subr_autoconf.c revision 1.230.2.1 1 /* $NetBSD: subr_autoconf.c,v 1.230.2.1 2014/04/07 02:20:00 tls Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.230.2.1 2014/04/07 02:20:00 tls Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110
111 #include <sys/disk.h>
112
113 #include <sys/rnd.h>
114
115 #include <machine/limits.h>
116
117 /*
118 * Autoconfiguration subroutines.
119 */
120
121 /*
122 * Device autoconfiguration timings are mixed into the entropy pool.
123 */
124 extern krndsource_t rnd_autoconf_source;
125
126 /*
127 * ioconf.c exports exactly two names: cfdata and cfroots. All system
128 * devices and drivers are found via these tables.
129 */
130 extern struct cfdata cfdata[];
131 extern const short cfroots[];
132
133 /*
134 * List of all cfdriver structures. We use this to detect duplicates
135 * when other cfdrivers are loaded.
136 */
137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
138 extern struct cfdriver * const cfdriver_list_initial[];
139
140 /*
141 * Initial list of cfattach's.
142 */
143 extern const struct cfattachinit cfattachinit[];
144
145 /*
146 * List of cfdata tables. We always have one such list -- the one
147 * built statically when the kernel was configured.
148 */
149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
150 static struct cftable initcftable;
151
152 #define ROOT ((device_t)NULL)
153
154 struct matchinfo {
155 cfsubmatch_t fn;
156 device_t parent;
157 const int *locs;
158 void *aux;
159 struct cfdata *match;
160 int pri;
161 };
162
163 struct alldevs_foray {
164 int af_s;
165 struct devicelist af_garbage;
166 };
167
168 static char *number(char *, int);
169 static void mapply(struct matchinfo *, cfdata_t);
170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
171 static void config_devdelete(device_t);
172 static void config_devunlink(device_t, struct devicelist *);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_alldevs_unlock(int);
176 static int config_alldevs_lock(void);
177 static void config_alldevs_enter(struct alldevs_foray *);
178 static void config_alldevs_exit(struct alldevs_foray *);
179 static void config_add_attrib_dict(device_t);
180
181 static void config_collect_garbage(struct devicelist *);
182 static void config_dump_garbage(struct devicelist *);
183
184 static void pmflock_debug(device_t, const char *, int);
185
186 static device_t deviter_next1(deviter_t *);
187 static void deviter_reinit(deviter_t *);
188
189 struct deferred_config {
190 TAILQ_ENTRY(deferred_config) dc_queue;
191 device_t dc_dev;
192 void (*dc_func)(device_t);
193 };
194
195 TAILQ_HEAD(deferred_config_head, deferred_config);
196
197 struct deferred_config_head deferred_config_queue =
198 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
199 struct deferred_config_head interrupt_config_queue =
200 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
201 int interrupt_config_threads = 8;
202 struct deferred_config_head mountroot_config_queue =
203 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
204 int mountroot_config_threads = 2;
205 static bool root_is_mounted = false;
206
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 TAILQ_ENTRY(finalize_hook) f_list;
212 int (*f_func)(device_t);
213 device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218
219 /* list of all devices */
220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
221 static kmutex_t alldevs_mtx;
222 static volatile bool alldevs_garbage = false;
223 static volatile devgen_t alldevs_gen = 1;
224 static volatile int alldevs_nread = 0;
225 static volatile int alldevs_nwrite = 0;
226
227 static int config_pending; /* semaphore for mountroot */
228 static kmutex_t config_misc_lock;
229 static kcondvar_t config_misc_cv;
230
231 static bool detachall = false;
232
233 #define STREQ(s1, s2) \
234 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
235
236 static bool config_initialized = false; /* config_init() has been called. */
237
238 static int config_do_twiddle;
239 static callout_t config_twiddle_ch;
240
241 static void sysctl_detach_setup(struct sysctllog **);
242
243 typedef int (*cfdriver_fn)(struct cfdriver *);
244 static int
245 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
246 cfdriver_fn drv_do, cfdriver_fn drv_undo,
247 const char *style, bool dopanic)
248 {
249 void (*pr)(const char *, ...) __printflike(1, 2) =
250 dopanic ? panic : printf;
251 int i, error = 0, e2 __diagused;
252
253 for (i = 0; cfdriverv[i] != NULL; i++) {
254 if ((error = drv_do(cfdriverv[i])) != 0) {
255 pr("configure: `%s' driver %s failed: %d",
256 cfdriverv[i]->cd_name, style, error);
257 goto bad;
258 }
259 }
260
261 KASSERT(error == 0);
262 return 0;
263
264 bad:
265 printf("\n");
266 for (i--; i >= 0; i--) {
267 e2 = drv_undo(cfdriverv[i]);
268 KASSERT(e2 == 0);
269 }
270
271 return error;
272 }
273
274 typedef int (*cfattach_fn)(const char *, struct cfattach *);
275 static int
276 frob_cfattachvec(const struct cfattachinit *cfattachv,
277 cfattach_fn att_do, cfattach_fn att_undo,
278 const char *style, bool dopanic)
279 {
280 const struct cfattachinit *cfai = NULL;
281 void (*pr)(const char *, ...) __printflike(1, 2) =
282 dopanic ? panic : printf;
283 int j = 0, error = 0, e2 __diagused;
284
285 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
286 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
287 if ((error = att_do(cfai->cfai_name,
288 cfai->cfai_list[j])) != 0) {
289 pr("configure: attachment `%s' "
290 "of `%s' driver %s failed: %d",
291 cfai->cfai_list[j]->ca_name,
292 cfai->cfai_name, style, error);
293 goto bad;
294 }
295 }
296 }
297
298 KASSERT(error == 0);
299 return 0;
300
301 bad:
302 /*
303 * Rollback in reverse order. dunno if super-important, but
304 * do that anyway. Although the code looks a little like
305 * someone did a little integration (in the math sense).
306 */
307 printf("\n");
308 if (cfai) {
309 bool last;
310
311 for (last = false; last == false; ) {
312 if (cfai == &cfattachv[0])
313 last = true;
314 for (j--; j >= 0; j--) {
315 e2 = att_undo(cfai->cfai_name,
316 cfai->cfai_list[j]);
317 KASSERT(e2 == 0);
318 }
319 if (!last) {
320 cfai--;
321 for (j = 0; cfai->cfai_list[j] != NULL; j++)
322 ;
323 }
324 }
325 }
326
327 return error;
328 }
329
330 /*
331 * Initialize the autoconfiguration data structures. Normally this
332 * is done by configure(), but some platforms need to do this very
333 * early (to e.g. initialize the console).
334 */
335 void
336 config_init(void)
337 {
338
339 KASSERT(config_initialized == false);
340
341 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
342
343 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
344 cv_init(&config_misc_cv, "cfgmisc");
345
346 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
347
348 frob_cfdrivervec(cfdriver_list_initial,
349 config_cfdriver_attach, NULL, "bootstrap", true);
350 frob_cfattachvec(cfattachinit,
351 config_cfattach_attach, NULL, "bootstrap", true);
352
353 initcftable.ct_cfdata = cfdata;
354 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
355
356 config_initialized = true;
357 }
358
359 /*
360 * Init or fini drivers and attachments. Either all or none
361 * are processed (via rollback). It would be nice if this were
362 * atomic to outside consumers, but with the current state of
363 * locking ...
364 */
365 int
366 config_init_component(struct cfdriver * const *cfdriverv,
367 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
368 {
369 int error;
370
371 if ((error = frob_cfdrivervec(cfdriverv,
372 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
373 return error;
374 if ((error = frob_cfattachvec(cfattachv,
375 config_cfattach_attach, config_cfattach_detach,
376 "init", false)) != 0) {
377 frob_cfdrivervec(cfdriverv,
378 config_cfdriver_detach, NULL, "init rollback", true);
379 return error;
380 }
381 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
382 frob_cfattachvec(cfattachv,
383 config_cfattach_detach, NULL, "init rollback", true);
384 frob_cfdrivervec(cfdriverv,
385 config_cfdriver_detach, NULL, "init rollback", true);
386 return error;
387 }
388
389 return 0;
390 }
391
392 int
393 config_fini_component(struct cfdriver * const *cfdriverv,
394 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
395 {
396 int error;
397
398 if ((error = config_cfdata_detach(cfdatav)) != 0)
399 return error;
400 if ((error = frob_cfattachvec(cfattachv,
401 config_cfattach_detach, config_cfattach_attach,
402 "fini", false)) != 0) {
403 if (config_cfdata_attach(cfdatav, 0) != 0)
404 panic("config_cfdata fini rollback failed");
405 return error;
406 }
407 if ((error = frob_cfdrivervec(cfdriverv,
408 config_cfdriver_detach, config_cfdriver_attach,
409 "fini", false)) != 0) {
410 frob_cfattachvec(cfattachv,
411 config_cfattach_attach, NULL, "fini rollback", true);
412 if (config_cfdata_attach(cfdatav, 0) != 0)
413 panic("config_cfdata fini rollback failed");
414 return error;
415 }
416
417 return 0;
418 }
419
420 void
421 config_init_mi(void)
422 {
423
424 if (!config_initialized)
425 config_init();
426
427 sysctl_detach_setup(NULL);
428 }
429
430 void
431 config_deferred(device_t dev)
432 {
433 config_process_deferred(&deferred_config_queue, dev);
434 config_process_deferred(&interrupt_config_queue, dev);
435 config_process_deferred(&mountroot_config_queue, dev);
436 }
437
438 static void
439 config_interrupts_thread(void *cookie)
440 {
441 struct deferred_config *dc;
442
443 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
444 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
445 (*dc->dc_func)(dc->dc_dev);
446 config_pending_decr(dc->dc_dev);
447 kmem_free(dc, sizeof(*dc));
448 }
449 kthread_exit(0);
450 }
451
452 void
453 config_create_interruptthreads(void)
454 {
455 int i;
456
457 for (i = 0; i < interrupt_config_threads; i++) {
458 (void)kthread_create(PRI_NONE, 0, NULL,
459 config_interrupts_thread, NULL, NULL, "configintr");
460 }
461 }
462
463 static void
464 config_mountroot_thread(void *cookie)
465 {
466 struct deferred_config *dc;
467
468 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
469 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
470 (*dc->dc_func)(dc->dc_dev);
471 kmem_free(dc, sizeof(*dc));
472 }
473 kthread_exit(0);
474 }
475
476 void
477 config_create_mountrootthreads(void)
478 {
479 int i;
480
481 if (!root_is_mounted)
482 root_is_mounted = true;
483
484 for (i = 0; i < mountroot_config_threads; i++) {
485 (void)kthread_create(PRI_NONE, 0, NULL,
486 config_mountroot_thread, NULL, NULL, "configroot");
487 }
488 }
489
490 /*
491 * Announce device attach/detach to userland listeners.
