Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.246.2.4
      1 /* $NetBSD: subr_autoconf.c,v 1.246.2.4 2016/07/22 02:05:39 pgoyette Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.246.2.4 2016/07/22 02:05:39 pgoyette Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/disklabel.h>
     90 #include <sys/conf.h>
     91 #include <sys/kauth.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/mount.h>
    102 #include <sys/namei.h>
    103 #include <sys/unistd.h>
    104 #include <sys/fcntl.h>
    105 #include <sys/lockf.h>
    106 #include <sys/callout.h>
    107 #include <sys/devmon.h>
    108 #include <sys/cpu.h>
    109 #include <sys/sysctl.h>
    110 #include <sys/localcount.h>
    111 
    112 #include <sys/disk.h>
    113 
    114 #include <sys/rndsource.h>
    115 
    116 #include <machine/limits.h>
    117 
    118 /*
    119  * Autoconfiguration subroutines.
    120  */
    121 
    122 /*
    123  * Device autoconfiguration timings are mixed into the entropy pool.
    124  */
    125 extern krndsource_t rnd_autoconf_source;
    126 
    127 /*
    128  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    129  * devices and drivers are found via these tables.
    130  */
    131 extern struct cfdata cfdata[];
    132 extern const short cfroots[];
    133 
    134 /*
    135  * List of all cfdriver structures.  We use this to detect duplicates
    136  * when other cfdrivers are loaded.
    137  */
    138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    139 extern struct cfdriver * const cfdriver_list_initial[];
    140 
    141 /*
    142  * Initial list of cfattach's.
    143  */
    144 extern const struct cfattachinit cfattachinit[];
    145 
    146 /*
    147  * List of cfdata tables.  We always have one such list -- the one
    148  * built statically when the kernel was configured.
    149  */
    150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    151 static struct cftable initcftable;
    152 
    153 #define	ROOT ((device_t)NULL)
    154 
    155 struct matchinfo {
    156 	cfsubmatch_t fn;
    157 	device_t parent;
    158 	const int *locs;
    159 	void	*aux;
    160 	struct	cfdata *match;
    161 	int	pri;
    162 };
    163 
    164 struct alldevs_foray {
    165 	int			af_s;
    166 	struct devicelist	af_garbage;
    167 };
    168 
    169 static char *number(char *, int);
    170 static void mapply(struct matchinfo *, cfdata_t);
    171 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    172 static void config_devdelete(device_t);
    173 static void config_devunlink(device_t, struct devicelist *);
    174 static void config_makeroom(int, struct cfdriver *);
    175 static void config_devlink(device_t);
    176 static void config_alldevs_enter(struct alldevs_foray *);
    177 static void config_alldevs_exit(struct alldevs_foray *);
    178 static void config_add_attrib_dict(device_t);
    179 
    180 static void config_collect_garbage(struct devicelist *);
    181 static void config_dump_garbage(struct devicelist *);
    182 
    183 static void pmflock_debug(device_t, const char *, int);
    184 
    185 static device_t deviter_next1(deviter_t *);
    186 static void deviter_reinit(deviter_t *);
    187 
    188 struct deferred_config {
    189 	TAILQ_ENTRY(deferred_config) dc_queue;
    190 	device_t dc_dev;
    191 	void (*dc_func)(device_t);
    192 };
    193 
    194 TAILQ_HEAD(deferred_config_head, deferred_config);
    195 
    196 struct deferred_config_head deferred_config_queue =
    197 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    198 struct deferred_config_head interrupt_config_queue =
    199 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    200 int interrupt_config_threads = 8;
    201 struct deferred_config_head mountroot_config_queue =
    202 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    203 int mountroot_config_threads = 2;
    204 static lwp_t **mountroot_config_lwpids;
    205 static size_t mountroot_config_lwpids_size;
    206 static bool root_is_mounted = false;
    207 
    208 static void config_process_deferred(struct deferred_config_head *, device_t);
    209 
    210 /* Hooks to finalize configuration once all real devices have been found. */
    211 struct finalize_hook {
    212 	TAILQ_ENTRY(finalize_hook) f_list;
    213 	int (*f_func)(device_t);
    214 	device_t f_dev;
    215 };
    216 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    217 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    218 static int config_finalize_done;
    219 
    220 /* list of all devices */
    221 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    222 static kmutex_t alldevs_mtx;
    223 static volatile bool alldevs_garbage = false;
    224 static volatile devgen_t alldevs_gen = 1;
    225 static volatile int alldevs_nread = 0;
    226 static volatile int alldevs_nwrite = 0;
    227 
    228 static int config_pending;		/* semaphore for mountroot */
    229 static kmutex_t config_misc_lock;
    230 static kcondvar_t config_misc_cv;
    231 static kcondvar_t config_drain_cv;
    232 
    233 static bool detachall = false;
    234 
    235 #define	STREQ(s1, s2)			\
    236 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    237 
    238 static bool config_initialized = false;	/* config_init() has been called. */
    239 
    240 static int config_do_twiddle;
    241 static callout_t config_twiddle_ch;
    242 
    243 static void sysctl_detach_setup(struct sysctllog **);
    244 
    245 int no_devmon_insert(const char *, prop_dictionary_t);
    246 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
    247 
    248 typedef int (*cfdriver_fn)(struct cfdriver *);
    249 static int
    250 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    251 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    252 	const char *style, bool dopanic)
    253 {
    254 	void (*pr)(const char *, ...) __printflike(1, 2) =
    255 	    dopanic ? panic : printf;
    256 	int i, error = 0, e2 __diagused;
    257 
    258 	for (i = 0; cfdriverv[i] != NULL; i++) {
    259 		if ((error = drv_do(cfdriverv[i])) != 0) {
    260 			pr("configure: `%s' driver %s failed: %d",
    261 			    cfdriverv[i]->cd_name, style, error);
    262 			goto bad;
    263 		}
    264 	}
    265 
    266 	KASSERT(error == 0);
    267 	return 0;
    268 
    269  bad:
    270 	printf("\n");
    271 	for (i--; i >= 0; i--) {
    272 		e2 = drv_undo(cfdriverv[i]);
    273 		KASSERT(e2 == 0);
    274 	}
    275 
    276 	return error;
    277 }
    278 
    279 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    280 static int
    281 frob_cfattachvec(const struct cfattachinit *cfattachv,
    282 	cfattach_fn att_do, cfattach_fn att_undo,
    283 	const char *style, bool dopanic)
    284 {
    285 	const struct cfattachinit *cfai = NULL;
    286 	void (*pr)(const char *, ...) __printflike(1, 2) =
    287 	    dopanic ? panic : printf;
    288 	int j = 0, error = 0, e2 __diagused;
    289 
    290 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    291 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    292 			if ((error = att_do(cfai->cfai_name,
    293 			    cfai->cfai_list[j])) != 0) {
    294 				pr("configure: attachment `%s' "
    295 				    "of `%s' driver %s failed: %d",
    296 				    cfai->cfai_list[j]->ca_name,
    297 				    cfai->cfai_name, style, error);
    298 				goto bad;
    299 			}
    300 		}
    301 	}
    302 
    303 	KASSERT(error == 0);
    304 	return 0;
    305 
    306  bad:
    307 	/*
    308 	 * Rollback in reverse order.  dunno if super-important, but
    309 	 * do that anyway.  Although the code looks a little like
    310 	 * someone did a little integration (in the math sense).
    311 	 */
    312 	printf("\n");
    313 	if (cfai) {
    314 		bool last;
    315 
    316 		for (last = false; last == false; ) {
    317 			if (cfai == &cfattachv[0])
    318 				last = true;
    319 			for (j--; j >= 0; j--) {
    320 				e2 = att_undo(cfai->cfai_name,
    321 				    cfai->cfai_list[j]);
    322 				KASSERT(e2 == 0);
    323 			}
    324 			if (!last) {
    325 				cfai--;
    326 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    327 					;
    328 			}
    329 		}
    330 	}
    331 
    332 	return error;
    333 }
    334 
    335 /*
    336  * Initialize the autoconfiguration data structures.  Normally this
    337  * is done by configure(), but some platforms need to do this very
    338  * early (to e.g. initialize the console).
    339  */
    340 void
    341 config_init(void)
    342 {
    343 
    344 	KASSERT(config_initialized == false);
    345 
    346 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
    347 
    348 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    349 	cv_init(&config_misc_cv, "cfgmisc");
    350 	cv_init(&config_drain_cv, "cfgdrain");
    351 
    352 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    353 
    354 	frob_cfdrivervec(cfdriver_list_initial,
    355 	    config_cfdriver_attach, NULL, "bootstrap", true);
    356 	frob_cfattachvec(cfattachinit,
    357 	    config_cfattach_attach, NULL, "bootstrap", true);
    358 
    359 	initcftable.ct_cfdata = cfdata;
    360 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    361 
    362 	config_initialized = true;
    363 }
    364 
    365 /*
    366  * Init or fini drivers and attachments.  Either all or none
    367  * are processed (via rollback).  It would be nice if this were
    368  * atomic to outside consumers, but with the current state of
    369  * locking ...
    370  */
    371 int
    372 config_init_component(struct cfdriver * const *cfdriverv,
    373 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    374 {
    375 	int error;
    376 
    377 	if ((error = frob_cfdrivervec(cfdriverv,
    378 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    379 		return error;
    380 	if ((error = frob_cfattachvec(cfattachv,
    381 	    config_cfattach_attach, config_cfattach_detach,
    382 	    "init", false)) != 0) {
    383 		frob_cfdrivervec(cfdriverv,
    384 	            config_cfdriver_detach, NULL, "init rollback", true);
    385 		return error;
    386 	}
    387 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    388 		frob_cfattachvec(cfattachv,
    389 		    config_cfattach_detach, NULL, "init rollback", true);
    390 		frob_cfdrivervec(cfdriverv,
    391 	            config_cfdriver_detach, NULL, "init rollback", true);
    392 		return error;
    393 	}
    394 
    395 	return 0;
    396 }
    397 
    398 int
    399 config_fini_component(struct cfdriver * const *cfdriverv,
    400 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    401 {
    402 	int error;
    403 
    404 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    405 		return error;
    406 	if ((error = frob_cfattachvec(cfattachv,
    407 	    config_cfattach_detach, config_cfattach_attach,
    408 	    "fini", false)) != 0) {
    409 		if (config_cfdata_attach(cfdatav, 0) != 0)
    410 			panic("config_cfdata fini rollback failed");
    411 		return error;
    412 	}
    413 	if ((error = frob_cfdrivervec(cfdriverv,
    414 	    config_cfdriver_detach, config_cfdriver_attach,
    415 	    "fini", false)) != 0) {
    416 		frob_cfattachvec(cfattachv,
    417 	            config_cfattach_attach, NULL, "fini rollback", true);
    418 		if (config_cfdata_attach(cfdatav, 0) != 0)
    419 			panic("config_cfdata fini rollback failed");
    420 		return error;
    421 	}
    422 
    423 	return 0;
    424 }
    425 
    426 void
    427 config_init_mi(void)
    428 {
    429 
    430 	if (!config_initialized)
    431 		config_init();
    432 
    433 	sysctl_detach_setup(NULL);
    434 }
    435 
    436 void
    437 config_deferred(device_t dev)
    438 {
    439 	config_process_deferred(&deferred_config_queue, dev);
    440 	config_process_deferred(&interrupt_config_queue, dev);
    441 	config_process_deferred(&mountroot_config_queue, dev);
    442 }
    443 
    444 static void
    445 config_interrupts_thread(void *cookie)
    446 {
    447 	struct deferred_config *dc;
    448 
    449 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    450 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    451 		(*dc->dc_func)(dc->dc_dev);
    452 		config_pending_decr(dc->dc_dev);
    453 		kmem_free(dc, sizeof(*dc));
    454 	}
    455 	kthread_exit(0);
    456 }
    457 
    458 void
    459 config_create_interruptthreads(void)
    460 {
    461 	int i;
    462 
    463 	for (i = 0; i < interrupt_config_threads; i++) {
    464 		(void)kthread_create(PRI_NONE, 0, NULL,
    465 		    config_interrupts_thread, NULL, NULL, "configintr");
    466 	}
    467 }
    468 
    469 static void
    470 config_mountroot_thread(void *cookie)
    471 {
    472 	struct deferred_config *dc;
    473 
    474 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    475 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    476 		(*dc->dc_func)(dc->dc_dev);
    477 		kmem_free(dc, sizeof(*dc));
    478 	}
    479 	kthread_exit(0);
    480 }
    481 
    482 void
    483 config_create_mountrootthreads(void)
    484 {
    485 	int i;
    486 
    487 	if (!root_is_mounted)
    488 		root_is_mounted = true;
    489 
    490 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
    491 				       mountroot_config_threads;
    492 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
    493 					     KM_NOSLEEP);
    494 	KASSERT(mountroot_config_lwpids);
    495 	for (i = 0; i < mountroot_config_threads; i++) {
    496 		mountroot_config_lwpids[i] = 0;
    497 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
    498 				     config_mountroot_thread, NULL,
    499 				     &mountroot_config_lwpids[i],
    500 				     "configroot");
    501 	}
    502 }
    503 
    504 void
    505 config_finalize_mountroot(void)
    506 {
    507 	int i, error;
    508 
    509 	for (i = 0; i < mountroot_config_threads; i++) {
    510 		if (mountroot_config_lwpids[i] == 0)
    511 			continue;
    512 
    513 		error = kthread_join(mountroot_config_lwpids[i]);
    514 		if (error)
    515 			printf("%s: thread %x joined with error %d\n",
    516 			       __func__, i, error);
    517 	}
    518 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
    519 }
    520 
    521 /*
    522  * Announce device attach/detach to userland listeners.
