Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.249
      1 /* $NetBSD: subr_autoconf.c,v 1.249 2017/03/20 01:05:03 riastradh Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.249 2017/03/20 01:05:03 riastradh Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/disklabel.h>
     90 #include <sys/conf.h>
     91 #include <sys/kauth.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/mount.h>
    102 #include <sys/namei.h>
    103 #include <sys/unistd.h>
    104 #include <sys/fcntl.h>
    105 #include <sys/lockf.h>
    106 #include <sys/callout.h>
    107 #include <sys/devmon.h>
    108 #include <sys/cpu.h>
    109 #include <sys/sysctl.h>
    110 
    111 #include <sys/disk.h>
    112 
    113 #include <sys/rndsource.h>
    114 
    115 #include <machine/limits.h>
    116 
    117 /*
    118  * Autoconfiguration subroutines.
    119  */
    120 
    121 /*
    122  * Device autoconfiguration timings are mixed into the entropy pool.
    123  */
    124 extern krndsource_t rnd_autoconf_source;
    125 
    126 /*
    127  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    128  * devices and drivers are found via these tables.
    129  */
    130 extern struct cfdata cfdata[];
    131 extern const short cfroots[];
    132 
    133 /*
    134  * List of all cfdriver structures.  We use this to detect duplicates
    135  * when other cfdrivers are loaded.
    136  */
    137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    138 extern struct cfdriver * const cfdriver_list_initial[];
    139 
    140 /*
    141  * Initial list of cfattach's.
    142  */
    143 extern const struct cfattachinit cfattachinit[];
    144 
    145 /*
    146  * List of cfdata tables.  We always have one such list -- the one
    147  * built statically when the kernel was configured.
    148  */
    149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    150 static struct cftable initcftable;
    151 
    152 #define	ROOT ((device_t)NULL)
    153 
    154 struct matchinfo {
    155 	cfsubmatch_t fn;
    156 	device_t parent;
    157 	const int *locs;
    158 	void	*aux;
    159 	struct	cfdata *match;
    160 	int	pri;
    161 };
    162 
    163 struct alldevs_foray {
    164 	int			af_s;
    165 	struct devicelist	af_garbage;
    166 };
    167 
    168 static char *number(char *, int);
    169 static void mapply(struct matchinfo *, cfdata_t);
    170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    171 static void config_devdelete(device_t);
    172 static void config_devunlink(device_t, struct devicelist *);
    173 static void config_makeroom(int, struct cfdriver *);
    174 static void config_devlink(device_t);
    175 static void config_alldevs_enter(struct alldevs_foray *);
    176 static void config_alldevs_exit(struct alldevs_foray *);
    177 static void config_add_attrib_dict(device_t);
    178 
    179 static void config_collect_garbage(struct devicelist *);
    180 static void config_dump_garbage(struct devicelist *);
    181 
    182 static void pmflock_debug(device_t, const char *, int);
    183 
    184 static device_t deviter_next1(deviter_t *);
    185 static void deviter_reinit(deviter_t *);
    186 
    187 struct deferred_config {
    188 	TAILQ_ENTRY(deferred_config) dc_queue;
    189 	device_t dc_dev;
    190 	void (*dc_func)(device_t);
    191 };
    192 
    193 TAILQ_HEAD(deferred_config_head, deferred_config);
    194 
    195 struct deferred_config_head deferred_config_queue =
    196 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    197 struct deferred_config_head interrupt_config_queue =
    198 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    199 int interrupt_config_threads = 8;
    200 struct deferred_config_head mountroot_config_queue =
    201 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    202 int mountroot_config_threads = 2;
    203 static lwp_t **mountroot_config_lwpids;
    204 static size_t mountroot_config_lwpids_size;
    205 static bool root_is_mounted = false;
    206 
    207 static void config_process_deferred(struct deferred_config_head *, device_t);
    208 
    209 /* Hooks to finalize configuration once all real devices have been found. */
    210 struct finalize_hook {
