),
   2297     bool (*resume)(device_t, const pmf_qual_t *),
   2298     bool (*shutdown)(device_t, int))
   2299 {
   2300 	dev->dv_driver_suspend = suspend;
   2301 	dev->dv_driver_resume = resume;
   2302 	dev->dv_driver_shutdown = shutdown;
   2303 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2304 	return true;
   2305 }
   2306 
   2307 static const char *
   2308 curlwp_name(void)
   2309 {
   2310 	if (curlwp->l_name != NULL)
   2311 		return curlwp->l_name;
   2312 	else
   2313 		return curlwp->l_proc->p_comm;
   2314 }
   2315 
   2316 void
   2317 device_pmf_driver_deregister(device_t dev)
   2318 {
   2319 	device_lock_t dvl = device_getlock(dev);
   2320 
   2321 	dev->dv_driver_suspend = NULL;
   2322 	dev->dv_driver_resume = NULL;
   2323 
   2324 	mutex_enter(&dvl->dvl_mtx);
   2325 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2326 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2327 		/* Wake a thread that waits for the lock.  That
   2328 		 * thread will fail to acquire the lock, and then
   2329 		 * it will wake the next thread that waits for the
   2330 		 * lock, or else it will wake us.
   2331 		 */
   2332 		cv_signal(&dvl->dvl_cv);
   2333 		pmflock_debug(dev, __func__, __LINE__);
   2334 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2335 		pmflock_debug(dev, __func__, __LINE__);
   2336 	}
   2337 	mutex_exit(&dvl->dvl_mtx);
   2338 }
   2339 
   2340 bool
   2341 device_pmf_driver_child_register(device_t dev)
   2342 {
   2343 	device_t parent = device_parent(dev);
   2344 
   2345 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2346 		return true;
   2347 	return (*parent->dv_driver_child_register)(dev);
   2348 }
   2349 
   2350 void
   2351 device_pmf_driver_set_child_register(device_t dev,
   2352     bool (*child_register)(device_t))
   2353 {
   2354 	dev->dv_driver_child_register = child_register;
   2355 }
   2356 
   2357 static void
   2358 pmflock_debug(device_t dev, const char *func, int line)
   2359 {
   2360 	device_lock_t dvl = device_getlock(dev);
   2361 
   2362 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
   2363 	    func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
   2364 	    dev->dv_flags);
   2365 }
   2366 
   2367 static bool
   2368 device_pmf_lock1(device_t dev)
   2369 {
   2370 	device_lock_t dvl = device_getlock(dev);
   2371 
   2372 	while (device_pmf_is_registered(dev) &&
   2373 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2374 		dvl->dvl_nwait++;
   2375 		pmflock_debug(dev, __func__, __LINE__);
   2376 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2377 		pmflock_debug(dev, __func__, __LINE__);
   2378 		dvl->dvl_nwait--;
   2379 	}
   2380 	if (!device_pmf_is_registered(dev)) {
   2381 		pmflock_debug(dev, __func__, __LINE__);
   2382 		/* We could not acquire the lock, but some other thread may
   2383 		 * wait for it, also.  Wake that thread.
