Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.230.2.1
      1 /* $NetBSD: subr_autoconf.c,v 1.230.2.1 2014/04/07 02:20:00 tls Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.230.2.1 2014/04/07 02:20:00 tls Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/disklabel.h>
     90 #include <sys/conf.h>
     91 #include <sys/kauth.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/mount.h>
    102 #include <sys/namei.h>
    103 #include <sys/unistd.h>
    104 #include <sys/fcntl.h>
    105 #include <sys/lockf.h>
    106 #include <sys/callout.h>
    107 #include <sys/devmon.h>
    108 #include <sys/cpu.h>
    109 #include <sys/sysctl.h>
    110 
    111 #include <sys/disk.h>
    112 
    113 #include <sys/rnd.h>
    114 
    115 #include <machine/limits.h>
    116 
    117 /*
    118  * Autoconfiguration subroutines.
    119  */
    120 
    121 /*
    122  * Device autoconfiguration timings are mixed into the entropy pool.
    123  */
    124 extern krndsource_t rnd_autoconf_source;
    125 
    126 /*
    127  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    128  * devices and drivers are found via these tables.
    129  */
    130 extern struct cfdata cfdata[];
    131 extern const short cfroots[];
    132 
    133 /*
    134  * List of all cfdriver structures.  We use this to detect duplicates
    135  * when other cfdrivers are loaded.
    136  */
    137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    138 extern struct cfdriver * const cfdriver_list_initial[];
    139 
    140 /*
    141  * Initial list of cfattach's.
    142  */
    143 extern const struct cfattachinit cfattachinit[];
    144 
    145 /*
    146  * List of cfdata tables.  We always have one such list -- the one
    147  * built statically when the kernel was configured.
    148  */
    149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    150 static struct cftable initcftable;
    151 
    152 #define	ROOT ((device_t)NULL)
    153 
    154 struct matchinfo {
    155 	cfsubmatch_t fn;
    156 	device_t parent;
    157 	const int *locs;
    158 	void	*aux;
    159 	struct	cfdata *match;
    160 	int	pri;
    161 };
    162 
    163 struct alldevs_foray {
    164 	int			af_s;
    165 	struct devicelist	af_garbage;
    166 };
    167 
    168 static char *number(char *, int);
    169 static void mapply(struct matchinfo *, cfdata_t);
    170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    171 static void config_devdelete(device_t);
    172 static void config_devunlink(device_t, struct devicelist *);
    173 static void config_makeroom(int, struct cfdriver *);
    174 static void config_devlink(device_t);
    175 static void config_alldevs_unlock(int);
    176 static int config_alldevs_lock(void);
    177 static void config_alldevs_enter(struct alldevs_foray *);
    178 static void config_alldevs_exit(struct alldevs_foray *);
    179 static void config_add_attrib_dict(device_t);
    180 
    181 static void config_collect_garbage(struct devicelist *);
    182 static void config_dump_garbage(struct devicelist *);
    183 
    184 static void pmflock_debug(device_t, const char *, int);
    185 
    186 static device_t deviter_next1(deviter_t *);
    187 static void deviter_reinit(deviter_t *);
    188 
    189 struct deferred_config {
    190 	TAILQ_ENTRY(deferred_config) dc_queue;
    191 	device_t dc_dev;
    192 	void (*dc_func)(device_t);
    193 };
    194 
    195 TAILQ_HEAD(deferred_config_head, deferred_config);
    196 
    197 struct deferred_config_head deferred_config_queue =
    198 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    199 struct deferred_config_head interrupt_config_queue =
    200 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    201 int interrupt_config_threads = 8;
    202 struct deferred_config_head mountroot_config_queue =
    203 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    204 int mountroot_config_threads = 2;
    205 static bool root_is_mounted = false;
    206 
    207 static void config_process_deferred(struct deferred_config_head *, device_t);
    208 
    209 /* Hooks to finalize configuration once all real devices have been found. */
    210 struct finalize_hook {
    211 	TAILQ_ENTRY(finalize_hook) f_list;
    212 	int (*f_func)(device_t);
    213 	device_t f_dev;
    214 };
    215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    216 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    217 static int config_finalize_done;
    218 
    219 /* list of all devices */
    220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    221 static kmutex_t alldevs_mtx;
    222 static volatile bool alldevs_garbage = false;
    223 static volatile devgen_t alldevs_gen = 1;
    224 static volatile int alldevs_nread = 0;
    225 static volatile int alldevs_nwrite = 0;
    226 
    227 static int config_pending;		/* semaphore for mountroot */
    228 static kmutex_t config_misc_lock;
    229 static kcondvar_t config_misc_cv;
    230 
    231 static bool detachall = false;
    232 
    233 #define	STREQ(s1, s2)			\
    234 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    235 
    236 static bool config_initialized = false;	/* config_init() has been called. */
    237 
    238 static int config_do_twiddle;
    239 static callout_t config_twiddle_ch;
    240 
    241 static void sysctl_detach_setup(struct sysctllog **);
    242 
    243 typedef int (*cfdriver_fn)(struct cfdriver *);
    244 static int
    245 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    246 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    247 	const char *style, bool dopanic)
    248 {
    249 	void (*pr)(const char *, ...) __printflike(1, 2) =
    250 	    dopanic ? panic : printf;
    251 	int i, error = 0, e2 __diagused;
    252 
    253 	for (i = 0; cfdriverv[i] != NULL; i++) {
    254 		if ((error = drv_do(cfdriverv[i])) != 0) {
    255 			pr("configure: `%s' driver %s failed: %d",
    256 			    cfdriverv[i]->cd_name, style, error);
    257 			goto bad;
    258 		}
    259 	}
    260 
    261 	KASSERT(error == 0);
    262 	return 0;
    263 
    264  bad:
    265 	printf("\n");
    266 	for (i--; i >= 0; i--) {
    267 		e2 = drv_undo(cfdriverv[i]);
    268 		KASSERT(e2 == 0);
    269 	}
    270 
    271 	return error;
    272 }
    273 
    274 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    275 static int
    276 frob_cfattachvec(const struct cfattachinit *cfattachv,
    277 	cfattach_fn att_do, cfattach_fn att_undo,
    278 	const char *style, bool dopanic)
    279 {
    280 	const struct cfattachinit *cfai = NULL;
    281 	void (*pr)(const char *, ...) __printflike(1, 2) =
    282 	    dopanic ? panic : printf;
    283 	int j = 0, error = 0, e2 __diagused;
    284 
    285 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    286 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    287 			if ((error = att_do(cfai->cfai_name,
    288 			    cfai->cfai_list[j])) != 0) {
    289 				pr("configure: attachment `%s' "
    290 				    "of `%s' driver %s failed: %d",
    291 				    cfai->cfai_list[j]->ca_name,
    292 				    cfai->cfai_name, style, error);
    293 				goto bad;
    294 			}
    295 		}
    296 	}
    297 
    298 	KASSERT(error == 0);
    299 	return 0;
    300 
    301  bad:
    302 	/*
    303 	 * Rollback in reverse order.  dunno if super-important, but
    304 	 * do that anyway.  Although the code looks a little like
    305 	 * someone did a little integration (in the math sense).
    306 	 */
    307 	printf("\n");
    308 	if (cfai) {
    309 		bool last;
    310 
    311 		for (last = false; last == false; ) {
    312 			if (cfai == &cfattachv[0])
    313 				last = true;
    314 			for (j--; j >= 0; j--) {
    315 				e2 = att_undo(cfai->cfai_name,
    316 				    cfai->cfai_list[j]);
    317 				KASSERT(e2 == 0);
    318 			}
    319 			if (!last) {
    320 				cfai--;
    321 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    322 					;
    323 			}
    324 		}
    325 	}
    326 
    327 	return error;
    328 }
    329 
    330 /*
    331  * Initialize the autoconfiguration data structures.  Normally this
    332  * is done by configure(), but some platforms need to do this very
    333  * early (to e.g. initialize the console).
    334  */
    335 void
    336 config_init(void)
    337 {
    338 
    339 	KASSERT(config_initialized == false);
    340 
    341 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
    342 
    343 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    344 	cv_init(&config_misc_cv, "cfgmisc");
    345 
    346 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    347 
    348 	frob_cfdrivervec(cfdriver_list_initial,
    349 	    config_cfdriver_attach, NULL, "bootstrap", true);
    350 	frob_cfattachvec(cfattachinit,
    351 	    config_cfattach_attach, NULL, "bootstrap", true);
    352 
    353 	initcftable.ct_cfdata = cfdata;
    354 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    355 
    356 	config_initialized = true;
    357 }
    358 
    359 /*
    360  * Init or fini drivers and attachments.  Either all or none
    361  * are processed (via rollback).  It would be nice if this were
    362  * atomic to outside consumers, but with the current state of
    363  * locking ...
    364  */
    365 int
    366 config_init_component(struct cfdriver * const *cfdriverv,
    367 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    368 {
    369 	int error;
    370 
    371 	if ((error = frob_cfdrivervec(cfdriverv,
    372 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    373 		return error;
    374 	if ((error = frob_cfattachvec(cfattachv,
    375 	    config_cfattach_attach, config_cfattach_detach,
    376 	    "init", false)) != 0) {
    377 		frob_cfdrivervec(cfdriverv,
    378 	            config_cfdriver_detach, NULL, "init rollback", true);
    379 		return error;
    380 	}
    381 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    382 		frob_cfattachvec(cfattachv,
    383 		    config_cfattach_detach, NULL, "init rollback", true);
    384 		frob_cfdrivervec(cfdriverv,
    385 	            config_cfdriver_detach, NULL, "init rollback", true);
    386 		return error;
    387 	}
    388 
    389 	return 0;
    390 }
    391 
    392 int
    393 config_fini_component(struct cfdriver * const *cfdriverv,
    394 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    395 {
    396 	int error;
    397 
    398 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    399 		return error;
    400 	if ((error = frob_cfattachvec(cfattachv,
    401 	    config_cfattach_detach, config_cfattach_attach,
    402 	    "fini", false)) != 0) {
    403 		if (config_cfdata_attach(cfdatav, 0) != 0)
    404 			panic("config_cfdata fini rollback failed");
    405 		return error;
    406 	}
    407 	if ((error = frob_cfdrivervec(cfdriverv,
    408 	    config_cfdriver_detach, config_cfdriver_attach,
    409 	    "fini", false)) != 0) {
    410 		frob_cfattachvec(cfattachv,
    411 	            config_cfattach_attach, NULL, "fini rollback", true);
    412 		if (config_cfdata_attach(cfdatav, 0) != 0)
    413 			panic("config_cfdata fini rollback failed");
    414 		return error;
    415 	}
    416 
    417 	return 0;
    418 }
    419 
    420 void
    421 config_init_mi(void)
    422 {
    423 
    424 	if (!config_initialized)
    425 		config_init();
    426 
    427 	sysctl_detach_setup(NULL);
    428 }
    429 
    430 void
    431 config_deferred(device_t dev)
    432 {
    433 	config_process_deferred(&deferred_config_queue, dev);
    434 	config_process_deferred(&interrupt_config_queue, dev);
    435 	config_process_deferred(&mountroot_config_queue, dev);
    436 }
    437 
    438 static void
    439 config_interrupts_thread(void *cookie)
    440 {
    441 	struct deferred_config *dc;
    442 
    443 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    444 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    445 		(*dc->dc_func)(dc->dc_dev);
    446 		config_pending_decr(dc->dc_dev);
    447 		kmem_free(dc, sizeof(*dc));
    448 	}
    449 	kthread_exit(0);
    450 }
    451 
    452 void
    453 config_create_interruptthreads(void)
    454 {
    455 	int i;
    456 
    457 	for (i = 0; i < interrupt_config_threads; i++) {
    458 		(void)kthread_create(PRI_NONE, 0, NULL,
    459 		    config_interrupts_thread, NULL, NULL, "configintr");
    460 	}
    461 }
    462 
    463 static void
    464 config_mountroot_thread(void *cookie)
    465 {
    466 	struct deferred_config *dc;
    467 
    468 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    469 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    470 		(*dc->dc_func)(dc->dc_dev);
    471 		kmem_free(dc, sizeof(*dc));
    472 	}
    473 	kthread_exit(0);
    474 }
    475 
    476 void
    477 config_create_mountrootthreads(void)
    478 {
    479 	int i;
    480 
    481 	if (!root_is_mounted)
    482 		root_is_mounted = true;
    483 
    484 	for (i = 0; i < mountroot_config_threads; i++) {
    485 		(void)kthread_create(PRI_NONE, 0, NULL,
    486 		    config_mountroot_thread, NULL, NULL, "configroot");
    487 	}
    488 }
    489 
    490 /*
    491  * Announce device attach/detach to userland listeners.
