subr_autoconf.c revision 1.223.2.5 1 /* $NetBSD: subr_autoconf.c,v 1.223.2.5 2017/12/03 11:38:45 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.223.2.5 2017/12/03 11:38:45 jdolecek Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110
111 #include <sys/disk.h>
112
113 #include <sys/rndsource.h>
114
115 #include <machine/limits.h>
116
117 /*
118 * Autoconfiguration subroutines.
119 */
120
121 /*
122 * Device autoconfiguration timings are mixed into the entropy pool.
123 */
124 extern krndsource_t rnd_autoconf_source;
125
126 /*
127 * ioconf.c exports exactly two names: cfdata and cfroots. All system
128 * devices and drivers are found via these tables.
129 */
130 extern struct cfdata cfdata[];
131 extern const short cfroots[];
132
133 /*
134 * List of all cfdriver structures. We use this to detect duplicates
135 * when other cfdrivers are loaded.
136 */
137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
138 extern struct cfdriver * const cfdriver_list_initial[];
139
140 /*
141 * Initial list of cfattach's.
142 */
143 extern const struct cfattachinit cfattachinit[];
144
145 /*
146 * List of cfdata tables. We always have one such list -- the one
147 * built statically when the kernel was configured.
148 */
149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
150 static struct cftable initcftable;
151
152 #define ROOT ((device_t)NULL)
153
154 struct matchinfo {
155 cfsubmatch_t fn;
156 device_t parent;
157 const int *locs;
158 void *aux;
159 struct cfdata *match;
160 int pri;
161 };
162
163 struct alldevs_foray {
164 int af_s;
165 struct devicelist af_garbage;
166 };
167
168 static char *number(char *, int);
169 static void mapply(struct matchinfo *, cfdata_t);
170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
171 static void config_devdelete(device_t);
172 static void config_devunlink(device_t, struct devicelist *);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_alldevs_enter(struct alldevs_foray *);
176 static void config_alldevs_exit(struct alldevs_foray *);
177 static void config_add_attrib_dict(device_t);
178
179 static void config_collect_garbage(struct devicelist *);
180 static void config_dump_garbage(struct devicelist *);
181
182 static void pmflock_debug(device_t, const char *, int);
183
184 static device_t deviter_next1(deviter_t *);
185 static void deviter_reinit(deviter_t *);
186
187 struct deferred_config {
188 TAILQ_ENTRY(deferred_config) dc_queue;
189 device_t dc_dev;
190 void (*dc_func)(device_t);
191 };
192
193 TAILQ_HEAD(deferred_config_head, deferred_config);
194
195 struct deferred_config_head deferred_config_queue =
196 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
197 struct deferred_config_head interrupt_config_queue =
198 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
199 int interrupt_config_threads = 8;
200 struct deferred_config_head mountroot_config_queue =
201 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
202 int mountroot_config_threads = 2;
203 static lwp_t **mountroot_config_lwpids;
204 static size_t mountroot_config_lwpids_size;
205 static bool root_is_mounted = false;
206
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 TAILQ_ENTRY(finalize_hook) f_list;
212 int (*f_func)(device_t);
213 device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218
219 /* list of all devices */
220 static struct {
221 kmutex_t lock;
222 struct devicelist list;
223 devgen_t gen;
224 int nread;
225 int nwrite;
226 bool garbage;
227 } alldevs __cacheline_aligned = {
228 .list = TAILQ_HEAD_INITIALIZER(alldevs.list),
229 .gen = 1,
230 .nread = 0,
231 .nwrite = 0,
232 .garbage = false,
233 };
234
235 static int config_pending; /* semaphore for mountroot */
236 static kmutex_t config_misc_lock;
237 static kcondvar_t config_misc_cv;
238
239 static bool detachall = false;
240
241 #define STREQ(s1, s2) \
242 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
243
244 static bool config_initialized = false; /* config_init() has been called. */
245
246 static int config_do_twiddle;
247 static callout_t config_twiddle_ch;
248
249 static void sysctl_detach_setup(struct sysctllog **);
250
251 int no_devmon_insert(const char *, prop_dictionary_t);
252 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
253
254 typedef int (*cfdriver_fn)(struct cfdriver *);
255 static int
256 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
257 cfdriver_fn drv_do, cfdriver_fn drv_undo,
258 const char *style, bool dopanic)
259 {
260 void (*pr)(const char *, ...) __printflike(1, 2) =
261 dopanic ? panic : printf;
262 int i, error = 0, e2 __diagused;
263
264 for (i = 0; cfdriverv[i] != NULL; i++) {
265 if ((error = drv_do(cfdriverv[i])) != 0) {
266 pr("configure: `%s' driver %s failed: %d",
267 cfdriverv[i]->cd_name, style, error);
268 goto bad;
269 }
270 }
271
272 KASSERT(error == 0);
273 return 0;
274
275 bad:
276 printf("\n");
277 for (i--; i >= 0; i--) {
278 e2 = drv_undo(cfdriverv[i]);
279 KASSERT(e2 == 0);
280 }
281
282 return error;
283 }
284
285 typedef int (*cfattach_fn)(const char *, struct cfattach *);
286 static int
287 frob_cfattachvec(const struct cfattachinit *cfattachv,
288 cfattach_fn att_do, cfattach_fn att_undo,
289 const char *style, bool dopanic)
290 {
291 const struct cfattachinit *cfai = NULL;
292 void (*pr)(const char *, ...) __printflike(1, 2) =
293 dopanic ? panic : printf;
294 int j = 0, error = 0, e2 __diagused;
295
296 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
297 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
298 if ((error = att_do(cfai->cfai_name,
299 cfai->cfai_list[j])) != 0) {
300 pr("configure: attachment `%s' "
301 "of `%s' driver %s failed: %d",
302 cfai->cfai_list[j]->ca_name,
303 cfai->cfai_name, style, error);
304 goto bad;
305 }
306 }
307 }
308
309 KASSERT(error == 0);
310 return 0;
311
312 bad:
313 /*
314 * Rollback in reverse order. dunno if super-important, but
315 * do that anyway. Although the code looks a little like
316 * someone did a little integration (in the math sense).
317 */
318 printf("\n");
319 if (cfai) {
320 bool last;
321
322 for (last = false; last == false; ) {
323 if (cfai == &cfattachv[0])
324 last = true;
325 for (j--; j >= 0; j--) {
326 e2 = att_undo(cfai->cfai_name,
327 cfai->cfai_list[j]);
328 KASSERT(e2 == 0);
329 }
330 if (!last) {
331 cfai--;
332 for (j = 0; cfai->cfai_list[j] != NULL; j++)
333 ;
334 }
335 }
336 }
337
338 return error;
339 }
340
341 /*
342 * Initialize the autoconfiguration data structures. Normally this
343 * is done by configure(), but some platforms need to do this very
344 * early (to e.g. initialize the console).
345 */
346 void
347 config_init(void)
348 {
349
350 KASSERT(config_initialized == false);
351
352 mutex_init(&alldevs.lock, MUTEX_DEFAULT, IPL_VM);
353
354 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
355 cv_init(&config_misc_cv, "cfgmisc");
356
357 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
358
359 frob_cfdrivervec(cfdriver_list_initial,
360 config_cfdriver_attach, NULL, "bootstrap", true);
361 frob_cfattachvec(cfattachinit,
362 config_cfattach_attach, NULL, "bootstrap", true);
363
364 initcftable.ct_cfdata = cfdata;
365 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
366
367 config_initialized = true;
368 }
369
370 /*
371 * Init or fini drivers and attachments. Either all or none
372 * are processed (via rollback). It would be nice if this were
373 * atomic to outside consumers, but with the current state of
374 * locking ...
375 */
376 int
377 config_init_component(struct cfdriver * const *cfdriverv,
378 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
379 {
380 int error;
381
382 if ((error = frob_cfdrivervec(cfdriverv,
383 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
384 return error;
385 if ((error = frob_cfattachvec(cfattachv,
386 config_cfattach_attach, config_cfattach_detach,
387 "init", false)) != 0) {
388 frob_cfdrivervec(cfdriverv,
389 config_cfdriver_detach, NULL, "init rollback", true);
390 return error;
391 }
392 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
393 frob_cfattachvec(cfattachv,
394 config_cfattach_detach, NULL, "init rollback", true);
395 frob_cfdrivervec(cfdriverv,
396 config_cfdriver_detach, NULL, "init rollback", true);
397 return error;
398 }
399
400 return 0;
401 }
402
403 int
404 config_fini_component(struct cfdriver * const *cfdriverv,
405 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
406 {
407 int error;
408
409 if ((error = config_cfdata_detach(cfdatav)) != 0)
410 return error;
411 if ((error = frob_cfattachvec(cfattachv,
412 config_cfattach_detach, config_cfattach_attach,
413 "fini", false)) != 0) {
414 if (config_cfdata_attach(cfdatav, 0) != 0)
415 panic("config_cfdata fini rollback failed");
416 return error;
417 }
418 if ((error = frob_cfdrivervec(cfdriverv,
419 config_cfdriver_detach, config_cfdriver_attach,
420 "fini", false)) != 0) {
421 frob_cfattachvec(cfattachv,
422 config_cfattach_attach, NULL, "fini rollback", true);
423 if (config_cfdata_attach(cfdatav, 0) != 0)
424 panic("config_cfdata fini rollback failed");
425 return error;
426 }
427
428 return 0;
429 }
430
431 void
432 config_init_mi(void)
433 {
434
435 if (!config_initialized)
436 config_init();
437
438 sysctl_detach_setup(NULL);
439 }
440
441 void
442 config_deferred(device_t dev)
443 {
444 config_process_deferred(&deferred_config_queue, dev);
445 config_process_deferred(&interrupt_config_queue, dev);
446 config_process_deferred(&mountroot_config_queue, dev);
447 }
448
449 static void
450 config_interrupts_thread(void *cookie)
451 {
452 struct deferred_config *dc;
453
454 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
455 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
456 (*dc->dc_func)(dc->dc_dev);
457 config_pending_decr(dc->dc_dev);
458 kmem_free(dc, sizeof(*dc));
459 }
460 kthread_exit(0);
461 }
462
463 void
464 config_create_interruptthreads(void)
465 {
466 int i;
467
468 for (i = 0; i < interrupt_config_threads; i++) {
469 (void)kthread_create(PRI_NONE, 0, NULL,
470 config_interrupts_thread, NULL, NULL, "configintr");
471 }
472 }
473
474 static void
475 config_mountroot_thread(void *cookie)
476 {
477 struct deferred_config *dc;
478
479 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
480 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
481 (*dc->dc_func)(dc->dc_dev);
482 kmem_free(dc, sizeof(*dc));
483 }
484 kthread_exit(0);
485 }
486
487 void
488 config_create_mountrootthreads(void)
489 {
490 int i;
491
492 if (!root_is_mounted)
493 root_is_mounted = true;
494
495 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
496 mountroot_config_threads;
497 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
498 KM_NOSLEEP);
499 KASSERT(mountroot_config_lwpids);
500 for (i = 0; i < mountroot_config_threads; i++) {
501 mountroot_config_lwpids[i] = 0;
502 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
503 config_mountroot_thread, NULL,
504 &mountroot_config_lwpids[i],
505 "configroot");
506 }
507 }
508
509 void
510 config_finalize_mountroot(void)
511 {
512 int i, error;
513
514 for (i = 0; i < mountroot_config_threads; i++) {
515 if (mountroot_config_lwpids[i] == 0)
516 continue;
517
518 error = kthread_join(mountroot_config_lwpids[i]);
519 if (error)
520 printf("%s: thread %x joined with error %d\n",
521 __func__, i, error);
522 }
523 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
524 }
525
526 /*
527 * Announce device attach/detach to userland listeners.