   2384 		 */
   2385 		cv_signal(&dvl->dvl_cv);
   2386 		return false;
   2387 	}
   2388 	dvl->dvl_nlock++;
   2389 	dvl->dvl_holder = curlwp;
   2390 	pmflock_debug(dev, __func__, __LINE__);
   2391 	return true;
   2392 }
   2393 
   2394 bool
   2395 device_pmf_lock(device_t dev)
   2396 {
   2397 	bool rc;
   2398 	device_lock_t dvl = device_getlock(dev);
   2399 
   2400 	mutex_enter(&dvl->dvl_mtx);
   2401 	rc = device_pmf_lock1(dev);
   2402 	mutex_exit(&dvl->dvl_mtx);
   2403 
   2404 	return rc;
   2405 }
   2406 
   2407 void
   2408 device_pmf_unlock(device_t dev)
   2409 {
   2410 	device_lock_t dvl = device_getlock(dev);
   2411 
   2412 	KASSERT(dvl->dvl_nlock > 0);
   2413 	mutex_enter(&dvl->dvl_mtx);
   2414 	if (--dvl->dvl_nlock == 0)
   2415 		dvl->dvl_holder = NULL;
   2416 	cv_signal(&dvl->dvl_cv);
   2417 	pmflock_debug(dev, __func__, __LINE__);
   2418 	mutex_exit(&dvl->dvl_mtx);
   2419 }
   2420 
   2421 device_lock_t
   2422 device_getlock(device_t dev)
   2423 {
   2424 	return &dev->dv_lock;
   2425 }
   2426 
   2427 void *
   2428 device_pmf_bus_private(device_t dev)
   2429 {
   2430 	return dev->dv_bus_private;
   2431 }
   2432 
   2433 bool
   2434 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   2435 {
   2436 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2437 		return true;
   2438 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2439 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2440 		return false;
   2441 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2442 	    dev->dv_bus_suspend != NULL &&
   2443 	    !(*dev->dv_bus_suspend)(dev, qual))
   2444 		return false;
   2445 
   2446 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2447 	return true;
   2448 }
   2449 
   2450 bool
   2451 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   2452 {
   2453 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2454 		return true;
   2455 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2456 	    dev->dv_bus_resume != NULL &&
   2457 	    !(*dev->dv_bus_resume)(dev, qual))
   2458 		return false;
   2459 
   2460 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2461 	return true;
   2462 }
   2463 
   2464 bool
   2465 device_pmf_bus_shutdown(device_t dev, int how)
   2466 {
   2467 
   2468 	if (*dev->dv_bus_shutdown != NULL &&
   2469 	    !(*dev->dv_bus_shutdown)(dev, how))
   2470 		return false;
   2471 	return true;
   2472 }
   2473 
   2474 void
   2475 device_pmf_bus_register(device_t dev, void *priv,
   2476     bool (*suspend)(device_t, const pmf_qual_t *),
   2477     bool (*resume)(device_t, const pmf_qual_t *),
   2478     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2479 {
   2480 	dev->dv_bus_private = priv;
   2481 	dev->dv_bus_resume = resume;
   2482 	dev->dv_bus_suspend = suspend;
   2483 	dev->dv_bus_shutdown = shutdown;
   2484 	dev->dv_bus_deregister = deregister;
   2485 }
   2486 
   2487 void
   2488 device_pmf_bus_deregister(device_t dev)
   2489 {
   2490 	if (dev->dv_bus_deregister == NULL)
   2491 		return;
   2492 	(*dev->dv_bus_deregister)(dev);
   2493 	dev->dv_bus_private = NULL;
   2494 	dev->dv_bus_suspend = NULL;
   2495 	dev->dv_bus_resume = NULL;
   2496 	dev->dv_bus_deregister = NULL;
   2497 }
   2498 
   2499 void *
   2500 device_pmf_class_private(device_t dev)
   2501 {
   2502 	return dev->dv_class_private;
   2503 }
   2504 
   2505 bool
   2506 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   2507 {
   2508 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2509 		return true;
   2510 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2511 	    dev->dv_class_suspend != NULL &&
   2512 	    !(*dev->dv_class_suspend)(dev, qual))
   2513 		return false;
   2514 
   2515 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2516 	return true;
   2517 }
   2518 
   2519 bool
   2520 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   2521 {
   2522 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2523 		return true;
   2524 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2525 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2526 		return false;
   2527 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2528 	    dev->dv_class_resume != NULL &&