492 */
493 static void
494 devmon_report_device(device_t dev, bool isattach)
495 {
496 #if NDRVCTL > 0
497 prop_dictionary_t ev;
498 const char *parent;
499 const char *what;
500 device_t pdev = device_parent(dev);
501
502 ev = prop_dictionary_create();
503 if (ev == NULL)
504 return;
505
506 what = (isattach ? "device-attach" : "device-detach");
507 parent = (pdev == NULL ? "root" : device_xname(pdev));
508 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
509 !prop_dictionary_set_cstring(ev, "parent", parent)) {
510 prop_object_release(ev);
511 return;
512 }
513
514 devmon_insert(what, ev);
515 #endif
516 }
517
518 /*
519 * Add a cfdriver to the system.
520 */
521 int
522 config_cfdriver_attach(struct cfdriver *cd)
523 {
524 struct cfdriver *lcd;
525
526 /* Make sure this driver isn't already in the system. */
527 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
528 if (STREQ(lcd->cd_name, cd->cd_name))
529 return EEXIST;
530 }
531
532 LIST_INIT(&cd->cd_attach);
533 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
534
535 return 0;
536 }
537
538 /*
539 * Remove a cfdriver from the system.
540 */
541 int
542 config_cfdriver_detach(struct cfdriver *cd)
543 {
544 struct alldevs_foray af;
545 int i, rc = 0;
546
547 config_alldevs_enter(&af);
548 /* Make sure there are no active instances. */
549 for (i = 0; i < cd->cd_ndevs; i++) {
550 if (cd->cd_devs[i] != NULL) {
551 rc = EBUSY;
552 break;
553 }
554 }
555 config_alldevs_exit(&af);
556
557 if (rc != 0)
558 return rc;
559
560 /* ...and no attachments loaded. */
561 if (LIST_EMPTY(&cd->cd_attach) == 0)
562 return EBUSY;
563
564 LIST_REMOVE(cd, cd_list);
565
566 KASSERT(cd->cd_devs == NULL);
567
568 return 0;
569 }
570
571 /*
572 * Look up a cfdriver by name.
573 */
574 struct cfdriver *
575 config_cfdriver_lookup(const char *name)
576 {
577 struct cfdriver *cd;
578
579 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
580 if (STREQ(cd->cd_name, name))
581 return cd;
582 }
583
584 return NULL;
585 }
586
587 /*
588 * Add a cfattach to the specified driver.
589 */
590 int
591 config_cfattach_attach(const char *driver, struct cfattach *ca)
592 {
593 struct cfattach *lca;
594 struct cfdriver *cd;
595
596 cd = config_cfdriver_lookup(driver);
597 if (cd == NULL)
598 return ESRCH;
599
600 /* Make sure this attachment isn't already on this driver. */
601 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
602 if (STREQ(lca->ca_name, ca->ca_name))
603 return EEXIST;
604 }
605
606 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
607
608 return 0;
609 }
610
611 /*
612 * Remove a cfattach from the specified driver.
613 */
614 int
615 config_cfattach_detach(const char *driver, struct cfattach *ca)
616 {
617 struct alldevs_foray af;
618 struct cfdriver *cd;
619 device_t dev;
620 int i, rc = 0;
621
622 cd = config_cfdriver_lookup(driver);
623 if (cd == NULL)
624 return ESRCH;
625
626 config_alldevs_enter(&af);
627 /* Make sure there are no active instances. */
628 for (i = 0; i < cd->cd_ndevs; i++) {
629 if ((dev = cd->cd_devs[i]) == NULL)
630 continue;
631 if (dev->dv_cfattach == ca) {
632 rc = EBUSY;
633 break;
634 }
635 }
636 config_alldevs_exit(&af);
637
638 if (rc != 0)
639 return rc;
640
641 LIST_REMOVE(ca, ca_list);
642
643 return 0;
644 }
645
646 /*
647 * Look up a cfattach by name.
648 */
649 static struct cfattach *
650 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
651 {
652 struct cfattach *ca;
653
654 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
655 if (STREQ(ca->ca_name, atname))
656 return ca;
657 }
658
659 return NULL;
660 }
661
662 /*
663 * Look up a cfattach by driver/attachment name.
664 */
665 struct cfattach *
666 config_cfattach_lookup(const char *name, const char *atname)
667 {
668 struct cfdriver *cd;
669
670 cd = config_cfdriver_lookup(name);
671 if (cd == NULL)
672 return NULL;
673
674 return config_cfattach_lookup_cd(cd, atname);
675 }
676
677 /*
678 * Apply the matching function and choose the best. This is used
679 * a few times and we want to keep the code small.
680 */
681 static void
682 mapply(struct matchinfo *m, cfdata_t cf)
683 {
684 int pri;
685
686 if (m->fn != NULL) {
687 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
688 } else {
689 pri = config_match(m->parent, cf, m->aux);
690 }
691 if (pri > m->pri) {
692 m->match = cf;
693 m->pri = pri;
694 }
695 }
696
697 int
698 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
699 {
700 const struct cfiattrdata *ci;
701 const struct cflocdesc *cl;
702 int nlocs, i;
703
704 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
705 KASSERT(ci);
706 nlocs = ci->ci_loclen;
707 KASSERT(!nlocs || locs);
708 for (i = 0; i < nlocs; i++) {
709 cl = &ci->ci_locdesc[i];
710 /* !cld_defaultstr means no default value */
711 if ((!(cl->cld_defaultstr)
712 || (cf->cf_loc[i] != cl->cld_default))
713 && cf->cf_loc[i] != locs[i])
714 return 0;
715 }
716
717 return config_match(parent, cf, aux);
718 }
719
720 /*
721 * Helper function: check whether the driver supports the interface attribute
722 * and return its descriptor structure.
723 */
724 static const struct cfiattrdata *
725 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
726 {
727 const struct cfiattrdata * const *cpp;
728
729 if (cd->cd_attrs == NULL)
730 return 0;
731
732 for (cpp = cd->cd_attrs; *cpp; cpp++) {
733 if (STREQ((*cpp)->ci_name, ia)) {
734 /* Match. */
735 return *cpp;
736 }
737 }
738 return 0;
739 }
740
741 /*
742 * Lookup an interface attribute description by name.
743 * If the driver is given, consider only its supported attributes.
744 */
745 const struct cfiattrdata *
746 cfiattr_lookup(const char *name, const struct cfdriver *cd)
747 {
748 const struct cfdriver *d;
749 const struct cfiattrdata *ia;
750
751 if (cd)
752 return cfdriver_get_iattr(cd, name);
753
754 LIST_FOREACH(d, &allcfdrivers, cd_list) {
755 ia = cfdriver_get_iattr(d, name);
756 if (ia)
757 return ia;
758 }
759 return 0;
760 }
761
762 /*
763 * Determine if `parent' is a potential parent for a device spec based
764 * on `cfp'.
765 */
766 static int
767 cfparent_match(const device_t parent, const struct cfparent *cfp)
768 {
769 struct cfdriver *pcd;
770
771 /* We don't match root nodes here. */
772 if (cfp == NULL)
773 return 0;
774
775 pcd = parent->dv_cfdriver;
776 KASSERT(pcd != NULL);
777
778 /*
779 * First, ensure this parent has the correct interface
780 * attribute.
781 */
782 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
783 return 0;
784
785 /*
786 * If no specific parent device instance was specified (i.e.
787 * we're attaching to the attribute only), we're done!
788 */
789 if (cfp->cfp_parent == NULL)
790 return 1;
791
792 /*
793 * Check the parent device's name.
794 */
795 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
796 return 0; /* not the same parent */
797
798 /*
799 * Make sure the unit number matches.
800 */
801 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
802 cfp->cfp_unit == parent->dv_unit)
803 return 1;
804
805 /* Unit numbers don't match. */
806 return 0;
807 }
808
809 /*
810 * Helper for config_cfdata_attach(): check all devices whether it could be
811 * parent any attachment in the config data table passed, and rescan.
812 */
813 static void
814 rescan_with_cfdata(const struct cfdata *cf)
815 {
816 device_t d;
817 const struct cfdata *cf1;
818 deviter_t di;
819
820
821 /*
822 * "alldevs" is likely longer than a modules's cfdata, so make it
823 * the outer loop.
824 */
825 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
826
827 if (!(d->dv_cfattach->ca_rescan))
828 continue;
829
830 for (cf1 = cf; cf1->cf_name; cf1++) {
831
832 if (!cfparent_match(d, cf1->cf_pspec))
833 continue;
834
835 (*d->dv_cfattach->ca_rescan)(d,
836 cfdata_ifattr(cf1), cf1->cf_loc);
837
838 config_deferred(d);
839 }
840 }
841 deviter_release(&di);
842 }
843
844 /*
845 * Attach a supplemental config data table and rescan potential
846 * parent devices if required.