    492  */
    493 static void
    494 devmon_report_device(device_t dev, bool isattach)
    495 {
    496 #if NDRVCTL > 0
    497 	prop_dictionary_t ev;
    498 	const char *parent;
    499 	const char *what;
    500 	device_t pdev = device_parent(dev);
    501 
    502 	ev = prop_dictionary_create();
    503 	if (ev == NULL)
    504 		return;
    505 
    506 	what = (isattach ? "device-attach" : "device-detach");
    507 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    508 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
    509 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
    510 		prop_object_release(ev);
    511 		return;
    512 	}
    513 
    514 	devmon_insert(what, ev);
    515 #endif
    516 }
    517 
    518 /*
    519  * Add a cfdriver to the system.
    520  */
    521 int
    522 config_cfdriver_attach(struct cfdriver *cd)
    523 {
    524 	struct cfdriver *lcd;
    525 
    526 	/* Make sure this driver isn't already in the system. */
    527 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    528 		if (STREQ(lcd->cd_name, cd->cd_name))
    529 			return EEXIST;
    530 	}
    531 
    532 	LIST_INIT(&cd->cd_attach);
    533 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    534 
    535 	return 0;
    536 }
    537 
    538 /*
    539  * Remove a cfdriver from the system.
    540  */
    541 int
    542 config_cfdriver_detach(struct cfdriver *cd)
    543 {
    544 	struct alldevs_foray af;
    545 	int i, rc = 0;
    546 
    547 	config_alldevs_enter(&af);
    548 	/* Make sure there are no active instances. */
    549 	for (i = 0; i < cd->cd_ndevs; i++) {
    550 		if (cd->cd_devs[i] != NULL) {
    551 			rc = EBUSY;
    552 			break;
    553 		}
    554 	}
    555 	config_alldevs_exit(&af);
    556 
    557 	if (rc != 0)
    558 		return rc;
    559 
    560 	/* ...and no attachments loaded. */
    561 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    562 		return EBUSY;
    563 
    564 	LIST_REMOVE(cd, cd_list);
    565 
    566 	KASSERT(cd->cd_devs == NULL);
    567 
    568 	return 0;
    569 }
    570 
    571 /*
    572  * Look up a cfdriver by name.
    573  */
    574 struct cfdriver *
    575 config_cfdriver_lookup(const char *name)
    576 {
    577 	struct cfdriver *cd;
    578 
    579 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    580 		if (STREQ(cd->cd_name, name))
    581 			return cd;
    582 	}
    583 
    584 	return NULL;
    585 }
    586 
    587 /*
    588  * Add a cfattach to the specified driver.
    589  */
    590 int
    591 config_cfattach_attach(const char *driver, struct cfattach *ca)
    592 {
    593 	struct cfattach *lca;
    594 	struct cfdriver *cd;
    595 
    596 	cd = config_cfdriver_lookup(driver);
    597 	if (cd == NULL)
    598 		return ESRCH;
    599 
    600 	/* Make sure this attachment isn't already on this driver. */
    601 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    602 		if (STREQ(lca->ca_name, ca->ca_name))
    603 			return EEXIST;
    604 	}
    605 
    606 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    607 
    608 	return 0;
    609 }
    610 
    611 /*
    612  * Remove a cfattach from the specified driver.
    613  */
    614 int
    615 config_cfattach_detach(const char *driver, struct cfattach *ca)
    616 {
    617 	struct alldevs_foray af;
    618 	struct cfdriver *cd;
    619 	device_t dev;
    620 	int i, rc = 0;
    621 
    622 	cd = config_cfdriver_lookup(driver);
    623 	if (cd == NULL)
    624 		return ESRCH;
    625 
    626 	config_alldevs_enter(&af);
    627 	/* Make sure there are no active instances. */
    628 	for (i = 0; i < cd->cd_ndevs; i++) {
    629 		if ((dev = cd->cd_devs[i]) == NULL)
    630 			continue;
    631 		if (dev->dv_cfattach == ca) {
    632 			rc = EBUSY;
    633 			break;
    634 		}
    635 	}
    636 	config_alldevs_exit(&af);
    637 
    638 	if (rc != 0)
    639 		return rc;
    640 
    641 	LIST_REMOVE(ca, ca_list);
    642 
    643 	return 0;
    644 }
    645 
    646 /*
    647  * Look up a cfattach by name.
    648  */
    649 static struct cfattach *
    650 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    651 {
    652 	struct cfattach *ca;
    653 
    654 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    655 		if (STREQ(ca->ca_name, atname))
    656 			return ca;
    657 	}
    658 
    659 	return NULL;
    660 }
    661 
    662 /*
    663  * Look up a cfattach by driver/attachment name.
    664  */
    665 struct cfattach *
    666 config_cfattach_lookup(const char *name, const char *atname)
    667 {
    668 	struct cfdriver *cd;
    669 
    670 	cd = config_cfdriver_lookup(name);
    671 	if (cd == NULL)
    672 		return NULL;
    673 
    674 	return config_cfattach_lookup_cd(cd, atname);
    675 }
    676 
    677 /*
    678  * Apply the matching function and choose the best.  This is used
    679  * a few times and we want to keep the code small.
    680  */
    681 static void
    682 mapply(struct matchinfo *m, cfdata_t cf)
    683 {
    684 	int pri;
    685 
    686 	if (m->fn != NULL) {
    687 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    688 	} else {
    689 		pri = config_match(m->parent, cf, m->aux);
    690 	}
    691 	if (pri > m->pri) {
    692 		m->match = cf;
    693 		m->pri = pri;
    694 	}
    695 }
    696 
    697 int
    698 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    699 {
    700 	const struct cfiattrdata *ci;
    701 	const struct cflocdesc *cl;
    702 	int nlocs, i;
    703 
    704 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    705 	KASSERT(ci);
    706 	nlocs = ci->ci_loclen;
    707 	KASSERT(!nlocs || locs);
    708 	for (i = 0; i < nlocs; i++) {
    709 		cl = &ci->ci_locdesc[i];
    710 		/* !cld_defaultstr means no default value */
    711 		if ((!(cl->cld_defaultstr)
    712 		     || (cf->cf_loc[i] != cl->cld_default))
    713 		    && cf->cf_loc[i] != locs[i])
    714 			return 0;
    715 	}
    716 
    717 	return config_match(parent, cf, aux);
    718 }
    719 
    720 /*
    721  * Helper function: check whether the driver supports the interface attribute
    722  * and return its descriptor structure.
    723  */
    724 static const struct cfiattrdata *
    725 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    726 {
    727 	const struct cfiattrdata * const *cpp;
    728 
    729 	if (cd->cd_attrs == NULL)
    730 		return 0;
    731 
    732 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    733 		if (STREQ((*cpp)->ci_name, ia)) {
    734 			/* Match. */
    735 			return *cpp;
    736 		}
    737 	}
    738 	return 0;
    739 }
    740 
    741 /*
    742  * Lookup an interface attribute description by name.
    743  * If the driver is given, consider only its supported attributes.
    744  */
    745 const struct cfiattrdata *
    746 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    747 {
    748 	const struct cfdriver *d;
    749 	const struct cfiattrdata *ia;
    750 
    751 	if (cd)
    752 		return cfdriver_get_iattr(cd, name);
    753 
    754 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    755 		ia = cfdriver_get_iattr(d, name);
    756 		if (ia)
    757 			return ia;
    758 	}
    759 	return 0;
    760 }
    761 
    762 /*
    763  * Determine if `parent' is a potential parent for a device spec based
    764  * on `cfp'.
    765  */
    766 static int
    767 cfparent_match(const device_t parent, const struct cfparent *cfp)
    768 {
    769 	struct cfdriver *pcd;
    770 
    771 	/* We don't match root nodes here. */
    772 	if (cfp == NULL)
    773 		return 0;
    774 
    775 	pcd = parent->dv_cfdriver;
    776 	KASSERT(pcd != NULL);
    777 
    778 	/*
    779 	 * First, ensure this parent has the correct interface
    780 	 * attribute.
    781 	 */
    782 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    783 		return 0;
    784 
    785 	/*
    786 	 * If no specific parent device instance was specified (i.e.
    787 	 * we're attaching to the attribute only), we're done!
    788 	 */
    789 	if (cfp->cfp_parent == NULL)
    790 		return 1;
    791 
    792 	/*
    793 	 * Check the parent device's name.
    794 	 */
    795 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    796 		return 0;	/* not the same parent */
    797 
    798 	/*
    799 	 * Make sure the unit number matches.
    800 	 */
    801 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    802 	    cfp->cfp_unit == parent->dv_unit)
    803 		return 1;
    804 
    805 	/* Unit numbers don't match. */
    806 	return 0;
    807 }
    808 
    809 /*
    810  * Helper for config_cfdata_attach(): check all devices whether it could be
    811  * parent any attachment in the config data table passed, and rescan.
    812  */
    813 static void
    814 rescan_with_cfdata(const struct cfdata *cf)
    815 {
    816 	device_t d;
    817 	const struct cfdata *cf1;
    818 	deviter_t di;
    819 
    820 
    821 	/*
    822 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    823 	 * the outer loop.
