subr_autoconf.c revision 1.235 1 /* $NetBSD: subr_autoconf.c,v 1.235 2015/04/13 16:46:33 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.235 2015/04/13 16:46:33 riastradh Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110
111 #include <sys/disk.h>
112
113 #include <sys/rndsource.h>
114
115 #include <machine/limits.h>
116
117 /*
118 * Autoconfiguration subroutines.
119 */
120
121 /*
122 * Device autoconfiguration timings are mixed into the entropy pool.
123 */
124 extern krndsource_t rnd_autoconf_source;
125
126 /*
127 * ioconf.c exports exactly two names: cfdata and cfroots. All system
128 * devices and drivers are found via these tables.
129 */
130 extern struct cfdata cfdata[];
131 extern const short cfroots[];
132
133 /*
134 * List of all cfdriver structures. We use this to detect duplicates
135 * when other cfdrivers are loaded.
136 */
137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
138 extern struct cfdriver * const cfdriver_list_initial[];
139
140 /*
141 * Initial list of cfattach's.
142 */
143 extern const struct cfattachinit cfattachinit[];
144
145 /*
146 * List of cfdata tables. We always have one such list -- the one
147 * built statically when the kernel was configured.
148 */
149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
150 static struct cftable initcftable;
151
152 #define ROOT ((device_t)NULL)
153
154 struct matchinfo {
155 cfsubmatch_t fn;
156 device_t parent;
157 const int *locs;
158 void *aux;
159 struct cfdata *match;
160 int pri;
161 };
162
163 struct alldevs_foray {
164 int af_s;
165 struct devicelist af_garbage;
166 };
167
168 static char *number(char *, int);
169 static void mapply(struct matchinfo *, cfdata_t);
170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
171 static void config_devdelete(device_t);
172 static void config_devunlink(device_t, struct devicelist *);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_alldevs_unlock(int);
176 static int config_alldevs_lock(void);
177 static void config_alldevs_enter(struct alldevs_foray *);
178 static void config_alldevs_exit(struct alldevs_foray *);
179 static void config_add_attrib_dict(device_t);
180
181 static void config_collect_garbage(struct devicelist *);
182 static void config_dump_garbage(struct devicelist *);
183
184 static void pmflock_debug(device_t, const char *, int);
185
186 static device_t deviter_next1(deviter_t *);
187 static void deviter_reinit(deviter_t *);
188
189 struct deferred_config {
190 TAILQ_ENTRY(deferred_config) dc_queue;
191 device_t dc_dev;
192 void (*dc_func)(device_t);
193 };
194
195 TAILQ_HEAD(deferred_config_head, deferred_config);
196
197 struct deferred_config_head deferred_config_queue =
198 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
199 struct deferred_config_head interrupt_config_queue =
200 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
201 int interrupt_config_threads = 8;
202 struct deferred_config_head mountroot_config_queue =
203 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
204 int mountroot_config_threads = 2;
205 static lwp_t **mountroot_config_lwpids;
206 static size_t mountroot_config_lwpids_size;
207 static bool root_is_mounted = false;
208
209 static void config_process_deferred(struct deferred_config_head *, device_t);
210
211 /* Hooks to finalize configuration once all real devices have been found. */
212 struct finalize_hook {
213 TAILQ_ENTRY(finalize_hook) f_list;
214 int (*f_func)(device_t);
215 device_t f_dev;
216 };
217 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
218 TAILQ_HEAD_INITIALIZER(config_finalize_list);
219 static int config_finalize_done;
220
221 /* list of all devices */
222 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
223 static kmutex_t alldevs_mtx;
224 static volatile bool alldevs_garbage = false;
225 static volatile devgen_t alldevs_gen = 1;
226 static volatile int alldevs_nread = 0;
227 static volatile int alldevs_nwrite = 0;
228
229 static int config_pending; /* semaphore for mountroot */
230 static kmutex_t config_misc_lock;
231 static kcondvar_t config_misc_cv;
232
233 static bool detachall = false;
234
235 #define STREQ(s1, s2) \
236 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
237
238 static bool config_initialized = false; /* config_init() has been called. */
239
240 static int config_do_twiddle;
241 static callout_t config_twiddle_ch;
242
243 static void sysctl_detach_setup(struct sysctllog **);
244
245 typedef int (*cfdriver_fn)(struct cfdriver *);
246 static int
247 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
248 cfdriver_fn drv_do, cfdriver_fn drv_undo,
249 const char *style, bool dopanic)
250 {
251 void (*pr)(const char *, ...) __printflike(1, 2) =
252 dopanic ? panic : printf;
253 int i, error = 0, e2 __diagused;
254
255 for (i = 0; cfdriverv[i] != NULL; i++) {
256 if ((error = drv_do(cfdriverv[i])) != 0) {
257 pr("configure: `%s' driver %s failed: %d",
258 cfdriverv[i]->cd_name, style, error);
259 goto bad;
260 }
261 }
262
263 KASSERT(error == 0);
264 return 0;
265
266 bad:
267 printf("\n");
268 for (i--; i >= 0; i--) {
269 e2 = drv_undo(cfdriverv[i]);
270 KASSERT(e2 == 0);
271 }
272
273 return error;
274 }
275
276 typedef int (*cfattach_fn)(const char *, struct cfattach *);
277 static int
278 frob_cfattachvec(const struct cfattachinit *cfattachv,
279 cfattach_fn att_do, cfattach_fn att_undo,
280 const char *style, bool dopanic)
281 {
282 const struct cfattachinit *cfai = NULL;
283 void (*pr)(const char *, ...) __printflike(1, 2) =
284 dopanic ? panic : printf;
285 int j = 0, error = 0, e2 __diagused;
286
287 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
288 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
289 if ((error = att_do(cfai->cfai_name,
290 cfai->cfai_list[j])) != 0) {
291 pr("configure: attachment `%s' "
292 "of `%s' driver %s failed: %d",
293 cfai->cfai_list[j]->ca_name,
294 cfai->cfai_name, style, error);
295 goto bad;
296 }
297 }
298 }
299
300 KASSERT(error == 0);
301 return 0;
302
303 bad:
304 /*
305 * Rollback in reverse order. dunno if super-important, but
306 * do that anyway. Although the code looks a little like
307 * someone did a little integration (in the math sense).
308 */
309 printf("\n");
310 if (cfai) {
311 bool last;
312
313 for (last = false; last == false; ) {
314 if (cfai == &cfattachv[0])
315 last = true;
316 for (j--; j >= 0; j--) {
317 e2 = att_undo(cfai->cfai_name,
318 cfai->cfai_list[j]);
319 KASSERT(e2 == 0);
320 }
321 if (!last) {
322 cfai--;
323 for (j = 0; cfai->cfai_list[j] != NULL; j++)
324 ;
325 }
326 }
327 }
328
329 return error;
330 }
331
332 /*
333 * Initialize the autoconfiguration data structures. Normally this
334 * is done by configure(), but some platforms need to do this very
335 * early (to e.g. initialize the console).
336 */
337 void
338 config_init(void)
339 {
340
341 KASSERT(config_initialized == false);
342
343 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
344
345 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
346 cv_init(&config_misc_cv, "cfgmisc");
347
348 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
349
350 frob_cfdrivervec(cfdriver_list_initial,
351 config_cfdriver_attach, NULL, "bootstrap", true);
352 frob_cfattachvec(cfattachinit,
353 config_cfattach_attach, NULL, "bootstrap", true);
354
355 initcftable.ct_cfdata = cfdata;
356 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
357
358 config_initialized = true;
359 }
360
361 /*
362 * Init or fini drivers and attachments. Either all or none
363 * are processed (via rollback). It would be nice if this were
364 * atomic to outside consumers, but with the current state of
365 * locking ...
366 */
367 int
368 config_init_component(struct cfdriver * const *cfdriverv,
369 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
370 {
371 int error;
372
373 if ((error = frob_cfdrivervec(cfdriverv,
374 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
375 return error;
376 if ((error = frob_cfattachvec(cfattachv,
377 config_cfattach_attach, config_cfattach_detach,
378 "init", false)) != 0) {
379 frob_cfdrivervec(cfdriverv,
380 config_cfdriver_detach, NULL, "init rollback", true);
381 return error;
382 }
383 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
384 frob_cfattachvec(cfattachv,
385 config_cfattach_detach, NULL, "init rollback", true);
386 frob_cfdrivervec(cfdriverv,
387 config_cfdriver_detach, NULL, "init rollback", true);
388 return error;
389 }
390
391 return 0;
392 }
393
394 int
395 config_fini_component(struct cfdriver * const *cfdriverv,
396 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
397 {
398 int error;
399
400 if ((error = config_cfdata_detach(cfdatav)) != 0)
401 return error;
402 if ((error = frob_cfattachvec(cfattachv,
403 config_cfattach_detach, config_cfattach_attach,
404 "fini", false)) != 0) {
405 if (config_cfdata_attach(cfdatav, 0) != 0)
406 panic("config_cfdata fini rollback failed");
407 return error;
408 }
409 if ((error = frob_cfdrivervec(cfdriverv,
410 config_cfdriver_detach, config_cfdriver_attach,
411 "fini", false)) != 0) {
412 frob_cfattachvec(cfattachv,
413 config_cfattach_attach, NULL, "fini rollback", true);
414 if (config_cfdata_attach(cfdatav, 0) != 0)
415 panic("config_cfdata fini rollback failed");
416 return error;
417 }
418
419 return 0;
420 }
421
422 void
423 config_init_mi(void)
424 {
425
426 if (!config_initialized)
427 config_init();
428
429 sysctl_detach_setup(NULL);
430 }
431
432 void
433 config_deferred(device_t dev)
434 {
435 config_process_deferred(&deferred_config_queue, dev);
436 config_process_deferred(&interrupt_config_queue, dev);
437 config_process_deferred(&mountroot_config_queue, dev);
438 }
439
440 static void
441 config_interrupts_thread(void *cookie)
442 {
443 struct deferred_config *dc;
444
445 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
446 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
447 (*dc->dc_func)(dc->dc_dev);
448 config_pending_decr(dc->dc_dev);
449 kmem_free(dc, sizeof(*dc));
450 }
451 kthread_exit(0);
452 }
453
454 void
455 config_create_interruptthreads(void)
456 {
457 int i;
458
459 for (i = 0; i < interrupt_config_threads; i++) {
460 (void)kthread_create(PRI_NONE, 0, NULL,
461 config_interrupts_thread, NULL, NULL, "configintr");
462 }
463 }
464
465 static void
466 config_mountroot_thread(void *cookie)
467 {
468 struct deferred_config *dc;
469
470 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
471 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
472 (*dc->dc_func)(dc->dc_dev);
473 kmem_free(dc, sizeof(*dc));
474 }
475 kthread_exit(0);
476 }
477
478 void
479 config_create_mountrootthreads(void)
480 {
481 int i;
482
483 if (!root_is_mounted)
484 root_is_mounted = true;
485
486 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
487 mountroot_config_threads;
488 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
489 KM_NOSLEEP);
490 KASSERT(mountroot_config_lwpids);
491 for (i = 0; i < mountroot_config_threads; i++) {
492 mountroot_config_lwpids[i] = 0;
493 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
494 config_mountroot_thread, NULL,
495 &mountroot_config_lwpids[i],
496 "configroot");
497 }
498 }
499
500 void
501 config_finalize_mountroot(void)
502 {
503 int i, error;
504
505 for (i = 0; i < mountroot_config_threads; i++) {
506 if (mountroot_config_lwpids[i] == 0)
507 continue;
508
509 error = kthread_join(mountroot_config_lwpids[i]);
510 if (error)
511 printf("%s: thread %x joined with error %d\n",
512 __func__, i, error);
513 }
514 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
515 }
516
517 /*
518 * Announce device attach/detach to userland listeners.
