subr_autoconf.c revision 1.233.2.6 1 /* $NetBSD: subr_autoconf.c,v 1.233.2.6 2016/07/09 20:25:20 skrll Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.233.2.6 2016/07/09 20:25:20 skrll Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110
111 #include <sys/disk.h>
112
113 #include <sys/rndsource.h>
114
115 #include <machine/limits.h>
116
117 /*
118 * Autoconfiguration subroutines.
119 */
120
121 /*
122 * Device autoconfiguration timings are mixed into the entropy pool.
123 */
124 extern krndsource_t rnd_autoconf_source;
125
126 /*
127 * ioconf.c exports exactly two names: cfdata and cfroots. All system
128 * devices and drivers are found via these tables.
129 */
130 extern struct cfdata cfdata[];
131 extern const short cfroots[];
132
133 /*
134 * List of all cfdriver structures. We use this to detect duplicates
135 * when other cfdrivers are loaded.
136 */
137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
138 extern struct cfdriver * const cfdriver_list_initial[];
139
140 /*
141 * Initial list of cfattach's.
142 */
143 extern const struct cfattachinit cfattachinit[];
144
145 /*
146 * List of cfdata tables. We always have one such list -- the one
147 * built statically when the kernel was configured.
148 */
149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
150 static struct cftable initcftable;
151
152 #define ROOT ((device_t)NULL)
153
154 struct matchinfo {
155 cfsubmatch_t fn;
156 device_t parent;
157 const int *locs;
158 void *aux;
159 struct cfdata *match;
160 int pri;
161 };
162
163 struct alldevs_foray {
164 int af_s;
165 struct devicelist af_garbage;
166 };
167
168 static char *number(char *, int);
169 static void mapply(struct matchinfo *, cfdata_t);
170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
171 static void config_devdelete(device_t);
172 static void config_devunlink(device_t, struct devicelist *);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_alldevs_enter(struct alldevs_foray *);
176 static void config_alldevs_exit(struct alldevs_foray *);
177 static void config_add_attrib_dict(device_t);
178
179 static void config_collect_garbage(struct devicelist *);
180 static void config_dump_garbage(struct devicelist *);
181
182 static void pmflock_debug(device_t, const char *, int);
183
184 static device_t deviter_next1(deviter_t *);
185 static void deviter_reinit(deviter_t *);
186
187 struct deferred_config {
188 TAILQ_ENTRY(deferred_config) dc_queue;
189 device_t dc_dev;
190 void (*dc_func)(device_t);
191 };
192
193 TAILQ_HEAD(deferred_config_head, deferred_config);
194
195 struct deferred_config_head deferred_config_queue =
196 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
197 struct deferred_config_head interrupt_config_queue =
198 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
199 int interrupt_config_threads = 8;
200 struct deferred_config_head mountroot_config_queue =
201 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
202 int mountroot_config_threads = 2;
203 static lwp_t **mountroot_config_lwpids;
204 static size_t mountroot_config_lwpids_size;
205 static bool root_is_mounted = false;
206
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 TAILQ_ENTRY(finalize_hook) f_list;
212 int (*f_func)(device_t);
213 device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218
219 /* list of all devices */
220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
221 static kmutex_t alldevs_mtx;
222 static volatile bool alldevs_garbage = false;
223 static volatile devgen_t alldevs_gen = 1;
224 static volatile int alldevs_nread = 0;
225 static volatile int alldevs_nwrite = 0;
226
227 static int config_pending; /* semaphore for mountroot */
228 static kmutex_t config_misc_lock;
229 static kcondvar_t config_misc_cv;
230
231 static bool detachall = false;
232
233 #define STREQ(s1, s2) \
234 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
235
236 static bool config_initialized = false; /* config_init() has been called. */
237
238 static int config_do_twiddle;
239 static callout_t config_twiddle_ch;
240
241 static void sysctl_detach_setup(struct sysctllog **);
242
243 int no_devmon_insert(const char *, prop_dictionary_t);
244 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
245
246 typedef int (*cfdriver_fn)(struct cfdriver *);
247 static int
248 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
249 cfdriver_fn drv_do, cfdriver_fn drv_undo,
250 const char *style, bool dopanic)
251 {
252 void (*pr)(const char *, ...) __printflike(1, 2) =
253 dopanic ? panic : printf;
254 int i, error = 0, e2 __diagused;
255
256 for (i = 0; cfdriverv[i] != NULL; i++) {
257 if ((error = drv_do(cfdriverv[i])) != 0) {
258 pr("configure: `%s' driver %s failed: %d",
259 cfdriverv[i]->cd_name, style, error);
260 goto bad;
261 }
262 }
263
264 KASSERT(error == 0);
265 return 0;
266
267 bad:
268 printf("\n");
269 for (i--; i >= 0; i--) {
270 e2 = drv_undo(cfdriverv[i]);
271 KASSERT(e2 == 0);
272 }
273
274 return error;
275 }
276
277 typedef int (*cfattach_fn)(const char *, struct cfattach *);
278 static int
279 frob_cfattachvec(const struct cfattachinit *cfattachv,
280 cfattach_fn att_do, cfattach_fn att_undo,
281 const char *style, bool dopanic)
282 {
283 const struct cfattachinit *cfai = NULL;
284 void (*pr)(const char *, ...) __printflike(1, 2) =
285 dopanic ? panic : printf;
286 int j = 0, error = 0, e2 __diagused;
287
288 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
289 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
290 if ((error = att_do(cfai->cfai_name,
291 cfai->cfai_list[j])) != 0) {
292 pr("configure: attachment `%s' "
293 "of `%s' driver %s failed: %d",
294 cfai->cfai_list[j]->ca_name,
295 cfai->cfai_name, style, error);
296 goto bad;
297 }
298 }
299 }
300
301 KASSERT(error == 0);
302 return 0;
303
304 bad:
305 /*
306 * Rollback in reverse order. dunno if super-important, but
307 * do that anyway. Although the code looks a little like
308 * someone did a little integration (in the math sense).
309 */
310 printf("\n");
311 if (cfai) {
312 bool last;
313
314 for (last = false; last == false; ) {
315 if (cfai == &cfattachv[0])
316 last = true;
317 for (j--; j >= 0; j--) {
318 e2 = att_undo(cfai->cfai_name,
319 cfai->cfai_list[j]);
320 KASSERT(e2 == 0);
321 }
322 if (!last) {
323 cfai--;
324 for (j = 0; cfai->cfai_list[j] != NULL; j++)
325 ;
326 }
327 }
328 }
329
330 return error;
331 }
332
333 /*
334 * Initialize the autoconfiguration data structures. Normally this
335 * is done by configure(), but some platforms need to do this very
336 * early (to e.g. initialize the console).
337 */
338 void
339 config_init(void)
340 {
341
342 KASSERT(config_initialized == false);
343
344 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
345
346 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
347 cv_init(&config_misc_cv, "cfgmisc");
348
349 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
350
351 frob_cfdrivervec(cfdriver_list_initial,
352 config_cfdriver_attach, NULL, "bootstrap", true);
353 frob_cfattachvec(cfattachinit,
354 config_cfattach_attach, NULL, "bootstrap", true);
355
356 initcftable.ct_cfdata = cfdata;
357 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
358
359 config_initialized = true;
360 }
361
362 /*
363 * Init or fini drivers and attachments. Either all or none
364 * are processed (via rollback). It would be nice if this were
365 * atomic to outside consumers, but with the current state of
366 * locking ...
367 */
368 int
369 config_init_component(struct cfdriver * const *cfdriverv,
370 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
371 {
372 int error;
373
374 if ((error = frob_cfdrivervec(cfdriverv,
375 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
376 return error;
377 if ((error = frob_cfattachvec(cfattachv,
378 config_cfattach_attach, config_cfattach_detach,
379 "init", false)) != 0) {
380 frob_cfdrivervec(cfdriverv,
381 config_cfdriver_detach, NULL, "init rollback", true);
382 return error;
383 }
384 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
385 frob_cfattachvec(cfattachv,
386 config_cfattach_detach, NULL, "init rollback", true);
387 frob_cfdrivervec(cfdriverv,
388 config_cfdriver_detach, NULL, "init rollback", true);
389 return error;
390 }
391
392 return 0;
393 }
394
395 int
396 config_fini_component(struct cfdriver * const *cfdriverv,
397 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
398 {
399 int error;
400
401 if ((error = config_cfdata_detach(cfdatav)) != 0)
402 return error;
403 if ((error = frob_cfattachvec(cfattachv,
404 config_cfattach_detach, config_cfattach_attach,
405 "fini", false)) != 0) {
406 if (config_cfdata_attach(cfdatav, 0) != 0)
407 panic("config_cfdata fini rollback failed");
408 return error;
409 }
410 if ((error = frob_cfdrivervec(cfdriverv,
411 config_cfdriver_detach, config_cfdriver_attach,
412 "fini", false)) != 0) {
413 frob_cfattachvec(cfattachv,
414 config_cfattach_attach, NULL, "fini rollback", true);
415 if (config_cfdata_attach(cfdatav, 0) != 0)
416 panic("config_cfdata fini rollback failed");
417 return error;
418 }
419
420 return 0;
421 }
422
423 void
424 config_init_mi(void)
425 {
426
427 if (!config_initialized)
428 config_init();
429
430 sysctl_detach_setup(NULL);
431 }
432
433 void
434 config_deferred(device_t dev)
435 {
436 config_process_deferred(&deferred_config_queue, dev);
437 config_process_deferred(&interrupt_config_queue, dev);
438 config_process_deferred(&mountroot_config_queue, dev);
439 }
440
441 static void
442 config_interrupts_thread(void *cookie)
443 {
444 struct deferred_config *dc;
445
446 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
447 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
448 (*dc->dc_func)(dc->dc_dev);
449 config_pending_decr(dc->dc_dev);
450 kmem_free(dc, sizeof(*dc));
451 }
452 kthread_exit(0);
453 }
454
455 void
456 config_create_interruptthreads(void)
457 {
458 int i;
459
460 for (i = 0; i < interrupt_config_threads; i++) {
461 (void)kthread_create(PRI_NONE, 0, NULL,
462 config_interrupts_thread, NULL, NULL, "configintr");
463 }
464 }
465
466 static void
467 config_mountroot_thread(void *cookie)
468 {
469 struct deferred_config *dc;
470
471 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
472 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
473 (*dc->dc_func)(dc->dc_dev);
474 kmem_free(dc, sizeof(*dc));
475 }
476 kthread_exit(0);
477 }
478
479 void
480 config_create_mountrootthreads(void)
481 {
482 int i;
483
484 if (!root_is_mounted)
485 root_is_mounted = true;
486
487 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
488 mountroot_config_threads;
489 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
490 KM_NOSLEEP);
491 KASSERT(mountroot_config_lwpids);
492 for (i = 0; i < mountroot_config_threads; i++) {
493 mountroot_config_lwpids[i] = 0;
494 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
495 config_mountroot_thread, NULL,
496 &mountroot_config_lwpids[i],
497 "configroot");
498 }
499 }
500
501 void
502 config_finalize_mountroot(void)
503 {
504 int i, error;
505
506 for (i = 0; i < mountroot_config_threads; i++) {
507 if (mountroot_config_lwpids[i] == 0)
508 continue;
509
510 error = kthread_join(mountroot_config_lwpids[i]);
511 if (error)
512 printf("%s: thread %x joined with error %d\n",
513 __func__, i, error);
514 }
515 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
516 }
517
518 /*
519 * Announce device attach/detach to userland listeners.