528 */
529
530 int
531 no_devmon_insert(const char *name, prop_dictionary_t p)
532 {
533
534 return ENODEV;
535 }
536
537 static void
538 devmon_report_device(device_t dev, bool isattach)
539 {
540 prop_dictionary_t ev;
541 const char *parent;
542 const char *what;
543 device_t pdev = device_parent(dev);
544
545 /* If currently no drvctl device, just return */
546 if (devmon_insert_vec == no_devmon_insert)
547 return;
548
549 ev = prop_dictionary_create();
550 if (ev == NULL)
551 return;
552
553 what = (isattach ? "device-attach" : "device-detach");
554 parent = (pdev == NULL ? "root" : device_xname(pdev));
555 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
556 !prop_dictionary_set_cstring(ev, "parent", parent)) {
557 prop_object_release(ev);
558 return;
559 }
560
561 if ((*devmon_insert_vec)(what, ev) != 0)
562 prop_object_release(ev);
563 }
564
565 /*
566 * Add a cfdriver to the system.
567 */
568 int
569 config_cfdriver_attach(struct cfdriver *cd)
570 {
571 struct cfdriver *lcd;
572
573 /* Make sure this driver isn't already in the system. */
574 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
575 if (STREQ(lcd->cd_name, cd->cd_name))
576 return EEXIST;
577 }
578
579 LIST_INIT(&cd->cd_attach);
580 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
581
582 return 0;
583 }
584
585 /*
586 * Remove a cfdriver from the system.
587 */
588 int
589 config_cfdriver_detach(struct cfdriver *cd)
590 {
591 struct alldevs_foray af;
592 int i, rc = 0;
593
594 config_alldevs_enter(&af);
595 /* Make sure there are no active instances. */
596 for (i = 0; i < cd->cd_ndevs; i++) {
597 if (cd->cd_devs[i] != NULL) {
598 rc = EBUSY;
599 break;
600 }
601 }
602 config_alldevs_exit(&af);
603
604 if (rc != 0)
605 return rc;
606
607 /* ...and no attachments loaded. */
608 if (LIST_EMPTY(&cd->cd_attach) == 0)
609 return EBUSY;
610
611 LIST_REMOVE(cd, cd_list);
612
613 KASSERT(cd->cd_devs == NULL);
614
615 return 0;
616 }
617
618 /*
619 * Look up a cfdriver by name.
620 */
621 struct cfdriver *
622 config_cfdriver_lookup(const char *name)
623 {
624 struct cfdriver *cd;
625
626 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
627 if (STREQ(cd->cd_name, name))
628 return cd;
629 }
630
631 return NULL;
632 }
633
634 /*
635 * Add a cfattach to the specified driver.
636 */
637 int
638 config_cfattach_attach(const char *driver, struct cfattach *ca)
639 {
640 struct cfattach *lca;
641 struct cfdriver *cd;
642
643 cd = config_cfdriver_lookup(driver);
644 if (cd == NULL)
645 return ESRCH;
646
647 /* Make sure this attachment isn't already on this driver. */
648 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
649 if (STREQ(lca->ca_name, ca->ca_name))
650 return EEXIST;
651 }
652
653 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
654
655 return 0;
656 }
657
658 /*
659 * Remove a cfattach from the specified driver.
660 */
661 int
662 config_cfattach_detach(const char *driver, struct cfattach *ca)
663 {
664 struct alldevs_foray af;
665 struct cfdriver *cd;
666 device_t dev;
667 int i, rc = 0;
668
669 cd = config_cfdriver_lookup(driver);
670 if (cd == NULL)
671 return ESRCH;
672
673 config_alldevs_enter(&af);
674 /* Make sure there are no active instances. */
675 for (i = 0; i < cd->cd_ndevs; i++) {
676 if ((dev = cd->cd_devs[i]) == NULL)
677 continue;
678 if (dev->dv_cfattach == ca) {
679 rc = EBUSY;
680 break;
681 }
682 }
683 config_alldevs_exit(&af);
684
685 if (rc != 0)
686 return rc;
687
688 LIST_REMOVE(ca, ca_list);
689
690 return 0;
691 }
692
693 /*
694 * Look up a cfattach by name.
695 */
696 static struct cfattach *
697 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
698 {
699 struct cfattach *ca;
700
701 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
702 if (STREQ(ca->ca_name, atname))
703 return ca;
704 }
705
706 return NULL;
707 }
708
709 /*
710 * Look up a cfattach by driver/attachment name.
711 */
712 struct cfattach *
713 config_cfattach_lookup(const char *name, const char *atname)
714 {
715 struct cfdriver *cd;
716
717 cd = config_cfdriver_lookup(name);
718 if (cd == NULL)
719 return NULL;
720
721 return config_cfattach_lookup_cd(cd, atname);
722 }
723
724 /*
725 * Apply the matching function and choose the best. This is used
726 * a few times and we want to keep the code small.
727 */
728 static void
729 mapply(struct matchinfo *m, cfdata_t cf)
730 {
731 int pri;
732
733 if (m->fn != NULL) {
734 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
735 } else {
736 pri = config_match(m->parent, cf, m->aux);
737 }
738 if (pri > m->pri) {
739 m->match = cf;
740 m->pri = pri;
741 }
742 }
743
744 int
745 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
746 {
747 const struct cfiattrdata *ci;
748 const struct cflocdesc *cl;
749 int nlocs, i;
750
751 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
752 KASSERT(ci);
753 nlocs = ci->ci_loclen;
754 KASSERT(!nlocs || locs);
755 for (i = 0; i < nlocs; i++) {
756 cl = &ci->ci_locdesc[i];
757 if (cl->cld_defaultstr != NULL &&
758 cf->cf_loc[i] == cl->cld_default)
759 continue;
760 if (cf->cf_loc[i] == locs[i])
761 continue;
762 return 0;
763 }
764
765 return config_match(parent, cf, aux);
766 }
767
768 /*
769 * Helper function: check whether the driver supports the interface attribute
770 * and return its descriptor structure.
771 */
772 static const struct cfiattrdata *
773 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
774 {
775 const struct cfiattrdata * const *cpp;
776
777 if (cd->cd_attrs == NULL)
778 return 0;
779
780 for (cpp = cd->cd_attrs; *cpp; cpp++) {
781 if (STREQ((*cpp)->ci_name, ia)) {
782 /* Match. */
783 return *cpp;
784 }
785 }
786 return 0;
787 }
788
789 /*
790 * Lookup an interface attribute description by name.
791 * If the driver is given, consider only its supported attributes.
792 */
793 const struct cfiattrdata *
794 cfiattr_lookup(const char *name, const struct cfdriver *cd)
795 {
796 const struct cfdriver *d;
797 const struct cfiattrdata *ia;
798
799 if (cd)
800 return cfdriver_get_iattr(cd, name);
801
802 LIST_FOREACH(d, &allcfdrivers, cd_list) {
803 ia = cfdriver_get_iattr(d, name);
804 if (ia)
805 return ia;
806 }
807 return 0;
808 }
809
810 /*
811 * Determine if `parent' is a potential parent for a device spec based
812 * on `cfp'.
813 */
814 static int
815 cfparent_match(const device_t parent, const struct cfparent *cfp)
816 {
817 struct cfdriver *pcd;
818
819 /* We don't match root nodes here. */
820 if (cfp == NULL)
821 return 0;
822
823 pcd = parent->dv_cfdriver;
824 KASSERT(pcd != NULL);
825
826 /*
827 * First, ensure this parent has the correct interface
828 * attribute.
829 */
830 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
831 return 0;
832
833 /*
834 * If no specific parent device instance was specified (i.e.
835 * we're attaching to the attribute only), we're done!
836 */
837 if (cfp->cfp_parent == NULL)
838 return 1;
839
840 /*
841 * Check the parent device's name.
842 */
843 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
844 return 0; /* not the same parent */
845
846 /*
847 * Make sure the unit number matches.
848 */
849 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
850 cfp->cfp_unit == parent->dv_unit)
851 return 1;
852
853 /* Unit numbers don't match. */
854 return 0;
855 }
856
857 /*
858 * Helper for config_cfdata_attach(): check all devices whether it could be
859 * parent any attachment in the config data table passed, and rescan.