847 */
848 int
849 config_cfdata_attach(cfdata_t cf, int scannow)
850 {
851 struct cftable *ct;
852
853 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
854 ct->ct_cfdata = cf;
855 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
856
857 if (scannow)
858 rescan_with_cfdata(cf);
859
860 return 0;
861 }
862
863 /*
864 * Helper for config_cfdata_detach: check whether a device is
865 * found through any attachment in the config data table.
866 */
867 static int
868 dev_in_cfdata(device_t d, cfdata_t cf)
869 {
870 const struct cfdata *cf1;
871
872 for (cf1 = cf; cf1->cf_name; cf1++)
873 if (d->dv_cfdata == cf1)
874 return 1;
875
876 return 0;
877 }
878
879 /*
880 * Detach a supplemental config data table. Detach all devices found
881 * through that table (and thus keeping references to it) before.
882 */
883 int
884 config_cfdata_detach(cfdata_t cf)
885 {
886 device_t d;
887 int error = 0;
888 struct cftable *ct;
889 deviter_t di;
890
891 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
892 d = deviter_next(&di)) {
893 if (!dev_in_cfdata(d, cf))
894 continue;
895 if ((error = config_detach(d, 0)) != 0)
896 break;
897 }
898 deviter_release(&di);
899 if (error) {
900 aprint_error_dev(d, "unable to detach instance\n");
901 return error;
902 }
903
904 TAILQ_FOREACH(ct, &allcftables, ct_list) {
905 if (ct->ct_cfdata == cf) {
906 TAILQ_REMOVE(&allcftables, ct, ct_list);
907 kmem_free(ct, sizeof(*ct));
908 return 0;
909 }
910 }
911
912 /* not found -- shouldn't happen */
913 return EINVAL;
914 }
915
916 /*
917 * Invoke the "match" routine for a cfdata entry on behalf of
918 * an external caller, usually a "submatch" routine.
919 */
920 int
921 config_match(device_t parent, cfdata_t cf, void *aux)
922 {
923 struct cfattach *ca;
924
925 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
926 if (ca == NULL) {
927 /* No attachment for this entry, oh well. */
928 return 0;
929 }
930
931 return (*ca->ca_match)(parent, cf, aux);
932 }
933
934 /*
935 * Iterate over all potential children of some device, calling the given
936 * function (default being the child's match function) for each one.
937 * Nonzero returns are matches; the highest value returned is considered
938 * the best match. Return the `found child' if we got a match, or NULL
939 * otherwise. The `aux' pointer is simply passed on through.
940 *
941 * Note that this function is designed so that it can be used to apply
942 * an arbitrary function to all potential children (its return value
943 * can be ignored).
944 */
945 cfdata_t
946 config_search_loc(cfsubmatch_t fn, device_t parent,
947 const char *ifattr, const int *locs, void *aux)
948 {
949 struct cftable *ct;
950 cfdata_t cf;
951 struct matchinfo m;
952
953 KASSERT(config_initialized);
954 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
955
956 m.fn = fn;
957 m.parent = parent;
958 m.locs = locs;
959 m.aux = aux;
960 m.match = NULL;
961 m.pri = 0;
962
963 TAILQ_FOREACH(ct, &allcftables, ct_list) {
964 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
965
966 /* We don't match root nodes here. */
967 if (!cf->cf_pspec)
968 continue;
969
970 /*
971 * Skip cf if no longer eligible, otherwise scan
972 * through parents for one matching `parent', and
973 * try match function.
974 */
975 if (cf->cf_fstate == FSTATE_FOUND)
976 continue;
977 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
978 cf->cf_fstate == FSTATE_DSTAR)
979 continue;
980
981 /*
982 * If an interface attribute was specified,
983 * consider only children which attach to
984 * that attribute.
985 */
986 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
987 continue;
988
989 if (cfparent_match(parent, cf->cf_pspec))
990 mapply(&m, cf);
991 }
992 }
993 return m.match;
994 }
995
996 cfdata_t
997 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
998 void *aux)
999 {
1000
1001 return config_search_loc(fn, parent, ifattr, NULL, aux);
1002 }
1003
1004 /*
1005 * Find the given root device.
1006 * This is much like config_search, but there is no parent.
1007 * Don't bother with multiple cfdata tables; the root node
1008 * must always be in the initial table.
1009 */
1010 cfdata_t
1011 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1012 {
1013 cfdata_t cf;
1014 const short *p;
1015 struct matchinfo m;
1016
1017 m.fn = fn;
1018 m.parent = ROOT;
1019 m.aux = aux;
1020 m.match = NULL;
1021 m.pri = 0;
1022 m.locs = 0;
1023 /*
1024 * Look at root entries for matching name. We do not bother
1025 * with found-state here since only one root should ever be
1026 * searched (and it must be done first).
1027 */
1028 for (p = cfroots; *p >= 0; p++) {
1029 cf = &cfdata[*p];
1030 if (strcmp(cf->cf_name, rootname) == 0)
1031 mapply(&m, cf);
1032 }
1033 return m.match;
1034 }
1035
1036 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1037
1038 /*
1039 * The given `aux' argument describes a device that has been found
1040 * on the given parent, but not necessarily configured. Locate the
1041 * configuration data for that device (using the submatch function
1042 * provided, or using candidates' cd_match configuration driver
1043 * functions) and attach it, and return its device_t. If the device was
1044 * not configured, call the given `print' function and return NULL.
1045 */
1046 device_t
1047 config_found_sm_loc(device_t parent,
1048 const char *ifattr, const int *locs, void *aux,
1049 cfprint_t print, cfsubmatch_t submatch)
1050 {
1051 cfdata_t cf;
1052
1053 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1054 return(config_attach_loc(parent, cf, locs, aux, print));
1055 if (print) {
1056 if (config_do_twiddle && cold)
1057 twiddle();
1058 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1059 }
1060
1061 /*
1062 * This has the effect of mixing in a single timestamp to the
1063 * entropy pool. Experiments indicate the estimator will almost
1064 * always attribute one bit of entropy to this sample; analysis
1065 * of device attach/detach timestamps on FreeBSD indicates 4
1066 * bits of entropy/sample so this seems appropriately conservative.
1067 */
1068 rnd_add_uint32(&rnd_autoconf_source, 0);
1069 return NULL;
1070 }
1071
1072 device_t
1073 config_found_ia(device_t parent, const char *ifattr, void *aux,
1074 cfprint_t print)
1075 {
1076
1077 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1078 }
1079
1080 device_t
1081 config_found(device_t parent, void *aux, cfprint_t print)
1082 {
1083
1084 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1085 }
1086
1087 /*
1088 * As above, but for root devices.
1089 */
1090 device_t
1091 config_rootfound(const char *rootname, void *aux)
1092 {
1093 cfdata_t cf;
1094
1095 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1096 return config_attach(ROOT, cf, aux, NULL);
1097 aprint_error("root device %s not configured\n", rootname);
1098 return NULL;
1099 }
1100
1101 /* just like sprintf(buf, "%d") except that it works from the end */
1102 static char *
1103 number(char *ep, int n)
1104 {
1105
1106 *--ep = 0;
1107 while (n >= 10) {
1108 *--ep = (n % 10) + '0';
1109 n /= 10;
1110 }
1111 *--ep = n + '0';
1112 return ep;
1113 }
1114
1115 /*
1116 * Expand the size of the cd_devs array if necessary.
1117 *
1118 * The caller must hold alldevs_mtx. config_makeroom() may release and
1119 * re-acquire alldevs_mtx, so callers should re-check conditions such
1120 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1121 * returns.
1122 */
1123 static void
1124 config_makeroom(int n, struct cfdriver *cd)
1125 {
1126 int old, new;
1127 device_t *osp, *nsp;
1128
1129 alldevs_nwrite++;
1130
1131 for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
1132 ;
1133
1134 while (n >= cd->cd_ndevs) {
1135 /*
1136 * Need to expand the array.
1137 */
1138 old = cd->cd_ndevs;
1139 osp = cd->cd_devs;
1140
1141 /* Release alldevs_mtx around allocation, which may
1142 * sleep.
1143 */
1144 mutex_exit(&alldevs_mtx);
1145 nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
1146 if (nsp == NULL)
1147 panic("%s: could not expand cd_devs", __func__);
1148 mutex_enter(&alldevs_mtx);
1149
1150 /* If another thread moved the array while we did
1151 * not hold alldevs_mtx, try again.
1152 */
1153 if (cd->cd_devs != osp) {
1154 mutex_exit(&alldevs_mtx);
1155 kmem_free(nsp, sizeof(device_t[new]));
1156 mutex_enter(&alldevs_mtx);
1157 continue;
1158 }
1159
1160 memset(nsp + old, 0, sizeof(device_t[new - old]));
1161 if (old != 0)
1162 memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
1163
1164 cd->cd_ndevs = new;
1165 cd->cd_devs = nsp;
1166 if (old != 0) {
1167 mutex_exit(&alldevs_mtx);
1168 kmem_free(osp, sizeof(device_t[old]));
1169 mutex_enter(&alldevs_mtx);
1170 }
1171 }
1172 alldevs_nwrite--;
1173 }
1174
1175 /*
1176 * Put dev into the devices list.
1177 */
1178 static void
1179 config_devlink(device_t dev)
1180 {
1181 int s;
1182
1183 s = config_alldevs_lock();
1184
1185 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1186
1187 dev->dv_add_gen = alldevs_gen;
1188 /* It is safe to add a device to the tail of the list while
1189 * readers and writers are in the list.
1190 */
1191 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1192 config_alldevs_unlock(s);
1193 }
1194
1195 static void
1196 config_devfree(device_t dev)
1197 {
1198 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1199
1200 if (dev->dv_cfattach->ca_devsize > 0)
1201 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1202 if (priv)
1203 kmem_free(dev, sizeof(*dev));
1204 }
1205
1206 /*
1207 * Caller must hold alldevs_mtx.