   2529 	    !(*dev->dv_class_resume)(dev, qual))
   2530 		return false;
   2531 
   2532 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2533 	return true;
   2534 }
   2535 
   2536 void
   2537 device_pmf_class_register(device_t dev, void *priv,
   2538     bool (*suspend)(device_t, const pmf_qual_t *),
   2539     bool (*resume)(device_t, const pmf_qual_t *),
   2540     void (*deregister)(device_t))
   2541 {
   2542 	dev->dv_class_private = priv;
   2543 	dev->dv_class_suspend = suspend;
   2544 	dev->dv_class_resume = resume;
   2545 	dev->dv_class_deregister = deregister;
   2546 }
   2547 
   2548 void
   2549 device_pmf_class_deregister(device_t dev)
   2550 {
   2551 	if (dev->dv_class_deregister == NULL)
   2552 		return;
   2553 	(*dev->dv_class_deregister)(dev);
   2554 	dev->dv_class_private = NULL;
   2555 	dev->dv_class_suspend = NULL;
   2556 	dev->dv_class_resume = NULL;
   2557 	dev->dv_class_deregister = NULL;
   2558 }
   2559 
   2560 bool
   2561 device_active(device_t dev, devactive_t type)
   2562 {
   2563 	size_t i;
   2564 
   2565 	if (dev->dv_activity_count == 0)
   2566 		return false;
   2567 
   2568 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2569 		if (dev->dv_activity_handlers[i] == NULL)
   2570 			break;
   2571 		(*dev->dv_activity_handlers[i])(dev, type);
   2572 	}
   2573 
   2574 	return true;
   2575 }
   2576 
   2577 bool
   2578 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2579 {
   2580 	void (**new_handlers)(device_t, devactive_t);
   2581 	void (**old_handlers)(device_t, devactive_t);
   2582 	size_t i, old_size, new_size;
   2583 	int s;
   2584 
   2585 	old_handlers = dev->dv_activity_handlers;
   2586 	old_size = dev->dv_activity_count;
   2587 
   2588 	for (i = 0; i < old_size; ++i) {
   2589 		KASSERT(old_handlers[i] != handler);
   2590 		if (old_handlers[i] == NULL) {
   2591 			old_handlers[i] = handler;
   2592 			return true;
   2593 		}
   2594 	}
   2595 
   2596 	new_size = old_size + 4;
   2597 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
   2598 
   2599 	memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
   2600 	new_handlers[old_size] = handler;
   2601 	memset(new_handlers + old_size + 1, 0,
   2602 	    sizeof(int [new_size - (old_size+1)]));
   2603 
   2604 	s = splhigh();
   2605 	dev->dv_activity_count = new_size;
   2606 	dev->dv_activity_handlers = new_handlers;
   2607 	splx(s);
   2608 
   2609 	if (old_handlers != NULL)
   2610 		kmem_free(old_handlers, sizeof(void * [old_size]));
   2611 
   2612 	return true;
   2613 }
   2614 
   2615 void
   2616 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2617 {
   2618 	void (**old_handlers)(device_t, devactive_t);
   2619 	size_t i, old_size;
   2620 	int s;
   2621 
   2622 	old_handlers = dev->dv_activity_handlers;
   2623 	old_size = dev->dv_activity_count;
   2624 
   2625 	for (i = 0; i < old_size; ++i) {
   2626 		if (old_handlers[i] == handler)
   2627 			break;
   2628 		if (old_handlers[i] == NULL)
   2629 			return; /* XXX panic? */
   2630 	}
   2631 
   2632 	if (i == old_size)
   2633 		return; /* XXX panic? */
   2634 
   2635 	for (; i < old_size - 1; ++i) {
   2636 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   2637 			continue;
   2638 
   2639 		if (i == 0) {
   2640 			s = splhigh();
   2641 			dev->dv_activity_count = 0;
   2642 			dev->dv_activity_handlers = NULL;
   2643 			splx(s);
   2644 			kmem_free(old_handlers, sizeof(void *[old_size]));
   2645 		}
   2646 		return;
   2647 	}
   2648 	old_handlers[i] = NULL;
   2649 }
   2650 
   2651 /* Return true iff the device_t `dev' exists at generation `gen'. */
   2652 static bool
   2653 device_exists_at(device_t dv, devgen_t gen)
   2654 {
   2655 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   2656 	    dv->dv_add_gen <= gen;
   2657 }
   2658 
   2659 static bool
   2660 deviter_visits(const deviter_t *di, device_t dv)
   2661 {
   2662 	return device_exists_at(dv, di->di_gen);
   2663 }
   2664 
   2665 /*
   2666  * Device Iteration
   2667  *
   2668  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2669  *     each device_t's in the device tree.
