subr_autoconf.c revision 1.243 1 /* $NetBSD: subr_autoconf.c,v 1.243 2016/07/11 07:42:13 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.243 2016/07/11 07:42:13 msaitoh Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110
111 #include <sys/disk.h>
112
113 #include <sys/rndsource.h>
114
115 #include <machine/limits.h>
116
117 /*
118 * Autoconfiguration subroutines.
119 */
120
121 /*
122 * Device autoconfiguration timings are mixed into the entropy pool.
123 */
124 extern krndsource_t rnd_autoconf_source;
125
126 /*
127 * ioconf.c exports exactly two names: cfdata and cfroots. All system
128 * devices and drivers are found via these tables.
129 */
130 extern struct cfdata cfdata[];
131 extern const short cfroots[];
132
133 /*
134 * List of all cfdriver structures. We use this to detect duplicates
135 * when other cfdrivers are loaded.
136 */
137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
138 extern struct cfdriver * const cfdriver_list_initial[];
139
140 /*
141 * Initial list of cfattach's.
142 */
143 extern const struct cfattachinit cfattachinit[];
144
145 /*
146 * List of cfdata tables. We always have one such list -- the one
147 * built statically when the kernel was configured.
148 */
149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
150 static struct cftable initcftable;
151
152 #define ROOT ((device_t)NULL)
153
154 struct matchinfo {
155 cfsubmatch_t fn;
156 device_t parent;
157 const int *locs;
158 void *aux;
159 struct cfdata *match;
160 int pri;
161 };
162
163 struct alldevs_foray {
164 int af_s;
165 struct devicelist af_garbage;
166 };
167
168 static char *number(char *, int);
169 static void mapply(struct matchinfo *, cfdata_t);
170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
171 static void config_devdelete(device_t);
172 static void config_devunlink(device_t, struct devicelist *);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_alldevs_enter(struct alldevs_foray *);
176 static void config_alldevs_exit(struct alldevs_foray *);
177 static void config_add_attrib_dict(device_t);
178
179 static void config_collect_garbage(struct devicelist *);
180 static void config_dump_garbage(struct devicelist *);
181
182 static void pmflock_debug(device_t, const char *, int);
183
184 static device_t deviter_next1(deviter_t *);
185 static void deviter_reinit(deviter_t *);
186
187 struct deferred_config {
188 TAILQ_ENTRY(deferred_config) dc_queue;
189 device_t dc_dev;
190 void (*dc_func)(device_t);
191 };
192
193 TAILQ_HEAD(deferred_config_head, deferred_config);
194
195 struct deferred_config_head deferred_config_queue =
196 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
197 struct deferred_config_head interrupt_config_queue =
198 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
199 int interrupt_config_threads = 8;
200 struct deferred_config_head mountroot_config_queue =
201 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
202 int mountroot_config_threads = 2;
203 static lwp_t **mountroot_config_lwpids;
204 static size_t mountroot_config_lwpids_size;
205 static bool root_is_mounted = false;
206
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 TAILQ_ENTRY(finalize_hook) f_list;
212 int (*f_func)(device_t);
213 device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218
219 /* list of all devices */
220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
221 static kmutex_t alldevs_mtx;
222 static volatile bool alldevs_garbage = false;
223 static volatile devgen_t alldevs_gen = 1;
224 static volatile int alldevs_nread = 0;
225 static volatile int alldevs_nwrite = 0;
226
227 static int config_pending; /* semaphore for mountroot */
228 static kmutex_t config_misc_lock;
229 static kcondvar_t config_misc_cv;
230
231 static bool detachall = false;
232
233 #define STREQ(s1, s2) \
234 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
235
236 static bool config_initialized = false; /* config_init() has been called. */
237
238 static int config_do_twiddle;
239 static callout_t config_twiddle_ch;
240
241 static void sysctl_detach_setup(struct sysctllog **);
242
243 int no_devmon_insert(const char *, prop_dictionary_t);
244 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
245
246 typedef int (*cfdriver_fn)(struct cfdriver *);
247 static int
248 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
249 cfdriver_fn drv_do, cfdriver_fn drv_undo,
250 const char *style, bool dopanic)
251 {
252 void (*pr)(const char *, ...) __printflike(1, 2) =
253 dopanic ? panic : printf;
254 int i, error = 0, e2 __diagused;
255
256 for (i = 0; cfdriverv[i] != NULL; i++) {
257 if ((error = drv_do(cfdriverv[i])) != 0) {
258 pr("configure: `%s' driver %s failed: %d",
259 cfdriverv[i]->cd_name, style, error);
260 goto bad;
261 }
262 }
263
264 KASSERT(error == 0);
265 return 0;
266
267 bad:
268 printf("\n");
269 for (i--; i >= 0; i--) {
270 e2 = drv_undo(cfdriverv[i]);
271 KASSERT(e2 == 0);
272 }
273
274 return error;
275 }
276
277 typedef int (*cfattach_fn)(const char *, struct cfattach *);
278 static int
279 frob_cfattachvec(const struct cfattachinit *cfattachv,
280 cfattach_fn att_do, cfattach_fn att_undo,
281 const char *style, bool dopanic)
282 {
283 const struct cfattachinit *cfai = NULL;
284 void (*pr)(const char *, ...) __printflike(1, 2) =
285 dopanic ? panic : printf;
286 int j = 0, error = 0, e2 __diagused;
287
288 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
289 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
290 if ((error = att_do(cfai->cfai_name,
291 cfai->cfai_list[j])) != 0) {
292 pr("configure: attachment `%s' "
293 "of `%s' driver %s failed: %d",
294 cfai->cfai_list[j]->ca_name,
295 cfai->cfai_name, style, error);
296 goto bad;
297 }
298 }
299 }
300
301 KASSERT(error == 0);
302 return 0;
303
304 bad:
305 /*
306 * Rollback in reverse order. dunno if super-important, but
307 * do that anyway. Although the code looks a little like
308 * someone did a little integration (in the math sense).
309 */
310 printf("\n");
311 if (cfai) {
312 bool last;
313
314 for (last = false; last == false; ) {
315 if (cfai == &cfattachv[0])
316 last = true;
317 for (j--; j >= 0; j--) {
318 e2 = att_undo(cfai->cfai_name,
319 cfai->cfai_list[j]);
320 KASSERT(e2 == 0);
321 }
322 if (!last) {
323 cfai--;
324 for (j = 0; cfai->cfai_list[j] != NULL; j++)
325 ;
326 }
327 }
328 }
329
330 return error;
331 }
332
333 /*
334 * Initialize the autoconfiguration data structures. Normally this
335 * is done by configure(), but some platforms need to do this very
336 * early (to e.g. initialize the console).
337 */
338 void
339 config_init(void)
340 {
341
342 KASSERT(config_initialized == false);
343
344 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
345
346 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
347 cv_init(&config_misc_cv, "cfgmisc");
348
349 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
350
351 frob_cfdrivervec(cfdriver_list_initial,
352 config_cfdriver_attach, NULL, "bootstrap", true);
353 frob_cfattachvec(cfattachinit,
354 config_cfattach_attach, NULL, "bootstrap", true);
355
356 initcftable.ct_cfdata = cfdata;
357 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
358
359 config_initialized = true;
360 }
361
362 /*
363 * Init or fini drivers and attachments. Either all or none
364 * are processed (via rollback). It would be nice if this were
365 * atomic to outside consumers, but with the current state of
366 * locking ...
367 */
368 int
369 config_init_component(struct cfdriver * const *cfdriverv,
370 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
371 {
372 int error;
373
374 if ((error = frob_cfdrivervec(cfdriverv,
375 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
376 return error;
377 if ((error = frob_cfattachvec(cfattachv,
378 config_cfattach_attach, config_cfattach_detach,
379 "init", false)) != 0) {
380 frob_cfdrivervec(cfdriverv,
381 config_cfdriver_detach, NULL, "init rollback", true);
382 return error;
383 }
384 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
385 frob_cfattachvec(cfattachv,
386 config_cfattach_detach, NULL, "init rollback", true);
387 frob_cfdrivervec(cfdriverv,
388 config_cfdriver_detach, NULL, "init rollback", true);
389 return error;
390 }
391
392 return 0;
393 }
394
395 int
396 config_fini_component(struct cfdriver * const *cfdriverv,
397 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
398 {
399 int error;
400
401 if ((error = config_cfdata_detach(cfdatav)) != 0)
402 return error;
403 if ((error = frob_cfattachvec(cfattachv,
404 config_cfattach_detach, config_cfattach_attach,
405 "fini", false)) != 0) {
406 if (config_cfdata_attach(cfdatav, 0) != 0)
407 panic("config_cfdata fini rollback failed");
408 return error;
409 }
410 if ((error = frob_cfdrivervec(cfdriverv,
411 config_cfdriver_detach, config_cfdriver_attach,
412 "fini", false)) != 0) {
413 frob_cfattachvec(cfattachv,
414 config_cfattach_attach, NULL, "fini rollback", true);
415 if (config_cfdata_attach(cfdatav, 0) != 0)
416 panic("config_cfdata fini rollback failed");
417 return error;
418 }
419
420 return 0;
421 }
422
423 void
424 config_init_mi(void)
425 {
426
427 if (!config_initialized)
428 config_init();
429
430 sysctl_detach_setup(NULL);
431 }
432
433 void
434 config_deferred(device_t dev)
435 {
436 config_process_deferred(&deferred_config_queue, dev);
437 config_process_deferred(&interrupt_config_queue, dev);
438 config_process_deferred(&mountroot_config_queue, dev);
439 }
440
441 static void
442 config_interrupts_thread(void *cookie)
443 {
444 struct deferred_config *dc;
445
446 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
447 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
448 (*dc->dc_func)(dc->dc_dev);
449 config_pending_decr(dc->dc_dev);
450 kmem_free(dc, sizeof(*dc));
451 }
452 kthread_exit(0);
453 }
454
455 void
456 config_create_interruptthreads(void)
457 {
458 int i;
459
460 for (i = 0; i < interrupt_config_threads; i++) {
461 (void)kthread_create(PRI_NONE, 0, NULL,
462 config_interrupts_thread, NULL, NULL, "configintr");
463 }
464 }
465
466 static void
467 config_mountroot_thread(void *cookie)
468 {
469 struct deferred_config *dc;
470
471 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
472 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
473 (*dc->dc_func)(dc->dc_dev);
474 kmem_free(dc, sizeof(*dc));
475 }
476 kthread_exit(0);
477 }
478
479 void
480 config_create_mountrootthreads(void)
481 {
482 int i;
483
484 if (!root_is_mounted)
485 root_is_mounted = true;
486
487 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
488 mountroot_config_threads;
489 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
490 KM_NOSLEEP);
491 KASSERT(mountroot_config_lwpids);
492 for (i = 0; i < mountroot_config_threads; i++) {
493 mountroot_config_lwpids[i] = 0;
494 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
495 config_mountroot_thread, NULL,
496 &mountroot_config_lwpids[i],
497 "configroot");
498 }
499 }
500
501 void
502 config_finalize_mountroot(void)
503 {
504 int i, error;
505
506 for (i = 0; i < mountroot_config_threads; i++) {
507 if (mountroot_config_lwpids[i] == 0)
508 continue;
509
510 error = kthread_join(mountroot_config_lwpids[i]);
511 if (error)
512 printf("%s: thread %x joined with error %d\n",
513 __func__, i, error);
514 }
515 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
516 }
517
518 /*
519 * Announce device attach/detach to userland listeners.