520 */
521
522 int
523 no_devmon_insert(const char *name, prop_dictionary_t p)
524 {
525
526 return ENODEV;
527 }
528
529 static void
530 devmon_report_device(device_t dev, bool isattach)
531 {
532 prop_dictionary_t ev;
533 const char *parent;
534 const char *what;
535 device_t pdev = device_parent(dev);
536
537 /* If currently no drvctl device, just return */
538 if (devmon_insert_vec == no_devmon_insert)
539 return;
540
541 ev = prop_dictionary_create();
542 if (ev == NULL)
543 return;
544
545 what = (isattach ? "device-attach" : "device-detach");
546 parent = (pdev == NULL ? "root" : device_xname(pdev));
547 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
548 !prop_dictionary_set_cstring(ev, "parent", parent)) {
549 prop_object_release(ev);
550 return;
551 }
552
553 if ((*devmon_insert_vec)(what, ev) != 0)
554 prop_object_release(ev);
555 }
556
557 /*
558 * Add a cfdriver to the system.
559 */
560 int
561 config_cfdriver_attach(struct cfdriver *cd)
562 {
563 struct cfdriver *lcd;
564
565 /* Make sure this driver isn't already in the system. */
566 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
567 if (STREQ(lcd->cd_name, cd->cd_name))
568 return EEXIST;
569 }
570
571 LIST_INIT(&cd->cd_attach);
572 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
573
574 return 0;
575 }
576
577 /*
578 * Remove a cfdriver from the system.
579 */
580 int
581 config_cfdriver_detach(struct cfdriver *cd)
582 {
583 struct alldevs_foray af;
584 int i, rc = 0;
585
586 config_alldevs_enter(&af);
587 /* Make sure there are no active instances. */
588 for (i = 0; i < cd->cd_ndevs; i++) {
589 if (cd->cd_devs[i] != NULL) {
590 rc = EBUSY;
591 break;
592 }
593 }
594 config_alldevs_exit(&af);
595
596 if (rc != 0)
597 return rc;
598
599 /* ...and no attachments loaded. */
600 if (LIST_EMPTY(&cd->cd_attach) == 0)
601 return EBUSY;
602
603 LIST_REMOVE(cd, cd_list);
604
605 KASSERT(cd->cd_devs == NULL);
606
607 return 0;
608 }
609
610 /*
611 * Look up a cfdriver by name.
612 */
613 struct cfdriver *
614 config_cfdriver_lookup(const char *name)
615 {
616 struct cfdriver *cd;
617
618 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
619 if (STREQ(cd->cd_name, name))
620 return cd;
621 }
622
623 return NULL;
624 }
625
626 /*
627 * Add a cfattach to the specified driver.
628 */
629 int
630 config_cfattach_attach(const char *driver, struct cfattach *ca)
631 {
632 struct cfattach *lca;
633 struct cfdriver *cd;
634
635 cd = config_cfdriver_lookup(driver);
636 if (cd == NULL)
637 return ESRCH;
638
639 /* Make sure this attachment isn't already on this driver. */
640 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
641 if (STREQ(lca->ca_name, ca->ca_name))
642 return EEXIST;
643 }
644
645 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
646
647 return 0;
648 }
649
650 /*
651 * Remove a cfattach from the specified driver.
652 */
653 int
654 config_cfattach_detach(const char *driver, struct cfattach *ca)
655 {
656 struct alldevs_foray af;
657 struct cfdriver *cd;
658 device_t dev;
659 int i, rc = 0;
660
661 cd = config_cfdriver_lookup(driver);
662 if (cd == NULL)
663 return ESRCH;
664
665 config_alldevs_enter(&af);
666 /* Make sure there are no active instances. */
667 for (i = 0; i < cd->cd_ndevs; i++) {
668 if ((dev = cd->cd_devs[i]) == NULL)
669 continue;
670 if (dev->dv_cfattach == ca) {
671 rc = EBUSY;
672 break;
673 }
674 }
675 config_alldevs_exit(&af);
676
677 if (rc != 0)
678 return rc;
679
680 LIST_REMOVE(ca, ca_list);
681
682 return 0;
683 }
684
685 /*
686 * Look up a cfattach by name.
687 */
688 static struct cfattach *
689 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
690 {
691 struct cfattach *ca;
692
693 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
694 if (STREQ(ca->ca_name, atname))
695 return ca;
696 }
697
698 return NULL;
699 }
700
701 /*
702 * Look up a cfattach by driver/attachment name.
703 */
704 struct cfattach *
705 config_cfattach_lookup(const char *name, const char *atname)
706 {
707 struct cfdriver *cd;
708
709 cd = config_cfdriver_lookup(name);
710 if (cd == NULL)
711 return NULL;
712
713 return config_cfattach_lookup_cd(cd, atname);
714 }
715
716 /*
717 * Apply the matching function and choose the best. This is used
718 * a few times and we want to keep the code small.
719 */
720 static void
721 mapply(struct matchinfo *m, cfdata_t cf)
722 {
723 int pri;
724
725 if (m->fn != NULL) {
726 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
727 } else {
728 pri = config_match(m->parent, cf, m->aux);
729 }
730 if (pri > m->pri) {
731 m->match = cf;
732 m->pri = pri;
733 }
734 }
735
736 int
737 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
738 {
739 const struct cfiattrdata *ci;
740 const struct cflocdesc *cl;
741 int nlocs, i;
742
743 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
744 KASSERT(ci);
745 nlocs = ci->ci_loclen;
746 KASSERT(!nlocs || locs);
747 for (i = 0; i < nlocs; i++) {
748 cl = &ci->ci_locdesc[i];
749 if (cl->cld_defaultstr != NULL &&
750 cf->cf_loc[i] == cl->cld_default)
751 continue;
752 if (cf->cf_loc[i] == locs[i])
753 continue;
754 return 0;
755 }
756
757 return config_match(parent, cf, aux);
758 }
759
760 /*
761 * Helper function: check whether the driver supports the interface attribute
762 * and return its descriptor structure.
763 */
764 static const struct cfiattrdata *
765 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
766 {
767 const struct cfiattrdata * const *cpp;
768
769 if (cd->cd_attrs == NULL)
770 return 0;
771
772 for (cpp = cd->cd_attrs; *cpp; cpp++) {
773 if (STREQ((*cpp)->ci_name, ia)) {
774 /* Match. */
775 return *cpp;
776 }
777 }
778 return 0;
779 }
780
781 /*
782 * Lookup an interface attribute description by name.
783 * If the driver is given, consider only its supported attributes.
784 */
785 const struct cfiattrdata *
786 cfiattr_lookup(const char *name, const struct cfdriver *cd)
787 {
788 const struct cfdriver *d;
789 const struct cfiattrdata *ia;
790
791 if (cd)
792 return cfdriver_get_iattr(cd, name);
793
794 LIST_FOREACH(d, &allcfdrivers, cd_list) {
795 ia = cfdriver_get_iattr(d, name);
796 if (ia)
797 return ia;
798 }
799 return 0;
800 }
801
802 /*
803 * Determine if `parent' is a potential parent for a device spec based
804 * on `cfp'.
805 */
806 static int
807 cfparent_match(const device_t parent, const struct cfparent *cfp)
808 {
809 struct cfdriver *pcd;
810
811 /* We don't match root nodes here. */
812 if (cfp == NULL)
813 return 0;
814
815 pcd = parent->dv_cfdriver;
816 KASSERT(pcd != NULL);
817
818 /*
819 * First, ensure this parent has the correct interface
820 * attribute.
821 */
822 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
823 return 0;
824
825 /*
826 * If no specific parent device instance was specified (i.e.
827 * we're attaching to the attribute only), we're done!
828 */
829 if (cfp->cfp_parent == NULL)
830 return 1;
831
832 /*
833 * Check the parent device's name.
834 */
835 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
836 return 0; /* not the same parent */
837
838 /*
839 * Make sure the unit number matches.
840 */
841 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
842 cfp->cfp_unit == parent->dv_unit)
843 return 1;
844
845 /* Unit numbers don't match. */
846 return 0;
847 }
848
849 /*
850 * Helper for config_cfdata_attach(): check all devices whether it could be
851 * parent any attachment in the config data table passed, and rescan.