    211 	TAILQ_ENTRY(finalize_hook) f_list;
    212 	int (*f_func)(device_t);
    213 	device_t f_dev;
    214 };
    215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    216 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    217 static int config_finalize_done;
    218 
    219 /* list of all devices */
    220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    221 static kmutex_t alldevs_mtx;
    222 static volatile bool alldevs_garbage = false;
    223 static volatile devgen_t alldevs_gen = 1;
    224 static volatile int alldevs_nread = 0;
    225 static volatile int alldevs_nwrite = 0;
    226 
    227 static int config_pending;		/* semaphore for mountroot */
    228 static kmutex_t config_misc_lock;
    229 static kcondvar_t config_misc_cv;
    230 
    231 static bool detachall = false;
    232 
    233 #define	STREQ(s1, s2)			\
    234 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    235 
    236 static bool config_initialized = false;	/* config_init() has been called. */
    237 
    238 static int config_do_twiddle;
    239 static callout_t config_twiddle_ch;
    240 
    241 static void sysctl_detach_setup(struct sysctllog **);
    242 
    243 int no_devmon_insert(const char *, prop_dictionary_t);
    244 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
    245 
    246 typedef int (*cfdriver_fn)(struct cfdriver *);
    247 static int
    248 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    249 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    250 	const char *style, bool dopanic)
    251 {
    252 	void (*pr)(const char *, ...) __printflike(1, 2) =
    253 	    dopanic ? panic : printf;
    254 	int i, error = 0, e2 __diagused;
    255 
    256 	for (i = 0; cfdriverv[i] != NULL; i++) {
    257 		if ((error = drv_do(cfdriverv[i])) != 0) {
    258 			pr("configure: `%s' driver %s failed: %d",
    259 			    cfdriverv[i]->cd_name, style, error);
    260 			goto bad;
    261 		}
    262 	}
    263 
    264 	KASSERT(error == 0);
    265 	return 0;
    266 
    267  bad:
    268 	printf("\n");
    269 	for (i--; i >= 0; i--) {
    270 		e2 = drv_undo(cfdriverv[i]);
    271 		KASSERT(e2 == 0);
    272 	}
    273 
    274 	return error;
    275 }
    276 
    277 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    278 static int
    279 frob_cfattachvec(const struct cfattachinit *cfattachv,
    280 	cfattach_fn att_do, cfattach_fn att_undo,
    281 	const char *style, bool dopanic)
    282 {
    283 	const struct cfattachinit *cfai = NULL;
    284 	void (*pr)(const char *, ...) __printflike(1, 2) =
    285 	    dopanic ? panic : printf;
    286 	int j = 0, error = 0, e2 __diagused;
    287 
    288 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    289 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    290 			if ((error = att_do(cfai->cfai_name,
    291 			    cfai->cfai_list[j])) != 0) {
    292 				pr("configure: attachment `%s' "
    293 				    "of `%s' driver %s failed: %d",
    294 				    cfai->cfai_list[j]->ca_name,
    295 				    cfai->cfai_name, style, error);
    296 				goto bad;
    297 			}
    298 		}
    299 	}
    300 
    301 	KASSERT(error == 0);
    302 	return 0;
    303 
    304  bad:
    305 	/*
    306 	 * Rollback in reverse order.  dunno if super-important, but
    307 	 * do that anyway.  Although the code looks a little like
    308 	 * someone did a little integration (in the math sense).
    309 	 */
    310 	printf("\n");
    311 	if (cfai) {
    312 		bool last;
    313 
    314 		for (last = false; last == false; ) {
    315 			if (cfai == &cfattachv[0])
    316 				last = true;
    317 			for (j--; j >= 0; j--) {
    318 				e2 = att_undo(cfai->cfai_name,
    319 				    cfai->cfai_list[j]);
    320 				KASSERT(e2 == 0);
    321 			}
    322 			if (!last) {
    323 				cfai--;
    324 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    325 					;
    326 			}
    327 		}
    328 	}
    329 
    330 	return error;
    331 }
    332 
    333 /*
    334  * Initialize the autoconfiguration data structures.  Normally this
    335  * is done by configure(), but some platforms need to do this very
    336  * early (to e.g. initialize the console).