1208 */
1209 static void
1210 config_devunlink(device_t dev, struct devicelist *garbage)
1211 {
1212 struct device_garbage *dg = &dev->dv_garbage;
1213 cfdriver_t cd = device_cfdriver(dev);
1214 int i;
1215
1216 KASSERT(mutex_owned(&alldevs_mtx));
1217
1218 /* Unlink from device list. Link to garbage list. */
1219 TAILQ_REMOVE(&alldevs, dev, dv_list);
1220 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1221
1222 /* Remove from cfdriver's array. */
1223 cd->cd_devs[dev->dv_unit] = NULL;
1224
1225 /*
1226 * If the device now has no units in use, unlink its softc array.
1227 */
1228 for (i = 0; i < cd->cd_ndevs; i++) {
1229 if (cd->cd_devs[i] != NULL)
1230 break;
1231 }
1232 /* Nothing found. Unlink, now. Deallocate, later. */
1233 if (i == cd->cd_ndevs) {
1234 dg->dg_ndevs = cd->cd_ndevs;
1235 dg->dg_devs = cd->cd_devs;
1236 cd->cd_devs = NULL;
1237 cd->cd_ndevs = 0;
1238 }
1239 }
1240
1241 static void
1242 config_devdelete(device_t dev)
1243 {
1244 struct device_garbage *dg = &dev->dv_garbage;
1245 device_lock_t dvl = device_getlock(dev);
1246
1247 if (dg->dg_devs != NULL)
1248 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1249
1250 cv_destroy(&dvl->dvl_cv);
1251 mutex_destroy(&dvl->dvl_mtx);
1252
1253 KASSERT(dev->dv_properties != NULL);
1254 prop_object_release(dev->dv_properties);
1255
1256 if (dev->dv_activity_handlers)
1257 panic("%s with registered handlers", __func__);
1258
1259 if (dev->dv_locators) {
1260 size_t amount = *--dev->dv_locators;
1261 kmem_free(dev->dv_locators, amount);
1262 }
1263
1264 config_devfree(dev);
1265 }
1266
1267 static int
1268 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1269 {
1270 int unit;
1271
1272 if (cf->cf_fstate == FSTATE_STAR) {
1273 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1274 if (cd->cd_devs[unit] == NULL)
1275 break;
1276 /*
1277 * unit is now the unit of the first NULL device pointer,
1278 * or max(cd->cd_ndevs,cf->cf_unit).
1279 */
1280 } else {
1281 unit = cf->cf_unit;
1282 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1283 unit = -1;
1284 }
1285 return unit;
1286 }
1287
1288 static int
1289 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1290 {
1291 struct alldevs_foray af;
1292 int unit;
1293
1294 config_alldevs_enter(&af);
1295 for (;;) {
1296 unit = config_unit_nextfree(cd, cf);
1297 if (unit == -1)
1298 break;
1299 if (unit < cd->cd_ndevs) {
1300 cd->cd_devs[unit] = dev;
1301 dev->dv_unit = unit;
1302 break;
1303 }
1304 config_makeroom(unit, cd);
1305 }
1306 config_alldevs_exit(&af);
1307
1308 return unit;
1309 }
1310
1311 static device_t
1312 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1313 {
1314 cfdriver_t cd;
1315 cfattach_t ca;
1316 size_t lname, lunit;
1317 const char *xunit;
1318 int myunit;
1319 char num[10];
1320 device_t dev;
1321 void *dev_private;
1322 const struct cfiattrdata *ia;
1323 device_lock_t dvl;
1324
1325 cd = config_cfdriver_lookup(cf->cf_name);
1326 if (cd == NULL)
1327 return NULL;
1328
1329 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1330 if (ca == NULL)
1331 return NULL;
1332
1333 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1334 ca->ca_devsize < sizeof(struct device))
1335 panic("config_devalloc: %s (%zu < %zu)", cf->cf_atname,
1336 ca->ca_devsize, sizeof(struct device));
1337
1338 /* get memory for all device vars */
1339 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1340 if (ca->ca_devsize > 0) {
1341 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1342 if (dev_private == NULL)
1343 panic("config_devalloc: memory allocation for device softc failed");
1344 } else {
1345 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1346 dev_private = NULL;
1347 }
1348
1349 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1350 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1351 } else {
1352 dev = dev_private;
1353 #ifdef DIAGNOSTIC
1354 printf("%s has not been converted to device_t\n", cd->cd_name);
1355 #endif
1356 }
1357 if (dev == NULL)
1358 panic("config_devalloc: memory allocation for device_t failed");
1359
1360 dev->dv_class = cd->cd_class;
1361 dev->dv_cfdata = cf;
1362 dev->dv_cfdriver = cd;
1363 dev->dv_cfattach = ca;
1364 dev->dv_activity_count = 0;
1365 dev->dv_activity_handlers = NULL;
1366 dev->dv_private = dev_private;
1367 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1368
1369 myunit = config_unit_alloc(dev, cd, cf);
1370 if (myunit == -1) {
1371 config_devfree(dev);
1372 return NULL;
1373 }
1374
1375 /* compute length of name and decimal expansion of unit number */
1376 lname = strlen(cd->cd_name);
1377 xunit = number(&num[sizeof(num)], myunit);
1378 lunit = &num[sizeof(num)] - xunit;
1379 if (lname + lunit > sizeof(dev->dv_xname))
1380 panic("config_devalloc: device name too long");
1381
1382 dvl = device_getlock(dev);
1383
1384 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1385 cv_init(&dvl->dvl_cv, "pmfsusp");
1386
1387 memcpy(dev->dv_xname, cd->cd_name, lname);
1388 memcpy(dev->dv_xname + lname, xunit, lunit);
1389 dev->dv_parent = parent;
1390 if (parent != NULL)
1391 dev->dv_depth = parent->dv_depth + 1;
1392 else
1393 dev->dv_depth = 0;
1394 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1395 if (locs) {
1396 KASSERT(parent); /* no locators at root */
1397 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1398 dev->dv_locators =
1399 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1400 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1401 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1402 }
1403 dev->dv_properties = prop_dictionary_create();
1404 KASSERT(dev->dv_properties != NULL);
1405
1406 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1407 "device-driver", dev->dv_cfdriver->cd_name);
1408 prop_dictionary_set_uint16(dev->dv_properties,
1409 "device-unit", dev->dv_unit);
1410
1411 if (dev->dv_cfdriver->cd_attrs != NULL)
1412 config_add_attrib_dict(dev);
1413
1414 return dev;
1415 }
1416
1417 /*
1418 * Create an array of device attach attributes and add it
1419 * to the device's dv_properties dictionary.
1420 *
1421 * <key>interface-attributes</key>
1422 * <array>
1423 * <dict>
1424 * <key>attribute-name</key>
1425 * <string>foo</string>
1426 * <key>locators</key>
1427 * <array>
1428 * <dict>
1429 * <key>loc-name</key>
1430 * <string>foo-loc1</string>
1431 * </dict>
1432 * <dict>
1433 * <key>loc-name</key>
1434 * <string>foo-loc2</string>
1435 * <key>default</key>
1436 * <string>foo-loc2-default</string>
1437 * </dict>
1438 * ...
1439 * </array>
1440 * </dict>
1441 * ...
1442 * </array>
1443 */
1444
1445 static void
1446 config_add_attrib_dict(device_t dev)
1447 {
1448 int i, j;
1449 const struct cfiattrdata *ci;
1450 prop_dictionary_t attr_dict, loc_dict;
1451 prop_array_t attr_array, loc_array;
1452
1453 if ((attr_array = prop_array_create()) == NULL)
1454 return;
1455
1456 for (i = 0; ; i++) {
1457 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1458 break;
1459 if ((attr_dict = prop_dictionary_create()) == NULL)
1460 break;
1461 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1462 ci->ci_name);
1463
1464 /* Create an array of the locator names and defaults */
1465
1466 if (ci->ci_loclen != 0 &&
1467 (loc_array = prop_array_create()) != NULL) {
1468 for (j = 0; j < ci->ci_loclen; j++) {
1469 loc_dict = prop_dictionary_create();
1470 if (loc_dict == NULL)
1471 continue;
1472 prop_dictionary_set_cstring_nocopy(loc_dict,
1473 "loc-name", ci->ci_locdesc[j].cld_name);
1474 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1475 prop_dictionary_set_cstring_nocopy(
1476 loc_dict, "default",
1477 ci->ci_locdesc[j].cld_defaultstr);
1478 prop_array_set(loc_array, j, loc_dict);
1479 prop_object_release(loc_dict);
1480 }
1481 prop_dictionary_set_and_rel(attr_dict, "locators",
1482 loc_array);
1483 }
1484 prop_array_add(attr_array, attr_dict);
1485 prop_object_release(attr_dict);
1486 }
1487 if (i == 0)
1488 prop_object_release(attr_array);
1489 else
1490 prop_dictionary_set_and_rel(dev->dv_properties,
1491 "interface-attributes", attr_array);
1492
1493 return;
1494 }
1495
1496 /*
1497 * Attach a found device.
1498 */
1499 device_t
1500 config_attach_loc(device_t parent, cfdata_t cf,
1501 const int *locs, void *aux, cfprint_t print)
1502 {
1503 device_t dev;
1504 struct cftable *ct;
1505 const char *drvname;
1506
1507 dev = config_devalloc(parent, cf, locs);
1508 if (!dev)
1509 panic("config_attach: allocation of device softc failed");
1510
1511 /* XXX redundant - see below? */
1512 if (cf->cf_fstate != FSTATE_STAR) {
1513 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1514 cf->cf_fstate = FSTATE_FOUND;
1515 }
1516
1517 config_devlink(dev);
1518
1519 if (config_do_twiddle && cold)
1520 twiddle();
1521 else
1522 aprint_naive("Found ");
1523 /*
1524 * We want the next two printfs for normal, verbose, and quiet,
1525 * but not silent (in which case, we're twiddling, instead).
