subr_autoconf.c revision 1.233 1 /* $NetBSD: subr_autoconf.c,v 1.233 2014/11/06 08:46:04 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.233 2014/11/06 08:46:04 uebayasi Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110
111 #include <sys/disk.h>
112
113 #include <sys/rnd.h>
114
115 #include <machine/limits.h>
116
117 /*
118 * Autoconfiguration subroutines.
119 */
120
121 /*
122 * Device autoconfiguration timings are mixed into the entropy pool.
123 */
124 extern krndsource_t rnd_autoconf_source;
125
126 /*
127 * ioconf.c exports exactly two names: cfdata and cfroots. All system
128 * devices and drivers are found via these tables.
129 */
130 extern struct cfdata cfdata[];
131 extern const short cfroots[];
132
133 /*
134 * List of all cfdriver structures. We use this to detect duplicates
135 * when other cfdrivers are loaded.
136 */
137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
138 extern struct cfdriver * const cfdriver_list_initial[];
139
140 /*
141 * Initial list of cfattach's.
142 */
143 extern const struct cfattachinit cfattachinit[];
144
145 /*
146 * List of cfdata tables. We always have one such list -- the one
147 * built statically when the kernel was configured.
148 */
149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
150 static struct cftable initcftable;
151
152 #define ROOT ((device_t)NULL)
153
154 struct matchinfo {
155 cfsubmatch_t fn;
156 device_t parent;
157 const int *locs;
158 void *aux;
159 struct cfdata *match;
160 int pri;
161 };
162
163 struct alldevs_foray {
164 int af_s;
165 struct devicelist af_garbage;
166 };
167
168 static char *number(char *, int);
169 static void mapply(struct matchinfo *, cfdata_t);
170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
171 static void config_devdelete(device_t);
172 static void config_devunlink(device_t, struct devicelist *);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_alldevs_unlock(int);
176 static int config_alldevs_lock(void);
177 static void config_alldevs_enter(struct alldevs_foray *);
178 static void config_alldevs_exit(struct alldevs_foray *);
179 static void config_add_attrib_dict(device_t);
180
181 static void config_collect_garbage(struct devicelist *);
182 static void config_dump_garbage(struct devicelist *);
183
184 static void pmflock_debug(device_t, const char *, int);
185
186 static device_t deviter_next1(deviter_t *);
187 static void deviter_reinit(deviter_t *);
188
189 struct deferred_config {
190 TAILQ_ENTRY(deferred_config) dc_queue;
191 device_t dc_dev;
192 void (*dc_func)(device_t);
193 };
194
195 TAILQ_HEAD(deferred_config_head, deferred_config);
196
197 struct deferred_config_head deferred_config_queue =
198 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
199 struct deferred_config_head interrupt_config_queue =
200 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
201 int interrupt_config_threads = 8;
202 struct deferred_config_head mountroot_config_queue =
203 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
204 int mountroot_config_threads = 2;
205 static bool root_is_mounted = false;
206
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 TAILQ_ENTRY(finalize_hook) f_list;
212 int (*f_func)(device_t);
213 device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218
219 /* list of all devices */
220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
221 static kmutex_t alldevs_mtx;
222 static volatile bool alldevs_garbage = false;
223 static volatile devgen_t alldevs_gen = 1;
224 static volatile int alldevs_nread = 0;
225 static volatile int alldevs_nwrite = 0;
226
227 static int config_pending; /* semaphore for mountroot */
228 static kmutex_t config_misc_lock;
229 static kcondvar_t config_misc_cv;
230
231 static bool detachall = false;
232
233 #define STREQ(s1, s2) \
234 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
235
236 static bool config_initialized = false; /* config_init() has been called. */
237
238 static int config_do_twiddle;
239 static callout_t config_twiddle_ch;
240
241 static void sysctl_detach_setup(struct sysctllog **);
242
243 typedef int (*cfdriver_fn)(struct cfdriver *);
244 static int
245 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
246 cfdriver_fn drv_do, cfdriver_fn drv_undo,
247 const char *style, bool dopanic)
248 {
249 void (*pr)(const char *, ...) __printflike(1, 2) =
250 dopanic ? panic : printf;
251 int i, error = 0, e2 __diagused;
252
253 for (i = 0; cfdriverv[i] != NULL; i++) {
254 if ((error = drv_do(cfdriverv[i])) != 0) {
255 pr("configure: `%s' driver %s failed: %d",
256 cfdriverv[i]->cd_name, style, error);
257 goto bad;
258 }
259 }
260
261 KASSERT(error == 0);
262 return 0;
263
264 bad:
265 printf("\n");
266 for (i--; i >= 0; i--) {
267 e2 = drv_undo(cfdriverv[i]);
268 KASSERT(e2 == 0);
269 }
270
271 return error;
272 }
273
274 typedef int (*cfattach_fn)(const char *, struct cfattach *);
275 static int
276 frob_cfattachvec(const struct cfattachinit *cfattachv,
277 cfattach_fn att_do, cfattach_fn att_undo,
278 const char *style, bool dopanic)
279 {
280 const struct cfattachinit *cfai = NULL;
281 void (*pr)(const char *, ...) __printflike(1, 2) =
282 dopanic ? panic : printf;
283 int j = 0, error = 0, e2 __diagused;
284
285 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
286 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
287 if ((error = att_do(cfai->cfai_name,
288 cfai->cfai_list[j])) != 0) {
289 pr("configure: attachment `%s' "
290 "of `%s' driver %s failed: %d",
291 cfai->cfai_list[j]->ca_name,
292 cfai->cfai_name, style, error);
293 goto bad;
294 }
295 }
296 }
297
298 KASSERT(error == 0);
299 return 0;
300
301 bad:
302 /*
303 * Rollback in reverse order. dunno if super-important, but
304 * do that anyway. Although the code looks a little like
305 * someone did a little integration (in the math sense).
306 */
307 printf("\n");
308 if (cfai) {
309 bool last;
310
311 for (last = false; last == false; ) {
312 if (cfai == &cfattachv[0])
313 last = true;
314 for (j--; j >= 0; j--) {
315 e2 = att_undo(cfai->cfai_name,
316 cfai->cfai_list[j]);
317 KASSERT(e2 == 0);
318 }
319 if (!last) {
320 cfai--;
321 for (j = 0; cfai->cfai_list[j] != NULL; j++)
322 ;
323 }
324 }
325 }
326
327 return error;
328 }
329
330 /*
331 * Initialize the autoconfiguration data structures. Normally this
332 * is done by configure(), but some platforms need to do this very
333 * early (to e.g. initialize the console).
334 */
335 void
336 config_init(void)
337 {
338
339 KASSERT(config_initialized == false);
340
341 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
342
343 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
344 cv_init(&config_misc_cv, "cfgmisc");
345
346 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
347
348 frob_cfdrivervec(cfdriver_list_initial,
349 config_cfdriver_attach, NULL, "bootstrap", true);
350 frob_cfattachvec(cfattachinit,
351 config_cfattach_attach, NULL, "bootstrap", true);
352
353 initcftable.ct_cfdata = cfdata;
354 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
355
356 config_initialized = true;
357 }
358
359 /*
360 * Init or fini drivers and attachments. Either all or none
361 * are processed (via rollback). It would be nice if this were
362 * atomic to outside consumers, but with the current state of
363 * locking ...
364 */
365 int
366 config_init_component(struct cfdriver * const *cfdriverv,
367 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
368 {
369 int error;
370
371 if ((error = frob_cfdrivervec(cfdriverv,
372 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
373 return error;
374 if ((error = frob_cfattachvec(cfattachv,
375 config_cfattach_attach, config_cfattach_detach,
376 "init", false)) != 0) {
377 frob_cfdrivervec(cfdriverv,
378 config_cfdriver_detach, NULL, "init rollback", true);
379 return error;
380 }
381 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
382 frob_cfattachvec(cfattachv,
383 config_cfattach_detach, NULL, "init rollback", true);
384 frob_cfdrivervec(cfdriverv,
385 config_cfdriver_detach, NULL, "init rollback", true);
386 return error;
387 }
388
389 return 0;
390 }
391
392 int
393 config_fini_component(struct cfdriver * const *cfdriverv,
394 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
395 {
396 int error;
397
398 if ((error = config_cfdata_detach(cfdatav)) != 0)
399 return error;
400 if ((error = frob_cfattachvec(cfattachv,
401 config_cfattach_detach, config_cfattach_attach,
402 "fini", false)) != 0) {
403 if (config_cfdata_attach(cfdatav, 0) != 0)
404 panic("config_cfdata fini rollback failed");
405 return error;
406 }
407 if ((error = frob_cfdrivervec(cfdriverv,
408 config_cfdriver_detach, config_cfdriver_attach,
409 "fini", false)) != 0) {
410 frob_cfattachvec(cfattachv,
411 config_cfattach_attach, NULL, "fini rollback", true);
412 if (config_cfdata_attach(cfdatav, 0) != 0)
413 panic("config_cfdata fini rollback failed");
414 return error;
415 }
416
417 return 0;
418 }
419
420 void
421 config_init_mi(void)
422 {
423
424 if (!config_initialized)
425 config_init();
426
427 sysctl_detach_setup(NULL);
428 }
429
430 void
431 config_deferred(device_t dev)
432 {
433 config_process_deferred(&deferred_config_queue, dev);
434 config_process_deferred(&interrupt_config_queue, dev);
435 config_process_deferred(&mountroot_config_queue, dev);
436 }
437
438 static void
439 config_interrupts_thread(void *cookie)
440 {
441 struct deferred_config *dc;
442
443 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
444 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
445 (*dc->dc_func)(dc->dc_dev);
446 config_pending_decr(dc->dc_dev);
447 kmem_free(dc, sizeof(*dc));
448 }
449 kthread_exit(0);
450 }
451
452 void
453 config_create_interruptthreads(void)
454 {
455 int i;
456
457 for (i = 0; i < interrupt_config_threads; i++) {
458 (void)kthread_create(PRI_NONE, 0, NULL,
459 config_interrupts_thread, NULL, NULL, "configintr");
460 }
461 }
462
463 static void
464 config_mountroot_thread(void *cookie)
465 {
466 struct deferred_config *dc;
467
468 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
469 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
470 (*dc->dc_func)(dc->dc_dev);
471 kmem_free(dc, sizeof(*dc));
472 }
473 kthread_exit(0);
474 }
475
476 void
477 config_create_mountrootthreads(void)
478 {
479 int i;
480
481 if (!root_is_mounted)
482 root_is_mounted = true;
483
484 for (i = 0; i < mountroot_config_threads; i++) {
485 (void)kthread_create(PRI_NONE, 0, NULL,
486 config_mountroot_thread, NULL, NULL, "configroot");
487 }
488 }
489
490 /*
491 * Announce device attach/detach to userland listeners.