860 */
861 static void
862 rescan_with_cfdata(const struct cfdata *cf)
863 {
864 device_t d;
865 const struct cfdata *cf1;
866 deviter_t di;
867
868
869 /*
870 * "alldevs" is likely longer than a modules's cfdata, so make it
871 * the outer loop.
872 */
873 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
874
875 if (!(d->dv_cfattach->ca_rescan))
876 continue;
877
878 for (cf1 = cf; cf1->cf_name; cf1++) {
879
880 if (!cfparent_match(d, cf1->cf_pspec))
881 continue;
882
883 (*d->dv_cfattach->ca_rescan)(d,
884 cfdata_ifattr(cf1), cf1->cf_loc);
885
886 config_deferred(d);
887 }
888 }
889 deviter_release(&di);
890 }
891
892 /*
893 * Attach a supplemental config data table and rescan potential
894 * parent devices if required.
895 */
896 int
897 config_cfdata_attach(cfdata_t cf, int scannow)
898 {
899 struct cftable *ct;
900
901 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
902 ct->ct_cfdata = cf;
903 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
904
905 if (scannow)
906 rescan_with_cfdata(cf);
907
908 return 0;
909 }
910
911 /*
912 * Helper for config_cfdata_detach: check whether a device is
913 * found through any attachment in the config data table.
914 */
915 static int
916 dev_in_cfdata(device_t d, cfdata_t cf)
917 {
918 const struct cfdata *cf1;
919
920 for (cf1 = cf; cf1->cf_name; cf1++)
921 if (d->dv_cfdata == cf1)
922 return 1;
923
924 return 0;
925 }
926
927 /*
928 * Detach a supplemental config data table. Detach all devices found
929 * through that table (and thus keeping references to it) before.
930 */
931 int
932 config_cfdata_detach(cfdata_t cf)
933 {
934 device_t d;
935 int error = 0;
936 struct cftable *ct;
937 deviter_t di;
938
939 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
940 d = deviter_next(&di)) {
941 if (!dev_in_cfdata(d, cf))
942 continue;
943 if ((error = config_detach(d, 0)) != 0)
944 break;
945 }
946 deviter_release(&di);
947 if (error) {
948 aprint_error_dev(d, "unable to detach instance\n");
949 return error;
950 }
951
952 TAILQ_FOREACH(ct, &allcftables, ct_list) {
953 if (ct->ct_cfdata == cf) {
954 TAILQ_REMOVE(&allcftables, ct, ct_list);
955 kmem_free(ct, sizeof(*ct));
956 return 0;
957 }
958 }
959
960 /* not found -- shouldn't happen */
961 return EINVAL;
962 }
963
964 /*
965 * Invoke the "match" routine for a cfdata entry on behalf of
966 * an external caller, usually a "submatch" routine.
967 */
968 int
969 config_match(device_t parent, cfdata_t cf, void *aux)
970 {
971 struct cfattach *ca;
972
973 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
974 if (ca == NULL) {
975 /* No attachment for this entry, oh well. */
976 return 0;
977 }
978
979 return (*ca->ca_match)(parent, cf, aux);
980 }
981
982 /*
983 * Iterate over all potential children of some device, calling the given
984 * function (default being the child's match function) for each one.
985 * Nonzero returns are matches; the highest value returned is considered
986 * the best match. Return the `found child' if we got a match, or NULL
987 * otherwise. The `aux' pointer is simply passed on through.
988 *
989 * Note that this function is designed so that it can be used to apply
990 * an arbitrary function to all potential children (its return value
991 * can be ignored).
992 */
993 cfdata_t
994 config_search_loc(cfsubmatch_t fn, device_t parent,
995 const char *ifattr, const int *locs, void *aux)
996 {
997 struct cftable *ct;
998 cfdata_t cf;
999 struct matchinfo m;
1000
1001 KASSERT(config_initialized);
1002 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
1003
1004 m.fn = fn;
1005 m.parent = parent;
1006 m.locs = locs;
1007 m.aux = aux;
1008 m.match = NULL;
1009 m.pri = 0;
1010
1011 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1012 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1013
1014 /* We don't match root nodes here. */
1015 if (!cf->cf_pspec)
1016 continue;
1017
1018 /*
1019 * Skip cf if no longer eligible, otherwise scan
1020 * through parents for one matching `parent', and
1021 * try match function.
1022 */
1023 if (cf->cf_fstate == FSTATE_FOUND)
1024 continue;
1025 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1026 cf->cf_fstate == FSTATE_DSTAR)
1027 continue;
1028
1029 /*
1030 * If an interface attribute was specified,
1031 * consider only children which attach to
1032 * that attribute.
1033 */
1034 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1035 continue;
1036
1037 if (cfparent_match(parent, cf->cf_pspec))
1038 mapply(&m, cf);
1039 }
1040 }
1041 return m.match;
1042 }
1043
1044 cfdata_t
1045 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
1046 void *aux)
1047 {
1048
1049 return config_search_loc(fn, parent, ifattr, NULL, aux);
1050 }
1051
1052 /*
1053 * Find the given root device.
1054 * This is much like config_search, but there is no parent.
1055 * Don't bother with multiple cfdata tables; the root node
1056 * must always be in the initial table.
1057 */
1058 cfdata_t
1059 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1060 {
1061 cfdata_t cf;
1062 const short *p;
1063 struct matchinfo m;
1064
1065 m.fn = fn;
1066 m.parent = ROOT;
1067 m.aux = aux;
1068 m.match = NULL;
1069 m.pri = 0;
1070 m.locs = 0;
1071 /*
1072 * Look at root entries for matching name. We do not bother
1073 * with found-state here since only one root should ever be
1074 * searched (and it must be done first).
1075 */
1076 for (p = cfroots; *p >= 0; p++) {
1077 cf = &cfdata[*p];
1078 if (strcmp(cf->cf_name, rootname) == 0)
1079 mapply(&m, cf);
1080 }
1081 return m.match;
1082 }
1083
1084 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1085
1086 /*
1087 * The given `aux' argument describes a device that has been found
1088 * on the given parent, but not necessarily configured. Locate the
1089 * configuration data for that device (using the submatch function
1090 * provided, or using candidates' cd_match configuration driver
1091 * functions) and attach it, and return its device_t. If the device was
1092 * not configured, call the given `print' function and return NULL.
1093 */
1094 device_t
1095 config_found_sm_loc(device_t parent,
1096 const char *ifattr, const int *locs, void *aux,
1097 cfprint_t print, cfsubmatch_t submatch)
1098 {
1099 cfdata_t cf;
1100
1101 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1102 return(config_attach_loc(parent, cf, locs, aux, print));
1103 if (print) {
1104 if (config_do_twiddle && cold)
1105 twiddle();
1106 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1107 }
1108
1109 /*
1110 * This has the effect of mixing in a single timestamp to the
1111 * entropy pool. Experiments indicate the estimator will almost
1112 * always attribute one bit of entropy to this sample; analysis
1113 * of device attach/detach timestamps on FreeBSD indicates 4
1114 * bits of entropy/sample so this seems appropriately conservative.
1115 */
1116 rnd_add_uint32(&rnd_autoconf_source, 0);
1117 return NULL;
1118 }
1119
1120 device_t
1121 config_found_ia(device_t parent, const char *ifattr, void *aux,
1122 cfprint_t print)
1123 {
1124
1125 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1126 }
1127
1128 device_t
1129 config_found(device_t parent, void *aux, cfprint_t print)
1130 {
1131
1132 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1133 }
1134
1135 /*
1136 * As above, but for root devices.
1137 */
1138 device_t
1139 config_rootfound(const char *rootname, void *aux)
1140 {
1141 cfdata_t cf;
1142
1143 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1144 return config_attach(ROOT, cf, aux, NULL);
1145 aprint_error("root device %s not configured\n", rootname);
1146 return NULL;
1147 }
1148
1149 /* just like sprintf(buf, "%d") except that it works from the end */
1150 static char *
1151 number(char *ep, int n)
1152 {
1153
1154 *--ep = 0;
1155 while (n >= 10) {
1156 *--ep = (n % 10) + '0';
1157 n /= 10;
1158 }
1159 *--ep = n + '0';
1160 return ep;
1161 }
1162
1163 /*
1164 * Expand the size of the cd_devs array if necessary.
1165 *
1166 * The caller must hold alldevs.lock. config_makeroom() may release and
1167 * re-acquire alldevs.lock, so callers should re-check conditions such
1168 * as alldevs.nwrite == 0 and alldevs.nread == 0 when config_makeroom()
1169 * returns.
1170 */
1171 static void
1172 config_makeroom(int n, struct cfdriver *cd)
1173 {
1174 int ondevs, nndevs;
1175 device_t *osp, *nsp;
1176
1177 KASSERT(mutex_owned(&alldevs.lock));
1178 alldevs.nwrite++;
1179
1180 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1181 ;
1182
1183 while (n >= cd->cd_ndevs) {
1184 /*
1185 * Need to expand the array.
1186 */
1187 ondevs = cd->cd_ndevs;
1188 osp = cd->cd_devs;
1189
1190 /*
1191 * Release alldevs.lock around allocation, which may
1192 * sleep.
1193 */
1194 mutex_exit(&alldevs.lock);
1195 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1196 mutex_enter(&alldevs.lock);
1197
1198 /*
1199 * If another thread moved the array while we did
1200 * not hold alldevs.lock, try again.
1201 */
1202 if (cd->cd_devs != osp) {
1203 mutex_exit(&alldevs.lock);
1204 kmem_free(nsp, sizeof(device_t[nndevs]));
1205 mutex_enter(&alldevs.lock);
1206 continue;
1207 }
1208
1209 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1210 if (ondevs != 0)
1211 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1212
1213 cd->cd_ndevs = nndevs;
1214 cd->cd_devs = nsp;
1215 if (ondevs != 0) {
1216 mutex_exit(&alldevs.lock);
1217 kmem_free(osp, sizeof(device_t[ondevs]));
1218 mutex_enter(&alldevs.lock);
1219 }
1220 }
1221 KASSERT(mutex_owned(&alldevs.lock));
1222 alldevs.nwrite--;
1223 }
1224
1225 /*
1226 * Put dev into the devices list.
