Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.246.2.9
      1 /* $NetBSD: subr_autoconf.c,v 1.246.2.9 2017/04/25 09:03:03 pgoyette Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.246.2.9 2017/04/25 09:03:03 pgoyette Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/disklabel.h>
     90 #include <sys/conf.h>
     91 #include <sys/kauth.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/mount.h>
    102 #include <sys/namei.h>
    103 #include <sys/unistd.h>
    104 #include <sys/fcntl.h>
    105 #include <sys/lockf.h>
    106 #include <sys/callout.h>
    107 #include <sys/devmon.h>
    108 #include <sys/cpu.h>
    109 #include <sys/sysctl.h>
    110 #include <sys/localcount.h>
    111 
    112 #include <sys/disk.h>
    113 
    114 #include <sys/rndsource.h>
    115 
    116 #include <machine/limits.h>
    117 
    118 /*
    119  * Autoconfiguration subroutines.
    120  */
    121 
    122 /*
    123  * Device autoconfiguration timings are mixed into the entropy pool.
    124  */
    125 extern krndsource_t rnd_autoconf_source;
    126 
    127 /*
    128  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    129  * devices and drivers are found via these tables.
    130  */
    131 extern struct cfdata cfdata[];
    132 extern const short cfroots[];
    133 
    134 /*
    135  * List of all cfdriver structures.  We use this to detect duplicates
    136  * when other cfdrivers are loaded.
    137  */
    138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    139 extern struct cfdriver * const cfdriver_list_initial[];
    140 
    141 /*
    142  * Initial list of cfattach's.
    143  */
    144 extern const struct cfattachinit cfattachinit[];
    145 
    146 /*
    147  * List of cfdata tables.  We always have one such list -- the one
    148  * built statically when the kernel was configured.
    149  */
    150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    151 static struct cftable initcftable;
    152 
    153 #define	ROOT ((device_t)NULL)
    154 
    155 struct matchinfo {
    156 	cfsubmatch_t fn;
    157 	device_t parent;
    158 	const int *locs;
    159 	void	*aux;
    160 	struct	cfdata *match;
    161 	int	pri;
    162 };
    163 
    164 struct alldevs_foray {
    165 	int			af_s;
    166 	struct devicelist	af_garbage;
    167 };
    168 
    169 static char *number(char *, int);
    170 static void mapply(struct matchinfo *, cfdata_t);
    171 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    172 static void config_devdelete(device_t);
    173 static void config_devunlink(device_t, struct devicelist *);
    174 static void config_makeroom(int, struct cfdriver *);
    175 static void config_devlink(device_t);
    176 static void config_alldevs_enter(struct alldevs_foray *);
    177 static void config_alldevs_exit(struct alldevs_foray *);
    178 static void config_add_attrib_dict(device_t);
    179 
    180 static void config_collect_garbage(struct devicelist *);
    181 static void config_dump_garbage(struct devicelist *);
    182 
    183 static void pmflock_debug(device_t, const char *, int);
    184 
    185 static device_t deviter_next1(deviter_t *);
    186 static void deviter_reinit(deviter_t *);
    187 
    188 struct deferred_config {
    189 	TAILQ_ENTRY(deferred_config) dc_queue;
    190 	device_t dc_dev;
    191 	void (*dc_func)(device_t);
    192 };
    193 
    194 TAILQ_HEAD(deferred_config_head, deferred_config);
    195 
    196 struct deferred_config_head deferred_config_queue =
    197 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    198 struct deferred_config_head interrupt_config_queue =
    199 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    200 int interrupt_config_threads = 8;
    201 struct deferred_config_head mountroot_config_queue =
    202 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    203 int mountroot_config_threads = 2;
    204 static lwp_t **mountroot_config_lwpids;
    205 static size_t mountroot_config_lwpids_size;
    206 static bool root_is_mounted = false;
    207 
    208 static void config_process_deferred(struct deferred_config_head *, device_t);
    209 
    210 /* Hooks to finalize configuration once all real devices have been found. */
    211 struct finalize_hook {
    212 	TAILQ_ENTRY(finalize_hook) f_list;
    213 	int (*f_func)(device_t);
    214 	device_t f_dev;
    215 };
    216 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    217 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    218 static int config_finalize_done;
    219 
    220 /* list of all devices */
    221 static struct {
    222 	kmutex_t		lock;
    223 	struct devicelist	list;
    224 	devgen_t		gen;
    225 	int			nread;
    226 	int			nwrite;
    227 	bool			garbage;
    228 } alldevs __cacheline_aligned = {
    229 	.list = TAILQ_HEAD_INITIALIZER(alldevs.list),
    230 	.gen = 1,
    231 	.nread = 0,
    232 	.nwrite = 0,
    233 	.garbage = false,
    234 };
    235 
    236 static int config_pending;		/* semaphore for mountroot */
    237 static kmutex_t config_misc_lock;
    238 static kcondvar_t config_misc_cv;
    239 static kcondvar_t config_drain_cv;
    240 
    241 static bool detachall = false;
    242 
    243 #define	STREQ(s1, s2)			\
    244 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    245 
    246 static bool config_initialized = false;	/* config_init() has been called. */
    247 
    248 static int config_do_twiddle;
    249 static callout_t config_twiddle_ch;
    250 
    251 static void sysctl_detach_setup(struct sysctllog **);
    252 
    253 int no_devmon_insert(const char *, prop_dictionary_t);
    254 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
    255 
    256 typedef int (*cfdriver_fn)(struct cfdriver *);
    257 static int
    258 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    259 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    260 	const char *style, bool dopanic)
    261 {
    262 	void (*pr)(const char *, ...) __printflike(1, 2) =
    263 	    dopanic ? panic : printf;
    264 	int i, error = 0, e2 __diagused;
    265 
    266 	for (i = 0; cfdriverv[i] != NULL; i++) {
    267 		if ((error = drv_do(cfdriverv[i])) != 0) {
    268 			pr("configure: `%s' driver %s failed: %d",
    269 			    cfdriverv[i]->cd_name, style, error);
    270 			goto bad;
    271 		}
    272 	}
    273 
    274 	KASSERT(error == 0);
    275 	return 0;
    276 
    277  bad:
    278 	printf("\n");
    279 	for (i--; i >= 0; i--) {
    280 		e2 = drv_undo(cfdriverv[i]);
    281 		KASSERT(e2 == 0);
    282 	}
    283 
    284 	return error;
    285 }
    286 
    287 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    288 static int
    289 frob_cfattachvec(const struct cfattachinit *cfattachv,
    290 	cfattach_fn att_do, cfattach_fn att_undo,
    291 	const char *style, bool dopanic)
    292 {
    293 	const struct cfattachinit *cfai = NULL;
    294 	void (*pr)(const char *, ...) __printflike(1, 2) =
    295 	    dopanic ? panic : printf;
    296 	int j = 0, error = 0, e2 __diagused;
    297 
    298 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    299 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    300 			if ((error = att_do(cfai->cfai_name,
    301 			    cfai->cfai_list[j])) != 0) {
    302 				pr("configure: attachment `%s' "
    303 				    "of `%s' driver %s failed: %d",
    304 				    cfai->cfai_list[j]->ca_name,
    305 				    cfai->cfai_name, style, error);
    306 				goto bad;
    307 			}
    308 		}
    309 	}
    310 
    311 	KASSERT(error == 0);
    312 	return 0;
    313 
    314  bad:
    315 	/*
    316 	 * Rollback in reverse order.  dunno if super-important, but
    317 	 * do that anyway.  Although the code looks a little like
    318 	 * someone did a little integration (in the math sense).
    319 	 */
    320 	printf("\n");
    321 	if (cfai) {
    322 		bool last;
    323 
    324 		for (last = false; last == false; ) {
    325 			if (cfai == &cfattachv[0])
    326 				last = true;
    327 			for (j--; j >= 0; j--) {
    328 				e2 = att_undo(cfai->cfai_name,
    329 				    cfai->cfai_list[j]);
    330 				KASSERT(e2 == 0);
    331 			}
    332 			if (!last) {
    333 				cfai--;
    334 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    335 					;
    336 			}
    337 		}
    338 	}
    339 
    340 	return error;
    341 }
    342 
    343 /*
    344  * Initialize the autoconfiguration data structures.  Normally this
    345  * is done by configure(), but some platforms need to do this very
    346  * early (to e.g. initialize the console).
    347  */
    348 void
    349 config_init(void)
    350 {
    351 
    352 	KASSERT(config_initialized == false);
    353 
    354 	mutex_init(&alldevs.lock, MUTEX_DEFAULT, IPL_VM);
    355 
    356 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    357 	cv_init(&config_misc_cv, "cfgmisc");
    358 	cv_init(&config_drain_cv, "cfgdrain");
    359 
    360 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    361 
    362 	frob_cfdrivervec(cfdriver_list_initial,
    363 	    config_cfdriver_attach, NULL, "bootstrap", true);
    364 	frob_cfattachvec(cfattachinit,
    365 	    config_cfattach_attach, NULL, "bootstrap", true);
    366 
    367 	initcftable.ct_cfdata = cfdata;
    368 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    369 
    370 	config_initialized = true;
    371 }
    372 
    373 /*
    374  * Init or fini drivers and attachments.  Either all or none
    375  * are processed (via rollback).  It would be nice if this were
    376  * atomic to outside consumers, but with the current state of
    377  * locking ...
    378  */
    379 int
    380 config_init_component(struct cfdriver * const *cfdriverv,
    381 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    382 {
    383 	int error;
    384 
    385 	if ((error = frob_cfdrivervec(cfdriverv,
    386 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    387 		return error;
    388 	if ((error = frob_cfattachvec(cfattachv,
    389 	    config_cfattach_attach, config_cfattach_detach,
    390 	    "init", false)) != 0) {
    391 		frob_cfdrivervec(cfdriverv,
    392 	            config_cfdriver_detach, NULL, "init rollback", true);
    393 		return error;
    394 	}
    395 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    396 		frob_cfattachvec(cfattachv,
    397 		    config_cfattach_detach, NULL, "init rollback", true);
    398 		frob_cfdrivervec(cfdriverv,
    399 	            config_cfdriver_detach, NULL, "init rollback", true);
    400 		return error;
    401 	}
    402 
    403 	return 0;
    404 }
    405 
    406 int
    407 config_fini_component(struct cfdriver * const *cfdriverv,
    408 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    409 {
    410 	int error;
    411 
    412 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    413 		return error;
    414 	if ((error = frob_cfattachvec(cfattachv,
    415 	    config_cfattach_detach, config_cfattach_attach,
    416 	    "fini", false)) != 0) {
    417 		if (config_cfdata_attach(cfdatav, 0) != 0)
    418 			panic("config_cfdata fini rollback failed");
    419 		return error;
    420 	}
    421 	if ((error = frob_cfdrivervec(cfdriverv,
    422 	    config_cfdriver_detach, config_cfdriver_attach,
    423 	    "fini", false)) != 0) {
    424 		frob_cfattachvec(cfattachv,
    425 	            config_cfattach_attach, NULL, "fini rollback", true);
    426 		if (config_cfdata_attach(cfdatav, 0) != 0)
    427 			panic("config_cfdata fini rollback failed");
    428 		return error;
    429 	}
    430 
    431 	return 0;
    432 }
    433 
    434 void
    435 config_init_mi(void)
    436 {
    437 
    438 	if (!config_initialized)
    439 		config_init();
    440 
    441 	sysctl_detach_setup(NULL);
    442 }
    443 
    444 void
    445 config_deferred(device_t dev)
    446 {
    447 	config_process_deferred(&deferred_config_queue, dev);
    448 	config_process_deferred(&interrupt_config_queue, dev);
    449 	config_process_deferred(&mountroot_config_queue, dev);
    450 }
    451 
    452 static void
    453 config_interrupts_thread(void *cookie)
    454 {
    455 	struct deferred_config *dc;
    456 
    457 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    458 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    459 		(*dc->dc_func)(dc->dc_dev);
    460 		config_pending_decr(dc->dc_dev);
    461 		kmem_free(dc, sizeof(*dc));
    462 	}
    463 	kthread_exit(0);
    464 }
    465 
    466 void
    467 config_create_interruptthreads(void)
    468 {
    469 	int i;
    470 
    471 	for (i = 0; i < interrupt_config_threads; i++) {
    472 		(void)kthread_create(PRI_NONE, 0, NULL,
    473 		    config_interrupts_thread, NULL, NULL, "configintr");
    474 	}
    475 }
    476 
    477 static void
    478 config_mountroot_thread(void *cookie)
    479 {
    480 	struct deferred_config *dc;
    481 
    482 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    483 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    484 		(*dc->dc_func)(dc->dc_dev);
    485 		kmem_free(dc, sizeof(*dc));
    486 	}
    487 	kthread_exit(0);
    488 }
    489 
    490 void
    491 config_create_mountrootthreads(void)
    492 {
    493 	int i;
    494 
    495 	if (!root_is_mounted)
    496 		root_is_mounted = true;
    497 
    498 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
    499 				       mountroot_config_threads;
    500 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
    501 					     KM_NOSLEEP);
    502 	KASSERT(mountroot_config_lwpids);
    503 	for (i = 0; i < mountroot_config_threads; i++) {
    504 		mountroot_config_lwpids[i] = 0;
    505 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
    506 				     config_mountroot_thread, NULL,
    507 				     &mountroot_config_lwpids[i],
    508 				     "configroot");
    509 	}
    510 }
    511 
    512 void
    513 config_finalize_mountroot(void)
    514 {
    515 	int i, error;
    516 
    517 	for (i = 0; i < mountroot_config_threads; i++) {
    518 		if (mountroot_config_lwpids[i] == 0)
    519 			continue;
    520 
    521 		error = kthread_join(mountroot_config_lwpids[i]);
    522 		if (error)
    523 			printf("%s: thread %x joined with error %d\n",
    524 			       __func__, i, error);
    525 	}
    526 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
    527 }
    528 
    529 /*
    530  * Announce device attach/detach to userland listeners.