520 */
521
522 int
523 no_devmon_insert(const char *name, prop_dictionary_t p)
524 {
525
526 return ENODEV;
527 }
528
529 static void
530 devmon_report_device(device_t dev, bool isattach)
531 {
532 prop_dictionary_t ev;
533 const char *parent;
534 const char *what;
535 device_t pdev = device_parent(dev);
536
537 /* If currently no drvctl device, just return */
538 if (devmon_insert_vec == no_devmon_insert)
539 return;
540
541 ev = prop_dictionary_create();
542 if (ev == NULL)
543 return;
544
545 what = (isattach ? "device-attach" : "device-detach");
546 parent = (pdev == NULL ? "root" : device_xname(pdev));
547 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
548 !prop_dictionary_set_cstring(ev, "parent", parent)) {
549 prop_object_release(ev);
550 return;
551 }
552
553 if ((*devmon_insert_vec)(what, ev) != 0)
554 prop_object_release(ev);
555 }
556
557 /*
558 * Add a cfdriver to the system.
559 */
560 int
561 config_cfdriver_attach(struct cfdriver *cd)
562 {
563 struct cfdriver *lcd;
564
565 /* Make sure this driver isn't already in the system. */
566 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
567 if (STREQ(lcd->cd_name, cd->cd_name))
568 return EEXIST;
569 }
570
571 LIST_INIT(&cd->cd_attach);
572 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
573
574 return 0;
575 }
576
577 /*
578 * Remove a cfdriver from the system.
579 */
580 int
581 config_cfdriver_detach(struct cfdriver *cd)
582 {
583 struct alldevs_foray af;
584 int i, rc = 0;
585
586 config_alldevs_enter(&af);
587 /* Make sure there are no active instances. */
588 for (i = 0; i < cd->cd_ndevs; i++) {
589 if (cd->cd_devs[i] != NULL) {
590 rc = EBUSY;
591 break;
592 }
593 }
594 config_alldevs_exit(&af);
595
596 if (rc != 0)
597 return rc;
598
599 /* ...and no attachments loaded. */
600 if (LIST_EMPTY(&cd->cd_attach) == 0)
601 return EBUSY;
602
603 LIST_REMOVE(cd, cd_list);
604
605 KASSERT(cd->cd_devs == NULL);
606
607 return 0;
608 }
609
610 /*
611 * Look up a cfdriver by name.
612 */
613 struct cfdriver *
614 config_cfdriver_lookup(const char *name)
615 {
616 struct cfdriver *cd;
617
618 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
619 if (STREQ(cd->cd_name, name))
620 return cd;
621 }
622
623 return NULL;
624 }
625
626 /*
627 * Add a cfattach to the specified driver.
628 */
629 int
630 config_cfattach_attach(const char *driver, struct cfattach *ca)
631 {
632 struct cfattach *lca;
633 struct cfdriver *cd;
634
635 cd = config_cfdriver_lookup(driver);
636 if (cd == NULL)
637 return ESRCH;
638
639 /* Make sure this attachment isn't already on this driver. */
640 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
641 if (STREQ(lca->ca_name, ca->ca_name))
642 return EEXIST;
643 }
644
645 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
646
647 return 0;
648 }
649
650 /*
651 * Remove a cfattach from the specified driver.
652 */
653 int
654 config_cfattach_detach(const char *driver, struct cfattach *ca)
655 {
656 struct alldevs_foray af;
657 struct cfdriver *cd;
658 device_t dev;
659 int i, rc = 0;
660
661 cd = config_cfdriver_lookup(driver);
662 if (cd == NULL)
663 return ESRCH;
664
665 config_alldevs_enter(&af);
666 /* Make sure there are no active instances. */
667 for (i = 0; i < cd->cd_ndevs; i++) {
668 if ((dev = cd->cd_devs[i]) == NULL)
669 continue;
670 if (dev->dv_cfattach == ca) {
671 rc = EBUSY;
672 break;
673 }
674 }
675 config_alldevs_exit(&af);
676
677 if (rc != 0)
678 return rc;
679
680 LIST_REMOVE(ca, ca_list);
681
682 return 0;
683 }
684
685 /*
686 * Look up a cfattach by name.
687 */
688 static struct cfattach *
689 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
690 {
691 struct cfattach *ca;
692
693 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
694 if (STREQ(ca->ca_name, atname))
695 return ca;
696 }
697
698 return NULL;
699 }
700
701 /*
702 * Look up a cfattach by driver/attachment name.
703 */
704 struct cfattach *
705 config_cfattach_lookup(const char *name, const char *atname)
706 {
707 struct cfdriver *cd;
708
709 cd = config_cfdriver_lookup(name);
710 if (cd == NULL)
711 return NULL;
712
713 return config_cfattach_lookup_cd(cd, atname);
714 }
715
716 /*
717 * Apply the matching function and choose the best. This is used
718 * a few times and we want to keep the code small.
719 */
720 static void
721 mapply(struct matchinfo *m, cfdata_t cf)
722 {
723 int pri;
724
725 if (m->fn != NULL) {
726 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
727 } else {
728 pri = config_match(m->parent, cf, m->aux);
729 }
730 if (pri > m->pri) {
731 m->match = cf;
732 m->pri = pri;
733 }
734 }
735
736 int
737 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
738 {
739 const struct cfiattrdata *ci;
740 const struct cflocdesc *cl;
741 int nlocs, i;
742
743 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
744 KASSERT(ci);
745 nlocs = ci->ci_loclen;
746 KASSERT(!nlocs || locs);
747 for (i = 0; i < nlocs; i++) {
748 cl = &ci->ci_locdesc[i];
749 if (cl->cld_defaultstr != NULL &&
750 cf->cf_loc[i] == cl->cld_default)
751 continue;
752 if (cf->cf_loc[i] == locs[i])
753 continue;
754 return 0;
755 }
756
757 return config_match(parent, cf, aux);
758 }
759
760 /*
761 * Helper function: check whether the driver supports the interface attribute
762 * and return its descriptor structure.
763 */
764 static const struct cfiattrdata *
765 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
766 {
767 const struct cfiattrdata * const *cpp;
768
769 if (cd->cd_attrs == NULL)
770 return 0;
771
772 for (cpp = cd->cd_attrs; *cpp; cpp++) {
773 if (STREQ((*cpp)->ci_name, ia)) {
774 /* Match. */
775 return *cpp;
776 }
777 }
778 return 0;
779 }
780
781 /*
782 * Lookup an interface attribute description by name.
783 * If the driver is given, consider only its supported attributes.
784 */
785 const struct cfiattrdata *
786 cfiattr_lookup(const char *name, const struct cfdriver *cd)
787 {
788 const struct cfdriver *d;
789 const struct cfiattrdata *ia;
790
791 if (cd)
792 return cfdriver_get_iattr(cd, name);
793
794 LIST_FOREACH(d, &allcfdrivers, cd_list) {
795 ia = cfdriver_get_iattr(d, name);
796 if (ia)
797 return ia;
798 }
799 return 0;
800 }
801
802 /*
803 * Determine if `parent' is a potential parent for a device spec based
804 * on `cfp'.
805 */
806 static int
807 cfparent_match(const device_t parent, const struct cfparent *cfp)
808 {
809 struct cfdriver *pcd;
810
811 /* We don't match root nodes here. */
812 if (cfp == NULL)
813 return 0;
814
815 pcd = parent->dv_cfdriver;
816 KASSERT(pcd != NULL);
817
818 /*
819 * First, ensure this parent has the correct interface
820 * attribute.
821 */
822 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
823 return 0;
824
825 /*
826 * If no specific parent device instance was specified (i.e.
827 * we're attaching to the attribute only), we're done!
828 */
829 if (cfp->cfp_parent == NULL)
830 return 1;
831
832 /*
833 * Check the parent device's name.
834 */
835 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
836 return 0; /* not the same parent */
837
838 /*
839 * Make sure the unit number matches.
840 */
841 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
842 cfp->cfp_unit == parent->dv_unit)
843 return 1;
844
845 /* Unit numbers don't match. */
846 return 0;
847 }
848
849 /*
850 * Helper for config_cfdata_attach(): check all devices whether it could be
851 * parent any attachment in the config data table passed, and rescan.
852 */
853 static void
854 rescan_with_cfdata(const struct cfdata *cf)
855 {
856 device_t d;
857 const struct cfdata *cf1;
858 deviter_t di;
859
860
861 /*
862 * "alldevs" is likely longer than a modules's cfdata, so make it
863 * the outer loop.