    824 	 */
    825 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    826 
    827 		if (!(d->dv_cfattach->ca_rescan))
    828 			continue;
    829 
    830 		for (cf1 = cf; cf1->cf_name; cf1++) {
    831 
    832 			if (!cfparent_match(d, cf1->cf_pspec))
    833 				continue;
    834 
    835 			(*d->dv_cfattach->ca_rescan)(d,
    836 				cfdata_ifattr(cf1), cf1->cf_loc);
    837 
    838 			config_deferred(d);
    839 		}
    840 	}
    841 	deviter_release(&di);
    842 }
    843 
    844 /*
    845  * Attach a supplemental config data table and rescan potential
    846  * parent devices if required.
    847  */
    848 int
    849 config_cfdata_attach(cfdata_t cf, int scannow)
    850 {
    851 	struct cftable *ct;
    852 
    853 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    854 	ct->ct_cfdata = cf;
    855 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    856 
    857 	if (scannow)
    858 		rescan_with_cfdata(cf);
    859 
    860 	return 0;
    861 }
    862 
    863 /*
    864  * Helper for config_cfdata_detach: check whether a device is
    865  * found through any attachment in the config data table.
    866  */
    867 static int
    868 dev_in_cfdata(device_t d, cfdata_t cf)
    869 {
    870 	const struct cfdata *cf1;
    871 
    872 	for (cf1 = cf; cf1->cf_name; cf1++)
    873 		if (d->dv_cfdata == cf1)
    874 			return 1;
    875 
    876 	return 0;
    877 }
    878 
    879 /*
    880  * Detach a supplemental config data table. Detach all devices found
    881  * through that table (and thus keeping references to it) before.
    882  */
    883 int
    884 config_cfdata_detach(cfdata_t cf)
    885 {
    886 	device_t d;
    887 	int error = 0;
    888 	struct cftable *ct;
    889 	deviter_t di;
    890 
    891 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    892 	     d = deviter_next(&di)) {
    893 		if (!dev_in_cfdata(d, cf))
    894 			continue;
    895 		if ((error = config_detach(d, 0)) != 0)
    896 			break;
    897 	}
    898 	deviter_release(&di);
    899 	if (error) {
    900 		aprint_error_dev(d, "unable to detach instance\n");
    901 		return error;
    902 	}
    903 
    904 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    905 		if (ct->ct_cfdata == cf) {
    906 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    907 			kmem_free(ct, sizeof(*ct));
    908 			return 0;
    909 		}
    910 	}
    911 
    912 	/* not found -- shouldn't happen */
    913 	return EINVAL;
    914 }
    915 
    916 /*
    917  * Invoke the "match" routine for a cfdata entry on behalf of
    918  * an external caller, usually a "submatch" routine.
    919  */
    920 int
    921 config_match(device_t parent, cfdata_t cf, void *aux)
    922 {
    923 	struct cfattach *ca;
    924 
    925 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    926 	if (ca == NULL) {
    927 		/* No attachment for this entry, oh well. */
    928 		return 0;
    929 	}
    930 
    931 	return (*ca->ca_match)(parent, cf, aux);
    932 }
    933 
    934 /*
    935  * Iterate over all potential children of some device, calling the given
    936  * function (default being the child's match function) for each one.
    937  * Nonzero returns are matches; the highest value returned is considered
    938  * the best match.  Return the `found child' if we got a match, or NULL
    939  * otherwise.  The `aux' pointer is simply passed on through.
    940  *
    941  * Note that this function is designed so that it can be used to apply
    942  * an arbitrary function to all potential children (its return value
    943  * can be ignored).
    944  */
    945 cfdata_t
    946 config_search_loc(cfsubmatch_t fn, device_t parent,
    947 		  const char *ifattr, const int *locs, void *aux)
    948 {
    949 	struct cftable *ct;
    950 	cfdata_t cf;
    951 	struct matchinfo m;
    952 
    953 	KASSERT(config_initialized);
    954 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
    955 
    956 	m.fn = fn;
    957 	m.parent = parent;
    958 	m.locs = locs;
    959 	m.aux = aux;
    960 	m.match = NULL;
    961 	m.pri = 0;
    962 
    963 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    964 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
    965 
    966 			/* We don't match root nodes here. */
    967 			if (!cf->cf_pspec)
    968 				continue;
    969 
    970 			/*
    971 			 * Skip cf if no longer eligible, otherwise scan
    972 			 * through parents for one matching `parent', and
    973 			 * try match function.
    974 			 */
    975 			if (cf->cf_fstate == FSTATE_FOUND)
    976 				continue;
    977 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
    978 			    cf->cf_fstate == FSTATE_DSTAR)
    979 				continue;
    980 
    981 			/*
    982 			 * If an interface attribute was specified,
    983 			 * consider only children which attach to
    984 			 * that attribute.
    985 			 */
    986 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
    987 				continue;
    988 
    989 			if (cfparent_match(parent, cf->cf_pspec))
    990 				mapply(&m, cf);
    991 		}
    992 	}
    993 	return m.match;
    994 }
    995 
    996 cfdata_t
    997 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
    998     void *aux)
    999 {
   1000 
   1001 	return config_search_loc(fn, parent, ifattr, NULL, aux);
   1002 }
   1003 
   1004 /*
   1005  * Find the given root device.
   1006  * This is much like config_search, but there is no parent.
   1007  * Don't bother with multiple cfdata tables; the root node
   1008  * must always be in the initial table.
   1009  */
   1010 cfdata_t
   1011 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1012 {
   1013 	cfdata_t cf;
   1014 	const short *p;
   1015 	struct matchinfo m;
   1016 
   1017 	m.fn = fn;
   1018 	m.parent = ROOT;
   1019 	m.aux = aux;
   1020 	m.match = NULL;
   1021 	m.pri = 0;
   1022 	m.locs = 0;
   1023 	/*
   1024 	 * Look at root entries for matching name.  We do not bother
   1025 	 * with found-state here since only one root should ever be
   1026 	 * searched (and it must be done first).
   1027 	 */
   1028 	for (p = cfroots; *p >= 0; p++) {
   1029 		cf = &cfdata[*p];
   1030 		if (strcmp(cf->cf_name, rootname) == 0)
   1031 			mapply(&m, cf);
   1032 	}
   1033 	return m.match;
   1034 }
   1035 
   1036 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1037 
   1038 /*
   1039  * The given `aux' argument describes a device that has been found
   1040  * on the given parent, but not necessarily configured.  Locate the
   1041  * configuration data for that device (using the submatch function
   1042  * provided, or using candidates' cd_match configuration driver
   1043  * functions) and attach it, and return its device_t.  If the device was
   1044  * not configured, call the given `print' function and return NULL.
   1045  */
   1046 device_t
   1047 config_found_sm_loc(device_t parent,
   1048 		const char *ifattr, const int *locs, void *aux,
   1049 		cfprint_t print, cfsubmatch_t submatch)
   1050 {
   1051 	cfdata_t cf;
   1052 
   1053 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
   1054 		return(config_attach_loc(parent, cf, locs, aux, print));
   1055 	if (print) {
   1056 		if (config_do_twiddle && cold)
   1057 			twiddle();
   1058 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1059 	}
   1060 
   1061 	/*
   1062 	 * This has the effect of mixing in a single timestamp to the
   1063 	 * entropy pool.  Experiments indicate the estimator will almost
   1064 	 * always attribute one bit of entropy to this sample; analysis
   1065 	 * of device attach/detach timestamps on FreeBSD indicates 4
   1066 	 * bits of entropy/sample so this seems appropriately conservative.
   1067 	 */
   1068 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1069 	return NULL;
   1070 }
   1071 
   1072 device_t
   1073 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1074     cfprint_t print)
   1075 {
   1076 
   1077 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
   1078 }
   1079 
   1080 device_t
   1081 config_found(device_t parent, void *aux, cfprint_t print)
   1082 {
   1083 
   1084 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
   1085 }
   1086 
   1087 /*
   1088  * As above, but for root devices.
   1089  */
   1090 device_t
   1091 config_rootfound(const char *rootname, void *aux)
   1092 {
   1093 	cfdata_t cf;
   1094 
   1095 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1096 		return config_attach(ROOT, cf, aux, NULL);
   1097 	aprint_error("root device %s not configured\n", rootname);
   1098 	return NULL;
   1099 }
   1100 
   1101 /* just like sprintf(buf, "%d") except that it works from the end */
   1102 static char *
   1103 number(char *ep, int n)
   1104 {
   1105 
   1106 	*--ep = 0;
   1107 	while (n >= 10) {
   1108 		*--ep = (n % 10) + '0';
   1109 		n /= 10;
   1110 	}
   1111 	*--ep = n + '0';
   1112 	return ep;
   1113 }
   1114 
   1115 /*
   1116  * Expand the size of the cd_devs array if necessary.
   1117  *
   1118  * The caller must hold alldevs_mtx. config_makeroom() may release and
   1119  * re-acquire alldevs_mtx, so callers should re-check conditions such
   1120  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1121  * returns.
   1122  */
   1123 static void
   1124 config_makeroom(int n, struct cfdriver *cd)
   1125 {
   1126 	int old, new;
   1127 	device_t *osp, *nsp;
   1128 
   1129 	alldevs_nwrite++;
   1130 
   1131 	for (new = MAX(4, cd->cd_ndevs); new <= n; new += new)
   1132 		;
   1133 
   1134 	while (n >= cd->cd_ndevs) {
   1135 		/*
   1136 		 * Need to expand the array.
   1137 		 */
   1138 		old = cd->cd_ndevs;
   1139 		osp = cd->cd_devs;
   1140 
   1141 		/* Release alldevs_mtx around allocation, which may
   1142 		 * sleep.
   1143 		 */
   1144 		mutex_exit(&alldevs_mtx);
   1145 		nsp = kmem_alloc(sizeof(device_t[new]), KM_SLEEP);
   1146 		if (nsp == NULL)
   1147 			panic("%s: could not expand cd_devs", __func__);
   1148 		mutex_enter(&alldevs_mtx);
   1149 
   1150 		/* If another thread moved the array while we did
   1151 		 * not hold alldevs_mtx, try again.
   1152 		 */
   1153 		if (cd->cd_devs != osp) {
   1154 			mutex_exit(&alldevs_mtx);
   1155 			kmem_free(nsp, sizeof(device_t[new]));
   1156 			mutex_enter(&alldevs_mtx);
   1157 			continue;
   1158 		}
   1159 
   1160 		memset(nsp + old, 0, sizeof(device_t[new - old]));
   1161 		if (old != 0)
   1162 			memcpy(nsp, cd->cd_devs, sizeof(device_t[old]));
   1163 
   1164 		cd->cd_ndevs = new;
   1165 		cd->cd_devs = nsp;
   1166 		if (old != 0) {
   1167 			mutex_exit(&alldevs_mtx);
   1168 			kmem_free(osp, sizeof(device_t[old]));
   1169 			mutex_enter(&alldevs_mtx);
   1170 		}
   1171 	}
   1172 	alldevs_nwrite--;
   1173 }
   1174 
   1175 /*
   1176  * Put dev into the devices list.