    337  */
    338 void
    339 config_init(void)
    340 {
    341 
    342 	KASSERT(config_initialized == false);
    343 
    344 	mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
    345 
    346 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    347 	cv_init(&config_misc_cv, "cfgmisc");
    348 
    349 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    350 
    351 	frob_cfdrivervec(cfdriver_list_initial,
    352 	    config_cfdriver_attach, NULL, "bootstrap", true);
    353 	frob_cfattachvec(cfattachinit,
    354 	    config_cfattach_attach, NULL, "bootstrap", true);
    355 
    356 	initcftable.ct_cfdata = cfdata;
    357 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    358 
    359 	config_initialized = true;
    360 }
    361 
    362 /*
    363  * Init or fini drivers and attachments.  Either all or none
    364  * are processed (via rollback).  It would be nice if this were
    365  * atomic to outside consumers, but with the current state of
    366  * locking ...
    367  */
    368 int
    369 config_init_component(struct cfdriver * const *cfdriverv,
    370 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    371 {
    372 	int error;
    373 
    374 	if ((error = frob_cfdrivervec(cfdriverv,
    375 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    376 		return error;
    377 	if ((error = frob_cfattachvec(cfattachv,
    378 	    config_cfattach_attach, config_cfattach_detach,
    379 	    "init", false)) != 0) {
    380 		frob_cfdrivervec(cfdriverv,
    381 	            config_cfdriver_detach, NULL, "init rollback", true);
    382 		return error;
    383 	}
    384 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    385 		frob_cfattachvec(cfattachv,
    386 		    config_cfattach_detach, NULL, "init rollback", true);
    387 		frob_cfdrivervec(cfdriverv,
    388 	            config_cfdriver_detach, NULL, "init rollback", true);
    389 		return error;
    390 	}
    391 
    392 	return 0;
    393 }
    394 
    395 int
    396 config_fini_component(struct cfdriver * const *cfdriverv,
    397 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    398 {
    399 	int error;
    400 
    401 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    402 		return error;
    403 	if ((error = frob_cfattachvec(cfattachv,
    404 	    config_cfattach_detach, config_cfattach_attach,
    405 	    "fini", false)) != 0) {
    406 		if (config_cfdata_attach(cfdatav, 0) != 0)
    407 			panic("config_cfdata fini rollback failed");
    408 		return error;
    409 	}
    410 	if ((error = frob_cfdrivervec(cfdriverv,
    411 	    config_cfdriver_detach, config_cfdriver_attach,
    412 	    "fini", false)) != 0) {
    413 		frob_cfattachvec(cfattachv,
    414 	            config_cfattach_attach, NULL, "fini rollback", true);
    415 		if (config_cfdata_attach(cfdatav, 0) != 0)
    416 			panic("config_cfdata fini rollback failed");
    417 		return error;
    418 	}
    419 
    420 	return 0;
    421 }
    422 
    423 void
    424 config_init_mi(void)
    425 {
    426 
    427 	if (!config_initialized)
    428 		config_init();
    429 
    430 	sysctl_detach_setup(NULL);
    431 }
    432 
    433 void
    434 config_deferred(device_t dev)
    435 {
    436 	config_process_deferred(&deferred_config_queue, dev);
    437 	config_process_deferred(&interrupt_config_queue, dev);
    438 	config_process_deferred(&mountroot_config_queue, dev);
    439 }
    440 
    441 static void
    442 config_interrupts_thread(void *cookie)
    443 {
    444 	struct deferred_config *dc;
    445 
    446 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    447 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    448 		(*dc->dc_func)(dc->dc_dev);