852 */
853 static void
854 rescan_with_cfdata(const struct cfdata *cf)
855 {
856 device_t d;
857 const struct cfdata *cf1;
858 deviter_t di;
859
860
861 /*
862 * "alldevs" is likely longer than a modules's cfdata, so make it
863 * the outer loop.
864 */
865 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
866
867 if (!(d->dv_cfattach->ca_rescan))
868 continue;
869
870 for (cf1 = cf; cf1->cf_name; cf1++) {
871
872 if (!cfparent_match(d, cf1->cf_pspec))
873 continue;
874
875 (*d->dv_cfattach->ca_rescan)(d,
876 cfdata_ifattr(cf1), cf1->cf_loc);
877
878 config_deferred(d);
879 }
880 }
881 deviter_release(&di);
882 }
883
884 /*
885 * Attach a supplemental config data table and rescan potential
886 * parent devices if required.
887 */
888 int
889 config_cfdata_attach(cfdata_t cf, int scannow)
890 {
891 struct cftable *ct;
892
893 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
894 ct->ct_cfdata = cf;
895 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
896
897 if (scannow)
898 rescan_with_cfdata(cf);
899
900 return 0;
901 }
902
903 /*
904 * Helper for config_cfdata_detach: check whether a device is
905 * found through any attachment in the config data table.
906 */
907 static int
908 dev_in_cfdata(device_t d, cfdata_t cf)
909 {
910 const struct cfdata *cf1;
911
912 for (cf1 = cf; cf1->cf_name; cf1++)
913 if (d->dv_cfdata == cf1)
914 return 1;
915
916 return 0;
917 }
918
919 /*
920 * Detach a supplemental config data table. Detach all devices found
921 * through that table (and thus keeping references to it) before.
922 */
923 int
924 config_cfdata_detach(cfdata_t cf)
925 {
926 device_t d;
927 int error = 0;
928 struct cftable *ct;
929 deviter_t di;
930
931 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
932 d = deviter_next(&di)) {
933 if (!dev_in_cfdata(d, cf))
934 continue;
935 if ((error = config_detach(d, 0)) != 0)
936 break;
937 }
938 deviter_release(&di);
939 if (error) {
940 aprint_error_dev(d, "unable to detach instance\n");
941 return error;
942 }
943
944 TAILQ_FOREACH(ct, &allcftables, ct_list) {
945 if (ct->ct_cfdata == cf) {
946 TAILQ_REMOVE(&allcftables, ct, ct_list);
947 kmem_free(ct, sizeof(*ct));
948 return 0;
949 }
950 }
951
952 /* not found -- shouldn't happen */
953 return EINVAL;
954 }
955
956 /*
957 * Invoke the "match" routine for a cfdata entry on behalf of
958 * an external caller, usually a "submatch" routine.
959 */
960 int
961 config_match(device_t parent, cfdata_t cf, void *aux)
962 {
963 struct cfattach *ca;
964
965 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
966 if (ca == NULL) {
967 /* No attachment for this entry, oh well. */
968 return 0;
969 }
970
971 return (*ca->ca_match)(parent, cf, aux);
972 }
973
974 /*
975 * Iterate over all potential children of some device, calling the given
976 * function (default being the child's match function) for each one.
977 * Nonzero returns are matches; the highest value returned is considered
978 * the best match. Return the `found child' if we got a match, or NULL
979 * otherwise. The `aux' pointer is simply passed on through.
980 *
981 * Note that this function is designed so that it can be used to apply
982 * an arbitrary function to all potential children (its return value
983 * can be ignored).
984 */
985 cfdata_t
986 config_search_loc(cfsubmatch_t fn, device_t parent,
987 const char *ifattr, const int *locs, void *aux)
988 {
989 struct cftable *ct;
990 cfdata_t cf;
991 struct matchinfo m;
992
993 KASSERT(config_initialized);
994 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
995
996 m.fn = fn;
997 m.parent = parent;
998 m.locs = locs;
999 m.aux = aux;
1000 m.match = NULL;
1001 m.pri = 0;
1002
1003 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1004 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1005
1006 /* We don't match root nodes here. */
1007 if (!cf->cf_pspec)
1008 continue;
1009
1010 /*
1011 * Skip cf if no longer eligible, otherwise scan
1012 * through parents for one matching `parent', and
1013 * try match function.
1014 */
1015 if (cf->cf_fstate == FSTATE_FOUND)
1016 continue;
1017 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1018 cf->cf_fstate == FSTATE_DSTAR)
1019 continue;
1020
1021 /*
1022 * If an interface attribute was specified,
1023 * consider only children which attach to
1024 * that attribute.
1025 */
1026 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1027 continue;
1028
1029 if (cfparent_match(parent, cf->cf_pspec))
1030 mapply(&m, cf);
1031 }
1032 }
1033 return m.match;
1034 }
1035
1036 cfdata_t
1037 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
1038 void *aux)
1039 {
1040
1041 return config_search_loc(fn, parent, ifattr, NULL, aux);
1042 }
1043
1044 /*
1045 * Find the given root device.
1046 * This is much like config_search, but there is no parent.
1047 * Don't bother with multiple cfdata tables; the root node
1048 * must always be in the initial table.
1049 */
1050 cfdata_t
1051 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1052 {
1053 cfdata_t cf;
1054 const short *p;
1055 struct matchinfo m;
1056
1057 m.fn = fn;
1058 m.parent = ROOT;
1059 m.aux = aux;
1060 m.match = NULL;
1061 m.pri = 0;
1062 m.locs = 0;
1063 /*
1064 * Look at root entries for matching name. We do not bother
1065 * with found-state here since only one root should ever be
1066 * searched (and it must be done first).
1067 */
1068 for (p = cfroots; *p >= 0; p++) {
1069 cf = &cfdata[*p];
1070 if (strcmp(cf->cf_name, rootname) == 0)
1071 mapply(&m, cf);
1072 }
1073 return m.match;
1074 }
1075
1076 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1077
1078 /*
1079 * The given `aux' argument describes a device that has been found
1080 * on the given parent, but not necessarily configured. Locate the
1081 * configuration data for that device (using the submatch function
1082 * provided, or using candidates' cd_match configuration driver
1083 * functions) and attach it, and return its device_t. If the device was
1084 * not configured, call the given `print' function and return NULL.
1085 */
1086 device_t
1087 config_found_sm_loc(device_t parent,
1088 const char *ifattr, const int *locs, void *aux,
1089 cfprint_t print, cfsubmatch_t submatch)
1090 {
1091 cfdata_t cf;
1092
1093 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1094 return(config_attach_loc(parent, cf, locs, aux, print));
1095 if (print) {
1096 if (config_do_twiddle && cold)
1097 twiddle();
1098 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1099 }
1100
1101 /*
1102 * This has the effect of mixing in a single timestamp to the
1103 * entropy pool. Experiments indicate the estimator will almost
1104 * always attribute one bit of entropy to this sample; analysis
1105 * of device attach/detach timestamps on FreeBSD indicates 4
1106 * bits of entropy/sample so this seems appropriately conservative.
1107 */
1108 rnd_add_uint32(&rnd_autoconf_source, 0);
1109 return NULL;
1110 }
1111
1112 device_t
1113 config_found_ia(device_t parent, const char *ifattr, void *aux,
1114 cfprint_t print)
1115 {
1116
1117 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1118 }
1119
1120 device_t
1121 config_found(device_t parent, void *aux, cfprint_t print)
1122 {
1123
1124 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1125 }
1126
1127 /*
1128 * As above, but for root devices.
1129 */
1130 device_t
1131 config_rootfound(const char *rootname, void *aux)
1132 {
1133 cfdata_t cf;
1134
1135 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1136 return config_attach(ROOT, cf, aux, NULL);
1137 aprint_error("root device %s not configured\n", rootname);
1138 return NULL;
1139 }
1140
1141 /* just like sprintf(buf, "%d") except that it works from the end */
1142 static char *
1143 number(char *ep, int n)
1144 {
1145
1146 *--ep = 0;
1147 while (n >= 10) {
1148 *--ep = (n % 10) + '0';
1149 n /= 10;
1150 }
1151 *--ep = n + '0';
1152 return ep;
1153 }
1154
1155 /*
1156 * Expand the size of the cd_devs array if necessary.
1157 *
1158 * The caller must hold alldevs_mtx. config_makeroom() may release and
1159 * re-acquire alldevs_mtx, so callers should re-check conditions such
1160 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1161 * returns.
1162 */
1163 static void
1164 config_makeroom(int n, struct cfdriver *cd)
1165 {
1166 int ondevs, nndevs;
1167 device_t *osp, *nsp;
1168
1169 alldevs_nwrite++;
1170
1171 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1172 ;
1173
1174 while (n >= cd->cd_ndevs) {
1175 /*
1176 * Need to expand the array.
1177 */
1178 ondevs = cd->cd_ndevs;
1179 osp = cd->cd_devs;
1180
1181 /* Release alldevs_mtx around allocation, which may
1182 * sleep.
1183 */
1184 mutex_exit(&alldevs_mtx);
1185 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1186 if (nsp == NULL)
1187 panic("%s: could not expand cd_devs", __func__);
1188 mutex_enter(&alldevs_mtx);
1189
1190 /* If another thread moved the array while we did
1191 * not hold alldevs_mtx, try again.
1192 */
1193 if (cd->cd_devs != osp) {
1194 mutex_exit(&alldevs_mtx);
1195 kmem_free(nsp, sizeof(device_t[nndevs]));
1196 mutex_enter(&alldevs_mtx);
1197 continue;
1198 }
1199
1200 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1201 if (ondevs != 0)
1202 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1203
1204 cd->cd_ndevs = nndevs;
1205 cd->cd_devs = nsp;
1206 if (ondevs != 0) {
1207 mutex_exit(&alldevs_mtx);
1208 kmem_free(osp, sizeof(device_t[ondevs]));
1209 mutex_enter(&alldevs_mtx);
1210 }
1211 }
1212 alldevs_nwrite--;
1213 }
1214
1215 /*
1216 * Put dev into the devices list.