    523  */
    524 
    525 int
    526 no_devmon_insert(const char *name, prop_dictionary_t p)
    527 {
    528 
    529 	return ENODEV;
    530 }
    531 
    532 static void
    533 devmon_report_device(device_t dev, bool isattach)
    534 {
    535 	prop_dictionary_t ev;
    536 	const char *parent;
    537 	const char *what;
    538 	device_t pdev = device_parent(dev);
    539 
    540 	/* If currently no drvctl device, just return */
    541 	if (devmon_insert_vec == no_devmon_insert)
    542 		return;
    543 
    544 	ev = prop_dictionary_create();
    545 	if (ev == NULL)
    546 		return;
    547 
    548 	what = (isattach ? "device-attach" : "device-detach");
    549 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    550 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
    551 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
    552 		prop_object_release(ev);
    553 		return;
    554 	}
    555 
    556 	if ((*devmon_insert_vec)(what, ev) != 0)
    557 		prop_object_release(ev);
    558 }
    559 
    560 /*
    561  * Add a cfdriver to the system.
    562  */
    563 int
    564 config_cfdriver_attach(struct cfdriver *cd)
    565 {
    566 	struct cfdriver *lcd;
    567 
    568 	/* Make sure this driver isn't already in the system. */
    569 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    570 		if (STREQ(lcd->cd_name, cd->cd_name))
    571 			return EEXIST;
    572 	}
    573 	LIST_INIT(&cd->cd_attach);
    574 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    575 
    576 	return 0;
    577 }
    578 
    579 /*
    580  * Remove a cfdriver from the system.
    581  */
    582 int
    583 config_cfdriver_detach(struct cfdriver *cd)
    584 {
    585 	struct alldevs_foray af;
    586 	int i, rc = 0;
    587 
    588 	config_alldevs_enter(&af);
    589 	/* Make sure there are no active instances. */
    590 	for (i = 0; i < cd->cd_ndevs; i++) {
    591 		if (cd->cd_devs[i] != NULL) {
    592 			rc = EBUSY;
    593 			break;
    594 		}
    595 	}
    596 	config_alldevs_exit(&af);
    597 	if (rc != 0)
    598 		return rc;
    599 
    600 	/* ...and no attachments loaded. */
    601 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    602 		return EBUSY;
    603 
    604 	LIST_REMOVE(cd, cd_list);
    605 
    606 	KASSERT(cd->cd_devs == NULL);
    607 
    608 	return 0;
    609 }
    610 
    611 /*
    612  * Look up a cfdriver by name.
    613  */
    614 struct cfdriver *
    615 config_cfdriver_lookup(const char *name)
    616 {
    617 	struct cfdriver *cd;
    618 
    619 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    620 		if (STREQ(cd->cd_name, name))
    621 			return cd;
    622 	}
    623 
    624 	return NULL;
    625 }
    626 
    627 /*
    628  * Add a cfattach to the specified driver.
    629  */
    630 int
    631 config_cfattach_attach(const char *driver, struct cfattach *ca)
    632 {
    633 	struct cfattach *lca;
    634 	struct cfdriver *cd;
    635 
    636 	cd = config_cfdriver_lookup(driver);
    637 	if (cd == NULL)
    638 		return ESRCH;
    639 
    640 	/* Make sure this attachment isn't already on this driver. */
    641 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    642 		if (STREQ(lca->ca_name, ca->ca_name))
    643 			return EEXIST;
    644 	}
    645 
    646 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    647 
    648 	return 0;
    649 }
    650 
    651 /*
    652  * Remove a cfattach from the specified driver.
    653  */
    654 int
    655 config_cfattach_detach(const char *driver, struct cfattach *ca)
    656 {
    657 	struct alldevs_foray af;
    658 	struct cfdriver *cd;
    659 	device_t dev;
    660 	int i, rc = 0;
    661 
    662 	cd = config_cfdriver_lookup(driver);
    663 	if (cd == NULL)
    664 		return ESRCH;
    665 
    666 	config_alldevs_enter(&af);
    667 	/* Make sure there are no active instances. */
    668 	for (i = 0; i < cd->cd_ndevs; i++) {
    669 		if ((dev = cd->cd_devs[i]) == NULL)
    670 			continue;
    671 		if (dev->dv_cfattach == ca) {
    672 			rc = EBUSY;
    673 			break;
    674 		}
    675 	}
    676 	config_alldevs_exit(&af);
    677 
    678 	if (rc != 0)
    679 		return rc;
    680 
    681 	LIST_REMOVE(ca, ca_list);
    682 
    683 	return 0;
    684 }
    685 
    686 /*
    687  * Look up a cfattach by name.
    688  */
    689 static struct cfattach *
    690 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    691 {
    692 	struct cfattach *ca;
    693 
    694 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    695 		if (STREQ(ca->ca_name, atname))
    696 			return ca;
    697 	}
    698 
    699 	return NULL;
    700 }
    701 
    702 /*
    703  * Look up a cfattach by driver/attachment name.
    704  */
    705 struct cfattach *
    706 config_cfattach_lookup(const char *name, const char *atname)
    707 {
    708 	struct cfdriver *cd;
    709 
    710 	cd = config_cfdriver_lookup(name);
    711 	if (cd == NULL)
    712 		return NULL;
    713 
    714 	return config_cfattach_lookup_cd(cd, atname);
    715 }
    716 
    717 /*
    718  * Apply the matching function and choose the best.  This is used
    719  * a few times and we want to keep the code small.
    720  */
    721 static void
    722 mapply(struct matchinfo *m, cfdata_t cf)
    723 {
    724 	int pri;
    725 
    726 	if (m->fn != NULL) {
    727 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    728 	} else {
    729 		pri = config_match(m->parent, cf, m->aux);
    730 	}
    731 	if (pri > m->pri) {
    732 		m->match = cf;
    733 		m->pri = pri;
    734 	}
    735 }
    736 
    737 int
    738 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    739 {
    740 	const struct cfiattrdata *ci;
    741 	const struct cflocdesc *cl;
    742 	int nlocs, i;
    743 
    744 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    745 	KASSERT(ci);
    746 	nlocs = ci->ci_loclen;
    747 	KASSERT(!nlocs || locs);
    748 	for (i = 0; i < nlocs; i++) {
    749 		cl = &ci->ci_locdesc[i];
    750 		if (cl->cld_defaultstr != NULL &&
    751 		    cf->cf_loc[i] == cl->cld_default)
    752 			continue;
    753 		if (cf->cf_loc[i] == locs[i])
    754 			continue;
    755 		return 0;
    756 	}
    757 
    758 	return config_match(parent, cf, aux);
    759 }
    760 
    761 /*
    762  * Helper function: check whether the driver supports the interface attribute
    763  * and return its descriptor structure.
    764  */
    765 static const struct cfiattrdata *
    766 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    767 {
    768 	const struct cfiattrdata * const *cpp;
    769 
    770 	if (cd->cd_attrs == NULL)
    771 		return 0;
    772 
    773 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    774 		if (STREQ((*cpp)->ci_name, ia)) {
    775 			/* Match. */
    776 			return *cpp;
    777 		}
    778 	}
    779 	return 0;
    780 }
    781 
    782 /*
    783  * Lookup an interface attribute description by name.
    784  * If the driver is given, consider only its supported attributes.
    785  */
    786 const struct cfiattrdata *
    787 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    788 {
    789 	const struct cfdriver *d;
    790 	const struct cfiattrdata *ia;
    791 
    792 	if (cd)
    793 		return cfdriver_get_iattr(cd, name);
    794 
    795 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    796 		ia = cfdriver_get_iattr(d, name);
    797 		if (ia)
    798 			return ia;
    799 	}
    800 	return 0;
    801 }
    802 
    803 /*
    804  * Determine if `parent' is a potential parent for a device spec based
    805  * on `cfp'.
    806  */
    807 static int
    808 cfparent_match(const device_t parent, const struct cfparent *cfp)
    809 {
    810 	struct cfdriver *pcd;
    811 
    812 	/* We don't match root nodes here. */
    813 	if (cfp == NULL)
    814 		return 0;
    815 
    816 	pcd = parent->dv_cfdriver;
    817 	KASSERT(pcd != NULL);
    818 
    819 	/*
    820 	 * First, ensure this parent has the correct interface
    821 	 * attribute.
    822 	 */
    823 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    824 		return 0;
    825 
    826 	/*
    827 	 * If no specific parent device instance was specified (i.e.
    828 	 * we're attaching to the attribute only), we're done!
    829 	 */
    830 	if (cfp->cfp_parent == NULL)
    831 		return 1;
    832 
    833 	/*
    834 	 * Check the parent device's name.
    835 	 */
    836 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    837 		return 0;	/* not the same parent */
    838 
    839 	/*
    840 	 * Make sure the unit number matches.
    841 	 */
    842 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    843 	    cfp->cfp_unit == parent->dv_unit)
    844 		return 1;
    845 
    846 	/* Unit numbers don't match. */
    847 	return 0;
    848 }
    849 
    850 /*
    851  * Helper for config_cfdata_attach(): check all devices whether it could be
    852  * parent any attachment in the config data table passed, and rescan.
    853  */
    854 static void
    855 rescan_with_cfdata(const struct cfdata *cf)
    856 {
    857 	device_t d;
    858 	const struct cfdata *cf1;
    859 	deviter_t di;
    860 
    861 
    862 	/*
    863 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    864 	 * the outer loop.