492 */
493 static void
494 devmon_report_device(device_t dev, bool isattach)
495 {
496 #if NDRVCTL > 0
497 prop_dictionary_t ev;
498 const char *parent;
499 const char *what;
500 device_t pdev = device_parent(dev);
501
502 ev = prop_dictionary_create();
503 if (ev == NULL)
504 return;
505
506 what = (isattach ? "device-attach" : "device-detach");
507 parent = (pdev == NULL ? "root" : device_xname(pdev));
508 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
509 !prop_dictionary_set_cstring(ev, "parent", parent)) {
510 prop_object_release(ev);
511 return;
512 }
513
514 devmon_insert(what, ev);
515 #endif
516 }
517
518 /*
519 * Add a cfdriver to the system.
520 */
521 int
522 config_cfdriver_attach(struct cfdriver *cd)
523 {
524 struct cfdriver *lcd;
525
526 /* Make sure this driver isn't already in the system. */
527 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
528 if (STREQ(lcd->cd_name, cd->cd_name))
529 return EEXIST;
530 }
531
532 LIST_INIT(&cd->cd_attach);
533 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
534
535 return 0;
536 }
537
538 /*
539 * Remove a cfdriver from the system.
540 */
541 int
542 config_cfdriver_detach(struct cfdriver *cd)
543 {
544 struct alldevs_foray af;
545 int i, rc = 0;
546
547 config_alldevs_enter(&af);
548 /* Make sure there are no active instances. */
549 for (i = 0; i < cd->cd_ndevs; i++) {
550 if (cd->cd_devs[i] != NULL) {
551 rc = EBUSY;
552 break;
553 }
554 }
555 config_alldevs_exit(&af);
556
557 if (rc != 0)
558 return rc;
559
560 /* ...and no attachments loaded. */
561 if (LIST_EMPTY(&cd->cd_attach) == 0)
562 return EBUSY;
563
564 LIST_REMOVE(cd, cd_list);
565
566 KASSERT(cd->cd_devs == NULL);
567
568 return 0;
569 }
570
571 /*
572 * Look up a cfdriver by name.
573 */
574 struct cfdriver *
575 config_cfdriver_lookup(const char *name)
576 {
577 struct cfdriver *cd;
578
579 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
580 if (STREQ(cd->cd_name, name))
581 return cd;
582 }
583
584 return NULL;
585 }
586
587 /*
588 * Add a cfattach to the specified driver.
589 */
590 int
591 config_cfattach_attach(const char *driver, struct cfattach *ca)
592 {
593 struct cfattach *lca;
594 struct cfdriver *cd;
595
596 cd = config_cfdriver_lookup(driver);
597 if (cd == NULL)
598 return ESRCH;
599
600 /* Make sure this attachment isn't already on this driver. */
601 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
602 if (STREQ(lca->ca_name, ca->ca_name))
603 return EEXIST;
604 }
605
606 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
607
608 return 0;
609 }
610
611 /*
612 * Remove a cfattach from the specified driver.
613 */
614 int
615 config_cfattach_detach(const char *driver, struct cfattach *ca)
616 {
617 struct alldevs_foray af;
618 struct cfdriver *cd;
619 device_t dev;
620 int i, rc = 0;
621
622 cd = config_cfdriver_lookup(driver);
623 if (cd == NULL)
624 return ESRCH;
625
626 config_alldevs_enter(&af);
627 /* Make sure there are no active instances. */
628 for (i = 0; i < cd->cd_ndevs; i++) {
629 if ((dev = cd->cd_devs[i]) == NULL)
630 continue;
631 if (dev->dv_cfattach == ca) {
632 rc = EBUSY;
633 break;
634 }
635 }
636 config_alldevs_exit(&af);
637
638 if (rc != 0)
639 return rc;
640
641 LIST_REMOVE(ca, ca_list);
642
643 return 0;
644 }
645
646 /*
647 * Look up a cfattach by name.
648 */
649 static struct cfattach *
650 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
651 {
652 struct cfattach *ca;
653
654 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
655 if (STREQ(ca->ca_name, atname))
656 return ca;
657 }
658
659 return NULL;
660 }
661
662 /*
663 * Look up a cfattach by driver/attachment name.
664 */
665 struct cfattach *
666 config_cfattach_lookup(const char *name, const char *atname)
667 {
668 struct cfdriver *cd;
669
670 cd = config_cfdriver_lookup(name);
671 if (cd == NULL)
672 return NULL;
673
674 return config_cfattach_lookup_cd(cd, atname);
675 }
676
677 /*
678 * Apply the matching function and choose the best. This is used
679 * a few times and we want to keep the code small.
680 */
681 static void
682 mapply(struct matchinfo *m, cfdata_t cf)
683 {
684 int pri;
685
686 if (m->fn != NULL) {
687 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
688 } else {
689 pri = config_match(m->parent, cf, m->aux);
690 }
691 if (pri > m->pri) {
692 m->match = cf;
693 m->pri = pri;
694 }
695 }
696
697 int
698 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
699 {
700 const struct cfiattrdata *ci;
701 const struct cflocdesc *cl;
702 int nlocs, i;
703
704 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
705 KASSERT(ci);
706 nlocs = ci->ci_loclen;
707 KASSERT(!nlocs || locs);
708 for (i = 0; i < nlocs; i++) {
709 cl = &ci->ci_locdesc[i];
710 if (cl->cld_defaultstr != NULL &&
711 cf->cf_loc[i] == cl->cld_default)
712 continue;
713 if (cf->cf_loc[i] == locs[i])
714 continue;
715 return 0;
716 }
717
718 return config_match(parent, cf, aux);
719 }
720
721 /*
722 * Helper function: check whether the driver supports the interface attribute
723 * and return its descriptor structure.
724 */
725 static const struct cfiattrdata *
726 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
727 {
728 const struct cfiattrdata * const *cpp;
729
730 if (cd->cd_attrs == NULL)
731 return 0;
732
733 for (cpp = cd->cd_attrs; *cpp; cpp++) {
734 if (STREQ((*cpp)->ci_name, ia)) {
735 /* Match. */
736 return *cpp;
737 }
738 }
739 return 0;
740 }
741
742 /*
743 * Lookup an interface attribute description by name.
744 * If the driver is given, consider only its supported attributes.
745 */
746 const struct cfiattrdata *
747 cfiattr_lookup(const char *name, const struct cfdriver *cd)
748 {
749 const struct cfdriver *d;
750 const struct cfiattrdata *ia;
751
752 if (cd)
753 return cfdriver_get_iattr(cd, name);
754
755 LIST_FOREACH(d, &allcfdrivers, cd_list) {
756 ia = cfdriver_get_iattr(d, name);
757 if (ia)
758 return ia;
759 }
760 return 0;
761 }
762
763 /*
764 * Determine if `parent' is a potential parent for a device spec based
765 * on `cfp'.
766 */
767 static int
768 cfparent_match(const device_t parent, const struct cfparent *cfp)
769 {
770 struct cfdriver *pcd;
771
772 /* We don't match root nodes here. */
773 if (cfp == NULL)
774 return 0;
775
776 pcd = parent->dv_cfdriver;
777 KASSERT(pcd != NULL);
778
779 /*
780 * First, ensure this parent has the correct interface
781 * attribute.
782 */
783 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
784 return 0;
785
786 /*
787 * If no specific parent device instance was specified (i.e.
788 * we're attaching to the attribute only), we're done!
789 */
790 if (cfp->cfp_parent == NULL)
791 return 1;
792
793 /*
794 * Check the parent device's name.
795 */
796 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
797 return 0; /* not the same parent */
798
799 /*
800 * Make sure the unit number matches.
801 */
802 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
803 cfp->cfp_unit == parent->dv_unit)
804 return 1;
805
806 /* Unit numbers don't match. */
807 return 0;
808 }
809
810 /*
811 * Helper for config_cfdata_attach(): check all devices whether it could be
812 * parent any attachment in the config data table passed, and rescan.
813 */
814 static void
815 rescan_with_cfdata(const struct cfdata *cf)
816 {
817 device_t d;
818 const struct cfdata *cf1;
819 deviter_t di;
820
821
822 /*
823 * "alldevs" is likely longer than a modules's cfdata, so make it
824 * the outer loop.
825 */
826 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
827
828 if (!(d->dv_cfattach->ca_rescan))
829 continue;
830
831 for (cf1 = cf; cf1->cf_name; cf1++) {
832
833 if (!cfparent_match(d, cf1->cf_pspec))
834 continue;
835
836 (*d->dv_cfattach->ca_rescan)(d,
837 cfdata_ifattr(cf1), cf1->cf_loc);
838
839 config_deferred(d);
840 }
841 }
842 deviter_release(&di);
843 }
844
845 /*
846 * Attach a supplemental config data table and rescan potential
847 * parent devices if required.