1227 */
1228 static void
1229 config_devlink(device_t dev)
1230 {
1231
1232 mutex_enter(&alldevs.lock);
1233
1234 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1235
1236 dev->dv_add_gen = alldevs.gen;
1237 /* It is safe to add a device to the tail of the list while
1238 * readers and writers are in the list.
1239 */
1240 TAILQ_INSERT_TAIL(&alldevs.list, dev, dv_list);
1241 mutex_exit(&alldevs.lock);
1242 }
1243
1244 static void
1245 config_devfree(device_t dev)
1246 {
1247 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1248
1249 if (dev->dv_cfattach->ca_devsize > 0)
1250 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1251 if (priv)
1252 kmem_free(dev, sizeof(*dev));
1253 }
1254
1255 /*
1256 * Caller must hold alldevs.lock.
1257 */
1258 static void
1259 config_devunlink(device_t dev, struct devicelist *garbage)
1260 {
1261 struct device_garbage *dg = &dev->dv_garbage;
1262 cfdriver_t cd = device_cfdriver(dev);
1263 int i;
1264
1265 KASSERT(mutex_owned(&alldevs.lock));
1266
1267 /* Unlink from device list. Link to garbage list. */
1268 TAILQ_REMOVE(&alldevs.list, dev, dv_list);
1269 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1270
1271 /* Remove from cfdriver's array. */
1272 cd->cd_devs[dev->dv_unit] = NULL;
1273
1274 /*
1275 * If the device now has no units in use, unlink its softc array.
1276 */
1277 for (i = 0; i < cd->cd_ndevs; i++) {
1278 if (cd->cd_devs[i] != NULL)
1279 break;
1280 }
1281 /* Nothing found. Unlink, now. Deallocate, later. */
1282 if (i == cd->cd_ndevs) {
1283 dg->dg_ndevs = cd->cd_ndevs;
1284 dg->dg_devs = cd->cd_devs;
1285 cd->cd_devs = NULL;
1286 cd->cd_ndevs = 0;
1287 }
1288 }
1289
1290 static void
1291 config_devdelete(device_t dev)
1292 {
1293 struct device_garbage *dg = &dev->dv_garbage;
1294 device_lock_t dvl = device_getlock(dev);
1295
1296 if (dg->dg_devs != NULL)
1297 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1298
1299 cv_destroy(&dvl->dvl_cv);
1300 mutex_destroy(&dvl->dvl_mtx);
1301
1302 KASSERT(dev->dv_properties != NULL);
1303 prop_object_release(dev->dv_properties);
1304
1305 if (dev->dv_activity_handlers)
1306 panic("%s with registered handlers", __func__);
1307
1308 if (dev->dv_locators) {
1309 size_t amount = *--dev->dv_locators;
1310 kmem_free(dev->dv_locators, amount);
1311 }
1312
1313 config_devfree(dev);
1314 }
1315
1316 static int
1317 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1318 {
1319 int unit;
1320
1321 if (cf->cf_fstate == FSTATE_STAR) {
1322 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1323 if (cd->cd_devs[unit] == NULL)
1324 break;
1325 /*
1326 * unit is now the unit of the first NULL device pointer,
1327 * or max(cd->cd_ndevs,cf->cf_unit).
1328 */
1329 } else {
1330 unit = cf->cf_unit;
1331 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1332 unit = -1;
1333 }
1334 return unit;
1335 }
1336
1337 static int
1338 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1339 {
1340 struct alldevs_foray af;
1341 int unit;
1342
1343 config_alldevs_enter(&af);
1344 for (;;) {
1345 unit = config_unit_nextfree(cd, cf);
1346 if (unit == -1)
1347 break;
1348 if (unit < cd->cd_ndevs) {
1349 cd->cd_devs[unit] = dev;
1350 dev->dv_unit = unit;
1351 break;
1352 }
1353 config_makeroom(unit, cd);
1354 }
1355 config_alldevs_exit(&af);
1356
1357 return unit;
1358 }
1359
1360 static device_t
1361 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1362 {
1363 cfdriver_t cd;
1364 cfattach_t ca;
1365 size_t lname, lunit;
1366 const char *xunit;
1367 int myunit;
1368 char num[10];
1369 device_t dev;
1370 void *dev_private;
1371 const struct cfiattrdata *ia;
1372 device_lock_t dvl;
1373
1374 cd = config_cfdriver_lookup(cf->cf_name);
1375 if (cd == NULL)
1376 return NULL;
1377
1378 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1379 if (ca == NULL)
1380 return NULL;
1381
1382 /* get memory for all device vars */
1383 KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
1384 || ca->ca_devsize >= sizeof(struct device),
1385 "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
1386 sizeof(struct device));
1387 if (ca->ca_devsize > 0) {
1388 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1389 } else {
1390 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1391 dev_private = NULL;
1392 }
1393
1394 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1395 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1396 } else {
1397 dev = dev_private;
1398 #ifdef DIAGNOSTIC
1399 printf("%s has not been converted to device_t\n", cd->cd_name);
1400 #endif
1401 }
1402 dev->dv_class = cd->cd_class;
1403 dev->dv_cfdata = cf;
1404 dev->dv_cfdriver = cd;
1405 dev->dv_cfattach = ca;
1406 dev->dv_activity_count = 0;
1407 dev->dv_activity_handlers = NULL;
1408 dev->dv_private = dev_private;
1409 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1410
1411 myunit = config_unit_alloc(dev, cd, cf);
1412 if (myunit == -1) {
1413 config_devfree(dev);
1414 return NULL;
1415 }
1416
1417 /* compute length of name and decimal expansion of unit number */
1418 lname = strlen(cd->cd_name);
1419 xunit = number(&num[sizeof(num)], myunit);
1420 lunit = &num[sizeof(num)] - xunit;
1421 if (lname + lunit > sizeof(dev->dv_xname))
1422 panic("config_devalloc: device name too long");
1423
1424 dvl = device_getlock(dev);
1425
1426 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1427 cv_init(&dvl->dvl_cv, "pmfsusp");
1428
1429 memcpy(dev->dv_xname, cd->cd_name, lname);
1430 memcpy(dev->dv_xname + lname, xunit, lunit);
1431 dev->dv_parent = parent;
1432 if (parent != NULL) {
1433 dev->dv_depth = parent->dv_depth + 1;
1434 dev->dv_maxphys = parent->dv_maxphys;
1435 } else {
1436 dev->dv_depth = 0;
1437 dev->dv_maxphys = MACHINE_MAXPHYS;
1438 }
1439 aprint_debug_dev(dev, "dv_maxphys = %d", dev->dv_maxphys);
1440 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1441 if (locs) {
1442 KASSERT(parent); /* no locators at root */
1443 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1444 dev->dv_locators =
1445 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1446 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1447 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1448 }
1449 dev->dv_properties = prop_dictionary_create();
1450 KASSERT(dev->dv_properties != NULL);
1451
1452 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1453 "device-driver", dev->dv_cfdriver->cd_name);
1454 prop_dictionary_set_uint16(dev->dv_properties,
1455 "device-unit", dev->dv_unit);
1456 if (parent != NULL) {
1457 prop_dictionary_set_cstring(dev->dv_properties,
1458 "device-parent", device_xname(parent));
1459 }
1460
1461 if (dev->dv_cfdriver->cd_attrs != NULL)
1462 config_add_attrib_dict(dev);
1463
1464 return dev;
1465 }
1466
1467 /*
1468 * Create an array of device attach attributes and add it
1469 * to the device's dv_properties dictionary.
1470 *
1471 * <key>interface-attributes</key>
1472 * <array>
1473 * <dict>
1474 * <key>attribute-name</key>
1475 * <string>foo</string>
1476 * <key>locators</key>
1477 * <array>
1478 * <dict>
1479 * <key>loc-name</key>
1480 * <string>foo-loc1</string>
1481 * </dict>
1482 * <dict>
1483 * <key>loc-name</key>
1484 * <string>foo-loc2</string>
1485 * <key>default</key>
1486 * <string>foo-loc2-default</string>
1487 * </dict>
1488 * ...
1489 * </array>
1490 * </dict>
1491 * ...
1492 * </array>
1493 */
1494
1495 static void
1496 config_add_attrib_dict(device_t dev)
1497 {
1498 int i, j;
1499 const struct cfiattrdata *ci;
1500 prop_dictionary_t attr_dict, loc_dict;
1501 prop_array_t attr_array, loc_array;
1502
1503 if ((attr_array = prop_array_create()) == NULL)
1504 return;
1505
1506 for (i = 0; ; i++) {
1507 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1508 break;
1509 if ((attr_dict = prop_dictionary_create()) == NULL)
1510 break;
1511 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1512 ci->ci_name);
1513
1514 /* Create an array of the locator names and defaults */
1515
1516 if (ci->ci_loclen != 0 &&
1517 (loc_array = prop_array_create()) != NULL) {
1518 for (j = 0; j < ci->ci_loclen; j++) {
1519 loc_dict = prop_dictionary_create();
1520 if (loc_dict == NULL)
1521 continue;
1522 prop_dictionary_set_cstring_nocopy(loc_dict,
1523 "loc-name", ci->ci_locdesc[j].cld_name);
1524 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1525 prop_dictionary_set_cstring_nocopy(
1526 loc_dict, "default",
1527 ci->ci_locdesc[j].cld_defaultstr);
1528 prop_array_set(loc_array, j, loc_dict);
1529 prop_object_release(loc_dict);
1530 }
1531 prop_dictionary_set_and_rel(attr_dict, "locators",
1532 loc_array);
1533 }
1534 prop_array_add(attr_array, attr_dict);
1535 prop_object_release(attr_dict);
1536 }
1537 if (i == 0)
1538 prop_object_release(attr_array);
1539 else
1540 prop_dictionary_set_and_rel(dev->dv_properties,
1541 "interface-attributes", attr_array);
1542
1543 return;
1544 }
1545
1546 /*
1547 * Attach a found device.