    865 	 */
    866 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    867 
    868 		if (!(d->dv_cfattach->ca_rescan))
    869 			continue;
    870 
    871 		for (cf1 = cf; cf1->cf_name; cf1++) {
    872 
    873 			if (!cfparent_match(d, cf1->cf_pspec))
    874 				continue;
    875 
    876 			(*d->dv_cfattach->ca_rescan)(d,
    877 				cfdata_ifattr(cf1), cf1->cf_loc);
    878 
    879 			config_deferred(d);
    880 		}
    881 	}
    882 	deviter_release(&di);
    883 }
    884 
    885 /*
    886  * Attach a supplemental config data table and rescan potential
    887  * parent devices if required.
    888  */
    889 int
    890 config_cfdata_attach(cfdata_t cf, int scannow)
    891 {
    892 	struct cftable *ct;
    893 
    894 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    895 	ct->ct_cfdata = cf;
    896 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    897 
    898 	if (scannow)
    899 		rescan_with_cfdata(cf);
    900 
    901 	return 0;
    902 }
    903 
    904 /*
    905  * Helper for config_cfdata_detach: check whether a device is
    906  * found through any attachment in the config data table.
    907  */
    908 static int
    909 dev_in_cfdata(device_t d, cfdata_t cf)
    910 {
    911 	const struct cfdata *cf1;
    912 
    913 	for (cf1 = cf; cf1->cf_name; cf1++)
    914 		if (d->dv_cfdata == cf1)
    915 			return 1;
    916 
    917 	return 0;
    918 }
    919 
    920 /*
    921  * Detach a supplemental config data table. Detach all devices found
    922  * through that table (and thus keeping references to it) before.
    923  */
    924 int
    925 config_cfdata_detach(cfdata_t cf)
    926 {
    927 	device_t d;
    928 	int error = 0;
    929 	struct cftable *ct;
    930 	deviter_t di;
    931 
    932 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    933 	     d = deviter_next(&di)) {
    934 		if (!dev_in_cfdata(d, cf))
    935 			continue;
    936 		if ((error = config_detach(d, 0)) != 0)
    937 			break;
    938 	}
    939 	deviter_release(&di);
    940 	if (error) {
    941 		aprint_error_dev(d, "unable to detach instance\n");
    942 		return error;
    943 	}
    944 
    945 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    946 		if (ct->ct_cfdata == cf) {
    947 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    948 			kmem_free(ct, sizeof(*ct));
    949 			return 0;
    950 		}
    951 	}
    952 
    953 	/* not found -- shouldn't happen */
    954 	return EINVAL;
    955 }
    956 
    957 /*
    958  * Invoke the "match" routine for a cfdata entry on behalf of
    959  * an external caller, usually a "submatch" routine.
    960  */
    961 int
    962 config_match(device_t parent, cfdata_t cf, void *aux)
    963 {
    964 	struct cfattach *ca;
    965 
    966 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    967 	if (ca == NULL) {
    968 		/* No attachment for this entry, oh well. */
    969 		return 0;
    970 	}
    971 
    972 	return (*ca->ca_match)(parent, cf, aux);
    973 }
    974 
    975 /*
    976  * Iterate over all potential children of some device, calling the given
    977  * function (default being the child's match function) for each one.
    978  * Nonzero returns are matches; the highest value returned is considered
    979  * the best match.  Return the `found child' if we got a match, or NULL
    980  * otherwise.  The `aux' pointer is simply passed on through.
    981  *
    982  * Note that this function is designed so that it can be used to apply
    983  * an arbitrary function to all potential children (its return value
    984  * can be ignored).
    985  */
    986 cfdata_t
    987 config_search_loc(cfsubmatch_t fn, device_t parent,
    988 		  const char *ifattr, const int *locs, void *aux)
    989 {
    990 	struct cftable *ct;
    991 	cfdata_t cf;
    992 	struct matchinfo m;
    993 
    994 	KASSERT(config_initialized);
    995 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
    996 
    997 	m.fn = fn;
    998 	m.parent = parent;
    999 	m.locs = locs;
   1000 	m.aux = aux;
   1001 	m.match = NULL;
   1002 	m.pri = 0;
   1003 
   1004 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1005 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1006 
   1007 			/* We don't match root nodes here. */
   1008 			if (!cf->cf_pspec)
   1009 				continue;
   1010 
   1011 			/*
   1012 			 * Skip cf if no longer eligible, otherwise scan
   1013 			 * through parents for one matching `parent', and
   1014 			 * try match function.
   1015 			 */
   1016 			if (cf->cf_fstate == FSTATE_FOUND)
   1017 				continue;
   1018 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
   1019 			    cf->cf_fstate == FSTATE_DSTAR)
   1020 				continue;
   1021 
   1022 			/*
   1023 			 * If an interface attribute was specified,
   1024 			 * consider only children which attach to
   1025 			 * that attribute.
   1026 			 */
   1027 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
   1028 				continue;
   1029 
   1030 			if (cfparent_match(parent, cf->cf_pspec))
   1031 				mapply(&m, cf);
   1032 		}
   1033 	}
   1034 	return m.match;
   1035 }
   1036 
   1037 cfdata_t
   1038 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
   1039     void *aux)
   1040 {
   1041 
   1042 	return config_search_loc(fn, parent, ifattr, NULL, aux);
   1043 }
   1044 
   1045 /*
   1046  * Find the given root device.
   1047  * This is much like config_search, but there is no parent.
   1048  * Don't bother with multiple cfdata tables; the root node
   1049  * must always be in the initial table.
   1050  */
   1051 cfdata_t
   1052 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1053 {
   1054 	cfdata_t cf;
   1055 	const short *p;
   1056 	struct matchinfo m;
   1057 
   1058 	m.fn = fn;
   1059 	m.parent = ROOT;
   1060 	m.aux = aux;
   1061 	m.match = NULL;
   1062 	m.pri = 0;
   1063 	m.locs = 0;
   1064 	/*
   1065 	 * Look at root entries for matching name.  We do not bother
   1066 	 * with found-state here since only one root should ever be
   1067 	 * searched (and it must be done first).
   1068 	 */
   1069 	for (p = cfroots; *p >= 0; p++) {
   1070 		cf = &cfdata[*p];
   1071 		if (strcmp(cf->cf_name, rootname) == 0)
   1072 			mapply(&m, cf);
   1073 	}
   1074 	return m.match;
   1075 }
   1076 
   1077 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1078 
   1079 /*
   1080  * The given `aux' argument describes a device that has been found
   1081  * on the given parent, but not necessarily configured.  Locate the
   1082  * configuration data for that device (using the submatch function
   1083  * provided, or using candidates' cd_match configuration driver
   1084  * functions) and attach it, and return its device_t.  If the device was
   1085  * not configured, call the given `print' function and return NULL.
   1086  */
   1087 device_t
   1088 config_found_sm_loc(device_t parent,
   1089 		const char *ifattr, const int *locs, void *aux,
   1090 		cfprint_t print, cfsubmatch_t submatch)
   1091 {
   1092 	cfdata_t cf;
   1093 
   1094 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
   1095 		return(config_attach_loc(parent, cf, locs, aux, print));
   1096 	if (print) {
   1097 		if (config_do_twiddle && cold)
   1098 			twiddle();
   1099 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1100 	}
   1101 
   1102 	/*
   1103 	 * This has the effect of mixing in a single timestamp to the
   1104 	 * entropy pool.  Experiments indicate the estimator will almost
   1105 	 * always attribute one bit of entropy to this sample; analysis
   1106 	 * of device attach/detach timestamps on FreeBSD indicates 4
   1107 	 * bits of entropy/sample so this seems appropriately conservative.
   1108 	 */
   1109 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1110 	return NULL;
   1111 }
   1112 
   1113 device_t
   1114 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1115     cfprint_t print)
   1116 {
   1117 
   1118 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
   1119 }
   1120 
   1121 device_t
   1122 config_found(device_t parent, void *aux, cfprint_t print)
   1123 {
   1124 
   1125 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
   1126 }
   1127 
   1128 /*
   1129  * As above, but for root devices.
   1130  */
   1131 device_t
   1132 config_rootfound(const char *rootname, void *aux)
   1133 {
   1134 	cfdata_t cf;
   1135 
   1136 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1137 		return config_attach(ROOT, cf, aux, NULL);
   1138 	aprint_error("root device %s not configured\n", rootname);
   1139 	return NULL;
   1140 }
   1141 
   1142 /* just like sprintf(buf, "%d") except that it works from the end */
   1143 static char *
   1144 number(char *ep, int n)
   1145 {
   1146 
   1147 	*--ep = 0;
   1148 	while (n >= 10) {
   1149 		*--ep = (n % 10) + '0';
   1150 		n /= 10;
   1151 	}
   1152 	*--ep = n + '0';
   1153 	return ep;
   1154 }
   1155 
   1156 /*
   1157  * Expand the size of the cd_devs array if necessary.
   1158  *
   1159  * The caller must hold alldevs_mtx. config_makeroom() may release and
   1160  * re-acquire alldevs_mtx, so callers should re-check conditions such
   1161  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1162  * returns.
   1163  */
   1164 static void
   1165 config_makeroom(int n, struct cfdriver *cd)
   1166 {
   1167 	int ondevs, nndevs;
   1168 	device_t *osp, *nsp;
   1169 
   1170 	alldevs_nwrite++;
   1171 
   1172 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
   1173 		;
   1174 
   1175 	while (n >= cd->cd_ndevs) {
   1176 		/*
   1177 		 * Need to expand the array.
   1178 		 */
   1179 		ondevs = cd->cd_ndevs;
   1180 		osp = cd->cd_devs;
   1181 
   1182 		/* Release alldevs_mtx around allocation, which may
   1183 		 * sleep.
   1184 		 */
   1185 		mutex_exit(&alldevs_mtx);
   1186 		nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
   1187 		if (nsp == NULL)
   1188 			panic("%s: could not expand cd_devs", __func__);
   1189 		mutex_enter(&alldevs_mtx);
   1190 
   1191 		/* If another thread moved the array while we did
   1192 		 * not hold alldevs_mtx, try again.
   1193 		 */
   1194 		if (cd->cd_devs != osp) {
   1195 			mutex_exit(&alldevs_mtx);
   1196 			kmem_free(nsp, sizeof(device_t[nndevs]));
   1197 			mutex_enter(&alldevs_mtx);
   1198 			continue;
   1199 		}
   1200 
   1201 		memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
   1202 		if (ondevs != 0)
   1203 			memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
   1204 
   1205 		cd->cd_ndevs = nndevs;
   1206 		cd->cd_devs = nsp;
   1207 		if (ondevs != 0) {
   1208 			mutex_exit(&alldevs_mtx);
   1209 			kmem_free(osp, sizeof(device_t[ondevs]));
   1210 			mutex_enter(&alldevs_mtx);
   1211 		}
   1212 	}
   1213 	alldevs_nwrite--;
   1214 }
   1215 
   1216 /*
   1217  * Put dev into the devices list.
   1218  */
   1219 static void
   1220 config_devlink(device_t dev)
   1221 {
   1222 
   1223 	mutex_enter(&alldevs_mtx);
   1224 
   1225 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1226 
   1227 	dev->dv_add_gen = alldevs_gen;
   1228 	/* It is safe to add a device to the tail of the list while
   1229 	 * readers and writers are in the list.