848 */
849 int
850 config_cfdata_attach(cfdata_t cf, int scannow)
851 {
852 struct cftable *ct;
853
854 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
855 ct->ct_cfdata = cf;
856 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
857
858 if (scannow)
859 rescan_with_cfdata(cf);
860
861 return 0;
862 }
863
864 /*
865 * Helper for config_cfdata_detach: check whether a device is
866 * found through any attachment in the config data table.
867 */
868 static int
869 dev_in_cfdata(device_t d, cfdata_t cf)
870 {
871 const struct cfdata *cf1;
872
873 for (cf1 = cf; cf1->cf_name; cf1++)
874 if (d->dv_cfdata == cf1)
875 return 1;
876
877 return 0;
878 }
879
880 /*
881 * Detach a supplemental config data table. Detach all devices found
882 * through that table (and thus keeping references to it) before.
883 */
884 int
885 config_cfdata_detach(cfdata_t cf)
886 {
887 device_t d;
888 int error = 0;
889 struct cftable *ct;
890 deviter_t di;
891
892 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
893 d = deviter_next(&di)) {
894 if (!dev_in_cfdata(d, cf))
895 continue;
896 if ((error = config_detach(d, 0)) != 0)
897 break;
898 }
899 deviter_release(&di);
900 if (error) {
901 aprint_error_dev(d, "unable to detach instance\n");
902 return error;
903 }
904
905 TAILQ_FOREACH(ct, &allcftables, ct_list) {
906 if (ct->ct_cfdata == cf) {
907 TAILQ_REMOVE(&allcftables, ct, ct_list);
908 kmem_free(ct, sizeof(*ct));
909 return 0;
910 }
911 }
912
913 /* not found -- shouldn't happen */
914 return EINVAL;
915 }
916
917 /*
918 * Invoke the "match" routine for a cfdata entry on behalf of
919 * an external caller, usually a "submatch" routine.
920 */
921 int
922 config_match(device_t parent, cfdata_t cf, void *aux)
923 {
924 struct cfattach *ca;
925
926 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
927 if (ca == NULL) {
928 /* No attachment for this entry, oh well. */
929 return 0;
930 }
931
932 return (*ca->ca_match)(parent, cf, aux);
933 }
934
935 /*
936 * Iterate over all potential children of some device, calling the given
937 * function (default being the child's match function) for each one.
938 * Nonzero returns are matches; the highest value returned is considered
939 * the best match. Return the `found child' if we got a match, or NULL
940 * otherwise. The `aux' pointer is simply passed on through.
941 *
942 * Note that this function is designed so that it can be used to apply
943 * an arbitrary function to all potential children (its return value
944 * can be ignored).
945 */
946 cfdata_t
947 config_search_loc(cfsubmatch_t fn, device_t parent,
948 const char *ifattr, const int *locs, void *aux)
949 {
950 struct cftable *ct;
951 cfdata_t cf;
952 struct matchinfo m;
953
954 KASSERT(config_initialized);
955 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
956
957 m.fn = fn;
958 m.parent = parent;
959 m.locs = locs;
960 m.aux = aux;
961 m.match = NULL;
962 m.pri = 0;
963
964 TAILQ_FOREACH(ct, &allcftables, ct_list) {
965 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
966
967 /* We don't match root nodes here. */
968 if (!cf->cf_pspec)
969 continue;
970
971 /*
972 * Skip cf if no longer eligible, otherwise scan
973 * through parents for one matching `parent', and
974 * try match function.
975 */
976 if (cf->cf_fstate == FSTATE_FOUND)
977 continue;
978 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
979 cf->cf_fstate == FSTATE_DSTAR)
980 continue;
981
982 /*
983 * If an interface attribute was specified,
984 * consider only children which attach to
985 * that attribute.
986 */
987 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
988 continue;
989
990 if (cfparent_match(parent, cf->cf_pspec))
991 mapply(&m, cf);
992 }
993 }
994 return m.match;
995 }
996
997 cfdata_t
998 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
999 void *aux)
1000 {
1001
1002 return config_search_loc(fn, parent, ifattr, NULL, aux);
1003 }
1004
1005 /*
1006 * Find the given root device.
1007 * This is much like config_search, but there is no parent.
1008 * Don't bother with multiple cfdata tables; the root node
1009 * must always be in the initial table.
1010 */
1011 cfdata_t
1012 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1013 {
1014 cfdata_t cf;
1015 const short *p;
1016 struct matchinfo m;
1017
1018 m.fn = fn;
1019 m.parent = ROOT;
1020 m.aux = aux;
1021 m.match = NULL;
1022 m.pri = 0;
1023 m.locs = 0;
1024 /*
1025 * Look at root entries for matching name. We do not bother
1026 * with found-state here since only one root should ever be
1027 * searched (and it must be done first).
1028 */
1029 for (p = cfroots; *p >= 0; p++) {
1030 cf = &cfdata[*p];
1031 if (strcmp(cf->cf_name, rootname) == 0)
1032 mapply(&m, cf);
1033 }
1034 return m.match;
1035 }
1036
1037 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1038
1039 /*
1040 * The given `aux' argument describes a device that has been found
1041 * on the given parent, but not necessarily configured. Locate the
1042 * configuration data for that device (using the submatch function
1043 * provided, or using candidates' cd_match configuration driver
1044 * functions) and attach it, and return its device_t. If the device was
1045 * not configured, call the given `print' function and return NULL.
1046 */
1047 device_t
1048 config_found_sm_loc(device_t parent,
1049 const char *ifattr, const int *locs, void *aux,
1050 cfprint_t print, cfsubmatch_t submatch)
1051 {
1052 cfdata_t cf;
1053
1054 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1055 return(config_attach_loc(parent, cf, locs, aux, print));
1056 if (print) {
1057 if (config_do_twiddle && cold)
1058 twiddle();
1059 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1060 }
1061
1062 /*
1063 * This has the effect of mixing in a single timestamp to the
1064 * entropy pool. Experiments indicate the estimator will almost
1065 * always attribute one bit of entropy to this sample; analysis
1066 * of device attach/detach timestamps on FreeBSD indicates 4
1067 * bits of entropy/sample so this seems appropriately conservative.
1068 */
1069 rnd_add_uint32(&rnd_autoconf_source, 0);
1070 return NULL;
1071 }
1072
1073 device_t
1074 config_found_ia(device_t parent, const char *ifattr, void *aux,
1075 cfprint_t print)
1076 {
1077
1078 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1079 }
1080
1081 device_t
1082 config_found(device_t parent, void *aux, cfprint_t print)
1083 {
1084
1085 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1086 }
1087
1088 /*
1089 * As above, but for root devices.
1090 */
1091 device_t
1092 config_rootfound(const char *rootname, void *aux)
1093 {
1094 cfdata_t cf;
1095
1096 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1097 return config_attach(ROOT, cf, aux, NULL);
1098 aprint_error("root device %s not configured\n", rootname);
1099 return NULL;
1100 }
1101
1102 /* just like sprintf(buf, "%d") except that it works from the end */
1103 static char *
1104 number(char *ep, int n)
1105 {
1106
1107 *--ep = 0;
1108 while (n >= 10) {
1109 *--ep = (n % 10) + '0';
1110 n /= 10;
1111 }
1112 *--ep = n + '0';
1113 return ep;
1114 }
1115
1116 /*
1117 * Expand the size of the cd_devs array if necessary.
1118 *
1119 * The caller must hold alldevs_mtx. config_makeroom() may release and
1120 * re-acquire alldevs_mtx, so callers should re-check conditions such
1121 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1122 * returns.
1123 */
1124 static void
1125 config_makeroom(int n, struct cfdriver *cd)
1126 {
1127 int ondevs, nndevs;
1128 device_t *osp, *nsp;
1129
1130 alldevs_nwrite++;
1131
1132 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1133 ;
1134
1135 while (n >= cd->cd_ndevs) {
1136 /*
1137 * Need to expand the array.
1138 */
1139 ondevs = cd->cd_ndevs;
1140 osp = cd->cd_devs;
1141
1142 /* Release alldevs_mtx around allocation, which may
1143 * sleep.
1144 */
1145 mutex_exit(&alldevs_mtx);
1146 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1147 if (nsp == NULL)
1148 panic("%s: could not expand cd_devs", __func__);
1149 mutex_enter(&alldevs_mtx);
1150
1151 /* If another thread moved the array while we did
1152 * not hold alldevs_mtx, try again.
1153 */
1154 if (cd->cd_devs != osp) {
1155 mutex_exit(&alldevs_mtx);
1156 kmem_free(nsp, sizeof(device_t[nndevs]));
1157 mutex_enter(&alldevs_mtx);
1158 continue;
1159 }
1160
1161 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1162 if (ondevs != 0)
1163 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1164
1165 cd->cd_ndevs = nndevs;
1166 cd->cd_devs = nsp;
1167 if (ondevs != 0) {
1168 mutex_exit(&alldevs_mtx);
1169 kmem_free(osp, sizeof(device_t[ondevs]));
1170 mutex_enter(&alldevs_mtx);
1171 }
1172 }
1173 alldevs_nwrite--;
1174 }
1175
1176 /*
1177 * Put dev into the devices list.
1178 */
1179 static void
1180 config_devlink(device_t dev)
1181 {
1182 int s;
1183
1184 s = config_alldevs_lock();
1185
1186 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1187
1188 dev->dv_add_gen = alldevs_gen;
1189 /* It is safe to add a device to the tail of the list while
1190 * readers and writers are in the list.
1191 */
1192 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1193 config_alldevs_unlock(s);
1194 }
1195
1196 static void
1197 config_devfree(device_t dev)
1198 {
1199 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1200
1201 if (dev->dv_cfattach->ca_devsize > 0)
1202 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1203 if (priv)
1204 kmem_free(dev, sizeof(*dev));
1205 }
1206
1207 /*
1208 * Caller must hold alldevs_mtx.