    449 		config_pending_decr(dc->dc_dev);
    450 		kmem_free(dc, sizeof(*dc));
    451 	}
    452 	kthread_exit(0);
    453 }
    454 
    455 void
    456 config_create_interruptthreads(void)
    457 {
    458 	int i;
    459 
    460 	for (i = 0; i < interrupt_config_threads; i++) {
    461 		(void)kthread_create(PRI_NONE, 0, NULL,
    462 		    config_interrupts_thread, NULL, NULL, "configintr");
    463 	}
    464 }
    465 
    466 static void
    467 config_mountroot_thread(void *cookie)
    468 {
    469 	struct deferred_config *dc;
    470 
    471 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    472 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    473 		(*dc->dc_func)(dc->dc_dev);
    474 		kmem_free(dc, sizeof(*dc));
    475 	}
    476 	kthread_exit(0);
    477 }
    478 
    479 void
    480 config_create_mountrootthreads(void)
    481 {
    482 	int i;
    483 
    484 	if (!root_is_mounted)
    485 		root_is_mounted = true;
    486 
    487 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
    488 				       mountroot_config_threads;
    489 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
    490 					     KM_NOSLEEP);
    491 	KASSERT(mountroot_config_lwpids);
    492 	for (i = 0; i < mountroot_config_threads; i++) {
    493 		mountroot_config_lwpids[i] = 0;
    494 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
    495 				     config_mountroot_thread, NULL,
    496 				     &mountroot_config_lwpids[i],
    497 				     "configroot");
    498 	}
    499 }
    500 
    501 void
    502 config_finalize_mountroot(void)
    503 {
    504 	int i, error;
    505 
    506 	for (i = 0; i < mountroot_config_threads; i++) {
    507 		if (mountroot_config_lwpids[i] == 0)
    508 			continue;
    509 
    510 		error = kthread_join(mountroot_config_lwpids[i]);
    511 		if (error)
    512 			printf("%s: thread %x joined with error %d\n",
    513 			       __func__, i, error);
    514 	}
    515 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
    516 }
    517 
    518 /*
    519  * Announce device attach/detach to userland listeners.
    520  */
    521 
    522 int
    523 no_devmon_insert(const char *name, prop_dictionary_t p)
    524 {
    525 
    526 	return ENODEV;
    527 }
    528 
    529 static void
    530 devmon_report_device(device_t dev, bool isattach)
    531 {
    532 	prop_dictionary_t ev;
    533 	const char *parent;
    534 	const char *what;
    535 	device_t pdev = device_parent(dev);
    536 
    537 	/* If currently no drvctl device, just return */
    538 	if (devmon_insert_vec == no_devmon_insert)
    539 		return;
    540 
    541 	ev = prop_dictionary_create();
    542 	if (ev == NULL)
    543 		return;
    544 
    545 	what = (isattach ? "device-attach" : "device-detach");
    546 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    547 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
    548 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
    549 		prop_object_release(ev);
    550 		return;
    551 	}
    552 
    553 	if ((*devmon_insert_vec)(what, ev) != 0)
    554 		prop_object_release(ev);
    555 }
    556 
    557 /*
    558  * Add a cfdriver to the system.
    559  */
    560 int
    561 config_cfdriver_attach(struct cfdriver *cd)
    562 {
    563 	struct cfdriver *lcd;
    564 
    565 	/* Make sure this driver isn't already in the system. */
    566 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    567 		if (STREQ(lcd->cd_name, cd->cd_name))
    568 			return EEXIST;
    569 	}
    570 
    571 	LIST_INIT(&cd->cd_attach);
    572 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    573 
    574 	return 0;
    575 }
    576 
    577 /*
    578  * Remove a cfdriver from the system.