   1230 	 */
   1231 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1232 	mutex_exit(&alldevs_mtx);
   1233 }
   1234 
   1235 static void
   1236 config_devfree(device_t dev)
   1237 {
   1238 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
   1239 
   1240 	if (dev->dv_localcnt != NULL) {
   1241 		localcount_fini(dev->dv_localcnt);
   1242 		kmem_free(dev->dv_localcnt, sizeof(*dev->dv_localcnt));
   1243 	}
   1244 	if (dev->dv_cfattach->ca_devsize > 0)
   1245 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1246 	if (priv)
   1247 		kmem_free(dev, sizeof(*dev));
   1248 }
   1249 
   1250 /*
   1251  * Caller must hold alldevs_mtx.
   1252  */
   1253 static void
   1254 config_devunlink(device_t dev, struct devicelist *garbage)
   1255 {
   1256 	struct device_garbage *dg = &dev->dv_garbage;
   1257 	cfdriver_t cd = device_cfdriver(dev);
   1258 	int i;
   1259 
   1260 	KASSERT(mutex_owned(&alldevs_mtx));
   1261 
   1262  	/* Unlink from device list.  Link to garbage list. */
   1263 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1264 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1265 
   1266 	/* Remove from cfdriver's array. */
   1267 	cd->cd_devs[dev->dv_unit] = NULL;
   1268 
   1269 	/* Now wait for references to drain - no new refs are possible */
   1270 	localcount_drain(dev->dv_localcnt, &config_drain_cv,
   1271 	    &alldevs_mtx);
   1272 
   1273 	/*
   1274 	 * If the device now has no units in use, unlink its softc array.
   1275 	 */
   1276 	for (i = 0; i < cd->cd_ndevs; i++) {
   1277 		if (cd->cd_devs[i] != NULL)
   1278 			break;
   1279 	}
   1280 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1281 	if (i == cd->cd_ndevs) {
   1282 		dg->dg_ndevs = cd->cd_ndevs;
   1283 		dg->dg_devs = cd->cd_devs;
   1284 		cd->cd_devs = NULL;
   1285 		cd->cd_ndevs = 0;
   1286 	}
   1287 }
   1288 
   1289 static void
   1290 config_devdelete(device_t dev)
   1291 {
   1292 	struct device_garbage *dg = &dev->dv_garbage;
   1293 	device_lock_t dvl = device_getlock(dev);
   1294 
   1295 	if (dg->dg_devs != NULL)
   1296 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
   1297 
   1298 	cv_destroy(&dvl->dvl_cv);
   1299 	mutex_destroy(&dvl->dvl_mtx);
   1300 
   1301 	KASSERT(dev->dv_properties != NULL);
   1302 	prop_object_release(dev->dv_properties);
   1303 
   1304 	if (dev->dv_activity_handlers)
   1305 		panic("%s with registered handlers", __func__);
   1306 
   1307 	if (dev->dv_locators) {
   1308 		size_t amount = *--dev->dv_locators;
   1309 		kmem_free(dev->dv_locators, amount);
   1310 	}
   1311 
   1312 	config_devfree(dev);
   1313 }
   1314 
   1315 static int
   1316 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1317 {
   1318 	int unit;
   1319 
   1320 	if (cf->cf_fstate == FSTATE_STAR) {
   1321 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1322 			if (cd->cd_devs[unit] == NULL)
   1323 				break;
   1324 		/*
   1325 		 * unit is now the unit of the first NULL device pointer,
   1326 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1327 		 */
   1328 	} else {
   1329 		unit = cf->cf_unit;
   1330 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1331 			unit = -1;
   1332 	}
   1333 	return unit;
   1334 }
   1335 
   1336 static int
   1337 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1338 {
   1339 	struct alldevs_foray af;
   1340 	int unit;
   1341 
   1342 	config_alldevs_enter(&af);
   1343 	for (;;) {
   1344 		unit = config_unit_nextfree(cd, cf);
   1345 		if (unit == -1)
   1346 			break;
   1347 		if (unit < cd->cd_ndevs) {
   1348 			cd->cd_devs[unit] = dev;
   1349 			dev->dv_unit = unit;
   1350 			break;
   1351 		}
   1352 		config_makeroom(unit, cd);
   1353 	}
   1354 	config_alldevs_exit(&af);
   1355 
   1356 	return unit;
   1357 }
   1358 
   1359 static device_t
   1360 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1361 {
   1362 	cfdriver_t cd;
   1363 	cfattach_t ca;
   1364 	size_t lname, lunit;
   1365 	const char *xunit;
   1366 	int myunit;
   1367 	char num[10];
   1368 	device_t dev;
   1369 	void *dev_private;
   1370 	const struct cfiattrdata *ia;
   1371 	device_lock_t dvl;
   1372 
   1373 	cd = config_cfdriver_lookup(cf->cf_name);
   1374 	if (cd == NULL)
   1375 		return NULL;
   1376 
   1377 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1378 	if (ca == NULL)
   1379 		return NULL;
   1380 
   1381 	/* get memory for all device vars */
   1382 	KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
   1383 	    || ca->ca_devsize >= sizeof(struct device),
   1384 	    "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
   1385 	    sizeof(struct device));
   1386 	if (ca->ca_devsize > 0) {
   1387 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1388 		if (dev_private == NULL)
   1389 			panic("config_devalloc: memory allocation for device "
   1390 			    "softc failed");
   1391 	} else {
   1392 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1393 		dev_private = NULL;
   1394 	}
   1395 
   1396 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1397 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1398 	} else {
   1399 		dev = dev_private;
   1400 #ifdef DIAGNOSTIC
   1401 		printf("%s has not been converted to device_t\n", cd->cd_name);
   1402 #endif
   1403 	}
   1404 	KASSERTMSG(dev, "%s: memory allocation for %s device_t failed",
   1405 	    __func__, cd->cd_name);
   1406 
   1407 	dev->dv_class = cd->cd_class;
   1408 	dev->dv_cfdata = cf;
   1409 	dev->dv_cfdriver = cd;
   1410 	dev->dv_cfattach = ca;
   1411 	dev->dv_activity_count = 0;
   1412 	dev->dv_activity_handlers = NULL;
   1413 	dev->dv_private = dev_private;
   1414 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1415 	dev->dv_localcnt = kmem_alloc(sizeof(*dev->dv_localcnt), KM_SLEEP);
   1416 	KASSERTMSG(dev->dv_localcnt, "%s: unable to allocate localcnt for %s",
   1417 	    __func__, cd->cd_name);
   1418 	localcount_init(dev->dv_localcnt);
   1419 
   1420 	myunit = config_unit_alloc(dev, cd, cf);
   1421 	if (myunit == -1) {
   1422 		config_devfree(dev);
   1423 		return NULL;
   1424 	}
   1425 
   1426 	/* compute length of name and decimal expansion of unit number */
   1427 	lname = strlen(cd->cd_name);
   1428 	xunit = number(&num[sizeof(num)], myunit);
   1429 	lunit = &num[sizeof(num)] - xunit;
   1430 	if (lname + lunit > sizeof(dev->dv_xname))
   1431 		panic("config_devalloc: device name too long");
   1432 
   1433 	dvl = device_getlock(dev);
   1434 
   1435 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1436 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1437 
   1438 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1439 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1440 	dev->dv_parent = parent;
   1441 	if (parent != NULL)
   1442 		dev->dv_depth = parent->dv_depth + 1;
   1443 	else
   1444 		dev->dv_depth = 0;
   1445 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1446 	if (locs) {
   1447 		KASSERT(parent); /* no locators at root */
   1448 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1449 		dev->dv_locators =
   1450 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
   1451 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
   1452 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
   1453 	}
   1454 	dev->dv_properties = prop_dictionary_create();
   1455 	KASSERT(dev->dv_properties != NULL);
   1456 
   1457 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
   1458 	    "device-driver", dev->dv_cfdriver->cd_name);
   1459 	prop_dictionary_set_uint16(dev->dv_properties,
   1460 	    "device-unit", dev->dv_unit);
   1461 	if (parent != NULL) {
   1462 		prop_dictionary_set_cstring(dev->dv_properties,
   1463 		    "device-parent", device_xname(parent));
   1464 	}
   1465 
   1466 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1467 		config_add_attrib_dict(dev);
   1468 
   1469 	return dev;
   1470 }
   1471 
   1472 /*
   1473  * Create an array of device attach attributes and add it
   1474  * to the device's dv_properties dictionary.
   1475  *
   1476  * <key>interface-attributes</key>
   1477  * <array>
   1478  *    <dict>
   1479  *       <key>attribute-name</key>
   1480  *       <string>foo</string>
   1481  *       <key>locators</key>
   1482  *       <array>
   1483  *          <dict>
   1484  *             <key>loc-name</key>
   1485  *             <string>foo-loc1</string>
   1486  *          </dict>
   1487  *          <dict>
   1488  *             <key>loc-name</key>
   1489  *             <string>foo-loc2</string>
   1490  *             <key>default</key>
   1491  *             <string>foo-loc2-default</string>
   1492  *          </dict>
   1493  *          ...
   1494  *       </array>
   1495  *    </dict>
   1496  *    ...
   1497  * </array>
   1498  */
   1499 
   1500 static void
   1501 config_add_attrib_dict(device_t dev)
   1502 {
   1503 	int i, j;
   1504 	const struct cfiattrdata *ci;
   1505 	prop_dictionary_t attr_dict, loc_dict;
   1506 	prop_array_t attr_array, loc_array;
   1507 
   1508 	if ((attr_array = prop_array_create()) == NULL)
   1509 		return;
   1510 
   1511 	for (i = 0; ; i++) {
   1512 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1513 			break;
   1514 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1515 			break;
   1516 		prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
   1517 		    ci->ci_name);
   1518 
   1519 		/* Create an array of the locator names and defaults */
   1520 
   1521 		if (ci->ci_loclen != 0 &&
   1522 		    (loc_array = prop_array_create()) != NULL) {
   1523 			for (j = 0; j < ci->ci_loclen; j++) {
   1524 				loc_dict = prop_dictionary_create();
   1525 				if (loc_dict == NULL)
   1526 					continue;
   1527 				prop_dictionary_set_cstring_nocopy(loc_dict,
   1528 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1529 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1530 					prop_dictionary_set_cstring_nocopy(
   1531 					    loc_dict, "default",
   1532 					    ci->ci_locdesc[j].cld_defaultstr);
   1533 				prop_array_set(loc_array, j, loc_dict);
   1534 				prop_object_release(loc_dict);
   1535 			}
   1536 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1537 			    loc_array);
   1538 		}
   1539 		prop_array_add(attr_array, attr_dict);
   1540 		prop_object_release(attr_dict);
   1541 	}
   1542 	if (i == 0)
   1543 		prop_object_release(attr_array);
   1544 	else
   1545 		prop_dictionary_set_and_rel(dev->dv_properties,
   1546 		    "interface-attributes", attr_array);
   1547 
   1548 	return;
   1549 }
   1550 
   1551 /*
   1552  * Attach a found device.
   1553  */
   1554 device_t
   1555 config_attach_loc(device_t parent, cfdata_t cf,
   1556 	const int *locs, void *aux, cfprint_t print)
   1557 {
   1558 	device_t dev;
   1559 	struct cftable *ct;
   1560 	const char *drvname;
   1561 
   1562 	dev = config_devalloc(parent, cf, locs);
   1563 	if (!dev)
   1564 		panic("config_attach: allocation of device softc failed");
   1565 
   1566 	/* XXX redundant - see below? */
   1567 	if (cf->cf_fstate != FSTATE_STAR) {
   1568 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1569 		cf->cf_fstate = FSTATE_FOUND;
   1570 	}
   1571 
   1572 	config_devlink(dev);
   1573 
   1574 	if (config_do_twiddle && cold)
   1575 		twiddle();
   1576 	else
   1577 		aprint_naive("Found ");
   1578 	/*
   1579 	 * We want the next two printfs for normal, verbose, and quiet,
   1580 	 * but not silent (in which case, we're twiddling, instead).