1209 */
1210 static void
1211 config_devunlink(device_t dev, struct devicelist *garbage)
1212 {
1213 struct device_garbage *dg = &dev->dv_garbage;
1214 cfdriver_t cd = device_cfdriver(dev);
1215 int i;
1216
1217 KASSERT(mutex_owned(&alldevs_mtx));
1218
1219 /* Unlink from device list. Link to garbage list. */
1220 TAILQ_REMOVE(&alldevs, dev, dv_list);
1221 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1222
1223 /* Remove from cfdriver's array. */
1224 cd->cd_devs[dev->dv_unit] = NULL;
1225
1226 /*
1227 * If the device now has no units in use, unlink its softc array.
1228 */
1229 for (i = 0; i < cd->cd_ndevs; i++) {
1230 if (cd->cd_devs[i] != NULL)
1231 break;
1232 }
1233 /* Nothing found. Unlink, now. Deallocate, later. */
1234 if (i == cd->cd_ndevs) {
1235 dg->dg_ndevs = cd->cd_ndevs;
1236 dg->dg_devs = cd->cd_devs;
1237 cd->cd_devs = NULL;
1238 cd->cd_ndevs = 0;
1239 }
1240 }
1241
1242 static void
1243 config_devdelete(device_t dev)
1244 {
1245 struct device_garbage *dg = &dev->dv_garbage;
1246 device_lock_t dvl = device_getlock(dev);
1247
1248 if (dg->dg_devs != NULL)
1249 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1250
1251 cv_destroy(&dvl->dvl_cv);
1252 mutex_destroy(&dvl->dvl_mtx);
1253
1254 KASSERT(dev->dv_properties != NULL);
1255 prop_object_release(dev->dv_properties);
1256
1257 if (dev->dv_activity_handlers)
1258 panic("%s with registered handlers", __func__);
1259
1260 if (dev->dv_locators) {
1261 size_t amount = *--dev->dv_locators;
1262 kmem_free(dev->dv_locators, amount);
1263 }
1264
1265 config_devfree(dev);
1266 }
1267
1268 static int
1269 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1270 {
1271 int unit;
1272
1273 if (cf->cf_fstate == FSTATE_STAR) {
1274 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1275 if (cd->cd_devs[unit] == NULL)
1276 break;
1277 /*
1278 * unit is now the unit of the first NULL device pointer,
1279 * or max(cd->cd_ndevs,cf->cf_unit).
1280 */
1281 } else {
1282 unit = cf->cf_unit;
1283 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1284 unit = -1;
1285 }
1286 return unit;
1287 }
1288
1289 static int
1290 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1291 {
1292 struct alldevs_foray af;
1293 int unit;
1294
1295 config_alldevs_enter(&af);
1296 for (;;) {
1297 unit = config_unit_nextfree(cd, cf);
1298 if (unit == -1)
1299 break;
1300 if (unit < cd->cd_ndevs) {
1301 cd->cd_devs[unit] = dev;
1302 dev->dv_unit = unit;
1303 break;
1304 }
1305 config_makeroom(unit, cd);
1306 }
1307 config_alldevs_exit(&af);
1308
1309 return unit;
1310 }
1311
1312 static device_t
1313 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1314 {
1315 cfdriver_t cd;
1316 cfattach_t ca;
1317 size_t lname, lunit;
1318 const char *xunit;
1319 int myunit;
1320 char num[10];
1321 device_t dev;
1322 void *dev_private;
1323 const struct cfiattrdata *ia;
1324 device_lock_t dvl;
1325
1326 cd = config_cfdriver_lookup(cf->cf_name);
1327 if (cd == NULL)
1328 return NULL;
1329
1330 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1331 if (ca == NULL)
1332 return NULL;
1333
1334 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1335 ca->ca_devsize < sizeof(struct device))
1336 panic("config_devalloc: %s (%zu < %zu)", cf->cf_atname,
1337 ca->ca_devsize, sizeof(struct device));
1338
1339 /* get memory for all device vars */
1340 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1341 if (ca->ca_devsize > 0) {
1342 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1343 if (dev_private == NULL)
1344 panic("config_devalloc: memory allocation for device softc failed");
1345 } else {
1346 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1347 dev_private = NULL;
1348 }
1349
1350 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1351 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1352 } else {
1353 dev = dev_private;
1354 #ifdef DIAGNOSTIC
1355 printf("%s has not been converted to device_t\n", cd->cd_name);
1356 #endif
1357 }
1358 if (dev == NULL)
1359 panic("config_devalloc: memory allocation for device_t failed");
1360
1361 dev->dv_class = cd->cd_class;
1362 dev->dv_cfdata = cf;
1363 dev->dv_cfdriver = cd;
1364 dev->dv_cfattach = ca;
1365 dev->dv_activity_count = 0;
1366 dev->dv_activity_handlers = NULL;
1367 dev->dv_private = dev_private;
1368 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1369
1370 myunit = config_unit_alloc(dev, cd, cf);
1371 if (myunit == -1) {
1372 config_devfree(dev);
1373 return NULL;
1374 }
1375
1376 /* compute length of name and decimal expansion of unit number */
1377 lname = strlen(cd->cd_name);
1378 xunit = number(&num[sizeof(num)], myunit);
1379 lunit = &num[sizeof(num)] - xunit;
1380 if (lname + lunit > sizeof(dev->dv_xname))
1381 panic("config_devalloc: device name too long");
1382
1383 dvl = device_getlock(dev);
1384
1385 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1386 cv_init(&dvl->dvl_cv, "pmfsusp");
1387
1388 memcpy(dev->dv_xname, cd->cd_name, lname);
1389 memcpy(dev->dv_xname + lname, xunit, lunit);
1390 dev->dv_parent = parent;
1391 if (parent != NULL)
1392 dev->dv_depth = parent->dv_depth + 1;
1393 else
1394 dev->dv_depth = 0;
1395 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1396 if (locs) {
1397 KASSERT(parent); /* no locators at root */
1398 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1399 dev->dv_locators =
1400 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1401 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1402 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1403 }
1404 dev->dv_properties = prop_dictionary_create();
1405 KASSERT(dev->dv_properties != NULL);
1406
1407 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1408 "device-driver", dev->dv_cfdriver->cd_name);
1409 prop_dictionary_set_uint16(dev->dv_properties,
1410 "device-unit", dev->dv_unit);
1411
1412 if (dev->dv_cfdriver->cd_attrs != NULL)
1413 config_add_attrib_dict(dev);
1414
1415 return dev;
1416 }
1417
1418 /*
1419 * Create an array of device attach attributes and add it
1420 * to the device's dv_properties dictionary.
1421 *
1422 * <key>interface-attributes</key>
1423 * <array>
1424 * <dict>
1425 * <key>attribute-name</key>
1426 * <string>foo</string>
1427 * <key>locators</key>
1428 * <array>
1429 * <dict>
1430 * <key>loc-name</key>
1431 * <string>foo-loc1</string>
1432 * </dict>
1433 * <dict>
1434 * <key>loc-name</key>
1435 * <string>foo-loc2</string>
1436 * <key>default</key>
1437 * <string>foo-loc2-default</string>
1438 * </dict>
1439 * ...
1440 * </array>
1441 * </dict>
1442 * ...
1443 * </array>
1444 */
1445
1446 static void
1447 config_add_attrib_dict(device_t dev)
1448 {
1449 int i, j;
1450 const struct cfiattrdata *ci;
1451 prop_dictionary_t attr_dict, loc_dict;
1452 prop_array_t attr_array, loc_array;
1453
1454 if ((attr_array = prop_array_create()) == NULL)
1455 return;
1456
1457 for (i = 0; ; i++) {
1458 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1459 break;
1460 if ((attr_dict = prop_dictionary_create()) == NULL)
1461 break;
1462 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1463 ci->ci_name);
1464
1465 /* Create an array of the locator names and defaults */
1466
1467 if (ci->ci_loclen != 0 &&
1468 (loc_array = prop_array_create()) != NULL) {
1469 for (j = 0; j < ci->ci_loclen; j++) {
1470 loc_dict = prop_dictionary_create();
1471 if (loc_dict == NULL)
1472 continue;
1473 prop_dictionary_set_cstring_nocopy(loc_dict,
1474 "loc-name", ci->ci_locdesc[j].cld_name);
1475 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1476 prop_dictionary_set_cstring_nocopy(
1477 loc_dict, "default",
1478 ci->ci_locdesc[j].cld_defaultstr);
1479 prop_array_set(loc_array, j, loc_dict);
1480 prop_object_release(loc_dict);
1481 }
1482 prop_dictionary_set_and_rel(attr_dict, "locators",
1483 loc_array);
1484 }
1485 prop_array_add(attr_array, attr_dict);
1486 prop_object_release(attr_dict);
1487 }
1488 if (i == 0)
1489 prop_object_release(attr_array);
1490 else
1491 prop_dictionary_set_and_rel(dev->dv_properties,
1492 "interface-attributes", attr_array);
1493
1494 return;
1495 }
1496
1497 /*
1498 * Attach a found device.
1499 */
1500 device_t
1501 config_attach_loc(device_t parent, cfdata_t cf,
1502 const int *locs, void *aux, cfprint_t print)
1503 {
1504 device_t dev;
1505 struct cftable *ct;
1506 const char *drvname;
1507
1508 dev = config_devalloc(parent, cf, locs);
1509 if (!dev)
1510 panic("config_attach: allocation of device softc failed");
1511
1512 /* XXX redundant - see below? */
1513 if (cf->cf_fstate != FSTATE_STAR) {
1514 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1515 cf->cf_fstate = FSTATE_FOUND;
1516 }
1517
1518 config_devlink(dev);
1519
1520 if (config_do_twiddle && cold)
1521 twiddle();
1522 else
1523 aprint_naive("Found ");
1524 /*
1525 * We want the next two printfs for normal, verbose, and quiet,
1526 * but not silent (in which case, we're twiddling, instead).