864 */
865 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
866
867 if (!(d->dv_cfattach->ca_rescan))
868 continue;
869
870 for (cf1 = cf; cf1->cf_name; cf1++) {
871
872 if (!cfparent_match(d, cf1->cf_pspec))
873 continue;
874
875 (*d->dv_cfattach->ca_rescan)(d,
876 cfdata_ifattr(cf1), cf1->cf_loc);
877
878 config_deferred(d);
879 }
880 }
881 deviter_release(&di);
882 }
883
884 /*
885 * Attach a supplemental config data table and rescan potential
886 * parent devices if required.
887 */
888 int
889 config_cfdata_attach(cfdata_t cf, int scannow)
890 {
891 struct cftable *ct;
892
893 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
894 ct->ct_cfdata = cf;
895 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
896
897 if (scannow)
898 rescan_with_cfdata(cf);
899
900 return 0;
901 }
902
903 /*
904 * Helper for config_cfdata_detach: check whether a device is
905 * found through any attachment in the config data table.
906 */
907 static int
908 dev_in_cfdata(device_t d, cfdata_t cf)
909 {
910 const struct cfdata *cf1;
911
912 for (cf1 = cf; cf1->cf_name; cf1++)
913 if (d->dv_cfdata == cf1)
914 return 1;
915
916 return 0;
917 }
918
919 /*
920 * Detach a supplemental config data table. Detach all devices found
921 * through that table (and thus keeping references to it) before.
922 */
923 int
924 config_cfdata_detach(cfdata_t cf)
925 {
926 device_t d;
927 int error = 0;
928 struct cftable *ct;
929 deviter_t di;
930
931 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
932 d = deviter_next(&di)) {
933 if (!dev_in_cfdata(d, cf))
934 continue;
935 if ((error = config_detach(d, 0)) != 0)
936 break;
937 }
938 deviter_release(&di);
939 if (error) {
940 aprint_error_dev(d, "unable to detach instance\n");
941 return error;
942 }
943
944 TAILQ_FOREACH(ct, &allcftables, ct_list) {
945 if (ct->ct_cfdata == cf) {
946 TAILQ_REMOVE(&allcftables, ct, ct_list);
947 kmem_free(ct, sizeof(*ct));
948 return 0;
949 }
950 }
951
952 /* not found -- shouldn't happen */
953 return EINVAL;
954 }
955
956 /*
957 * Invoke the "match" routine for a cfdata entry on behalf of
958 * an external caller, usually a "submatch" routine.
959 */
960 int
961 config_match(device_t parent, cfdata_t cf, void *aux)
962 {
963 struct cfattach *ca;
964
965 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
966 if (ca == NULL) {
967 /* No attachment for this entry, oh well. */
968 return 0;
969 }
970
971 return (*ca->ca_match)(parent, cf, aux);
972 }
973
974 /*
975 * Iterate over all potential children of some device, calling the given
976 * function (default being the child's match function) for each one.
977 * Nonzero returns are matches; the highest value returned is considered
978 * the best match. Return the `found child' if we got a match, or NULL
979 * otherwise. The `aux' pointer is simply passed on through.
980 *
981 * Note that this function is designed so that it can be used to apply
982 * an arbitrary function to all potential children (its return value
983 * can be ignored).
984 */
985 cfdata_t
986 config_search_loc(cfsubmatch_t fn, device_t parent,
987 const char *ifattr, const int *locs, void *aux)
988 {
989 struct cftable *ct;
990 cfdata_t cf;
991 struct matchinfo m;
992
993 KASSERT(config_initialized);
994 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
995
996 m.fn = fn;
997 m.parent = parent;
998 m.locs = locs;
999 m.aux = aux;
1000 m.match = NULL;
1001 m.pri = 0;
1002
1003 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1004 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1005
1006 /* We don't match root nodes here. */
1007 if (!cf->cf_pspec)
1008 continue;
1009
1010 /*
1011 * Skip cf if no longer eligible, otherwise scan
1012 * through parents for one matching `parent', and
1013 * try match function.
1014 */
1015 if (cf->cf_fstate == FSTATE_FOUND)
1016 continue;
1017 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1018 cf->cf_fstate == FSTATE_DSTAR)
1019 continue;
1020
1021 /*
1022 * If an interface attribute was specified,
1023 * consider only children which attach to
1024 * that attribute.
1025 */
1026 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1027 continue;
1028
1029 if (cfparent_match(parent, cf->cf_pspec))
1030 mapply(&m, cf);
1031 }
1032 }
1033 return m.match;
1034 }
1035
1036 cfdata_t
1037 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
1038 void *aux)
1039 {
1040
1041 return config_search_loc(fn, parent, ifattr, NULL, aux);
1042 }
1043
1044 /*
1045 * Find the given root device.
1046 * This is much like config_search, but there is no parent.
1047 * Don't bother with multiple cfdata tables; the root node
1048 * must always be in the initial table.
1049 */
1050 cfdata_t
1051 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1052 {
1053 cfdata_t cf;
1054 const short *p;
1055 struct matchinfo m;
1056
1057 m.fn = fn;
1058 m.parent = ROOT;
1059 m.aux = aux;
1060 m.match = NULL;
1061 m.pri = 0;
1062 m.locs = 0;
1063 /*
1064 * Look at root entries for matching name. We do not bother
1065 * with found-state here since only one root should ever be
1066 * searched (and it must be done first).
1067 */
1068 for (p = cfroots; *p >= 0; p++) {
1069 cf = &cfdata[*p];
1070 if (strcmp(cf->cf_name, rootname) == 0)
1071 mapply(&m, cf);
1072 }
1073 return m.match;
1074 }
1075
1076 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1077
1078 /*
1079 * The given `aux' argument describes a device that has been found
1080 * on the given parent, but not necessarily configured. Locate the
1081 * configuration data for that device (using the submatch function
1082 * provided, or using candidates' cd_match configuration driver
1083 * functions) and attach it, and return its device_t. If the device was
1084 * not configured, call the given `print' function and return NULL.
1085 */
1086 device_t
1087 config_found_sm_loc(device_t parent,
1088 const char *ifattr, const int *locs, void *aux,
1089 cfprint_t print, cfsubmatch_t submatch)
1090 {
1091 cfdata_t cf;
1092
1093 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1094 return(config_attach_loc(parent, cf, locs, aux, print));
1095 if (print) {
1096 if (config_do_twiddle && cold)
1097 twiddle();
1098 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1099 }
1100
1101 /*
1102 * This has the effect of mixing in a single timestamp to the
1103 * entropy pool. Experiments indicate the estimator will almost
1104 * always attribute one bit of entropy to this sample; analysis
1105 * of device attach/detach timestamps on FreeBSD indicates 4
1106 * bits of entropy/sample so this seems appropriately conservative.
1107 */
1108 rnd_add_uint32(&rnd_autoconf_source, 0);
1109 return NULL;
1110 }
1111
1112 device_t
1113 config_found_ia(device_t parent, const char *ifattr, void *aux,
1114 cfprint_t print)
1115 {
1116
1117 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1118 }
1119
1120 device_t
1121 config_found(device_t parent, void *aux, cfprint_t print)
1122 {
1123
1124 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1125 }
1126
1127 /*
1128 * As above, but for root devices.
1129 */
1130 device_t
1131 config_rootfound(const char *rootname, void *aux)
1132 {
1133 cfdata_t cf;
1134
1135 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1136 return config_attach(ROOT, cf, aux, NULL);
1137 aprint_error("root device %s not configured\n", rootname);
1138 return NULL;
1139 }
1140
1141 /* just like sprintf(buf, "%d") except that it works from the end */
1142 static char *
1143 number(char *ep, int n)
1144 {
1145
1146 *--ep = 0;
1147 while (n >= 10) {
1148 *--ep = (n % 10) + '0';
1149 n /= 10;
1150 }
1151 *--ep = n + '0';
1152 return ep;
1153 }
1154
1155 /*
1156 * Expand the size of the cd_devs array if necessary.
1157 *
1158 * The caller must hold alldevs_mtx. config_makeroom() may release and
1159 * re-acquire alldevs_mtx, so callers should re-check conditions such
1160 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1161 * returns.
1162 */
1163 static void
1164 config_makeroom(int n, struct cfdriver *cd)
1165 {
1166 int ondevs, nndevs;
1167 device_t *osp, *nsp;
1168
1169 alldevs_nwrite++;
1170
1171 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1172 ;
1173
1174 while (n >= cd->cd_ndevs) {
1175 /*
1176 * Need to expand the array.
1177 */
1178 ondevs = cd->cd_ndevs;
1179 osp = cd->cd_devs;
1180
1181 /* Release alldevs_mtx around allocation, which may
1182 * sleep.
1183 */
1184 mutex_exit(&alldevs_mtx);
1185 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1186 if (nsp == NULL)
1187 panic("%s: could not expand cd_devs", __func__);
1188 mutex_enter(&alldevs_mtx);
1189
1190 /* If another thread moved the array while we did
1191 * not hold alldevs_mtx, try again.
1192 */
1193 if (cd->cd_devs != osp) {
1194 mutex_exit(&alldevs_mtx);
1195 kmem_free(nsp, sizeof(device_t[nndevs]));
1196 mutex_enter(&alldevs_mtx);
1197 continue;
1198 }
1199
1200 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1201 if (ondevs != 0)
1202 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1203
1204 cd->cd_ndevs = nndevs;
1205 cd->cd_devs = nsp;
1206 if (ondevs != 0) {
1207 mutex_exit(&alldevs_mtx);
1208 kmem_free(osp, sizeof(device_t[ondevs]));
1209 mutex_enter(&alldevs_mtx);
1210 }
1211 }
1212 alldevs_nwrite--;
1213 }
1214
1215 /*
1216 * Put dev into the devices list.