   2670  *
   2671  * deviter_init(di, flags): initialize the device iterator `di'
   2672  *     to "walk" the device tree.  deviter_next(di) will return
   2673  *     the first device_t in the device tree, or NULL if there are
   2674  *     no devices.
   2675  *
   2676  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2677  *     caller intends to modify the device tree by calling
   2678  *     config_detach(9) on devices in the order that the iterator
   2679  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2680  *     nearest the "root" of the device tree to be returned, first;
   2681  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2682  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2683  *     indicating both that deviter_init() should not respect any
   2684  *     locks on the device tree, and that deviter_next(di) may run
   2685  *     in more than one LWP before the walk has finished.
   2686  *
   2687  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2688  *     once.
   2689  *
   2690  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2691  *
   2692  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2693  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2694  *
   2695  * deviter_first(di, flags): initialize the device iterator `di'
   2696  *     and return the first device_t in the device tree, or NULL
   2697  *     if there are no devices.  The statement
   2698  *
   2699  *         dv = deviter_first(di);
   2700  *
   2701  *     is shorthand for
   2702  *
   2703  *         deviter_init(di);
   2704  *         dv = deviter_next(di);
   2705  *
   2706  * deviter_next(di): return the next device_t in the device tree,
   2707  *     or NULL if there are no more devices.  deviter_next(di)
   2708  *     is undefined if `di' was not initialized with deviter_init() or
   2709  *     deviter_first().
   2710  *
   2711  * deviter_release(di): stops iteration (subsequent calls to
   2712  *     deviter_next() will return NULL), releases any locks and
   2713  *     resources held by the device iterator.
   2714  *
   2715  * Device iteration does not return device_t's in any particular
   2716  * order.  An iterator will never return the same device_t twice.
   2717  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2718  * is called repeatedly on the same `di', it will eventually return
   2719  * NULL.  It is ok to attach/detach devices during device iteration.
   2720  */
   2721 void
   2722 deviter_init(deviter_t *di, deviter_flags_t flags)
   2723 {
   2724 	device_t dv;
   2725 	int s;
   2726 
   2727 	memset(di, 0, sizeof(*di));
   2728 
   2729 	s = config_alldevs_lock();
   2730 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   2731 		flags |= DEVITER_F_RW;
   2732 
   2733 	if ((flags & DEVITER_F_RW) != 0)
   2734 		alldevs_nwrite++;
   2735 	else
   2736 		alldevs_nread++;
   2737 	di->di_gen = alldevs_gen++;
   2738 	config_alldevs_unlock(s);
   2739 
   2740 	di->di_flags = flags;
   2741 
   2742 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2743 	case DEVITER_F_LEAVES_FIRST:
   2744 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2745 			if (!deviter_visits(di, dv))
   2746 				continue;
   2747 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2748 		}
   2749 		break;
   2750 	case DEVITER_F_ROOT_FIRST:
   2751 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2752 			if (!deviter_visits(di, dv))
   2753 				continue;
   2754 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2755 		}
   2756 		break;