1527 */
1528 if (parent == ROOT) {
1529 aprint_naive("%s (root)", device_xname(dev));
1530 aprint_normal("%s (root)", device_xname(dev));
1531 } else {
1532 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1533 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1534 if (print)
1535 (void) (*print)(aux, NULL);
1536 }
1537
1538 /*
1539 * Before attaching, clobber any unfound devices that are
1540 * otherwise identical.
1541 * XXX code above is redundant?
1542 */
1543 drvname = dev->dv_cfdriver->cd_name;
1544 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1545 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1546 if (STREQ(cf->cf_name, drvname) &&
1547 cf->cf_unit == dev->dv_unit) {
1548 if (cf->cf_fstate == FSTATE_NOTFOUND)
1549 cf->cf_fstate = FSTATE_FOUND;
1550 }
1551 }
1552 }
1553 device_register(dev, aux);
1554
1555 /* Let userland know */
1556 devmon_report_device(dev, true);
1557
1558 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1559
1560 if (!device_pmf_is_registered(dev))
1561 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1562
1563 config_process_deferred(&deferred_config_queue, dev);
1564
1565 device_register_post_config(dev, aux);
1566 return dev;
1567 }
1568
1569 device_t
1570 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1571 {
1572
1573 return config_attach_loc(parent, cf, NULL, aux, print);
1574 }
1575
1576 /*
1577 * As above, but for pseudo-devices. Pseudo-devices attached in this
1578 * way are silently inserted into the device tree, and their children
1579 * attached.
1580 *
1581 * Note that because pseudo-devices are attached silently, any information
1582 * the attach routine wishes to print should be prefixed with the device
1583 * name by the attach routine.
1584 */
1585 device_t
1586 config_attach_pseudo(cfdata_t cf)
1587 {
1588 device_t dev;
1589
1590 dev = config_devalloc(ROOT, cf, NULL);
1591 if (!dev)
1592 return NULL;
1593
1594 /* XXX mark busy in cfdata */
1595
1596 if (cf->cf_fstate != FSTATE_STAR) {
1597 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1598 cf->cf_fstate = FSTATE_FOUND;
1599 }
1600
1601 config_devlink(dev);
1602
1603 #if 0 /* XXXJRT not yet */
1604 device_register(dev, NULL); /* like a root node */
1605 #endif
1606
1607 /* Let userland know */
1608 devmon_report_device(dev, true);
1609
1610 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1611
1612 config_process_deferred(&deferred_config_queue, dev);
1613 return dev;
1614 }
1615
1616 /*
1617 * Caller must hold alldevs_mtx.
1618 */
1619 static void
1620 config_collect_garbage(struct devicelist *garbage)
1621 {
1622 device_t dv;
1623
1624 KASSERT(!cpu_intr_p());
1625 KASSERT(!cpu_softintr_p());
1626 KASSERT(mutex_owned(&alldevs_mtx));
1627
1628 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1629 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1630 if (dv->dv_del_gen != 0)
1631 break;
1632 }
1633 if (dv == NULL) {
1634 alldevs_garbage = false;
1635 break;
1636 }
1637 config_devunlink(dv, garbage);
1638 }
1639 KASSERT(mutex_owned(&alldevs_mtx));
1640 }
1641
1642 static void
1643 config_dump_garbage(struct devicelist *garbage)
1644 {
1645 device_t dv;
1646
1647 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1648 TAILQ_REMOVE(garbage, dv, dv_list);
1649 config_devdelete(dv);
1650 }
1651 }
1652
1653 /*
1654 * Detach a device. Optionally forced (e.g. because of hardware
1655 * removal) and quiet. Returns zero if successful, non-zero
1656 * (an error code) otherwise.
1657 *
1658 * Note that this code wants to be run from a process context, so
1659 * that the detach can sleep to allow processes which have a device
1660 * open to run and unwind their stacks.
1661 */
1662 int
1663 config_detach(device_t dev, int flags)
1664 {
1665 struct alldevs_foray af;
1666 struct cftable *ct;
1667 cfdata_t cf;
1668 const struct cfattach *ca;
1669 struct cfdriver *cd;
1670 #ifdef DIAGNOSTIC
1671 device_t d;
1672 #endif
1673 int rv = 0, s;
1674
1675 #ifdef DIAGNOSTIC
1676 cf = dev->dv_cfdata;
1677 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1678 cf->cf_fstate != FSTATE_STAR)
1679 panic("config_detach: %s: bad device fstate %d",
1680 device_xname(dev), cf ? cf->cf_fstate : -1);
1681 #endif
1682 cd = dev->dv_cfdriver;
1683 KASSERT(cd != NULL);
1684
1685 ca = dev->dv_cfattach;
1686 KASSERT(ca != NULL);
1687
1688 s = config_alldevs_lock();
1689 if (dev->dv_del_gen != 0) {
1690 config_alldevs_unlock(s);
1691 #ifdef DIAGNOSTIC
1692 printf("%s: %s is already detached\n", __func__,
1693 device_xname(dev));
1694 #endif /* DIAGNOSTIC */
1695 return ENOENT;
1696 }
1697 alldevs_nwrite++;
1698 config_alldevs_unlock(s);
1699
1700 if (!detachall &&
1701 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1702 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1703 rv = EOPNOTSUPP;
1704 } else if (ca->ca_detach != NULL) {
1705 rv = (*ca->ca_detach)(dev, flags);
1706 } else
1707 rv = EOPNOTSUPP;
1708
1709 /*
1710 * If it was not possible to detach the device, then we either
1711 * panic() (for the forced but failed case), or return an error.
1712 *
1713 * If it was possible to detach the device, ensure that the
1714 * device is deactivated.
1715 */
1716 if (rv == 0)
1717 dev->dv_flags &= ~DVF_ACTIVE;
1718 else if ((flags & DETACH_FORCE) == 0)
1719 goto out;
1720 else {
1721 panic("config_detach: forced detach of %s failed (%d)",
1722 device_xname(dev), rv);
1723 }
1724
1725 /*
1726 * The device has now been successfully detached.
1727 */
1728
1729 /* Let userland know */
1730 devmon_report_device(dev, false);
1731
1732 #ifdef DIAGNOSTIC
1733 /*
1734 * Sanity: If you're successfully detached, you should have no
1735 * children. (Note that because children must be attached
1736 * after parents, we only need to search the latter part of
1737 * the list.)
1738 */
1739 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1740 d = TAILQ_NEXT(d, dv_list)) {
1741 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1742 printf("config_detach: detached device %s"
1743 " has children %s\n", device_xname(dev), device_xname(d));
1744 panic("config_detach");
1745 }
1746 }
1747 #endif
1748
1749 /* notify the parent that the child is gone */
1750 if (dev->dv_parent) {
1751 device_t p = dev->dv_parent;
1752 if (p->dv_cfattach->ca_childdetached)
1753 (*p->dv_cfattach->ca_childdetached)(p, dev);
1754 }
1755
1756 /*
1757 * Mark cfdata to show that the unit can be reused, if possible.
1758 */
1759 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1760 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1761 if (STREQ(cf->cf_name, cd->cd_name)) {
1762 if (cf->cf_fstate == FSTATE_FOUND &&
1763 cf->cf_unit == dev->dv_unit)
1764 cf->cf_fstate = FSTATE_NOTFOUND;
1765 }
1766 }
1767 }
1768
1769 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1770 aprint_normal_dev(dev, "detached\n");
1771
1772 out:
1773 config_alldevs_enter(&af);
1774 KASSERT(alldevs_nwrite != 0);
1775 --alldevs_nwrite;
1776 if (rv == 0 && dev->dv_del_gen == 0) {
1777 if (alldevs_nwrite == 0 && alldevs_nread == 0)
1778 config_devunlink(dev, &af.af_garbage);
1779 else {
1780 dev->dv_del_gen = alldevs_gen;
1781 alldevs_garbage = true;
1782 }
1783 }
1784 config_alldevs_exit(&af);
1785
1786 return rv;
1787 }
1788
1789 int
1790 config_detach_children(device_t parent, int flags)
1791 {
1792 device_t dv;
1793 deviter_t di;
1794 int error = 0;
1795
1796 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1797 dv = deviter_next(&di)) {
1798 if (device_parent(dv) != parent)
1799 continue;
1800 if ((error = config_detach(dv, flags)) != 0)
1801 break;
1802 }
1803 deviter_release(&di);
1804 return error;
1805 }
1806
1807 device_t
1808 shutdown_first(struct shutdown_state *s)
1809 {
1810 if (!s->initialized) {
1811 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1812 s->initialized = true;
1813 }
1814 return shutdown_next(s);
1815 }
1816
1817 device_t
1818 shutdown_next(struct shutdown_state *s)
1819 {
1820 device_t dv;
1821
1822 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1823 ;
1824
1825 if (dv == NULL)
1826 s->initialized = false;
1827
1828 return dv;
1829 }
1830
1831 bool
1832 config_detach_all(int how)
1833 {
1834 static struct shutdown_state s;
1835 device_t curdev;
1836 bool progress = false;
1837
1838 if ((how & RB_NOSYNC) != 0)
1839 return false;
1840
1841 for (curdev = shutdown_first(&s); curdev != NULL;
1842 curdev = shutdown_next(&s)) {
1843 aprint_debug(" detaching %s, ", device_xname(curdev));
1844 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1845 progress = true;
1846 aprint_debug("success.");
1847 } else
1848 aprint_debug("failed.");
1849 }
1850 return progress;
1851 }
1852
1853 static bool
1854 device_is_ancestor_of(device_t ancestor, device_t descendant)
1855 {
1856 device_t dv;
1857
1858 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1859 if (device_parent(dv) == ancestor)
1860 return true;
1861 }
1862 return false;
1863 }
1864
1865 int
1866 config_deactivate(device_t dev)
1867 {
1868 deviter_t di;
1869 const struct cfattach *ca;
1870 device_t descendant;
1871 int s, rv = 0, oflags;
1872
1873 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1874 descendant != NULL;
1875 descendant = deviter_next(&di)) {
1876 if (dev != descendant &&
1877 !device_is_ancestor_of(dev, descendant))
1878 continue;
1879
1880 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1881 continue;
1882
1883 ca = descendant->dv_cfattach;
1884 oflags = descendant->dv_flags;
1885
1886 descendant->dv_flags &= ~DVF_ACTIVE;
1887 if (ca->ca_activate == NULL)
1888 continue;
1889 s = splhigh();
1890 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1891 splx(s);
1892 if (rv != 0)
1893 descendant->dv_flags = oflags;
1894 }
1895 deviter_release(&di);
1896 return rv;
1897 }
1898
1899 /*
1900 * Defer the configuration of the specified device until all
1901 * of its parent's devices have been attached.