1217 */
1218 static void
1219 config_devlink(device_t dev)
1220 {
1221
1222 mutex_enter(&alldevs_mtx);
1223
1224 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1225
1226 dev->dv_add_gen = alldevs_gen;
1227 /* It is safe to add a device to the tail of the list while
1228 * readers and writers are in the list.
1229 */
1230 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1231 mutex_exit(&alldevs_mtx);
1232 }
1233
1234 static void
1235 config_devfree(device_t dev)
1236 {
1237 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1238
1239 if (dev->dv_cfattach->ca_devsize > 0)
1240 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1241 if (priv)
1242 kmem_free(dev, sizeof(*dev));
1243 }
1244
1245 /*
1246 * Caller must hold alldevs_mtx.
1247 */
1248 static void
1249 config_devunlink(device_t dev, struct devicelist *garbage)
1250 {
1251 struct device_garbage *dg = &dev->dv_garbage;
1252 cfdriver_t cd = device_cfdriver(dev);
1253 int i;
1254
1255 KASSERT(mutex_owned(&alldevs_mtx));
1256
1257 /* Unlink from device list. Link to garbage list. */
1258 TAILQ_REMOVE(&alldevs, dev, dv_list);
1259 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1260
1261 /* Remove from cfdriver's array. */
1262 cd->cd_devs[dev->dv_unit] = NULL;
1263
1264 /*
1265 * If the device now has no units in use, unlink its softc array.
1266 */
1267 for (i = 0; i < cd->cd_ndevs; i++) {
1268 if (cd->cd_devs[i] != NULL)
1269 break;
1270 }
1271 /* Nothing found. Unlink, now. Deallocate, later. */
1272 if (i == cd->cd_ndevs) {
1273 dg->dg_ndevs = cd->cd_ndevs;
1274 dg->dg_devs = cd->cd_devs;
1275 cd->cd_devs = NULL;
1276 cd->cd_ndevs = 0;
1277 }
1278 }
1279
1280 static void
1281 config_devdelete(device_t dev)
1282 {
1283 struct device_garbage *dg = &dev->dv_garbage;
1284 device_lock_t dvl = device_getlock(dev);
1285
1286 if (dg->dg_devs != NULL)
1287 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1288
1289 cv_destroy(&dvl->dvl_cv);
1290 mutex_destroy(&dvl->dvl_mtx);
1291
1292 KASSERT(dev->dv_properties != NULL);
1293 prop_object_release(dev->dv_properties);
1294
1295 if (dev->dv_activity_handlers)
1296 panic("%s with registered handlers", __func__);
1297
1298 if (dev->dv_locators) {
1299 size_t amount = *--dev->dv_locators;
1300 kmem_free(dev->dv_locators, amount);
1301 }
1302
1303 config_devfree(dev);
1304 }
1305
1306 static int
1307 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1308 {
1309 int unit;
1310
1311 if (cf->cf_fstate == FSTATE_STAR) {
1312 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1313 if (cd->cd_devs[unit] == NULL)
1314 break;
1315 /*
1316 * unit is now the unit of the first NULL device pointer,
1317 * or max(cd->cd_ndevs,cf->cf_unit).
1318 */
1319 } else {
1320 unit = cf->cf_unit;
1321 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1322 unit = -1;
1323 }
1324 return unit;
1325 }
1326
1327 static int
1328 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1329 {
1330 struct alldevs_foray af;
1331 int unit;
1332
1333 config_alldevs_enter(&af);
1334 for (;;) {
1335 unit = config_unit_nextfree(cd, cf);
1336 if (unit == -1)
1337 break;
1338 if (unit < cd->cd_ndevs) {
1339 cd->cd_devs[unit] = dev;
1340 dev->dv_unit = unit;
1341 break;
1342 }
1343 config_makeroom(unit, cd);
1344 }
1345 config_alldevs_exit(&af);
1346
1347 return unit;
1348 }
1349
1350 static device_t
1351 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1352 {
1353 cfdriver_t cd;
1354 cfattach_t ca;
1355 size_t lname, lunit;
1356 const char *xunit;
1357 int myunit;
1358 char num[10];
1359 device_t dev;
1360 void *dev_private;
1361 const struct cfiattrdata *ia;
1362 device_lock_t dvl;
1363
1364 cd = config_cfdriver_lookup(cf->cf_name);
1365 if (cd == NULL)
1366 return NULL;
1367
1368 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1369 if (ca == NULL)
1370 return NULL;
1371
1372 if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
1373 ca->ca_devsize < sizeof(struct device))
1374 panic("config_devalloc: %s (%zu < %zu)", cf->cf_atname,
1375 ca->ca_devsize, sizeof(struct device));
1376
1377 /* get memory for all device vars */
1378 KASSERT((ca->ca_flags & DVF_PRIV_ALLOC)
1379 || ca->ca_devsize >= sizeof(struct device));
1380 if (ca->ca_devsize > 0) {
1381 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1382 if (dev_private == NULL)
1383 panic("config_devalloc: memory allocation for device "
1384 "softc failed");
1385 } else {
1386 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1387 dev_private = NULL;
1388 }
1389
1390 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1391 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1392 } else {
1393 dev = dev_private;
1394 #ifdef DIAGNOSTIC
1395 printf("%s has not been converted to device_t\n", cd->cd_name);
1396 #endif
1397 }
1398 if (dev == NULL)
1399 panic("config_devalloc: memory allocation for device_t failed");
1400
1401 dev->dv_class = cd->cd_class;
1402 dev->dv_cfdata = cf;
1403 dev->dv_cfdriver = cd;
1404 dev->dv_cfattach = ca;
1405 dev->dv_activity_count = 0;
1406 dev->dv_activity_handlers = NULL;
1407 dev->dv_private = dev_private;
1408 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1409
1410 myunit = config_unit_alloc(dev, cd, cf);
1411 if (myunit == -1) {
1412 config_devfree(dev);
1413 return NULL;
1414 }
1415
1416 /* compute length of name and decimal expansion of unit number */
1417 lname = strlen(cd->cd_name);
1418 xunit = number(&num[sizeof(num)], myunit);
1419 lunit = &num[sizeof(num)] - xunit;
1420 if (lname + lunit > sizeof(dev->dv_xname))
1421 panic("config_devalloc: device name too long");
1422
1423 dvl = device_getlock(dev);
1424
1425 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1426 cv_init(&dvl->dvl_cv, "pmfsusp");
1427
1428 memcpy(dev->dv_xname, cd->cd_name, lname);
1429 memcpy(dev->dv_xname + lname, xunit, lunit);
1430 dev->dv_parent = parent;
1431 if (parent != NULL)
1432 dev->dv_depth = parent->dv_depth + 1;
1433 else
1434 dev->dv_depth = 0;
1435 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1436 if (locs) {
1437 KASSERT(parent); /* no locators at root */
1438 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1439 dev->dv_locators =
1440 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1441 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1442 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1443 }
1444 dev->dv_properties = prop_dictionary_create();
1445 KASSERT(dev->dv_properties != NULL);
1446
1447 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1448 "device-driver", dev->dv_cfdriver->cd_name);
1449 prop_dictionary_set_uint16(dev->dv_properties,
1450 "device-unit", dev->dv_unit);
1451 if (parent != NULL) {
1452 prop_dictionary_set_cstring(dev->dv_properties,
1453 "device-parent", device_xname(parent));
1454 }
1455
1456 if (dev->dv_cfdriver->cd_attrs != NULL)
1457 config_add_attrib_dict(dev);
1458
1459 return dev;
1460 }
1461
1462 /*
1463 * Create an array of device attach attributes and add it
1464 * to the device's dv_properties dictionary.
1465 *
1466 * <key>interface-attributes</key>
1467 * <array>
1468 * <dict>
1469 * <key>attribute-name</key>
1470 * <string>foo</string>
1471 * <key>locators</key>
1472 * <array>
1473 * <dict>
1474 * <key>loc-name</key>
1475 * <string>foo-loc1</string>
1476 * </dict>
1477 * <dict>
1478 * <key>loc-name</key>
1479 * <string>foo-loc2</string>
1480 * <key>default</key>
1481 * <string>foo-loc2-default</string>
1482 * </dict>
1483 * ...
1484 * </array>
1485 * </dict>
1486 * ...
1487 * </array>
1488 */
1489
1490 static void
1491 config_add_attrib_dict(device_t dev)
1492 {
1493 int i, j;
1494 const struct cfiattrdata *ci;
1495 prop_dictionary_t attr_dict, loc_dict;
1496 prop_array_t attr_array, loc_array;
1497
1498 if ((attr_array = prop_array_create()) == NULL)
1499 return;
1500
1501 for (i = 0; ; i++) {
1502 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1503 break;
1504 if ((attr_dict = prop_dictionary_create()) == NULL)
1505 break;
1506 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1507 ci->ci_name);
1508
1509 /* Create an array of the locator names and defaults */
1510
1511 if (ci->ci_loclen != 0 &&
1512 (loc_array = prop_array_create()) != NULL) {
1513 for (j = 0; j < ci->ci_loclen; j++) {
1514 loc_dict = prop_dictionary_create();
1515 if (loc_dict == NULL)
1516 continue;
1517 prop_dictionary_set_cstring_nocopy(loc_dict,
1518 "loc-name", ci->ci_locdesc[j].cld_name);
1519 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1520 prop_dictionary_set_cstring_nocopy(
1521 loc_dict, "default",
1522 ci->ci_locdesc[j].cld_defaultstr);
1523 prop_array_set(loc_array, j, loc_dict);
1524 prop_object_release(loc_dict);
1525 }
1526 prop_dictionary_set_and_rel(attr_dict, "locators",
1527 loc_array);
1528 }
1529 prop_array_add(attr_array, attr_dict);
1530 prop_object_release(attr_dict);
1531 }
1532 if (i == 0)
1533 prop_object_release(attr_array);
1534 else
1535 prop_dictionary_set_and_rel(dev->dv_properties,
1536 "interface-attributes", attr_array);
1537
1538 return;
1539 }
1540
1541 /*
1542 * Attach a found device.