    579  */
    580 int
    581 config_cfdriver_detach(struct cfdriver *cd)
    582 {
    583 	struct alldevs_foray af;
    584 	int i, rc = 0;
    585 
    586 	config_alldevs_enter(&af);
    587 	/* Make sure there are no active instances. */
    588 	for (i = 0; i < cd->cd_ndevs; i++) {
    589 		if (cd->cd_devs[i] != NULL) {
    590 			rc = EBUSY;
    591 			break;
    592 		}
    593 	}
    594 	config_alldevs_exit(&af);
    595 
    596 	if (rc != 0)
    597 		return rc;
    598 
    599 	/* ...and no attachments loaded. */
    600 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    601 		return EBUSY;
    602 
    603 	LIST_REMOVE(cd, cd_list);
    604 
    605 	KASSERT(cd->cd_devs == NULL);
    606 
    607 	return 0;
    608 }
    609 
    610 /*
    611  * Look up a cfdriver by name.
    612  */
    613 struct cfdriver *
    614 config_cfdriver_lookup(const char *name)
    615 {
    616 	struct cfdriver *cd;
    617 
    618 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    619 		if (STREQ(cd->cd_name, name))
    620 			return cd;
    621 	}
    622 
    623 	return NULL;
    624 }
    625 
    626 /*
    627  * Add a cfattach to the specified driver.
    628  */
    629 int
    630 config_cfattach_attach(const char *driver, struct cfattach *ca)
    631 {
    632 	struct cfattach *lca;
    633 	struct cfdriver *cd;
    634 
    635 	cd = config_cfdriver_lookup(driver);
    636 	if (cd == NULL)
    637 		return ESRCH;
    638 
    639 	/* Make sure this attachment isn't already on this driver. */
    640 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    641 		if (STREQ(lca->ca_name, ca->ca_name))
    642 			return EEXIST;
    643 	}
    644 
    645 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    646 
    647 	return 0;
    648 }
    649 
    650 /*
    651  * Remove a cfattach from the specified driver.
    652  */
    653 int
    654 config_cfattach_detach(const char *driver, struct cfattach *ca)
    655 {
    656 	struct alldevs_foray af;
    657 	struct cfdriver *cd;
    658 	device_t dev;
    659 	int i, rc = 0;
    660 
    661 	cd = config_cfdriver_lookup(driver);
    662 	if (cd == NULL)
    663 		return ESRCH;
    664 
    665 	config_alldevs_enter(&af);
    666 	/* Make sure there are no active instances. */
    667 	for (i = 0; i < cd->cd_ndevs; i++) {
    668 		if ((dev = cd->cd_devs[i]) == NULL)
    669 			continue;
    670 		if (dev->dv_cfattach == ca) {
    671 			rc = EBUSY;
    672 			break;
    673 		}
    674 	}
    675 	config_alldevs_exit(&af);
    676 
    677 	if (rc != 0)
    678 		return rc;
    679 
    680 	LIST_REMOVE(ca, ca_list);
    681 
    682 	return 0;
    683 }
    684 
    685 /*
    686  * Look up a cfattach by name.
    687  */
    688 static struct cfattach *
    689 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    690 {
    691 	struct cfattach *ca;
    692 
    693 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    694 		if (STREQ(ca->ca_name, atname))
    695 			return ca;
    696 	}
    697 
    698 	return NULL;
    699 }
    700 
    701 /*
    702  * Look up a cfattach by driver/attachment name.
    703  */
    704 struct cfattach *
    705 config_cfattach_lookup(const char *name, const char *atname)
    706 {
    707 	struct cfdriver *cd;
    708 
    709 	cd = config_cfdriver_lookup(name);
    710 	if (cd == NULL)
    711 		return NULL;
    712 
    713 	return config_cfattach_lookup_cd(cd, atname);
    714 }
    715 
    716 /*
    717  * Apply the matching function and choose the best.  This is used
    718  * a few times and we want to keep the code small.