1217 */
1218 static void
1219 config_devlink(device_t dev)
1220 {
1221
1222 mutex_enter(&alldevs_mtx);
1223
1224 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1225
1226 dev->dv_add_gen = alldevs_gen;
1227 /* It is safe to add a device to the tail of the list while
1228 * readers and writers are in the list.
1229 */
1230 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1231 mutex_exit(&alldevs_mtx);
1232 }
1233
1234 static void
1235 config_devfree(device_t dev)
1236 {
1237 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1238
1239 if (dev->dv_cfattach->ca_devsize > 0)
1240 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1241 if (priv)
1242 kmem_free(dev, sizeof(*dev));
1243 }
1244
1245 /*
1246 * Caller must hold alldevs_mtx.
1247 */
1248 static void
1249 config_devunlink(device_t dev, struct devicelist *garbage)
1250 {
1251 struct device_garbage *dg = &dev->dv_garbage;
1252 cfdriver_t cd = device_cfdriver(dev);
1253 int i;
1254
1255 KASSERT(mutex_owned(&alldevs_mtx));
1256
1257 /* Unlink from device list. Link to garbage list. */
1258 TAILQ_REMOVE(&alldevs, dev, dv_list);
1259 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1260
1261 /* Remove from cfdriver's array. */
1262 cd->cd_devs[dev->dv_unit] = NULL;
1263
1264 /*
1265 * If the device now has no units in use, unlink its softc array.
1266 */
1267 for (i = 0; i < cd->cd_ndevs; i++) {
1268 if (cd->cd_devs[i] != NULL)
1269 break;
1270 }
1271 /* Nothing found. Unlink, now. Deallocate, later. */
1272 if (i == cd->cd_ndevs) {
1273 dg->dg_ndevs = cd->cd_ndevs;
1274 dg->dg_devs = cd->cd_devs;
1275 cd->cd_devs = NULL;
1276 cd->cd_ndevs = 0;
1277 }
1278 }
1279
1280 static void
1281 config_devdelete(device_t dev)
1282 {
1283 struct device_garbage *dg = &dev->dv_garbage;
1284 device_lock_t dvl = device_getlock(dev);
1285
1286 if (dg->dg_devs != NULL)
1287 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1288
1289 cv_destroy(&dvl->dvl_cv);
1290 mutex_destroy(&dvl->dvl_mtx);
1291
1292 KASSERT(dev->dv_properties != NULL);
1293 prop_object_release(dev->dv_properties);
1294
1295 if (dev->dv_activity_handlers)
1296 panic("%s with registered handlers", __func__);
1297
1298 if (dev->dv_locators) {
1299 size_t amount = *--dev->dv_locators;
1300 kmem_free(dev->dv_locators, amount);
1301 }
1302
1303 config_devfree(dev);
1304 }
1305
1306 static int
1307 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1308 {
1309 int unit;
1310
1311 if (cf->cf_fstate == FSTATE_STAR) {
1312 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1313 if (cd->cd_devs[unit] == NULL)
1314 break;
1315 /*
1316 * unit is now the unit of the first NULL device pointer,
1317 * or max(cd->cd_ndevs,cf->cf_unit).
1318 */
1319 } else {
1320 unit = cf->cf_unit;
1321 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1322 unit = -1;
1323 }
1324 return unit;
1325 }
1326
1327 static int
1328 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1329 {
1330 struct alldevs_foray af;
1331 int unit;
1332
1333 config_alldevs_enter(&af);
1334 for (;;) {
1335 unit = config_unit_nextfree(cd, cf);
1336 if (unit == -1)
1337 break;
1338 if (unit < cd->cd_ndevs) {
1339 cd->cd_devs[unit] = dev;
1340 dev->dv_unit = unit;
1341 break;
1342 }
1343 config_makeroom(unit, cd);
1344 }
1345 config_alldevs_exit(&af);
1346
1347 return unit;
1348 }
1349
1350 static device_t
1351 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1352 {
1353 cfdriver_t cd;
1354 cfattach_t ca;
1355 size_t lname, lunit;
1356 const char *xunit;
1357 int myunit;
1358 char num[10];
1359 device_t dev;
1360 void *dev_private;
1361 const struct cfiattrdata *ia;
1362 device_lock_t dvl;
1363
1364 cd = config_cfdriver_lookup(cf->cf_name);
1365 if (cd == NULL)
1366 return NULL;
1367
1368 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1369 if (ca == NULL)
1370 return NULL;
1371
1372 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1373 ca->ca_devsize < sizeof(struct device))
1374 panic("config_devalloc: %s (%zu < %zu)", cf->cf_atname,
1375 ca->ca_devsize, sizeof(struct device));
1376
1377 /* get memory for all device vars */
1378 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1379 if (ca->ca_devsize > 0) {
1380 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1381 if (dev_private == NULL)
1382 panic("config_devalloc: memory allocation for device softc failed");
1383 } else {
1384 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1385 dev_private = NULL;
1386 }
1387
1388 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1389 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1390 } else {
1391 dev = dev_private;
1392 #ifdef DIAGNOSTIC
1393 printf("%s has not been converted to device_t\n", cd->cd_name);
1394 #endif
1395 }
1396 if (dev == NULL)
1397 panic("config_devalloc: memory allocation for device_t failed");
1398
1399 dev->dv_class = cd->cd_class;
1400 dev->dv_cfdata = cf;
1401 dev->dv_cfdriver = cd;
1402 dev->dv_cfattach = ca;
1403 dev->dv_activity_count = 0;
1404 dev->dv_activity_handlers = NULL;
1405 dev->dv_private = dev_private;
1406 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1407
1408 myunit = config_unit_alloc(dev, cd, cf);
1409 if (myunit == -1) {
1410 config_devfree(dev);
1411 return NULL;
1412 }
1413
1414 /* compute length of name and decimal expansion of unit number */
1415 lname = strlen(cd->cd_name);
1416 xunit = number(&num[sizeof(num)], myunit);
1417 lunit = &num[sizeof(num)] - xunit;
1418 if (lname + lunit > sizeof(dev->dv_xname))
1419 panic("config_devalloc: device name too long");
1420
1421 dvl = device_getlock(dev);
1422
1423 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1424 cv_init(&dvl->dvl_cv, "pmfsusp");
1425
1426 memcpy(dev->dv_xname, cd->cd_name, lname);
1427 memcpy(dev->dv_xname + lname, xunit, lunit);
1428 dev->dv_parent = parent;
1429 if (parent != NULL)
1430 dev->dv_depth = parent->dv_depth + 1;
1431 else
1432 dev->dv_depth = 0;
1433 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1434 if (locs) {
1435 KASSERT(parent); /* no locators at root */
1436 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1437 dev->dv_locators =
1438 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1439 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1440 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1441 }
1442 dev->dv_properties = prop_dictionary_create();
1443 KASSERT(dev->dv_properties != NULL);
1444
1445 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1446 "device-driver", dev->dv_cfdriver->cd_name);
1447 prop_dictionary_set_uint16(dev->dv_properties,
1448 "device-unit", dev->dv_unit);
1449 if (parent != NULL) {
1450 prop_dictionary_set_cstring(dev->dv_properties,
1451 "device-parent", device_xname(parent));
1452 }
1453
1454 if (dev->dv_cfdriver->cd_attrs != NULL)
1455 config_add_attrib_dict(dev);
1456
1457 return dev;
1458 }
1459
1460 /*
1461 * Create an array of device attach attributes and add it
1462 * to the device's dv_properties dictionary.
1463 *
1464 * <key>interface-attributes</key>
1465 * <array>
1466 * <dict>
1467 * <key>attribute-name</key>
1468 * <string>foo</string>
1469 * <key>locators</key>
1470 * <array>
1471 * <dict>
1472 * <key>loc-name</key>
1473 * <string>foo-loc1</string>
1474 * </dict>
1475 * <dict>
1476 * <key>loc-name</key>
1477 * <string>foo-loc2</string>
1478 * <key>default</key>
1479 * <string>foo-loc2-default</string>
1480 * </dict>
1481 * ...
1482 * </array>
1483 * </dict>
1484 * ...
1485 * </array>
1486 */
1487
1488 static void
1489 config_add_attrib_dict(device_t dev)
1490 {
1491 int i, j;
1492 const struct cfiattrdata *ci;
1493 prop_dictionary_t attr_dict, loc_dict;
1494 prop_array_t attr_array, loc_array;
1495
1496 if ((attr_array = prop_array_create()) == NULL)
1497 return;
1498
1499 for (i = 0; ; i++) {
1500 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1501 break;
1502 if ((attr_dict = prop_dictionary_create()) == NULL)
1503 break;
1504 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1505 ci->ci_name);
1506
1507 /* Create an array of the locator names and defaults */
1508
1509 if (ci->ci_loclen != 0 &&
1510 (loc_array = prop_array_create()) != NULL) {
1511 for (j = 0; j < ci->ci_loclen; j++) {
1512 loc_dict = prop_dictionary_create();
1513 if (loc_dict == NULL)
1514 continue;
1515 prop_dictionary_set_cstring_nocopy(loc_dict,
1516 "loc-name", ci->ci_locdesc[j].cld_name);
1517 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1518 prop_dictionary_set_cstring_nocopy(
1519 loc_dict, "default",
1520 ci->ci_locdesc[j].cld_defaultstr);
1521 prop_array_set(loc_array, j, loc_dict);
1522 prop_object_release(loc_dict);
1523 }
1524 prop_dictionary_set_and_rel(attr_dict, "locators",
1525 loc_array);
1526 }
1527 prop_array_add(attr_array, attr_dict);
1528 prop_object_release(attr_dict);
1529 }
1530 if (i == 0)
1531 prop_object_release(attr_array);
1532 else
1533 prop_dictionary_set_and_rel(dev->dv_properties,
1534 "interface-attributes", attr_array);
1535
1536 return;
1537 }
1538
1539 /*
1540 * Attach a found device.