   1177  */
   1178 static void
   1179 config_devlink(device_t dev)
   1180 {
   1181 	int s;
   1182 
   1183 	s = config_alldevs_lock();
   1184 
   1185 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1186 
   1187 	dev->dv_add_gen = alldevs_gen;
   1188 	/* It is safe to add a device to the tail of the list while
   1189 	 * readers and writers are in the list.
   1190 	 */
   1191 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1192 	config_alldevs_unlock(s);
   1193 }
   1194 
   1195 static void
   1196 config_devfree(device_t dev)
   1197 {
   1198 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
   1199 
   1200 	if (dev->dv_cfattach->ca_devsize > 0)
   1201 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1202 	if (priv)
   1203 		kmem_free(dev, sizeof(*dev));
   1204 }
   1205 
   1206 /*
   1207  * Caller must hold alldevs_mtx.
   1208  */
   1209 static void
   1210 config_devunlink(device_t dev, struct devicelist *garbage)
   1211 {
   1212 	struct device_garbage *dg = &dev->dv_garbage;
   1213 	cfdriver_t cd = device_cfdriver(dev);
   1214 	int i;
   1215 
   1216 	KASSERT(mutex_owned(&alldevs_mtx));
   1217 
   1218  	/* Unlink from device list.  Link to garbage list. */
   1219 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1220 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1221 
   1222 	/* Remove from cfdriver's array. */
   1223 	cd->cd_devs[dev->dv_unit] = NULL;
   1224 
   1225 	/*
   1226 	 * If the device now has no units in use, unlink its softc array.
   1227 	 */
   1228 	for (i = 0; i < cd->cd_ndevs; i++) {
   1229 		if (cd->cd_devs[i] != NULL)
   1230 			break;
   1231 	}
   1232 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1233 	if (i == cd->cd_ndevs) {
   1234 		dg->dg_ndevs = cd->cd_ndevs;
   1235 		dg->dg_devs = cd->cd_devs;
   1236 		cd->cd_devs = NULL;
   1237 		cd->cd_ndevs = 0;
   1238 	}
   1239 }
   1240 
   1241 static void
   1242 config_devdelete(device_t dev)
   1243 {
   1244 	struct device_garbage *dg = &dev->dv_garbage;
   1245 	device_lock_t dvl = device_getlock(dev);
   1246 
   1247 	if (dg->dg_devs != NULL)
   1248 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
   1249 
   1250 	cv_destroy(&dvl->dvl_cv);
   1251 	mutex_destroy(&dvl->dvl_mtx);
   1252 
   1253 	KASSERT(dev->dv_properties != NULL);
   1254 	prop_object_release(dev->dv_properties);
   1255 
   1256 	if (dev->dv_activity_handlers)
   1257 		panic("%s with registered handlers", __func__);
   1258 
   1259 	if (dev->dv_locators) {
   1260 		size_t amount = *--dev->dv_locators;
   1261 		kmem_free(dev->dv_locators, amount);
   1262 	}
   1263 
   1264 	config_devfree(dev);
   1265 }
   1266 
   1267 static int
   1268 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1269 {
   1270 	int unit;
   1271 
   1272 	if (cf->cf_fstate == FSTATE_STAR) {
   1273 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1274 			if (cd->cd_devs[unit] == NULL)
   1275 				break;
   1276 		/*
   1277 		 * unit is now the unit of the first NULL device pointer,
   1278 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1279 		 */
   1280 	} else {
   1281 		unit = cf->cf_unit;
   1282 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1283 			unit = -1;
   1284 	}
   1285 	return unit;
   1286 }
   1287 
   1288 static int
   1289 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1290 {
   1291 	struct alldevs_foray af;
   1292 	int unit;
   1293 
   1294 	config_alldevs_enter(&af);
   1295 	for (;;) {
   1296 		unit = config_unit_nextfree(cd, cf);
   1297 		if (unit == -1)
   1298 			break;
   1299 		if (unit < cd->cd_ndevs) {
   1300 			cd->cd_devs[unit] = dev;
   1301 			dev->dv_unit = unit;
   1302 			break;
   1303 		}
   1304 		config_makeroom(unit, cd);
   1305 	}
   1306 	config_alldevs_exit(&af);
   1307 
   1308 	return unit;
   1309 }
   1310 
   1311 static device_t
   1312 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1313 {
   1314 	cfdriver_t cd;
   1315 	cfattach_t ca;
   1316 	size_t lname, lunit;
   1317 	const char *xunit;
   1318 	int myunit;
   1319 	char num[10];
   1320 	device_t dev;
   1321 	void *dev_private;
   1322 	const struct cfiattrdata *ia;
   1323 	device_lock_t dvl;
   1324 
   1325 	cd = config_cfdriver_lookup(cf->cf_name);
   1326 	if (cd == NULL)
   1327 		return NULL;
   1328 
   1329 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1330 	if (ca == NULL)
   1331 		return NULL;
   1332 
   1333 	if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
   1334 	    ca->ca_devsize < sizeof(struct device))
   1335 		panic("config_devalloc: %s (%zu < %zu)", cf->cf_atname,
   1336 		    ca->ca_devsize, sizeof(struct device));
   1337 
   1338 	/* get memory for all device vars */
   1339 	KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
   1340 	if (ca->ca_devsize > 0) {
   1341 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1342 		if (dev_private == NULL)
   1343 			panic("config_devalloc: memory allocation for device softc failed");
   1344 	} else {
   1345 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1346 		dev_private = NULL;
   1347 	}
   1348 
   1349 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1350 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1351 	} else {
   1352 		dev = dev_private;
   1353 #ifdef DIAGNOSTIC
   1354 		printf("%s has not been converted to device_t\n", cd->cd_name);
   1355 #endif
   1356 	}
   1357 	if (dev == NULL)
   1358 		panic("config_devalloc: memory allocation for device_t failed");
   1359 
   1360 	dev->dv_class = cd->cd_class;
   1361 	dev->dv_cfdata = cf;
   1362 	dev->dv_cfdriver = cd;
   1363 	dev->dv_cfattach = ca;
   1364 	dev->dv_activity_count = 0;
   1365 	dev->dv_activity_handlers = NULL;
   1366 	dev->dv_private = dev_private;
   1367 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1368 
   1369 	myunit = config_unit_alloc(dev, cd, cf);
   1370 	if (myunit == -1) {
   1371 		config_devfree(dev);
   1372 		return NULL;
   1373 	}
   1374 
   1375 	/* compute length of name and decimal expansion of unit number */
   1376 	lname = strlen(cd->cd_name);
   1377 	xunit = number(&num[sizeof(num)], myunit);
   1378 	lunit = &num[sizeof(num)] - xunit;
   1379 	if (lname + lunit > sizeof(dev->dv_xname))
   1380 		panic("config_devalloc: device name too long");
   1381 
   1382 	dvl = device_getlock(dev);
   1383 
   1384 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1385 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1386 
   1387 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1388 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1389 	dev->dv_parent = parent;
   1390 	if (parent != NULL)
   1391 		dev->dv_depth = parent->dv_depth + 1;
   1392 	else
   1393 		dev->dv_depth = 0;
   1394 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1395 	if (locs) {
   1396 		KASSERT(parent); /* no locators at root */
   1397 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1398 		dev->dv_locators =
   1399 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
   1400 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
   1401 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
   1402 	}
   1403 	dev->dv_properties = prop_dictionary_create();
   1404 	KASSERT(dev->dv_properties != NULL);
   1405 
   1406 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
   1407 	    "device-driver", dev->dv_cfdriver->cd_name);
   1408 	prop_dictionary_set_uint16(dev->dv_properties,
   1409 	    "device-unit", dev->dv_unit);
   1410 
   1411 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1412 		config_add_attrib_dict(dev);
   1413 
   1414 	return dev;
   1415 }
   1416 
   1417 /*
   1418  * Create an array of device attach attributes and add it
   1419  * to the device's dv_properties dictionary.
   1420  *
   1421  * <key>interface-attributes</key>
   1422  * <array>
   1423  *    <dict>
   1424  *       <key>attribute-name</key>
   1425  *       <string>foo</string>
   1426  *       <key>locators</key>
   1427  *       <array>
   1428  *          <dict>
   1429  *             <key>loc-name</key>
   1430  *             <string>foo-loc1</string>
   1431  *          </dict>
   1432  *          <dict>
   1433  *             <key>loc-name</key>
   1434  *             <string>foo-loc2</string>
   1435  *             <key>default</key>
   1436  *             <string>foo-loc2-default</string>
   1437  *          </dict>
   1438  *          ...
   1439  *       </array>
   1440  *    </dict>
   1441  *    ...
   1442  * </array>
   1443  */
   1444 
   1445 static void
   1446 config_add_attrib_dict(device_t dev)
   1447 {
   1448 	int i, j;
   1449 	const struct cfiattrdata *ci;
   1450 	prop_dictionary_t attr_dict, loc_dict;
   1451 	prop_array_t attr_array, loc_array;
   1452 
   1453 	if ((attr_array = prop_array_create()) == NULL)
   1454 		return;
   1455 
   1456 	for (i = 0; ; i++) {
   1457 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1458 			break;
   1459 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1460 			break;
   1461 		prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
   1462 		    ci->ci_name);
   1463 
   1464 		/* Create an array of the locator names and defaults */
   1465 
   1466 		if (ci->ci_loclen != 0 &&
   1467 		    (loc_array = prop_array_create()) != NULL) {
   1468 			for (j = 0; j < ci->ci_loclen; j++) {
   1469 				loc_dict = prop_dictionary_create();
   1470 				if (loc_dict == NULL)
   1471 					continue;
   1472 				prop_dictionary_set_cstring_nocopy(loc_dict,
   1473 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1474 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1475 					prop_dictionary_set_cstring_nocopy(
   1476 					    loc_dict, "default",
   1477 					    ci->ci_locdesc[j].cld_defaultstr);
   1478 				prop_array_set(loc_array, j, loc_dict);
   1479 				prop_object_release(loc_dict);
   1480 			}
   1481 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1482 			    loc_array);
   1483 		}
   1484 		prop_array_add(attr_array, attr_dict);
   1485 		prop_object_release(attr_dict);
   1486 	}
   1487 	if (i == 0)
   1488 		prop_object_release(attr_array);
   1489 	else
   1490 		prop_dictionary_set_and_rel(dev->dv_properties,
   1491 		    "interface-attributes", attr_array);
   1492 
   1493 	return;
   1494 }
   1495 
   1496 /*
   1497  * Attach a found device.