    531  */
    532 
    533 int
    534 no_devmon_insert(const char *name, prop_dictionary_t p)
    535 {
    536 
    537 	return ENODEV;
    538 }
    539 
    540 static void
    541 devmon_report_device(device_t dev, bool isattach)
    542 {
    543 	prop_dictionary_t ev;
    544 	const char *parent;
    545 	const char *what;
    546 	device_t pdev = device_parent(dev);
    547 
    548 	/* If currently no drvctl device, just return */
    549 	if (devmon_insert_vec == no_devmon_insert)
    550 		return;
    551 
    552 	ev = prop_dictionary_create();
    553 	if (ev == NULL)
    554 		return;
    555 
    556 	what = (isattach ? "device-attach" : "device-detach");
    557 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    558 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
    559 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
    560 		prop_object_release(ev);
    561 		return;
    562 	}
    563 
    564 	if ((*devmon_insert_vec)(what, ev) != 0)
    565 		prop_object_release(ev);
    566 }
    567 
    568 /*
    569  * Add a cfdriver to the system.
    570  */
    571 int
    572 config_cfdriver_attach(struct cfdriver *cd)
    573 {
    574 	struct cfdriver *lcd;
    575 
    576 	/* Make sure this driver isn't already in the system. */
    577 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    578 		if (STREQ(lcd->cd_name, cd->cd_name))
    579 			return EEXIST;
    580 	}
    581 	LIST_INIT(&cd->cd_attach);
    582 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    583 
    584 	return 0;
    585 }
    586 
    587 /*
    588  * Remove a cfdriver from the system.
    589  */
    590 int
    591 config_cfdriver_detach(struct cfdriver *cd)
    592 {
    593 	struct alldevs_foray af;
    594 	int i, rc = 0;
    595 
    596 	config_alldevs_enter(&af);
    597 	/* Make sure there are no active instances. */
    598 	for (i = 0; i < cd->cd_ndevs; i++) {
    599 		if (cd->cd_devs[i] != NULL) {
    600 			rc = EBUSY;
    601 			break;
    602 		}
    603 	}
    604 	config_alldevs_exit(&af);
    605 	if (rc != 0)
    606 		return rc;
    607 
    608 	/* ...and no attachments loaded. */
    609 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    610 		return EBUSY;
    611 
    612 	LIST_REMOVE(cd, cd_list);
    613 
    614 	KASSERT(cd->cd_devs == NULL);
    615 
    616 	return 0;
    617 }
    618 
    619 /*
    620  * Look up a cfdriver by name.
    621  */
    622 struct cfdriver *
    623 config_cfdriver_lookup(const char *name)
    624 {
    625 	struct cfdriver *cd;
    626 
    627 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    628 		if (STREQ(cd->cd_name, name))
    629 			return cd;
    630 	}
    631 
    632 	return NULL;
    633 }
    634 
    635 /*
    636  * Add a cfattach to the specified driver.
    637  */
    638 int
    639 config_cfattach_attach(const char *driver, struct cfattach *ca)
    640 {
    641 	struct cfattach *lca;
    642 	struct cfdriver *cd;
    643 
    644 	cd = config_cfdriver_lookup(driver);
    645 	if (cd == NULL)
    646 		return ESRCH;
    647 
    648 	/* Make sure this attachment isn't already on this driver. */
    649 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    650 		if (STREQ(lca->ca_name, ca->ca_name))
    651 			return EEXIST;
    652 	}
    653 
    654 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    655 
    656 	return 0;
    657 }
    658 
    659 /*
    660  * Remove a cfattach from the specified driver.
    661  */
    662 int
    663 config_cfattach_detach(const char *driver, struct cfattach *ca)
    664 {
    665 	struct alldevs_foray af;
    666 	struct cfdriver *cd;
    667 	device_t dev;
    668 	int i, rc = 0;
    669 
    670 	cd = config_cfdriver_lookup(driver);
    671 	if (cd == NULL)
    672 		return ESRCH;
    673 
    674 	config_alldevs_enter(&af);
    675 	/* Make sure there are no active instances. */
    676 	for (i = 0; i < cd->cd_ndevs; i++) {
    677 		if ((dev = cd->cd_devs[i]) == NULL)
    678 			continue;
    679 		if (dev->dv_cfattach == ca) {
    680 			rc = EBUSY;
    681 			break;
    682 		}
    683 	}
    684 	config_alldevs_exit(&af);
    685 
    686 	if (rc != 0)
    687 		return rc;
    688 
    689 	LIST_REMOVE(ca, ca_list);
    690 
    691 	return 0;
    692 }
    693 
    694 /*
    695  * Look up a cfattach by name.
    696  */
    697 static struct cfattach *
    698 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    699 {
    700 	struct cfattach *ca;
    701 
    702 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    703 		if (STREQ(ca->ca_name, atname))
    704 			return ca;
    705 	}
    706 
    707 	return NULL;
    708 }
    709 
    710 /*
    711  * Look up a cfattach by driver/attachment name.
    712  */
    713 struct cfattach *
    714 config_cfattach_lookup(const char *name, const char *atname)
    715 {
    716 	struct cfdriver *cd;
    717 
    718 	cd = config_cfdriver_lookup(name);
    719 	if (cd == NULL)
    720 		return NULL;
    721 
    722 	return config_cfattach_lookup_cd(cd, atname);
    723 }
    724 
    725 /*
    726  * Apply the matching function and choose the best.  This is used
    727  * a few times and we want to keep the code small.
    728  */
    729 static void
    730 mapply(struct matchinfo *m, cfdata_t cf)
    731 {
    732 	int pri;
    733 
    734 	if (m->fn != NULL) {
    735 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    736 	} else {
    737 		pri = config_match(m->parent, cf, m->aux);
    738 	}
    739 	if (pri > m->pri) {
    740 		m->match = cf;
    741 		m->pri = pri;
    742 	}
    743 }
    744 
    745 int
    746 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    747 {
    748 	const struct cfiattrdata *ci;
    749 	const struct cflocdesc *cl;
    750 	int nlocs, i;
    751 
    752 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    753 	KASSERT(ci);
    754 	nlocs = ci->ci_loclen;
    755 	KASSERT(!nlocs || locs);
    756 	for (i = 0; i < nlocs; i++) {
    757 		cl = &ci->ci_locdesc[i];
    758 		if (cl->cld_defaultstr != NULL &&
    759 		    cf->cf_loc[i] == cl->cld_default)
    760 			continue;
    761 		if (cf->cf_loc[i] == locs[i])
    762 			continue;
    763 		return 0;
    764 	}
    765 
    766 	return config_match(parent, cf, aux);
    767 }
    768 
    769 /*
    770  * Helper function: check whether the driver supports the interface attribute
    771  * and return its descriptor structure.
    772  */
    773 static const struct cfiattrdata *
    774 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    775 {
    776 	const struct cfiattrdata * const *cpp;
    777 
    778 	if (cd->cd_attrs == NULL)
    779 		return 0;
    780 
    781 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    782 		if (STREQ((*cpp)->ci_name, ia)) {
    783 			/* Match. */
    784 			return *cpp;
    785 		}
    786 	}
    787 	return 0;
    788 }
    789 
    790 /*
    791  * Lookup an interface attribute description by name.
    792  * If the driver is given, consider only its supported attributes.
    793  */
    794 const struct cfiattrdata *
    795 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    796 {
    797 	const struct cfdriver *d;
    798 	const struct cfiattrdata *ia;
    799 
    800 	if (cd)
    801 		return cfdriver_get_iattr(cd, name);
    802 
    803 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    804 		ia = cfdriver_get_iattr(d, name);
    805 		if (ia)
    806 			return ia;
    807 	}
    808 	return 0;
    809 }
    810 
    811 /*
    812  * Determine if `parent' is a potential parent for a device spec based
    813  * on `cfp'.
    814  */
    815 static int
    816 cfparent_match(const device_t parent, const struct cfparent *cfp)
    817 {
    818 	struct cfdriver *pcd;
    819 
    820 	/* We don't match root nodes here. */
    821 	if (cfp == NULL)
    822 		return 0;
    823 
    824 	pcd = parent->dv_cfdriver;
    825 	KASSERT(pcd != NULL);
    826 
    827 	/*
    828 	 * First, ensure this parent has the correct interface
    829 	 * attribute.
    830 	 */
    831 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    832 		return 0;
    833 
    834 	/*
    835 	 * If no specific parent device instance was specified (i.e.
    836 	 * we're attaching to the attribute only), we're done!
    837 	 */
    838 	if (cfp->cfp_parent == NULL)
    839 		return 1;
    840 
    841 	/*
    842 	 * Check the parent device's name.
    843 	 */
    844 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    845 		return 0;	/* not the same parent */
    846 
    847 	/*
    848 	 * Make sure the unit number matches.
    849 	 */
    850 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    851 	    cfp->cfp_unit == parent->dv_unit)
    852 		return 1;
    853 
    854 	/* Unit numbers don't match. */
    855 	return 0;
    856 }
    857 
    858 /*
    859  * Helper for config_cfdata_attach(): check all devices whether it could be
    860  * parent any attachment in the config data table passed, and rescan.
    861  */
    862 static void
    863 rescan_with_cfdata(const struct cfdata *cf)
    864 {
    865 	device_t d;
    866 	const struct cfdata *cf1;
    867 	deviter_t di;
    868 
    869 
    870 	/*
    871 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    872 	 * the outer loop.