1526 */
1527 if (parent == ROOT) {
1528 aprint_naive("%s (root)", device_xname(dev));
1529 aprint_normal("%s (root)", device_xname(dev));
1530 } else {
1531 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1532 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1533 if (print)
1534 (void) (*print)(aux, NULL);
1535 }
1536
1537 /*
1538 * Before attaching, clobber any unfound devices that are
1539 * otherwise identical.
1540 * XXX code above is redundant?
1541 */
1542 drvname = dev->dv_cfdriver->cd_name;
1543 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1544 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1545 if (STREQ(cf->cf_name, drvname) &&
1546 cf->cf_unit == dev->dv_unit) {
1547 if (cf->cf_fstate == FSTATE_NOTFOUND)
1548 cf->cf_fstate = FSTATE_FOUND;
1549 }
1550 }
1551 }
1552 device_register(dev, aux);
1553
1554 /* Let userland know */
1555 devmon_report_device(dev, true);
1556
1557 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1558
1559 if (!device_pmf_is_registered(dev))
1560 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1561
1562 config_process_deferred(&deferred_config_queue, dev);
1563
1564 device_register_post_config(dev, aux);
1565 return dev;
1566 }
1567
1568 device_t
1569 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1570 {
1571
1572 return config_attach_loc(parent, cf, NULL, aux, print);
1573 }
1574
1575 /*
1576 * As above, but for pseudo-devices. Pseudo-devices attached in this
1577 * way are silently inserted into the device tree, and their children
1578 * attached.
1579 *
1580 * Note that because pseudo-devices are attached silently, any information
1581 * the attach routine wishes to print should be prefixed with the device
1582 * name by the attach routine.
1583 */
1584 device_t
1585 config_attach_pseudo(cfdata_t cf)
1586 {
1587 device_t dev;
1588
1589 dev = config_devalloc(ROOT, cf, NULL);
1590 if (!dev)
1591 return NULL;
1592
1593 /* XXX mark busy in cfdata */
1594
1595 if (cf->cf_fstate != FSTATE_STAR) {
1596 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1597 cf->cf_fstate = FSTATE_FOUND;
1598 }
1599
1600 config_devlink(dev);
1601
1602 #if 0 /* XXXJRT not yet */
1603 device_register(dev, NULL); /* like a root node */
1604 #endif
1605
1606 /* Let userland know */
1607 devmon_report_device(dev, true);
1608
1609 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1610
1611 config_process_deferred(&deferred_config_queue, dev);
1612 return dev;
1613 }
1614
1615 /*
1616 * Caller must hold alldevs_mtx.
1617 */
1618 static void
1619 config_collect_garbage(struct devicelist *garbage)
1620 {
1621 device_t dv;
1622
1623 KASSERT(!cpu_intr_p());
1624 KASSERT(!cpu_softintr_p());
1625 KASSERT(mutex_owned(&alldevs_mtx));
1626
1627 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1628 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1629 if (dv->dv_del_gen != 0)
1630 break;
1631 }
1632 if (dv == NULL) {
1633 alldevs_garbage = false;
1634 break;
1635 }
1636 config_devunlink(dv, garbage);
1637 }
1638 KASSERT(mutex_owned(&alldevs_mtx));
1639 }
1640
1641 static void
1642 config_dump_garbage(struct devicelist *garbage)
1643 {
1644 device_t dv;
1645
1646 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1647 TAILQ_REMOVE(garbage, dv, dv_list);
1648 config_devdelete(dv);
1649 }
1650 }
1651
1652 /*
1653 * Detach a device. Optionally forced (e.g. because of hardware
1654 * removal) and quiet. Returns zero if successful, non-zero
1655 * (an error code) otherwise.
1656 *
1657 * Note that this code wants to be run from a process context, so
1658 * that the detach can sleep to allow processes which have a device
1659 * open to run and unwind their stacks.
1660 */
1661 int
1662 config_detach(device_t dev, int flags)
1663 {
1664 struct alldevs_foray af;
1665 struct cftable *ct;
1666 cfdata_t cf;
1667 const struct cfattach *ca;
1668 struct cfdriver *cd;
1669 #ifdef DIAGNOSTIC
1670 device_t d;
1671 #endif
1672 int rv = 0, s;
1673
1674 #ifdef DIAGNOSTIC
1675 cf = dev->dv_cfdata;
1676 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1677 cf->cf_fstate != FSTATE_STAR)
1678 panic("config_detach: %s: bad device fstate %d",
1679 device_xname(dev), cf ? cf->cf_fstate : -1);
1680 #endif
1681 cd = dev->dv_cfdriver;
1682 KASSERT(cd != NULL);
1683
1684 ca = dev->dv_cfattach;
1685 KASSERT(ca != NULL);
1686
1687 s = config_alldevs_lock();
1688 if (dev->dv_del_gen != 0) {
1689 config_alldevs_unlock(s);
1690 #ifdef DIAGNOSTIC
1691 printf("%s: %s is already detached\n", __func__,
1692 device_xname(dev));
1693 #endif /* DIAGNOSTIC */
1694 return ENOENT;
1695 }
1696 alldevs_nwrite++;
1697 config_alldevs_unlock(s);
1698
1699 if (!detachall &&
1700 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1701 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1702 rv = EOPNOTSUPP;
1703 } else if (ca->ca_detach != NULL) {
1704 rv = (*ca->ca_detach)(dev, flags);
1705 } else
1706 rv = EOPNOTSUPP;
1707
1708 /*
1709 * If it was not possible to detach the device, then we either
1710 * panic() (for the forced but failed case), or return an error.
1711 *
1712 * If it was possible to detach the device, ensure that the
1713 * device is deactivated.
1714 */
1715 if (rv == 0)
1716 dev->dv_flags &= ~DVF_ACTIVE;
1717 else if ((flags & DETACH_FORCE) == 0)
1718 goto out;
1719 else {
1720 panic("config_detach: forced detach of %s failed (%d)",
1721 device_xname(dev), rv);
1722 }
1723
1724 /*
1725 * The device has now been successfully detached.
1726 */
1727
1728 /* Let userland know */
1729 devmon_report_device(dev, false);
1730
1731 #ifdef DIAGNOSTIC
1732 /*
1733 * Sanity: If you're successfully detached, you should have no
1734 * children. (Note that because children must be attached
1735 * after parents, we only need to search the latter part of
1736 * the list.)
1737 */
1738 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1739 d = TAILQ_NEXT(d, dv_list)) {
1740 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1741 printf("config_detach: detached device %s"
1742 " has children %s\n", device_xname(dev), device_xname(d));
1743 panic("config_detach");
1744 }
1745 }
1746 #endif
1747
1748 /* notify the parent that the child is gone */
1749 if (dev->dv_parent) {
1750 device_t p = dev->dv_parent;
1751 if (p->dv_cfattach->ca_childdetached)
1752 (*p->dv_cfattach->ca_childdetached)(p, dev);
1753 }
1754
1755 /*
1756 * Mark cfdata to show that the unit can be reused, if possible.
1757 */
1758 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1759 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1760 if (STREQ(cf->cf_name, cd->cd_name)) {
1761 if (cf->cf_fstate == FSTATE_FOUND &&
1762 cf->cf_unit == dev->dv_unit)
1763 cf->cf_fstate = FSTATE_NOTFOUND;
1764 }
1765 }
1766 }
1767
1768 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1769 aprint_normal_dev(dev, "detached\n");
1770
1771 out:
1772 config_alldevs_enter(&af);
1773 KASSERT(alldevs_nwrite != 0);
1774 --alldevs_nwrite;
1775 if (rv == 0 && dev->dv_del_gen == 0) {
1776 if (alldevs_nwrite == 0 && alldevs_nread == 0)
1777 config_devunlink(dev, &af.af_garbage);
1778 else {
1779 dev->dv_del_gen = alldevs_gen;
1780 alldevs_garbage = true;
1781 }
1782 }
1783 config_alldevs_exit(&af);
1784
1785 return rv;
1786 }
1787
1788 int
1789 config_detach_children(device_t parent, int flags)
1790 {
1791 device_t dv;
1792 deviter_t di;
1793 int error = 0;
1794
1795 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1796 dv = deviter_next(&di)) {
1797 if (device_parent(dv) != parent)
1798 continue;
1799 if ((error = config_detach(dv, flags)) != 0)
1800 break;
1801 }
1802 deviter_release(&di);
1803 return error;
1804 }
1805
1806 device_t
1807 shutdown_first(struct shutdown_state *s)
1808 {
1809 if (!s->initialized) {
1810 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1811 s->initialized = true;
1812 }
1813 return shutdown_next(s);
1814 }
1815
1816 device_t
1817 shutdown_next(struct shutdown_state *s)
1818 {
1819 device_t dv;
1820
1821 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1822 ;
1823
1824 if (dv == NULL)
1825 s->initialized = false;
1826
1827 return dv;
1828 }
1829
1830 bool
1831 config_detach_all(int how)
1832 {
1833 static struct shutdown_state s;
1834 device_t curdev;
1835 bool progress = false;
1836
1837 if ((how & RB_NOSYNC) != 0)
1838 return false;
1839
1840 for (curdev = shutdown_first(&s); curdev != NULL;
1841 curdev = shutdown_next(&s)) {
1842 aprint_debug(" detaching %s, ", device_xname(curdev));
1843 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1844 progress = true;
1845 aprint_debug("success.");
1846 } else
1847 aprint_debug("failed.");
1848 }
1849 return progress;
1850 }
1851
1852 static bool
1853 device_is_ancestor_of(device_t ancestor, device_t descendant)
1854 {
1855 device_t dv;
1856
1857 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1858 if (device_parent(dv) == ancestor)
1859 return true;
1860 }
1861 return false;
1862 }
1863
1864 int
1865 config_deactivate(device_t dev)
1866 {
1867 deviter_t di;
1868 const struct cfattach *ca;
1869 device_t descendant;
1870 int s, rv = 0, oflags;
1871
1872 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1873 descendant != NULL;
1874 descendant = deviter_next(&di)) {
1875 if (dev != descendant &&
1876 !device_is_ancestor_of(dev, descendant))
1877 continue;
1878
1879 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1880 continue;
1881
1882 ca = descendant->dv_cfattach;
1883 oflags = descendant->dv_flags;
1884
1885 descendant->dv_flags &= ~DVF_ACTIVE;
1886 if (ca->ca_activate == NULL)
1887 continue;
1888 s = splhigh();
1889 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1890 splx(s);
1891 if (rv != 0)
1892 descendant->dv_flags = oflags;
1893 }
1894 deviter_release(&di);
1895 return rv;
1896 }
1897
1898 /*
1899 * Defer the configuration of the specified device until all
1900 * of its parent's devices have been attached.