   2757 	default:
   2758 		break;
   2759 	}
   2760 
   2761 	deviter_reinit(di);
   2762 }
   2763 
   2764 static void
   2765 deviter_reinit(deviter_t *di)
   2766 {
   2767 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2768 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2769 	else
   2770 		di->di_prev = TAILQ_FIRST(&alldevs);
   2771 }
   2772 
   2773 device_t
   2774 deviter_first(deviter_t *di, deviter_flags_t flags)
   2775 {
   2776 	deviter_init(di, flags);
   2777 	return deviter_next(di);
   2778 }
   2779 
   2780 static device_t
   2781 deviter_next2(deviter_t *di)
   2782 {
   2783 	device_t dv;
   2784 
   2785 	dv = di->di_prev;
   2786 
   2787 	if (dv == NULL)
   2788 		return NULL;
   2789 
   2790 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2791 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2792 	else
   2793 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2794 
   2795 	return dv;
   2796 }
   2797 
   2798 static device_t
   2799 deviter_next1(deviter_t *di)
   2800 {
   2801 	device_t dv;
   2802 
   2803 	do {
   2804 		dv = deviter_next2(di);
   2805 	} while (dv != NULL && !deviter_visits(di, dv));
   2806 
   2807 	return dv;
   2808 }
   2809 
   2810 device_t
   2811 deviter_next(deviter_t *di)
   2812 {
   2813 	device_t dv = NULL;
   2814 
   2815 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2816 	case 0:
   2817 		return deviter_next1(di);
   2818 	case DEVITER_F_LEAVES_FIRST:
   2819 		while (di->di_curdepth >= 0) {
   2820 			if ((dv = deviter_next1(di)) == NULL) {
   2821 				di->di_curdepth--;
   2822 				deviter_reinit(di);
   2823 			} else if (dv->dv_depth == di->di_curdepth)
   2824 				break;
   2825 		}
   2826 		return dv;
   2827 	case DEVITER_F_ROOT_FIRST:
   2828 		while (di->di_curdepth <= di->di_maxdepth) {
   2829 			if ((dv = deviter_next1(di)) == NULL) {
   2830 				di->di_curdepth++;
   2831 				deviter_reinit(di);
   2832 			} else if (dv->dv_depth == di->di_curdepth)
   2833 				break;
   2834 		}
   2835 		return dv;
   2836 	default:
   2837 		return NULL;
   2838 	}
   2839 }
   2840 
   2841 void
   2842 deviter_release(deviter_t *di)
   2843 {
   2844 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2845 	int s;
   2846 
   2847 	s = config_alldevs_lock();
   2848 	if (rw)
   2849 		--alldevs_nwrite;
   2850 	else
   2851 		--alldevs_nread;
   2852 	/* XXX wake a garbage-collection thread */
   2853 	config_alldevs_unlock(s);
   2854 }
   2855 
   2856 const char *
   2857 cfdata_ifattr(const struct cfdata *cf)
   2858 {
   2859 	return cf->cf_pspec->cfp_iattr;
   2860 }
   2861 
   2862 bool
   2863 ifattr_match(const char *snull, const char *t)
   2864 {
   2865 	return (snull == NULL) || strcmp(snull, t) == 0;
   2866 }
   2867 
   2868 void
   2869 null_childdetached(device_t self, device_t child)
   2870 {
   2871 	/* do nothing */
   2872 }
   2873 
   2874 static void
   2875 sysctl_detach_setup(struct sysctllog **clog)
   2876 {
   2877 	const struct sysctlnode *node = NULL;
   2878 
   2879 	sysctl_createv(clog, 0, NULL, &node,
   2880 		CTLFLAG_PERMANENT,
   2881 		CTLTYPE_NODE, "kern", NULL,
   2882 		NULL, 0, NULL, 0,
   2883 		CTL_KERN, CTL_EOL);
   2884 
   2885 	if (node == NULL)
   2886 		return;
   2887 
   2888 	sysctl_createv(clog, 0, &node, NULL,
   2889 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   2890 		CTLTYPE_BOOL, "detachall",
   2891 		SYSCTL_DESCR("Detach all devices at shutdown"),
   2892 		NULL, 0, &detachall, 0,
   2893 		CTL_CREATE, CTL_EOL);
   2894 }
   2895