1902 */
1903 void
1904 config_defer(device_t dev, void (*func)(device_t))
1905 {
1906 struct deferred_config *dc;
1907
1908 if (dev->dv_parent == NULL)
1909 panic("config_defer: can't defer config of a root device");
1910
1911 #ifdef DIAGNOSTIC
1912 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1913 if (dc->dc_dev == dev)
1914 panic("config_defer: deferred twice");
1915 }
1916 #endif
1917
1918 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1919 if (dc == NULL)
1920 panic("config_defer: unable to allocate callback");
1921
1922 dc->dc_dev = dev;
1923 dc->dc_func = func;
1924 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1925 config_pending_incr(dev);
1926 }
1927
1928 /*
1929 * Defer some autoconfiguration for a device until after interrupts
1930 * are enabled.
1931 */
1932 void
1933 config_interrupts(device_t dev, void (*func)(device_t))
1934 {
1935 struct deferred_config *dc;
1936
1937 /*
1938 * If interrupts are enabled, callback now.
1939 */
1940 if (cold == 0) {
1941 (*func)(dev);
1942 return;
1943 }
1944
1945 #ifdef DIAGNOSTIC
1946 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1947 if (dc->dc_dev == dev)
1948 panic("config_interrupts: deferred twice");
1949 }
1950 #endif
1951
1952 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1953 if (dc == NULL)
1954 panic("config_interrupts: unable to allocate callback");
1955
1956 dc->dc_dev = dev;
1957 dc->dc_func = func;
1958 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1959 config_pending_incr(dev);
1960 }
1961
1962 /*
1963 * Defer some autoconfiguration for a device until after root file system
1964 * is mounted (to load firmware etc).
1965 */
1966 void
1967 config_mountroot(device_t dev, void (*func)(device_t))
1968 {
1969 struct deferred_config *dc;
1970
1971 /*
1972 * If root file system is mounted, callback now.
1973 */
1974 if (root_is_mounted) {
1975 (*func)(dev);
1976 return;
1977 }
1978
1979 #ifdef DIAGNOSTIC
1980 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
1981 if (dc->dc_dev == dev)
1982 panic("%s: deferred twice", __func__);
1983 }
1984 #endif
1985
1986 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1987 if (dc == NULL)
1988 panic("%s: unable to allocate callback", __func__);
1989
1990 dc->dc_dev = dev;
1991 dc->dc_func = func;
1992 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
1993 }
1994
1995 /*
1996 * Process a deferred configuration queue.
1997 */
1998 static void
1999 config_process_deferred(struct deferred_config_head *queue,
2000 device_t parent)
2001 {
2002 struct deferred_config *dc, *ndc;
2003
2004 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
2005 ndc = TAILQ_NEXT(dc, dc_queue);
2006 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2007 TAILQ_REMOVE(queue, dc, dc_queue);
2008 (*dc->dc_func)(dc->dc_dev);
2009 config_pending_decr(dc->dc_dev);
2010 kmem_free(dc, sizeof(*dc));
2011 }
2012 }
2013 }
2014
2015 /*
2016 * Manipulate the config_pending semaphore.
2017 */
2018 void
2019 config_pending_incr(device_t dev)
2020 {
2021
2022 mutex_enter(&config_misc_lock);
2023 config_pending++;
2024 #ifdef DEBUG_AUTOCONF
2025 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2026 #endif
2027 mutex_exit(&config_misc_lock);
2028 }
2029
2030 void
2031 config_pending_decr(device_t dev)
2032 {
2033
2034 #ifdef DIAGNOSTIC
2035 if (config_pending == 0)
2036 panic("config_pending_decr: config_pending == 0");
2037 #endif
2038 mutex_enter(&config_misc_lock);
2039 config_pending--;
2040 #ifdef DEBUG_AUTOCONF
2041 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2042 #endif
2043 if (config_pending == 0)
2044 cv_broadcast(&config_misc_cv);
2045 mutex_exit(&config_misc_lock);
2046 }
2047
2048 /*
2049 * Register a "finalization" routine. Finalization routines are
2050 * called iteratively once all real devices have been found during
2051 * autoconfiguration, for as long as any one finalizer has done
2052 * any work.
2053 */
2054 int
2055 config_finalize_register(device_t dev, int (*fn)(device_t))
2056 {
2057 struct finalize_hook *f;
2058
2059 /*
2060 * If finalization has already been done, invoke the
2061 * callback function now.
2062 */
2063 if (config_finalize_done) {
2064 while ((*fn)(dev) != 0)
2065 /* loop */ ;
2066 }
2067
2068 /* Ensure this isn't already on the list. */
2069 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2070 if (f->f_func == fn && f->f_dev == dev)
2071 return EEXIST;
2072 }
2073
2074 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2075 f->f_func = fn;
2076 f->f_dev = dev;
2077 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2078
2079 return 0;
2080 }
2081
2082 void
2083 config_finalize(void)
2084 {
2085 struct finalize_hook *f;
2086 struct pdevinit *pdev;
2087 extern struct pdevinit pdevinit[];
2088 int errcnt, rv;
2089
2090 /*
2091 * Now that device driver threads have been created, wait for
2092 * them to finish any deferred autoconfiguration.
2093 */
2094 mutex_enter(&config_misc_lock);
2095 while (config_pending != 0)
2096 cv_wait(&config_misc_cv, &config_misc_lock);
2097 mutex_exit(&config_misc_lock);
2098
2099 KERNEL_LOCK(1, NULL);
2100
2101 /* Attach pseudo-devices. */
2102 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2103 (*pdev->pdev_attach)(pdev->pdev_count);
2104
2105 /* Run the hooks until none of them does any work. */
2106 do {
2107 rv = 0;
2108 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2109 rv |= (*f->f_func)(f->f_dev);
2110 } while (rv != 0);
2111
2112 config_finalize_done = 1;
2113
2114 /* Now free all the hooks. */
2115 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2116 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2117 kmem_free(f, sizeof(*f));
2118 }
2119
2120 KERNEL_UNLOCK_ONE(NULL);
2121
2122 errcnt = aprint_get_error_count();
2123 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2124 (boothowto & AB_VERBOSE) == 0) {
2125 mutex_enter(&config_misc_lock);
2126 if (config_do_twiddle) {
2127 config_do_twiddle = 0;
2128 printf_nolog(" done.\n");
2129 }
2130 mutex_exit(&config_misc_lock);
2131 if (errcnt != 0) {
2132 printf("WARNING: %d error%s while detecting hardware; "
2133 "check system log.\n", errcnt,
2134 errcnt == 1 ? "" : "s");
2135 }
2136 }
2137 }
2138
2139 void
2140 config_twiddle_init(void)
2141 {
2142
2143 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2144 config_do_twiddle = 1;
2145 }
2146 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2147 }
2148
2149 void
2150 config_twiddle_fn(void *cookie)
2151 {
2152
2153 mutex_enter(&config_misc_lock);
2154 if (config_do_twiddle) {
2155 twiddle();
2156 callout_schedule(&config_twiddle_ch, mstohz(100));
2157 }
2158 mutex_exit(&config_misc_lock);
2159 }
2160
2161 static int
2162 config_alldevs_lock(void)
2163 {
2164 mutex_enter(&alldevs_mtx);
2165 return 0;
2166 }
2167
2168 static void
2169 config_alldevs_enter(struct alldevs_foray *af)
2170 {
2171 TAILQ_INIT(&af->af_garbage);
2172 af->af_s = config_alldevs_lock();
2173 config_collect_garbage(&af->af_garbage);
2174 }
2175
2176 static void
2177 config_alldevs_exit(struct alldevs_foray *af)
2178 {
2179 config_alldevs_unlock(af->af_s);
2180 config_dump_garbage(&af->af_garbage);
2181 }
2182
2183 /*ARGSUSED*/
2184 static void
2185 config_alldevs_unlock(int s)
2186 {
2187 mutex_exit(&alldevs_mtx);
2188 }
2189
2190 /*
2191 * device_lookup:
2192 *
2193 * Look up a device instance for a given driver.
2194 */
2195 device_t
2196 device_lookup(cfdriver_t cd, int unit)
2197 {
2198 device_t dv;
2199 int s;
2200
2201 s = config_alldevs_lock();
2202 KASSERT(mutex_owned(&alldevs_mtx));
2203 if (unit < 0 || unit >= cd->cd_ndevs)
2204 dv = NULL;
2205 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2206 dv = NULL;
2207 config_alldevs_unlock(s);
2208
2209 return dv;
2210 }
2211
2212 /*
2213 * device_lookup_private:
2214 *
2215 * Look up a softc instance for a given driver.