   1581 	 */
   1582 	if (parent == ROOT) {
   1583 		aprint_naive("%s (root)", device_xname(dev));
   1584 		aprint_normal("%s (root)", device_xname(dev));
   1585 	} else {
   1586 		aprint_naive("%s at %s", device_xname(dev),
   1587 		    device_xname(parent));
   1588 		aprint_normal("%s at %s", device_xname(dev),
   1589 		    device_xname(parent));
   1590 		if (print)
   1591 			(void) (*print)(aux, NULL);
   1592 	}
   1593 
   1594 	/*
   1595 	 * Before attaching, clobber any unfound devices that are
   1596 	 * otherwise identical.
   1597 	 * XXX code above is redundant?
   1598 	 */
   1599 	drvname = dev->dv_cfdriver->cd_name;
   1600 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1601 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1602 			if (STREQ(cf->cf_name, drvname) &&
   1603 			    cf->cf_unit == dev->dv_unit) {
   1604 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1605 					cf->cf_fstate = FSTATE_FOUND;
   1606 			}
   1607 		}
   1608 	}
   1609 	device_register(dev, aux);
   1610 
   1611 	/* Let userland know */
   1612 	devmon_report_device(dev, true);
   1613 
   1614 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1615 
   1616 	if (!device_pmf_is_registered(dev))
   1617 		aprint_debug_dev(dev, "WARNING: power management not "
   1618 		    "supported\n");
   1619 
   1620 	config_process_deferred(&deferred_config_queue, dev);
   1621 
   1622 	device_register_post_config(dev, aux);
   1623 	return dev;
   1624 }
   1625 
   1626 device_t
   1627 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1628 {
   1629 
   1630 	return config_attach_loc(parent, cf, NULL, aux, print);
   1631 }
   1632 
   1633 /*
   1634  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1635  * way are silently inserted into the device tree, and their children
   1636  * attached.
   1637  *
   1638  * Note that because pseudo-devices are attached silently, any information
   1639  * the attach routine wishes to print should be prefixed with the device
   1640  * name by the attach routine.
   1641  */
   1642 device_t
   1643 config_attach_pseudo(cfdata_t cf)
   1644 {
   1645 	device_t dev;
   1646 
   1647 	dev = config_devalloc(ROOT, cf, NULL);
   1648 	if (!dev)
   1649 		return NULL;
   1650 
   1651 	/* XXX mark busy in cfdata */
   1652 
   1653 	if (cf->cf_fstate != FSTATE_STAR) {
   1654 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1655 		cf->cf_fstate = FSTATE_FOUND;
   1656 	}
   1657 
   1658 	config_devlink(dev);
   1659 
   1660 #if 0	/* XXXJRT not yet */
   1661 	device_register(dev, NULL);	/* like a root node */
   1662 #endif
   1663 
   1664 	/* Let userland know */
   1665 	devmon_report_device(dev, true);
   1666 
   1667 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1668 
   1669 	config_process_deferred(&deferred_config_queue, dev);
   1670 	return dev;
   1671 }
   1672 
   1673 /*
   1674  * Caller must hold alldevs_mtx.
   1675  */
   1676 static void
   1677 config_collect_garbage(struct devicelist *garbage)
   1678 {
   1679 	device_t dv;
   1680 
   1681 	KASSERT(!cpu_intr_p());
   1682 	KASSERT(!cpu_softintr_p());
   1683 	KASSERT(mutex_owned(&alldevs_mtx));
   1684 
   1685 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1686 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1687 			if (dv->dv_del_gen != 0)
   1688 				break;
   1689 		}
   1690 		if (dv == NULL) {
   1691 			alldevs_garbage = false;
   1692 			break;
   1693 		}
   1694 		config_devunlink(dv, garbage);
   1695 	}
   1696 	KASSERT(mutex_owned(&alldevs_mtx));
   1697 }
   1698 
   1699 static void
   1700 config_dump_garbage(struct devicelist *garbage)
   1701 {
   1702 	device_t dv;
   1703 
   1704 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1705 		TAILQ_REMOVE(garbage, dv, dv_list);
   1706 		config_devdelete(dv);
   1707 	}
   1708 }
   1709 
   1710 /*
   1711  * Detach a device.  Optionally forced (e.g. because of hardware
   1712  * removal) and quiet.  Returns zero if successful, non-zero
   1713  * (an error code) otherwise.
   1714  *
   1715  * Note that this code wants to be run from a process context, so
   1716  * that the detach can sleep to allow processes which have a device
   1717  * open to run and unwind their stacks.
   1718  */
   1719 int
   1720 config_detach(device_t dev, int flags)
   1721 {
   1722 	struct alldevs_foray af;
   1723 	struct cftable *ct;
   1724 	cfdata_t cf;
   1725 	const struct cfattach *ca;
   1726 	struct cfdriver *cd;
   1727 #ifdef DIAGNOSTIC
   1728 	device_t d;
   1729 #endif
   1730 	int rv = 0;
   1731 
   1732 #ifdef DIAGNOSTIC
   1733 	cf = dev->dv_cfdata;
   1734 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
   1735 	    cf->cf_fstate != FSTATE_STAR)
   1736 		panic("config_detach: %s: bad device fstate %d",
   1737 		    device_xname(dev), cf ? cf->cf_fstate : -1);
   1738 #endif
   1739 	cd = dev->dv_cfdriver;
   1740 	KASSERT(cd != NULL);
   1741 
   1742 	ca = dev->dv_cfattach;
   1743 	KASSERT(ca != NULL);
   1744 
   1745 	mutex_enter(&alldevs_mtx);
   1746 	if (dev->dv_del_gen != 0) {
   1747 		mutex_exit(&alldevs_mtx);
   1748 #ifdef DIAGNOSTIC
   1749 		printf("%s: %s is already detached\n", __func__,
   1750 		    device_xname(dev));
   1751 #endif /* DIAGNOSTIC */
   1752 		return ENOENT;
   1753 	}
   1754 	alldevs_nwrite++;
   1755 	mutex_exit(&alldevs_mtx);
   1756 
   1757 	if (!detachall &&
   1758 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1759 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1760 		rv = EOPNOTSUPP;
   1761 	} else if (ca->ca_detach != NULL) {
   1762 		rv = (*ca->ca_detach)(dev, flags);
   1763 	} else
   1764 		rv = EOPNOTSUPP;
   1765 
   1766 	/*
   1767 	 * If it was not possible to detach the device, then we either
   1768 	 * panic() (for the forced but failed case), or return an error.
   1769 	 *
   1770 	 * If it was possible to detach the device, ensure that the
   1771 	 * device is deactivated.
   1772 	 */
   1773 	if (rv == 0)
   1774 		dev->dv_flags &= ~DVF_ACTIVE;
   1775 	else if ((flags & DETACH_FORCE) == 0)
   1776 		goto out;
   1777 	else {
   1778 		panic("config_detach: forced detach of %s failed (%d)",
   1779 		    device_xname(dev), rv);
   1780 	}
   1781 
   1782 	/*
   1783 	 * The device has now been successfully detached.
   1784 	 */
   1785 
   1786 	/* Let userland know */
   1787 	devmon_report_device(dev, false);
   1788 
   1789 #ifdef DIAGNOSTIC
   1790 	/*
   1791 	 * Sanity: If you're successfully detached, you should have no
   1792 	 * children.  (Note that because children must be attached
   1793 	 * after parents, we only need to search the latter part of
   1794 	 * the list.)
   1795 	 */
   1796 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1797 	    d = TAILQ_NEXT(d, dv_list)) {
   1798 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1799 			printf("config_detach: detached device %s"
   1800 			    " has children %s\n", device_xname(dev),
   1801 			    device_xname(d));
   1802 			panic("config_detach");
   1803 		}
   1804 	}
   1805 #endif
   1806 
   1807 	/* notify the parent that the child is gone */
   1808 	if (dev->dv_parent) {
   1809 		device_t p = dev->dv_parent;
   1810 		if (p->dv_cfattach->ca_childdetached)
   1811 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1812 	}
   1813 
   1814 	/*
   1815 	 * Mark cfdata to show that the unit can be reused, if possible.
   1816 	 */
   1817 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1818 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1819 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1820 				if (cf->cf_fstate == FSTATE_FOUND &&
   1821 				    cf->cf_unit == dev->dv_unit)
   1822 					cf->cf_fstate = FSTATE_NOTFOUND;
   1823 			}
   1824 		}
   1825 	}
   1826 
   1827 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1828 		aprint_normal_dev(dev, "detached\n");
   1829 
   1830 out:
   1831 	config_alldevs_enter(&af);
   1832 	KASSERT(alldevs_nwrite != 0);
   1833 	--alldevs_nwrite;
   1834 	if (rv == 0 && dev->dv_del_gen == 0) {
   1835 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   1836 			config_devunlink(dev, &af.af_garbage);
   1837 		else {
   1838 			dev->dv_del_gen = alldevs_gen;
   1839 			alldevs_garbage = true;
   1840 		}
   1841 	}
   1842 	config_alldevs_exit(&af);
   1843 
   1844 	return rv;
   1845 }
   1846 
   1847 int
   1848 config_detach_children(device_t parent, int flags)
   1849 {
   1850 	device_t dv;
   1851 	deviter_t di;
   1852 	int error = 0;
   1853 
   1854 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1855 	     dv = deviter_next(&di)) {
   1856 		if (device_parent(dv) != parent)
   1857 			continue;
   1858 		if ((error = config_detach(dv, flags)) != 0)
   1859 			break;
   1860 	}
   1861 	deviter_release(&di);
   1862 	return error;
   1863 }
   1864 
   1865 device_t
   1866 shutdown_first(struct shutdown_state *s)
   1867 {
   1868 	if (!s->initialized) {
   1869 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1870 		s->initialized = true;
   1871 	}
   1872 	return shutdown_next(s);
   1873 }
   1874 
   1875 device_t
   1876 shutdown_next(struct shutdown_state *s)
   1877 {
   1878 	device_t dv;
   1879 
   1880 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1881 		;
   1882 
   1883 	if (dv == NULL)
   1884 		s->initialized = false;
   1885 
   1886 	return dv;
   1887 }
   1888 
   1889 bool
   1890 config_detach_all(int how)
   1891 {
   1892 	static struct shutdown_state s;
   1893 	device_t curdev;
   1894 	bool progress = false;
   1895 	int flags;
   1896 
   1897 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
   1898 		return false;
   1899 
   1900 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
   1901 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
   1902 	else
   1903 		flags = DETACH_SHUTDOWN;
   1904 
   1905 	for (curdev = shutdown_first(&s); curdev != NULL;
   1906 	     curdev = shutdown_next(&s)) {
   1907 		aprint_debug(" detaching %s, ", device_xname(curdev));
   1908 		if (config_detach(curdev, flags) == 0) {
   1909 			progress = true;
   1910 			aprint_debug("success.");
   1911 		} else
   1912 			aprint_debug("failed.");
   1913 	}
   1914 	return progress;
   1915 }
   1916 
   1917 static bool
   1918 device_is_ancestor_of(device_t ancestor, device_t descendant)
   1919 {
   1920 	device_t dv;
   1921 
   1922 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   1923 		if (device_parent(dv) == ancestor)
   1924 			return true;
   1925 	}
   1926 	return false;
   1927 }
   1928 
   1929 int
   1930 config_deactivate(device_t dev)
   1931 {
   1932 	deviter_t di;
   1933 	const struct cfattach *ca;
   1934 	device_t descendant;
   1935 	int s, rv = 0, oflags;
   1936 
   1937 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   1938 	     descendant != NULL;
   1939 	     descendant = deviter_next(&di)) {
   1940 		if (dev != descendant &&
   1941 		    !device_is_ancestor_of(dev, descendant))
   1942 			continue;
   1943 
   1944 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   1945 			continue;
   1946 
   1947 		ca = descendant->dv_cfattach;
   1948 		oflags = descendant->dv_flags;
   1949 
   1950 		descendant->dv_flags &= ~DVF_ACTIVE;
   1951 		if (ca->ca_activate == NULL)
   1952 			continue;
   1953 		s = splhigh();
   1954 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   1955 		splx(s);
   1956 		if (rv != 0)
   1957 			descendant->dv_flags = oflags;
   1958 	}
   1959 	deviter_release(&di);
   1960 	return rv;
   1961 }
   1962 
   1963 /*
   1964  * Defer the configuration of the specified device until all
   1965  * of its parent's devices have been attached.