1543 */
1544 device_t
1545 config_attach_loc(device_t parent, cfdata_t cf,
1546 const int *locs, void *aux, cfprint_t print)
1547 {
1548 device_t dev;
1549 struct cftable *ct;
1550 const char *drvname;
1551
1552 dev = config_devalloc(parent, cf, locs);
1553 if (!dev)
1554 panic("config_attach: allocation of device softc failed");
1555
1556 /* XXX redundant - see below? */
1557 if (cf->cf_fstate != FSTATE_STAR) {
1558 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1559 cf->cf_fstate = FSTATE_FOUND;
1560 }
1561
1562 config_devlink(dev);
1563
1564 if (config_do_twiddle && cold)
1565 twiddle();
1566 else
1567 aprint_naive("Found ");
1568 /*
1569 * We want the next two printfs for normal, verbose, and quiet,
1570 * but not silent (in which case, we're twiddling, instead).
1571 */
1572 if (parent == ROOT) {
1573 aprint_naive("%s (root)", device_xname(dev));
1574 aprint_normal("%s (root)", device_xname(dev));
1575 } else {
1576 aprint_naive("%s at %s", device_xname(dev),
1577 device_xname(parent));
1578 aprint_normal("%s at %s", device_xname(dev),
1579 device_xname(parent));
1580 if (print)
1581 (void) (*print)(aux, NULL);
1582 }
1583
1584 /*
1585 * Before attaching, clobber any unfound devices that are
1586 * otherwise identical.
1587 * XXX code above is redundant?
1588 */
1589 drvname = dev->dv_cfdriver->cd_name;
1590 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1591 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1592 if (STREQ(cf->cf_name, drvname) &&
1593 cf->cf_unit == dev->dv_unit) {
1594 if (cf->cf_fstate == FSTATE_NOTFOUND)
1595 cf->cf_fstate = FSTATE_FOUND;
1596 }
1597 }
1598 }
1599 device_register(dev, aux);
1600
1601 /* Let userland know */
1602 devmon_report_device(dev, true);
1603
1604 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1605
1606 if (!device_pmf_is_registered(dev))
1607 aprint_debug_dev(dev, "WARNING: power management not "
1608 "supported\n");
1609
1610 config_process_deferred(&deferred_config_queue, dev);
1611
1612 device_register_post_config(dev, aux);
1613 return dev;
1614 }
1615
1616 device_t
1617 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1618 {
1619
1620 return config_attach_loc(parent, cf, NULL, aux, print);
1621 }
1622
1623 /*
1624 * As above, but for pseudo-devices. Pseudo-devices attached in this
1625 * way are silently inserted into the device tree, and their children
1626 * attached.
1627 *
1628 * Note that because pseudo-devices are attached silently, any information
1629 * the attach routine wishes to print should be prefixed with the device
1630 * name by the attach routine.
1631 */
1632 device_t
1633 config_attach_pseudo(cfdata_t cf)
1634 {
1635 device_t dev;
1636
1637 dev = config_devalloc(ROOT, cf, NULL);
1638 if (!dev)
1639 return NULL;
1640
1641 /* XXX mark busy in cfdata */
1642
1643 if (cf->cf_fstate != FSTATE_STAR) {
1644 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1645 cf->cf_fstate = FSTATE_FOUND;
1646 }
1647
1648 config_devlink(dev);
1649
1650 #if 0 /* XXXJRT not yet */
1651 device_register(dev, NULL); /* like a root node */
1652 #endif
1653
1654 /* Let userland know */
1655 devmon_report_device(dev, true);
1656
1657 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1658
1659 config_process_deferred(&deferred_config_queue, dev);
1660 return dev;
1661 }
1662
1663 /*
1664 * Caller must hold alldevs_mtx.
1665 */
1666 static void
1667 config_collect_garbage(struct devicelist *garbage)
1668 {
1669 device_t dv;
1670
1671 KASSERT(!cpu_intr_p());
1672 KASSERT(!cpu_softintr_p());
1673 KASSERT(mutex_owned(&alldevs_mtx));
1674
1675 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1676 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1677 if (dv->dv_del_gen != 0)
1678 break;
1679 }
1680 if (dv == NULL) {
1681 alldevs_garbage = false;
1682 break;
1683 }
1684 config_devunlink(dv, garbage);
1685 }
1686 KASSERT(mutex_owned(&alldevs_mtx));
1687 }
1688
1689 static void
1690 config_dump_garbage(struct devicelist *garbage)
1691 {
1692 device_t dv;
1693
1694 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1695 TAILQ_REMOVE(garbage, dv, dv_list);
1696 config_devdelete(dv);
1697 }
1698 }
1699
1700 /*
1701 * Detach a device. Optionally forced (e.g. because of hardware
1702 * removal) and quiet. Returns zero if successful, non-zero
1703 * (an error code) otherwise.
1704 *
1705 * Note that this code wants to be run from a process context, so
1706 * that the detach can sleep to allow processes which have a device
1707 * open to run and unwind their stacks.
1708 */
1709 int
1710 config_detach(device_t dev, int flags)
1711 {
1712 struct alldevs_foray af;
1713 struct cftable *ct;
1714 cfdata_t cf;
1715 const struct cfattach *ca;
1716 struct cfdriver *cd;
1717 #ifdef DIAGNOSTIC
1718 device_t d;
1719 #endif
1720 int rv = 0;
1721
1722 #ifdef DIAGNOSTIC
1723 cf = dev->dv_cfdata;
1724 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1725 cf->cf_fstate != FSTATE_STAR)
1726 panic("config_detach: %s: bad device fstate %d",
1727 device_xname(dev), cf ? cf->cf_fstate : -1);
1728 #endif
1729 cd = dev->dv_cfdriver;
1730 KASSERT(cd != NULL);
1731
1732 ca = dev->dv_cfattach;
1733 KASSERT(ca != NULL);
1734
1735 mutex_enter(&alldevs_mtx);
1736 if (dev->dv_del_gen != 0) {
1737 mutex_exit(&alldevs_mtx);
1738 #ifdef DIAGNOSTIC
1739 printf("%s: %s is already detached\n", __func__,
1740 device_xname(dev));
1741 #endif /* DIAGNOSTIC */
1742 return ENOENT;
1743 }
1744 alldevs_nwrite++;
1745 mutex_exit(&alldevs_mtx);
1746
1747 if (!detachall &&
1748 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1749 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1750 rv = EOPNOTSUPP;
1751 } else if (ca->ca_detach != NULL) {
1752 rv = (*ca->ca_detach)(dev, flags);
1753 } else
1754 rv = EOPNOTSUPP;
1755
1756 /*
1757 * If it was not possible to detach the device, then we either
1758 * panic() (for the forced but failed case), or return an error.
1759 *
1760 * If it was possible to detach the device, ensure that the
1761 * device is deactivated.
1762 */
1763 if (rv == 0)
1764 dev->dv_flags &= ~DVF_ACTIVE;
1765 else if ((flags & DETACH_FORCE) == 0)
1766 goto out;
1767 else {
1768 panic("config_detach: forced detach of %s failed (%d)",
1769 device_xname(dev), rv);
1770 }
1771
1772 /*
1773 * The device has now been successfully detached.
1774 */
1775
1776 /* Let userland know */
1777 devmon_report_device(dev, false);
1778
1779 #ifdef DIAGNOSTIC
1780 /*
1781 * Sanity: If you're successfully detached, you should have no
1782 * children. (Note that because children must be attached
1783 * after parents, we only need to search the latter part of
1784 * the list.)
1785 */
1786 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1787 d = TAILQ_NEXT(d, dv_list)) {
1788 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1789 printf("config_detach: detached device %s"
1790 " has children %s\n", device_xname(dev),
1791 device_xname(d));
1792 panic("config_detach");
1793 }
1794 }
1795 #endif
1796
1797 /* notify the parent that the child is gone */
1798 if (dev->dv_parent) {
1799 device_t p = dev->dv_parent;
1800 if (p->dv_cfattach->ca_childdetached)
1801 (*p->dv_cfattach->ca_childdetached)(p, dev);
1802 }
1803
1804 /*
1805 * Mark cfdata to show that the unit can be reused, if possible.