1548 */
1549 device_t
1550 config_attach_loc(device_t parent, cfdata_t cf,
1551 const int *locs, void *aux, cfprint_t print)
1552 {
1553 device_t dev;
1554 struct cftable *ct;
1555 const char *drvname;
1556
1557 dev = config_devalloc(parent, cf, locs);
1558 if (!dev)
1559 panic("config_attach: allocation of device softc failed");
1560
1561 /* XXX redundant - see below? */
1562 if (cf->cf_fstate != FSTATE_STAR) {
1563 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1564 cf->cf_fstate = FSTATE_FOUND;
1565 }
1566
1567 config_devlink(dev);
1568
1569 if (config_do_twiddle && cold)
1570 twiddle();
1571 else
1572 aprint_naive("Found ");
1573 /*
1574 * We want the next two printfs for normal, verbose, and quiet,
1575 * but not silent (in which case, we're twiddling, instead).
1576 */
1577 if (parent == ROOT) {
1578 aprint_naive("%s (root)", device_xname(dev));
1579 aprint_normal("%s (root)", device_xname(dev));
1580 } else {
1581 aprint_naive("%s at %s", device_xname(dev),
1582 device_xname(parent));
1583 aprint_normal("%s at %s", device_xname(dev),
1584 device_xname(parent));
1585 if (print)
1586 (void) (*print)(aux, NULL);
1587 }
1588
1589 /*
1590 * Before attaching, clobber any unfound devices that are
1591 * otherwise identical.
1592 * XXX code above is redundant?
1593 */
1594 drvname = dev->dv_cfdriver->cd_name;
1595 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1596 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1597 if (STREQ(cf->cf_name, drvname) &&
1598 cf->cf_unit == dev->dv_unit) {
1599 if (cf->cf_fstate == FSTATE_NOTFOUND)
1600 cf->cf_fstate = FSTATE_FOUND;
1601 }
1602 }
1603 }
1604 device_register(dev, aux);
1605
1606 /* Let userland know */
1607 devmon_report_device(dev, true);
1608
1609 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1610
1611 if (!device_pmf_is_registered(dev))
1612 aprint_debug_dev(dev, "WARNING: power management not "
1613 "supported\n");
1614
1615 config_process_deferred(&deferred_config_queue, dev);
1616
1617 device_register_post_config(dev, aux);
1618 return dev;
1619 }
1620
1621 device_t
1622 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1623 {
1624
1625 return config_attach_loc(parent, cf, NULL, aux, print);
1626 }
1627
1628 /*
1629 * As above, but for pseudo-devices. Pseudo-devices attached in this
1630 * way are silently inserted into the device tree, and their children
1631 * attached.
1632 *
1633 * Note that because pseudo-devices are attached silently, any information
1634 * the attach routine wishes to print should be prefixed with the device
1635 * name by the attach routine.
1636 */
1637 device_t
1638 config_attach_pseudo(cfdata_t cf)
1639 {
1640 device_t dev;
1641
1642 dev = config_devalloc(ROOT, cf, NULL);
1643 if (!dev)
1644 return NULL;
1645
1646 /* XXX mark busy in cfdata */
1647
1648 if (cf->cf_fstate != FSTATE_STAR) {
1649 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1650 cf->cf_fstate = FSTATE_FOUND;
1651 }
1652
1653 config_devlink(dev);
1654
1655 #if 0 /* XXXJRT not yet */
1656 device_register(dev, NULL); /* like a root node */
1657 #endif
1658
1659 /* Let userland know */
1660 devmon_report_device(dev, true);
1661
1662 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1663
1664 config_process_deferred(&deferred_config_queue, dev);
1665 return dev;
1666 }
1667
1668 /*
1669 * Caller must hold alldevs.lock.
1670 */
1671 static void
1672 config_collect_garbage(struct devicelist *garbage)
1673 {
1674 device_t dv;
1675
1676 KASSERT(!cpu_intr_p());
1677 KASSERT(!cpu_softintr_p());
1678 KASSERT(mutex_owned(&alldevs.lock));
1679
1680 while (alldevs.nwrite == 0 && alldevs.nread == 0 && alldevs.garbage) {
1681 TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
1682 if (dv->dv_del_gen != 0)
1683 break;
1684 }
1685 if (dv == NULL) {
1686 alldevs.garbage = false;
1687 break;
1688 }
1689 config_devunlink(dv, garbage);
1690 }
1691 KASSERT(mutex_owned(&alldevs.lock));
1692 }
1693
1694 static void
1695 config_dump_garbage(struct devicelist *garbage)
1696 {
1697 device_t dv;
1698
1699 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1700 TAILQ_REMOVE(garbage, dv, dv_list);
1701 config_devdelete(dv);
1702 }
1703 }
1704
1705 /*
1706 * Detach a device. Optionally forced (e.g. because of hardware
1707 * removal) and quiet. Returns zero if successful, non-zero
1708 * (an error code) otherwise.
1709 *
1710 * Note that this code wants to be run from a process context, so
1711 * that the detach can sleep to allow processes which have a device
1712 * open to run and unwind their stacks.
1713 */
1714 int
1715 config_detach(device_t dev, int flags)
1716 {
1717 struct alldevs_foray af;
1718 struct cftable *ct;
1719 cfdata_t cf;
1720 const struct cfattach *ca;
1721 struct cfdriver *cd;
1722 device_t d __diagused;
1723 int rv = 0;
1724
1725 cf = dev->dv_cfdata;
1726 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
1727 cf->cf_fstate == FSTATE_STAR),
1728 "config_detach: %s: bad device fstate: %d",
1729 device_xname(dev), cf ? cf->cf_fstate : -1);
1730
1731 cd = dev->dv_cfdriver;
1732 KASSERT(cd != NULL);
1733
1734 ca = dev->dv_cfattach;
1735 KASSERT(ca != NULL);
1736
1737 mutex_enter(&alldevs.lock);
1738 if (dev->dv_del_gen != 0) {
1739 mutex_exit(&alldevs.lock);
1740 #ifdef DIAGNOSTIC
1741 printf("%s: %s is already detached\n", __func__,
1742 device_xname(dev));
1743 #endif /* DIAGNOSTIC */
1744 return ENOENT;
1745 }
1746 alldevs.nwrite++;
1747 mutex_exit(&alldevs.lock);
1748
1749 if (!detachall &&
1750 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1751 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1752 rv = EOPNOTSUPP;
1753 } else if (ca->ca_detach != NULL) {
1754 rv = (*ca->ca_detach)(dev, flags);
1755 } else
1756 rv = EOPNOTSUPP;
1757
1758 /*
1759 * If it was not possible to detach the device, then we either
1760 * panic() (for the forced but failed case), or return an error.
1761 *
1762 * If it was possible to detach the device, ensure that the
1763 * device is deactivated.
1764 */
1765 if (rv == 0)
1766 dev->dv_flags &= ~DVF_ACTIVE;
1767 else if ((flags & DETACH_FORCE) == 0)
1768 goto out;
1769 else {
1770 panic("config_detach: forced detach of %s failed (%d)",
1771 device_xname(dev), rv);
1772 }
1773
1774 /*
1775 * The device has now been successfully detached.
1776 */
1777
1778 /* Let userland know */
1779 devmon_report_device(dev, false);
1780
1781 #ifdef DIAGNOSTIC
1782 /*
1783 * Sanity: If you're successfully detached, you should have no
1784 * children. (Note that because children must be attached
1785 * after parents, we only need to search the latter part of
1786 * the list.)
1787 */
1788 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1789 d = TAILQ_NEXT(d, dv_list)) {
1790 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1791 printf("config_detach: detached device %s"
1792 " has children %s\n", device_xname(dev),
1793 device_xname(d));
1794 panic("config_detach");
1795 }
1796 }
1797 #endif
1798
1799 /* notify the parent that the child is gone */
1800 if (dev->dv_parent) {
1801 device_t p = dev->dv_parent;
1802 if (p->dv_cfattach->ca_childdetached)
1803 (*p->dv_cfattach->ca_childdetached)(p, dev);
1804 }
1805
1806 /*
1807 * Mark cfdata to show that the unit can be reused, if possible.