519 */
520 static void
521 devmon_report_device(device_t dev, bool isattach)
522 {
523 #if NDRVCTL > 0
524 prop_dictionary_t ev;
525 const char *parent;
526 const char *what;
527 device_t pdev = device_parent(dev);
528
529 ev = prop_dictionary_create();
530 if (ev == NULL)
531 return;
532
533 what = (isattach ? "device-attach" : "device-detach");
534 parent = (pdev == NULL ? "root" : device_xname(pdev));
535 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
536 !prop_dictionary_set_cstring(ev, "parent", parent)) {
537 prop_object_release(ev);
538 return;
539 }
540
541 devmon_insert(what, ev);
542 #endif
543 }
544
545 /*
546 * Add a cfdriver to the system.
547 */
548 int
549 config_cfdriver_attach(struct cfdriver *cd)
550 {
551 struct cfdriver *lcd;
552
553 /* Make sure this driver isn't already in the system. */
554 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
555 if (STREQ(lcd->cd_name, cd->cd_name))
556 return EEXIST;
557 }
558
559 LIST_INIT(&cd->cd_attach);
560 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
561
562 return 0;
563 }
564
565 /*
566 * Remove a cfdriver from the system.
567 */
568 int
569 config_cfdriver_detach(struct cfdriver *cd)
570 {
571 struct alldevs_foray af;
572 int i, rc = 0;
573
574 config_alldevs_enter(&af);
575 /* Make sure there are no active instances. */
576 for (i = 0; i < cd->cd_ndevs; i++) {
577 if (cd->cd_devs[i] != NULL) {
578 rc = EBUSY;
579 break;
580 }
581 }
582 config_alldevs_exit(&af);
583
584 if (rc != 0)
585 return rc;
586
587 /* ...and no attachments loaded. */
588 if (LIST_EMPTY(&cd->cd_attach) == 0)
589 return EBUSY;
590
591 LIST_REMOVE(cd, cd_list);
592
593 KASSERT(cd->cd_devs == NULL);
594
595 return 0;
596 }
597
598 /*
599 * Look up a cfdriver by name.
600 */
601 struct cfdriver *
602 config_cfdriver_lookup(const char *name)
603 {
604 struct cfdriver *cd;
605
606 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
607 if (STREQ(cd->cd_name, name))
608 return cd;
609 }
610
611 return NULL;
612 }
613
614 /*
615 * Add a cfattach to the specified driver.
616 */
617 int
618 config_cfattach_attach(const char *driver, struct cfattach *ca)
619 {
620 struct cfattach *lca;
621 struct cfdriver *cd;
622
623 cd = config_cfdriver_lookup(driver);
624 if (cd == NULL)
625 return ESRCH;
626
627 /* Make sure this attachment isn't already on this driver. */
628 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
629 if (STREQ(lca->ca_name, ca->ca_name))
630 return EEXIST;
631 }
632
633 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
634
635 return 0;
636 }
637
638 /*
639 * Remove a cfattach from the specified driver.
640 */
641 int
642 config_cfattach_detach(const char *driver, struct cfattach *ca)
643 {
644 struct alldevs_foray af;
645 struct cfdriver *cd;
646 device_t dev;
647 int i, rc = 0;
648
649 cd = config_cfdriver_lookup(driver);
650 if (cd == NULL)
651 return ESRCH;
652
653 config_alldevs_enter(&af);
654 /* Make sure there are no active instances. */
655 for (i = 0; i < cd->cd_ndevs; i++) {
656 if ((dev = cd->cd_devs[i]) == NULL)
657 continue;
658 if (dev->dv_cfattach == ca) {
659 rc = EBUSY;
660 break;
661 }
662 }
663 config_alldevs_exit(&af);
664
665 if (rc != 0)
666 return rc;
667
668 LIST_REMOVE(ca, ca_list);
669
670 return 0;
671 }
672
673 /*
674 * Look up a cfattach by name.
675 */
676 static struct cfattach *
677 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
678 {
679 struct cfattach *ca;
680
681 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
682 if (STREQ(ca->ca_name, atname))
683 return ca;
684 }
685
686 return NULL;
687 }
688
689 /*
690 * Look up a cfattach by driver/attachment name.
691 */
692 struct cfattach *
693 config_cfattach_lookup(const char *name, const char *atname)
694 {
695 struct cfdriver *cd;
696
697 cd = config_cfdriver_lookup(name);
698 if (cd == NULL)
699 return NULL;
700
701 return config_cfattach_lookup_cd(cd, atname);
702 }
703
704 /*
705 * Apply the matching function and choose the best. This is used
706 * a few times and we want to keep the code small.
707 */
708 static void
709 mapply(struct matchinfo *m, cfdata_t cf)
710 {
711 int pri;
712
713 if (m->fn != NULL) {
714 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
715 } else {
716 pri = config_match(m->parent, cf, m->aux);
717 }
718 if (pri > m->pri) {
719 m->match = cf;
720 m->pri = pri;
721 }
722 }
723
724 int
725 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
726 {
727 const struct cfiattrdata *ci;
728 const struct cflocdesc *cl;
729 int nlocs, i;
730
731 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
732 KASSERT(ci);
733 nlocs = ci->ci_loclen;
734 KASSERT(!nlocs || locs);
735 for (i = 0; i < nlocs; i++) {
736 cl = &ci->ci_locdesc[i];
737 if (cl->cld_defaultstr != NULL &&
738 cf->cf_loc[i] == cl->cld_default)
739 continue;
740 if (cf->cf_loc[i] == locs[i])
741 continue;
742 return 0;
743 }
744
745 return config_match(parent, cf, aux);
746 }
747
748 /*
749 * Helper function: check whether the driver supports the interface attribute
750 * and return its descriptor structure.
751 */
752 static const struct cfiattrdata *
753 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
754 {
755 const struct cfiattrdata * const *cpp;
756
757 if (cd->cd_attrs == NULL)
758 return 0;
759
760 for (cpp = cd->cd_attrs; *cpp; cpp++) {
761 if (STREQ((*cpp)->ci_name, ia)) {
762 /* Match. */
763 return *cpp;
764 }
765 }
766 return 0;
767 }
768
769 /*
770 * Lookup an interface attribute description by name.
771 * If the driver is given, consider only its supported attributes.
772 */
773 const struct cfiattrdata *
774 cfiattr_lookup(const char *name, const struct cfdriver *cd)
775 {
776 const struct cfdriver *d;
777 const struct cfiattrdata *ia;
778
779 if (cd)
780 return cfdriver_get_iattr(cd, name);
781
782 LIST_FOREACH(d, &allcfdrivers, cd_list) {
783 ia = cfdriver_get_iattr(d, name);
784 if (ia)
785 return ia;
786 }
787 return 0;
788 }
789
790 /*
791 * Determine if `parent' is a potential parent for a device spec based
792 * on `cfp'.
793 */
794 static int
795 cfparent_match(const device_t parent, const struct cfparent *cfp)
796 {
797 struct cfdriver *pcd;
798
799 /* We don't match root nodes here. */
800 if (cfp == NULL)
801 return 0;
802
803 pcd = parent->dv_cfdriver;
804 KASSERT(pcd != NULL);
805
806 /*
807 * First, ensure this parent has the correct interface
808 * attribute.
809 */
810 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
811 return 0;
812
813 /*
814 * If no specific parent device instance was specified (i.e.
815 * we're attaching to the attribute only), we're done!
816 */
817 if (cfp->cfp_parent == NULL)
818 return 1;
819
820 /*
821 * Check the parent device's name.
822 */
823 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
824 return 0; /* not the same parent */
825
826 /*
827 * Make sure the unit number matches.
828 */
829 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
830 cfp->cfp_unit == parent->dv_unit)
831 return 1;
832
833 /* Unit numbers don't match. */
834 return 0;
835 }
836
837 /*
838 * Helper for config_cfdata_attach(): check all devices whether it could be
839 * parent any attachment in the config data table passed, and rescan.