    719  */
    720 static void
    721 mapply(struct matchinfo *m, cfdata_t cf)
    722 {
    723 	int pri;
    724 
    725 	if (m->fn != NULL) {
    726 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    727 	} else {
    728 		pri = config_match(m->parent, cf, m->aux);
    729 	}
    730 	if (pri > m->pri) {
    731 		m->match = cf;
    732 		m->pri = pri;
    733 	}
    734 }
    735 
    736 int
    737 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    738 {
    739 	const struct cfiattrdata *ci;
    740 	const struct cflocdesc *cl;
    741 	int nlocs, i;
    742 
    743 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    744 	KASSERT(ci);
    745 	nlocs = ci->ci_loclen;
    746 	KASSERT(!nlocs || locs);
    747 	for (i = 0; i < nlocs; i++) {
    748 		cl = &ci->ci_locdesc[i];
    749 		if (cl->cld_defaultstr != NULL &&
    750 		    cf->cf_loc[i] == cl->cld_default)
    751 			continue;
    752 		if (cf->cf_loc[i] == locs[i])
    753 			continue;
    754 		return 0;
    755 	}
    756 
    757 	return config_match(parent, cf, aux);
    758 }
    759 
    760 /*
    761  * Helper function: check whether the driver supports the interface attribute
    762  * and return its descriptor structure.
    763  */
    764 static const struct cfiattrdata *
    765 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    766 {
    767 	const struct cfiattrdata * const *cpp;
    768 
    769 	if (cd->cd_attrs == NULL)
    770 		return 0;
    771 
    772 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    773 		if (STREQ((*cpp)->ci_name, ia)) {
    774 			/* Match. */
    775 			return *cpp;
    776 		}
    777 	}
    778 	return 0;
    779 }
    780 
    781 /*
    782  * Lookup an interface attribute description by name.
    783  * If the driver is given, consider only its supported attributes.
    784  */
    785 const struct cfiattrdata *
    786 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    787 {
    788 	const struct cfdriver *d;
    789 	const struct cfiattrdata *ia;
    790 
    791 	if (cd)
    792 		return cfdriver_get_iattr(cd, name);
    793 
    794 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    795 		ia = cfdriver_get_iattr(d, name);
    796 		if (ia)
    797 			return ia;
    798 	}
    799 	return 0;
    800 }
    801 
    802 /*
    803  * Determine if `parent' is a potential parent for a device spec based
    804  * on `cfp'.
    805  */
    806 static int
    807 cfparent_match(const device_t parent, const struct cfparent *cfp)
    808 {
    809 	struct cfdriver *pcd;
    810 
    811 	/* We don't match root nodes here. */
    812 	if (cfp == NULL)
    813 		return 0;
    814 
    815 	pcd = parent->dv_cfdriver;
    816 	KASSERT(pcd != NULL);
    817 
    818 	/*
    819 	 * First, ensure this parent has the correct interface
    820 	 * attribute.
    821 	 */
    822 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    823 		return 0;
    824 
    825 	/*
    826 	 * If no specific parent device instance was specified (i.e.
    827 	 * we're attaching to the attribute only), we're done!
    828 	 */
    829 	if (cfp->cfp_parent == NULL)
    830 		return 1;
    831 
    832 	/*
    833 	 * Check the parent device's name.
    834 	 */
    835 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    836 		return 0;	/* not the same parent */
    837 
    838 	/*
    839 	 * Make sure the unit number matches.
    840 	 */
    841 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    842 	    cfp->cfp_unit == parent->dv_unit)
    843 		return 1;
    844 
    845 	/* Unit numbers don't match. */
    846 	return 0;
    847 }
    848 
    849 /*
    850  * Helper for config_cfdata_attach(): check all devices whether it could be
    851  * parent any attachment in the config data table passed, and rescan.
    852  */
    853 static void
    854 rescan_with_cfdata(const struct cfdata *cf)
    855 {
    856 	device_t d;
    857 	const struct cfdata *cf1;
    858 	deviter_t di;
    859 
    860 
    861 	/*
    862 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    863 	 * the outer loop.