1808 */
1809 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1810 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1811 if (STREQ(cf->cf_name, cd->cd_name)) {
1812 if (cf->cf_fstate == FSTATE_FOUND &&
1813 cf->cf_unit == dev->dv_unit)
1814 cf->cf_fstate = FSTATE_NOTFOUND;
1815 }
1816 }
1817 }
1818
1819 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1820 aprint_normal_dev(dev, "detached\n");
1821
1822 out:
1823 config_alldevs_enter(&af);
1824 KASSERT(alldevs.nwrite != 0);
1825 --alldevs.nwrite;
1826 if (rv == 0 && dev->dv_del_gen == 0) {
1827 if (alldevs.nwrite == 0 && alldevs.nread == 0)
1828 config_devunlink(dev, &af.af_garbage);
1829 else {
1830 dev->dv_del_gen = alldevs.gen;
1831 alldevs.garbage = true;
1832 }
1833 }
1834 config_alldevs_exit(&af);
1835
1836 return rv;
1837 }
1838
1839 int
1840 config_detach_children(device_t parent, int flags)
1841 {
1842 device_t dv;
1843 deviter_t di;
1844 int error = 0;
1845
1846 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1847 dv = deviter_next(&di)) {
1848 if (device_parent(dv) != parent)
1849 continue;
1850 if ((error = config_detach(dv, flags)) != 0)
1851 break;
1852 }
1853 deviter_release(&di);
1854 return error;
1855 }
1856
1857 device_t
1858 shutdown_first(struct shutdown_state *s)
1859 {
1860 if (!s->initialized) {
1861 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1862 s->initialized = true;
1863 }
1864 return shutdown_next(s);
1865 }
1866
1867 device_t
1868 shutdown_next(struct shutdown_state *s)
1869 {
1870 device_t dv;
1871
1872 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1873 ;
1874
1875 if (dv == NULL)
1876 s->initialized = false;
1877
1878 return dv;
1879 }
1880
1881 bool
1882 config_detach_all(int how)
1883 {
1884 static struct shutdown_state s;
1885 device_t curdev;
1886 bool progress = false;
1887 int flags;
1888
1889 if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1890 return false;
1891
1892 if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1893 flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1894 else
1895 flags = DETACH_SHUTDOWN;
1896
1897 for (curdev = shutdown_first(&s); curdev != NULL;
1898 curdev = shutdown_next(&s)) {
1899 aprint_debug(" detaching %s, ", device_xname(curdev));
1900 if (config_detach(curdev, flags) == 0) {
1901 progress = true;
1902 aprint_debug("success.");
1903 } else
1904 aprint_debug("failed.");
1905 }
1906 return progress;
1907 }
1908
1909 static bool
1910 device_is_ancestor_of(device_t ancestor, device_t descendant)
1911 {
1912 device_t dv;
1913
1914 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1915 if (device_parent(dv) == ancestor)
1916 return true;
1917 }
1918 return false;
1919 }
1920
1921 int
1922 config_deactivate(device_t dev)
1923 {
1924 deviter_t di;
1925 const struct cfattach *ca;
1926 device_t descendant;
1927 int s, rv = 0, oflags;
1928
1929 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1930 descendant != NULL;
1931 descendant = deviter_next(&di)) {
1932 if (dev != descendant &&
1933 !device_is_ancestor_of(dev, descendant))
1934 continue;
1935
1936 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1937 continue;
1938
1939 ca = descendant->dv_cfattach;
1940 oflags = descendant->dv_flags;
1941
1942 descendant->dv_flags &= ~DVF_ACTIVE;
1943 if (ca->ca_activate == NULL)
1944 continue;
1945 s = splhigh();
1946 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1947 splx(s);
1948 if (rv != 0)
1949 descendant->dv_flags = oflags;
1950 }
1951 deviter_release(&di);
1952 return rv;
1953 }
1954
1955 /*
1956 * Defer the configuration of the specified device until all
1957 * of its parent's devices have been attached.
1958 */
1959 void
1960 config_defer(device_t dev, void (*func)(device_t))
1961 {
1962 struct deferred_config *dc;
1963
1964 if (dev->dv_parent == NULL)
1965 panic("config_defer: can't defer config of a root device");
1966
1967 #ifdef DIAGNOSTIC
1968 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1969 if (dc->dc_dev == dev)
1970 panic("config_defer: deferred twice");
1971 }
1972 #endif
1973
1974 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1975 dc->dc_dev = dev;
1976 dc->dc_func = func;
1977 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1978 config_pending_incr(dev);
1979 }
1980
1981 /*
1982 * Defer some autoconfiguration for a device until after interrupts
1983 * are enabled.
1984 */
1985 void
1986 config_interrupts(device_t dev, void (*func)(device_t))
1987 {
1988 struct deferred_config *dc;
1989
1990 /*
1991 * If interrupts are enabled, callback now.
1992 */
1993 if (cold == 0) {
1994 (*func)(dev);
1995 return;
1996 }
1997
1998 #ifdef DIAGNOSTIC
1999 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
2000 if (dc->dc_dev == dev)
2001 panic("config_interrupts: deferred twice");
2002 }
2003 #endif
2004
2005 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2006 dc->dc_dev = dev;
2007 dc->dc_func = func;
2008 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2009 config_pending_incr(dev);
2010 }
2011
2012 /*
2013 * Defer some autoconfiguration for a device until after root file system
2014 * is mounted (to load firmware etc).
2015 */
2016 void
2017 config_mountroot(device_t dev, void (*func)(device_t))
2018 {
2019 struct deferred_config *dc;
2020
2021 /*
2022 * If root file system is mounted, callback now.
2023 */
2024 if (root_is_mounted) {
2025 (*func)(dev);
2026 return;
2027 }
2028
2029 #ifdef DIAGNOSTIC
2030 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
2031 if (dc->dc_dev == dev)
2032 panic("%s: deferred twice", __func__);
2033 }
2034 #endif
2035
2036 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2037 dc->dc_dev = dev;
2038 dc->dc_func = func;
2039 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2040 }
2041
2042 /*
2043 * Process a deferred configuration queue.
2044 */
2045 static void
2046 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2047 {
2048 struct deferred_config *dc, *ndc;
2049
2050 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
2051 ndc = TAILQ_NEXT(dc, dc_queue);
2052 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2053 TAILQ_REMOVE(queue, dc, dc_queue);
2054 (*dc->dc_func)(dc->dc_dev);
2055 config_pending_decr(dc->dc_dev);
2056 kmem_free(dc, sizeof(*dc));
2057 }
2058 }
2059 }
2060
2061 /*
2062 * Manipulate the config_pending semaphore.
2063 */
2064 void
2065 config_pending_incr(device_t dev)
2066 {
2067
2068 mutex_enter(&config_misc_lock);
2069 config_pending++;
2070 #ifdef DEBUG_AUTOCONF
2071 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2072 #endif
2073 mutex_exit(&config_misc_lock);
2074 }
2075
2076 void
2077 config_pending_decr(device_t dev)
2078 {
2079
2080 KASSERT(0 < config_pending);
2081 mutex_enter(&config_misc_lock);
2082 config_pending--;
2083 #ifdef DEBUG_AUTOCONF
2084 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2085 #endif
2086 if (config_pending == 0)
2087 cv_broadcast(&config_misc_cv);
2088 mutex_exit(&config_misc_lock);
2089 }
2090
2091 /*
2092 * Register a "finalization" routine. Finalization routines are
2093 * called iteratively once all real devices have been found during
2094 * autoconfiguration, for as long as any one finalizer has done
2095 * any work.
2096 */
2097 int
2098 config_finalize_register(device_t dev, int (*fn)(device_t))
2099 {
2100 struct finalize_hook *f;
2101
2102 /*
2103 * If finalization has already been done, invoke the
2104 * callback function now.
2105 */
2106 if (config_finalize_done) {
2107 while ((*fn)(dev) != 0)
2108 /* loop */ ;
2109 return 0;
2110 }
2111
2112 /* Ensure this isn't already on the list. */
2113 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2114 if (f->f_func == fn && f->f_dev == dev)
2115 return EEXIST;
2116 }
2117
2118 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2119 f->f_func = fn;
2120 f->f_dev = dev;
2121 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2122
2123 return 0;
2124 }
2125
2126 void
2127 config_finalize(void)
2128 {
2129 struct finalize_hook *f;
2130 struct pdevinit *pdev;
2131 extern struct pdevinit pdevinit[];
2132 int errcnt, rv;
2133
2134 /*
2135 * Now that device driver threads have been created, wait for
2136 * them to finish any deferred autoconfiguration.
2137 */
2138 mutex_enter(&config_misc_lock);
2139 while (config_pending != 0)
2140 cv_wait(&config_misc_cv, &config_misc_lock);
2141 mutex_exit(&config_misc_lock);
2142
2143 KERNEL_LOCK(1, NULL);
2144
2145 /* Attach pseudo-devices. */
2146 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2147 (*pdev->pdev_attach)(pdev->pdev_count);
2148
2149 /* Run the hooks until none of them does any work. */
2150 do {
2151 rv = 0;
2152 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2153 rv |= (*f->f_func)(f->f_dev);
2154 } while (rv != 0);
2155
2156 config_finalize_done = 1;
2157
2158 /* Now free all the hooks. */
2159 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2160 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2161 kmem_free(f, sizeof(*f));
2162 }
2163
2164 KERNEL_UNLOCK_ONE(NULL);
2165
2166 errcnt = aprint_get_error_count();
2167 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2168 (boothowto & AB_VERBOSE) == 0) {
2169 mutex_enter(&config_misc_lock);
2170 if (config_do_twiddle) {
2171 config_do_twiddle = 0;
2172 printf_nolog(" done.\n");
2173 }
2174 mutex_exit(&config_misc_lock);
2175 }
2176 if (errcnt != 0) {
2177 printf("WARNING: %d error%s while detecting hardware; "
2178 "check system log.\n", errcnt,
2179 errcnt == 1 ? "" : "s");
2180 }
2181 }
2182
2183 void
2184 config_twiddle_init(void)
2185 {
2186
2187 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2188 config_do_twiddle = 1;
2189 }
2190 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2191 }
2192
2193 void
2194 config_twiddle_fn(void *cookie)
2195 {
2196
2197 mutex_enter(&config_misc_lock);
2198 if (config_do_twiddle) {
2199 twiddle();
2200 callout_schedule(&config_twiddle_ch, mstohz(100));
2201 }
2202 mutex_exit(&config_misc_lock);
2203 }
2204
2205 static void
2206 config_alldevs_enter(struct alldevs_foray *af)
2207 {
2208 TAILQ_INIT(&af->af_garbage);
2209 mutex_enter(&alldevs.lock);
2210 config_collect_garbage(&af->af_garbage);
2211 }
2212
2213 static void
2214 config_alldevs_exit(struct alldevs_foray *af)
2215 {
2216 mutex_exit(&alldevs.lock);
2217 config_dump_garbage(&af->af_garbage);
2218 }
2219
2220 /*
2221 * device_lookup:
2222 *
2223 * Look up a device instance for a given driver.
2224 */
2225 device_t
2226 device_lookup(cfdriver_t cd, int unit)
2227 {
2228 device_t dv;
2229
2230 mutex_enter(&alldevs.lock);
2231 if (unit < 0 || unit >= cd->cd_ndevs)
2232 dv = NULL;
2233 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2234 dv = NULL;
2235 mutex_exit(&alldevs.lock);
2236
2237 return dv;
2238 }
2239
2240 /*
2241 * device_lookup_private:
2242 *
2243 * Look up a softc instance for a given driver.