840 */
841 static void
842 rescan_with_cfdata(const struct cfdata *cf)
843 {
844 device_t d;
845 const struct cfdata *cf1;
846 deviter_t di;
847
848
849 /*
850 * "alldevs" is likely longer than a modules's cfdata, so make it
851 * the outer loop.
852 */
853 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
854
855 if (!(d->dv_cfattach->ca_rescan))
856 continue;
857
858 for (cf1 = cf; cf1->cf_name; cf1++) {
859
860 if (!cfparent_match(d, cf1->cf_pspec))
861 continue;
862
863 (*d->dv_cfattach->ca_rescan)(d,
864 cfdata_ifattr(cf1), cf1->cf_loc);
865
866 config_deferred(d);
867 }
868 }
869 deviter_release(&di);
870 }
871
872 /*
873 * Attach a supplemental config data table and rescan potential
874 * parent devices if required.
875 */
876 int
877 config_cfdata_attach(cfdata_t cf, int scannow)
878 {
879 struct cftable *ct;
880
881 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
882 ct->ct_cfdata = cf;
883 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
884
885 if (scannow)
886 rescan_with_cfdata(cf);
887
888 return 0;
889 }
890
891 /*
892 * Helper for config_cfdata_detach: check whether a device is
893 * found through any attachment in the config data table.
894 */
895 static int
896 dev_in_cfdata(device_t d, cfdata_t cf)
897 {
898 const struct cfdata *cf1;
899
900 for (cf1 = cf; cf1->cf_name; cf1++)
901 if (d->dv_cfdata == cf1)
902 return 1;
903
904 return 0;
905 }
906
907 /*
908 * Detach a supplemental config data table. Detach all devices found
909 * through that table (and thus keeping references to it) before.
910 */
911 int
912 config_cfdata_detach(cfdata_t cf)
913 {
914 device_t d;
915 int error = 0;
916 struct cftable *ct;
917 deviter_t di;
918
919 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
920 d = deviter_next(&di)) {
921 if (!dev_in_cfdata(d, cf))
922 continue;
923 if ((error = config_detach(d, 0)) != 0)
924 break;
925 }
926 deviter_release(&di);
927 if (error) {
928 aprint_error_dev(d, "unable to detach instance\n");
929 return error;
930 }
931
932 TAILQ_FOREACH(ct, &allcftables, ct_list) {
933 if (ct->ct_cfdata == cf) {
934 TAILQ_REMOVE(&allcftables, ct, ct_list);
935 kmem_free(ct, sizeof(*ct));
936 return 0;
937 }
938 }
939
940 /* not found -- shouldn't happen */
941 return EINVAL;
942 }
943
944 /*
945 * Invoke the "match" routine for a cfdata entry on behalf of
946 * an external caller, usually a "submatch" routine.
947 */
948 int
949 config_match(device_t parent, cfdata_t cf, void *aux)
950 {
951 struct cfattach *ca;
952
953 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
954 if (ca == NULL) {
955 /* No attachment for this entry, oh well. */
956 return 0;
957 }
958
959 return (*ca->ca_match)(parent, cf, aux);
960 }
961
962 /*
963 * Iterate over all potential children of some device, calling the given
964 * function (default being the child's match function) for each one.
965 * Nonzero returns are matches; the highest value returned is considered
966 * the best match. Return the `found child' if we got a match, or NULL
967 * otherwise. The `aux' pointer is simply passed on through.
968 *
969 * Note that this function is designed so that it can be used to apply
970 * an arbitrary function to all potential children (its return value
971 * can be ignored).
972 */
973 cfdata_t
974 config_search_loc(cfsubmatch_t fn, device_t parent,
975 const char *ifattr, const int *locs, void *aux)
976 {
977 struct cftable *ct;
978 cfdata_t cf;
979 struct matchinfo m;
980
981 KASSERT(config_initialized);
982 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
983
984 m.fn = fn;
985 m.parent = parent;
986 m.locs = locs;
987 m.aux = aux;
988 m.match = NULL;
989 m.pri = 0;
990
991 TAILQ_FOREACH(ct, &allcftables, ct_list) {
992 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
993
994 /* We don't match root nodes here. */
995 if (!cf->cf_pspec)
996 continue;
997
998 /*
999 * Skip cf if no longer eligible, otherwise scan
1000 * through parents for one matching `parent', and
1001 * try match function.
1002 */
1003 if (cf->cf_fstate == FSTATE_FOUND)
1004 continue;
1005 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1006 cf->cf_fstate == FSTATE_DSTAR)
1007 continue;
1008
1009 /*
1010 * If an interface attribute was specified,
1011 * consider only children which attach to
1012 * that attribute.
1013 */
1014 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1015 continue;
1016
1017 if (cfparent_match(parent, cf->cf_pspec))
1018 mapply(&m, cf);
1019 }
1020 }
1021 return m.match;
1022 }
1023
1024 cfdata_t
1025 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
1026 void *aux)
1027 {
1028
1029 return config_search_loc(fn, parent, ifattr, NULL, aux);
1030 }
1031
1032 /*
1033 * Find the given root device.
1034 * This is much like config_search, but there is no parent.
1035 * Don't bother with multiple cfdata tables; the root node
1036 * must always be in the initial table.
1037 */
1038 cfdata_t
1039 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1040 {
1041 cfdata_t cf;
1042 const short *p;
1043 struct matchinfo m;
1044
1045 m.fn = fn;
1046 m.parent = ROOT;
1047 m.aux = aux;
1048 m.match = NULL;
1049 m.pri = 0;
1050 m.locs = 0;
1051 /*
1052 * Look at root entries for matching name. We do not bother
1053 * with found-state here since only one root should ever be
1054 * searched (and it must be done first).
1055 */
1056 for (p = cfroots; *p >= 0; p++) {
1057 cf = &cfdata[*p];
1058 if (strcmp(cf->cf_name, rootname) == 0)
1059 mapply(&m, cf);
1060 }
1061 return m.match;
1062 }
1063
1064 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1065
1066 /*
1067 * The given `aux' argument describes a device that has been found
1068 * on the given parent, but not necessarily configured. Locate the
1069 * configuration data for that device (using the submatch function
1070 * provided, or using candidates' cd_match configuration driver
1071 * functions) and attach it, and return its device_t. If the device was
1072 * not configured, call the given `print' function and return NULL.
1073 */
1074 device_t
1075 config_found_sm_loc(device_t parent,
1076 const char *ifattr, const int *locs, void *aux,
1077 cfprint_t print, cfsubmatch_t submatch)
1078 {
1079 cfdata_t cf;
1080
1081 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1082 return(config_attach_loc(parent, cf, locs, aux, print));
1083 if (print) {
1084 if (config_do_twiddle && cold)
1085 twiddle();
1086 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1087 }
1088
1089 /*
1090 * This has the effect of mixing in a single timestamp to the
1091 * entropy pool. Experiments indicate the estimator will almost
1092 * always attribute one bit of entropy to this sample; analysis
1093 * of device attach/detach timestamps on FreeBSD indicates 4
1094 * bits of entropy/sample so this seems appropriately conservative.
1095 */
1096 rnd_add_uint32(&rnd_autoconf_source, 0);
1097 return NULL;
1098 }
1099
1100 device_t
1101 config_found_ia(device_t parent, const char *ifattr, void *aux,
1102 cfprint_t print)
1103 {
1104
1105 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1106 }
1107
1108 device_t
1109 config_found(device_t parent, void *aux, cfprint_t print)
1110 {
1111
1112 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1113 }
1114
1115 /*
1116 * As above, but for root devices.
1117 */
1118 device_t
1119 config_rootfound(const char *rootname, void *aux)
1120 {
1121 cfdata_t cf;
1122
1123 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1124 return config_attach(ROOT, cf, aux, NULL);
1125 aprint_error("root device %s not configured\n", rootname);
1126 return NULL;
1127 }
1128
1129 /* just like sprintf(buf, "%d") except that it works from the end */
1130 static char *
1131 number(char *ep, int n)
1132 {
1133
1134 *--ep = 0;
1135 while (n >= 10) {
1136 *--ep = (n % 10) + '0';
1137 n /= 10;
1138 }
1139 *--ep = n + '0';
1140 return ep;
1141 }
1142
1143 /*
1144 * Expand the size of the cd_devs array if necessary.
1145 *
1146 * The caller must hold alldevs_mtx. config_makeroom() may release and
1147 * re-acquire alldevs_mtx, so callers should re-check conditions such
1148 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1149 * returns.
1150 */
1151 static void
1152 config_makeroom(int n, struct cfdriver *cd)
1153 {
1154 int ondevs, nndevs;
1155 device_t *osp, *nsp;
1156
1157 alldevs_nwrite++;
1158
1159 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1160 ;
1161
1162 while (n >= cd->cd_ndevs) {
1163 /*
1164 * Need to expand the array.
1165 */
1166 ondevs = cd->cd_ndevs;
1167 osp = cd->cd_devs;
1168
1169 /* Release alldevs_mtx around allocation, which may
1170 * sleep.
1171 */
1172 mutex_exit(&alldevs_mtx);
1173 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1174 if (nsp == NULL)
1175 panic("%s: could not expand cd_devs", __func__);
1176 mutex_enter(&alldevs_mtx);
1177
1178 /* If another thread moved the array while we did
1179 * not hold alldevs_mtx, try again.
1180 */
1181 if (cd->cd_devs != osp) {
1182 mutex_exit(&alldevs_mtx);
1183 kmem_free(nsp, sizeof(device_t[nndevs]));
1184 mutex_enter(&alldevs_mtx);
1185 continue;
1186 }
1187
1188 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1189 if (ondevs != 0)
1190 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1191
1192 cd->cd_ndevs = nndevs;
1193 cd->cd_devs = nsp;
1194 if (ondevs != 0) {
1195 mutex_exit(&alldevs_mtx);
1196 kmem_free(osp, sizeof(device_t[ondevs]));
1197 mutex_enter(&alldevs_mtx);
1198 }
1199 }
1200 alldevs_nwrite--;
1201 }
1202
1203 /*
1204 * Put dev into the devices list.