   1498  */
   1499 device_t
   1500 config_attach_loc(device_t parent, cfdata_t cf,
   1501 	const int *locs, void *aux, cfprint_t print)
   1502 {
   1503 	device_t dev;
   1504 	struct cftable *ct;
   1505 	const char *drvname;
   1506 
   1507 	dev = config_devalloc(parent, cf, locs);
   1508 	if (!dev)
   1509 		panic("config_attach: allocation of device softc failed");
   1510 
   1511 	/* XXX redundant - see below? */
   1512 	if (cf->cf_fstate != FSTATE_STAR) {
   1513 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1514 		cf->cf_fstate = FSTATE_FOUND;
   1515 	}
   1516 
   1517 	config_devlink(dev);
   1518 
   1519 	if (config_do_twiddle && cold)
   1520 		twiddle();
   1521 	else
   1522 		aprint_naive("Found ");
   1523 	/*
   1524 	 * We want the next two printfs for normal, verbose, and quiet,
   1525 	 * but not silent (in which case, we're twiddling, instead).
   1526 	 */
   1527 	if (parent == ROOT) {
   1528 		aprint_naive("%s (root)", device_xname(dev));
   1529 		aprint_normal("%s (root)", device_xname(dev));
   1530 	} else {
   1531 		aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
   1532 		aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
   1533 		if (print)
   1534 			(void) (*print)(aux, NULL);
   1535 	}
   1536 
   1537 	/*
   1538 	 * Before attaching, clobber any unfound devices that are
   1539 	 * otherwise identical.
   1540 	 * XXX code above is redundant?
   1541 	 */
   1542 	drvname = dev->dv_cfdriver->cd_name;
   1543 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1544 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1545 			if (STREQ(cf->cf_name, drvname) &&
   1546 			    cf->cf_unit == dev->dv_unit) {
   1547 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1548 					cf->cf_fstate = FSTATE_FOUND;
   1549 			}
   1550 		}
   1551 	}
   1552 	device_register(dev, aux);
   1553 
   1554 	/* Let userland know */
   1555 	devmon_report_device(dev, true);
   1556 
   1557 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1558 
   1559 	if (!device_pmf_is_registered(dev))
   1560 		aprint_debug_dev(dev, "WARNING: power management not supported\n");
   1561 
   1562 	config_process_deferred(&deferred_config_queue, dev);
   1563 
   1564 	device_register_post_config(dev, aux);
   1565 	return dev;
   1566 }
   1567 
   1568 device_t
   1569 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1570 {
   1571 
   1572 	return config_attach_loc(parent, cf, NULL, aux, print);
   1573 }
   1574 
   1575 /*
   1576  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1577  * way are silently inserted into the device tree, and their children
   1578  * attached.
   1579  *
   1580  * Note that because pseudo-devices are attached silently, any information
   1581  * the attach routine wishes to print should be prefixed with the device
   1582  * name by the attach routine.
   1583  */
   1584 device_t
   1585 config_attach_pseudo(cfdata_t cf)
   1586 {
   1587 	device_t dev;
   1588 
   1589 	dev = config_devalloc(ROOT, cf, NULL);
   1590 	if (!dev)
   1591 		return NULL;
   1592 
   1593 	/* XXX mark busy in cfdata */
   1594 
   1595 	if (cf->cf_fstate != FSTATE_STAR) {
   1596 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1597 		cf->cf_fstate = FSTATE_FOUND;
   1598 	}
   1599 
   1600 	config_devlink(dev);
   1601 
   1602 #if 0	/* XXXJRT not yet */
   1603 	device_register(dev, NULL);	/* like a root node */
   1604 #endif
   1605 
   1606 	/* Let userland know */
   1607 	devmon_report_device(dev, true);
   1608 
   1609 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1610 
   1611 	config_process_deferred(&deferred_config_queue, dev);
   1612 	return dev;
   1613 }
   1614 
   1615 /*
   1616  * Caller must hold alldevs_mtx.
   1617  */
   1618 static void
   1619 config_collect_garbage(struct devicelist *garbage)
   1620 {
   1621 	device_t dv;
   1622 
   1623 	KASSERT(!cpu_intr_p());
   1624 	KASSERT(!cpu_softintr_p());
   1625 	KASSERT(mutex_owned(&alldevs_mtx));
   1626 
   1627 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1628 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1629 			if (dv->dv_del_gen != 0)
   1630 				break;
   1631 		}
   1632 		if (dv == NULL) {
   1633 			alldevs_garbage = false;
   1634 			break;
   1635 		}
   1636 		config_devunlink(dv, garbage);
   1637 	}
   1638 	KASSERT(mutex_owned(&alldevs_mtx));
   1639 }
   1640 
   1641 static void
   1642 config_dump_garbage(struct devicelist *garbage)
   1643 {
   1644 	device_t dv;
   1645 
   1646 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1647 		TAILQ_REMOVE(garbage, dv, dv_list);
   1648 		config_devdelete(dv);
   1649 	}
   1650 }
   1651 
   1652 /*
   1653  * Detach a device.  Optionally forced (e.g. because of hardware
   1654  * removal) and quiet.  Returns zero if successful, non-zero
   1655  * (an error code) otherwise.
   1656  *
   1657  * Note that this code wants to be run from a process context, so
   1658  * that the detach can sleep to allow processes which have a device
   1659  * open to run and unwind their stacks.
   1660  */
   1661 int
   1662 config_detach(device_t dev, int flags)
   1663 {
   1664 	struct alldevs_foray af;
   1665 	struct cftable *ct;
   1666 	cfdata_t cf;
   1667 	const struct cfattach *ca;
   1668 	struct cfdriver *cd;
   1669 #ifdef DIAGNOSTIC
   1670 	device_t d;
   1671 #endif
   1672 	int rv = 0, s;
   1673 
   1674 #ifdef DIAGNOSTIC
   1675 	cf = dev->dv_cfdata;
   1676 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
   1677 	    cf->cf_fstate != FSTATE_STAR)
   1678 		panic("config_detach: %s: bad device fstate %d",
   1679 		    device_xname(dev), cf ? cf->cf_fstate : -1);
   1680 #endif
   1681 	cd = dev->dv_cfdriver;
   1682 	KASSERT(cd != NULL);
   1683 
   1684 	ca = dev->dv_cfattach;
   1685 	KASSERT(ca != NULL);
   1686 
   1687 	s = config_alldevs_lock();
   1688 	if (dev->dv_del_gen != 0) {
   1689 		config_alldevs_unlock(s);
   1690 #ifdef DIAGNOSTIC
   1691 		printf("%s: %s is already detached\n", __func__,
   1692 		    device_xname(dev));
   1693 #endif /* DIAGNOSTIC */
   1694 		return ENOENT;
   1695 	}
   1696 	alldevs_nwrite++;
   1697 	config_alldevs_unlock(s);
   1698 
   1699 	if (!detachall &&
   1700 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1701 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1702 		rv = EOPNOTSUPP;
   1703 	} else if (ca->ca_detach != NULL) {
   1704 		rv = (*ca->ca_detach)(dev, flags);
   1705 	} else
   1706 		rv = EOPNOTSUPP;
   1707 
   1708 	/*
   1709 	 * If it was not possible to detach the device, then we either
   1710 	 * panic() (for the forced but failed case), or return an error.
   1711 	 *
   1712 	 * If it was possible to detach the device, ensure that the
   1713 	 * device is deactivated.
   1714 	 */
   1715 	if (rv == 0)
   1716 		dev->dv_flags &= ~DVF_ACTIVE;
   1717 	else if ((flags & DETACH_FORCE) == 0)
   1718 		goto out;
   1719 	else {
   1720 		panic("config_detach: forced detach of %s failed (%d)",
   1721 		    device_xname(dev), rv);
   1722 	}
   1723 
   1724 	/*
   1725 	 * The device has now been successfully detached.
   1726 	 */
   1727 
   1728 	/* Let userland know */
   1729 	devmon_report_device(dev, false);
   1730 
   1731 #ifdef DIAGNOSTIC
   1732 	/*
   1733 	 * Sanity: If you're successfully detached, you should have no
   1734 	 * children.  (Note that because children must be attached
   1735 	 * after parents, we only need to search the latter part of
   1736 	 * the list.)
   1737 	 */
   1738 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1739 	    d = TAILQ_NEXT(d, dv_list)) {
   1740 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1741 			printf("config_detach: detached device %s"
   1742 			    " has children %s\n", device_xname(dev), device_xname(d));
   1743 			panic("config_detach");
   1744 		}
   1745 	}
   1746 #endif
   1747 
   1748 	/* notify the parent that the child is gone */
   1749 	if (dev->dv_parent) {
   1750 		device_t p = dev->dv_parent;
   1751 		if (p->dv_cfattach->ca_childdetached)
   1752 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1753 	}
   1754 
   1755 	/*
   1756 	 * Mark cfdata to show that the unit can be reused, if possible.
   1757 	 */
   1758 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1759 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1760 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1761 				if (cf->cf_fstate == FSTATE_FOUND &&
   1762 				    cf->cf_unit == dev->dv_unit)
   1763 					cf->cf_fstate = FSTATE_NOTFOUND;
   1764 			}
   1765 		}
   1766 	}
   1767 
   1768 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1769 		aprint_normal_dev(dev, "detached\n");
   1770 
   1771 out:
   1772 	config_alldevs_enter(&af);
   1773 	KASSERT(alldevs_nwrite != 0);
   1774 	--alldevs_nwrite;
   1775 	if (rv == 0 && dev->dv_del_gen == 0) {
   1776 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   1777 			config_devunlink(dev, &af.af_garbage);
   1778 		else {
   1779 			dev->dv_del_gen = alldevs_gen;
   1780 			alldevs_garbage = true;
   1781 		}
   1782 	}
   1783 	config_alldevs_exit(&af);
   1784 
   1785 	return rv;
   1786 }
   1787 
   1788 int
   1789 config_detach_children(device_t parent, int flags)
   1790 {
   1791 	device_t dv;
   1792 	deviter_t di;
   1793 	int error = 0;
   1794 
   1795 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1796 	     dv = deviter_next(&di)) {
   1797 		if (device_parent(dv) != parent)
   1798 			continue;
   1799 		if ((error = config_detach(dv, flags)) != 0)
   1800 			break;
   1801 	}
   1802 	deviter_release(&di);
   1803 	return error;
   1804 }
   1805 
   1806 device_t
   1807 shutdown_first(struct shutdown_state *s)
   1808 {
   1809 	if (!s->initialized) {
   1810 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1811 		s->initialized = true;
   1812 	}
   1813 	return shutdown_next(s);
   1814 }
   1815 
   1816 device_t
   1817 shutdown_next(struct shutdown_state *s)
   1818 {
   1819 	device_t dv;
   1820 
   1821 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1822 		;
   1823 
   1824 	if (dv == NULL)
   1825 		s->initialized = false;
   1826 
   1827 	return dv;
   1828 }
   1829 
   1830 bool
   1831 config_detach_all(int how)
   1832 {
   1833 	static struct shutdown_state s;
   1834 	device_t curdev;
   1835 	bool progress = false;
   1836 
   1837 	if ((how & RB_NOSYNC) != 0)
   1838 		return false;
   1839 
   1840 	for (curdev = shutdown_first(&s); curdev != NULL;
   1841 	     curdev = shutdown_next(&s)) {
   1842 		aprint_debug(" detaching %s, ", device_xname(curdev));
   1843 		if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
   1844 			progress = true;
   1845 			aprint_debug("success.");
   1846 		} else
   1847 			aprint_debug("failed.");
   1848 	}
   1849 	return progress;
   1850 }
   1851 
   1852 static bool
   1853 device_is_ancestor_of(device_t ancestor, device_t descendant)
   1854 {
   1855 	device_t dv;
   1856 
   1857 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   1858 		if (device_parent(dv) == ancestor)
   1859 			return true;
   1860 	}
   1861 	return false;
   1862 }
   1863 
   1864 int
   1865 config_deactivate(device_t dev)
   1866 {
   1867 	deviter_t di;
   1868 	const struct cfattach *ca;
   1869 	device_t descendant;
   1870 	int s, rv = 0, oflags;
   1871 
   1872 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   1873 	     descendant != NULL;
   1874 	     descendant = deviter_next(&di)) {
   1875 		if (dev != descendant &&
   1876 		    !device_is_ancestor_of(dev, descendant))
   1877 			continue;
   1878 
   1879 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   1880 			continue;
   1881 
   1882 		ca = descendant->dv_cfattach;
   1883 		oflags = descendant->dv_flags;
   1884 
   1885 		descendant->dv_flags &= ~DVF_ACTIVE;
   1886 		if (ca->ca_activate == NULL)
   1887 			continue;
   1888 		s = splhigh();
   1889 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   1890 		splx(s);
   1891 		if (rv != 0)
   1892 			descendant->dv_flags = oflags;
   1893 	}
   1894 	deviter_release(&di);
   1895 	return rv;
   1896 }
   1897 
   1898 /*
   1899  * Defer the configuration of the specified device until all
   1900  * of its parent's devices have been attached.