    864 	 */
    865 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    866 
    867 		if (!(d->dv_cfattach->ca_rescan))
    868 			continue;
    869 
    870 		for (cf1 = cf; cf1->cf_name; cf1++) {
    871 
    872 			if (!cfparent_match(d, cf1->cf_pspec))
    873 				continue;
    874 
    875 			(*d->dv_cfattach->ca_rescan)(d,
    876 				cfdata_ifattr(cf1), cf1->cf_loc);
    877 
    878 			config_deferred(d);
    879 		}
    880 	}
    881 	deviter_release(&di);
    882 }
    883 
    884 /*
    885  * Attach a supplemental config data table and rescan potential
    886  * parent devices if required.
    887  */
    888 int
    889 config_cfdata_attach(cfdata_t cf, int scannow)
    890 {
    891 	struct cftable *ct;
    892 
    893 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    894 	ct->ct_cfdata = cf;
    895 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    896 
    897 	if (scannow)
    898 		rescan_with_cfdata(cf);
    899 
    900 	return 0;
    901 }
    902 
    903 /*
    904  * Helper for config_cfdata_detach: check whether a device is
    905  * found through any attachment in the config data table.
    906  */
    907 static int
    908 dev_in_cfdata(device_t d, cfdata_t cf)
    909 {
    910 	const struct cfdata *cf1;
    911 
    912 	for (cf1 = cf; cf1->cf_name; cf1++)
    913 		if (d->dv_cfdata == cf1)
    914 			return 1;
    915 
    916 	return 0;
    917 }
    918 
    919 /*
    920  * Detach a supplemental config data table. Detach all devices found
    921  * through that table (and thus keeping references to it) before.
    922  */
    923 int
    924 config_cfdata_detach(cfdata_t cf)
    925 {
    926 	device_t d;
    927 	int error = 0;
    928 	struct cftable *ct;
    929 	deviter_t di;
    930 
    931 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    932 	     d = deviter_next(&di)) {
    933 		if (!dev_in_cfdata(d, cf))
    934 			continue;
    935 		if ((error = config_detach(d, 0)) != 0)
    936 			break;
    937 	}
    938 	deviter_release(&di);
    939 	if (error) {
    940 		aprint_error_dev(d, "unable to detach instance\n");
    941 		return error;
    942 	}
    943 
    944 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    945 		if (ct->ct_cfdata == cf) {
    946 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    947 			kmem_free(ct, sizeof(*ct));
    948 			return 0;
    949 		}
    950 	}
    951 
    952 	/* not found -- shouldn't happen */
    953 	return EINVAL;
    954 }
    955 
    956 /*
    957  * Invoke the "match" routine for a cfdata entry on behalf of
    958  * an external caller, usually a "submatch" routine.
    959  */
    960 int
    961 config_match(device_t parent, cfdata_t cf, void *aux)
    962 {
    963 	struct cfattach *ca;
    964 
    965 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    966 	if (ca == NULL) {
    967 		/* No attachment for this entry, oh well. */
    968 		return 0;
    969 	}
    970 
    971 	return (*ca->ca_match)(parent, cf, aux);
    972 }
    973 
    974 /*
    975  * Iterate over all potential children of some device, calling the given
    976  * function (default being the child's match function) for each one.
    977  * Nonzero returns are matches; the highest value returned is considered
    978  * the best match.  Return the `found child' if we got a match, or NULL
    979  * otherwise.  The `aux' pointer is simply passed on through.
    980  *
    981  * Note that this function is designed so that it can be used to apply
    982  * an arbitrary function to all potential children (its return value
    983  * can be ignored).