1205 */
1206 static void
1207 config_devlink(device_t dev)
1208 {
1209 int s;
1210
1211 s = config_alldevs_lock();
1212
1213 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1214
1215 dev->dv_add_gen = alldevs_gen;
1216 /* It is safe to add a device to the tail of the list while
1217 * readers and writers are in the list.
1218 */
1219 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1220 config_alldevs_unlock(s);
1221 }
1222
1223 static void
1224 config_devfree(device_t dev)
1225 {
1226 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1227
1228 if (dev->dv_cfattach->ca_devsize > 0)
1229 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1230 if (priv)
1231 kmem_free(dev, sizeof(*dev));
1232 }
1233
1234 /*
1235 * Caller must hold alldevs_mtx.
1236 */
1237 static void
1238 config_devunlink(device_t dev, struct devicelist *garbage)
1239 {
1240 struct device_garbage *dg = &dev->dv_garbage;
1241 cfdriver_t cd = device_cfdriver(dev);
1242 int i;
1243
1244 KASSERT(mutex_owned(&alldevs_mtx));
1245
1246 /* Unlink from device list. Link to garbage list. */
1247 TAILQ_REMOVE(&alldevs, dev, dv_list);
1248 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1249
1250 /* Remove from cfdriver's array. */
1251 cd->cd_devs[dev->dv_unit] = NULL;
1252
1253 /*
1254 * If the device now has no units in use, unlink its softc array.
1255 */
1256 for (i = 0; i < cd->cd_ndevs; i++) {
1257 if (cd->cd_devs[i] != NULL)
1258 break;
1259 }
1260 /* Nothing found. Unlink, now. Deallocate, later. */
1261 if (i == cd->cd_ndevs) {
1262 dg->dg_ndevs = cd->cd_ndevs;
1263 dg->dg_devs = cd->cd_devs;
1264 cd->cd_devs = NULL;
1265 cd->cd_ndevs = 0;
1266 }
1267 }
1268
1269 static void
1270 config_devdelete(device_t dev)
1271 {
1272 struct device_garbage *dg = &dev->dv_garbage;
1273 device_lock_t dvl = device_getlock(dev);
1274
1275 if (dg->dg_devs != NULL)
1276 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1277
1278 cv_destroy(&dvl->dvl_cv);
1279 mutex_destroy(&dvl->dvl_mtx);
1280
1281 KASSERT(dev->dv_properties != NULL);
1282 prop_object_release(dev->dv_properties);
1283
1284 if (dev->dv_activity_handlers)
1285 panic("%s with registered handlers", __func__);
1286
1287 if (dev->dv_locators) {
1288 size_t amount = *--dev->dv_locators;
1289 kmem_free(dev->dv_locators, amount);
1290 }
1291
1292 config_devfree(dev);
1293 }
1294
1295 static int
1296 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1297 {
1298 int unit;
1299
1300 if (cf->cf_fstate == FSTATE_STAR) {
1301 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1302 if (cd->cd_devs[unit] == NULL)
1303 break;
1304 /*
1305 * unit is now the unit of the first NULL device pointer,
1306 * or max(cd->cd_ndevs,cf->cf_unit).
1307 */
1308 } else {
1309 unit = cf->cf_unit;
1310 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1311 unit = -1;
1312 }
1313 return unit;
1314 }
1315
1316 static int
1317 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1318 {
1319 struct alldevs_foray af;
1320 int unit;
1321
1322 config_alldevs_enter(&af);
1323 for (;;) {
1324 unit = config_unit_nextfree(cd, cf);
1325 if (unit == -1)
1326 break;
1327 if (unit < cd->cd_ndevs) {
1328 cd->cd_devs[unit] = dev;
1329 dev->dv_unit = unit;
1330 break;
1331 }
1332 config_makeroom(unit, cd);
1333 }
1334 config_alldevs_exit(&af);
1335
1336 return unit;
1337 }
1338
1339 static device_t
1340 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1341 {
1342 cfdriver_t cd;
1343 cfattach_t ca;
1344 size_t lname, lunit;
1345 const char *xunit;
1346 int myunit;
1347 char num[10];
1348 device_t dev;
1349 void *dev_private;
1350 const struct cfiattrdata *ia;
1351 device_lock_t dvl;
1352
1353 cd = config_cfdriver_lookup(cf->cf_name);
1354 if (cd == NULL)
1355 return NULL;
1356
1357 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1358 if (ca == NULL)
1359 return NULL;
1360
1361 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1362 ca->ca_devsize < sizeof(struct device))
1363 panic("config_devalloc: %s (%zu < %zu)", cf->cf_atname,
1364 ca->ca_devsize, sizeof(struct device));
1365
1366 /* get memory for all device vars */
1367 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
1368 if (ca->ca_devsize > 0) {
1369 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1370 if (dev_private == NULL)
1371 panic("config_devalloc: memory allocation for device softc failed");
1372 } else {
1373 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1374 dev_private = NULL;
1375 }
1376
1377 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1378 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1379 } else {
1380 dev = dev_private;
1381 #ifdef DIAGNOSTIC
1382 printf("%s has not been converted to device_t\n", cd->cd_name);
1383 #endif
1384 }
1385 if (dev == NULL)
1386 panic("config_devalloc: memory allocation for device_t failed");
1387
1388 dev->dv_class = cd->cd_class;
1389 dev->dv_cfdata = cf;
1390 dev->dv_cfdriver = cd;
1391 dev->dv_cfattach = ca;
1392 dev->dv_activity_count = 0;
1393 dev->dv_activity_handlers = NULL;
1394 dev->dv_private = dev_private;
1395 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1396
1397 myunit = config_unit_alloc(dev, cd, cf);
1398 if (myunit == -1) {
1399 config_devfree(dev);
1400 return NULL;
1401 }
1402
1403 /* compute length of name and decimal expansion of unit number */
1404 lname = strlen(cd->cd_name);
1405 xunit = number(&num[sizeof(num)], myunit);
1406 lunit = &num[sizeof(num)] - xunit;
1407 if (lname + lunit > sizeof(dev->dv_xname))
1408 panic("config_devalloc: device name too long");
1409
1410 dvl = device_getlock(dev);
1411
1412 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1413 cv_init(&dvl->dvl_cv, "pmfsusp");
1414
1415 memcpy(dev->dv_xname, cd->cd_name, lname);
1416 memcpy(dev->dv_xname + lname, xunit, lunit);
1417 dev->dv_parent = parent;
1418 if (parent != NULL)
1419 dev->dv_depth = parent->dv_depth + 1;
1420 else
1421 dev->dv_depth = 0;
1422 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1423 if (locs) {
1424 KASSERT(parent); /* no locators at root */
1425 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1426 dev->dv_locators =
1427 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1428 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1429 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1430 }
1431 dev->dv_properties = prop_dictionary_create();
1432 KASSERT(dev->dv_properties != NULL);
1433
1434 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1435 "device-driver", dev->dv_cfdriver->cd_name);
1436 prop_dictionary_set_uint16(dev->dv_properties,
1437 "device-unit", dev->dv_unit);
1438
1439 if (dev->dv_cfdriver->cd_attrs != NULL)
1440 config_add_attrib_dict(dev);
1441
1442 return dev;
1443 }
1444
1445 /*
1446 * Create an array of device attach attributes and add it
1447 * to the device's dv_properties dictionary.
1448 *
1449 * <key>interface-attributes</key>
1450 * <array>
1451 * <dict>
1452 * <key>attribute-name</key>
1453 * <string>foo</string>
1454 * <key>locators</key>
1455 * <array>
1456 * <dict>
1457 * <key>loc-name</key>
1458 * <string>foo-loc1</string>
1459 * </dict>
1460 * <dict>
1461 * <key>loc-name</key>
1462 * <string>foo-loc2</string>
1463 * <key>default</key>
1464 * <string>foo-loc2-default</string>
1465 * </dict>
1466 * ...
1467 * </array>
1468 * </dict>
1469 * ...
1470 * </array>
1471 */
1472
1473 static void
1474 config_add_attrib_dict(device_t dev)
1475 {
1476 int i, j;
1477 const struct cfiattrdata *ci;
1478 prop_dictionary_t attr_dict, loc_dict;
1479 prop_array_t attr_array, loc_array;
1480
1481 if ((attr_array = prop_array_create()) == NULL)
1482 return;
1483
1484 for (i = 0; ; i++) {
1485 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1486 break;
1487 if ((attr_dict = prop_dictionary_create()) == NULL)
1488 break;
1489 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1490 ci->ci_name);
1491
1492 /* Create an array of the locator names and defaults */
1493
1494 if (ci->ci_loclen != 0 &&
1495 (loc_array = prop_array_create()) != NULL) {
1496 for (j = 0; j < ci->ci_loclen; j++) {
1497 loc_dict = prop_dictionary_create();
1498 if (loc_dict == NULL)
1499 continue;
1500 prop_dictionary_set_cstring_nocopy(loc_dict,
1501 "loc-name", ci->ci_locdesc[j].cld_name);
1502 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1503 prop_dictionary_set_cstring_nocopy(
1504 loc_dict, "default",
1505 ci->ci_locdesc[j].cld_defaultstr);
1506 prop_array_set(loc_array, j, loc_dict);
1507 prop_object_release(loc_dict);
1508 }
1509 prop_dictionary_set_and_rel(attr_dict, "locators",
1510 loc_array);
1511 }
1512 prop_array_add(attr_array, attr_dict);
1513 prop_object_release(attr_dict);
1514 }
1515 if (i == 0)
1516 prop_object_release(attr_array);
1517 else
1518 prop_dictionary_set_and_rel(dev->dv_properties,
1519 "interface-attributes", attr_array);
1520
1521 return;
1522 }
1523
1524 /*
1525 * Attach a found device.