1541 */
1542 device_t
1543 config_attach_loc(device_t parent, cfdata_t cf,
1544 const int *locs, void *aux, cfprint_t print)
1545 {
1546 device_t dev;
1547 struct cftable *ct;
1548 const char *drvname;
1549
1550 dev = config_devalloc(parent, cf, locs);
1551 if (!dev)
1552 panic("config_attach: allocation of device softc failed");
1553
1554 /* XXX redundant - see below? */
1555 if (cf->cf_fstate != FSTATE_STAR) {
1556 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1557 cf->cf_fstate = FSTATE_FOUND;
1558 }
1559
1560 config_devlink(dev);
1561
1562 if (config_do_twiddle && cold)
1563 twiddle();
1564 else
1565 aprint_naive("Found ");
1566 /*
1567 * We want the next two printfs for normal, verbose, and quiet,
1568 * but not silent (in which case, we're twiddling, instead).
1569 */
1570 if (parent == ROOT) {
1571 aprint_naive("%s (root)", device_xname(dev));
1572 aprint_normal("%s (root)", device_xname(dev));
1573 } else {
1574 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1575 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1576 if (print)
1577 (void) (*print)(aux, NULL);
1578 }
1579
1580 /*
1581 * Before attaching, clobber any unfound devices that are
1582 * otherwise identical.
1583 * XXX code above is redundant?
1584 */
1585 drvname = dev->dv_cfdriver->cd_name;
1586 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1587 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1588 if (STREQ(cf->cf_name, drvname) &&
1589 cf->cf_unit == dev->dv_unit) {
1590 if (cf->cf_fstate == FSTATE_NOTFOUND)
1591 cf->cf_fstate = FSTATE_FOUND;
1592 }
1593 }
1594 }
1595 device_register(dev, aux);
1596
1597 /* Let userland know */
1598 devmon_report_device(dev, true);
1599
1600 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1601
1602 if (!device_pmf_is_registered(dev))
1603 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1604
1605 config_process_deferred(&deferred_config_queue, dev);
1606
1607 device_register_post_config(dev, aux);
1608 return dev;
1609 }
1610
1611 device_t
1612 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1613 {
1614
1615 return config_attach_loc(parent, cf, NULL, aux, print);
1616 }
1617
1618 /*
1619 * As above, but for pseudo-devices. Pseudo-devices attached in this
1620 * way are silently inserted into the device tree, and their children
1621 * attached.
1622 *
1623 * Note that because pseudo-devices are attached silently, any information
1624 * the attach routine wishes to print should be prefixed with the device
1625 * name by the attach routine.
1626 */
1627 device_t
1628 config_attach_pseudo(cfdata_t cf)
1629 {
1630 device_t dev;
1631
1632 dev = config_devalloc(ROOT, cf, NULL);
1633 if (!dev)
1634 return NULL;
1635
1636 /* XXX mark busy in cfdata */
1637
1638 if (cf->cf_fstate != FSTATE_STAR) {
1639 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1640 cf->cf_fstate = FSTATE_FOUND;
1641 }
1642
1643 config_devlink(dev);
1644
1645 #if 0 /* XXXJRT not yet */
1646 device_register(dev, NULL); /* like a root node */
1647 #endif
1648
1649 /* Let userland know */
1650 devmon_report_device(dev, true);
1651
1652 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1653
1654 config_process_deferred(&deferred_config_queue, dev);
1655 return dev;
1656 }
1657
1658 /*
1659 * Caller must hold alldevs_mtx.
1660 */
1661 static void
1662 config_collect_garbage(struct devicelist *garbage)
1663 {
1664 device_t dv;
1665
1666 KASSERT(!cpu_intr_p());
1667 KASSERT(!cpu_softintr_p());
1668 KASSERT(mutex_owned(&alldevs_mtx));
1669
1670 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1671 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1672 if (dv->dv_del_gen != 0)
1673 break;
1674 }
1675 if (dv == NULL) {
1676 alldevs_garbage = false;
1677 break;
1678 }
1679 config_devunlink(dv, garbage);
1680 }
1681 KASSERT(mutex_owned(&alldevs_mtx));
1682 }
1683
1684 static void
1685 config_dump_garbage(struct devicelist *garbage)
1686 {
1687 device_t dv;
1688
1689 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1690 TAILQ_REMOVE(garbage, dv, dv_list);
1691 config_devdelete(dv);
1692 }
1693 }
1694
1695 /*
1696 * Detach a device. Optionally forced (e.g. because of hardware
1697 * removal) and quiet. Returns zero if successful, non-zero
1698 * (an error code) otherwise.
1699 *
1700 * Note that this code wants to be run from a process context, so
1701 * that the detach can sleep to allow processes which have a device
1702 * open to run and unwind their stacks.
1703 */
1704 int
1705 config_detach(device_t dev, int flags)
1706 {
1707 struct alldevs_foray af;
1708 struct cftable *ct;
1709 cfdata_t cf;
1710 const struct cfattach *ca;
1711 struct cfdriver *cd;
1712 #ifdef DIAGNOSTIC
1713 device_t d;
1714 #endif
1715 int rv = 0;
1716
1717 #ifdef DIAGNOSTIC
1718 cf = dev->dv_cfdata;
1719 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1720 cf->cf_fstate != FSTATE_STAR)
1721 panic("config_detach: %s: bad device fstate %d",
1722 device_xname(dev), cf ? cf->cf_fstate : -1);
1723 #endif
1724 cd = dev->dv_cfdriver;
1725 KASSERT(cd != NULL);
1726
1727 ca = dev->dv_cfattach;
1728 KASSERT(ca != NULL);
1729
1730 mutex_enter(&alldevs_mtx);
1731 if (dev->dv_del_gen != 0) {
1732 mutex_exit(&alldevs_mtx);
1733 #ifdef DIAGNOSTIC
1734 printf("%s: %s is already detached\n", __func__,
1735 device_xname(dev));
1736 #endif /* DIAGNOSTIC */
1737 return ENOENT;
1738 }
1739 alldevs_nwrite++;
1740 mutex_exit(&alldevs_mtx);
1741
1742 if (!detachall &&
1743 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1744 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1745 rv = EOPNOTSUPP;
1746 } else if (ca->ca_detach != NULL) {
1747 rv = (*ca->ca_detach)(dev, flags);
1748 } else
1749 rv = EOPNOTSUPP;
1750
1751 /*
1752 * If it was not possible to detach the device, then we either
1753 * panic() (for the forced but failed case), or return an error.
1754 *
1755 * If it was possible to detach the device, ensure that the
1756 * device is deactivated.
1757 */
1758 if (rv == 0)
1759 dev->dv_flags &= ~DVF_ACTIVE;
1760 else if ((flags & DETACH_FORCE) == 0)
1761 goto out;
1762 else {
1763 panic("config_detach: forced detach of %s failed (%d)",
1764 device_xname(dev), rv);
1765 }
1766
1767 /*
1768 * The device has now been successfully detached.
1769 */
1770
1771 /* Let userland know */
1772 devmon_report_device(dev, false);
1773
1774 #ifdef DIAGNOSTIC
1775 /*
1776 * Sanity: If you're successfully detached, you should have no
1777 * children. (Note that because children must be attached
1778 * after parents, we only need to search the latter part of
1779 * the list.)
1780 */
1781 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1782 d = TAILQ_NEXT(d, dv_list)) {
1783 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1784 printf("config_detach: detached device %s"
1785 " has children %s\n", device_xname(dev), device_xname(d));
1786 panic("config_detach");
1787 }
1788 }
1789 #endif
1790
1791 /* notify the parent that the child is gone */
1792 if (dev->dv_parent) {
1793 device_t p = dev->dv_parent;
1794 if (p->dv_cfattach->ca_childdetached)
1795 (*p->dv_cfattach->ca_childdetached)(p, dev);
1796 }
1797
1798 /*
1799 * Mark cfdata to show that the unit can be reused, if possible.
1800 */
1801 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1802 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1803 if (STREQ(cf->cf_name, cd->cd_name)) {
1804 if (cf->cf_fstate == FSTATE_FOUND &&
1805 cf->cf_unit == dev->dv_unit)
1806 cf->cf_fstate = FSTATE_NOTFOUND;
1807 }
1808 }
1809 }
1810
1811 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1812 aprint_normal_dev(dev, "detached\n");
1813
1814 out:
1815 config_alldevs_enter(&af);
1816 KASSERT(alldevs_nwrite != 0);
1817 --alldevs_nwrite;
1818 if (rv == 0 && dev->dv_del_gen == 0) {
1819 if (alldevs_nwrite == 0 && alldevs_nread == 0)
1820 config_devunlink(dev, &af.af_garbage);
1821 else {
1822 dev->dv_del_gen = alldevs_gen;
1823 alldevs_garbage = true;
1824 }
1825 }
1826 config_alldevs_exit(&af);
1827
1828 return rv;
1829 }
1830
1831 int
1832 config_detach_children(device_t parent, int flags)
1833 {
1834 device_t dv;
1835 deviter_t di;
1836 int error = 0;
1837
1838 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1839 dv = deviter_next(&di)) {
1840 if (device_parent(dv) != parent)
1841 continue;
1842 if ((error = config_detach(dv, flags)) != 0)
1843 break;
1844 }
1845 deviter_release(&di);
1846 return error;
1847 }
1848
1849 device_t
1850 shutdown_first(struct shutdown_state *s)
1851 {
1852 if (!s->initialized) {
1853 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1854 s->initialized = true;
1855 }
1856 return shutdown_next(s);
1857 }
1858
1859 device_t
1860 shutdown_next(struct shutdown_state *s)
1861 {
1862 device_t dv;
1863
1864 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1865 ;
1866
1867 if (dv == NULL)
1868 s->initialized = false;
1869
1870 return dv;
1871 }
1872
1873 bool
1874 config_detach_all(int how)
1875 {
1876 static struct shutdown_state s;
1877 device_t curdev;
1878 bool progress = false;
1879 int flags;
1880
1881 if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1882 return false;
1883
1884 if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1885 flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1886 else
1887 flags = DETACH_SHUTDOWN;
1888
1889 for (curdev = shutdown_first(&s); curdev != NULL;
1890 curdev = shutdown_next(&s)) {
1891 aprint_debug(" detaching %s, ", device_xname(curdev));
1892 if (config_detach(curdev, flags) == 0) {
1893 progress = true;
1894 aprint_debug("success.");
1895 } else
1896 aprint_debug("failed.");
1897 }
1898 return progress;
1899 }
1900
1901 static bool
1902 device_is_ancestor_of(device_t ancestor, device_t descendant)
1903 {
1904 device_t dv;
1905
1906 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1907 if (device_parent(dv) == ancestor)
1908 return true;
1909 }
1910 return false;
1911 }
1912
1913 int
1914 config_deactivate(device_t dev)
1915 {
1916 deviter_t di;
1917 const struct cfattach *ca;
1918 device_t descendant;
1919 int s, rv = 0, oflags;
1920
1921 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1922 descendant != NULL;
1923 descendant = deviter_next(&di)) {
1924 if (dev != descendant &&
1925 !device_is_ancestor_of(dev, descendant))
1926 continue;
1927
1928 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1929 continue;
1930
1931 ca = descendant->dv_cfattach;
1932 oflags = descendant->dv_flags;
1933
1934 descendant->dv_flags &= ~DVF_ACTIVE;
1935 if (ca->ca_activate == NULL)
1936 continue;
1937 s = splhigh();
1938 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1939 splx(s);
1940 if (rv != 0)
1941 descendant->dv_flags = oflags;
1942 }
1943 deviter_release(&di);
1944 return rv;
1945 }
1946
1947 /*
1948 * Defer the configuration of the specified device until all
1949 * of its parent's devices have been attached.