   1901  */
   1902 void
   1903 config_defer(device_t dev, void (*func)(device_t))
   1904 {
   1905 	struct deferred_config *dc;
   1906 
   1907 	if (dev->dv_parent == NULL)
   1908 		panic("config_defer: can't defer config of a root device");
   1909 
   1910 #ifdef DIAGNOSTIC
   1911 	TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
   1912 		if (dc->dc_dev == dev)
   1913 			panic("config_defer: deferred twice");
   1914 	}
   1915 #endif
   1916 
   1917 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1918 	if (dc == NULL)
   1919 		panic("config_defer: unable to allocate callback");
   1920 
   1921 	dc->dc_dev = dev;
   1922 	dc->dc_func = func;
   1923 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1924 	config_pending_incr(dev);
   1925 }
   1926 
   1927 /*
   1928  * Defer some autoconfiguration for a device until after interrupts
   1929  * are enabled.
   1930  */
   1931 void
   1932 config_interrupts(device_t dev, void (*func)(device_t))
   1933 {
   1934 	struct deferred_config *dc;
   1935 
   1936 	/*
   1937 	 * If interrupts are enabled, callback now.
   1938 	 */
   1939 	if (cold == 0) {
   1940 		(*func)(dev);
   1941 		return;
   1942 	}
   1943 
   1944 #ifdef DIAGNOSTIC
   1945 	TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
   1946 		if (dc->dc_dev == dev)
   1947 			panic("config_interrupts: deferred twice");
   1948 	}
   1949 #endif
   1950 
   1951 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1952 	if (dc == NULL)
   1953 		panic("config_interrupts: unable to allocate callback");
   1954 
   1955 	dc->dc_dev = dev;
   1956 	dc->dc_func = func;
   1957 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   1958 	config_pending_incr(dev);
   1959 }
   1960 
   1961 /*
   1962  * Defer some autoconfiguration for a device until after root file system
   1963  * is mounted (to load firmware etc).
   1964  */
   1965 void
   1966 config_mountroot(device_t dev, void (*func)(device_t))
   1967 {
   1968 	struct deferred_config *dc;
   1969 
   1970 	/*
   1971 	 * If root file system is mounted, callback now.
   1972 	 */
   1973 	if (root_is_mounted) {
   1974 		(*func)(dev);
   1975 		return;
   1976 	}
   1977 
   1978 #ifdef DIAGNOSTIC
   1979 	TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
   1980 		if (dc->dc_dev == dev)
   1981 			panic("%s: deferred twice", __func__);
   1982 	}
   1983 #endif
   1984 
   1985 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1986 	if (dc == NULL)
   1987 		panic("%s: unable to allocate callback", __func__);
   1988 
   1989 	dc->dc_dev = dev;
   1990 	dc->dc_func = func;
   1991 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   1992 }
   1993 
   1994 /*
   1995  * Process a deferred configuration queue.
   1996  */
   1997 static void
   1998 config_process_deferred(struct deferred_config_head *queue,
   1999     device_t parent)
   2000 {
   2001 	struct deferred_config *dc, *ndc;
   2002 
   2003 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   2004 		ndc = TAILQ_NEXT(dc, dc_queue);
   2005 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2006 			TAILQ_REMOVE(queue, dc, dc_queue);
   2007 			(*dc->dc_func)(dc->dc_dev);
   2008 			config_pending_decr(dc->dc_dev);
   2009 			kmem_free(dc, sizeof(*dc));
   2010 		}
   2011 	}
   2012 }
   2013 
   2014 /*
   2015  * Manipulate the config_pending semaphore.
   2016  */
   2017 void
   2018 config_pending_incr(device_t dev)
   2019 {
   2020 
   2021 	mutex_enter(&config_misc_lock);
   2022 	config_pending++;
   2023 #ifdef DEBUG_AUTOCONF
   2024 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
   2025 #endif
   2026 	mutex_exit(&config_misc_lock);
   2027 }
   2028 
   2029 void
   2030 config_pending_decr(device_t dev)
   2031 {
   2032 
   2033 #ifdef DIAGNOSTIC
   2034 	if (config_pending == 0)
   2035 		panic("config_pending_decr: config_pending == 0");
   2036 #endif
   2037 	mutex_enter(&config_misc_lock);
   2038 	config_pending--;
   2039 #ifdef DEBUG_AUTOCONF
   2040 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
   2041 #endif
   2042 	if (config_pending == 0)
   2043 		cv_broadcast(&config_misc_cv);
   2044 	mutex_exit(&config_misc_lock);
   2045 }
   2046 
   2047 /*
   2048  * Register a "finalization" routine.  Finalization routines are
   2049  * called iteratively once all real devices have been found during
   2050  * autoconfiguration, for as long as any one finalizer has done
   2051  * any work.
   2052  */
   2053 int
   2054 config_finalize_register(device_t dev, int (*fn)(device_t))
   2055 {
   2056 	struct finalize_hook *f;
   2057 
   2058 	/*
   2059 	 * If finalization has already been done, invoke the
   2060 	 * callback function now.
   2061 	 */
   2062 	if (config_finalize_done) {
   2063 		while ((*fn)(dev) != 0)
   2064 			/* loop */ ;
   2065 	}
   2066 
   2067 	/* Ensure this isn't already on the list. */
   2068 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2069 		if (f->f_func == fn && f->f_dev == dev)
   2070 			return EEXIST;
   2071 	}
   2072 
   2073 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2074 	f->f_func = fn;
   2075 	f->f_dev = dev;
   2076 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2077 
   2078 	return 0;
   2079 }
   2080 
   2081 void
   2082 config_finalize(void)
   2083 {
   2084 	struct finalize_hook *f;
   2085 	struct pdevinit *pdev;
   2086 	extern struct pdevinit pdevinit[];
   2087 	int errcnt, rv;
   2088 
   2089 	/*
   2090 	 * Now that device driver threads have been created, wait for
   2091 	 * them to finish any deferred autoconfiguration.
   2092 	 */
   2093 	mutex_enter(&config_misc_lock);
   2094 	while (config_pending != 0)
   2095 		cv_wait(&config_misc_cv, &config_misc_lock);
   2096 	mutex_exit(&config_misc_lock);
   2097 
   2098 	KERNEL_LOCK(1, NULL);
   2099 
   2100 	/* Attach pseudo-devices. */
   2101 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2102 		(*pdev->pdev_attach)(pdev->pdev_count);
   2103 
   2104 	/* Run the hooks until none of them does any work. */
   2105 	do {
   2106 		rv = 0;
   2107 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2108 			rv |= (*f->f_func)(f->f_dev);
   2109 	} while (rv != 0);
   2110 
   2111 	config_finalize_done = 1;
   2112 
   2113 	/* Now free all the hooks. */
   2114 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2115 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2116 		kmem_free(f, sizeof(*f));
   2117 	}
   2118 
   2119 	KERNEL_UNLOCK_ONE(NULL);
   2120 
   2121 	errcnt = aprint_get_error_count();
   2122 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2123 	    (boothowto & AB_VERBOSE) == 0) {
   2124 		mutex_enter(&config_misc_lock);
   2125 		if (config_do_twiddle) {
   2126 			config_do_twiddle = 0;
   2127 			printf_nolog(" done.\n");
   2128 		}
   2129 		mutex_exit(&config_misc_lock);
   2130 		if (errcnt != 0) {
   2131 			printf("WARNING: %d error%s while detecting hardware; "
   2132 			    "check system log.\n", errcnt,
   2133 			    errcnt == 1 ? "" : "s");
   2134 		}
   2135 	}
   2136 }
   2137 
   2138 void
   2139 config_twiddle_init(void)
   2140 {
   2141 
   2142 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2143 		config_do_twiddle = 1;
   2144 	}
   2145 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2146 }
   2147 
   2148 void
   2149 config_twiddle_fn(void *cookie)
   2150 {
   2151 
   2152 	mutex_enter(&config_misc_lock);
   2153 	if (config_do_twiddle) {
   2154 		twiddle();
   2155 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2156 	}
   2157 	mutex_exit(&config_misc_lock);
   2158 }
   2159 
   2160 static int
   2161 config_alldevs_lock(void)
   2162 {
   2163 	mutex_enter(&alldevs_mtx);
   2164 	return 0;
   2165 }
   2166 
   2167 static void
   2168 config_alldevs_enter(struct alldevs_foray *af)
   2169 {
   2170 	TAILQ_INIT(&af->af_garbage);
   2171 	af->af_s = config_alldevs_lock();
   2172 	config_collect_garbage(&af->af_garbage);
   2173 }
   2174 
   2175 static void
   2176 config_alldevs_exit(struct alldevs_foray *af)
   2177 {
   2178 	config_alldevs_unlock(af->af_s);
   2179 	config_dump_garbage(&af->af_garbage);
   2180 }
   2181 
   2182 /*ARGSUSED*/
   2183 static void
   2184 config_alldevs_unlock(int s)
   2185 {
   2186 	mutex_exit(&alldevs_mtx);
   2187 }
   2188 
   2189 /*
   2190  * device_lookup:
   2191  *
   2192  *	Look up a device instance for a given driver.