1901 */
1902 void
1903 config_defer(device_t dev, void (*func)(device_t))
1904 {
1905 struct deferred_config *dc;
1906
1907 if (dev->dv_parent == NULL)
1908 panic("config_defer: can't defer config of a root device");
1909
1910 #ifdef DIAGNOSTIC
1911 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1912 if (dc->dc_dev == dev)
1913 panic("config_defer: deferred twice");
1914 }
1915 #endif
1916
1917 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1918 if (dc == NULL)
1919 panic("config_defer: unable to allocate callback");
1920
1921 dc->dc_dev = dev;
1922 dc->dc_func = func;
1923 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1924 config_pending_incr(dev);
1925 }
1926
1927 /*
1928 * Defer some autoconfiguration for a device until after interrupts
1929 * are enabled.
1930 */
1931 void
1932 config_interrupts(device_t dev, void (*func)(device_t))
1933 {
1934 struct deferred_config *dc;
1935
1936 /*
1937 * If interrupts are enabled, callback now.
1938 */
1939 if (cold == 0) {
1940 (*func)(dev);
1941 return;
1942 }
1943
1944 #ifdef DIAGNOSTIC
1945 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1946 if (dc->dc_dev == dev)
1947 panic("config_interrupts: deferred twice");
1948 }
1949 #endif
1950
1951 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1952 if (dc == NULL)
1953 panic("config_interrupts: unable to allocate callback");
1954
1955 dc->dc_dev = dev;
1956 dc->dc_func = func;
1957 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1958 config_pending_incr(dev);
1959 }
1960
1961 /*
1962 * Defer some autoconfiguration for a device until after root file system
1963 * is mounted (to load firmware etc).
1964 */
1965 void
1966 config_mountroot(device_t dev, void (*func)(device_t))
1967 {
1968 struct deferred_config *dc;
1969
1970 /*
1971 * If root file system is mounted, callback now.
1972 */
1973 if (root_is_mounted) {
1974 (*func)(dev);
1975 return;
1976 }
1977
1978 #ifdef DIAGNOSTIC
1979 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
1980 if (dc->dc_dev == dev)
1981 panic("%s: deferred twice", __func__);
1982 }
1983 #endif
1984
1985 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1986 if (dc == NULL)
1987 panic("%s: unable to allocate callback", __func__);
1988
1989 dc->dc_dev = dev;
1990 dc->dc_func = func;
1991 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
1992 }
1993
1994 /*
1995 * Process a deferred configuration queue.
1996 */
1997 static void
1998 config_process_deferred(struct deferred_config_head *queue,
1999 device_t parent)
2000 {
2001 struct deferred_config *dc, *ndc;
2002
2003 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
2004 ndc = TAILQ_NEXT(dc, dc_queue);
2005 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2006 TAILQ_REMOVE(queue, dc, dc_queue);
2007 (*dc->dc_func)(dc->dc_dev);
2008 config_pending_decr(dc->dc_dev);
2009 kmem_free(dc, sizeof(*dc));
2010 }
2011 }
2012 }
2013
2014 /*
2015 * Manipulate the config_pending semaphore.
2016 */
2017 void
2018 config_pending_incr(device_t dev)
2019 {
2020
2021 mutex_enter(&config_misc_lock);
2022 config_pending++;
2023 #ifdef DEBUG_AUTOCONF
2024 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2025 #endif
2026 mutex_exit(&config_misc_lock);
2027 }
2028
2029 void
2030 config_pending_decr(device_t dev)
2031 {
2032
2033 #ifdef DIAGNOSTIC
2034 if (config_pending == 0)
2035 panic("config_pending_decr: config_pending == 0");
2036 #endif
2037 mutex_enter(&config_misc_lock);
2038 config_pending--;
2039 #ifdef DEBUG_AUTOCONF
2040 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2041 #endif
2042 if (config_pending == 0)
2043 cv_broadcast(&config_misc_cv);
2044 mutex_exit(&config_misc_lock);
2045 }
2046
2047 /*
2048 * Register a "finalization" routine. Finalization routines are
2049 * called iteratively once all real devices have been found during
2050 * autoconfiguration, for as long as any one finalizer has done
2051 * any work.
2052 */
2053 int
2054 config_finalize_register(device_t dev, int (*fn)(device_t))
2055 {
2056 struct finalize_hook *f;
2057
2058 /*
2059 * If finalization has already been done, invoke the
2060 * callback function now.
2061 */
2062 if (config_finalize_done) {
2063 while ((*fn)(dev) != 0)
2064 /* loop */ ;
2065 }
2066
2067 /* Ensure this isn't already on the list. */
2068 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2069 if (f->f_func == fn && f->f_dev == dev)
2070 return EEXIST;
2071 }
2072
2073 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2074 f->f_func = fn;
2075 f->f_dev = dev;
2076 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2077
2078 return 0;
2079 }
2080
2081 void
2082 config_finalize(void)
2083 {
2084 struct finalize_hook *f;
2085 struct pdevinit *pdev;
2086 extern struct pdevinit pdevinit[];
2087 int errcnt, rv;
2088
2089 /*
2090 * Now that device driver threads have been created, wait for
2091 * them to finish any deferred autoconfiguration.
2092 */
2093 mutex_enter(&config_misc_lock);
2094 while (config_pending != 0)
2095 cv_wait(&config_misc_cv, &config_misc_lock);
2096 mutex_exit(&config_misc_lock);
2097
2098 KERNEL_LOCK(1, NULL);
2099
2100 /* Attach pseudo-devices. */
2101 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2102 (*pdev->pdev_attach)(pdev->pdev_count);
2103
2104 /* Run the hooks until none of them does any work. */
2105 do {
2106 rv = 0;
2107 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2108 rv |= (*f->f_func)(f->f_dev);
2109 } while (rv != 0);
2110
2111 config_finalize_done = 1;
2112
2113 /* Now free all the hooks. */
2114 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2115 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2116 kmem_free(f, sizeof(*f));
2117 }
2118
2119 KERNEL_UNLOCK_ONE(NULL);
2120
2121 errcnt = aprint_get_error_count();
2122 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2123 (boothowto & AB_VERBOSE) == 0) {
2124 mutex_enter(&config_misc_lock);
2125 if (config_do_twiddle) {
2126 config_do_twiddle = 0;
2127 printf_nolog(" done.\n");
2128 }
2129 mutex_exit(&config_misc_lock);
2130 if (errcnt != 0) {
2131 printf("WARNING: %d error%s while detecting hardware; "
2132 "check system log.\n", errcnt,
2133 errcnt == 1 ? "" : "s");
2134 }
2135 }
2136 }
2137
2138 void
2139 config_twiddle_init(void)
2140 {
2141
2142 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2143 config_do_twiddle = 1;
2144 }
2145 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2146 }
2147
2148 void
2149 config_twiddle_fn(void *cookie)
2150 {
2151
2152 mutex_enter(&config_misc_lock);
2153 if (config_do_twiddle) {
2154 twiddle();
2155 callout_schedule(&config_twiddle_ch, mstohz(100));
2156 }
2157 mutex_exit(&config_misc_lock);
2158 }
2159
2160 static int
2161 config_alldevs_lock(void)
2162 {
2163 mutex_enter(&alldevs_mtx);
2164 return 0;
2165 }
2166
2167 static void
2168 config_alldevs_enter(struct alldevs_foray *af)
2169 {
2170 TAILQ_INIT(&af->af_garbage);
2171 af->af_s = config_alldevs_lock();
2172 config_collect_garbage(&af->af_garbage);
2173 }
2174
2175 static void
2176 config_alldevs_exit(struct alldevs_foray *af)
2177 {
2178 config_alldevs_unlock(af->af_s);
2179 config_dump_garbage(&af->af_garbage);
2180 }
2181
2182 /*ARGSUSED*/
2183 static void
2184 config_alldevs_unlock(int s)
2185 {
2186 mutex_exit(&alldevs_mtx);
2187 }
2188
2189 /*
2190 * device_lookup:
2191 *
2192 * Look up a device instance for a given driver.
2193 */
2194 device_t
2195 device_lookup(cfdriver_t cd, int unit)
2196 {
2197 device_t dv;
2198 int s;
2199
2200 s = config_alldevs_lock();
2201 KASSERT(mutex_owned(&alldevs_mtx));
2202 if (unit < 0 || unit >= cd->cd_ndevs)
2203 dv = NULL;
2204 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2205 dv = NULL;
2206 config_alldevs_unlock(s);
2207
2208 return dv;
2209 }
2210
2211 /*
2212 * device_lookup_private:
2213 *
2214 * Look up a softc instance for a given driver.