1950 */
1951 void
1952 config_defer(device_t dev, void (*func)(device_t))
1953 {
1954 struct deferred_config *dc;
1955
1956 if (dev->dv_parent == NULL)
1957 panic("config_defer: can't defer config of a root device");
1958
1959 #ifdef DIAGNOSTIC
1960 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1961 if (dc->dc_dev == dev)
1962 panic("config_defer: deferred twice");
1963 }
1964 #endif
1965
1966 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1967 if (dc == NULL)
1968 panic("config_defer: unable to allocate callback");
1969
1970 dc->dc_dev = dev;
1971 dc->dc_func = func;
1972 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1973 config_pending_incr(dev);
1974 }
1975
1976 /*
1977 * Defer some autoconfiguration for a device until after interrupts
1978 * are enabled.
1979 */
1980 void
1981 config_interrupts(device_t dev, void (*func)(device_t))
1982 {
1983 struct deferred_config *dc;
1984
1985 /*
1986 * If interrupts are enabled, callback now.
1987 */
1988 if (cold == 0) {
1989 (*func)(dev);
1990 return;
1991 }
1992
1993 #ifdef DIAGNOSTIC
1994 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1995 if (dc->dc_dev == dev)
1996 panic("config_interrupts: deferred twice");
1997 }
1998 #endif
1999
2000 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2001 if (dc == NULL)
2002 panic("config_interrupts: unable to allocate callback");
2003
2004 dc->dc_dev = dev;
2005 dc->dc_func = func;
2006 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2007 config_pending_incr(dev);
2008 }
2009
2010 /*
2011 * Defer some autoconfiguration for a device until after root file system
2012 * is mounted (to load firmware etc).
2013 */
2014 void
2015 config_mountroot(device_t dev, void (*func)(device_t))
2016 {
2017 struct deferred_config *dc;
2018
2019 /*
2020 * If root file system is mounted, callback now.
2021 */
2022 if (root_is_mounted) {
2023 (*func)(dev);
2024 return;
2025 }
2026
2027 #ifdef DIAGNOSTIC
2028 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
2029 if (dc->dc_dev == dev)
2030 panic("%s: deferred twice", __func__);
2031 }
2032 #endif
2033
2034 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2035 if (dc == NULL)
2036 panic("%s: unable to allocate callback", __func__);
2037
2038 dc->dc_dev = dev;
2039 dc->dc_func = func;
2040 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2041 }
2042
2043 /*
2044 * Process a deferred configuration queue.
2045 */
2046 static void
2047 config_process_deferred(struct deferred_config_head *queue,
2048 device_t parent)
2049 {
2050 struct deferred_config *dc, *ndc;
2051
2052 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
2053 ndc = TAILQ_NEXT(dc, dc_queue);
2054 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2055 TAILQ_REMOVE(queue, dc, dc_queue);
2056 (*dc->dc_func)(dc->dc_dev);
2057 config_pending_decr(dc->dc_dev);
2058 kmem_free(dc, sizeof(*dc));
2059 }
2060 }
2061 }
2062
2063 /*
2064 * Manipulate the config_pending semaphore.
2065 */
2066 void
2067 config_pending_incr(device_t dev)
2068 {
2069
2070 mutex_enter(&config_misc_lock);
2071 config_pending++;
2072 #ifdef DEBUG_AUTOCONF
2073 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2074 #endif
2075 mutex_exit(&config_misc_lock);
2076 }
2077
2078 void
2079 config_pending_decr(device_t dev)
2080 {
2081
2082 #ifdef DIAGNOSTIC
2083 if (config_pending == 0)
2084 panic("config_pending_decr: config_pending == 0");
2085 #endif
2086 mutex_enter(&config_misc_lock);
2087 config_pending--;
2088 #ifdef DEBUG_AUTOCONF
2089 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2090 #endif
2091 if (config_pending == 0)
2092 cv_broadcast(&config_misc_cv);
2093 mutex_exit(&config_misc_lock);
2094 }
2095
2096 /*
2097 * Register a "finalization" routine. Finalization routines are
2098 * called iteratively once all real devices have been found during
2099 * autoconfiguration, for as long as any one finalizer has done
2100 * any work.
2101 */
2102 int
2103 config_finalize_register(device_t dev, int (*fn)(device_t))
2104 {
2105 struct finalize_hook *f;
2106
2107 /*
2108 * If finalization has already been done, invoke the
2109 * callback function now.
2110 */
2111 if (config_finalize_done) {
2112 while ((*fn)(dev) != 0)
2113 /* loop */ ;
2114 return 0;
2115 }
2116
2117 /* Ensure this isn't already on the list. */
2118 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2119 if (f->f_func == fn && f->f_dev == dev)
2120 return EEXIST;
2121 }
2122
2123 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2124 f->f_func = fn;
2125 f->f_dev = dev;
2126 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2127
2128 return 0;
2129 }
2130
2131 void
2132 config_finalize(void)
2133 {
2134 struct finalize_hook *f;
2135 struct pdevinit *pdev;
2136 extern struct pdevinit pdevinit[];
2137 int errcnt, rv;
2138
2139 /*
2140 * Now that device driver threads have been created, wait for
2141 * them to finish any deferred autoconfiguration.
2142 */
2143 mutex_enter(&config_misc_lock);
2144 while (config_pending != 0)
2145 cv_wait(&config_misc_cv, &config_misc_lock);
2146 mutex_exit(&config_misc_lock);
2147
2148 KERNEL_LOCK(1, NULL);
2149
2150 /* Attach pseudo-devices. */
2151 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2152 (*pdev->pdev_attach)(pdev->pdev_count);
2153
2154 /* Run the hooks until none of them does any work. */
2155 do {
2156 rv = 0;
2157 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2158 rv |= (*f->f_func)(f->f_dev);
2159 } while (rv != 0);
2160
2161 config_finalize_done = 1;
2162
2163 /* Now free all the hooks. */
2164 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2165 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2166 kmem_free(f, sizeof(*f));
2167 }
2168
2169 KERNEL_UNLOCK_ONE(NULL);
2170
2171 errcnt = aprint_get_error_count();
2172 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2173 (boothowto & AB_VERBOSE) == 0) {
2174 mutex_enter(&config_misc_lock);
2175 if (config_do_twiddle) {
2176 config_do_twiddle = 0;
2177 printf_nolog(" done.\n");
2178 }
2179 mutex_exit(&config_misc_lock);
2180 if (errcnt != 0) {
2181 printf("WARNING: %d error%s while detecting hardware; "
2182 "check system log.\n", errcnt,
2183 errcnt == 1 ? "" : "s");
2184 }
2185 }
2186 }
2187
2188 void
2189 config_twiddle_init(void)
2190 {
2191
2192 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2193 config_do_twiddle = 1;
2194 }
2195 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2196 }
2197
2198 void
2199 config_twiddle_fn(void *cookie)
2200 {
2201
2202 mutex_enter(&config_misc_lock);
2203 if (config_do_twiddle) {
2204 twiddle();
2205 callout_schedule(&config_twiddle_ch, mstohz(100));
2206 }
2207 mutex_exit(&config_misc_lock);
2208 }
2209
2210 static void
2211 config_alldevs_enter(struct alldevs_foray *af)
2212 {
2213 TAILQ_INIT(&af->af_garbage);
2214 mutex_enter(&alldevs_mtx);
2215 config_collect_garbage(&af->af_garbage);
2216 }
2217
2218 static void
2219 config_alldevs_exit(struct alldevs_foray *af)
2220 {
2221 mutex_exit(&alldevs_mtx);
2222 config_dump_garbage(&af->af_garbage);
2223 }
2224
2225 /*
2226 * device_lookup:
2227 *
2228 * Look up a device instance for a given driver.
2229 */
2230 device_t
2231 device_lookup(cfdriver_t cd, int unit)
2232 {
2233 device_t dv;
2234
2235 mutex_enter(&alldevs_mtx);
2236 if (unit < 0 || unit >= cd->cd_ndevs)
2237 dv = NULL;
2238 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2239 dv = NULL;
2240 mutex_exit(&alldevs_mtx);
2241
2242 return dv;
2243 }
2244
2245 /*
2246 * device_lookup_private:
2247 *
2248 * Look up a softc instance for a given driver.