1526 */
1527 device_t
1528 config_attach_loc(device_t parent, cfdata_t cf,
1529 const int *locs, void *aux, cfprint_t print)
1530 {
1531 device_t dev;
1532 struct cftable *ct;
1533 const char *drvname;
1534
1535 dev = config_devalloc(parent, cf, locs);
1536 if (!dev)
1537 panic("config_attach: allocation of device softc failed");
1538
1539 /* XXX redundant - see below? */
1540 if (cf->cf_fstate != FSTATE_STAR) {
1541 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1542 cf->cf_fstate = FSTATE_FOUND;
1543 }
1544
1545 config_devlink(dev);
1546
1547 if (config_do_twiddle && cold)
1548 twiddle();
1549 else
1550 aprint_naive("Found ");
1551 /*
1552 * We want the next two printfs for normal, verbose, and quiet,
1553 * but not silent (in which case, we're twiddling, instead).
1554 */
1555 if (parent == ROOT) {
1556 aprint_naive("%s (root)", device_xname(dev));
1557 aprint_normal("%s (root)", device_xname(dev));
1558 } else {
1559 aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
1560 aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
1561 if (print)
1562 (void) (*print)(aux, NULL);
1563 }
1564
1565 /*
1566 * Before attaching, clobber any unfound devices that are
1567 * otherwise identical.
1568 * XXX code above is redundant?
1569 */
1570 drvname = dev->dv_cfdriver->cd_name;
1571 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1572 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1573 if (STREQ(cf->cf_name, drvname) &&
1574 cf->cf_unit == dev->dv_unit) {
1575 if (cf->cf_fstate == FSTATE_NOTFOUND)
1576 cf->cf_fstate = FSTATE_FOUND;
1577 }
1578 }
1579 }
1580 device_register(dev, aux);
1581
1582 /* Let userland know */
1583 devmon_report_device(dev, true);
1584
1585 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1586
1587 if (!device_pmf_is_registered(dev))
1588 aprint_debug_dev(dev, "WARNING: power management not supported\n");
1589
1590 config_process_deferred(&deferred_config_queue, dev);
1591
1592 device_register_post_config(dev, aux);
1593 return dev;
1594 }
1595
1596 device_t
1597 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1598 {
1599
1600 return config_attach_loc(parent, cf, NULL, aux, print);
1601 }
1602
1603 /*
1604 * As above, but for pseudo-devices. Pseudo-devices attached in this
1605 * way are silently inserted into the device tree, and their children
1606 * attached.
1607 *
1608 * Note that because pseudo-devices are attached silently, any information
1609 * the attach routine wishes to print should be prefixed with the device
1610 * name by the attach routine.
1611 */
1612 device_t
1613 config_attach_pseudo(cfdata_t cf)
1614 {
1615 device_t dev;
1616
1617 dev = config_devalloc(ROOT, cf, NULL);
1618 if (!dev)
1619 return NULL;
1620
1621 /* XXX mark busy in cfdata */
1622
1623 if (cf->cf_fstate != FSTATE_STAR) {
1624 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1625 cf->cf_fstate = FSTATE_FOUND;
1626 }
1627
1628 config_devlink(dev);
1629
1630 #if 0 /* XXXJRT not yet */
1631 device_register(dev, NULL); /* like a root node */
1632 #endif
1633
1634 /* Let userland know */
1635 devmon_report_device(dev, true);
1636
1637 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1638
1639 config_process_deferred(&deferred_config_queue, dev);
1640 return dev;
1641 }
1642
1643 /*
1644 * Caller must hold alldevs_mtx.
1645 */
1646 static void
1647 config_collect_garbage(struct devicelist *garbage)
1648 {
1649 device_t dv;
1650
1651 KASSERT(!cpu_intr_p());
1652 KASSERT(!cpu_softintr_p());
1653 KASSERT(mutex_owned(&alldevs_mtx));
1654
1655 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1656 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1657 if (dv->dv_del_gen != 0)
1658 break;
1659 }
1660 if (dv == NULL) {
1661 alldevs_garbage = false;
1662 break;
1663 }
1664 config_devunlink(dv, garbage);
1665 }
1666 KASSERT(mutex_owned(&alldevs_mtx));
1667 }
1668
1669 static void
1670 config_dump_garbage(struct devicelist *garbage)
1671 {
1672 device_t dv;
1673
1674 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1675 TAILQ_REMOVE(garbage, dv, dv_list);
1676 config_devdelete(dv);
1677 }
1678 }
1679
1680 /*
1681 * Detach a device. Optionally forced (e.g. because of hardware
1682 * removal) and quiet. Returns zero if successful, non-zero
1683 * (an error code) otherwise.
1684 *
1685 * Note that this code wants to be run from a process context, so
1686 * that the detach can sleep to allow processes which have a device
1687 * open to run and unwind their stacks.
1688 */
1689 int
1690 config_detach(device_t dev, int flags)
1691 {
1692 struct alldevs_foray af;
1693 struct cftable *ct;
1694 cfdata_t cf;
1695 const struct cfattach *ca;
1696 struct cfdriver *cd;
1697 #ifdef DIAGNOSTIC
1698 device_t d;
1699 #endif
1700 int rv = 0, s;
1701
1702 #ifdef DIAGNOSTIC
1703 cf = dev->dv_cfdata;
1704 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1705 cf->cf_fstate != FSTATE_STAR)
1706 panic("config_detach: %s: bad device fstate %d",
1707 device_xname(dev), cf ? cf->cf_fstate : -1);
1708 #endif
1709 cd = dev->dv_cfdriver;
1710 KASSERT(cd != NULL);
1711
1712 ca = dev->dv_cfattach;
1713 KASSERT(ca != NULL);
1714
1715 s = config_alldevs_lock();
1716 if (dev->dv_del_gen != 0) {
1717 config_alldevs_unlock(s);
1718 #ifdef DIAGNOSTIC
1719 printf("%s: %s is already detached\n", __func__,
1720 device_xname(dev));
1721 #endif /* DIAGNOSTIC */
1722 return ENOENT;
1723 }
1724 alldevs_nwrite++;
1725 config_alldevs_unlock(s);
1726
1727 if (!detachall &&
1728 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1729 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1730 rv = EOPNOTSUPP;
1731 } else if (ca->ca_detach != NULL) {
1732 rv = (*ca->ca_detach)(dev, flags);
1733 } else
1734 rv = EOPNOTSUPP;
1735
1736 /*
1737 * If it was not possible to detach the device, then we either
1738 * panic() (for the forced but failed case), or return an error.
1739 *
1740 * If it was possible to detach the device, ensure that the
1741 * device is deactivated.
1742 */
1743 if (rv == 0)
1744 dev->dv_flags &= ~DVF_ACTIVE;
1745 else if ((flags & DETACH_FORCE) == 0)
1746 goto out;
1747 else {
1748 panic("config_detach: forced detach of %s failed (%d)",
1749 device_xname(dev), rv);
1750 }
1751
1752 /*
1753 * The device has now been successfully detached.
1754 */
1755
1756 /* Let userland know */
1757 devmon_report_device(dev, false);
1758
1759 #ifdef DIAGNOSTIC
1760 /*
1761 * Sanity: If you're successfully detached, you should have no
1762 * children. (Note that because children must be attached
1763 * after parents, we only need to search the latter part of
1764 * the list.)
1765 */
1766 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1767 d = TAILQ_NEXT(d, dv_list)) {
1768 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1769 printf("config_detach: detached device %s"
1770 " has children %s\n", device_xname(dev), device_xname(d));
1771 panic("config_detach");
1772 }
1773 }
1774 #endif
1775
1776 /* notify the parent that the child is gone */
1777 if (dev->dv_parent) {
1778 device_t p = dev->dv_parent;
1779 if (p->dv_cfattach->ca_childdetached)
1780 (*p->dv_cfattach->ca_childdetached)(p, dev);
1781 }
1782
1783 /*
1784 * Mark cfdata to show that the unit can be reused, if possible.
1785 */
1786 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1787 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1788 if (STREQ(cf->cf_name, cd->cd_name)) {
1789 if (cf->cf_fstate == FSTATE_FOUND &&
1790 cf->cf_unit == dev->dv_unit)
1791 cf->cf_fstate = FSTATE_NOTFOUND;
1792 }
1793 }
1794 }
1795
1796 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1797 aprint_normal_dev(dev, "detached\n");
1798
1799 out:
1800 config_alldevs_enter(&af);
1801 KASSERT(alldevs_nwrite != 0);
1802 --alldevs_nwrite;
1803 if (rv == 0 && dev->dv_del_gen == 0) {
1804 if (alldevs_nwrite == 0 && alldevs_nread == 0)
1805 config_devunlink(dev, &af.af_garbage);
1806 else {
1807 dev->dv_del_gen = alldevs_gen;
1808 alldevs_garbage = true;
1809 }
1810 }
1811 config_alldevs_exit(&af);
1812
1813 return rv;
1814 }
1815
1816 int
1817 config_detach_children(device_t parent, int flags)
1818 {
1819 device_t dv;
1820 deviter_t di;
1821 int error = 0;
1822
1823 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1824 dv = deviter_next(&di)) {
1825 if (device_parent(dv) != parent)
1826 continue;
1827 if ((error = config_detach(dv, flags)) != 0)
1828 break;
1829 }
1830 deviter_release(&di);
1831 return error;
1832 }
1833
1834 device_t
1835 shutdown_first(struct shutdown_state *s)
1836 {
1837 if (!s->initialized) {
1838 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1839 s->initialized = true;
1840 }
1841 return shutdown_next(s);
1842 }
1843
1844 device_t
1845 shutdown_next(struct shutdown_state *s)
1846 {
1847 device_t dv;
1848
1849 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1850 ;
1851
1852 if (dv == NULL)
1853 s->initialized = false;
1854
1855 return dv;
1856 }
1857
1858 bool
1859 config_detach_all(int how)
1860 {
1861 static struct shutdown_state s;
1862 device_t curdev;
1863 bool progress = false;
1864
1865 if ((how & RB_NOSYNC) != 0)
1866 return false;
1867
1868 for (curdev = shutdown_first(&s); curdev != NULL;
1869 curdev = shutdown_next(&s)) {
1870 aprint_debug(" detaching %s, ", device_xname(curdev));
1871 if (config_detach(curdev, DETACH_SHUTDOWN) == 0) {
1872 progress = true;
1873 aprint_debug("success.");
1874 } else
1875 aprint_debug("failed.");
1876 }
1877 return progress;
1878 }
1879
1880 static bool
1881 device_is_ancestor_of(device_t ancestor, device_t descendant)
1882 {
1883 device_t dv;
1884
1885 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1886 if (device_parent(dv) == ancestor)
1887 return true;
1888 }
1889 return false;
1890 }
1891
1892 int
1893 config_deactivate(device_t dev)
1894 {
1895 deviter_t di;
1896 const struct cfattach *ca;
1897 device_t descendant;
1898 int s, rv = 0, oflags;
1899
1900 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1901 descendant != NULL;
1902 descendant = deviter_next(&di)) {
1903 if (dev != descendant &&
1904 !device_is_ancestor_of(dev, descendant))
1905 continue;
1906
1907 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1908 continue;
1909
1910 ca = descendant->dv_cfattach;
1911 oflags = descendant->dv_flags;
1912
1913 descendant->dv_flags &= ~DVF_ACTIVE;
1914 if (ca->ca_activate == NULL)
1915 continue;
1916 s = splhigh();
1917 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1918 splx(s);
1919 if (rv != 0)
1920 descendant->dv_flags = oflags;
1921 }
1922 deviter_release(&di);
1923 return rv;
1924 }
1925
1926 /*
1927 * Defer the configuration of the specified device until all
1928 * of its parent's devices have been attached.