2244 */
2245 void *
2246 device_lookup_private(cfdriver_t cd, int unit)
2247 {
2248
2249 return device_private(device_lookup(cd, unit));
2250 }
2251
2252 /*
2253 * device_find_by_xname:
2254 *
2255 * Returns the device of the given name or NULL if it doesn't exist.
2256 */
2257 device_t
2258 device_find_by_xname(const char *name)
2259 {
2260 device_t dv;
2261 deviter_t di;
2262
2263 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2264 if (strcmp(device_xname(dv), name) == 0)
2265 break;
2266 }
2267 deviter_release(&di);
2268
2269 return dv;
2270 }
2271
2272 /*
2273 * device_find_by_driver_unit:
2274 *
2275 * Returns the device of the given driver name and unit or
2276 * NULL if it doesn't exist.
2277 */
2278 device_t
2279 device_find_by_driver_unit(const char *name, int unit)
2280 {
2281 struct cfdriver *cd;
2282
2283 if ((cd = config_cfdriver_lookup(name)) == NULL)
2284 return NULL;
2285 return device_lookup(cd, unit);
2286 }
2287
2288 /*
2289 * Power management related functions.
2290 */
2291
2292 bool
2293 device_pmf_is_registered(device_t dev)
2294 {
2295 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2296 }
2297
2298 bool
2299 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2300 {
2301 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2302 return true;
2303 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2304 return false;
2305 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2306 dev->dv_driver_suspend != NULL &&
2307 !(*dev->dv_driver_suspend)(dev, qual))
2308 return false;
2309
2310 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2311 return true;
2312 }
2313
2314 bool
2315 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2316 {
2317 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2318 return true;
2319 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2320 return false;
2321 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2322 dev->dv_driver_resume != NULL &&
2323 !(*dev->dv_driver_resume)(dev, qual))
2324 return false;
2325
2326 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2327 return true;
2328 }
2329
2330 bool
2331 device_pmf_driver_shutdown(device_t dev, int how)
2332 {
2333
2334 if (*dev->dv_driver_shutdown != NULL &&
2335 !(*dev->dv_driver_shutdown)(dev, how))
2336 return false;
2337 return true;
2338 }
2339
2340 bool
2341 device_pmf_driver_register(device_t dev,
2342 bool (*suspend)(device_t, const pmf_qual_t *),
2343 bool (*resume)(device_t, const pmf_qual_t *),
2344 bool (*shutdown)(device_t, int))
2345 {
2346 dev->dv_driver_suspend = suspend;
2347 dev->dv_driver_resume = resume;
2348 dev->dv_driver_shutdown = shutdown;
2349 dev->dv_flags |= DVF_POWER_HANDLERS;
2350 return true;
2351 }
2352
2353 static const char *
2354 curlwp_name(void)
2355 {
2356 if (curlwp->l_name != NULL)
2357 return curlwp->l_name;
2358 else
2359 return curlwp->l_proc->p_comm;
2360 }
2361
2362 void
2363 device_pmf_driver_deregister(device_t dev)
2364 {
2365 device_lock_t dvl = device_getlock(dev);
2366
2367 dev->dv_driver_suspend = NULL;
2368 dev->dv_driver_resume = NULL;
2369
2370 mutex_enter(&dvl->dvl_mtx);
2371 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2372 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2373 /* Wake a thread that waits for the lock. That
2374 * thread will fail to acquire the lock, and then
2375 * it will wake the next thread that waits for the
2376 * lock, or else it will wake us.
2377 */
2378 cv_signal(&dvl->dvl_cv);
2379 pmflock_debug(dev, __func__, __LINE__);
2380 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2381 pmflock_debug(dev, __func__, __LINE__);
2382 }
2383 mutex_exit(&dvl->dvl_mtx);
2384 }
2385
2386 bool
2387 device_pmf_driver_child_register(device_t dev)
2388 {
2389 device_t parent = device_parent(dev);
2390
2391 if (parent == NULL || parent->dv_driver_child_register == NULL)
2392 return true;
2393 return (*parent->dv_driver_child_register)(dev);
2394 }
2395
2396 void
2397 device_pmf_driver_set_child_register(device_t dev,
2398 bool (*child_register)(device_t))
2399 {
2400 dev->dv_driver_child_register = child_register;
2401 }
2402
2403 static void
2404 pmflock_debug(device_t dev, const char *func, int line)
2405 {
2406 device_lock_t dvl = device_getlock(dev);
2407
2408 aprint_debug_dev(dev,
2409 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2410 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2411 }
2412
2413 static bool
2414 device_pmf_lock1(device_t dev)
2415 {
2416 device_lock_t dvl = device_getlock(dev);
2417
2418 while (device_pmf_is_registered(dev) &&
2419 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2420 dvl->dvl_nwait++;
2421 pmflock_debug(dev, __func__, __LINE__);
2422 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2423 pmflock_debug(dev, __func__, __LINE__);
2424 dvl->dvl_nwait--;
2425 }
2426 if (!device_pmf_is_registered(dev)) {
2427 pmflock_debug(dev, __func__, __LINE__);
2428 /* We could not acquire the lock, but some other thread may
2429 * wait for it, also. Wake that thread.
2430 */
2431 cv_signal(&dvl->dvl_cv);
2432 return false;
2433 }
2434 dvl->dvl_nlock++;
2435 dvl->dvl_holder = curlwp;
2436 pmflock_debug(dev, __func__, __LINE__);
2437 return true;
2438 }
2439
2440 bool
2441 device_pmf_lock(device_t dev)
2442 {
2443 bool rc;
2444 device_lock_t dvl = device_getlock(dev);
2445
2446 mutex_enter(&dvl->dvl_mtx);
2447 rc = device_pmf_lock1(dev);
2448 mutex_exit(&dvl->dvl_mtx);
2449
2450 return rc;
2451 }
2452
2453 void
2454 device_pmf_unlock(device_t dev)
2455 {
2456 device_lock_t dvl = device_getlock(dev);
2457
2458 KASSERT(dvl->dvl_nlock > 0);
2459 mutex_enter(&dvl->dvl_mtx);
2460 if (--dvl->dvl_nlock == 0)
2461 dvl->dvl_holder = NULL;
2462 cv_signal(&dvl->dvl_cv);
2463 pmflock_debug(dev, __func__, __LINE__);
2464 mutex_exit(&dvl->dvl_mtx);
2465 }
2466
2467 device_lock_t
2468 device_getlock(device_t dev)
2469 {
2470 return &dev->dv_lock;
2471 }
2472
2473 void *
2474 device_pmf_bus_private(device_t dev)
2475 {
2476 return dev->dv_bus_private;
2477 }
2478
2479 bool
2480 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2481 {
2482 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2483 return true;
2484 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2485 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2486 return false;
2487 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2488 dev->dv_bus_suspend != NULL &&
2489 !(*dev->dv_bus_suspend)(dev, qual))
2490 return false;
2491
2492 dev->dv_flags |= DVF_BUS_SUSPENDED;
2493 return true;
2494 }
2495
2496 bool
2497 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2498 {
2499 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2500 return true;
2501 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2502 dev->dv_bus_resume != NULL &&
2503 !(*dev->dv_bus_resume)(dev, qual))
2504 return false;
2505
2506 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2507 return true;
2508 }
2509
2510 bool
2511 device_pmf_bus_shutdown(device_t dev, int how)
2512 {
2513
2514 if (*dev->dv_bus_shutdown != NULL &&
2515 !(*dev->dv_bus_shutdown)(dev, how))
2516 return false;
2517 return true;
2518 }
2519
2520 void
2521 device_pmf_bus_register(device_t dev, void *priv,
2522 bool (*suspend)(device_t, const pmf_qual_t *),
2523 bool (*resume)(device_t, const pmf_qual_t *),
2524 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2525 {
2526 dev->dv_bus_private = priv;
2527 dev->dv_bus_resume = resume;
2528 dev->dv_bus_suspend = suspend;
2529 dev->dv_bus_shutdown = shutdown;
2530 dev->dv_bus_deregister = deregister;
2531 }
2532
2533 void
2534 device_pmf_bus_deregister(device_t dev)
2535 {
2536 if (dev->dv_bus_deregister == NULL)
2537 return;
2538 (*dev->dv_bus_deregister)(dev);
2539 dev->dv_bus_private = NULL;
2540 dev->dv_bus_suspend = NULL;
2541 dev->dv_bus_resume = NULL;
2542 dev->dv_bus_deregister = NULL;
2543 }
2544
2545 void *
2546 device_pmf_class_private(device_t dev)
2547 {
2548 return dev->dv_class_private;
2549 }
2550
2551 bool
2552 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2553 {
2554 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2555 return true;
2556 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2557 dev->dv_class_suspend != NULL &&
2558 !(*dev->dv_class_suspend)(dev, qual))
2559 return false;
2560
2561 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2562 return true;
2563 }
2564
2565 bool
2566 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2567 {
2568 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2569 return true;
2570 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2571 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2572 return false;
2573 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2574 dev->dv_class_resume != NULL &&
2575 !(*dev->dv_class_resume)(dev, qual))
2576 return false;
2577
2578 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2579 return true;
2580 }
2581
2582 void
2583 device_pmf_class_register(device_t dev, void *priv,
2584 bool (*suspend)(device_t, const pmf_qual_t *),
2585 bool (*resume)(device_t, const pmf_qual_t *),
2586 void (*deregister)(device_t))
2587 {
2588 dev->dv_class_private = priv;
2589 dev->dv_class_suspend = suspend;
2590 dev->dv_class_resume = resume;
2591 dev->dv_class_deregister = deregister;
2592 }
2593
2594 void