    873 	 */
    874 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    875 
    876 		if (!(d->dv_cfattach->ca_rescan))
    877 			continue;
    878 
    879 		for (cf1 = cf; cf1->cf_name; cf1++) {
    880 
    881 			if (!cfparent_match(d, cf1->cf_pspec))
    882 				continue;
    883 
    884 			(*d->dv_cfattach->ca_rescan)(d,
    885 				cfdata_ifattr(cf1), cf1->cf_loc);
    886 
    887 			config_deferred(d);
    888 		}
    889 	}
    890 	deviter_release(&di);
    891 }
    892 
    893 /*
    894  * Attach a supplemental config data table and rescan potential
    895  * parent devices if required.
    896  */
    897 int
    898 config_cfdata_attach(cfdata_t cf, int scannow)
    899 {
    900 	struct cftable *ct;
    901 
    902 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    903 	ct->ct_cfdata = cf;
    904 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    905 
    906 	if (scannow)
    907 		rescan_with_cfdata(cf);
    908 
    909 	return 0;
    910 }
    911 
    912 /*
    913  * Helper for config_cfdata_detach: check whether a device is
    914  * found through any attachment in the config data table.
    915  */
    916 static int
    917 dev_in_cfdata(device_t d, cfdata_t cf)
    918 {
    919 	const struct cfdata *cf1;
    920 
    921 	for (cf1 = cf; cf1->cf_name; cf1++)
    922 		if (d->dv_cfdata == cf1)
    923 			return 1;
    924 
    925 	return 0;
    926 }
    927 
    928 /*
    929  * Detach a supplemental config data table. Detach all devices found
    930  * through that table (and thus keeping references to it) before.
    931  */
    932 int
    933 config_cfdata_detach(cfdata_t cf)
    934 {
    935 	device_t d;
    936 	int error = 0;
    937 	struct cftable *ct;
    938 	deviter_t di;
    939 
    940 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    941 	     d = deviter_next(&di)) {
    942 		if (!dev_in_cfdata(d, cf))
    943 			continue;
    944 		if ((error = config_detach(d, 0)) != 0)
    945 			break;
    946 	}
    947 	deviter_release(&di);
    948 	if (error) {
    949 		aprint_error_dev(d, "unable to detach instance\n");
    950 		return error;
    951 	}
    952 
    953 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    954 		if (ct->ct_cfdata == cf) {
    955 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    956 			kmem_free(ct, sizeof(*ct));
    957 			return 0;
    958 		}
    959 	}
    960 
    961 	/* not found -- shouldn't happen */
    962 	return EINVAL;
    963 }
    964 
    965 /*
    966  * Invoke the "match" routine for a cfdata entry on behalf of
    967  * an external caller, usually a "submatch" routine.
    968  */
    969 int
    970 config_match(device_t parent, cfdata_t cf, void *aux)
    971 {
    972 	struct cfattach *ca;
    973 
    974 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    975 	if (ca == NULL) {
    976 		/* No attachment for this entry, oh well. */
    977 		return 0;
    978 	}
    979 
    980 	return (*ca->ca_match)(parent, cf, aux);
    981 }
    982 
    983 /*
    984  * Iterate over all potential children of some device, calling the given
    985  * function (default being the child's match function) for each one.
    986  * Nonzero returns are matches; the highest value returned is considered
    987  * the best match.  Return the `found child' if we got a match, or NULL
    988  * otherwise.  The `aux' pointer is simply passed on through.
    989  *
    990  * Note that this function is designed so that it can be used to apply
    991  * an arbitrary function to all potential children (its return value
    992  * can be ignored).
    993  */
    994 cfdata_t
    995 config_search_loc(cfsubmatch_t fn, device_t parent,
    996 		  const char *ifattr, const int *locs, void *aux)
    997 {
    998 	struct cftable *ct;
    999 	cfdata_t cf;
   1000 	struct matchinfo m;
   1001 
   1002 	KASSERT(config_initialized);
   1003 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
   1004 
   1005 	m.fn = fn;
   1006 	m.parent = parent;
   1007 	m.locs = locs;
   1008 	m.aux = aux;
   1009 	m.match = NULL;
   1010 	m.pri = 0;
   1011 
   1012 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1013 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1014 
   1015 			/* We don't match root nodes here. */
   1016 			if (!cf->cf_pspec)
   1017 				continue;
   1018 
   1019 			/*
   1020 			 * Skip cf if no longer eligible, otherwise scan
   1021 			 * through parents for one matching `parent', and
   1022 			 * try match function.
   1023 			 */
   1024 			if (cf->cf_fstate == FSTATE_FOUND)
   1025 				continue;
   1026 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
   1027 			    cf->cf_fstate == FSTATE_DSTAR)
   1028 				continue;
   1029 
   1030 			/*
   1031 			 * If an interface attribute was specified,
   1032 			 * consider only children which attach to
   1033 			 * that attribute.
   1034 			 */
   1035 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
   1036 				continue;
   1037 
   1038 			if (cfparent_match(parent, cf->cf_pspec))
   1039 				mapply(&m, cf);
   1040 		}
   1041 	}
   1042 	return m.match;
   1043 }
   1044 
   1045 cfdata_t
   1046 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
   1047     void *aux)
   1048 {
   1049 
   1050 	return config_search_loc(fn, parent, ifattr, NULL, aux);
   1051 }
   1052 
   1053 /*
   1054  * Find the given root device.
   1055  * This is much like config_search, but there is no parent.
   1056  * Don't bother with multiple cfdata tables; the root node
   1057  * must always be in the initial table.
   1058  */
   1059 cfdata_t
   1060 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1061 {
   1062 	cfdata_t cf;
   1063 	const short *p;
   1064 	struct matchinfo m;
   1065 
   1066 	m.fn = fn;
   1067 	m.parent = ROOT;
   1068 	m.aux = aux;
   1069 	m.match = NULL;
   1070 	m.pri = 0;
   1071 	m.locs = 0;
   1072 	/*
   1073 	 * Look at root entries for matching name.  We do not bother
   1074 	 * with found-state here since only one root should ever be
   1075 	 * searched (and it must be done first).
   1076 	 */
   1077 	for (p = cfroots; *p >= 0; p++) {
   1078 		cf = &cfdata[*p];
   1079 		if (strcmp(cf->cf_name, rootname) == 0)
   1080 			mapply(&m, cf);
   1081 	}
   1082 	return m.match;
   1083 }
   1084 
   1085 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1086 
   1087 /*
   1088  * The given `aux' argument describes a device that has been found
   1089  * on the given parent, but not necessarily configured.  Locate the
   1090  * configuration data for that device (using the submatch function
   1091  * provided, or using candidates' cd_match configuration driver
   1092  * functions) and attach it, and return its device_t.  If the device was
   1093  * not configured, call the given `print' function and return NULL.
   1094  */
   1095 device_t
   1096 config_found_sm_loc(device_t parent,
   1097 		const char *ifattr, const int *locs, void *aux,
   1098 		cfprint_t print, cfsubmatch_t submatch)
   1099 {
   1100 	cfdata_t cf;
   1101 
   1102 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
   1103 		return(config_attach_loc(parent, cf, locs, aux, print));
   1104 	if (print) {
   1105 		if (config_do_twiddle && cold)
   1106 			twiddle();
   1107 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1108 	}
   1109 
   1110 	/*
   1111 	 * This has the effect of mixing in a single timestamp to the
   1112 	 * entropy pool.  Experiments indicate the estimator will almost
   1113 	 * always attribute one bit of entropy to this sample; analysis
   1114 	 * of device attach/detach timestamps on FreeBSD indicates 4
   1115 	 * bits of entropy/sample so this seems appropriately conservative.
   1116 	 */
   1117 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1118 	return NULL;
   1119 }
   1120 
   1121 device_t
   1122 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1123     cfprint_t print)
   1124 {
   1125 
   1126 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
   1127 }
   1128 
   1129 device_t
   1130 config_found(device_t parent, void *aux, cfprint_t print)
   1131 {
   1132 
   1133 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
   1134 }
   1135 
   1136 /*
   1137  * As above, but for root devices.
   1138  */
   1139 device_t
   1140 config_rootfound(const char *rootname, void *aux)
   1141 {
   1142 	cfdata_t cf;
   1143 
   1144 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1145 		return config_attach(ROOT, cf, aux, NULL);
   1146 	aprint_error("root device %s not configured\n", rootname);
   1147 	return NULL;
   1148 }
   1149 
   1150 /* just like sprintf(buf, "%d") except that it works from the end */
   1151 static char *
   1152 number(char *ep, int n)
   1153 {
   1154 
   1155 	*--ep = 0;
   1156 	while (n >= 10) {
   1157 		*--ep = (n % 10) + '0';
   1158 		n /= 10;
   1159 	}
   1160 	*--ep = n + '0';
   1161 	return ep;
   1162 }
   1163 
   1164 /*
   1165  * Expand the size of the cd_devs array if necessary.
   1166  *
   1167  * The caller must hold alldevs.lock. config_makeroom() may release and
   1168  * re-acquire alldevs.lock, so callers should re-check conditions such
   1169  * as alldevs.nwrite == 0 and alldevs.nread == 0 when config_makeroom()
   1170  * returns.
   1171  */
   1172 static void
   1173 config_makeroom(int n, struct cfdriver *cd)
   1174 {
   1175 	int ondevs, nndevs;
   1176 	device_t *osp, *nsp;
   1177 
   1178 	KASSERT(mutex_owned(&alldevs.lock));
   1179 	alldevs.nwrite++;
   1180 
   1181 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
   1182 		;
   1183 
   1184 	while (n >= cd->cd_ndevs) {
   1185 		/*
   1186 		 * Need to expand the array.
   1187 		 */
   1188 		ondevs = cd->cd_ndevs;
   1189 		osp = cd->cd_devs;
   1190 
   1191 		/*
   1192 		 * Release alldevs.lock around allocation, which may
   1193 		 * sleep.
   1194 		 */
   1195 		mutex_exit(&alldevs.lock);
   1196 		nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
   1197 		if (nsp == NULL)
   1198 			panic("%s: could not expand cd_devs", __func__);
   1199 		mutex_enter(&alldevs.lock);
   1200 
   1201 		/*
   1202 		 * If another thread moved the array while we did
   1203 		 * not hold alldevs.lock, try again.
   1204 		 */
   1205 		if (cd->cd_devs != osp) {
   1206 			mutex_exit(&alldevs.lock);
   1207 			kmem_free(nsp, sizeof(device_t[nndevs]));
   1208 			mutex_enter(&alldevs.lock);
   1209 			continue;
   1210 		}
   1211 
   1212 		memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
   1213 		if (ondevs != 0)
   1214 			memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
   1215 
   1216 		cd->cd_ndevs = nndevs;
   1217 		cd->cd_devs = nsp;
   1218 		if (ondevs != 0) {
   1219 			mutex_exit(&alldevs.lock);
   1220 			kmem_free(osp, sizeof(device_t[ondevs]));
   1221 			mutex_enter(&alldevs.lock);
   1222 		}
   1223 	}
   1224 	KASSERT(mutex_owned(&alldevs.lock));
   1225 	alldevs.nwrite--;
   1226 }
   1227 
   1228 /*
   1229  * Put dev into the devices list.
   1230  */
   1231 static void
   1232 config_devlink(device_t dev)
   1233 {
   1234 
   1235 	mutex_enter(&alldevs.lock);
   1236 
   1237 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1238 
   1239 	dev->dv_add_gen = alldevs.gen;
   1240 	/* It is safe to add a device to the tail of the list while
   1241 	 * readers and writers are in the list.