1929 */
1930 void
1931 config_defer(device_t dev, void (*func)(device_t))
1932 {
1933 struct deferred_config *dc;
1934
1935 if (dev->dv_parent == NULL)
1936 panic("config_defer: can't defer config of a root device");
1937
1938 #ifdef DIAGNOSTIC
1939 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1940 if (dc->dc_dev == dev)
1941 panic("config_defer: deferred twice");
1942 }
1943 #endif
1944
1945 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1946 if (dc == NULL)
1947 panic("config_defer: unable to allocate callback");
1948
1949 dc->dc_dev = dev;
1950 dc->dc_func = func;
1951 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1952 config_pending_incr(dev);
1953 }
1954
1955 /*
1956 * Defer some autoconfiguration for a device until after interrupts
1957 * are enabled.
1958 */
1959 void
1960 config_interrupts(device_t dev, void (*func)(device_t))
1961 {
1962 struct deferred_config *dc;
1963
1964 /*
1965 * If interrupts are enabled, callback now.
1966 */
1967 if (cold == 0) {
1968 (*func)(dev);
1969 return;
1970 }
1971
1972 #ifdef DIAGNOSTIC
1973 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1974 if (dc->dc_dev == dev)
1975 panic("config_interrupts: deferred twice");
1976 }
1977 #endif
1978
1979 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1980 if (dc == NULL)
1981 panic("config_interrupts: unable to allocate callback");
1982
1983 dc->dc_dev = dev;
1984 dc->dc_func = func;
1985 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
1986 config_pending_incr(dev);
1987 }
1988
1989 /*
1990 * Defer some autoconfiguration for a device until after root file system
1991 * is mounted (to load firmware etc).
1992 */
1993 void
1994 config_mountroot(device_t dev, void (*func)(device_t))
1995 {
1996 struct deferred_config *dc;
1997
1998 /*
1999 * If root file system is mounted, callback now.
2000 */
2001 if (root_is_mounted) {
2002 (*func)(dev);
2003 return;
2004 }
2005
2006 #ifdef DIAGNOSTIC
2007 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
2008 if (dc->dc_dev == dev)
2009 panic("%s: deferred twice", __func__);
2010 }
2011 #endif
2012
2013 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2014 if (dc == NULL)
2015 panic("%s: unable to allocate callback", __func__);
2016
2017 dc->dc_dev = dev;
2018 dc->dc_func = func;
2019 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2020 }
2021
2022 /*
2023 * Process a deferred configuration queue.
2024 */
2025 static void
2026 config_process_deferred(struct deferred_config_head *queue,
2027 device_t parent)
2028 {
2029 struct deferred_config *dc, *ndc;
2030
2031 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
2032 ndc = TAILQ_NEXT(dc, dc_queue);
2033 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2034 TAILQ_REMOVE(queue, dc, dc_queue);
2035 (*dc->dc_func)(dc->dc_dev);
2036 config_pending_decr(dc->dc_dev);
2037 kmem_free(dc, sizeof(*dc));
2038 }
2039 }
2040 }
2041
2042 /*
2043 * Manipulate the config_pending semaphore.
2044 */
2045 void
2046 config_pending_incr(device_t dev)
2047 {
2048
2049 mutex_enter(&config_misc_lock);
2050 config_pending++;
2051 #ifdef DEBUG_AUTOCONF
2052 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2053 #endif
2054 mutex_exit(&config_misc_lock);
2055 }
2056
2057 void
2058 config_pending_decr(device_t dev)
2059 {
2060
2061 #ifdef DIAGNOSTIC
2062 if (config_pending == 0)
2063 panic("config_pending_decr: config_pending == 0");
2064 #endif
2065 mutex_enter(&config_misc_lock);
2066 config_pending--;
2067 #ifdef DEBUG_AUTOCONF
2068 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2069 #endif
2070 if (config_pending == 0)
2071 cv_broadcast(&config_misc_cv);
2072 mutex_exit(&config_misc_lock);
2073 }
2074
2075 /*
2076 * Register a "finalization" routine. Finalization routines are
2077 * called iteratively once all real devices have been found during
2078 * autoconfiguration, for as long as any one finalizer has done
2079 * any work.
2080 */
2081 int
2082 config_finalize_register(device_t dev, int (*fn)(device_t))
2083 {
2084 struct finalize_hook *f;
2085
2086 /*
2087 * If finalization has already been done, invoke the
2088 * callback function now.
2089 */
2090 if (config_finalize_done) {
2091 while ((*fn)(dev) != 0)
2092 /* loop */ ;
2093 }
2094
2095 /* Ensure this isn't already on the list. */
2096 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2097 if (f->f_func == fn && f->f_dev == dev)
2098 return EEXIST;
2099 }
2100
2101 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2102 f->f_func = fn;
2103 f->f_dev = dev;
2104 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2105
2106 return 0;
2107 }
2108
2109 void
2110 config_finalize(void)
2111 {
2112 struct finalize_hook *f;
2113 struct pdevinit *pdev;
2114 extern struct pdevinit pdevinit[];
2115 int errcnt, rv;
2116
2117 /*
2118 * Now that device driver threads have been created, wait for
2119 * them to finish any deferred autoconfiguration.
2120 */
2121 mutex_enter(&config_misc_lock);
2122 while (config_pending != 0)
2123 cv_wait(&config_misc_cv, &config_misc_lock);
2124 mutex_exit(&config_misc_lock);
2125
2126 KERNEL_LOCK(1, NULL);
2127
2128 /* Attach pseudo-devices. */
2129 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2130 (*pdev->pdev_attach)(pdev->pdev_count);
2131
2132 /* Run the hooks until none of them does any work. */
2133 do {
2134 rv = 0;
2135 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2136 rv |= (*f->f_func)(f->f_dev);
2137 } while (rv != 0);
2138
2139 config_finalize_done = 1;
2140
2141 /* Now free all the hooks. */
2142 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2143 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2144 kmem_free(f, sizeof(*f));
2145 }
2146
2147 KERNEL_UNLOCK_ONE(NULL);
2148
2149 errcnt = aprint_get_error_count();
2150 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2151 (boothowto & AB_VERBOSE) == 0) {
2152 mutex_enter(&config_misc_lock);
2153 if (config_do_twiddle) {
2154 config_do_twiddle = 0;
2155 printf_nolog(" done.\n");
2156 }
2157 mutex_exit(&config_misc_lock);
2158 if (errcnt != 0) {
2159 printf("WARNING: %d error%s while detecting hardware; "
2160 "check system log.\n", errcnt,
2161 errcnt == 1 ? "" : "s");
2162 }
2163 }
2164 }
2165
2166 void
2167 config_twiddle_init(void)
2168 {
2169
2170 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2171 config_do_twiddle = 1;
2172 }
2173 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2174 }
2175
2176 void
2177 config_twiddle_fn(void *cookie)
2178 {
2179
2180 mutex_enter(&config_misc_lock);
2181 if (config_do_twiddle) {
2182 twiddle();
2183 callout_schedule(&config_twiddle_ch, mstohz(100));
2184 }
2185 mutex_exit(&config_misc_lock);
2186 }
2187
2188 static int
2189 config_alldevs_lock(void)
2190 {
2191 mutex_enter(&alldevs_mtx);
2192 return 0;
2193 }
2194
2195 static void
2196 config_alldevs_enter(struct alldevs_foray *af)
2197 {
2198 TAILQ_INIT(&af->af_garbage);
2199 af->af_s = config_alldevs_lock();
2200 config_collect_garbage(&af->af_garbage);
2201 }
2202
2203 static void
2204 config_alldevs_exit(struct alldevs_foray *af)
2205 {
2206 config_alldevs_unlock(af->af_s);
2207 config_dump_garbage(&af->af_garbage);
2208 }
2209
2210 /*ARGSUSED*/
2211 static void
2212 config_alldevs_unlock(int s)
2213 {
2214 mutex_exit(&alldevs_mtx);
2215 }
2216
2217 /*
2218 * device_lookup:
2219 *
2220 * Look up a device instance for a given driver.