2216 */
2217 void *
2218 device_lookup_private(cfdriver_t cd, int unit)
2219 {
2220
2221 return device_private(device_lookup(cd, unit));
2222 }
2223
2224 /*
2225 * device_find_by_xname:
2226 *
2227 * Returns the device of the given name or NULL if it doesn't exist.
2228 */
2229 device_t
2230 device_find_by_xname(const char *name)
2231 {
2232 device_t dv;
2233 deviter_t di;
2234
2235 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2236 if (strcmp(device_xname(dv), name) == 0)
2237 break;
2238 }
2239 deviter_release(&di);
2240
2241 return dv;
2242 }
2243
2244 /*
2245 * device_find_by_driver_unit:
2246 *
2247 * Returns the device of the given driver name and unit or
2248 * NULL if it doesn't exist.
2249 */
2250 device_t
2251 device_find_by_driver_unit(const char *name, int unit)
2252 {
2253 struct cfdriver *cd;
2254
2255 if ((cd = config_cfdriver_lookup(name)) == NULL)
2256 return NULL;
2257 return device_lookup(cd, unit);
2258 }
2259
2260 /*
2261 * Power management related functions.
2262 */
2263
2264 bool
2265 device_pmf_is_registered(device_t dev)
2266 {
2267 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2268 }
2269
2270 bool
2271 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2272 {
2273 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2274 return true;
2275 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2276 return false;
2277 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2278 dev->dv_driver_suspend != NULL &&
2279 !(*dev->dv_driver_suspend)(dev, qual))
2280 return false;
2281
2282 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2283 return true;
2284 }
2285
2286 bool
2287 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2288 {
2289 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2290 return true;
2291 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2292 return false;
2293 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2294 dev->dv_driver_resume != NULL &&
2295 !(*dev->dv_driver_resume)(dev, qual))
2296 return false;
2297
2298 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2299 return true;
2300 }
2301
2302 bool
2303 device_pmf_driver_shutdown(device_t dev, int how)
2304 {
2305
2306 if (*dev->dv_driver_shutdown != NULL &&
2307 !(*dev->dv_driver_shutdown)(dev, how))
2308 return false;
2309 return true;
2310 }
2311
2312 bool
2313 device_pmf_driver_register(device_t dev,
2314 bool (*suspend)(device_t, const pmf_qual_t *),
2315 bool (*resume)(device_t, const pmf_qual_t *),
2316 bool (*shutdown)(device_t, int))
2317 {
2318 dev->dv_driver_suspend = suspend;
2319 dev->dv_driver_resume = resume;
2320 dev->dv_driver_shutdown = shutdown;
2321 dev->dv_flags |= DVF_POWER_HANDLERS;
2322 return true;
2323 }
2324
2325 static const char *
2326 curlwp_name(void)
2327 {
2328 if (curlwp->l_name != NULL)
2329 return curlwp->l_name;
2330 else
2331 return curlwp->l_proc->p_comm;
2332 }
2333
2334 void
2335 device_pmf_driver_deregister(device_t dev)
2336 {
2337 device_lock_t dvl = device_getlock(dev);
2338
2339 dev->dv_driver_suspend = NULL;
2340 dev->dv_driver_resume = NULL;
2341
2342 mutex_enter(&dvl->dvl_mtx);
2343 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2344 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2345 /* Wake a thread that waits for the lock. That
2346 * thread will fail to acquire the lock, and then
2347 * it will wake the next thread that waits for the
2348 * lock, or else it will wake us.
2349 */
2350 cv_signal(&dvl->dvl_cv);
2351 pmflock_debug(dev, __func__, __LINE__);
2352 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2353 pmflock_debug(dev, __func__, __LINE__);
2354 }
2355 mutex_exit(&dvl->dvl_mtx);
2356 }
2357
2358 bool
2359 device_pmf_driver_child_register(device_t dev)
2360 {
2361 device_t parent = device_parent(dev);
2362
2363 if (parent == NULL || parent->dv_driver_child_register == NULL)
2364 return true;
2365 return (*parent->dv_driver_child_register)(dev);
2366 }
2367
2368 void
2369 device_pmf_driver_set_child_register(device_t dev,
2370 bool (*child_register)(device_t))
2371 {
2372 dev->dv_driver_child_register = child_register;
2373 }
2374
2375 static void
2376 pmflock_debug(device_t dev, const char *func, int line)
2377 {
2378 device_lock_t dvl = device_getlock(dev);
2379
2380 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2381 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2382 dev->dv_flags);
2383 }
2384
2385 static bool
2386 device_pmf_lock1(device_t dev)
2387 {
2388 device_lock_t dvl = device_getlock(dev);
2389
2390 while (device_pmf_is_registered(dev) &&
2391 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2392 dvl->dvl_nwait++;
2393 pmflock_debug(dev, __func__, __LINE__);
2394 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2395 pmflock_debug(dev, __func__, __LINE__);
2396 dvl->dvl_nwait--;
2397 }
2398 if (!device_pmf_is_registered(dev)) {
2399 pmflock_debug(dev, __func__, __LINE__);
2400 /* We could not acquire the lock, but some other thread may
2401 * wait for it, also. Wake that thread.
2402 */
2403 cv_signal(&dvl->dvl_cv);
2404 return false;
2405 }
2406 dvl->dvl_nlock++;
2407 dvl->dvl_holder = curlwp;
2408 pmflock_debug(dev, __func__, __LINE__);
2409 return true;
2410 }
2411
2412 bool
2413 device_pmf_lock(device_t dev)
2414 {
2415 bool rc;
2416 device_lock_t dvl = device_getlock(dev);
2417
2418 mutex_enter(&dvl->dvl_mtx);
2419 rc = device_pmf_lock1(dev);
2420 mutex_exit(&dvl->dvl_mtx);
2421
2422 return rc;
2423 }
2424
2425 void
2426 device_pmf_unlock(device_t dev)
2427 {
2428 device_lock_t dvl = device_getlock(dev);
2429
2430 KASSERT(dvl->dvl_nlock > 0);
2431 mutex_enter(&dvl->dvl_mtx);
2432 if (--dvl->dvl_nlock == 0)
2433 dvl->dvl_holder = NULL;
2434 cv_signal(&dvl->dvl_cv);
2435 pmflock_debug(dev, __func__, __LINE__);
2436 mutex_exit(&dvl->dvl_mtx);
2437 }
2438
2439 device_lock_t
2440 device_getlock(device_t dev)
2441 {
2442 return &dev->dv_lock;
2443 }
2444
2445 void *
2446 device_pmf_bus_private(device_t dev)
2447 {
2448 return dev->dv_bus_private;
2449 }
2450
2451 bool
2452 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2453 {
2454 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2455 return true;
2456 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2457 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2458 return false;
2459 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2460 dev->dv_bus_suspend != NULL &&
2461 !(*dev->dv_bus_suspend)(dev, qual))
2462 return false;
2463
2464 dev->dv_flags |= DVF_BUS_SUSPENDED;
2465 return true;
2466 }
2467
2468 bool
2469 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2470 {
2471 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2472 return true;
2473 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2474 dev->dv_bus_resume != NULL &&
2475 !(*dev->dv_bus_resume)(dev, qual))
2476 return false;
2477
2478 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2479 return true;
2480 }
2481
2482 bool
2483 device_pmf_bus_shutdown(device_t dev, int how)
2484 {
2485
2486 if (*dev->dv_bus_shutdown != NULL &&
2487 !(*dev->dv_bus_shutdown)(dev, how))
2488 return false;
2489 return true;
2490 }
2491
2492 void
2493 device_pmf_bus_register(device_t dev, void *priv,
2494 bool (*suspend)(device_t, const pmf_qual_t *),
2495 bool (*resume)(device_t, const pmf_qual_t *),
2496 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2497 {
2498 dev->dv_bus_private = priv;
2499 dev->dv_bus_resume = resume;
2500 dev->dv_bus_suspend = suspend;
2501 dev->dv_bus_shutdown = shutdown;
2502 dev->dv_bus_deregister = deregister;
2503 }
2504
2505 void
2506 device_pmf_bus_deregister(device_t dev)
2507 {
2508 if (dev->dv_bus_deregister == NULL)
2509 return;
2510 (*dev->dv_bus_deregister)(dev);
2511 dev->dv_bus_private = NULL;
2512 dev->dv_bus_suspend = NULL;
2513 dev->dv_bus_resume = NULL;
2514 dev->dv_bus_deregister = NULL;
2515 }
2516
2517 void *
2518 device_pmf_class_private(device_t dev)
2519 {
2520 return dev->dv_class_private;
2521 }
2522
2523 bool
2524 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2525 {
2526 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2527 return true;
2528 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2529 dev->dv_class_suspend != NULL &&
2530 !(*dev->dv_class_suspend)(dev, qual))
2531 return false;
2532
2533 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2534 return true;
2535 }
2536
2537 bool
2538 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2539 {
2540 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2541 return true;
2542 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2543 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2544 return false;
2545 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2546 dev->dv_class_resume != NULL &&
2547 !(*dev->dv_class_resume)(dev, qual))
2548 return false;
2549
2550 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2551 return true;
2552 }
2553
2554 void
2555 device_pmf_class_register(device_t dev, void *priv,
2556 bool (*suspend)(device_t, const pmf_qual_t *),
2557 bool (*resume)(device_t, const pmf_qual_t *),
2558 void (*deregister)(device_t))
2559 {
2560 dev->dv_class_private = priv;