   1966  */
   1967 void
   1968 config_defer(device_t dev, void (*func)(device_t))
   1969 {
   1970 	struct deferred_config *dc;
   1971 
   1972 	if (dev->dv_parent == NULL)
   1973 		panic("config_defer: can't defer config of a root device");
   1974 
   1975 #ifdef DIAGNOSTIC
   1976 	TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
   1977 		if (dc->dc_dev == dev)
   1978 			panic("config_defer: deferred twice");
   1979 	}
   1980 #endif
   1981 
   1982 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1983 	if (dc == NULL)
   1984 		panic("config_defer: unable to allocate callback");
   1985 
   1986 	dc->dc_dev = dev;
   1987 	dc->dc_func = func;
   1988 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1989 	config_pending_incr(dev);
   1990 }
   1991 
   1992 /*
   1993  * Defer some autoconfiguration for a device until after interrupts
   1994  * are enabled.
   1995  */
   1996 void
   1997 config_interrupts(device_t dev, void (*func)(device_t))
   1998 {
   1999 	struct deferred_config *dc;
   2000 
   2001 	/*
   2002 	 * If interrupts are enabled, callback now.
   2003 	 */
   2004 	if (cold == 0) {
   2005 		(*func)(dev);
   2006 		return;
   2007 	}
   2008 
   2009 #ifdef DIAGNOSTIC
   2010 	TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
   2011 		if (dc->dc_dev == dev)
   2012 			panic("config_interrupts: deferred twice");
   2013 	}
   2014 #endif
   2015 
   2016 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2017 	if (dc == NULL)
   2018 		panic("config_interrupts: unable to allocate callback");
   2019 
   2020 	dc->dc_dev = dev;
   2021 	dc->dc_func = func;
   2022 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   2023 	config_pending_incr(dev);
   2024 }
   2025 
   2026 /*
   2027  * Defer some autoconfiguration for a device until after root file system
   2028  * is mounted (to load firmware etc).
   2029  */
   2030 void
   2031 config_mountroot(device_t dev, void (*func)(device_t))
   2032 {
   2033 	struct deferred_config *dc;
   2034 
   2035 	/*
   2036 	 * If root file system is mounted, callback now.
   2037 	 */
   2038 	if (root_is_mounted) {
   2039 		(*func)(dev);
   2040 		return;
   2041 	}
   2042 
   2043 #ifdef DIAGNOSTIC
   2044 	TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
   2045 		if (dc->dc_dev == dev)
   2046 			panic("%s: deferred twice", __func__);
   2047 	}
   2048 #endif
   2049 
   2050 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2051 	if (dc == NULL)
   2052 		panic("%s: unable to allocate callback", __func__);
   2053 
   2054 	dc->dc_dev = dev;
   2055 	dc->dc_func = func;
   2056 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   2057 }
   2058 
   2059 /*
   2060  * Process a deferred configuration queue.
   2061  */
   2062 static void
   2063 config_process_deferred(struct deferred_config_head *queue, device_t parent)
   2064 {
   2065 	struct deferred_config *dc, *ndc;
   2066 
   2067 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   2068 		ndc = TAILQ_NEXT(dc, dc_queue);
   2069 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2070 			TAILQ_REMOVE(queue, dc, dc_queue);
   2071 			(*dc->dc_func)(dc->dc_dev);
   2072 			config_pending_decr(dc->dc_dev);
   2073 			kmem_free(dc, sizeof(*dc));
   2074 		}
   2075 	}
   2076 }
   2077 
   2078 /*
   2079  * Manipulate the config_pending semaphore.
   2080  */
   2081 void
   2082 config_pending_incr(device_t dev)
   2083 {
   2084 
   2085 	mutex_enter(&config_misc_lock);
   2086 	config_pending++;
   2087 #ifdef DEBUG_AUTOCONF
   2088 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
   2089 #endif
   2090 	mutex_exit(&config_misc_lock);
   2091 }
   2092 
   2093 void
   2094 config_pending_decr(device_t dev)
   2095 {
   2096 
   2097 #ifdef DIAGNOSTIC
   2098 	if (config_pending == 0)
   2099 		panic("config_pending_decr: config_pending == 0");
   2100 #endif
   2101 	mutex_enter(&config_misc_lock);
   2102 	config_pending--;
   2103 #ifdef DEBUG_AUTOCONF
   2104 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
   2105 #endif
   2106 	if (config_pending == 0)
   2107 		cv_broadcast(&config_misc_cv);
   2108 	mutex_exit(&config_misc_lock);
   2109 }
   2110 
   2111 /*
   2112  * Register a "finalization" routine.  Finalization routines are
   2113  * called iteratively once all real devices have been found during
   2114  * autoconfiguration, for as long as any one finalizer has done
   2115  * any work.
   2116  */
   2117 int
   2118 config_finalize_register(device_t dev, int (*fn)(device_t))
   2119 {
   2120 	struct finalize_hook *f;
   2121 
   2122 	/*
   2123 	 * If finalization has already been done, invoke the
   2124 	 * callback function now.
   2125 	 */
   2126 	if (config_finalize_done) {
   2127 		while ((*fn)(dev) != 0)
   2128 			/* loop */ ;
   2129 		return 0;
   2130 	}
   2131 
   2132 	/* Ensure this isn't already on the list. */
   2133 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2134 		if (f->f_func == fn && f->f_dev == dev)
   2135 			return EEXIST;
   2136 	}
   2137 
   2138 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2139 	f->f_func = fn;
   2140 	f->f_dev = dev;
   2141 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2142 
   2143 	return 0;
   2144 }
   2145 
   2146 void
   2147 config_finalize(void)
   2148 {
   2149 	struct finalize_hook *f;
   2150 	struct pdevinit *pdev;
   2151 	extern struct pdevinit pdevinit[];
   2152 	int errcnt, rv;
   2153 
   2154 	/*
   2155 	 * Now that device driver threads have been created, wait for
   2156 	 * them to finish any deferred autoconfiguration.
   2157 	 */
   2158 	mutex_enter(&config_misc_lock);
   2159 	while (config_pending != 0)
   2160 		cv_wait(&config_misc_cv, &config_misc_lock);
   2161 	mutex_exit(&config_misc_lock);
   2162 
   2163 	KERNEL_LOCK(1, NULL);
   2164 
   2165 	/* Attach pseudo-devices. */
   2166 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2167 		(*pdev->pdev_attach)(pdev->pdev_count);
   2168 
   2169 	/* Run the hooks until none of them does any work. */
   2170 	do {
   2171 		rv = 0;
   2172 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2173 			rv |= (*f->f_func)(f->f_dev);
   2174 	} while (rv != 0);
   2175 
   2176 	config_finalize_done = 1;
   2177 
   2178 	/* Now free all the hooks. */
   2179 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2180 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2181 		kmem_free(f, sizeof(*f));
   2182 	}
   2183 
   2184 	KERNEL_UNLOCK_ONE(NULL);
   2185 
   2186 	errcnt = aprint_get_error_count();
   2187 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2188 	    (boothowto & AB_VERBOSE) == 0) {
   2189 		mutex_enter(&config_misc_lock);
   2190 		if (config_do_twiddle) {
   2191 			config_do_twiddle = 0;
   2192 			printf_nolog(" done.\n");
   2193 		}
   2194 		mutex_exit(&config_misc_lock);
   2195 		if (errcnt != 0) {
   2196 			printf("WARNING: %d error%s while detecting hardware; "
   2197 			    "check system log.\n", errcnt,
   2198 			    errcnt == 1 ? "" : "s");
   2199 		}
   2200 	}
   2201 }
   2202 
   2203 void
   2204 config_twiddle_init(void)
   2205 {
   2206 
   2207 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2208 		config_do_twiddle = 1;
   2209 	}
   2210 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2211 }
   2212 
   2213 void
   2214 config_twiddle_fn(void *cookie)
   2215 {
   2216 
   2217 	mutex_enter(&config_misc_lock);
   2218 	if (config_do_twiddle) {
   2219 		twiddle();
   2220 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2221 	}
   2222 	mutex_exit(&config_misc_lock);
   2223 }
   2224 
   2225 static void
   2226 config_alldevs_enter(struct alldevs_foray *af)
   2227 {
   2228 	TAILQ_INIT(&af->af_garbage);
   2229 	mutex_enter(&alldevs_mtx);
   2230 	config_collect_garbage(&af->af_garbage);
   2231 }
   2232 
   2233 static void
   2234 config_alldevs_exit(struct alldevs_foray *af)
   2235 {
   2236 	mutex_exit(&alldevs_mtx);
   2237 	config_dump_garbage(&af->af_garbage);
   2238 }
   2239 
   2240 /*
   2241  * device_lookup:
   2242  *
   2243  *	Look up a device instance for a given driver.
   2244  */
   2245 device_t
   2246 device_lookup(cfdriver_t cd, int unit)
   2247 {
   2248 	device_t dv;
   2249 
   2250 	mutex_enter(&alldevs_mtx);
   2251 	if (unit < 0 || unit >= cd->cd_ndevs)
   2252 		dv = NULL;
   2253 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2254 		dv = NULL;
   2255 	mutex_exit(&alldevs_mtx);
   2256 
   2257 	return dv;
   2258 }
   2259 
   2260 /*
   2261  * device_lookup_acquire:
   2262  *
   2263  *	Look up a device instance for a given driver and
   2264  *	hold a reference to the device.
   2265  */
   2266 device_t
   2267 device_lookup_acquire(cfdriver_t cd, int unit)
   2268 {
   2269 	device_t dv;
   2270 
   2271 	mutex_enter(&alldevs_mtx);
   2272 	if (unit < 0 || unit >= cd->cd_ndevs)
   2273 		dv = NULL;
   2274 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2275 		dv = NULL;
   2276 	else
   2277 		localcount_acquire(dv->dv_localcnt);
   2278 	mutex_exit(&alldevs_mtx);
   2279 
   2280 	return dv;
   2281 }
   2282 
   2283 /*
   2284  * device_release:
   2285  *
   2286  *	Release the reference that was created by an earlier call to
   2287  *	device_lookup_acquire().
   2288  */
   2289 void
   2290 device_release(device_t dv)
   2291 {
   2292 
   2293 	localcount_release(dv->dv_localcnt, &config_drain_cv,
   2294 	    &alldevs_mtx);
   2295 }
   2296 
   2297 /*
   2298  * device_lookup_private:
   2299  *
   2300  *	Look up a softc instance for a given driver.