2221 */
2222 device_t
2223 device_lookup(cfdriver_t cd, int unit)
2224 {
2225 device_t dv;
2226 int s;
2227
2228 s = config_alldevs_lock();
2229 KASSERT(mutex_owned(&alldevs_mtx));
2230 if (unit < 0 || unit >= cd->cd_ndevs)
2231 dv = NULL;
2232 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2233 dv = NULL;
2234 config_alldevs_unlock(s);
2235
2236 return dv;
2237 }
2238
2239 /*
2240 * device_lookup_private:
2241 *
2242 * Look up a softc instance for a given driver.
2243 */
2244 void *
2245 device_lookup_private(cfdriver_t cd, int unit)
2246 {
2247
2248 return device_private(device_lookup(cd, unit));
2249 }
2250
2251 /*
2252 * device_find_by_xname:
2253 *
2254 * Returns the device of the given name or NULL if it doesn't exist.
2255 */
2256 device_t
2257 device_find_by_xname(const char *name)
2258 {
2259 device_t dv;
2260 deviter_t di;
2261
2262 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2263 if (strcmp(device_xname(dv), name) == 0)
2264 break;
2265 }
2266 deviter_release(&di);
2267
2268 return dv;
2269 }
2270
2271 /*
2272 * device_find_by_driver_unit:
2273 *
2274 * Returns the device of the given driver name and unit or
2275 * NULL if it doesn't exist.
2276 */
2277 device_t
2278 device_find_by_driver_unit(const char *name, int unit)
2279 {
2280 struct cfdriver *cd;
2281
2282 if ((cd = config_cfdriver_lookup(name)) == NULL)
2283 return NULL;
2284 return device_lookup(cd, unit);
2285 }
2286
2287 /*
2288 * Power management related functions.
2289 */
2290
2291 bool
2292 device_pmf_is_registered(device_t dev)
2293 {
2294 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2295 }
2296
2297 bool
2298 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2299 {
2300 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2301 return true;
2302 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2303 return false;
2304 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2305 dev->dv_driver_suspend != NULL &&
2306 !(*dev->dv_driver_suspend)(dev, qual))
2307 return false;
2308
2309 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2310 return true;
2311 }
2312
2313 bool
2314 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2315 {
2316 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2317 return true;
2318 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2319 return false;
2320 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2321 dev->dv_driver_resume != NULL &&
2322 !(*dev->dv_driver_resume)(dev, qual))
2323 return false;
2324
2325 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2326 return true;
2327 }
2328
2329 bool
2330 device_pmf_driver_shutdown(device_t dev, int how)
2331 {
2332
2333 if (*dev->dv_driver_shutdown != NULL &&
2334 !(*dev->dv_driver_shutdown)(dev, how))
2335 return false;
2336 return true;
2337 }
2338
2339 bool
2340 device_pmf_driver_register(device_t dev,
2341 bool (*suspend)(device_t, const pmf_qual_t *),
2342 bool (*resume)(device_t, const pmf_qual_t *),
2343 bool (*shutdown)(device_t, int))
2344 {
2345 dev->dv_driver_suspend = suspend;
2346 dev->dv_driver_resume = resume;
2347 dev->dv_driver_shutdown = shutdown;
2348 dev->dv_flags |= DVF_POWER_HANDLERS;
2349 return true;
2350 }
2351
2352 static const char *
2353 curlwp_name(void)
2354 {
2355 if (curlwp->l_name != NULL)
2356 return curlwp->l_name;
2357 else
2358 return curlwp->l_proc->p_comm;
2359 }
2360
2361 void
2362 device_pmf_driver_deregister(device_t dev)
2363 {
2364 device_lock_t dvl = device_getlock(dev);
2365
2366 dev->dv_driver_suspend = NULL;
2367 dev->dv_driver_resume = NULL;
2368
2369 mutex_enter(&dvl->dvl_mtx);
2370 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2371 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2372 /* Wake a thread that waits for the lock. That
2373 * thread will fail to acquire the lock, and then
2374 * it will wake the next thread that waits for the
2375 * lock, or else it will wake us.
2376 */
2377 cv_signal(&dvl->dvl_cv);
2378 pmflock_debug(dev, __func__, __LINE__);
2379 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2380 pmflock_debug(dev, __func__, __LINE__);
2381 }
2382 mutex_exit(&dvl->dvl_mtx);
2383 }
2384
2385 bool
2386 device_pmf_driver_child_register(device_t dev)
2387 {
2388 device_t parent = device_parent(dev);
2389
2390 if (parent == NULL || parent->dv_driver_child_register == NULL)
2391 return true;
2392 return (*parent->dv_driver_child_register)(dev);
2393 }
2394
2395 void
2396 device_pmf_driver_set_child_register(device_t dev,
2397 bool (*child_register)(device_t))
2398 {
2399 dev->dv_driver_child_register = child_register;
2400 }
2401
2402 static void
2403 pmflock_debug(device_t dev, const char *func, int line)
2404 {
2405 device_lock_t dvl = device_getlock(dev);
2406
2407 aprint_debug_dev(dev, "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n",
2408 func, line, curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait,
2409 dev->dv_flags);
2410 }
2411
2412 static bool
2413 device_pmf_lock1(device_t dev)
2414 {
2415 device_lock_t dvl = device_getlock(dev);
2416
2417 while (device_pmf_is_registered(dev) &&
2418 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2419 dvl->dvl_nwait++;
2420 pmflock_debug(dev, __func__, __LINE__);
2421 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2422 pmflock_debug(dev, __func__, __LINE__);
2423 dvl->dvl_nwait--;
2424 }
2425 if (!device_pmf_is_registered(dev)) {
2426 pmflock_debug(dev, __func__, __LINE__);
2427 /* We could not acquire the lock, but some other thread may
2428 * wait for it, also. Wake that thread.
2429 */
2430 cv_signal(&dvl->dvl_cv);
2431 return false;
2432 }
2433 dvl->dvl_nlock++;
2434 dvl->dvl_holder = curlwp;
2435 pmflock_debug(dev, __func__, __LINE__);
2436 return true;
2437 }
2438
2439 bool
2440 device_pmf_lock(device_t dev)
2441 {
2442 bool rc;
2443 device_lock_t dvl = device_getlock(dev);
2444
2445 mutex_enter(&dvl->dvl_mtx);
2446 rc = device_pmf_lock1(dev);
2447 mutex_exit(&dvl->dvl_mtx);
2448
2449 return rc;
2450 }
2451
2452 void
2453 device_pmf_unlock(device_t dev)
2454 {
2455 device_lock_t dvl = device_getlock(dev);
2456
2457 KASSERT(dvl->dvl_nlock > 0);
2458 mutex_enter(&dvl->dvl_mtx);
2459 if (--dvl->dvl_nlock == 0)
2460 dvl->dvl_holder = NULL;
2461 cv_signal(&dvl->dvl_cv);
2462 pmflock_debug(dev, __func__, __LINE__);
2463 mutex_exit(&dvl->dvl_mtx);
2464 }
2465
2466 device_lock_t
2467 device_getlock(device_t dev)
2468 {
2469 return &dev->dv_lock;
2470 }
2471
2472 void *
2473 device_pmf_bus_private(device_t dev)
2474 {
2475 return dev->dv_bus_private;
2476 }
2477
2478 bool
2479 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2480 {
2481 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2482 return true;
2483 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2484 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2485 return false;
2486 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2487 dev->dv_bus_suspend != NULL &&
2488 !(*dev->dv_bus_suspend)(dev, qual))
2489 return false;
2490
2491 dev->dv_flags |= DVF_BUS_SUSPENDED;
2492 return true;
2493 }
2494
2495 bool
2496 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2497 {
2498 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2499 return true;
2500 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2501 dev->dv_bus_resume != NULL &&
2502 !(*dev->dv_bus_resume)(dev, qual))
2503 return false;
2504
2505 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2506 return true;
2507 }
2508
2509 bool
2510 device_pmf_bus_shutdown(device_t dev, int how)
2511 {
2512
2513 if (*dev->dv_bus_shutdown != NULL &&
2514 !(*dev->dv_bus_shutdown)(dev, how))
2515 return false;
2516 return true;
2517 }
2518
2519 void
2520 device_pmf_bus_register(device_t dev, void *priv,
2521 bool (*suspend)(device_t, const pmf_qual_t *),
2522 bool (*resume)(device_t, const pmf_qual_t *),
2523 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2524 {
2525 dev->dv_bus_private = priv;
2526 dev->dv_bus_resume = resume;
2527 dev->dv_bus_suspend = suspend;
2528 dev->dv_bus_shutdown = shutdown;
2529 dev->dv_bus_deregister = deregister;
2530 }
2531
2532 void
2533 device_pmf_bus_deregister(device_t dev)
2534 {
2535 if (dev->dv_bus_deregister == NULL)
2536 return;
2537 (*dev->dv_bus_deregister)(dev);
2538 dev->dv_bus_private = NULL;
2539 dev->dv_bus_suspend = NULL;
2540 dev->dv_bus_resume = NULL;
2541 dev->dv_bus_deregister = NULL;
2542 }
2543
2544 void *
2545 device_pmf_class_private(device_t dev)
2546 {
2547 return dev->dv_class_private;
2548 }
2549
2550 bool
2551 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2552 {
2553 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2554 return true;
2555 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2556 dev->dv_class_suspend != NULL &&
2557 !(*dev->dv_class_suspend)(dev, qual))
2558 return false;
2559
2560 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2561 return true;
2562 }
2563
2564 bool
2565 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2566 {
2567 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2568 return true;
2569 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2570 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2571 return false;
2572 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2573 dev->dv_class_resume != NULL &&
2574 !(*dev->dv_class_resume)(dev, qual))
2575 return false;
2576
2577 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2578 return true;
2579 }