2249 */
2250 void *
2251 device_lookup_private(cfdriver_t cd, int unit)
2252 {
2253
2254 return device_private(device_lookup(cd, unit));
2255 }
2256
2257 /*
2258 * device_find_by_xname:
2259 *
2260 * Returns the device of the given name or NULL if it doesn't exist.
2261 */
2262 device_t
2263 device_find_by_xname(const char *name)
2264 {
2265 device_t dv;
2266 deviter_t di;
2267
2268 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2269 if (strcmp(device_xname(dv), name) == 0)
2270 break;
2271 }
2272 deviter_release(&di);
2273
2274 return dv;
2275 }
2276
2277 /*
2278 * device_find_by_driver_unit:
2279 *
2280 * Returns the device of the given driver name and unit or
2281 * NULL if it doesn't exist.
2282 */
2283 device_t
2284 device_find_by_driver_unit(const char *name, int unit)
2285 {
2286 struct cfdriver *cd;
2287
2288 if ((cd = config_cfdriver_lookup(name)) == NULL)
2289 return NULL;
2290 return device_lookup(cd, unit);
2291 }
2292
2293 /*
2294 * Power management related functions.
2295 */
2296
2297 bool
2298 device_pmf_is_registered(device_t dev)
2299 {
2300 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2301 }
2302
2303 bool
2304 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2305 {
2306 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2307 return true;
2308 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2309 return false;
2310 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2311 dev->dv_driver_suspend != NULL &&
2312 !(*dev->dv_driver_suspend)(dev, qual))
2313 return false;
2314
2315 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2316 return true;
2317 }
2318
2319 bool
2320 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2321 {
2322 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2323 return true;
2324 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2325 return false;
2326 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2327 dev->dv_driver_resume != NULL &&
2328 !(*dev->dv_driver_resume)(dev, qual))
2329 return false;
2330
2331 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2332 return true;
2333 }
2334
2335 bool
2336 device_pmf_driver_shutdown(device_t dev, int how)
2337 {
2338
2339 if (*dev->dv_driver_shutdown != NULL &&
2340 !(*dev->dv_driver_shutdown)(dev, how))
2341 return false;
2342 return true;
2343 }
2344
2345 bool
2346 device_pmf_driver_register(device_t dev,
2347 bool (*suspend)(device_t, const pmf_qual_t *),
2348 bool (*resume)(device_t, const pmf_qual_t *),
2349 bool (*shutdown)(device_t, int))
2350 {
2351 dev->dv_driver_suspend = suspend;
2352 dev->dv_driver_resume = resume;
2353 dev->dv_driver_shutdown = shutdown;
2354 dev->dv_flags |= DVF_POWER_HANDLERS;
2355 return true;
2356 }
2357
2358 static const char *
2359 curlwp_name(void)
2360 {
2361 if (curlwp->l_name != NULL)
2362 return curlwp->l_name;
2363 else
2364 return curlwp->l_proc->p_comm;
2365 }
2366
2367 void
2368 device_pmf_driver_deregister(device_t dev)
2369 {
2370 device_lock_t dvl = device_getlock(dev);
2371
2372 dev->dv_driver_suspend = NULL;
2373 dev->dv_driver_resume = NULL;
2374
2375 mutex_enter(&dvl->dvl_mtx);
2376 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2377 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2378 /* Wake a thread that waits for the lock. That
2379 * thread will fail to acquire the lock, and then
2380 * it will wake the next thread that waits for the
2381 * lock, or else it will wake us.
2382 */
2383 cv_signal(&dvl->dvl_cv);
2384 pmflock_debug(dev, __func__, __LINE__);
2385 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2386 pmflock_debug(dev, __func__, __LINE__);
2387 }
2388 mutex_exit(&dvl->dvl_mtx);
2389 }
2390
2391 bool
2392 device_pmf_driver_child_register(device_t dev)
2393 {
2394 device_t parent = device_parent(dev);
2395
2396 if (parent == NULL || parent->dv_driver_child_register == NULL)
2397 return true;
2398 return (*parent->dv_driver_child_register)(dev);
2399 }
2400
2401 void
2402 device_pmf_driver_set_child_register(device_t dev,
2403 bool (*child_register)(device_t))
2404 {
2405 dev->dv_driver_child_register = child_register;
2406 }
2407
2408 static void
2409 pmflock_debug(device_t dev, const char *func, int line)
2410 {
2411 device_lock_t dvl = device_getlock(dev);
2412
2413 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2414 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2415 dev->dv_flags);
2416 }
2417
2418 static bool
2419 device_pmf_lock1(device_t dev)
2420 {
2421 device_lock_t dvl = device_getlock(dev);
2422
2423 while (device_pmf_is_registered(dev) &&
2424 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2425 dvl->dvl_nwait++;
2426 pmflock_debug(dev, __func__, __LINE__);
2427 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2428 pmflock_debug(dev, __func__, __LINE__);
2429 dvl->dvl_nwait--;
2430 }
2431 if (!device_pmf_is_registered(dev)) {
2432 pmflock_debug(dev, __func__, __LINE__);
2433 /* We could not acquire the lock, but some other thread may
2434 * wait for it, also. Wake that thread.
2435 */
2436 cv_signal(&dvl->dvl_cv);
2437 return false;
2438 }
2439 dvl->dvl_nlock++;
2440 dvl->dvl_holder = curlwp;
2441 pmflock_debug(dev, __func__, __LINE__);
2442 return true;
2443 }
2444
2445 bool
2446 device_pmf_lock(device_t dev)
2447 {
2448 bool rc;
2449 device_lock_t dvl = device_getlock(dev);
2450
2451 mutex_enter(&dvl->dvl_mtx);
2452 rc = device_pmf_lock1(dev);
2453 mutex_exit(&dvl->dvl_mtx);
2454
2455 return rc;
2456 }
2457
2458 void
2459 device_pmf_unlock(device_t dev)
2460 {
2461 device_lock_t dvl = device_getlock(dev);
2462
2463 KASSERT(dvl->dvl_nlock > 0);
2464 mutex_enter(&dvl->dvl_mtx);
2465 if (--dvl->dvl_nlock == 0)
2466 dvl->dvl_holder = NULL;
2467 cv_signal(&dvl->dvl_cv);
2468 pmflock_debug(dev, __func__, __LINE__);
2469 mutex_exit(&dvl->dvl_mtx);
2470 }
2471
2472 device_lock_t
2473 device_getlock(device_t dev)
2474 {
2475 return &dev->dv_lock;
2476 }
2477
2478 void *
2479 device_pmf_bus_private(device_t dev)
2480 {
2481 return dev->dv_bus_private;
2482 }
2483
2484 bool
2485 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2486 {
2487 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2488 return true;
2489 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2490 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2491 return false;
2492 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2493 dev->dv_bus_suspend != NULL &&
2494 !(*dev->dv_bus_suspend)(dev, qual))
2495 return false;
2496
2497 dev->dv_flags |= DVF_BUS_SUSPENDED;
2498 return true;
2499 }
2500
2501 bool
2502 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2503 {
2504 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2505 return true;
2506 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2507 dev->dv_bus_resume != NULL &&
2508 !(*dev->dv_bus_resume)(dev, qual))
2509 return false;
2510
2511 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2512 return true;
2513 }
2514
2515 bool
2516 device_pmf_bus_shutdown(device_t dev, int how)
2517 {
2518
2519 if (*dev->dv_bus_shutdown != NULL &&
2520 !(*dev->dv_bus_shutdown)(dev, how))
2521 return false;
2522 return true;
2523 }
2524
2525 void
2526 device_pmf_bus_register(device_t dev, void *priv,
2527 bool (*suspend)(device_t, const pmf_qual_t *),
2528 bool (*resume)(device_t, const pmf_qual_t *),
2529 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2530 {
2531 dev->dv_bus_private = priv;
2532 dev->dv_bus_resume = resume;
2533 dev->dv_bus_suspend = suspend;
2534 dev->dv_bus_shutdown = shutdown;
2535 dev->dv_bus_deregister = deregister;
2536 }
2537
2538 void
2539 device_pmf_bus_deregister(device_t dev)
2540 {
2541 if (dev->dv_bus_deregister == NULL)
2542 return;
2543 (*dev->dv_bus_deregister)(dev);
2544 dev->dv_bus_private = NULL;
2545 dev->dv_bus_suspend = NULL;
2546 dev->dv_bus_resume = NULL;
2547 dev->dv_bus_deregister = NULL;
2548 }
2549
2550 void *
2551 device_pmf_class_private(device_t dev)
2552 {
2553 return dev->dv_class_private;
2554 }
2555
2556 bool
2557 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2558 {
2559 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2560 return true;
2561 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2562 dev->dv_class_suspend != NULL &&
2563 !(*dev->dv_class_suspend)(dev, qual))
2564 return false;
2565
2566 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2567 return true;
2568 }
2569
2570 bool
2571 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2572 {
2573 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2574 return true;
2575 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2576 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2577 return false;
2578 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2579 dev->dv_class_resume != NULL &&
2580 !(*dev->dv_class_resume)(dev, qual))
2581 return false;
2582
2583 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2584 return true;
2585 }
2586
2587 void
2588 device_pmf_class_register(device_t dev, void *priv,
2589 bool (*suspend)(device_t, const pmf_qual_t *),
2590 bool (*resume)(device_t, const pmf_qual_t *),
2591 void (*deregister)(device_t))
2592 {
2593 dev->dv_class_private = priv;
2594 dev->dv_class_suspend = suspend;