1806 */
1807 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1808 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1809 if (STREQ(cf->cf_name, cd->cd_name)) {
1810 if (cf->cf_fstate == FSTATE_FOUND &&
1811 cf->cf_unit == dev->dv_unit)
1812 cf->cf_fstate = FSTATE_NOTFOUND;
1813 }
1814 }
1815 }
1816
1817 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1818 aprint_normal_dev(dev, "detached\n");
1819
1820 out:
1821 config_alldevs_enter(&af);
1822 KASSERT(alldevs_nwrite != 0);
1823 --alldevs_nwrite;
1824 if (rv == 0 && dev->dv_del_gen == 0) {
1825 if (alldevs_nwrite == 0 && alldevs_nread == 0)
1826 config_devunlink(dev, &af.af_garbage);
1827 else {
1828 dev->dv_del_gen = alldevs_gen;
1829 alldevs_garbage = true;
1830 }
1831 }
1832 config_alldevs_exit(&af);
1833
1834 return rv;
1835 }
1836
1837 int
1838 config_detach_children(device_t parent, int flags)
1839 {
1840 device_t dv;
1841 deviter_t di;
1842 int error = 0;
1843
1844 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1845 dv = deviter_next(&di)) {
1846 if (device_parent(dv) != parent)
1847 continue;
1848 if ((error = config_detach(dv, flags)) != 0)
1849 break;
1850 }
1851 deviter_release(&di);
1852 return error;
1853 }
1854
1855 device_t
1856 shutdown_first(struct shutdown_state *s)
1857 {
1858 if (!s->initialized) {
1859 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1860 s->initialized = true;
1861 }
1862 return shutdown_next(s);
1863 }
1864
1865 device_t
1866 shutdown_next(struct shutdown_state *s)
1867 {
1868 device_t dv;
1869
1870 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1871 ;
1872
1873 if (dv == NULL)
1874 s->initialized = false;
1875
1876 return dv;
1877 }
1878
1879 bool
1880 config_detach_all(int how)
1881 {
1882 static struct shutdown_state s;
1883 device_t curdev;
1884 bool progress = false;
1885 int flags;
1886
1887 if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1888 return false;
1889
1890 if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1891 flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1892 else
1893 flags = DETACH_SHUTDOWN;
1894
1895 for (curdev = shutdown_first(&s); curdev != NULL;
1896 curdev = shutdown_next(&s)) {
1897 aprint_debug(" detaching %s, ", device_xname(curdev));
1898 if (config_detach(curdev, flags) == 0) {
1899 progress = true;
1900 aprint_debug("success.");
1901 } else
1902 aprint_debug("failed.");
1903 }
1904 return progress;
1905 }
1906
1907 static bool
1908 device_is_ancestor_of(device_t ancestor, device_t descendant)
1909 {
1910 device_t dv;
1911
1912 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1913 if (device_parent(dv) == ancestor)
1914 return true;
1915 }
1916 return false;
1917 }
1918
1919 int
1920 config_deactivate(device_t dev)
1921 {
1922 deviter_t di;
1923 const struct cfattach *ca;
1924 device_t descendant;
1925 int s, rv = 0, oflags;
1926
1927 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1928 descendant != NULL;
1929 descendant = deviter_next(&di)) {
1930 if (dev != descendant &&
1931 !device_is_ancestor_of(dev, descendant))
1932 continue;
1933
1934 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1935 continue;
1936
1937 ca = descendant->dv_cfattach;
1938 oflags = descendant->dv_flags;
1939
1940 descendant->dv_flags &= ~DVF_ACTIVE;
1941 if (ca->ca_activate == NULL)
1942 continue;
1943 s = splhigh();
1944 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1945 splx(s);
1946 if (rv != 0)
1947 descendant->dv_flags = oflags;
1948 }
1949 deviter_release(&di);
1950 return rv;
1951 }
1952
1953 /*
1954 * Defer the configuration of the specified device until all
1955 * of its parent's devices have been attached.
1956 */
1957 void
1958 config_defer(device_t dev, void (*func)(device_t))
1959 {
1960 struct deferred_config *dc;
1961
1962 if (dev->dv_parent == NULL)
1963 panic("config_defer: can't defer config of a root device");
1964
1965 #ifdef DIAGNOSTIC
1966 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1967 if (dc->dc_dev == dev)
1968 panic("config_defer: deferred twice");
1969 }
1970 #endif
1971
1972 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1973 if (dc == NULL)
1974 panic("config_defer: unable to allocate callback");
1975
1976 dc->dc_dev = dev;
1977 dc->dc_func = func;
1978 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1979 config_pending_incr(dev);
1980 }
1981
1982 /*
1983 * Defer some autoconfiguration for a device until after interrupts
1984 * are enabled.
1985 */
1986 void
1987 config_interrupts(device_t dev, void (*func)(device_t))
1988 {
1989 struct deferred_config *dc;
1990
1991 /*
1992 * If interrupts are enabled, callback now.
1993 */
1994 if (cold == 0) {
1995 (*func)(dev);
1996 return;
1997 }
1998
1999 #ifdef DIAGNOSTIC
2000 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
2001 if (dc->dc_dev == dev)
2002 panic("config_interrupts: deferred twice");
2003 }
2004 #endif
2005
2006 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2007 if (dc == NULL)
2008 panic("config_interrupts: unable to allocate callback");
2009
2010 dc->dc_dev = dev;
2011 dc->dc_func = func;
2012 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2013 config_pending_incr(dev);
2014 }
2015
2016 /*
2017 * Defer some autoconfiguration for a device until after root file system
2018 * is mounted (to load firmware etc).
2019 */
2020 void
2021 config_mountroot(device_t dev, void (*func)(device_t))
2022 {
2023 struct deferred_config *dc;
2024
2025 /*
2026 * If root file system is mounted, callback now.
2027 */
2028 if (root_is_mounted) {
2029 (*func)(dev);
2030 return;
2031 }
2032
2033 #ifdef DIAGNOSTIC
2034 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
2035 if (dc->dc_dev == dev)
2036 panic("%s: deferred twice", __func__);
2037 }
2038 #endif
2039
2040 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2041 if (dc == NULL)
2042 panic("%s: unable to allocate callback", __func__);
2043
2044 dc->dc_dev = dev;
2045 dc->dc_func = func;
2046 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2047 }
2048
2049 /*
2050 * Process a deferred configuration queue.
2051 */
2052 static void
2053 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2054 {
2055 struct deferred_config *dc, *ndc;
2056
2057 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
2058 ndc = TAILQ_NEXT(dc, dc_queue);
2059 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2060 TAILQ_REMOVE(queue, dc, dc_queue);
2061 (*dc->dc_func)(dc->dc_dev);
2062 config_pending_decr(dc->dc_dev);
2063 kmem_free(dc, sizeof(*dc));
2064 }
2065 }
2066 }
2067
2068 /*
2069 * Manipulate the config_pending semaphore.
2070 */
2071 void
2072 config_pending_incr(device_t dev)
2073 {
2074
2075 mutex_enter(&config_misc_lock);
2076 config_pending++;
2077 #ifdef DEBUG_AUTOCONF
2078 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2079 #endif
2080 mutex_exit(&config_misc_lock);
2081 }
2082
2083 void
2084 config_pending_decr(device_t dev)
2085 {
2086
2087 #ifdef DIAGNOSTIC
2088 if (config_pending == 0)
2089 panic("config_pending_decr: config_pending == 0");
2090 #endif
2091 mutex_enter(&config_misc_lock);
2092 config_pending--;
2093 #ifdef DEBUG_AUTOCONF
2094 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2095 #endif
2096 if (config_pending == 0)
2097 cv_broadcast(&config_misc_cv);
2098 mutex_exit(&config_misc_lock);
2099 }
2100
2101 /*
2102 * Register a "finalization" routine. Finalization routines are
2103 * called iteratively once all real devices have been found during
2104 * autoconfiguration, for as long as any one finalizer has done
2105 * any work.
2106 */
2107 int
2108 config_finalize_register(device_t dev, int (*fn)(device_t))
2109 {
2110 struct finalize_hook *f;
2111
2112 /*
2113 * If finalization has already been done, invoke the
2114 * callback function now.
2115 */
2116 if (config_finalize_done) {
2117 while ((*fn)(dev) != 0)
2118 /* loop */ ;
2119 return 0;
2120 }
2121
2122 /* Ensure this isn't already on the list. */
2123 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2124 if (f->f_func == fn && f->f_dev == dev)
2125 return EEXIST;
2126 }
2127
2128 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2129 f->f_func = fn;
2130 f->f_dev = dev;
2131 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2132
2133 return 0;
2134 }
2135
2136 void
2137 config_finalize(void)
2138 {
2139 struct finalize_hook *f;
2140 struct pdevinit *pdev;
2141 extern struct pdevinit pdevinit[];
2142 int errcnt, rv;
2143
2144 /*
2145 * Now that device driver threads have been created, wait for
2146 * them to finish any deferred autoconfiguration.
2147 */
2148 mutex_enter(&config_misc_lock);
2149 while (config_pending != 0)
2150 cv_wait(&config_misc_cv, &config_misc_lock);
2151 mutex_exit(&config_misc_lock);
2152
2153 KERNEL_LOCK(1, NULL);
2154
2155 /* Attach pseudo-devices. */
2156 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2157 (*pdev->pdev_attach)(pdev->pdev_count);
2158
2159 /* Run the hooks until none of them does any work. */
2160 do {
2161 rv = 0;
2162 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2163 rv |= (*f->f_func)(f->f_dev);
2164 } while (rv != 0);
2165
2166 config_finalize_done = 1;
2167
2168 /* Now free all the hooks. */
2169 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2170 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2171 kmem_free(f, sizeof(*f));
2172 }
2173
2174 KERNEL_UNLOCK_ONE(NULL);
2175
2176 errcnt = aprint_get_error_count();
2177 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2178 (boothowto & AB_VERBOSE) == 0) {
2179 mutex_enter(&config_misc_lock);
2180 if (config_do_twiddle) {
2181 config_do_twiddle = 0;
2182 printf_nolog(" done.\n");
2183 }
2184 mutex_exit(&config_misc_lock);
2185 if (errcnt != 0) {
2186 printf("WARNING: %d error%s while detecting hardware; "
2187 "check system log.\n", errcnt,
2188 errcnt == 1 ? "" : "s");
2189 }
2190 }
2191 }
2192
2193 void
2194 config_twiddle_init(void)
2195 {
2196
2197 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2198 config_do_twiddle = 1;
2199 }
2200 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2201 }
2202
2203 void
2204 config_twiddle_fn(void *cookie)
2205 {
2206
2207 mutex_enter(&config_misc_lock);
2208 if (config_do_twiddle) {
2209 twiddle();
2210 callout_schedule(&config_twiddle_ch, mstohz(100));
2211 }
2212 mutex_exit(&config_misc_lock);
2213 }
2214
2215 static void
2216 config_alldevs_enter(struct alldevs_foray *af)
2217 {
2218 TAILQ_INIT(&af->af_garbage);
2219 mutex_enter(&alldevs_mtx);
2220 config_collect_garbage(&af->af_garbage);
2221 }
2222
2223 static void
2224 config_alldevs_exit(struct alldevs_foray *af)
2225 {
2226 mutex_exit(&alldevs_mtx);
2227 config_dump_garbage(&af->af_garbage);
2228 }
2229
2230 /*
2231 * device_lookup:
2232 *
2233 * Look up a device instance for a given driver.
2234 */
2235 device_t
2236 device_lookup(cfdriver_t cd, int unit)
2237 {
2238 device_t dv;
2239
2240 mutex_enter(&alldevs_mtx);
2241 if (unit < 0 || unit >= cd->cd_ndevs)
2242 dv = NULL;
2243 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2244 dv = NULL;
2245 mutex_exit(&alldevs_mtx);
2246
2247 return dv;
2248 }
2249
2250 /*
2251 * device_lookup_private:
2252 *
2253 * Look up a softc instance for a given driver.