2561 dev->dv_class_suspend = suspend;
2562 dev->dv_class_resume = resume;
2563 dev->dv_class_deregister = deregister;
2564 }
2565
2566 void
2567 device_pmf_class_deregister(device_t dev)
2568 {
2569 if (dev->dv_class_deregister == NULL)
2570 return;
2571 (*dev->dv_class_deregister)(dev);
2572 dev->dv_class_private = NULL;
2573 dev->dv_class_suspend = NULL;
2574 dev->dv_class_resume = NULL;
2575 dev->dv_class_deregister = NULL;
2576 }
2577
2578 bool
2579 device_active(device_t dev, devactive_t type)
2580 {
2581 size_t i;
2582
2583 if (dev->dv_activity_count == 0)
2584 return false;
2585
2586 for (i = 0; i < dev->dv_activity_count; ++i) {
2587 if (dev->dv_activity_handlers[i] == NULL)
2588 break;
2589 (*dev->dv_activity_handlers[i])(dev, type);
2590 }
2591
2592 return true;
2593 }
2594
2595 bool
2596 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2597 {
2598 void (**new_handlers)(device_t, devactive_t);
2599 void (**old_handlers)(device_t, devactive_t);
2600 size_t i, old_size, new_size;
2601 int s;
2602
2603 old_handlers = dev->dv_activity_handlers;
2604 old_size = dev->dv_activity_count;
2605
2606 for (i = 0; i < old_size; ++i) {
2607 KASSERT(old_handlers[i] != handler);
2608 if (old_handlers[i] == NULL) {
2609 old_handlers[i] = handler;
2610 return true;
2611 }
2612 }
2613
2614 new_size = old_size + 4;
2615 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2616
2617 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2618 new_handlers[old_size] = handler;
2619 memset(new_handlers + old_size + 1, 0,
2620 sizeof(int [new_size - (old_size+1)]));
2621
2622 s = splhigh();
2623 dev->dv_activity_count = new_size;
2624 dev->dv_activity_handlers = new_handlers;
2625 splx(s);
2626
2627 if (old_handlers != NULL)
2628 kmem_free(old_handlers, sizeof(void * [old_size]));
2629
2630 return true;
2631 }
2632
2633 void
2634 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2635 {
2636 void (**old_handlers)(device_t, devactive_t);
2637 size_t i, old_size;
2638 int s;
2639
2640 old_handlers = dev->dv_activity_handlers;
2641 old_size = dev->dv_activity_count;
2642
2643 for (i = 0; i < old_size; ++i) {
2644 if (old_handlers[i] == handler)
2645 break;
2646 if (old_handlers[i] == NULL)
2647 return; /* XXX panic? */
2648 }
2649
2650 if (i == old_size)
2651 return; /* XXX panic? */
2652
2653 for (; i < old_size - 1; ++i) {
2654 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2655 continue;
2656
2657 if (i == 0) {
2658 s = splhigh();
2659 dev->dv_activity_count = 0;
2660 dev->dv_activity_handlers = NULL;
2661 splx(s);
2662 kmem_free(old_handlers, sizeof(void *[old_size]));
2663 }
2664 return;
2665 }
2666 old_handlers[i] = NULL;
2667 }
2668
2669 /* Return true iff the device_t `dev' exists at generation `gen'. */
2670 static bool
2671 device_exists_at(device_t dv, devgen_t gen)
2672 {
2673 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2674 dv->dv_add_gen <= gen;
2675 }
2676
2677 static bool
2678 deviter_visits(const deviter_t *di, device_t dv)
2679 {
2680 return device_exists_at(dv, di->di_gen);
2681 }
2682
2683 /*
2684 * Device Iteration
2685 *
2686 * deviter_t: a device iterator. Holds state for a "walk" visiting
2687 * each device_t's in the device tree.
2688 *
2689 * deviter_init(di, flags): initialize the device iterator `di'
2690 * to "walk" the device tree. deviter_next(di) will return
2691 * the first device_t in the device tree, or NULL if there are
2692 * no devices.
2693 *
2694 * `flags' is one or more of DEVITER_F_RW, indicating that the
2695 * caller intends to modify the device tree by calling
2696 * config_detach(9) on devices in the order that the iterator
2697 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2698 * nearest the "root" of the device tree to be returned, first;
2699 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2700 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2701 * indicating both that deviter_init() should not respect any
2702 * locks on the device tree, and that deviter_next(di) may run
2703 * in more than one LWP before the walk has finished.
2704 *
2705 * Only one DEVITER_F_RW iterator may be in the device tree at
2706 * once.
2707 *
2708 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2709 *
2710 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2711 * DEVITER_F_LEAVES_FIRST are used in combination.
2712 *
2713 * deviter_first(di, flags): initialize the device iterator `di'
2714 * and return the first device_t in the device tree, or NULL
2715 * if there are no devices. The statement
2716 *
2717 * dv = deviter_first(di);
2718 *
2719 * is shorthand for
2720 *
2721 * deviter_init(di);
2722 * dv = deviter_next(di);
2723 *
2724 * deviter_next(di): return the next device_t in the device tree,
2725 * or NULL if there are no more devices. deviter_next(di)
2726 * is undefined if `di' was not initialized with deviter_init() or
2727 * deviter_first().
2728 *
2729 * deviter_release(di): stops iteration (subsequent calls to
2730 * deviter_next() will return NULL), releases any locks and
2731 * resources held by the device iterator.
2732 *
2733 * Device iteration does not return device_t's in any particular
2734 * order. An iterator will never return the same device_t twice.
2735 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2736 * is called repeatedly on the same `di', it will eventually return
2737 * NULL. It is ok to attach/detach devices during device iteration.
2738 */
2739 void
2740 deviter_init(deviter_t *di, deviter_flags_t flags)
2741 {
2742 device_t dv;
2743 int s;
2744
2745 memset(di, 0, sizeof(*di));
2746
2747 s = config_alldevs_lock();
2748 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2749 flags |= DEVITER_F_RW;
2750
2751 if ((flags & DEVITER_F_RW) != 0)
2752 alldevs_nwrite++;
2753 else
2754 alldevs_nread++;
2755 di->di_gen = alldevs_gen++;
2756 config_alldevs_unlock(s);
2757
2758 di->di_flags = flags;
2759
2760 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2761 case DEVITER_F_LEAVES_FIRST:
2762 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2763 if (!deviter_visits(di, dv))
2764 continue;
2765 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2766 }
2767 break;
2768 case DEVITER_F_ROOT_FIRST:
2769 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2770 if (!deviter_visits(di, dv))
2771 continue;
2772 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2773 }
2774 break;
2775 default:
2776 break;
2777 }
2778
2779 deviter_reinit(di);
2780 }
2781
2782 static void
2783 deviter_reinit(deviter_t *di)
2784 {
2785 if ((di->di_flags & DEVITER_F_RW) != 0)
2786 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2787 else
2788 di->di_prev = TAILQ_FIRST(&alldevs);
2789 }
2790
2791 device_t
2792 deviter_first(deviter_t *di, deviter_flags_t flags)
2793 {
2794 deviter_init(di, flags);
2795 return deviter_next(di);
2796 }
2797
2798 static device_t
2799 deviter_next2(deviter_t *di)
2800 {
2801 device_t dv;
2802
2803 dv = di->di_prev;
2804
2805 if (dv == NULL)
2806 return NULL;
2807
2808 if ((di->di_flags & DEVITER_F_RW) != 0)
2809 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2810 else
2811 di->di_prev = TAILQ_NEXT(dv, dv_list);
2812
2813 return dv;
2814 }
2815
2816 static device_t
2817 deviter_next1(deviter_t *di)
2818 {
2819 device_t dv;
2820
2821 do {
2822 dv = deviter_next2(di);
2823 } while (dv != NULL && !deviter_visits(di, dv));
2824
2825 return dv;
2826 }
2827
2828 device_t
2829 deviter_next(deviter_t *di)
2830 {
2831 device_t dv = NULL;
2832
2833 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2834 case 0:
2835 return deviter_next1(di);
2836 case DEVITER_F_LEAVES_FIRST:
2837 while (di->di_curdepth >= 0) {
2838 if ((dv = deviter_next1(di)) == NULL) {
2839 di->di_curdepth--;
2840 deviter_reinit(di);
2841 } else if (dv->dv_depth == di->di_curdepth)
2842 break;
2843 }
2844 return dv;
2845 case DEVITER_F_ROOT_FIRST:
2846 while (di->di_curdepth <= di->di_maxdepth) {
2847 if ((dv = deviter_next1(di)) == NULL) {
2848 di->di_curdepth++;
2849 deviter_reinit(di);
2850 } else if (dv->dv_depth == di->di_curdepth)
2851 break;
2852 }
2853 return dv;
2854 default:
2855 return NULL;
2856 }
2857 }
2858
2859 void
2860 deviter_release(deviter_t *di)
2861 {
2862 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2863 int s;
2864
2865 s = config_alldevs_lock();
2866 if (rw)
2867 --alldevs_nwrite;
2868 else
2869 --alldevs_nread;
2870 /* XXX wake a garbage-collection thread */
2871 config_alldevs_unlock(s);
2872 }
2873
2874 const char *
2875 cfdata_ifattr(const struct cfdata *cf)
2876 {
2877 return cf->cf_pspec->cfp_iattr;
2878 }
2879
2880 bool
2881 ifattr_match(const char *snull, const char *t)
2882 {
2883 return (snull == NULL) || strcmp(snull, t) == 0;
2884 }
2885
2886 void
2887 null_childdetached(device_t self, device_t child)
2888 {
2889 /* do nothing */
2890 }
2891
2892 static void
2893 sysctl_detach_setup(struct sysctllog **clog)
2894 {
2895
2896 sysctl_createv(clog, 0, NULL, NULL,
2897 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2898 CTLTYPE_BOOL, "detachall",
2899 SYSCTL_DESCR("Detach all devices at shutdown"),
2900 NULL, 0, &detachall, 0,
2901 CTL_KERN, CTL_CREATE, CTL_EOL);
2902 }
2903