   1242 	 */
   1243 	TAILQ_INSERT_TAIL(&alldevs.list, dev, dv_list);
   1244 	mutex_exit(&alldevs.lock);
   1245 }
   1246 
   1247 static void
   1248 config_devfree(device_t dev)
   1249 {
   1250 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
   1251 
   1252 	if (dev->dv_localcnt != NULL) {
   1253 		localcount_fini(dev->dv_localcnt);
   1254 		kmem_free(dev->dv_localcnt, sizeof(*dev->dv_localcnt));
   1255 	}
   1256 	if (dev->dv_cfattach->ca_devsize > 0)
   1257 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1258 	if (priv)
   1259 		kmem_free(dev, sizeof(*dev));
   1260 }
   1261 
   1262 /*
   1263  * Caller must hold alldevs.lock.
   1264  */
   1265 static void
   1266 config_devunlink(device_t dev, struct devicelist *garbage)
   1267 {
   1268 	struct device_garbage *dg = &dev->dv_garbage;
   1269 	cfdriver_t cd = device_cfdriver(dev);
   1270 	int i;
   1271 
   1272 	KASSERT(mutex_owned(&alldevs.lock));
   1273 
   1274  	/* Unlink from device list.  Link to garbage list. */
   1275 	TAILQ_REMOVE(&alldevs.list, dev, dv_list);
   1276 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1277 
   1278 	/* Remove from cfdriver's array. */
   1279 	cd->cd_devs[dev->dv_unit] = NULL;
   1280 
   1281 	/* Now wait for references to drain - no new refs are possible */
   1282 	localcount_drain(dev->dv_localcnt, &config_drain_cv,
   1283 	    &alldevs_mtx);
   1284 
   1285 	/*
   1286 	 * If the device now has no units in use, unlink its softc array.
   1287 	 */
   1288 	for (i = 0; i < cd->cd_ndevs; i++) {
   1289 		if (cd->cd_devs[i] != NULL)
   1290 			break;
   1291 	}
   1292 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1293 	if (i == cd->cd_ndevs) {
   1294 		dg->dg_ndevs = cd->cd_ndevs;
   1295 		dg->dg_devs = cd->cd_devs;
   1296 		cd->cd_devs = NULL;
   1297 		cd->cd_ndevs = 0;
   1298 	}
   1299 }
   1300 
   1301 static void
   1302 config_devdelete(device_t dev)
   1303 {
   1304 	struct device_garbage *dg = &dev->dv_garbage;
   1305 	device_lock_t dvl = device_getlock(dev);
   1306 
   1307 	if (dg->dg_devs != NULL)
   1308 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
   1309 
   1310 	cv_destroy(&dvl->dvl_cv);
   1311 	mutex_destroy(&dvl->dvl_mtx);
   1312 
   1313 	KASSERT(dev->dv_properties != NULL);
   1314 	prop_object_release(dev->dv_properties);
   1315 
   1316 	if (dev->dv_activity_handlers)
   1317 		panic("%s with registered handlers", __func__);
   1318 
   1319 	if (dev->dv_locators) {
   1320 		size_t amount = *--dev->dv_locators;
   1321 		kmem_free(dev->dv_locators, amount);
   1322 	}
   1323 
   1324 	config_devfree(dev);
   1325 }
   1326 
   1327 static int
   1328 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1329 {
   1330 	int unit;
   1331 
   1332 	if (cf->cf_fstate == FSTATE_STAR) {
   1333 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1334 			if (cd->cd_devs[unit] == NULL)
   1335 				break;
   1336 		/*
   1337 		 * unit is now the unit of the first NULL device pointer,
   1338 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1339 		 */
   1340 	} else {
   1341 		unit = cf->cf_unit;
   1342 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1343 			unit = -1;
   1344 	}
   1345 	return unit;
   1346 }
   1347 
   1348 static int
   1349 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1350 {
   1351 	struct alldevs_foray af;
   1352 	int unit;
   1353 
   1354 	config_alldevs_enter(&af);
   1355 	for (;;) {
   1356 		unit = config_unit_nextfree(cd, cf);
   1357 		if (unit == -1)
   1358 			break;
   1359 		if (unit < cd->cd_ndevs) {
   1360 			cd->cd_devs[unit] = dev;
   1361 			dev->dv_unit = unit;
   1362 			break;
   1363 		}
   1364 		config_makeroom(unit, cd);
   1365 	}
   1366 	config_alldevs_exit(&af);
   1367 
   1368 	return unit;
   1369 }
   1370 
   1371 static device_t
   1372 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1373 {
   1374 	cfdriver_t cd;
   1375 	cfattach_t ca;
   1376 	size_t lname, lunit;
   1377 	const char *xunit;
   1378 	int myunit;
   1379 	char num[10];
   1380 	device_t dev;
   1381 	void *dev_private;
   1382 	const struct cfiattrdata *ia;
   1383 	device_lock_t dvl;
   1384 
   1385 	cd = config_cfdriver_lookup(cf->cf_name);
   1386 	if (cd == NULL)
   1387 		return NULL;
   1388 
   1389 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1390 	if (ca == NULL)
   1391 		return NULL;
   1392 
   1393 	/* get memory for all device vars */
   1394 	KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
   1395 	    || ca->ca_devsize >= sizeof(struct device),
   1396 	    "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
   1397 	    sizeof(struct device));
   1398 	if (ca->ca_devsize > 0) {
   1399 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1400 		if (dev_private == NULL)
   1401 			panic("config_devalloc: memory allocation for device "
   1402 			    "softc failed");
   1403 	} else {
   1404 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1405 		dev_private = NULL;
   1406 	}
   1407 
   1408 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1409 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1410 	} else {
   1411 		dev = dev_private;
   1412 #ifdef DIAGNOSTIC
   1413 		printf("%s has not been converted to device_t\n", cd->cd_name);
   1414 #endif
   1415 	}
   1416 	KASSERTMSG(dev, "%s: memory allocation for %s device_t failed",
   1417 	    __func__, cd->cd_name);
   1418 
   1419 	dev->dv_class = cd->cd_class;
   1420 	dev->dv_cfdata = cf;
   1421 	dev->dv_cfdriver = cd;
   1422 	dev->dv_cfattach = ca;
   1423 	dev->dv_activity_count = 0;
   1424 	dev->dv_activity_handlers = NULL;
   1425 	dev->dv_private = dev_private;
   1426 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1427 	dev->dv_localcnt = kmem_alloc(sizeof(*dev->dv_localcnt), KM_SLEEP);
   1428 	KASSERTMSG(dev->dv_localcnt, "%s: unable to allocate localcnt for %s",
   1429 	    __func__, cd->cd_name);
   1430 	localcount_init(dev->dv_localcnt);
   1431 
   1432 	myunit = config_unit_alloc(dev, cd, cf);
   1433 	if (myunit == -1) {
   1434 		config_devfree(dev);
   1435 		return NULL;
   1436 	}
   1437 
   1438 	/* compute length of name and decimal expansion of unit number */
   1439 	lname = strlen(cd->cd_name);
   1440 	xunit = number(&num[sizeof(num)], myunit);
   1441 	lunit = &num[sizeof(num)] - xunit;
   1442 	if (lname + lunit > sizeof(dev->dv_xname))
   1443 		panic("config_devalloc: device name too long");
   1444 
   1445 	dvl = device_getlock(dev);
   1446 
   1447 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1448 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1449 
   1450 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1451 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1452 	dev->dv_parent = parent;
   1453 	if (parent != NULL)
   1454 		dev->dv_depth = parent->dv_depth + 1;
   1455 	else
   1456 		dev->dv_depth = 0;
   1457 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1458 	if (locs) {
   1459 		KASSERT(parent); /* no locators at root */
   1460 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1461 		dev->dv_locators =
   1462 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
   1463 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
   1464 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
   1465 	}
   1466 	dev->dv_properties = prop_dictionary_create();
   1467 	KASSERT(dev->dv_properties != NULL);
   1468 
   1469 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
   1470 	    "device-driver", dev->dv_cfdriver->cd_name);
   1471 	prop_dictionary_set_uint16(dev->dv_properties,
   1472 	    "device-unit", dev->dv_unit);
   1473 	if (parent != NULL) {
   1474 		prop_dictionary_set_cstring(dev->dv_properties,
   1475 		    "device-parent", device_xname(parent));
   1476 	}
   1477 
   1478 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1479 		config_add_attrib_dict(dev);
   1480 
   1481 	return dev;
   1482 }
   1483 
   1484 /*
   1485  * Create an array of device attach attributes and add it
   1486  * to the device's dv_properties dictionary.
   1487  *
   1488  * <key>interface-attributes</key>
   1489  * <array>
   1490  *    <dict>
   1491  *       <key>attribute-name</key>
   1492  *       <string>foo</string>
   1493  *       <key>locators</key>
   1494  *       <array>
   1495  *          <dict>
   1496  *             <key>loc-name</key>
   1497  *             <string>foo-loc1</string>
   1498  *          </dict>
   1499  *          <dict>
   1500  *             <key>loc-name</key>
   1501  *             <string>foo-loc2</string>
   1502  *             <key>default</key>
   1503  *             <string>foo-loc2-default</string>
   1504  *          </dict>
   1505  *          ...
   1506  *       </array>
   1507  *    </dict>
   1508  *    ...
   1509  * </array>
   1510  */
   1511 
   1512 static void
   1513 config_add_attrib_dict(device_t dev)
   1514 {
   1515 	int i, j;
   1516 	const struct cfiattrdata *ci;
   1517 	prop_dictionary_t attr_dict, loc_dict;
   1518 	prop_array_t attr_array, loc_array;
   1519 
   1520 	if ((attr_array = prop_array_create()) == NULL)
   1521 		return;
   1522 
   1523 	for (i = 0; ; i++) {
   1524 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1525 			break;
   1526 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1527 			break;
   1528 		prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
   1529 		    ci->ci_name);
   1530 
   1531 		/* Create an array of the locator names and defaults */
   1532 
   1533 		if (ci->ci_loclen != 0 &&
   1534 		    (loc_array = prop_array_create()) != NULL) {
   1535 			for (j = 0; j < ci->ci_loclen; j++) {
   1536 				loc_dict = prop_dictionary_create();
   1537 				if (loc_dict == NULL)
   1538 					continue;
   1539 				prop_dictionary_set_cstring_nocopy(loc_dict,
   1540 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1541 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1542 					prop_dictionary_set_cstring_nocopy(
   1543 					    loc_dict, "default",
   1544 					    ci->ci_locdesc[j].cld_defaultstr);
   1545 				prop_array_set(loc_array, j, loc_dict);
   1546 				prop_object_release(loc_dict);
   1547 			}
   1548 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1549 			    loc_array);
   1550 		}
   1551 		prop_array_add(attr_array, attr_dict);
   1552 		prop_object_release(attr_dict);
   1553 	}
   1554 	if (i == 0)
   1555 		prop_object_release(attr_array);
   1556 	else
   1557 		prop_dictionary_set_and_rel(dev->dv_properties,
   1558 		    "interface-attributes", attr_array);
   1559 
   1560 	return;
   1561 }
   1562 
   1563 /*
   1564  * Attach a found device.
   1565  */
   1566 device_t
   1567 config_attach_loc(device_t parent, cfdata_t cf,
   1568 	const int *locs, void *aux, cfprint_t print)
   1569 {
   1570 	device_t dev;
   1571 	struct cftable *ct;
   1572 	const char *drvname;
   1573 
   1574 	dev = config_devalloc(parent, cf, locs);
   1575 	if (!dev)
   1576 		panic("config_attach: allocation of device softc failed");
   1577 
   1578 	/* XXX redundant - see below? */
   1579 	if (cf->cf_fstate != FSTATE_STAR) {
   1580 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1581 		cf->cf_fstate = FSTATE_FOUND;
   1582 	}
   1583 
   1584 	config_devlink(dev);
   1585 
   1586 	if (config_do_twiddle && cold)
   1587 		twiddle();
   1588 	else
   1589 		aprint_naive("Found ");
   1590 	/*
   1591 	 * We want the next two printfs for normal, verbose, and quiet,
   1592 	 * but not silent (in which case, we're twiddling, instead).