2254 */
2255 void *
2256 device_lookup_private(cfdriver_t cd, int unit)
2257 {
2258
2259 return device_private(device_lookup(cd, unit));
2260 }
2261
2262 /*
2263 * device_find_by_xname:
2264 *
2265 * Returns the device of the given name or NULL if it doesn't exist.
2266 */
2267 device_t
2268 device_find_by_xname(const char *name)
2269 {
2270 device_t dv;
2271 deviter_t di;
2272
2273 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2274 if (strcmp(device_xname(dv), name) == 0)
2275 break;
2276 }
2277 deviter_release(&di);
2278
2279 return dv;
2280 }
2281
2282 /*
2283 * device_find_by_driver_unit:
2284 *
2285 * Returns the device of the given driver name and unit or
2286 * NULL if it doesn't exist.
2287 */
2288 device_t
2289 device_find_by_driver_unit(const char *name, int unit)
2290 {
2291 struct cfdriver *cd;
2292
2293 if ((cd = config_cfdriver_lookup(name)) == NULL)
2294 return NULL;
2295 return device_lookup(cd, unit);
2296 }
2297
2298 /*
2299 * Power management related functions.
2300 */
2301
2302 bool
2303 device_pmf_is_registered(device_t dev)
2304 {
2305 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2306 }
2307
2308 bool
2309 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2310 {
2311 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2312 return true;
2313 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2314 return false;
2315 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2316 dev->dv_driver_suspend != NULL &&
2317 !(*dev->dv_driver_suspend)(dev, qual))
2318 return false;
2319
2320 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2321 return true;
2322 }
2323
2324 bool
2325 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2326 {
2327 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2328 return true;
2329 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2330 return false;
2331 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2332 dev->dv_driver_resume != NULL &&
2333 !(*dev->dv_driver_resume)(dev, qual))
2334 return false;
2335
2336 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2337 return true;
2338 }
2339
2340 bool
2341 device_pmf_driver_shutdown(device_t dev, int how)
2342 {
2343
2344 if (*dev->dv_driver_shutdown != NULL &&
2345 !(*dev->dv_driver_shutdown)(dev, how))
2346 return false;
2347 return true;
2348 }
2349
2350 bool
2351 device_pmf_driver_register(device_t dev,
2352 bool (*suspend)(device_t, const pmf_qual_t *),
2353 bool (*resume)(device_t, const pmf_qual_t *),
2354 bool (*shutdown)(device_t, int))
2355 {
2356 dev->dv_driver_suspend = suspend;
2357 dev->dv_driver_resume = resume;
2358 dev->dv_driver_shutdown = shutdown;
2359 dev->dv_flags |= DVF_POWER_HANDLERS;
2360 return true;
2361 }
2362
2363 static const char *
2364 curlwp_name(void)
2365 {
2366 if (curlwp->l_name != NULL)
2367 return curlwp->l_name;
2368 else
2369 return curlwp->l_proc->p_comm;
2370 }
2371
2372 void
2373 device_pmf_driver_deregister(device_t dev)
2374 {
2375 device_lock_t dvl = device_getlock(dev);
2376
2377 dev->dv_driver_suspend = NULL;
2378 dev->dv_driver_resume = NULL;
2379
2380 mutex_enter(&dvl->dvl_mtx);
2381 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2382 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2383 /* Wake a thread that waits for the lock. That
2384 * thread will fail to acquire the lock, and then
2385 * it will wake the next thread that waits for the
2386 * lock, or else it will wake us.
2387 */
2388 cv_signal(&dvl->dvl_cv);
2389 pmflock_debug(dev, __func__, __LINE__);
2390 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2391 pmflock_debug(dev, __func__, __LINE__);
2392 }
2393 mutex_exit(&dvl->dvl_mtx);
2394 }
2395
2396 bool
2397 device_pmf_driver_child_register(device_t dev)
2398 {
2399 device_t parent = device_parent(dev);
2400
2401 if (parent == NULL || parent->dv_driver_child_register == NULL)
2402 return true;
2403 return (*parent->dv_driver_child_register)(dev);
2404 }
2405
2406 void
2407 device_pmf_driver_set_child_register(device_t dev,
2408 bool (*child_register)(device_t))
2409 {
2410 dev->dv_driver_child_register = child_register;
2411 }
2412
2413 static void
2414 pmflock_debug(device_t dev, const char *func, int line)
2415 {
2416 device_lock_t dvl = device_getlock(dev);
2417
2418 aprint_debug_dev(dev,
2419 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2420 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2421 }
2422
2423 static bool
2424 device_pmf_lock1(device_t dev)
2425 {
2426 device_lock_t dvl = device_getlock(dev);
2427
2428 while (device_pmf_is_registered(dev) &&
2429 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2430 dvl->dvl_nwait++;
2431 pmflock_debug(dev, __func__, __LINE__);
2432 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2433 pmflock_debug(dev, __func__, __LINE__);
2434 dvl->dvl_nwait--;
2435 }
2436 if (!device_pmf_is_registered(dev)) {
2437 pmflock_debug(dev, __func__, __LINE__);
2438 /* We could not acquire the lock, but some other thread may
2439 * wait for it, also. Wake that thread.
2440 */
2441 cv_signal(&dvl->dvl_cv);
2442 return false;
2443 }
2444 dvl->dvl_nlock++;
2445 dvl->dvl_holder = curlwp;
2446 pmflock_debug(dev, __func__, __LINE__);
2447 return true;
2448 }
2449
2450 bool
2451 device_pmf_lock(device_t dev)
2452 {
2453 bool rc;
2454 device_lock_t dvl = device_getlock(dev);
2455
2456 mutex_enter(&dvl->dvl_mtx);
2457 rc = device_pmf_lock1(dev);
2458 mutex_exit(&dvl->dvl_mtx);
2459
2460 return rc;
2461 }
2462
2463 void
2464 device_pmf_unlock(device_t dev)
2465 {
2466 device_lock_t dvl = device_getlock(dev);
2467
2468 KASSERT(dvl->dvl_nlock > 0);
2469 mutex_enter(&dvl->dvl_mtx);
2470 if (--dvl->dvl_nlock == 0)
2471 dvl->dvl_holder = NULL;
2472 cv_signal(&dvl->dvl_cv);
2473 pmflock_debug(dev, __func__, __LINE__);
2474 mutex_exit(&dvl->dvl_mtx);
2475 }
2476
2477 device_lock_t
2478 device_getlock(device_t dev)
2479 {
2480 return &dev->dv_lock;
2481 }
2482
2483 void *
2484 device_pmf_bus_private(device_t dev)
2485 {
2486 return dev->dv_bus_private;
2487 }
2488
2489 bool
2490 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2491 {
2492 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2493 return true;
2494 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2495 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2496 return false;
2497 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2498 dev->dv_bus_suspend != NULL &&
2499 !(*dev->dv_bus_suspend)(dev, qual))
2500 return false;
2501
2502 dev->dv_flags |= DVF_BUS_SUSPENDED;
2503 return true;
2504 }
2505
2506 bool
2507 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2508 {
2509 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2510 return true;
2511 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2512 dev->dv_bus_resume != NULL &&
2513 !(*dev->dv_bus_resume)(dev, qual))
2514 return false;
2515
2516 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2517 return true;
2518 }
2519
2520 bool
2521 device_pmf_bus_shutdown(device_t dev, int how)
2522 {
2523
2524 if (*dev->dv_bus_shutdown != NULL &&
2525 !(*dev->dv_bus_shutdown)(dev, how))
2526 return false;
2527 return true;
2528 }
2529
2530 void
2531 device_pmf_bus_register(device_t dev, void *priv,
2532 bool (*suspend)(device_t, const pmf_qual_t *),
2533 bool (*resume)(device_t, const pmf_qual_t *),
2534 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2535 {
2536 dev->dv_bus_private = priv;
2537 dev->dv_bus_resume = resume;
2538 dev->dv_bus_suspend = suspend;
2539 dev->dv_bus_shutdown = shutdown;
2540 dev->dv_bus_deregister = deregister;
2541 }
2542
2543 void
2544 device_pmf_bus_deregister(device_t dev)
2545 {
2546 if (dev->dv_bus_deregister == NULL)
2547 return;
2548 (*dev->dv_bus_deregister)(dev);
2549 dev->dv_bus_private = NULL;
2550 dev->dv_bus_suspend = NULL;
2551 dev->dv_bus_resume = NULL;
2552 dev->dv_bus_deregister = NULL;
2553 }
2554
2555 void *
2556 device_pmf_class_private(device_t dev)
2557 {
2558 return dev->dv_class_private;
2559 }
2560
2561 bool
2562 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2563 {
2564 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2565 return true;
2566 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2567 dev->dv_class_suspend != NULL &&
2568 !(*dev->dv_class_suspend)(dev, qual))
2569 return false;
2570
2571 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2572 return true;
2573 }
2574
2575 bool
2576 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2577 {
2578 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2579 return true;
2580 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2581 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2582 return false;
2583 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2584 dev->dv_class_resume != NULL &&
2585 !(*dev->dv_class_resume)(dev, qual))
2586 return false;
2587
2588 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2589 return true;
2590 }
2591
2592 void
2593 device_pmf_class_register(device_t dev, void *priv,
2594 bool (*suspend)(device_t, const pmf_qual_t *),
2595 bool (*resume)(device_t, const pmf_qual_t *),
2596 void (*deregister)(device_t))
2597 {
2598 dev->dv_class_private = priv;