2580
2581 void
2582 device_pmf_class_register(device_t dev, void *priv,
2583 bool (*suspend)(device_t, const pmf_qual_t *),
2584 bool (*resume)(device_t, const pmf_qual_t *),
2585 void (*deregister)(device_t))
2586 {
2587 dev->dv_class_private = priv;
2588 dev->dv_class_suspend = suspend;
2589 dev->dv_class_resume = resume;
2590 dev->dv_class_deregister = deregister;
2591 }
2592
2593 void
2594 device_pmf_class_deregister(device_t dev)
2595 {
2596 if (dev->dv_class_deregister == NULL)
2597 return;
2598 (*dev->dv_class_deregister)(dev);
2599 dev->dv_class_private = NULL;
2600 dev->dv_class_suspend = NULL;
2601 dev->dv_class_resume = NULL;
2602 dev->dv_class_deregister = NULL;
2603 }
2604
2605 bool
2606 device_active(device_t dev, devactive_t type)
2607 {
2608 size_t i;
2609
2610 if (dev->dv_activity_count == 0)
2611 return false;
2612
2613 for (i = 0; i < dev->dv_activity_count; ++i) {
2614 if (dev->dv_activity_handlers[i] == NULL)
2615 break;
2616 (*dev->dv_activity_handlers[i])(dev, type);
2617 }
2618
2619 return true;
2620 }
2621
2622 bool
2623 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2624 {
2625 void (**new_handlers)(device_t, devactive_t);
2626 void (**old_handlers)(device_t, devactive_t);
2627 size_t i, old_size, new_size;
2628 int s;
2629
2630 old_handlers = dev->dv_activity_handlers;
2631 old_size = dev->dv_activity_count;
2632
2633 for (i = 0; i < old_size; ++i) {
2634 KASSERT(old_handlers[i] != handler);
2635 if (old_handlers[i] == NULL) {
2636 old_handlers[i] = handler;
2637 return true;
2638 }
2639 }
2640
2641 new_size = old_size + 4;
2642 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2643
2644 memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
2645 new_handlers[old_size] = handler;
2646 memset(new_handlers + old_size + 1, 0,
2647 sizeof(int [new_size - (old_size+1)]));
2648
2649 s = splhigh();
2650 dev->dv_activity_count = new_size;
2651 dev->dv_activity_handlers = new_handlers;
2652 splx(s);
2653
2654 if (old_handlers != NULL)
2655 kmem_free(old_handlers, sizeof(void * [old_size]));
2656
2657 return true;
2658 }
2659
2660 void
2661 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2662 {
2663 void (**old_handlers)(device_t, devactive_t);
2664 size_t i, old_size;
2665 int s;
2666
2667 old_handlers = dev->dv_activity_handlers;
2668 old_size = dev->dv_activity_count;
2669
2670 for (i = 0; i < old_size; ++i) {
2671 if (old_handlers[i] == handler)
2672 break;
2673 if (old_handlers[i] == NULL)
2674 return; /* XXX panic? */
2675 }
2676
2677 if (i == old_size)
2678 return; /* XXX panic? */
2679
2680 for (; i < old_size - 1; ++i) {
2681 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2682 continue;
2683
2684 if (i == 0) {
2685 s = splhigh();
2686 dev->dv_activity_count = 0;
2687 dev->dv_activity_handlers = NULL;
2688 splx(s);
2689 kmem_free(old_handlers, sizeof(void *[old_size]));
2690 }
2691 return;
2692 }
2693 old_handlers[i] = NULL;
2694 }
2695
2696 /* Return true iff the device_t `dev' exists at generation `gen'. */
2697 static bool
2698 device_exists_at(device_t dv, devgen_t gen)
2699 {
2700 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2701 dv->dv_add_gen <= gen;
2702 }
2703
2704 static bool
2705 deviter_visits(const deviter_t *di, device_t dv)
2706 {
2707 return device_exists_at(dv, di->di_gen);
2708 }
2709
2710 /*
2711 * Device Iteration
2712 *
2713 * deviter_t: a device iterator. Holds state for a "walk" visiting
2714 * each device_t's in the device tree.
2715 *
2716 * deviter_init(di, flags): initialize the device iterator `di'
2717 * to "walk" the device tree. deviter_next(di) will return
2718 * the first device_t in the device tree, or NULL if there are
2719 * no devices.
2720 *
2721 * `flags' is one or more of DEVITER_F_RW, indicating that the
2722 * caller intends to modify the device tree by calling
2723 * config_detach(9) on devices in the order that the iterator
2724 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2725 * nearest the "root" of the device tree to be returned, first;
2726 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2727 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2728 * indicating both that deviter_init() should not respect any
2729 * locks on the device tree, and that deviter_next(di) may run
2730 * in more than one LWP before the walk has finished.
2731 *
2732 * Only one DEVITER_F_RW iterator may be in the device tree at
2733 * once.
2734 *
2735 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2736 *
2737 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2738 * DEVITER_F_LEAVES_FIRST are used in combination.
2739 *
2740 * deviter_first(di, flags): initialize the device iterator `di'
2741 * and return the first device_t in the device tree, or NULL
2742 * if there are no devices. The statement
2743 *
2744 * dv = deviter_first(di);
2745 *
2746 * is shorthand for
2747 *
2748 * deviter_init(di);
2749 * dv = deviter_next(di);
2750 *
2751 * deviter_next(di): return the next device_t in the device tree,
2752 * or NULL if there are no more devices. deviter_next(di)
2753 * is undefined if `di' was not initialized with deviter_init() or
2754 * deviter_first().
2755 *
2756 * deviter_release(di): stops iteration (subsequent calls to
2757 * deviter_next() will return NULL), releases any locks and
2758 * resources held by the device iterator.
2759 *
2760 * Device iteration does not return device_t's in any particular
2761 * order. An iterator will never return the same device_t twice.
2762 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2763 * is called repeatedly on the same `di', it will eventually return
2764 * NULL. It is ok to attach/detach devices during device iteration.
2765 */
2766 void
2767 deviter_init(deviter_t *di, deviter_flags_t flags)
2768 {
2769 device_t dv;
2770 int s;
2771
2772 memset(di, 0, sizeof(*di));
2773
2774 s = config_alldevs_lock();
2775 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2776 flags |= DEVITER_F_RW;
2777
2778 if ((flags & DEVITER_F_RW) != 0)
2779 alldevs_nwrite++;
2780 else
2781 alldevs_nread++;
2782 di->di_gen = alldevs_gen++;
2783 config_alldevs_unlock(s);
2784
2785 di->di_flags = flags;
2786
2787 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2788 case DEVITER_F_LEAVES_FIRST:
2789 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2790 if (!deviter_visits(di, dv))
2791 continue;
2792 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2793 }
2794 break;
2795 case DEVITER_F_ROOT_FIRST:
2796 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2797 if (!deviter_visits(di, dv))
2798 continue;
2799 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2800 }
2801 break;
2802 default:
2803 break;
2804 }
2805
2806 deviter_reinit(di);
2807 }
2808
2809 static void
2810 deviter_reinit(deviter_t *di)
2811 {
2812 if ((di->di_flags & DEVITER_F_RW) != 0)
2813 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2814 else
2815 di->di_prev = TAILQ_FIRST(&alldevs);
2816 }
2817
2818 device_t
2819 deviter_first(deviter_t *di, deviter_flags_t flags)
2820 {
2821 deviter_init(di, flags);
2822 return deviter_next(di);
2823 }
2824
2825 static device_t
2826 deviter_next2(deviter_t *di)
2827 {
2828 device_t dv;
2829
2830 dv = di->di_prev;
2831
2832 if (dv == NULL)
2833 return NULL;
2834
2835 if ((di->di_flags & DEVITER_F_RW) != 0)
2836 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2837 else
2838 di->di_prev = TAILQ_NEXT(dv, dv_list);
2839
2840 return dv;
2841 }
2842
2843 static device_t
2844 deviter_next1(deviter_t *di)
2845 {
2846 device_t dv;
2847
2848 do {
2849 dv = deviter_next2(di);
2850 } while (dv != NULL && !deviter_visits(di, dv));
2851
2852 return dv;
2853 }
2854
2855 device_t
2856 deviter_next(deviter_t *di)
2857 {
2858 device_t dv = NULL;
2859
2860 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2861 case 0:
2862 return deviter_next1(di);
2863 case DEVITER_F_LEAVES_FIRST:
2864 while (di->di_curdepth >= 0) {
2865 if ((dv = deviter_next1(di)) == NULL) {
2866 di->di_curdepth--;
2867 deviter_reinit(di);
2868 } else if (dv->dv_depth == di->di_curdepth)
2869 break;
2870 }
2871 return dv;
2872 case DEVITER_F_ROOT_FIRST:
2873 while (di->di_curdepth <= di->di_maxdepth) {
2874 if ((dv = deviter_next1(di)) == NULL) {
2875 di->di_curdepth++;
2876 deviter_reinit(di);
2877 } else if (dv->dv_depth == di->di_curdepth)
2878 break;
2879 }
2880 return dv;
2881 default:
2882 return NULL;
2883 }
2884 }
2885
2886 void
2887 deviter_release(deviter_t *di)
2888 {
2889 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2890 int s;
2891
2892 s = config_alldevs_lock();
2893 if (rw)
2894 --alldevs_nwrite;
2895 else
2896 --alldevs_nread;
2897 /* XXX wake a garbage-collection thread */
2898 config_alldevs_unlock(s);
2899 }
2900
2901 const char *
2902 cfdata_ifattr(const struct cfdata *cf)
2903 {
2904 return cf->cf_pspec->cfp_iattr;
2905 }
2906
2907 bool
2908 ifattr_match(const char *snull, const char *t)
2909 {
2910 return (snull == NULL) || strcmp(snull, t) == 0;
2911 }
2912
2913 void
2914 null_childdetached(device_t self, device_t child)
2915 {
2916 /* do nothing */
2917 }
2918
2919 static void
2920 sysctl_detach_setup(struct sysctllog **clog)
2921 {
2922
2923 sysctl_createv(clog, 0, NULL, NULL,
2924 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2925 CTLTYPE_BOOL, "detachall",
2926 SYSCTL_DESCR("Detach all devices at shutdown"),
2927 NULL, 0, &detachall, 0,
2928 CTL_KERN, CTL_CREATE, CTL_EOL);
2929 }
2930