   1593 	 */
   1594 	if (parent == ROOT) {
   1595 		aprint_naive("%s (root)", device_xname(dev));
   1596 		aprint_normal("%s (root)", device_xname(dev));
   1597 	} else {
   1598 		aprint_naive("%s at %s", device_xname(dev),
   1599 		    device_xname(parent));
   1600 		aprint_normal("%s at %s", device_xname(dev),
   1601 		    device_xname(parent));
   1602 		if (print)
   1603 			(void) (*print)(aux, NULL);
   1604 	}
   1605 
   1606 	/*
   1607 	 * Before attaching, clobber any unfound devices that are
   1608 	 * otherwise identical.
   1609 	 * XXX code above is redundant?
   1610 	 */
   1611 	drvname = dev->dv_cfdriver->cd_name;
   1612 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1613 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1614 			if (STREQ(cf->cf_name, drvname) &&
   1615 			    cf->cf_unit == dev->dv_unit) {
   1616 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1617 					cf->cf_fstate = FSTATE_FOUND;
   1618 			}
   1619 		}
   1620 	}
   1621 	device_register(dev, aux);
   1622 
   1623 	/* Let userland know */
   1624 	devmon_report_device(dev, true);
   1625 
   1626 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1627 
   1628 	if (!device_pmf_is_registered(dev))
   1629 		aprint_debug_dev(dev, "WARNING: power management not "
   1630 		    "supported\n");
   1631 
   1632 	config_process_deferred(&deferred_config_queue, dev);
   1633 
   1634 	device_register_post_config(dev, aux);
   1635 	return dev;
   1636 }
   1637 
   1638 device_t
   1639 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1640 {
   1641 
   1642 	return config_attach_loc(parent, cf, NULL, aux, print);
   1643 }
   1644 
   1645 /*
   1646  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1647  * way are silently inserted into the device tree, and their children
   1648  * attached.
   1649  *
   1650  * Note that because pseudo-devices are attached silently, any information
   1651  * the attach routine wishes to print should be prefixed with the device
   1652  * name by the attach routine.
   1653  */
   1654 device_t
   1655 config_attach_pseudo(cfdata_t cf)
   1656 {
   1657 	device_t dev;
   1658 
   1659 	dev = config_devalloc(ROOT, cf, NULL);
   1660 	if (!dev)
   1661 		return NULL;
   1662 
   1663 	/* XXX mark busy in cfdata */
   1664 
   1665 	if (cf->cf_fstate != FSTATE_STAR) {
   1666 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1667 		cf->cf_fstate = FSTATE_FOUND;
   1668 	}
   1669 
   1670 	config_devlink(dev);
   1671 
   1672 #if 0	/* XXXJRT not yet */
   1673 	device_register(dev, NULL);	/* like a root node */
   1674 #endif
   1675 
   1676 	/* Let userland know */
   1677 	devmon_report_device(dev, true);
   1678 
   1679 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1680 
   1681 	config_process_deferred(&deferred_config_queue, dev);
   1682 	return dev;
   1683 }
   1684 
   1685 /*
   1686  * Caller must hold alldevs.lock.
   1687  */
   1688 static void
   1689 config_collect_garbage(struct devicelist *garbage)
   1690 {
   1691 	device_t dv;
   1692 
   1693 	KASSERT(!cpu_intr_p());
   1694 	KASSERT(!cpu_softintr_p());
   1695 	KASSERT(mutex_owned(&alldevs.lock));
   1696 
   1697 	while (alldevs.nwrite == 0 && alldevs.nread == 0 && alldevs.garbage) {
   1698 		TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
   1699 			if (dv->dv_del_gen != 0)
   1700 				break;
   1701 		}
   1702 		if (dv == NULL) {
   1703 			alldevs.garbage = false;
   1704 			break;
   1705 		}
   1706 		config_devunlink(dv, garbage);
   1707 	}
   1708 	KASSERT(mutex_owned(&alldevs.lock));
   1709 }
   1710 
   1711 static void
   1712 config_dump_garbage(struct devicelist *garbage)
   1713 {
   1714 	device_t dv;
   1715 
   1716 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1717 		TAILQ_REMOVE(garbage, dv, dv_list);
   1718 		config_devdelete(dv);
   1719 	}
   1720 }
   1721 
   1722 /*
   1723  * Detach a device.  Optionally forced (e.g. because of hardware
   1724  * removal) and quiet.  Returns zero if successful, non-zero
   1725  * (an error code) otherwise.
   1726  *
   1727  * Note that this code wants to be run from a process context, so
   1728  * that the detach can sleep to allow processes which have a device
   1729  * open to run and unwind their stacks.
   1730  */
   1731 int
   1732 config_detach(device_t dev, int flags)
   1733 {
   1734 	struct alldevs_foray af;
   1735 	struct cftable *ct;
   1736 	cfdata_t cf;
   1737 	const struct cfattach *ca;
   1738 	struct cfdriver *cd;
   1739 	device_t d __diagused;
   1740 	int rv = 0;
   1741 
   1742 	cf = dev->dv_cfdata;
   1743 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
   1744 		cf->cf_fstate == FSTATE_STAR),
   1745 	    "config_detach: %s: bad device fstate: %d",
   1746 	    device_xname(dev), cf ? cf->cf_fstate : -1);
   1747 
   1748 	cd = dev->dv_cfdriver;
   1749 	KASSERT(cd != NULL);
   1750 
   1751 	ca = dev->dv_cfattach;
   1752 	KASSERT(ca != NULL);
   1753 
   1754 	mutex_enter(&alldevs.lock);
   1755 	if (dev->dv_del_gen != 0) {
   1756 		mutex_exit(&alldevs.lock);
   1757 #ifdef DIAGNOSTIC
   1758 		printf("%s: %s is already detached\n", __func__,
   1759 		    device_xname(dev));
   1760 #endif /* DIAGNOSTIC */
   1761 		return ENOENT;
   1762 	}
   1763 	alldevs.nwrite++;
   1764 	mutex_exit(&alldevs.lock);
   1765 
   1766 	if (!detachall &&
   1767 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1768 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1769 		rv = EOPNOTSUPP;
   1770 	} else if (ca->ca_detach != NULL) {
   1771 		rv = (*ca->ca_detach)(dev, flags);
   1772 	} else
   1773 		rv = EOPNOTSUPP;
   1774 
   1775 	/*
   1776 	 * If it was not possible to detach the device, then we either
   1777 	 * panic() (for the forced but failed case), or return an error.
   1778 	 *
   1779 	 * If it was possible to detach the device, ensure that the
   1780 	 * device is deactivated.
   1781 	 */
   1782 	if (rv == 0)
   1783 		dev->dv_flags &= ~DVF_ACTIVE;
   1784 	else if ((flags & DETACH_FORCE) == 0)
   1785 		goto out;
   1786 	else {
   1787 		panic("config_detach: forced detach of %s failed (%d)",
   1788 		    device_xname(dev), rv);
   1789 	}
   1790 
   1791 	/*
   1792 	 * The device has now been successfully detached.
   1793 	 */
   1794 
   1795 	/* Let userland know */
   1796 	devmon_report_device(dev, false);
   1797 
   1798 #ifdef DIAGNOSTIC
   1799 	/*
   1800 	 * Sanity: If you're successfully detached, you should have no
   1801 	 * children.  (Note that because children must be attached
   1802 	 * after parents, we only need to search the latter part of
   1803 	 * the list.)
   1804 	 */
   1805 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1806 	    d = TAILQ_NEXT(d, dv_list)) {
   1807 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1808 			printf("config_detach: detached device %s"
   1809 			    " has children %s\n", device_xname(dev),
   1810 			    device_xname(d));
   1811 			panic("config_detach");
   1812 		}
   1813 	}
   1814 #endif
   1815 
   1816 	/* notify the parent that the child is gone */
   1817 	if (dev->dv_parent) {
   1818 		device_t p = dev->dv_parent;
   1819 		if (p->dv_cfattach->ca_childdetached)
   1820 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1821 	}
   1822 
   1823 	/*
   1824 	 * Mark cfdata to show that the unit can be reused, if possible.
   1825 	 */
   1826 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1827 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1828 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1829 				if (cf->cf_fstate == FSTATE_FOUND &&
   1830 				    cf->cf_unit == dev->dv_unit)
   1831 					cf->cf_fstate = FSTATE_NOTFOUND;
   1832 			}
   1833 		}
   1834 	}
   1835 
   1836 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1837 		aprint_normal_dev(dev, "detached\n");
   1838 
   1839 out:
   1840 	config_alldevs_enter(&af);
   1841 	KASSERT(alldevs.nwrite != 0);
   1842 	--alldevs.nwrite;
   1843 	if (rv == 0 && dev->dv_del_gen == 0) {
   1844 		if (alldevs.nwrite == 0 && alldevs.nread == 0)
   1845 			config_devunlink(dev, &af.af_garbage);
   1846 		else {
   1847 			dev->dv_del_gen = alldevs.gen;
   1848 			alldevs.garbage = true;
   1849 		}
   1850 	}
   1851 	config_alldevs_exit(&af);
   1852 
   1853 	return rv;
   1854 }
   1855 
   1856 int
   1857 config_detach_children(device_t parent, int flags)
   1858 {
   1859 	device_t dv;
   1860 	deviter_t di;
   1861 	int error = 0;
   1862 
   1863 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1864 	     dv = deviter_next(&di)) {
   1865 		if (device_parent(dv) != parent)
   1866 			continue;
   1867 		if ((error = config_detach(dv, flags)) != 0)
   1868 			break;
   1869 	}
   1870 	deviter_release(&di);
   1871 	return error;
   1872 }
   1873 
   1874 device_t
   1875 shutdown_first(struct shutdown_state *s)
   1876 {
   1877 	if (!s->initialized) {
   1878 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1879 		s->initialized = true;
   1880 	}
   1881 	return shutdown_next(s);
   1882 }
   1883 
   1884 device_t
   1885 shutdown_next(struct shutdown_state *s)
   1886 {
   1887 	device_t dv;
   1888 
   1889 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1890 		;
   1891 
   1892 	if (dv == NULL)
   1893 		s->initialized = false;
   1894 
   1895 	return dv;
   1896 }
   1897 
   1898 bool
   1899 config_detach_all(int how)
   1900 {
   1901 	static struct shutdown_state s;
   1902 	device_t curdev;
   1903 	bool progress = false;
   1904 	int flags;
   1905 
   1906 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
   1907 		return false;
   1908 
   1909 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
   1910 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
   1911 	else
   1912 		flags = DETACH_SHUTDOWN;
   1913 
   1914 	for (curdev = shutdown_first(&s); curdev != NULL;
   1915 	     curdev = shutdown_next(&s)) {
   1916 		aprint_debug(" detaching %s, ", device_xname(curdev));
   1917 		if (config_detach(curdev, flags) == 0) {
   1918 			progress = true;
   1919 			aprint_debug("success.");
   1920 		} else
   1921 			aprint_debug("failed.");
   1922 	}
   1923 	return progress;
   1924 }
   1925 
   1926 static bool
   1927 device_is_ancestor_of(device_t ancestor, device_t descendant)
   1928 {
   1929 	device_t dv;
   1930 
   1931 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   1932 		if (device_parent(dv) == ancestor)
   1933 			return true;
   1934 	}
   1935 	return false;
   1936 }
   1937 
   1938 int
   1939 config_deactivate(device_t dev)
   1940 {
   1941 	deviter_t di;
   1942 	const struct cfattach *ca;
   1943 	device_t descendant;
   1944 	int s, rv = 0, oflags;
   1945 
   1946 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   1947 	     descendant != NULL;
   1948 	     descendant = deviter_next(&di)) {
   1949 		if (dev != descendant &&
   1950 		    !device_is_ancestor_of(dev, descendant))
   1951 			continue;
   1952 
   1953 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   1954 			continue;
   1955 
   1956 		ca = descendant->dv_cfattach;
   1957 		oflags = descendant->dv_flags;
   1958 
   1959 		descendant->dv_flags &= ~DVF_ACTIVE;
   1960 		if (ca->ca_activate == NULL)
   1961 			continue;
   1962 		s = splhigh();
   1963 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   1964 		splx(s);
   1965 		if (rv != 0)
   1966 			descendant->dv_flags = oflags;
   1967 	}
   1968 	deviter_release(&di);
   1969 	return rv;
   1970 }
   1971 
   1972 /*
   1973  * Defer the configuration of the specified device until all
   1974  * of its parent's devices have been attached.