   2193  */
   2194 device_t
   2195 device_lookup(cfdriver_t cd, int unit)
   2196 {
   2197 	device_t dv;
   2198 	int s;
   2199 
   2200 	s = config_alldevs_lock();
   2201 	KASSERT(mutex_owned(&alldevs_mtx));
   2202 	if (unit < 0 || unit >= cd->cd_ndevs)
   2203 		dv = NULL;
   2204 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2205 		dv = NULL;
   2206 	config_alldevs_unlock(s);
   2207 
   2208 	return dv;
   2209 }
   2210 
   2211 /*
   2212  * device_lookup_private:
   2213  *
   2214  *	Look up a softc instance for a given driver.
   2215  */
   2216 void *
   2217 device_lookup_private(cfdriver_t cd, int unit)
   2218 {
   2219 
   2220 	return device_private(device_lookup(cd, unit));
   2221 }
   2222 
   2223 /*
   2224  * device_find_by_xname:
   2225  *
   2226  *	Returns the device of the given name or NULL if it doesn't exist.
   2227  */
   2228 device_t
   2229 device_find_by_xname(const char *name)
   2230 {
   2231 	device_t dv;
   2232 	deviter_t di;
   2233 
   2234 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2235 		if (strcmp(device_xname(dv), name) == 0)
   2236 			break;
   2237 	}
   2238 	deviter_release(&di);
   2239 
   2240 	return dv;
   2241 }
   2242 
   2243 /*
   2244  * device_find_by_driver_unit:
   2245  *
   2246  *	Returns the device of the given driver name and unit or
   2247  *	NULL if it doesn't exist.
   2248  */
   2249 device_t
   2250 device_find_by_driver_unit(const char *name, int unit)
   2251 {
   2252 	struct cfdriver *cd;
   2253 
   2254 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2255 		return NULL;
   2256 	return device_lookup(cd, unit);
   2257 }
   2258 
   2259 /*
   2260  * Power management related functions.
   2261  */
   2262 
   2263 bool
   2264 device_pmf_is_registered(device_t dev)
   2265 {
   2266 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2267 }
   2268 
   2269 bool
   2270 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2271 {
   2272 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2273 		return true;
   2274 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2275 		return false;
   2276 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2277 	    dev->dv_driver_suspend != NULL &&
   2278 	    !(*dev->dv_driver_suspend)(dev, qual))
   2279 		return false;
   2280 
   2281 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2282 	return true;
   2283 }
   2284 
   2285 bool
   2286 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2287 {
   2288 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2289 		return true;
   2290 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2291 		return false;
   2292 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2293 	    dev->dv_driver_resume != NULL &&
   2294 	    !(*dev->dv_driver_resume)(dev, qual))
   2295 		return false;
   2296 
   2297 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2298 	return true;
   2299 }
   2300 
   2301 bool
   2302 device_pmf_driver_shutdown(device_t dev, int how)
   2303 {
   2304 
   2305 	if (*dev->dv_driver_shutdown != NULL &&
   2306 	    !(*dev->dv_driver_shutdown)(dev, how))
   2307 		return false;
   2308 	return true;
   2309 }
   2310 
   2311 bool
   2312 device_pmf_driver_register(device_t dev,
   2313     bool (*suspend)(device_t, const pmf_qual_t *),
   2314     bool (*resume)(device_t, const pmf_qual_t *),
   2315     bool (*shutdown)(device_t, int))
   2316 {
   2317 	dev->dv_driver_suspend = suspend;
   2318 	dev->dv_driver_resume = resume;
   2319 	dev->dv_driver_shutdown = shutdown;
   2320 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2321 	return true;
   2322 }
   2323 
   2324 static const char *
   2325 curlwp_name(void)
   2326 {
   2327 	if (curlwp->l_name != NULL)
   2328 		return curlwp->l_name;
   2329 	else
   2330 		return curlwp->l_proc->p_comm;
   2331 }
   2332 
   2333 void
   2334 device_pmf_driver_deregister(device_t dev)
   2335 {
   2336 	device_lock_t dvl = device_getlock(dev);
   2337 
   2338 	dev->dv_driver_suspend = NULL;
   2339 	dev->dv_driver_resume = NULL;
   2340 
   2341 	mutex_enter(&dvl->dvl_mtx);
   2342 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2343 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2344 		/* Wake a thread that waits for the lock.  That
   2345 		 * thread will fail to acquire the lock, and then
   2346 		 * it will wake the next thread that waits for the
   2347 		 * lock, or else it will wake us.
   2348 		 */
   2349 		cv_signal(&dvl->dvl_cv);
   2350 		pmflock_debug(dev, __func__, __LINE__);
   2351 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2352 		pmflock_debug(dev, __func__, __LINE__);
   2353 	}
   2354 	mutex_exit(&dvl->dvl_mtx);
   2355 }
   2356 
   2357 bool
   2358 device_pmf_driver_child_register(device_t dev)
   2359 {
   2360 	device_t parent = device_parent(dev);
   2361 
   2362 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2363 		return true;
   2364 	return (*parent->dv_driver_child_register)(dev);
   2365 }
   2366 
   2367 void
   2368 device_pmf_driver_set_child_register(device_t dev,
   2369     bool (*child_register)(device_t))
   2370 {
   2371 	dev->dv_driver_child_register = child_register;
   2372 }
   2373 
   2374 static void
   2375 pmflock_debug(device_t dev, const char *func, int line)
   2376 {
   2377 	device_lock_t dvl = device_getlock(dev);
   2378 
   2379 	aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
   2380 	    func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
   2381 	    dev->dv_flags);
   2382 }
   2383 
   2384 static bool
   2385 device_pmf_lock1(device_t dev)
   2386 {
   2387 	device_lock_t dvl = device_getlock(dev);
   2388 
   2389 	while (device_pmf_is_registered(dev) &&
   2390 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2391 		dvl->dvl_nwait++;
   2392 		pmflock_debug(dev, __func__, __LINE__);
   2393 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2394 		pmflock_debug(dev, __func__, __LINE__);
   2395 		dvl->dvl_nwait--;
   2396 	}
   2397 	if (!device_pmf_is_registered(dev)) {
   2398 		pmflock_debug(dev, __func__, __LINE__);
   2399 		/* We could not acquire the lock, but some other thread may
   2400 		 * wait for it, also.  Wake that thread.
   2401 		 */
   2402 		cv_signal(&dvl->dvl_cv);
   2403 		return false;
   2404 	}
   2405 	dvl->dvl_nlock++;
   2406 	dvl->dvl_holder = curlwp;
   2407 	pmflock_debug(dev, __func__, __LINE__);
   2408 	return true;
   2409 }
   2410 
   2411 bool
   2412 device_pmf_lock(device_t dev)
   2413 {
   2414 	bool rc;
   2415 	device_lock_t dvl = device_getlock(dev);
   2416 
   2417 	mutex_enter(&dvl->dvl_mtx);
   2418 	rc = device_pmf_lock1(dev);
   2419 	mutex_exit(&dvl->dvl_mtx);
   2420 
   2421 	return rc;
   2422 }
   2423 
   2424 void
   2425 device_pmf_unlock(device_t dev)
   2426 {
   2427 	device_lock_t dvl = device_getlock(dev);
   2428 
   2429 	KASSERT(dvl->dvl_nlock > 0);
   2430 	mutex_enter(&dvl->dvl_mtx);
   2431 	if (--dvl->dvl_nlock == 0)
   2432 		dvl->dvl_holder = NULL;
   2433 	cv_signal(&dvl->dvl_cv);
   2434 	pmflock_debug(dev, __func__, __LINE__);
   2435 	mutex_exit(&dvl->dvl_mtx);
   2436 }
   2437 
   2438 device_lock_t
   2439 device_getlock(device_t dev)
   2440 {
   2441 	return &dev->dv_lock;
   2442 }
   2443 
   2444 void *
   2445 device_pmf_bus_private(device_t dev)
   2446 {
   2447 	return dev->dv_bus_private;
   2448 }
   2449 
   2450 bool
   2451 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   2452 {
   2453 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2454 		return true;
   2455 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2456 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2457 		return false;
   2458 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2459 	    dev->dv_bus_suspend != NULL &&
   2460 	    !(*dev->dv_bus_suspend)(dev, qual))
   2461 		return false;
   2462 
   2463 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2464 	return true;
   2465 }
   2466 
   2467 bool
   2468 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   2469 {
   2470 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2471 		return true;
   2472 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2473 	    dev->dv_bus_resume != NULL &&
   2474 	    !(*dev->dv_bus_resume)(dev, qual))
   2475 		return false;
   2476 
   2477 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2478 	return true;
   2479 }
   2480 
   2481 bool
   2482 device_pmf_bus_shutdown(device_t dev, int how)
   2483 {
   2484 
   2485 	if (*dev->dv_bus_shutdown != NULL &&
   2486 	    !(*dev->dv_bus_shutdown)(dev, how))
   2487 		return false;
   2488 	return true;
   2489 }
   2490 
   2491 void
   2492 device_pmf_bus_register(device_t dev, void *priv,
   2493     bool (*suspend)(device_t, const pmf_qual_t *),
   2494     bool (*resume)(device_t, const pmf_qual_t *),
   2495     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2496 {
   2497 	dev->dv_bus_private = priv;
   2498 	dev->dv_bus_resume = resume;
   2499 	dev->dv_bus_suspend = suspend;
   2500 	dev->dv_bus_shutdown = shutdown;
   2501 	dev->dv_bus_deregister = deregister;
   2502 }
   2503 
   2504 void
   2505 device_pmf_bus_deregister(device_t dev)
   2506 {
   2507 	if (dev->dv_bus_deregister == NULL)
   2508 		return;
   2509 	(*dev->dv_bus_deregister)(dev);
   2510 	dev->dv_bus_private = NULL;
   2511 	dev->dv_bus_suspend = NULL;
   2512 	dev->dv_bus_resume = NULL;
   2513 	dev->dv_bus_deregister = NULL;
   2514 }
   2515 
   2516 void *
   2517 device_pmf_class_private(device_t dev)
   2518 {
   2519 	return dev->dv_class_private;
   2520 }
   2521 
   2522 bool
   2523 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   2524 {
   2525 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2526 		return true;
   2527 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2528 	    dev->dv_class_suspend != NULL &&
   2529 	    !(*dev->dv_class_suspend)(dev, qual))
   2530 		return false;
   2531 
   2532 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2533 	return true;
   2534 }
   2535 
   2536 bool
   2537 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   2538 {
   2539 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2540 		return true;
   2541 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2542 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2543 		return false;
   2544 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2545 	    dev->dv_class_resume != NULL &&
   2546 	    !(*dev->dv_class_resume)(dev, qual))
   2547 		return false;
   2548 
   2549 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2550 	return true;
   2551 }
   2552 
   2553 void
   2554 device_pmf_class_register(device_t dev, void *priv,