2595 device_pmf_class_deregister(device_t dev)
2596 {
2597 if (dev->dv_class_deregister == NULL)
2598 return;
2599 (*dev->dv_class_deregister)(dev);
2600 dev->dv_class_private = NULL;
2601 dev->dv_class_suspend = NULL;
2602 dev->dv_class_resume = NULL;
2603 dev->dv_class_deregister = NULL;
2604 }
2605
2606 bool
2607 device_active(device_t dev, devactive_t type)
2608 {
2609 size_t i;
2610
2611 if (dev->dv_activity_count == 0)
2612 return false;
2613
2614 for (i = 0; i < dev->dv_activity_count; ++i) {
2615 if (dev->dv_activity_handlers[i] == NULL)
2616 break;
2617 (*dev->dv_activity_handlers[i])(dev, type);
2618 }
2619
2620 return true;
2621 }
2622
2623 bool
2624 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2625 {
2626 void (**new_handlers)(device_t, devactive_t);
2627 void (**old_handlers)(device_t, devactive_t);
2628 size_t i, old_size, new_size;
2629 int s;
2630
2631 old_handlers = dev->dv_activity_handlers;
2632 old_size = dev->dv_activity_count;
2633
2634 KASSERT(old_size == 0 || old_handlers != NULL);
2635
2636 for (i = 0; i < old_size; ++i) {
2637 KASSERT(old_handlers[i] != handler);
2638 if (old_handlers[i] == NULL) {
2639 old_handlers[i] = handler;
2640 return true;
2641 }
2642 }
2643
2644 new_size = old_size + 4;
2645 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2646
2647 for (i = 0; i < old_size; ++i)
2648 new_handlers[i] = old_handlers[i];
2649 new_handlers[old_size] = handler;
2650 for (i = old_size+1; i < new_size; ++i)
2651 new_handlers[i] = NULL;
2652
2653 s = splhigh();
2654 dev->dv_activity_count = new_size;
2655 dev->dv_activity_handlers = new_handlers;
2656 splx(s);
2657
2658 if (old_size > 0)
2659 kmem_free(old_handlers, sizeof(void * [old_size]));
2660
2661 return true;
2662 }
2663
2664 void
2665 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2666 {
2667 void (**old_handlers)(device_t, devactive_t);
2668 size_t i, old_size;
2669 int s;
2670
2671 old_handlers = dev->dv_activity_handlers;
2672 old_size = dev->dv_activity_count;
2673
2674 for (i = 0; i < old_size; ++i) {
2675 if (old_handlers[i] == handler)
2676 break;
2677 if (old_handlers[i] == NULL)
2678 return; /* XXX panic? */
2679 }
2680
2681 if (i == old_size)
2682 return; /* XXX panic? */
2683
2684 for (; i < old_size - 1; ++i) {
2685 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2686 continue;
2687
2688 if (i == 0) {
2689 s = splhigh();
2690 dev->dv_activity_count = 0;
2691 dev->dv_activity_handlers = NULL;
2692 splx(s);
2693 kmem_free(old_handlers, sizeof(void *[old_size]));
2694 }
2695 return;
2696 }
2697 old_handlers[i] = NULL;
2698 }
2699
2700 /* Return true iff the device_t `dev' exists at generation `gen'. */
2701 static bool
2702 device_exists_at(device_t dv, devgen_t gen)
2703 {
2704 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2705 dv->dv_add_gen <= gen;
2706 }
2707
2708 static bool
2709 deviter_visits(const deviter_t *di, device_t dv)
2710 {
2711 return device_exists_at(dv, di->di_gen);
2712 }
2713
2714 /*
2715 * Device Iteration
2716 *
2717 * deviter_t: a device iterator. Holds state for a "walk" visiting
2718 * each device_t's in the device tree.
2719 *
2720 * deviter_init(di, flags): initialize the device iterator `di'
2721 * to "walk" the device tree. deviter_next(di) will return
2722 * the first device_t in the device tree, or NULL if there are
2723 * no devices.
2724 *
2725 * `flags' is one or more of DEVITER_F_RW, indicating that the
2726 * caller intends to modify the device tree by calling
2727 * config_detach(9) on devices in the order that the iterator
2728 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2729 * nearest the "root" of the device tree to be returned, first;
2730 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2731 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2732 * indicating both that deviter_init() should not respect any
2733 * locks on the device tree, and that deviter_next(di) may run
2734 * in more than one LWP before the walk has finished.
2735 *
2736 * Only one DEVITER_F_RW iterator may be in the device tree at
2737 * once.
2738 *
2739 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2740 *
2741 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2742 * DEVITER_F_LEAVES_FIRST are used in combination.
2743 *
2744 * deviter_first(di, flags): initialize the device iterator `di'
2745 * and return the first device_t in the device tree, or NULL
2746 * if there are no devices. The statement
2747 *
2748 * dv = deviter_first(di);
2749 *
2750 * is shorthand for
2751 *
2752 * deviter_init(di);
2753 * dv = deviter_next(di);
2754 *
2755 * deviter_next(di): return the next device_t in the device tree,
2756 * or NULL if there are no more devices. deviter_next(di)
2757 * is undefined if `di' was not initialized with deviter_init() or
2758 * deviter_first().
2759 *
2760 * deviter_release(di): stops iteration (subsequent calls to
2761 * deviter_next() will return NULL), releases any locks and
2762 * resources held by the device iterator.
2763 *
2764 * Device iteration does not return device_t's in any particular
2765 * order. An iterator will never return the same device_t twice.
2766 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2767 * is called repeatedly on the same `di', it will eventually return
2768 * NULL. It is ok to attach/detach devices during device iteration.
2769 */
2770 void
2771 deviter_init(deviter_t *di, deviter_flags_t flags)
2772 {
2773 device_t dv;
2774
2775 memset(di, 0, sizeof(*di));
2776
2777 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2778 flags |= DEVITER_F_RW;
2779
2780 mutex_enter(&alldevs.lock);
2781 if ((flags & DEVITER_F_RW) != 0)
2782 alldevs.nwrite++;
2783 else
2784 alldevs.nread++;
2785 di->di_gen = alldevs.gen++;
2786 di->di_flags = flags;
2787
2788 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2789 case DEVITER_F_LEAVES_FIRST:
2790 TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
2791 if (!deviter_visits(di, dv))
2792 continue;
2793 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2794 }
2795 break;
2796 case DEVITER_F_ROOT_FIRST:
2797 TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
2798 if (!deviter_visits(di, dv))
2799 continue;
2800 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2801 }
2802 break;
2803 default:
2804 break;
2805 }
2806
2807 deviter_reinit(di);
2808 mutex_exit(&alldevs.lock);
2809 }
2810
2811 static void
2812 deviter_reinit(deviter_t *di)
2813 {
2814
2815 KASSERT(mutex_owned(&alldevs.lock));
2816 if ((di->di_flags & DEVITER_F_RW) != 0)
2817 di->di_prev = TAILQ_LAST(&alldevs.list, devicelist);
2818 else
2819 di->di_prev = TAILQ_FIRST(&alldevs.list);
2820 }
2821
2822 device_t
2823 deviter_first(deviter_t *di, deviter_flags_t flags)
2824 {
2825
2826 deviter_init(di, flags);
2827 return deviter_next(di);
2828 }
2829
2830 static device_t
2831 deviter_next2(deviter_t *di)
2832 {
2833 device_t dv;
2834
2835 KASSERT(mutex_owned(&alldevs.lock));
2836
2837 dv = di->di_prev;
2838
2839 if (dv == NULL)
2840 return NULL;
2841
2842 if ((di->di_flags & DEVITER_F_RW) != 0)
2843 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2844 else
2845 di->di_prev = TAILQ_NEXT(dv, dv_list);
2846
2847 return dv;
2848 }
2849
2850 static device_t
2851 deviter_next1(deviter_t *di)
2852 {
2853 device_t dv;
2854
2855 KASSERT(mutex_owned(&alldevs.lock));
2856
2857 do {
2858 dv = deviter_next2(di);
2859 } while (dv != NULL && !deviter_visits(di, dv));
2860
2861 return dv;
2862 }
2863
2864 device_t
2865 deviter_next(deviter_t *di)
2866 {
2867 device_t dv = NULL;
2868
2869 mutex_enter(&alldevs.lock);
2870 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2871 case 0:
2872 dv = deviter_next1(di);
2873 break;
2874 case DEVITER_F_LEAVES_FIRST:
2875 while (di->di_curdepth >= 0) {
2876 if ((dv = deviter_next1(di)) == NULL) {
2877 di->di_curdepth--;
2878 deviter_reinit(di);
2879 } else if (dv->dv_depth == di->di_curdepth)
2880 break;
2881 }
2882 break;
2883 case DEVITER_F_ROOT_FIRST:
2884 while (di->di_curdepth <= di->di_maxdepth) {
2885 if ((dv = deviter_next1(di)) == NULL) {
2886 di->di_curdepth++;
2887 deviter_reinit(di);
2888 } else if (dv->dv_depth == di->di_curdepth)
2889 break;
2890 }
2891 break;
2892 default:
2893 break;
2894 }
2895 mutex_exit(&alldevs.lock);
2896
2897 return dv;
2898 }
2899
2900 void
2901 deviter_release(deviter_t *di)
2902 {
2903 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2904
2905 mutex_enter(&alldevs.lock);
2906 if (rw)
2907 --alldevs.nwrite;
2908 else
2909 --alldevs.nread;
2910 /* XXX wake a garbage-collection thread */
2911 mutex_exit(&alldevs.lock);
2912 }
2913
2914 const char *
2915 cfdata_ifattr(const struct cfdata *cf)
2916 {
2917 return cf->cf_pspec->cfp_iattr;
2918 }
2919
2920 bool
2921 ifattr_match(const char *snull, const char *t)
2922 {
2923 return (snull == NULL) || strcmp(snull, t) == 0;
2924 }
2925
2926 void
2927 null_childdetached(device_t self, device_t child)
2928 {
2929 /* do nothing */
2930 }
2931
2932 static void
2933 sysctl_detach_setup(struct sysctllog **clog)
2934 {
2935
2936 sysctl_createv(clog, 0, NULL, NULL,
2937 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2938 CTLTYPE_BOOL, "detachall",
2939 SYSCTL_DESCR("Detach all devices at shutdown"),
2940 NULL, 0, &detachall, 0,
2941 CTL_KERN, CTL_CREATE, CTL_EOL);
2942 }
2943