   2301  */
   2302 void *
   2303 device_lookup_private(cfdriver_t cd, int unit)
   2304 {
   2305 
   2306 	return device_private(device_lookup(cd, unit));
   2307 }
   2308 
   2309 /*
   2310  * device_lookup_private_acquire:
   2311  *
   2312  *	Look up the softc and acquire a reference to the device so it
   2313  *	won't disappear.  Note that the caller must ensure that it is
   2314  *	capable of calling device_release() at some later point in
   2315  *	time, thus the returned private data must contain some data
   2316  *	to locate the original device.  Thus the private data must be
   2317  *	present, not NULL!  If this cannot be guaranteed, the caller
   2318  *	should use device_lookup_acquire() in order to retain the
   2319  *	device_t pointer.
   2320  */
   2321 void *
   2322 device_lookup_private_acquire(cfdriver_t cd, int unit)
   2323 {
   2324 	device_t dv;
   2325 	void *p;
   2326 
   2327 	dv = device_lookup_acquire(cd, unit);
   2328 	p = device_private(dv);
   2329 	KASSERTMSG(p != NULL || dv == NULL,
   2330 	    "%s: device %s has no private data", __func__, cd->cd_name);
   2331 	return p;
   2332 }
   2333 
   2334 /*
   2335  * device_find_by_xname:
   2336  *
   2337  *	Returns the device of the given name or NULL if it doesn't exist.
   2338  */
   2339 device_t
   2340 device_find_by_xname(const char *name)
   2341 {
   2342 	device_t dv;
   2343 	deviter_t di;
   2344 
   2345 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2346 		if (strcmp(device_xname(dv), name) == 0)
   2347 			break;
   2348 	}
   2349 	deviter_release(&di);
   2350 
   2351 	return dv;
   2352 }
   2353 
   2354 /*
   2355  * device_find_by_driver_unit:
   2356  *
   2357  *	Returns the device of the given driver name and unit or
   2358  *	NULL if it doesn't exist.
   2359  */
   2360 device_t
   2361 device_find_by_driver_unit(const char *name, int unit)
   2362 {
   2363 	struct cfdriver *cd;
   2364 
   2365 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2366 		return NULL;
   2367 	return device_lookup(cd, unit);
   2368 }
   2369 
   2370 /*
   2371  * device_find_by_driver_unit_acquire:
   2372  *
   2373  *	Returns the device of the given driver name and unit or
   2374  *	NULL if it doesn't exist.  If driver is found, it's
   2375  *	reference count is incremented so it won't go away.
   2376  */
   2377 device_t
   2378 device_find_by_driver_unit_acquire(const char *name, int unit)
   2379 {
   2380 	struct cfdriver *cd;
   2381 
   2382 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2383 		return NULL;
   2384 	return device_lookup_acquire(cd, unit);
   2385 }
   2386 
   2387 /*
   2388  * Power management related functions.
   2389  */
   2390 
   2391 bool
   2392 device_pmf_is_registered(device_t dev)
   2393 {
   2394 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2395 }
   2396 
   2397 bool
   2398 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2399 {
   2400 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2401 		return true;
   2402 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2403 		return false;
   2404 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2405 	    dev->dv_driver_suspend != NULL &&
   2406 	    !(*dev->dv_driver_suspend)(dev, qual))
   2407 		return false;
   2408 
   2409 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2410 	return true;
   2411 }
   2412 
   2413 bool
   2414 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2415 {
   2416 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2417 		return true;
   2418 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2419 		return false;
   2420 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2421 	    dev->dv_driver_resume != NULL &&
   2422 	    !(*dev->dv_driver_resume)(dev, qual))
   2423 		return false;
   2424 
   2425 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2426 	return true;
   2427 }
   2428 
   2429 bool
   2430 device_pmf_driver_shutdown(device_t dev, int how)
   2431 {
   2432 
   2433 	if (*dev->dv_driver_shutdown != NULL &&
   2434 	    !(*dev->dv_driver_shutdown)(dev, how))
   2435 		return false;
   2436 	return true;
   2437 }
   2438 
   2439 bool
   2440 device_pmf_driver_register(device_t dev,
   2441     bool (*suspend)(device_t, const pmf_qual_t *),
   2442     bool (*resume)(device_t, const pmf_qual_t *),
   2443     bool (*shutdown)(device_t, int))
   2444 {
   2445 	dev->dv_driver_suspend = suspend;
   2446 	dev->dv_driver_resume = resume;
   2447 	dev->dv_driver_shutdown = shutdown;
   2448 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2449 	return true;
   2450 }
   2451 
   2452 static const char *
   2453 curlwp_name(void)
   2454 {
   2455 	if (curlwp->l_name != NULL)
   2456 		return curlwp->l_name;
   2457 	else
   2458 		return curlwp->l_proc->p_comm;
   2459 }
   2460 
   2461 void
   2462 device_pmf_driver_deregister(device_t dev)
   2463 {
   2464 	device_lock_t dvl = device_getlock(dev);
   2465 
   2466 	dev->dv_driver_suspend = NULL;
   2467 	dev->dv_driver_resume = NULL;
   2468 
   2469 	mutex_enter(&dvl->dvl_mtx);
   2470 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2471 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2472 		/* Wake a thread that waits for the lock.  That
   2473 		 * thread will fail to acquire the lock, and then
   2474 		 * it will wake the next thread that waits for the
   2475 		 * lock, or else it will wake us.
   2476 		 */
   2477 		cv_signal(&dvl->dvl_cv);
   2478 		pmflock_debug(dev, __func__, __LINE__);
   2479 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2480 		pmflock_debug(dev, __func__, __LINE__);
   2481 	}
   2482 	mutex_exit(&dvl->dvl_mtx);
   2483 }
   2484 
   2485 bool
   2486 device_pmf_driver_child_register(device_t dev)
   2487 {
   2488 	device_t parent = device_parent(dev);
   2489 
   2490 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2491 		return true;
   2492 	return (*parent->dv_driver_child_register)(dev);
   2493 }
   2494 
   2495 void
   2496 device_pmf_driver_set_child_register(device_t dev,
   2497     bool (*child_register)(device_t))
   2498 {
   2499 	dev->dv_driver_child_register = child_register;
   2500 }
   2501 
   2502 static void
   2503 pmflock_debug(device_t dev, const char *func, int line)
   2504 {
   2505 	device_lock_t dvl = device_getlock(dev);
   2506 
   2507 	aprint_debug_dev(dev,
   2508 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
   2509 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
   2510 }
   2511 
   2512 static bool
   2513 device_pmf_lock1(device_t dev)
   2514 {
   2515 	device_lock_t dvl = device_getlock(dev);
   2516 
   2517 	while (device_pmf_is_registered(dev) &&
   2518 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2519 		dvl->dvl_nwait++;
   2520 		pmflock_debug(dev, __func__, __LINE__);
   2521 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2522 		pmflock_debug(dev, __func__, __LINE__);
   2523 		dvl->dvl_nwait--;
   2524 	}
   2525 	if (!device_pmf_is_registered(dev)) {
   2526 		pmflock_debug(dev, __func__, __LINE__);
   2527 		/* We could not acquire the lock, but some other thread may
   2528 		 * wait for it, also.  Wake that thread.
   2529 		 */
   2530 		cv_signal(&dvl->dvl_cv);
   2531 		return false;
   2532 	}
   2533 	dvl->dvl_nlock++;
   2534 	dvl->dvl_holder = curlwp;
   2535 	pmflock_debug(dev, __func__, __LINE__);
   2536 	return true;
   2537 }
   2538 
   2539 bool
   2540 device_pmf_lock(device_t dev)
   2541 {
   2542 	bool rc;
   2543 	device_lock_t dvl = device_getlock(dev);
   2544 
   2545 	mutex_enter(&dvl->dvl_mtx);
   2546 	rc = device_pmf_lock1(dev);
   2547 	mutex_exit(&dvl->dvl_mtx);
   2548 
   2549 	return rc;
   2550 }
   2551 
   2552 void
   2553 device_pmf_unlock(device_t dev)
   2554 {
   2555 	device_lock_t dvl = device_getlock(dev);
   2556 
   2557 	KASSERT(dvl->dvl_nlock > 0);
   2558 	mutex_enter(&dvl->dvl_mtx);
   2559 	if (--dvl->dvl_nlock == 0)
   2560 		dvl->dvl_holder = NULL;
   2561 	cv_signal(&dvl->dvl_cv);
   2562 	pmflock_debug(dev, __func__, __LINE__);
   2563 	mutex_exit(&dvl->dvl_mtx);
   2564 }
   2565 
   2566 device_lock_t
   2567 device_getlock(device_t dev)
   2568 {
   2569 	return &dev->dv_lock;
   2570 }
   2571 
   2572 void *
   2573 device_pmf_bus_private(device_t dev)
   2574 {
   2575 	return dev->dv_bus_private;
   2576 }
   2577 
   2578 bool
   2579 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   2580 {
   2581 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2582 		return true;
   2583 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2584 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2585 		return false;
   2586 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2587 	    dev->dv_bus_suspend != NULL &&
   2588 	    !(*dev->dv_bus_suspend)(dev, qual))
   2589 		return false;
   2590 
   2591 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2592 	return true;
   2593 }
   2594 
   2595 bool
   2596 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   2597 {
   2598 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2599 		return true;
   2600 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2601 	    dev->dv_bus_resume != NULL &&
   2602 	    !(*dev->dv_bus_resume)(dev, qual))
   2603 		return false;
   2604 
   2605 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2606 	return true;
   2607 }
   2608 
   2609 bool
   2610 device_pmf_bus_shutdown(device_t dev, int how)
   2611 {
   2612 
   2613 	if (*dev->dv_bus_shutdown != NULL &&
   2614 	    !(*dev->dv_bus_shutdown)(dev, how))
   2615 		return false;
   2616 	return true;
   2617 }
   2618 
   2619 void
   2620 device_pmf_bus_register(device_t dev, void *priv,
   2621     bool (*suspend)(device_t, const pmf_qual_t *),
   2622     bool (*resume)(device_t, const pmf_qual_t *),
   2623     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2624 {
   2625 	dev->dv_bus_private = priv;
   2626 	dev->dv_bus_resume = resume;
   2627 	dev->dv_bus_suspend = suspend;
   2628 	dev->dv_bus_shutdown = shutdown;
   2629 	dev->dv_bus_deregister = deregister;
   2630 }
   2631 
   2632 void
   2633 device_pmf_bus_deregister(device_t dev)
   2634 {
   2635 	if (dev->dv_bus_deregister == NULL)
   2636 		return;
   2637 	(*dev->dv_bus_deregister)(dev);
   2638 	dev->dv_bus_private = NULL;
   2639 	dev->dv_bus_suspend = NULL;
   2640 	dev->dv_bus_resume = NULL;
   2641 	dev->dv_bus_deregister = NULL;
   2642 }
   2643 
   2644 void *
   2645 device_pmf_class_private(device_t dev)
   2646 {
   2647 	return dev->dv_class_private;
   2648 }
   2649 
   2650 bool
   2651 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   2652 {
   2653 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2654 		return true;
   2655 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2656 	    dev->dv_class_suspend != NULL &&
   2657 	    !(*dev->dv_class_suspend)(dev, qual))
   2658 		return false;
   2659 
   2660 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2661 	return true;
   2662 }
   2663 
   2664 bool
   2665 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   2666 {
   2667 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2668 		return true;