   2555     bool (*suspend)(device_t, const pmf_qual_t *),
   2556     bool (*resume)(device_t, const pmf_qual_t *),
   2557     void (*deregister)(device_t))
   2558 {
   2559 	dev->dv_class_private = priv;
   2560 	dev->dv_class_suspend = suspend;
   2561 	dev->dv_class_resume = resume;
   2562 	dev->dv_class_deregister = deregister;
   2563 }
   2564 
   2565 void
   2566 device_pmf_class_deregister(device_t dev)
   2567 {
   2568 	if (dev->dv_class_deregister == NULL)
   2569 		return;
   2570 	(*dev->dv_class_deregister)(dev);
   2571 	dev->dv_class_private = NULL;
   2572 	dev->dv_class_suspend = NULL;
   2573 	dev->dv_class_resume = NULL;
   2574 	dev->dv_class_deregister = NULL;
   2575 }
   2576 
   2577 bool
   2578 device_active(device_t dev, devactive_t type)
   2579 {
   2580 	size_t i;
   2581 
   2582 	if (dev->dv_activity_count == 0)
   2583 		return false;
   2584 
   2585 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2586 		if (dev->dv_activity_handlers[i] == NULL)
   2587 			break;
   2588 		(*dev->dv_activity_handlers[i])(dev, type);
   2589 	}
   2590 
   2591 	return true;
   2592 }
   2593 
   2594 bool
   2595 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2596 {
   2597 	void (**new_handlers)(device_t, devactive_t);
   2598 	void (**old_handlers)(device_t, devactive_t);
   2599 	size_t i, old_size, new_size;
   2600 	int s;
   2601 
   2602 	old_handlers = dev->dv_activity_handlers;
   2603 	old_size = dev->dv_activity_count;
   2604 
   2605 	for (i = 0; i < old_size; ++i) {
   2606 		KASSERT(old_handlers[i] != handler);
   2607 		if (old_handlers[i] == NULL) {
   2608 			old_handlers[i] = handler;
   2609 			return true;
   2610 		}
   2611 	}
   2612 
   2613 	new_size = old_size + 4;
   2614 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
   2615 
   2616 	memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
   2617 	new_handlers[old_size] = handler;
   2618 	memset(new_handlers + old_size + 1, 0,
   2619 	    sizeof(int [new_size - (old_size+1)]));
   2620 
   2621 	s = splhigh();
   2622 	dev->dv_activity_count = new_size;
   2623 	dev->dv_activity_handlers = new_handlers;
   2624 	splx(s);
   2625 
   2626 	if (old_handlers != NULL)
   2627 		kmem_free(old_handlers, sizeof(void * [old_size]));
   2628 
   2629 	return true;
   2630 }
   2631 
   2632 void
   2633 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2634 {
   2635 	void (**old_handlers)(device_t, devactive_t);
   2636 	size_t i, old_size;
   2637 	int s;
   2638 
   2639 	old_handlers = dev->dv_activity_handlers;
   2640 	old_size = dev->dv_activity_count;
   2641 
   2642 	for (i = 0; i < old_size; ++i) {
   2643 		if (old_handlers[i] == handler)
   2644 			break;
   2645 		if (old_handlers[i] == NULL)
   2646 			return; /* XXX panic? */
   2647 	}
   2648 
   2649 	if (i == old_size)
   2650 		return; /* XXX panic? */
   2651 
   2652 	for (; i < old_size - 1; ++i) {
   2653 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   2654 			continue;
   2655 
   2656 		if (i == 0) {
   2657 			s = splhigh();
   2658 			dev->dv_activity_count = 0;
   2659 			dev->dv_activity_handlers = NULL;
   2660 			splx(s);
   2661 			kmem_free(old_handlers, sizeof(void *[old_size]));
   2662 		}
   2663 		return;
   2664 	}
   2665 	old_handlers[i] = NULL;
   2666 }
   2667 
   2668 /* Return true iff the device_t `dev' exists at generation `gen'. */
   2669 static bool
   2670 device_exists_at(device_t dv, devgen_t gen)
   2671 {
   2672 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   2673 	    dv->dv_add_gen <= gen;
   2674 }
   2675 
   2676 static bool
   2677 deviter_visits(const deviter_t *di, device_t dv)
   2678 {
   2679 	return device_exists_at(dv, di->di_gen);
   2680 }
   2681 
   2682 /*
   2683  * Device Iteration
   2684  *
   2685  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2686  *     each device_t's in the device tree.
   2687  *
   2688  * deviter_init(di, flags): initialize the device iterator `di'
   2689  *     to "walk" the device tree.  deviter_next(di) will return
   2690  *     the first device_t in the device tree, or NULL if there are
   2691  *     no devices.
   2692  *
   2693  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2694  *     caller intends to modify the device tree by calling
   2695  *     config_detach(9) on devices in the order that the iterator
   2696  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2697  *     nearest the "root" of the device tree to be returned, first;
   2698  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2699  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2700  *     indicating both that deviter_init() should not respect any
   2701  *     locks on the device tree, and that deviter_next(di) may run
   2702  *     in more than one LWP before the walk has finished.
   2703  *
   2704  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2705  *     once.
   2706  *
   2707  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2708  *
   2709  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2710  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2711  *
   2712  * deviter_first(di, flags): initialize the device iterator `di'
   2713  *     and return the first device_t in the device tree, or NULL
   2714  *     if there are no devices.  The statement
   2715  *
   2716  *         dv = deviter_first(di);
   2717  *
   2718  *     is shorthand for
   2719  *
   2720  *         deviter_init(di);
   2721  *         dv = deviter_next(di);
   2722  *
   2723  * deviter_next(di): return the next device_t in the device tree,
   2724  *     or NULL if there are no more devices.  deviter_next(di)
   2725  *     is undefined if `di' was not initialized with deviter_init() or
   2726  *     deviter_first().
   2727  *
   2728  * deviter_release(di): stops iteration (subsequent calls to
   2729  *     deviter_next() will return NULL), releases any locks and
   2730  *     resources held by the device iterator.
   2731  *
   2732  * Device iteration does not return device_t's in any particular
   2733  * order.  An iterator will never return the same device_t twice.
   2734  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2735  * is called repeatedly on the same `di', it will eventually return
   2736  * NULL.  It is ok to attach/detach devices during device iteration.
   2737  */
   2738 void
   2739 deviter_init(deviter_t *di, deviter_flags_t flags)
   2740 {
   2741 	device_t dv;
   2742 	int s;
   2743 
   2744 	memset(di, 0, sizeof(*di));
   2745 
   2746 	s = config_alldevs_lock();
   2747 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   2748 		flags |= DEVITER_F_RW;
   2749 
   2750 	if ((flags & DEVITER_F_RW) != 0)
   2751 		alldevs_nwrite++;
   2752 	else
   2753 		alldevs_nread++;
   2754 	di->di_gen = alldevs_gen++;
   2755 	config_alldevs_unlock(s);
   2756 
   2757 	di->di_flags = flags;
   2758 
   2759 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2760 	case DEVITER_F_LEAVES_FIRST:
   2761 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2762 			if (!deviter_visits(di, dv))
   2763 				continue;
   2764 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2765 		}
   2766 		break;
   2767 	case DEVITER_F_ROOT_FIRST:
   2768 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2769 			if (!deviter_visits(di, dv))
   2770 				continue;
   2771 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2772 		}
   2773 		break;
   2774 	default:
   2775 		break;
   2776 	}
   2777 
   2778 	deviter_reinit(di);
   2779 }
   2780 
   2781 static void
   2782 deviter_reinit(deviter_t *di)
   2783 {
   2784 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2785 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2786 	else
   2787 		di->di_prev = TAILQ_FIRST(&alldevs);
   2788 }
   2789 
   2790 device_t
   2791 deviter_first(deviter_t *di, deviter_flags_t flags)
   2792 {
   2793 	deviter_init(di, flags);
   2794 	return deviter_next(di);
   2795 }
   2796 
   2797 static device_t
   2798 deviter_next2(deviter_t *di)
   2799 {
   2800 	device_t dv;
   2801 
   2802 	dv = di->di_prev;
   2803 
   2804 	if (dv == NULL)
   2805 		return NULL;
   2806 
   2807 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2808 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2809 	else
   2810 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2811 
   2812 	return dv;
   2813 }
   2814 
   2815 static device_t
   2816 deviter_next1(deviter_t *di)
   2817 {
   2818 	device_t dv;
   2819 
   2820 	do {
   2821 		dv = deviter_next2(di);
   2822 	} while (dv != NULL && !deviter_visits(di, dv));
   2823 
   2824 	return dv;
   2825 }
   2826 
   2827 device_t
   2828 deviter_next(deviter_t *di)
   2829 {
   2830 	device_t dv = NULL;
   2831 
   2832 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2833 	case 0:
   2834 		return deviter_next1(di);
   2835 	case DEVITER_F_LEAVES_FIRST:
   2836 		while (di->di_curdepth >= 0) {
   2837 			if ((dv = deviter_next1(di)) == NULL) {
   2838 				di->di_curdepth--;
   2839 				deviter_reinit(di);
   2840 			} else if (dv->dv_depth == di->di_curdepth)
   2841 				break;
   2842 		}
   2843 		return dv;
   2844 	case DEVITER_F_ROOT_FIRST:
   2845 		while (di->di_curdepth <= di->di_maxdepth) {
   2846 			if ((dv = deviter_next1(di)) == NULL) {
   2847 				di->di_curdepth++;
   2848 				deviter_reinit(di);
   2849 			} else if (dv->dv_depth == di->di_curdepth)
   2850 				break;
   2851 		}
   2852 		return dv;
   2853 	default:
   2854 		return NULL;
   2855 	}
   2856 }
   2857 
   2858 void
   2859 deviter_release(deviter_t *di)
   2860 {
   2861 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2862 	int s;
   2863 
   2864 	s = config_alldevs_lock();
   2865 	if (rw)
   2866 		--alldevs_nwrite;
   2867 	else
   2868 		--alldevs_nread;
   2869 	/* XXX wake a garbage-collection thread */
   2870 	config_alldevs_unlock(s);
   2871 }
   2872 
   2873 const char *
   2874 cfdata_ifattr(const struct cfdata *cf)
   2875 {
   2876 	return cf->cf_pspec->cfp_iattr;
   2877 }
   2878 
   2879 bool
   2880 ifattr_match(const char *snull, const char *t)
   2881 {
   2882 	return (snull == NULL) || strcmp(snull, t) == 0;
   2883 }
   2884 
   2885 void
   2886 null_childdetached(device_t self, device_t child)
   2887 {
   2888 	/* do nothing */
   2889 }
   2890 
   2891 static void
   2892 sysctl_detach_setup(struct sysctllog **clog)
   2893 {
   2894 
   2895 	sysctl_createv(clog, 0, NULL, NULL,
   2896 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   2897 		CTLTYPE_BOOL, "detachall",
   2898 		SYSCTL_DESCR("Detach all devices at shutdown"),
   2899 		NULL, 0, &detachall, 0,
   2900 		CTL_KERN, CTL_CREATE, CTL_EOL);
   2901 }
   2902