2215 */
2216 void *
2217 device_lookup_private(cfdriver_t cd, int unit)
2218 {
2219
2220 return device_private(device_lookup(cd, unit));
2221 }
2222
2223 /*
2224 * device_find_by_xname:
2225 *
2226 * Returns the device of the given name or NULL if it doesn't exist.
2227 */
2228 device_t
2229 device_find_by_xname(const char *name)
2230 {
2231 device_t dv;
2232 deviter_t di;
2233
2234 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2235 if (strcmp(device_xname(dv), name) == 0)
2236 break;
2237 }
2238 deviter_release(&di);
2239
2240 return dv;
2241 }
2242
2243 /*
2244 * device_find_by_driver_unit:
2245 *
2246 * Returns the device of the given driver name and unit or
2247 * NULL if it doesn't exist.
2248 */
2249 device_t
2250 device_find_by_driver_unit(const char *name, int unit)
2251 {
2252 struct cfdriver *cd;
2253
2254 if ((cd = config_cfdriver_lookup(name)) == NULL)
2255 return NULL;
2256 return device_lookup(cd, unit);
2257 }
2258
2259 /*
2260 * Power management related functions.
2261 */
2262
2263 bool
2264 device_pmf_is_registered(device_t dev)
2265 {
2266 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2267 }
2268
2269 bool
2270 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2271 {
2272 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2273 return true;
2274 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2275 return false;
2276 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2277 dev->dv_driver_suspend != NULL &&
2278 !(*dev->dv_driver_suspend)(dev, qual))
2279 return false;
2280
2281 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2282 return true;
2283 }
2284
2285 bool
2286 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2287 {
2288 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2289 return true;
2290 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2291 return false;
2292 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2293 dev->dv_driver_resume != NULL &&
2294 !(*dev->dv_driver_resume)(dev, qual))
2295 return false;
2296
2297 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2298 return true;
2299 }
2300
2301 bool
2302 device_pmf_driver_shutdown(device_t dev, int how)
2303 {
2304
2305 if (*dev->dv_driver_shutdown != NULL &&
2306 !(*dev->dv_driver_shutdown)(dev, how))
2307 return false;
2308 return true;
2309 }
2310
2311 bool
2312 device_pmf_driver_register(device_t dev,
2313 bool (*suspend)(device_t, const pmf_qual_t *),
2314 bool (*resume)(device_t, const pmf_qual_t *),
2315 bool (*shutdown)(device_t, int))
2316 {
2317 dev->dv_driver_suspend = suspend;
2318 dev->dv_driver_resume = resume;
2319 dev->dv_driver_shutdown = shutdown;
2320 dev->dv_flags |= DVF_POWER_HANDLERS;
2321 return true;
2322 }
2323
2324 static const char *
2325 curlwp_name(void)
2326 {
2327 if (curlwp->l_name != NULL)
2328 return curlwp->l_name;
2329 else
2330 return curlwp->l_proc->p_comm;
2331 }
2332
2333 void
2334 device_pmf_driver_deregister(device_t dev)
2335 {
2336 device_lock_t dvl = device_getlock(dev);
2337
2338 dev->dv_driver_suspend = NULL;
2339 dev->dv_driver_resume = NULL;
2340
2341 mutex_enter(&dvl->dvl_mtx);
2342 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2343 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2344 /* Wake a thread that waits for the lock. That
2345 * thread will fail to acquire the lock, and then
2346 * it will wake the next thread that waits for the
2347 * lock, or else it will wake us.
2348 */
2349 cv_signal(&dvl->dvl_cv);
2350 pmflock_debug(dev, __func__, __LINE__);
2351 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2352 pmflock_debug(dev, __func__, __LINE__);
2353 }
2354 mutex_exit(&dvl->dvl_mtx);
2355 }
2356
2357 bool
2358 device_pmf_driver_child_register(device_t dev)
2359 {
2360 device_t parent = device_parent(dev);
2361
2362 if (parent == NULL || parent->dv_driver_child_register == NULL)
2363 return true;
2364 return (*parent->dv_driver_child_register)(dev);
2365 }
2366
2367 void
2368 device_pmf_driver_set_child_register(device_t dev,
2369 bool (*child_register)(device_t))
2370 {
2371 dev->dv_driver_child_register = child_register;
2372 }
2373
2374 static void
2375 pmflock_debug(device_t dev, const char *func, int line)
2376 {
2377 device_lock_t dvl = device_getlock(dev);
2378
2379 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2380 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2381 dev->dv_flags);
2382 }
2383
2384 static bool
2385 device_pmf_lock1(device_t dev)
2386 {
2387 device_lock_t dvl = device_getlock(dev);
2388
2389 while (device_pmf_is_registered(dev) &&
2390 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2391 dvl->dvl_nwait++;
2392 pmflock_debug(dev, __func__, __LINE__);
2393 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2394 pmflock_debug(dev, __func__, __LINE__);
2395 dvl->dvl_nwait--;
2396 }
2397 if (!device_pmf_is_registered(dev)) {
2398 pmflock_debug(dev, __func__, __LINE__);
2399 /* We could not acquire the lock, but some other thread may
2400 * wait for it, also. Wake that thread.
2401 */
2402 cv_signal(&dvl->dvl_cv);
2403 return false;
2404 }
2405 dvl->dvl_nlock++;
2406 dvl->dvl_holder = curlwp;
2407 pmflock_debug(dev, __func__, __LINE__);
2408 return true;
2409 }
2410
2411 bool
2412 device_pmf_lock(device_t dev)
2413 {
2414 bool rc;
2415 device_lock_t dvl = device_getlock(dev);
2416
2417 mutex_enter(&dvl->dvl_mtx);
2418 rc = device_pmf_lock1(dev);
2419 mutex_exit(&dvl->dvl_mtx);
2420
2421 return rc;
2422 }
2423
2424 void
2425 device_pmf_unlock(device_t dev)
2426 {
2427 device_lock_t dvl = device_getlock(dev);
2428
2429 KASSERT(dvl->dvl_nlock > 0);
2430 mutex_enter(&dvl->dvl_mtx);
2431 if (--dvl->dvl_nlock == 0)
2432 dvl->dvl_holder = NULL;
2433 cv_signal(&dvl->dvl_cv);
2434 pmflock_debug(dev, __func__, __LINE__);
2435 mutex_exit(&dvl->dvl_mtx);
2436 }
2437
2438 device_lock_t
2439 device_getlock(device_t dev)
2440 {
2441 return &dev->dv_lock;
2442 }
2443
2444 void *
2445 device_pmf_bus_private(device_t dev)
2446 {
2447 return dev->dv_bus_private;
2448 }
2449
2450 bool
2451 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2452 {
2453 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2454 return true;
2455 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2456 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2457 return false;
2458 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2459 dev->dv_bus_suspend != NULL &&
2460 !(*dev->dv_bus_suspend)(dev, qual))
2461 return false;
2462
2463 dev->dv_flags |= DVF_BUS_SUSPENDED;
2464 return true;
2465 }
2466
2467 bool
2468 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2469 {
2470 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2471 return true;
2472 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2473 dev->dv_bus_resume != NULL &&
2474 !(*dev->dv_bus_resume)(dev, qual))
2475 return false;
2476
2477 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2478 return true;
2479 }
2480
2481 bool
2482 device_pmf_bus_shutdown(device_t dev, int how)
2483 {
2484
2485 if (*dev->dv_bus_shutdown != NULL &&
2486 !(*dev->dv_bus_shutdown)(dev, how))
2487 return false;
2488 return true;
2489 }
2490
2491 void
2492 device_pmf_bus_register(device_t dev, void *priv,
2493 bool (*suspend)(device_t, const pmf_qual_t *),
2494 bool (*resume)(device_t, const pmf_qual_t *),
2495 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2496 {
2497 dev->dv_bus_private = priv;
2498 dev->dv_bus_resume = resume;
2499 dev->dv_bus_suspend = suspend;
2500 dev->dv_bus_shutdown = shutdown;
2501 dev->dv_bus_deregister = deregister;
2502 }
2503
2504 void
2505 device_pmf_bus_deregister(device_t dev)
2506 {
2507 if (dev->dv_bus_deregister == NULL)
2508 return;
2509 (*dev->dv_bus_deregister)(dev);
2510 dev->dv_bus_private = NULL;
2511 dev->dv_bus_suspend = NULL;
2512 dev->dv_bus_resume = NULL;
2513 dev->dv_bus_deregister = NULL;
2514 }
2515
2516 void *
2517 device_pmf_class_private(device_t dev)
2518 {
2519 return dev->dv_class_private;
2520 }
2521
2522 bool
2523 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2524 {
2525 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2526 return true;
2527 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2528 dev->dv_class_suspend != NULL &&
2529 !(*dev->dv_class_suspend)(dev, qual))
2530 return false;
2531
2532 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2533 return true;
2534 }
2535
2536 bool
2537 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2538 {
2539 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2540 return true;
2541 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2542 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2543 return false;
2544 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2545 dev->dv_class_resume != NULL &&
2546 !(*dev->dv_class_resume)(dev, qual))
2547 return false;
2548
2549 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2550 return true;
2551 }
2552
2553 void
2554 device_pmf_class_register(device_t dev, void *priv,
2555 bool (*suspend)(device_t, const pmf_qual_t *),
2556 bool (*resume)(device_t, const pmf_qual_t *),
2557 void (*deregister)(device_t))
2558 {
2559 dev->dv_class_private = priv;