2595 dev->dv_class_resume = resume;
2596 dev->dv_class_deregister = deregister;
2597 }
2598
2599 void
2600 device_pmf_class_deregister(device_t dev)
2601 {
2602 if (dev->dv_class_deregister == NULL)
2603 return;
2604 (*dev->dv_class_deregister)(dev);
2605 dev->dv_class_private = NULL;
2606 dev->dv_class_suspend = NULL;
2607 dev->dv_class_resume = NULL;
2608 dev->dv_class_deregister = NULL;
2609 }
2610
2611 bool
2612 device_active(device_t dev, devactive_t type)
2613 {
2614 size_t i;
2615
2616 if (dev->dv_activity_count == 0)
2617 return false;
2618
2619 for (i = 0; i < dev->dv_activity_count; ++i) {
2620 if (dev->dv_activity_handlers[i] == NULL)
2621 break;
2622 (*dev->dv_activity_handlers[i])(dev, type);
2623 }
2624
2625 return true;
2626 }
2627
2628 bool
2629 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2630 {
2631 void (**new_handlers)(device_t, devactive_t);
2632 void (**old_handlers)(device_t, devactive_t);
2633 size_t i, old_size, new_size;
2634 int s;
2635
2636 old_handlers = dev->dv_activity_handlers;
2637 old_size = dev->dv_activity_count;
2638
2639 KASSERT(old_size == 0 || old_handlers != NULL);
2640
2641 for (i = 0; i < old_size; ++i) {
2642 KASSERT(old_handlers[i] != handler);
2643 if (old_handlers[i] == NULL) {
2644 old_handlers[i] = handler;
2645 return true;
2646 }
2647 }
2648
2649 new_size = old_size + 4;
2650 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2651
2652 for (i = 0; i < old_size; ++i)
2653 new_handlers[i] = old_handlers[i];
2654 new_handlers[old_size] = handler;
2655 for (i = old_size+1; i < new_size; ++i)
2656 new_handlers[i] = NULL;
2657
2658 s = splhigh();
2659 dev->dv_activity_count = new_size;
2660 dev->dv_activity_handlers = new_handlers;
2661 splx(s);
2662
2663 if (old_size > 0)
2664 kmem_free(old_handlers, sizeof(void * [old_size]));
2665
2666 return true;
2667 }
2668
2669 void
2670 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2671 {
2672 void (**old_handlers)(device_t, devactive_t);
2673 size_t i, old_size;
2674 int s;
2675
2676 old_handlers = dev->dv_activity_handlers;
2677 old_size = dev->dv_activity_count;
2678
2679 for (i = 0; i < old_size; ++i) {
2680 if (old_handlers[i] == handler)
2681 break;
2682 if (old_handlers[i] == NULL)
2683 return; /* XXX panic? */
2684 }
2685
2686 if (i == old_size)
2687 return; /* XXX panic? */
2688
2689 for (; i < old_size - 1; ++i) {
2690 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2691 continue;
2692
2693 if (i == 0) {
2694 s = splhigh();
2695 dev->dv_activity_count = 0;
2696 dev->dv_activity_handlers = NULL;
2697 splx(s);
2698 kmem_free(old_handlers, sizeof(void *[old_size]));
2699 }
2700 return;
2701 }
2702 old_handlers[i] = NULL;
2703 }
2704
2705 /* Return true iff the device_t `dev' exists at generation `gen'. */
2706 static bool
2707 device_exists_at(device_t dv, devgen_t gen)
2708 {
2709 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2710 dv->dv_add_gen <= gen;
2711 }
2712
2713 static bool
2714 deviter_visits(const deviter_t *di, device_t dv)
2715 {
2716 return device_exists_at(dv, di->di_gen);
2717 }
2718
2719 /*
2720 * Device Iteration
2721 *
2722 * deviter_t: a device iterator. Holds state for a "walk" visiting
2723 * each device_t's in the device tree.
2724 *
2725 * deviter_init(di, flags): initialize the device iterator `di'
2726 * to "walk" the device tree. deviter_next(di) will return
2727 * the first device_t in the device tree, or NULL if there are
2728 * no devices.
2729 *
2730 * `flags' is one or more of DEVITER_F_RW, indicating that the
2731 * caller intends to modify the device tree by calling
2732 * config_detach(9) on devices in the order that the iterator
2733 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2734 * nearest the "root" of the device tree to be returned, first;
2735 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2736 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2737 * indicating both that deviter_init() should not respect any
2738 * locks on the device tree, and that deviter_next(di) may run
2739 * in more than one LWP before the walk has finished.
2740 *
2741 * Only one DEVITER_F_RW iterator may be in the device tree at
2742 * once.
2743 *
2744 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2745 *
2746 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2747 * DEVITER_F_LEAVES_FIRST are used in combination.
2748 *
2749 * deviter_first(di, flags): initialize the device iterator `di'
2750 * and return the first device_t in the device tree, or NULL
2751 * if there are no devices. The statement
2752 *
2753 * dv = deviter_first(di);
2754 *
2755 * is shorthand for
2756 *
2757 * deviter_init(di);
2758 * dv = deviter_next(di);
2759 *
2760 * deviter_next(di): return the next device_t in the device tree,
2761 * or NULL if there are no more devices. deviter_next(di)
2762 * is undefined if `di' was not initialized with deviter_init() or
2763 * deviter_first().
2764 *
2765 * deviter_release(di): stops iteration (subsequent calls to
2766 * deviter_next() will return NULL), releases any locks and
2767 * resources held by the device iterator.
2768 *
2769 * Device iteration does not return device_t's in any particular
2770 * order. An iterator will never return the same device_t twice.
2771 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2772 * is called repeatedly on the same `di', it will eventually return
2773 * NULL. It is ok to attach/detach devices during device iteration.
2774 */
2775 void
2776 deviter_init(deviter_t *di, deviter_flags_t flags)
2777 {
2778 device_t dv;
2779
2780 memset(di, 0, sizeof(*di));
2781
2782 mutex_enter(&alldevs_mtx);
2783 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2784 flags |= DEVITER_F_RW;
2785
2786 if ((flags & DEVITER_F_RW) != 0)
2787 alldevs_nwrite++;
2788 else
2789 alldevs_nread++;
2790 di->di_gen = alldevs_gen++;
2791 mutex_exit(&alldevs_mtx);
2792
2793 di->di_flags = flags;
2794
2795 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2796 case DEVITER_F_LEAVES_FIRST:
2797 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2798 if (!deviter_visits(di, dv))
2799 continue;
2800 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2801 }
2802 break;
2803 case DEVITER_F_ROOT_FIRST:
2804 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2805 if (!deviter_visits(di, dv))
2806 continue;
2807 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2808 }
2809 break;
2810 default:
2811 break;
2812 }
2813
2814 deviter_reinit(di);
2815 }
2816
2817 static void
2818 deviter_reinit(deviter_t *di)
2819 {
2820 if ((di->di_flags & DEVITER_F_RW) != 0)
2821 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2822 else
2823 di->di_prev = TAILQ_FIRST(&alldevs);
2824 }
2825
2826 device_t
2827 deviter_first(deviter_t *di, deviter_flags_t flags)
2828 {
2829 deviter_init(di, flags);
2830 return deviter_next(di);
2831 }
2832
2833 static device_t
2834 deviter_next2(deviter_t *di)
2835 {
2836 device_t dv;
2837
2838 dv = di->di_prev;
2839
2840 if (dv == NULL)
2841 return NULL;
2842
2843 if ((di->di_flags & DEVITER_F_RW) != 0)
2844 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2845 else
2846 di->di_prev = TAILQ_NEXT(dv, dv_list);
2847
2848 return dv;
2849 }
2850
2851 static device_t
2852 deviter_next1(deviter_t *di)
2853 {
2854 device_t dv;
2855
2856 do {
2857 dv = deviter_next2(di);
2858 } while (dv != NULL && !deviter_visits(di, dv));
2859
2860 return dv;
2861 }
2862
2863 device_t
2864 deviter_next(deviter_t *di)
2865 {
2866 device_t dv = NULL;
2867
2868 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2869 case 0:
2870 return deviter_next1(di);
2871 case DEVITER_F_LEAVES_FIRST:
2872 while (di->di_curdepth >= 0) {
2873 if ((dv = deviter_next1(di)) == NULL) {
2874 di->di_curdepth--;
2875 deviter_reinit(di);
2876 } else if (dv->dv_depth == di->di_curdepth)
2877 break;
2878 }
2879 return dv;
2880 case DEVITER_F_ROOT_FIRST:
2881 while (di->di_curdepth <= di->di_maxdepth) {
2882 if ((dv = deviter_next1(di)) == NULL) {
2883 di->di_curdepth++;
2884 deviter_reinit(di);
2885 } else if (dv->dv_depth == di->di_curdepth)
2886 break;
2887 }
2888 return dv;
2889 default:
2890 return NULL;
2891 }
2892 }
2893
2894 void
2895 deviter_release(deviter_t *di)
2896 {
2897 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2898
2899 mutex_enter(&alldevs_mtx);
2900 if (rw)
2901 --alldevs_nwrite;
2902 else
2903 --alldevs_nread;
2904 /* XXX wake a garbage-collection thread */
2905 mutex_exit(&alldevs_mtx);
2906 }
2907
2908 const char *
2909 cfdata_ifattr(const struct cfdata *cf)
2910 {
2911 return cf->cf_pspec->cfp_iattr;
2912 }
2913
2914 bool
2915 ifattr_match(const char *snull, const char *t)
2916 {
2917 return (snull == NULL) || strcmp(snull, t) == 0;
2918 }
2919
2920 void
2921 null_childdetached(device_t self, device_t child)
2922 {
2923 /* do nothing */
2924 }
2925
2926 static void
2927 sysctl_detach_setup(struct sysctllog **clog)
2928 {
2929
2930 sysctl_createv(clog, 0, NULL, NULL,
2931 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2932 CTLTYPE_BOOL, "detachall",
2933 SYSCTL_DESCR("Detach all devices at shutdown"),
2934 NULL, 0, &detachall, 0,
2935 CTL_KERN, CTL_CREATE, CTL_EOL);
2936 }
2937