   1975  */
   1976 void
   1977 config_defer(device_t dev, void (*func)(device_t))
   1978 {
   1979 	struct deferred_config *dc;
   1980 
   1981 	if (dev->dv_parent == NULL)
   1982 		panic("config_defer: can't defer config of a root device");
   1983 
   1984 #ifdef DIAGNOSTIC
   1985 	TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
   1986 		if (dc->dc_dev == dev)
   1987 			panic("config_defer: deferred twice");
   1988 	}
   1989 #endif
   1990 
   1991 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1992 	if (dc == NULL)
   1993 		panic("config_defer: unable to allocate callback");
   1994 
   1995 	dc->dc_dev = dev;
   1996 	dc->dc_func = func;
   1997 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1998 	config_pending_incr(dev);
   1999 }
   2000 
   2001 /*
   2002  * Defer some autoconfiguration for a device until after interrupts
   2003  * are enabled.
   2004  */
   2005 void
   2006 config_interrupts(device_t dev, void (*func)(device_t))
   2007 {
   2008 	struct deferred_config *dc;
   2009 
   2010 	/*
   2011 	 * If interrupts are enabled, callback now.
   2012 	 */
   2013 	if (cold == 0) {
   2014 		(*func)(dev);
   2015 		return;
   2016 	}
   2017 
   2018 #ifdef DIAGNOSTIC
   2019 	TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
   2020 		if (dc->dc_dev == dev)
   2021 			panic("config_interrupts: deferred twice");
   2022 	}
   2023 #endif
   2024 
   2025 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2026 	if (dc == NULL)
   2027 		panic("config_interrupts: unable to allocate callback");
   2028 
   2029 	dc->dc_dev = dev;
   2030 	dc->dc_func = func;
   2031 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   2032 	config_pending_incr(dev);
   2033 }
   2034 
   2035 /*
   2036  * Defer some autoconfiguration for a device until after root file system
   2037  * is mounted (to load firmware etc).
   2038  */
   2039 void
   2040 config_mountroot(device_t dev, void (*func)(device_t))
   2041 {
   2042 	struct deferred_config *dc;
   2043 
   2044 	/*
   2045 	 * If root file system is mounted, callback now.
   2046 	 */
   2047 	if (root_is_mounted) {
   2048 		(*func)(dev);
   2049 		return;
   2050 	}
   2051 
   2052 #ifdef DIAGNOSTIC
   2053 	TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
   2054 		if (dc->dc_dev == dev)
   2055 			panic("%s: deferred twice", __func__);
   2056 	}
   2057 #endif
   2058 
   2059 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2060 	if (dc == NULL)
   2061 		panic("%s: unable to allocate callback", __func__);
   2062 
   2063 	dc->dc_dev = dev;
   2064 	dc->dc_func = func;
   2065 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   2066 }
   2067 
   2068 /*
   2069  * Process a deferred configuration queue.
   2070  */
   2071 static void
   2072 config_process_deferred(struct deferred_config_head *queue, device_t parent)
   2073 {
   2074 	struct deferred_config *dc, *ndc;
   2075 
   2076 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   2077 		ndc = TAILQ_NEXT(dc, dc_queue);
   2078 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2079 			TAILQ_REMOVE(queue, dc, dc_queue);
   2080 			(*dc->dc_func)(dc->dc_dev);
   2081 			config_pending_decr(dc->dc_dev);
   2082 			kmem_free(dc, sizeof(*dc));
   2083 		}
   2084 	}
   2085 }
   2086 
   2087 /*
   2088  * Manipulate the config_pending semaphore.
   2089  */
   2090 void
   2091 config_pending_incr(device_t dev)
   2092 {
   2093 
   2094 	mutex_enter(&config_misc_lock);
   2095 	config_pending++;
   2096 #ifdef DEBUG_AUTOCONF
   2097 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
   2098 #endif
   2099 	mutex_exit(&config_misc_lock);
   2100 }
   2101 
   2102 void
   2103 config_pending_decr(device_t dev)
   2104 {
   2105 
   2106 	KASSERT(0 < config_pending);
   2107 	mutex_enter(&config_misc_lock);
   2108 	config_pending--;
   2109 #ifdef DEBUG_AUTOCONF
   2110 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
   2111 #endif
   2112 	if (config_pending == 0)
   2113 		cv_broadcast(&config_misc_cv);
   2114 	mutex_exit(&config_misc_lock);
   2115 }
   2116 
   2117 /*
   2118  * Register a "finalization" routine.  Finalization routines are
   2119  * called iteratively once all real devices have been found during
   2120  * autoconfiguration, for as long as any one finalizer has done
   2121  * any work.
   2122  */
   2123 int
   2124 config_finalize_register(device_t dev, int (*fn)(device_t))
   2125 {
   2126 	struct finalize_hook *f;
   2127 
   2128 	/*
   2129 	 * If finalization has already been done, invoke the
   2130 	 * callback function now.
   2131 	 */
   2132 	if (config_finalize_done) {
   2133 		while ((*fn)(dev) != 0)
   2134 			/* loop */ ;
   2135 		return 0;
   2136 	}
   2137 
   2138 	/* Ensure this isn't already on the list. */
   2139 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2140 		if (f->f_func == fn && f->f_dev == dev)
   2141 			return EEXIST;
   2142 	}
   2143 
   2144 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2145 	f->f_func = fn;
   2146 	f->f_dev = dev;
   2147 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2148 
   2149 	return 0;
   2150 }
   2151 
   2152 void
   2153 config_finalize(void)
   2154 {
   2155 	struct finalize_hook *f;
   2156 	struct pdevinit *pdev;
   2157 	extern struct pdevinit pdevinit[];
   2158 	int errcnt, rv;
   2159 
   2160 	/*
   2161 	 * Now that device driver threads have been created, wait for
   2162 	 * them to finish any deferred autoconfiguration.
   2163 	 */
   2164 	mutex_enter(&config_misc_lock);
   2165 	while (config_pending != 0)
   2166 		cv_wait(&config_misc_cv, &config_misc_lock);
   2167 	mutex_exit(&config_misc_lock);
   2168 
   2169 	KERNEL_LOCK(1, NULL);
   2170 
   2171 	/* Attach pseudo-devices. */
   2172 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2173 		(*pdev->pdev_attach)(pdev->pdev_count);
   2174 
   2175 	/* Run the hooks until none of them does any work. */
   2176 	do {
   2177 		rv = 0;
   2178 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2179 			rv |= (*f->f_func)(f->f_dev);
   2180 	} while (rv != 0);
   2181 
   2182 	config_finalize_done = 1;
   2183 
   2184 	/* Now free all the hooks. */
   2185 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2186 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2187 		kmem_free(f, sizeof(*f));
   2188 	}
   2189 
   2190 	KERNEL_UNLOCK_ONE(NULL);
   2191 
   2192 	errcnt = aprint_get_error_count();
   2193 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2194 	    (boothowto & AB_VERBOSE) == 0) {
   2195 		mutex_enter(&config_misc_lock);
   2196 		if (config_do_twiddle) {
   2197 			config_do_twiddle = 0;
   2198 			printf_nolog(" done.\n");
   2199 		}
   2200 		mutex_exit(&config_misc_lock);
   2201 	}
   2202 	if (errcnt != 0) {
   2203 		printf("WARNING: %d error%s while detecting hardware; "
   2204 		    "check system log.\n", errcnt,
   2205 		    errcnt == 1 ? "" : "s");
   2206 	}
   2207 }
   2208 
   2209 void
   2210 config_twiddle_init(void)
   2211 {
   2212 
   2213 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2214 		config_do_twiddle = 1;
   2215 	}
   2216 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2217 }
   2218 
   2219 void
   2220 config_twiddle_fn(void *cookie)
   2221 {
   2222 
   2223 	mutex_enter(&config_misc_lock);
   2224 	if (config_do_twiddle) {
   2225 		twiddle();
   2226 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2227 	}
   2228 	mutex_exit(&config_misc_lock);
   2229 }
   2230 
   2231 static void
   2232 config_alldevs_enter(struct alldevs_foray *af)
   2233 {
   2234 	TAILQ_INIT(&af->af_garbage);
   2235 	mutex_enter(&alldevs.lock);
   2236 	config_collect_garbage(&af->af_garbage);
   2237 }
   2238 
   2239 static void
   2240 config_alldevs_exit(struct alldevs_foray *af)
   2241 {
   2242 	mutex_exit(&alldevs.lock);
   2243 	config_dump_garbage(&af->af_garbage);
   2244 }
   2245 
   2246 /*
   2247  * device_acquire:
   2248  *
   2249  *	Acquire a reference to the device.
   2250  */
   2251 void
   2252 device_acquire(device_t dv)
   2253 {
   2254 
   2255 	KASSERTMSG(dv->dv_localcnt != NULL, "%s: device %s has no localcnt!",
   2256 	    __func__, dv->dv_cfdriver->cd_name)
   2257 	localcount_acquire(dv->dv_localcnt);
   2258 }
   2259 
   2260 /*
   2261  * device_lookup:
   2262  *
   2263  *	Look up a device instance for a given driver.
   2264  */
   2265 device_t
   2266 device_lookup(cfdriver_t cd, int unit)
   2267 {
   2268 	device_t dv;
   2269 
   2270 	mutex_enter(&alldevs.lock);
   2271 	if (unit < 0 || unit >= cd->cd_ndevs)
   2272 		dv = NULL;
   2273 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2274 		dv = NULL;
   2275 	mutex_exit(&alldevs.lock);
   2276 
   2277 	return dv;
   2278 }
   2279 
   2280 /*
   2281  * device_lookup_acquire:
   2282  *
   2283  *	Look up a device instance for a given driver and
   2284  *	hold a reference to the device.
   2285  */
   2286 device_t
   2287 device_lookup_acquire(cfdriver_t cd, int unit)
   2288 {
   2289 	device_t dv;
   2290 
   2291 	mutex_enter(&alldevs_mtx);
   2292 	if (unit < 0 || unit >= cd->cd_ndevs)
   2293 		dv = NULL;
   2294 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2295 		dv = NULL;
   2296 	if (dv != NULL)
   2297 		device_acquire(dv);
   2298 	mutex_exit(&alldevs_mtx);
   2299 
   2300 	return dv;
   2301 }
   2302 
   2303 /*
   2304  * device_release:
   2305  *
   2306  *	Release the reference that was created by an earlier call to
   2307  *	device_acquire() or device_lookup_acquire().
   2308  */
   2309 void
   2310 device_release(device_t dv)
   2311 {
   2312 
   2313 	localcount_release(dv->dv_localcnt, &config_drain_cv,
   2314 	    &alldevs_mtx);
   2315 }
   2316 
   2317 /*
   2318  * device_lookup_private:
   2319  *
   2320  *	Look up a softc instance for a given driver.