   2669 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2670 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2671 		return false;
   2672 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2673 	    dev->dv_class_resume != NULL &&
   2674 	    !(*dev->dv_class_resume)(dev, qual))
   2675 		return false;
   2676 
   2677 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2678 	return true;
   2679 }
   2680 
   2681 void
   2682 device_pmf_class_register(device_t dev, void *priv,
   2683     bool (*suspend)(device_t, const pmf_qual_t *),
   2684     bool (*resume)(device_t, const pmf_qual_t *),
   2685     void (*deregister)(device_t))
   2686 {
   2687 	dev->dv_class_private = priv;
   2688 	dev->dv_class_suspend = suspend;
   2689 	dev->dv_class_resume = resume;
   2690 	dev->dv_class_deregister = deregister;
   2691 }
   2692 
   2693 void
   2694 device_pmf_class_deregister(device_t dev)
   2695 {
   2696 	if (dev->dv_class_deregister == NULL)
   2697 		return;
   2698 	(*dev->dv_class_deregister)(dev);
   2699 	dev->dv_class_private = NULL;
   2700 	dev->dv_class_suspend = NULL;
   2701 	dev->dv_class_resume = NULL;
   2702 	dev->dv_class_deregister = NULL;
   2703 }
   2704 
   2705 bool
   2706 device_active(device_t dev, devactive_t type)
   2707 {
   2708 	size_t i;
   2709 
   2710 	if (dev->dv_activity_count == 0)
   2711 		return false;
   2712 
   2713 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2714 		if (dev->dv_activity_handlers[i] == NULL)
   2715 			break;
   2716 		(*dev->dv_activity_handlers[i])(dev, type);
   2717 	}
   2718 
   2719 	return true;
   2720 }
   2721 
   2722 bool
   2723 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2724 {
   2725 	void (**new_handlers)(device_t, devactive_t);
   2726 	void (**old_handlers)(device_t, devactive_t);
   2727 	size_t i, old_size, new_size;
   2728 	int s;
   2729 
   2730 	old_handlers = dev->dv_activity_handlers;
   2731 	old_size = dev->dv_activity_count;
   2732 
   2733 	KASSERT(old_size == 0 || old_handlers != NULL);
   2734 
   2735 	for (i = 0; i < old_size; ++i) {
   2736 		KASSERT(old_handlers[i] != handler);
   2737 		if (old_handlers[i] == NULL) {
   2738 			old_handlers[i] = handler;
   2739 			return true;
   2740 		}
   2741 	}
   2742 
   2743 	new_size = old_size + 4;
   2744 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
   2745 
   2746 	for (i = 0; i < old_size; ++i)
   2747 		new_handlers[i] = old_handlers[i];
   2748 	new_handlers[old_size] = handler;
   2749 	for (i = old_size+1; i < new_size; ++i)
   2750 		new_handlers[i] = NULL;
   2751 
   2752 	s = splhigh();
   2753 	dev->dv_activity_count = new_size;
   2754 	dev->dv_activity_handlers = new_handlers;
   2755 	splx(s);
   2756 
   2757 	if (old_size > 0)
   2758 		kmem_free(old_handlers, sizeof(void * [old_size]));
   2759 
   2760 	return true;
   2761 }
   2762 
   2763 void
   2764 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2765 {
   2766 	void (**old_handlers)(device_t, devactive_t);
   2767 	size_t i, old_size;
   2768 	int s;
   2769 
   2770 	old_handlers = dev->dv_activity_handlers;
   2771 	old_size = dev->dv_activity_count;
   2772 
   2773 	for (i = 0; i < old_size; ++i) {
   2774 		if (old_handlers[i] == handler)
   2775 			break;
   2776 		if (old_handlers[i] == NULL)
   2777 			return; /* XXX panic? */
   2778 	}
   2779 
   2780 	if (i == old_size)
   2781 		return; /* XXX panic? */
   2782 
   2783 	for (; i < old_size - 1; ++i) {
   2784 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   2785 			continue;
   2786 
   2787 		if (i == 0) {
   2788 			s = splhigh();
   2789 			dev->dv_activity_count = 0;
   2790 			dev->dv_activity_handlers = NULL;
   2791 			splx(s);
   2792 			kmem_free(old_handlers, sizeof(void *[old_size]));
   2793 		}
   2794 		return;
   2795 	}
   2796 	old_handlers[i] = NULL;
   2797 }
   2798 
   2799 /* Return true iff the device_t `dev' exists at generation `gen'. */
   2800 static bool
   2801 device_exists_at(device_t dv, devgen_t gen)
   2802 {
   2803 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   2804 	    dv->dv_add_gen <= gen;
   2805 }
   2806 
   2807 static bool
   2808 deviter_visits(const deviter_t *di, device_t dv)
   2809 {
   2810 	return device_exists_at(dv, di->di_gen);
   2811 }
   2812 
   2813 /*
   2814  * Device Iteration
   2815  *
   2816  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2817  *     each device_t's in the device tree.
   2818  *
   2819  * deviter_init(di, flags): initialize the device iterator `di'
   2820  *     to "walk" the device tree.  deviter_next(di) will return
   2821  *     the first device_t in the device tree, or NULL if there are
   2822  *     no devices.
   2823  *
   2824  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2825  *     caller intends to modify the device tree by calling
   2826  *     config_detach(9) on devices in the order that the iterator
   2827  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2828  *     nearest the "root" of the device tree to be returned, first;
   2829  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2830  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2831  *     indicating both that deviter_init() should not respect any
   2832  *     locks on the device tree, and that deviter_next(di) may run
   2833  *     in more than one LWP before the walk has finished.
   2834  *
   2835  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2836  *     once.
   2837  *
   2838  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2839  *
   2840  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2841  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2842  *
   2843  * deviter_first(di, flags): initialize the device iterator `di'
   2844  *     and return the first device_t in the device tree, or NULL
   2845  *     if there are no devices.  The statement
   2846  *
   2847  *         dv = deviter_first(di);
   2848  *
   2849  *     is shorthand for
   2850  *
   2851  *         deviter_init(di);
   2852  *         dv = deviter_next(di);
   2853  *
   2854  * deviter_next(di): return the next device_t in the device tree,
   2855  *     or NULL if there are no more devices.  deviter_next(di)
   2856  *     is undefined if `di' was not initialized with deviter_init() or
   2857  *     deviter_first().
   2858  *
   2859  * deviter_release(di): stops iteration (subsequent calls to
   2860  *     deviter_next() will return NULL), releases any locks and
   2861  *     resources held by the device iterator.
   2862  *
   2863  * Device iteration does not return device_t's in any particular
   2864  * order.  An iterator will never return the same device_t twice.
   2865  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2866  * is called repeatedly on the same `di', it will eventually return
   2867  * NULL.  It is ok to attach/detach devices during device iteration.
   2868  */
   2869 void
   2870 deviter_init(deviter_t *di, deviter_flags_t flags)
   2871 {
   2872 	device_t dv;
   2873 
   2874 	memset(di, 0, sizeof(*di));
   2875 
   2876 	mutex_enter(&alldevs_mtx);
   2877 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   2878 		flags |= DEVITER_F_RW;
   2879 
   2880 	if ((flags & DEVITER_F_RW) != 0)
   2881 		alldevs_nwrite++;
   2882 	else
   2883 		alldevs_nread++;
   2884 	di->di_gen = alldevs_gen++;
   2885 	mutex_exit(&alldevs_mtx);
   2886 
   2887 	di->di_flags = flags;
   2888 
   2889 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2890 	case DEVITER_F_LEAVES_FIRST:
   2891 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2892 			if (!deviter_visits(di, dv))
   2893 				continue;
   2894 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2895 		}
   2896 		break;
   2897 	case DEVITER_F_ROOT_FIRST:
   2898 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2899 			if (!deviter_visits(di, dv))
   2900 				continue;
   2901 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2902 		}
   2903 		break;
   2904 	default:
   2905 		break;
   2906 	}
   2907 
   2908 	deviter_reinit(di);
   2909 }
   2910 
   2911 static void
   2912 deviter_reinit(deviter_t *di)
   2913 {
   2914 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2915 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2916 	else
   2917 		di->di_prev = TAILQ_FIRST(&alldevs);
   2918 }
   2919 
   2920 device_t
   2921 deviter_first(deviter_t *di, deviter_flags_t flags)
   2922 {
   2923 	deviter_init(di, flags);
   2924 	return deviter_next(di);
   2925 }
   2926 
   2927 static device_t
   2928 deviter_next2(deviter_t *di)
   2929 {
   2930 	device_t dv;
   2931 
   2932 	dv = di->di_prev;
   2933 
   2934 	if (dv == NULL)
   2935 		return NULL;
   2936 
   2937 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2938 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2939 	else
   2940 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2941 
   2942 	return dv;
   2943 }
   2944 
   2945 static device_t
   2946 deviter_next1(deviter_t *di)
   2947 {
   2948 	device_t dv;
   2949 
   2950 	do {
   2951 		dv = deviter_next2(di);
   2952 	} while (dv != NULL && !deviter_visits(di, dv));
   2953 
   2954 	return dv;
   2955 }
   2956 
   2957 device_t
   2958 deviter_next(deviter_t *di)
   2959 {
   2960 	device_t dv = NULL;
   2961 
   2962 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2963 	case 0:
   2964 		return deviter_next1(di);
   2965 	case DEVITER_F_LEAVES_FIRST:
   2966 		while (di->di_curdepth >= 0) {
   2967 			if ((dv = deviter_next1(di)) == NULL) {
   2968 				di->di_curdepth--;
   2969 				deviter_reinit(di);
   2970 			} else if (dv->dv_depth == di->di_curdepth)
   2971 				break;
   2972 		}
   2973 		return dv;
   2974 	case DEVITER_F_ROOT_FIRST:
   2975 		while (di->di_curdepth <= di->di_maxdepth) {
   2976 			if ((dv = deviter_next1(di)) == NULL) {
   2977 				di->di_curdepth++;
   2978 				deviter_reinit(di);
   2979 			} else if (dv->dv_depth == di->di_curdepth)
   2980 				break;
   2981 		}
   2982 		return dv;
   2983 	default:
   2984 		return NULL;
   2985 	}
   2986 }
   2987 
   2988 void
   2989 deviter_release(deviter_t *di)
   2990 {
   2991 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2992 
   2993 	mutex_enter(&alldevs_mtx);
   2994 	if (rw)
   2995 		--alldevs_nwrite;
   2996 	else
   2997 		--alldevs_nread;
   2998 	/* XXX wake a garbage-collection thread */
   2999 	mutex_exit(&alldevs_mtx);
   3000 }
   3001 
   3002 const char *
   3003 cfdata_ifattr(const struct cfdata *cf)
   3004 {
   3005 	return cf->cf_pspec->cfp_iattr;
   3006 }
   3007 
   3008 bool
   3009 ifattr_match(const char *snull, const char *t)
   3010 {
   3011 	return (snull == NULL) || strcmp(snull, t) == 0;
   3012 }
   3013 
   3014 void
   3015 null_childdetached(device_t self, device_t child)
   3016 {
   3017 	/* do nothing */
   3018 }
   3019 
   3020 static void
   3021 sysctl_detach_setup(struct sysctllog **clog)
   3022 {
   3023 
   3024 	sysctl_createv(clog, 0, NULL, NULL,
   3025 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3026 		CTLTYPE_BOOL, "detachall",
   3027 		SYSCTL_DESCR("Detach all devices at shutdown"),
   3028 		NULL, 0, &detachall, 0,
   3029 		CTL_KERN, CTL_CREATE, CTL_EOL);
   3030 }
   3031