2560 dev->dv_class_suspend = suspend;
2561 dev->dv_class_resume = resume;
2562 dev->dv_class_deregister = deregister;
2563 }
2564
2565 void
2566 device_pmf_class_deregister(device_t dev)
2567 {
2568 if (dev->dv_class_deregister == NULL)
2569 return;
2570 (*dev->dv_class_deregister)(dev);
2571 dev->dv_class_private = NULL;
2572 dev->dv_class_suspend = NULL;
2573 dev->dv_class_resume = NULL;
2574 dev->dv_class_deregister = NULL;
2575 }
2576
2577 bool
2578 device_active(device_t dev, devactive_t type)
2579 {
2580 size_t i;
2581
2582 if (dev->dv_activity_count == 0)
2583 return false;
2584
2585 for (i = 0; i < dev->dv_activity_count; ++i) {
2586 if (dev->dv_activity_handlers[i] == NULL)
2587 break;
2588 (*dev->dv_activity_handlers[i])(dev, type);
2589 }
2590
2591 return true;
2592 }
2593
2594 bool
2595 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2596 {
2597 void (**new_handlers)(device_t, devactive_t);
2598 void (**old_handlers)(device_t, devactive_t);
2599 size_t i, old_size, new_size;
2600 int s;
2601
2602 old_handlers = dev->dv_activity_handlers;
2603 old_size = dev->dv_activity_count;
2604
2605 for (i = 0; i < old_size; ++i) {
2606 KASSERT(old_handlers[i] != handler);
2607 if (old_handlers[i] == NULL) {
2608 old_handlers[i] = handler;
2609 return true;
2610 }
2611 }
2612
2613 new_size = old_size + 4;
2614 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2615
2616 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2617 new_handlers[old_size] = handler;
2618 memset(new_handlers + old_size + 1, 0,
2619 sizeof(int [new_size - (old_size+1)]));
2620
2621 s = splhigh();
2622 dev->dv_activity_count = new_size;
2623 dev->dv_activity_handlers = new_handlers;
2624 splx(s);
2625
2626 if (old_handlers != NULL)
2627 kmem_free(old_handlers, sizeof(void * [old_size]));
2628
2629 return true;
2630 }
2631
2632 void
2633 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2634 {
2635 void (**old_handlers)(device_t, devactive_t);
2636 size_t i, old_size;
2637 int s;
2638
2639 old_handlers = dev->dv_activity_handlers;
2640 old_size = dev->dv_activity_count;
2641
2642 for (i = 0; i < old_size; ++i) {
2643 if (old_handlers[i] == handler)
2644 break;
2645 if (old_handlers[i] == NULL)
2646 return; /* XXX panic? */
2647 }
2648
2649 if (i == old_size)
2650 return; /* XXX panic? */
2651
2652 for (; i < old_size - 1; ++i) {
2653 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2654 continue;
2655
2656 if (i == 0) {
2657 s = splhigh();
2658 dev->dv_activity_count = 0;
2659 dev->dv_activity_handlers = NULL;
2660 splx(s);
2661 kmem_free(old_handlers, sizeof(void *[old_size]));
2662 }
2663 return;
2664 }
2665 old_handlers[i] = NULL;
2666 }
2667
2668 /* Return true iff the device_t `dev' exists at generation `gen'. */
2669 static bool
2670 device_exists_at(device_t dv, devgen_t gen)
2671 {
2672 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2673 dv->dv_add_gen <= gen;
2674 }
2675
2676 static bool
2677 deviter_visits(const deviter_t *di, device_t dv)
2678 {
2679 return device_exists_at(dv, di->di_gen);
2680 }
2681
2682 /*
2683 * Device Iteration
2684 *
2685 * deviter_t: a device iterator. Holds state for a "walk" visiting
2686 * each device_t's in the device tree.
2687 *
2688 * deviter_init(di, flags): initialize the device iterator `di'
2689 * to "walk" the device tree. deviter_next(di) will return
2690 * the first device_t in the device tree, or NULL if there are
2691 * no devices.
2692 *
2693 * `flags' is one or more of DEVITER_F_RW, indicating that the
2694 * caller intends to modify the device tree by calling
2695 * config_detach(9) on devices in the order that the iterator
2696 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2697 * nearest the "root" of the device tree to be returned, first;
2698 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2699 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2700 * indicating both that deviter_init() should not respect any
2701 * locks on the device tree, and that deviter_next(di) may run
2702 * in more than one LWP before the walk has finished.
2703 *
2704 * Only one DEVITER_F_RW iterator may be in the device tree at
2705 * once.
2706 *
2707 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2708 *
2709 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2710 * DEVITER_F_LEAVES_FIRST are used in combination.
2711 *
2712 * deviter_first(di, flags): initialize the device iterator `di'
2713 * and return the first device_t in the device tree, or NULL
2714 * if there are no devices. The statement
2715 *
2716 * dv = deviter_first(di);
2717 *
2718 * is shorthand for
2719 *
2720 * deviter_init(di);
2721 * dv = deviter_next(di);
2722 *
2723 * deviter_next(di): return the next device_t in the device tree,
2724 * or NULL if there are no more devices. deviter_next(di)
2725 * is undefined if `di' was not initialized with deviter_init() or
2726 * deviter_first().
2727 *
2728 * deviter_release(di): stops iteration (subsequent calls to
2729 * deviter_next() will return NULL), releases any locks and
2730 * resources held by the device iterator.
2731 *
2732 * Device iteration does not return device_t's in any particular
2733 * order. An iterator will never return the same device_t twice.
2734 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2735 * is called repeatedly on the same `di', it will eventually return
2736 * NULL. It is ok to attach/detach devices during device iteration.
2737 */
2738 void
2739 deviter_init(deviter_t *di, deviter_flags_t flags)
2740 {
2741 device_t dv;
2742 int s;
2743
2744 memset(di, 0, sizeof(*di));
2745
2746 s = config_alldevs_lock();
2747 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2748 flags |= DEVITER_F_RW;
2749
2750 if ((flags & DEVITER_F_RW) != 0)
2751 alldevs_nwrite++;
2752 else
2753 alldevs_nread++;
2754 di->di_gen = alldevs_gen++;
2755 config_alldevs_unlock(s);
2756
2757 di->di_flags = flags;
2758
2759 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2760 case DEVITER_F_LEAVES_FIRST:
2761 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2762 if (!deviter_visits(di, dv))
2763 continue;
2764 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2765 }
2766 break;
2767 case DEVITER_F_ROOT_FIRST:
2768 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2769 if (!deviter_visits(di, dv))
2770 continue;
2771 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2772 }
2773 break;
2774 default:
2775 break;
2776 }
2777
2778 deviter_reinit(di);
2779 }
2780
2781 static void
2782 deviter_reinit(deviter_t *di)
2783 {
2784 if ((di->di_flags & DEVITER_F_RW) != 0)
2785 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2786 else
2787 di->di_prev = TAILQ_FIRST(&alldevs);
2788 }
2789
2790 device_t
2791 deviter_first(deviter_t *di, deviter_flags_t flags)
2792 {
2793 deviter_init(di, flags);
2794 return deviter_next(di);
2795 }
2796
2797 static device_t
2798 deviter_next2(deviter_t *di)
2799 {
2800 device_t dv;
2801
2802 dv = di->di_prev;
2803
2804 if (dv == NULL)
2805 return NULL;
2806
2807 if ((di->di_flags & DEVITER_F_RW) != 0)
2808 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2809 else
2810 di->di_prev = TAILQ_NEXT(dv, dv_list);
2811
2812 return dv;
2813 }
2814
2815 static device_t
2816 deviter_next1(deviter_t *di)
2817 {
2818 device_t dv;
2819
2820 do {
2821 dv = deviter_next2(di);
2822 } while (dv != NULL && !deviter_visits(di, dv));
2823
2824 return dv;
2825 }
2826
2827 device_t
2828 deviter_next(deviter_t *di)
2829 {
2830 device_t dv = NULL;
2831
2832 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2833 case 0:
2834 return deviter_next1(di);
2835 case DEVITER_F_LEAVES_FIRST:
2836 while (di->di_curdepth >= 0) {
2837 if ((dv = deviter_next1(di)) == NULL) {
2838 di->di_curdepth--;
2839 deviter_reinit(di);
2840 } else if (dv->dv_depth == di->di_curdepth)
2841 break;
2842 }
2843 return dv;
2844 case DEVITER_F_ROOT_FIRST:
2845 while (di->di_curdepth <= di->di_maxdepth) {
2846 if ((dv = deviter_next1(di)) == NULL) {
2847 di->di_curdepth++;
2848 deviter_reinit(di);
2849 } else if (dv->dv_depth == di->di_curdepth)
2850 break;
2851 }
2852 return dv;
2853 default:
2854 return NULL;
2855 }
2856 }
2857
2858 void
2859 deviter_release(deviter_t *di)
2860 {
2861 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2862 int s;
2863
2864 s = config_alldevs_lock();
2865 if (rw)
2866 --alldevs_nwrite;
2867 else
2868 --alldevs_nread;
2869 /* XXX wake a garbage-collection thread */
2870 config_alldevs_unlock(s);
2871 }
2872
2873 const char *
2874 cfdata_ifattr(const struct cfdata *cf)
2875 {
2876 return cf->cf_pspec->cfp_iattr;
2877 }
2878
2879 bool
2880 ifattr_match(const char *snull, const char *t)
2881 {
2882 return (snull == NULL) || strcmp(snull, t) == 0;
2883 }
2884
2885 void
2886 null_childdetached(device_t self, device_t child)
2887 {
2888 /* do nothing */
2889 }
2890
2891 static void
2892 sysctl_detach_setup(struct sysctllog **clog)
2893 {
2894
2895 sysctl_createv(clog, 0, NULL, NULL,
2896 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2897 CTLTYPE_BOOL, "detachall",
2898 SYSCTL_DESCR("Detach all devices at shutdown"),
2899 NULL, 0, &detachall, 0,
2900 CTL_KERN, CTL_CREATE, CTL_EOL);
2901 }
2902