   2321  */
   2322 void *
   2323 device_lookup_private(cfdriver_t cd, int unit)
   2324 {
   2325 
   2326 	return device_private(device_lookup(cd, unit));
   2327 }
   2328 
   2329 /*
   2330  * device_lookup_private_acquire:
   2331  *
   2332  *	Look up the softc and acquire a reference to the device so it
   2333  *	won't disappear.  Note that the caller must ensure that it is
   2334  *	capable of calling device_release() at some later point in
   2335  *	time, thus the returned private data must contain some data
   2336  *	to locate the original device.  Thus the private data must be
   2337  *	present, not NULL!  If this cannot be guaranteed, the caller
   2338  *	should use device_lookup_acquire() in order to retain the
   2339  *	device_t pointer.
   2340  */
   2341 void *
   2342 device_lookup_private_acquire(cfdriver_t cd, int unit)
   2343 {
   2344 	device_t dv;
   2345 	void *p;
   2346 
   2347 	dv = device_lookup_acquire(cd, unit);
   2348 	p = device_private(dv);
   2349 	KASSERTMSG(p != NULL || dv == NULL,
   2350 	    "%s: device %s has no private data", __func__, cd->cd_name);
   2351 	return p;
   2352 }
   2353 
   2354 /*
   2355  * device_find_by_xname:
   2356  *
   2357  *	Returns the device of the given name or NULL if it doesn't exist.
   2358  */
   2359 device_t
   2360 device_find_by_xname(const char *name)
   2361 {
   2362 	device_t dv;
   2363 	deviter_t di;
   2364 
   2365 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2366 		if (strcmp(device_xname(dv), name) == 0)
   2367 			break;
   2368 	}
   2369 	deviter_release(&di);
   2370 
   2371 	return dv;
   2372 }
   2373 
   2374 /*
   2375  * device_find_by_driver_unit:
   2376  *
   2377  *	Returns the device of the given driver name and unit or
   2378  *	NULL if it doesn't exist.
   2379  */
   2380 device_t
   2381 device_find_by_driver_unit(const char *name, int unit)
   2382 {
   2383 	struct cfdriver *cd;
   2384 
   2385 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2386 		return NULL;
   2387 	return device_lookup(cd, unit);
   2388 }
   2389 
   2390 /*
   2391  * device_find_by_driver_unit_acquire:
   2392  *
   2393  *	Returns the device of the given driver name and unit or
   2394  *	NULL if it doesn't exist.  If driver is found, it's
   2395  *	reference count is incremented so it won't go away.
   2396  */
   2397 device_t
   2398 device_find_by_driver_unit_acquire(const char *name, int unit)
   2399 {
   2400 	struct cfdriver *cd;
   2401 
   2402 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2403 		return NULL;
   2404 	return device_lookup_acquire(cd, unit);
   2405 }
   2406 
   2407 /*
   2408  * Power management related functions.
   2409  */
   2410 
   2411 bool
   2412 device_pmf_is_registered(device_t dev)
   2413 {
   2414 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2415 }
   2416 
   2417 bool
   2418 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2419 {
   2420 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2421 		return true;
   2422 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2423 		return false;
   2424 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2425 	    dev->dv_driver_suspend != NULL &&
   2426 	    !(*dev->dv_driver_suspend)(dev, qual))
   2427 		return false;
   2428 
   2429 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2430 	return true;
   2431 }
   2432 
   2433 bool
   2434 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2435 {
   2436 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2437 		return true;
   2438 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2439 		return false;
   2440 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2441 	    dev->dv_driver_resume != NULL &&
   2442 	    !(*dev->dv_driver_resume)(dev, qual))
   2443 		return false;
   2444 
   2445 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2446 	return true;
   2447 }
   2448 
   2449 bool
   2450 device_pmf_driver_shutdown(device_t dev, int how)
   2451 {
   2452 
   2453 	if (*dev->dv_driver_shutdown != NULL &&
   2454 	    !(*dev->dv_driver_shutdown)(dev, how))
   2455 		return false;
   2456 	return true;
   2457 }
   2458 
   2459 bool
   2460 device_pmf_driver_register(device_t dev,
   2461     bool (*suspend)(device_t, const pmf_qual_t *),
   2462     bool (*resume)(device_t, const pmf_qual_t *),
   2463     bool (*shutdown)(device_t, int))
   2464 {
   2465 	dev->dv_driver_suspend = suspend;
   2466 	dev->dv_driver_resume = resume;
   2467 	dev->dv_driver_shutdown = shutdown;
   2468 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2469 	return true;
   2470 }
   2471 
   2472 static const char *
   2473 curlwp_name(void)
   2474 {
   2475 	if (curlwp->l_name != NULL)
   2476 		return curlwp->l_name;
   2477 	else
   2478 		return curlwp->l_proc->p_comm;
   2479 }
   2480 
   2481 void
   2482 device_pmf_driver_deregister(device_t dev)
   2483 {
   2484 	device_lock_t dvl = device_getlock(dev);
   2485 
   2486 	dev->dv_driver_suspend = NULL;
   2487 	dev->dv_driver_resume = NULL;
   2488 
   2489 	mutex_enter(&dvl->dvl_mtx);
   2490 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2491 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2492 		/* Wake a thread that waits for the lock.  That
   2493 		 * thread will fail to acquire the lock, and then
   2494 		 * it will wake the next thread that waits for the
   2495 		 * lock, or else it will wake us.
   2496 		 */
   2497 		cv_signal(&dvl->dvl_cv);
   2498 		pmflock_debug(dev, __func__, __LINE__);
   2499 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2500 		pmflock_debug(dev, __func__, __LINE__);
   2501 	}
   2502 	mutex_exit(&dvl->dvl_mtx);
   2503 }
   2504 
   2505 bool
   2506 device_pmf_driver_child_register(device_t dev)
   2507 {
   2508 	device_t parent = device_parent(dev);
   2509 
   2510 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2511 		return true;
   2512 	return (*parent->dv_driver_child_register)(dev);
   2513 }
   2514 
   2515 void
   2516 device_pmf_driver_set_child_register(device_t dev,
   2517     bool (*child_register)(device_t))
   2518 {
   2519 	dev->dv_driver_child_register = child_register;
   2520 }
   2521 
   2522 static void
   2523 pmflock_debug(device_t dev, const char *func, int line)
   2524 {
   2525 	device_lock_t dvl = device_getlock(dev);
   2526 
   2527 	aprint_debug_dev(dev,
   2528 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
   2529 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
   2530 }
   2531 
   2532 static bool
   2533 device_pmf_lock1(device_t dev)
   2534 {
   2535 	device_lock_t dvl = device_getlock(dev);
   2536 
   2537 	while (device_pmf_is_registered(dev) &&
   2538 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2539 		dvl->dvl_nwait++;
   2540 		pmflock_debug(dev, __func__, __LINE__);
   2541 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2542 		pmflock_debug(dev, __func__, __LINE__);
   2543 		dvl->dvl_nwait--;
   2544 	}
   2545 	if (!device_pmf_is_registered(dev)) {
   2546 		pmflock_debug(dev, __func__, __LINE__);
   2547 		/* We could not acquire the lock, but some other thread may
   2548 		 * wait for it, also.  Wake that thread.
   2549 		 */
   2550 		cv_signal(&dvl->dvl_cv);
   2551 		return false;
   2552 	}
   2553 	dvl->dvl_nlock++;
   2554 	dvl->dvl_holder = curlwp;
   2555 	pmflock_debug(dev, __func__, __LINE__);
   2556 	return true;
   2557 }
   2558 
   2559 bool
   2560 device_pmf_lock(device_t dev)
   2561 {
   2562 	bool rc;
   2563 	device_lock_t dvl = device_getlock(dev);
   2564 
   2565 	mutex_enter(&dvl->dvl_mtx);
   2566 	rc = device_pmf_lock1(dev);
   2567 	mutex_exit(&dvl->dvl_mtx);
   2568 
   2569 	return rc;
   2570 }
   2571 
   2572 void
   2573 device_pmf_unlock(device_t dev)
   2574 {
   2575 	device_lock_t dvl = device_getlock(dev);
   2576 
   2577 	KASSERT(dvl->dvl_nlock > 0);
   2578 	mutex_enter(&dvl->dvl_mtx);
   2579 	if (--dvl->dvl_nlock == 0)
   2580 		dvl->dvl_holder = NULL;
   2581 	cv_signal(&dvl->dvl_cv);
   2582 	pmflock_debug(dev, __func__, __LINE__);
   2583 	mutex_exit(&dvl->dvl_mtx);
   2584 }
   2585 
   2586 device_lock_t
   2587 device_getlock(device_t dev)
   2588 {
   2589 	return &dev->dv_lock;
   2590 }
   2591 
   2592 void *
   2593 device_pmf_bus_private(device_t dev)
   2594 {
   2595 	return dev->dv_bus_private;
   2596 }
   2597 
   2598 bool
   2599 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   2600 {
   2601 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2602 		return true;
   2603 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2604 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2605 		return false;
   2606 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2607 	    dev->dv_bus_suspend != NULL &&
   2608 	    !(*dev->dv_bus_suspend)(dev, qual))
   2609 		return false;
   2610 
   2611 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2612 	return true;
   2613 }
   2614 
   2615 bool
   2616 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   2617 {
   2618 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2619 		return true;
   2620 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2621 	    dev->dv_bus_resume != NULL &&
   2622 	    !(*dev->dv_bus_resume)(dev, qual))
   2623 		return false;
   2624 
   2625 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2626 	return true;
   2627 }
   2628 
   2629 bool
   2630 device_pmf_bus_shutdown(device_t dev, int how)
   2631 {
   2632 
   2633 	if (*dev->dv_bus_shutdown != NULL &&
   2634 	    !(*dev->dv_bus_shutdown)(dev, how))
   2635 		return false;
   2636 	return true;
   2637 }
   2638 
   2639 void
   2640 device_pmf_bus_register(device_t dev, void *priv,
   2641     bool (*suspend)(device_t, const pmf_qual_t *),
   2642     bool (*resume)(device_t, const pmf_qual_t *),
   2643     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2644 {
   2645 	dev->dv_bus_private = priv;
   2646 	dev->dv_bus_resume = resume;
   2647 	dev->dv_bus_suspend = suspend;
   2648 	dev->dv_bus_shutdown = shutdown;
   2649 	dev->dv_bus_deregister = deregister;
   2650 }
   2651 
   2652 void
   2653 device_pmf_bus_deregister(device_t dev)
   2654 {
   2655 	if (dev->dv_bus_deregister == NULL)
   2656 		return;
   2657 	(*dev->dv_bus_deregister)(dev);
   2658 	dev->dv_bus_private = NULL;
   2659 	dev->dv_bus_suspend = NULL;
   2660 	dev->dv_bus_resume = NULL;
   2661 	dev->dv_bus_deregister = NULL;
   2662 }
   2663 
   2664 void *
   2665 device_pmf_class_private(device_t dev)
   2666 {
   2667 	return dev->dv_class_private;
   2668 }
   2669 
   2670 bool
   2671 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   2672 {
   2673 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2674 		return true;
   2675 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2676 	    dev->dv_class_suspend != NULL &&
   2677 	    !(*dev->dv_class_suspend)(dev, qual))
   2678 		return false;
   2679 
   2680 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2681 	return true;
   2682 }
   2683 
   2684 bool
   2685 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   2686 {
   2687 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2688 		return true;
   2689 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2690 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2691 		return false;