2599 dev->dv_class_suspend = suspend;
2600 dev->dv_class_resume = resume;
2601 dev->dv_class_deregister = deregister;
2602 }
2603
2604 void
2605 device_pmf_class_deregister(device_t dev)
2606 {
2607 if (dev->dv_class_deregister == NULL)
2608 return;
2609 (*dev->dv_class_deregister)(dev);
2610 dev->dv_class_private = NULL;
2611 dev->dv_class_suspend = NULL;
2612 dev->dv_class_resume = NULL;
2613 dev->dv_class_deregister = NULL;
2614 }
2615
2616 bool
2617 device_active(device_t dev, devactive_t type)
2618 {
2619 size_t i;
2620
2621 if (dev->dv_activity_count == 0)
2622 return false;
2623
2624 for (i = 0; i < dev->dv_activity_count; ++i) {
2625 if (dev->dv_activity_handlers[i] == NULL)
2626 break;
2627 (*dev->dv_activity_handlers[i])(dev, type);
2628 }
2629
2630 return true;
2631 }
2632
2633 bool
2634 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2635 {
2636 void (**new_handlers)(device_t, devactive_t);
2637 void (**old_handlers)(device_t, devactive_t);
2638 size_t i, old_size, new_size;
2639 int s;
2640
2641 old_handlers = dev->dv_activity_handlers;
2642 old_size = dev->dv_activity_count;
2643
2644 KASSERT(old_size == 0 || old_handlers != NULL);
2645
2646 for (i = 0; i < old_size; ++i) {
2647 KASSERT(old_handlers[i] != handler);
2648 if (old_handlers[i] == NULL) {
2649 old_handlers[i] = handler;
2650 return true;
2651 }
2652 }
2653
2654 new_size = old_size + 4;
2655 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2656
2657 for (i = 0; i < old_size; ++i)
2658 new_handlers[i] = old_handlers[i];
2659 new_handlers[old_size] = handler;
2660 for (i = old_size+1; i < new_size; ++i)
2661 new_handlers[i] = NULL;
2662
2663 s = splhigh();
2664 dev->dv_activity_count = new_size;
2665 dev->dv_activity_handlers = new_handlers;
2666 splx(s);
2667
2668 if (old_size > 0)
2669 kmem_free(old_handlers, sizeof(void * [old_size]));
2670
2671 return true;
2672 }
2673
2674 void
2675 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2676 {
2677 void (**old_handlers)(device_t, devactive_t);
2678 size_t i, old_size;
2679 int s;
2680
2681 old_handlers = dev->dv_activity_handlers;
2682 old_size = dev->dv_activity_count;
2683
2684 for (i = 0; i < old_size; ++i) {
2685 if (old_handlers[i] == handler)
2686 break;
2687 if (old_handlers[i] == NULL)
2688 return; /* XXX panic? */
2689 }
2690
2691 if (i == old_size)
2692 return; /* XXX panic? */
2693
2694 for (; i < old_size - 1; ++i) {
2695 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2696 continue;
2697
2698 if (i == 0) {
2699 s = splhigh();
2700 dev->dv_activity_count = 0;
2701 dev->dv_activity_handlers = NULL;
2702 splx(s);
2703 kmem_free(old_handlers, sizeof(void *[old_size]));
2704 }
2705 return;
2706 }
2707 old_handlers[i] = NULL;
2708 }
2709
2710 /* Return true iff the device_t `dev' exists at generation `gen'. */
2711 static bool
2712 device_exists_at(device_t dv, devgen_t gen)
2713 {
2714 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2715 dv->dv_add_gen <= gen;
2716 }
2717
2718 static bool
2719 deviter_visits(const deviter_t *di, device_t dv)
2720 {
2721 return device_exists_at(dv, di->di_gen);
2722 }
2723
2724 /*
2725 * Device Iteration
2726 *
2727 * deviter_t: a device iterator. Holds state for a "walk" visiting
2728 * each device_t's in the device tree.
2729 *
2730 * deviter_init(di, flags): initialize the device iterator `di'
2731 * to "walk" the device tree. deviter_next(di) will return
2732 * the first device_t in the device tree, or NULL if there are
2733 * no devices.
2734 *
2735 * `flags' is one or more of DEVITER_F_RW, indicating that the
2736 * caller intends to modify the device tree by calling
2737 * config_detach(9) on devices in the order that the iterator
2738 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2739 * nearest the "root" of the device tree to be returned, first;
2740 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2741 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2742 * indicating both that deviter_init() should not respect any
2743 * locks on the device tree, and that deviter_next(di) may run
2744 * in more than one LWP before the walk has finished.
2745 *
2746 * Only one DEVITER_F_RW iterator may be in the device tree at
2747 * once.
2748 *
2749 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2750 *
2751 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2752 * DEVITER_F_LEAVES_FIRST are used in combination.
2753 *
2754 * deviter_first(di, flags): initialize the device iterator `di'
2755 * and return the first device_t in the device tree, or NULL
2756 * if there are no devices. The statement
2757 *
2758 * dv = deviter_first(di);
2759 *
2760 * is shorthand for
2761 *
2762 * deviter_init(di);
2763 * dv = deviter_next(di);
2764 *
2765 * deviter_next(di): return the next device_t in the device tree,
2766 * or NULL if there are no more devices. deviter_next(di)
2767 * is undefined if `di' was not initialized with deviter_init() or
2768 * deviter_first().
2769 *
2770 * deviter_release(di): stops iteration (subsequent calls to
2771 * deviter_next() will return NULL), releases any locks and
2772 * resources held by the device iterator.
2773 *
2774 * Device iteration does not return device_t's in any particular
2775 * order. An iterator will never return the same device_t twice.
2776 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2777 * is called repeatedly on the same `di', it will eventually return
2778 * NULL. It is ok to attach/detach devices during device iteration.
2779 */
2780 void
2781 deviter_init(deviter_t *di, deviter_flags_t flags)
2782 {
2783 device_t dv;
2784
2785 memset(di, 0, sizeof(*di));
2786
2787 mutex_enter(&alldevs_mtx);
2788 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2789 flags |= DEVITER_F_RW;
2790
2791 if ((flags & DEVITER_F_RW) != 0)
2792 alldevs_nwrite++;
2793 else
2794 alldevs_nread++;
2795 di->di_gen = alldevs_gen++;
2796 mutex_exit(&alldevs_mtx);
2797
2798 di->di_flags = flags;
2799
2800 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2801 case DEVITER_F_LEAVES_FIRST:
2802 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2803 if (!deviter_visits(di, dv))
2804 continue;
2805 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2806 }
2807 break;
2808 case DEVITER_F_ROOT_FIRST:
2809 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2810 if (!deviter_visits(di, dv))
2811 continue;
2812 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2813 }
2814 break;
2815 default:
2816 break;
2817 }
2818
2819 deviter_reinit(di);
2820 }
2821
2822 static void
2823 deviter_reinit(deviter_t *di)
2824 {
2825 if ((di->di_flags & DEVITER_F_RW) != 0)
2826 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2827 else
2828 di->di_prev = TAILQ_FIRST(&alldevs);
2829 }
2830
2831 device_t
2832 deviter_first(deviter_t *di, deviter_flags_t flags)
2833 {
2834 deviter_init(di, flags);
2835 return deviter_next(di);
2836 }
2837
2838 static device_t
2839 deviter_next2(deviter_t *di)
2840 {
2841 device_t dv;
2842
2843 dv = di->di_prev;
2844
2845 if (dv == NULL)
2846 return NULL;
2847
2848 if ((di->di_flags & DEVITER_F_RW) != 0)
2849 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2850 else
2851 di->di_prev = TAILQ_NEXT(dv, dv_list);
2852
2853 return dv;
2854 }
2855
2856 static device_t
2857 deviter_next1(deviter_t *di)
2858 {
2859 device_t dv;
2860
2861 do {
2862 dv = deviter_next2(di);
2863 } while (dv != NULL && !deviter_visits(di, dv));
2864
2865 return dv;
2866 }
2867
2868 device_t
2869 deviter_next(deviter_t *di)
2870 {
2871 device_t dv = NULL;
2872
2873 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2874 case 0:
2875 return deviter_next1(di);
2876 case DEVITER_F_LEAVES_FIRST:
2877 while (di->di_curdepth >= 0) {
2878 if ((dv = deviter_next1(di)) == NULL) {
2879 di->di_curdepth--;
2880 deviter_reinit(di);
2881 } else if (dv->dv_depth == di->di_curdepth)
2882 break;
2883 }
2884 return dv;
2885 case DEVITER_F_ROOT_FIRST:
2886 while (di->di_curdepth <= di->di_maxdepth) {
2887 if ((dv = deviter_next1(di)) == NULL) {
2888 di->di_curdepth++;
2889 deviter_reinit(di);
2890 } else if (dv->dv_depth == di->di_curdepth)
2891 break;
2892 }
2893 return dv;
2894 default:
2895 return NULL;
2896 }
2897 }
2898
2899 void
2900 deviter_release(deviter_t *di)
2901 {
2902 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2903
2904 mutex_enter(&alldevs_mtx);
2905 if (rw)
2906 --alldevs_nwrite;
2907 else
2908 --alldevs_nread;
2909 /* XXX wake a garbage-collection thread */
2910 mutex_exit(&alldevs_mtx);
2911 }
2912
2913 const char *
2914 cfdata_ifattr(const struct cfdata *cf)
2915 {
2916 return cf->cf_pspec->cfp_iattr;
2917 }
2918
2919 bool
2920 ifattr_match(const char *snull, const char *t)
2921 {
2922 return (snull == NULL) || strcmp(snull, t) == 0;
2923 }
2924
2925 void
2926 null_childdetached(device_t self, device_t child)
2927 {
2928 /* do nothing */
2929 }
2930
2931 static void
2932 sysctl_detach_setup(struct sysctllog **clog)
2933 {
2934
2935 sysctl_createv(clog, 0, NULL, NULL,
2936 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2937 CTLTYPE_BOOL, "detachall",
2938 SYSCTL_DESCR("Detach all devices at shutdown"),
2939 NULL, 0, &detachall, 0,
2940 CTL_KERN, CTL_CREATE, CTL_EOL);
2941 }
2942