   2692 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2693 	    dev->dv_class_resume != NULL &&
   2694 	    !(*dev->dv_class_resume)(dev, qual))
   2695 		return false;
   2696 
   2697 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2698 	return true;
   2699 }
   2700 
   2701 void
   2702 device_pmf_class_register(device_t dev, void *priv,
   2703     bool (*suspend)(device_t, const pmf_qual_t *),
   2704     bool (*resume)(device_t, const pmf_qual_t *),
   2705     void (*deregister)(device_t))
   2706 {
   2707 	dev->dv_class_private = priv;
   2708 	dev->dv_class_suspend = suspend;
   2709 	dev->dv_class_resume = resume;
   2710 	dev->dv_class_deregister = deregister;
   2711 }
   2712 
   2713 void
   2714 device_pmf_class_deregister(device_t dev)
   2715 {
   2716 	if (dev->dv_class_deregister == NULL)
   2717 		return;
   2718 	(*dev->dv_class_deregister)(dev);
   2719 	dev->dv_class_private = NULL;
   2720 	dev->dv_class_suspend = NULL;
   2721 	dev->dv_class_resume = NULL;
   2722 	dev->dv_class_deregister = NULL;
   2723 }
   2724 
   2725 bool
   2726 device_active(device_t dev, devactive_t type)
   2727 {
   2728 	size_t i;
   2729 
   2730 	if (dev->dv_activity_count == 0)
   2731 		return false;
   2732 
   2733 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2734 		if (dev->dv_activity_handlers[i] == NULL)
   2735 			break;
   2736 		(*dev->dv_activity_handlers[i])(dev, type);
   2737 	}
   2738 
   2739 	return true;
   2740 }
   2741 
   2742 bool
   2743 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2744 {
   2745 	void (**new_handlers)(device_t, devactive_t);
   2746 	void (**old_handlers)(device_t, devactive_t);
   2747 	size_t i, old_size, new_size;
   2748 	int s;
   2749 
   2750 	old_handlers = dev->dv_activity_handlers;
   2751 	old_size = dev->dv_activity_count;
   2752 
   2753 	KASSERT(old_size == 0 || old_handlers != NULL);
   2754 
   2755 	for (i = 0; i < old_size; ++i) {
   2756 		KASSERT(old_handlers[i] != handler);
   2757 		if (old_handlers[i] == NULL) {
   2758 			old_handlers[i] = handler;
   2759 			return true;
   2760 		}
   2761 	}
   2762 
   2763 	new_size = old_size + 4;
   2764 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
   2765 
   2766 	for (i = 0; i < old_size; ++i)
   2767 		new_handlers[i] = old_handlers[i];
   2768 	new_handlers[old_size] = handler;
   2769 	for (i = old_size+1; i < new_size; ++i)
   2770 		new_handlers[i] = NULL;
   2771 
   2772 	s = splhigh();
   2773 	dev->dv_activity_count = new_size;
   2774 	dev->dv_activity_handlers = new_handlers;
   2775 	splx(s);
   2776 
   2777 	if (old_size > 0)
   2778 		kmem_free(old_handlers, sizeof(void * [old_size]));
   2779 
   2780 	return true;
   2781 }
   2782 
   2783 void
   2784 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2785 {
   2786 	void (**old_handlers)(device_t, devactive_t);
   2787 	size_t i, old_size;
   2788 	int s;
   2789 
   2790 	old_handlers = dev->dv_activity_handlers;
   2791 	old_size = dev->dv_activity_count;
   2792 
   2793 	for (i = 0; i < old_size; ++i) {
   2794 		if (old_handlers[i] == handler)
   2795 			break;
   2796 		if (old_handlers[i] == NULL)
   2797 			return; /* XXX panic? */
   2798 	}
   2799 
   2800 	if (i == old_size)
   2801 		return; /* XXX panic? */
   2802 
   2803 	for (; i < old_size - 1; ++i) {
   2804 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   2805 			continue;
   2806 
   2807 		if (i == 0) {
   2808 			s = splhigh();
   2809 			dev->dv_activity_count = 0;
   2810 			dev->dv_activity_handlers = NULL;
   2811 			splx(s);
   2812 			kmem_free(old_handlers, sizeof(void *[old_size]));
   2813 		}
   2814 		return;
   2815 	}
   2816 	old_handlers[i] = NULL;
   2817 }
   2818 
   2819 /* Return true iff the device_t `dev' exists at generation `gen'. */
   2820 static bool
   2821 device_exists_at(device_t dv, devgen_t gen)
   2822 {
   2823 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   2824 	    dv->dv_add_gen <= gen;
   2825 }
   2826 
   2827 static bool
   2828 deviter_visits(const deviter_t *di, device_t dv)
   2829 {
   2830 	return device_exists_at(dv, di->di_gen);
   2831 }
   2832 
   2833 /*
   2834  * Device Iteration
   2835  *
   2836  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2837  *     each device_t's in the device tree.
   2838  *
   2839  * deviter_init(di, flags): initialize the device iterator `di'
   2840  *     to "walk" the device tree.  deviter_next(di) will return
   2841  *     the first device_t in the device tree, or NULL if there are
   2842  *     no devices.
   2843  *
   2844  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2845  *     caller intends to modify the device tree by calling
   2846  *     config_detach(9) on devices in the order that the iterator
   2847  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2848  *     nearest the "root" of the device tree to be returned, first;
   2849  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2850  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2851  *     indicating both that deviter_init() should not respect any
   2852  *     locks on the device tree, and that deviter_next(di) may run
   2853  *     in more than one LWP before the walk has finished.
   2854  *
   2855  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2856  *     once.
   2857  *
   2858  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2859  *
   2860  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2861  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2862  *
   2863  * deviter_first(di, flags): initialize the device iterator `di'
   2864  *     and return the first device_t in the device tree, or NULL
   2865  *     if there are no devices.  The statement
   2866  *
   2867  *         dv = deviter_first(di);
   2868  *
   2869  *     is shorthand for
   2870  *
   2871  *         deviter_init(di);
   2872  *         dv = deviter_next(di);
   2873  *
   2874  * deviter_next(di): return the next device_t in the device tree,
   2875  *     or NULL if there are no more devices.  deviter_next(di)
   2876  *     is undefined if `di' was not initialized with deviter_init() or
   2877  *     deviter_first().
   2878  *
   2879  * deviter_release(di): stops iteration (subsequent calls to
   2880  *     deviter_next() will return NULL), releases any locks and
   2881  *     resources held by the device iterator.
   2882  *
   2883  * Device iteration does not return device_t's in any particular
   2884  * order.  An iterator will never return the same device_t twice.
   2885  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2886  * is called repeatedly on the same `di', it will eventually return
   2887  * NULL.  It is ok to attach/detach devices during device iteration.
   2888  */
   2889 void
   2890 deviter_init(deviter_t *di, deviter_flags_t flags)
   2891 {
   2892 	device_t dv;
   2893 
   2894 	memset(di, 0, sizeof(*di));
   2895 
   2896 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   2897 		flags |= DEVITER_F_RW;
   2898 
   2899 	mutex_enter(&alldevs.lock);
   2900 	if ((flags & DEVITER_F_RW) != 0)
   2901 		alldevs.nwrite++;
   2902 	else
   2903 		alldevs.nread++;
   2904 	di->di_gen = alldevs.gen++;
   2905 	di->di_flags = flags;
   2906 
   2907 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2908 	case DEVITER_F_LEAVES_FIRST:
   2909 		TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
   2910 			if (!deviter_visits(di, dv))
   2911 				continue;
   2912 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2913 		}
   2914 		break;
   2915 	case DEVITER_F_ROOT_FIRST:
   2916 		TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
   2917 			if (!deviter_visits(di, dv))
   2918 				continue;
   2919 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2920 		}
   2921 		break;
   2922 	default:
   2923 		break;
   2924 	}
   2925 
   2926 	deviter_reinit(di);
   2927 	mutex_exit(&alldevs.lock);
   2928 }
   2929 
   2930 static void
   2931 deviter_reinit(deviter_t *di)
   2932 {
   2933 
   2934 	KASSERT(mutex_owned(&alldevs.lock));
   2935 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2936 		di->di_prev = TAILQ_LAST(&alldevs.list, devicelist);
   2937 	else
   2938 		di->di_prev = TAILQ_FIRST(&alldevs.list);
   2939 }
   2940 
   2941 device_t
   2942 deviter_first(deviter_t *di, deviter_flags_t flags)
   2943 {
   2944 
   2945 	deviter_init(di, flags);
   2946 	return deviter_next(di);
   2947 }
   2948 
   2949 static device_t
   2950 deviter_next2(deviter_t *di)
   2951 {
   2952 	device_t dv;
   2953 
   2954 	KASSERT(mutex_owned(&alldevs.lock));
   2955 
   2956 	dv = di->di_prev;
   2957 
   2958 	if (dv == NULL)
   2959 		return NULL;
   2960 
   2961 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2962 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2963 	else
   2964 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2965 
   2966 	return dv;
   2967 }
   2968 
   2969 static device_t
   2970 deviter_next1(deviter_t *di)
   2971 {
   2972 	device_t dv;
   2973 
   2974 	KASSERT(mutex_owned(&alldevs.lock));
   2975 
   2976 	do {
   2977 		dv = deviter_next2(di);
   2978 	} while (dv != NULL && !deviter_visits(di, dv));
   2979 
   2980 	return dv;
   2981 }
   2982 
   2983 device_t
   2984 deviter_next(deviter_t *di)
   2985 {
   2986 	device_t dv = NULL;
   2987 
   2988 	mutex_enter(&alldevs.lock);
   2989 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2990 	case 0:
   2991 		dv = deviter_next1(di);
   2992 		break;
   2993 	case DEVITER_F_LEAVES_FIRST:
   2994 		while (di->di_curdepth >= 0) {
   2995 			if ((dv = deviter_next1(di)) == NULL) {
   2996 				di->di_curdepth--;
   2997 				deviter_reinit(di);
   2998 			} else if (dv->dv_depth == di->di_curdepth)
   2999 				break;
   3000 		}
   3001 		break;
   3002 	case DEVITER_F_ROOT_FIRST:
   3003 		while (di->di_curdepth <= di->di_maxdepth) {
   3004 			if ((dv = deviter_next1(di)) == NULL) {
   3005 				di->di_curdepth++;
   3006 				deviter_reinit(di);
   3007 			} else if (dv->dv_depth == di->di_curdepth)
   3008 				break;
   3009 		}
   3010 		break;
   3011 	default:
   3012 		break;
   3013 	}
   3014 	mutex_exit(&alldevs.lock);
   3015 
   3016 	return dv;
   3017 }
   3018 
   3019 void
   3020 deviter_release(deviter_t *di)
   3021 {
   3022 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   3023 
   3024 	mutex_enter(&alldevs.lock);
   3025 	if (rw)
   3026 		--alldevs.nwrite;
   3027 	else
   3028 		--alldevs.nread;
   3029 	/* XXX wake a garbage-collection thread */
   3030 	mutex_exit(&alldevs.lock);
   3031 }
   3032 
   3033 const char *
   3034 cfdata_ifattr(const struct cfdata *cf)
   3035 {
   3036 	return cf->cf_pspec->cfp_iattr;
   3037 }
   3038 
   3039 bool
   3040 ifattr_match(const char *snull, const char *t)
   3041 {
   3042 	return (snull == NULL) || strcmp(snull, t) == 0;
   3043 }
   3044 
   3045 void
   3046 null_childdetached(device_t self, device_t child)
   3047 {
   3048 	/* do nothing */
   3049 }
   3050 
   3051 static void
   3052 sysctl_detach_setup(struct sysctllog **clog)
   3053 {
   3054 
   3055 	sysctl_createv(clog, 0, NULL, NULL,
   3056 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3057 		CTLTYPE_BOOL, "detachall",
   3058 		SYSCTL_DESCR("Detach all devices at shutdown"),
   3059 		NULL, 0, &detachall, 0,
   3060 		CTL_KERN, CTL_CREATE, CTL_EOL);
   3061 }
   3062