    984  */
    985 cfdata_t
    986 config_search_loc(cfsubmatch_t fn, device_t parent,
    987 		  const char *ifattr, const int *locs, void *aux)
    988 {
    989 	struct cftable *ct;
    990 	cfdata_t cf;
    991 	struct matchinfo m;
    992 
    993 	KASSERT(config_initialized);
    994 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
    995 
    996 	m.fn = fn;
    997 	m.parent = parent;
    998 	m.locs = locs;
    999 	m.aux = aux;
   1000 	m.match = NULL;
   1001 	m.pri = 0;
   1002 
   1003 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1004 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1005 
   1006 			/* We don't match root nodes here. */
   1007 			if (!cf->cf_pspec)
   1008 				continue;
   1009 
   1010 			/*
   1011 			 * Skip cf if no longer eligible, otherwise scan
   1012 			 * through parents for one matching `parent', and
   1013 			 * try match function.
   1014 			 */
   1015 			if (cf->cf_fstate == FSTATE_FOUND)
   1016 				continue;
   1017 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
   1018 			    cf->cf_fstate == FSTATE_DSTAR)
   1019 				continue;
   1020 
   1021 			/*
   1022 			 * If an interface attribute was specified,
   1023 			 * consider only children which attach to
   1024 			 * that attribute.
   1025 			 */
   1026 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
   1027 				continue;
   1028 
   1029 			if (cfparent_match(parent, cf->cf_pspec))
   1030 				mapply(&m, cf);
   1031 		}
   1032 	}
   1033 	return m.match;
   1034 }
   1035 
   1036 cfdata_t
   1037 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
   1038     void *aux)
   1039 {
   1040 
   1041 	return config_search_loc(fn, parent, ifattr, NULL, aux);
   1042 }
   1043 
   1044 /*
   1045  * Find the given root device.
   1046  * This is much like config_search, but there is no parent.
   1047  * Don't bother with multiple cfdata tables; the root node
   1048  * must always be in the initial table.
   1049  */
   1050 cfdata_t
   1051 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1052 {
   1053 	cfdata_t cf;
   1054 	const short *p;
   1055 	struct matchinfo m;
   1056 
   1057 	m.fn = fn;
   1058 	m.parent = ROOT;
   1059 	m.aux = aux;
   1060 	m.match = NULL;
   1061 	m.pri = 0;
   1062 	m.locs = 0;
   1063 	/*
   1064 	 * Look at root entries for matching name.  We do not bother
   1065 	 * with found-state here since only one root should ever be
   1066 	 * searched (and it must be done first).
   1067 	 */
   1068 	for (p = cfroots; *p >= 0; p++) {
   1069 		cf = &cfdata[*p];
   1070 		if (strcmp(cf->cf_name, rootname) == 0)
   1071 			mapply(&m, cf);
   1072 	}
   1073 	return m.match;
   1074 }
   1075 
   1076 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1077 
   1078 /*
   1079  * The given `aux' argument describes a device that has been found
   1080  * on the given parent, but not necessarily configured.  Locate the
   1081  * configuration data for that device (using the submatch function
   1082  * provided, or using candidates' cd_match configuration driver
   1083  * functions) and attach it, and return its device_t.  If the device was
   1084  * not configured, call the given `print' function and return NULL.
   1085  */
   1086 device_t
   1087 config_found_sm_loc(device_t parent,
   1088 		const char *ifattr, const int *locs, void *aux,
   1089 		cfprint_t print, cfsubmatch_t submatch)
   1090 {
   1091 	cfdata_t cf;
   1092 
   1093 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
   1094 		return(config_attach_loc(parent, cf, locs, aux, print));
   1095 	if (print) {
   1096 		if (config_do_twiddle && cold)
   1097 			twiddle();
   1098 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1099 	}
   1100 
   1101 	/*
   1102 	 * This has the effect of mixing in a single timestamp to the
   1103 	 * entropy pool.  Experiments indicate the estimator will almost
   1104 	 * always attribute one bit of entropy to this sample; analysis
   1105 	 * of device attach/detach timestamps on FreeBSD indicates 4
   1106 	 * bits of entropy/sample so this seems appropriately conservative.
   1107 	 */
   1108 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1109 	return NULL;
   1110 }
   1111 
   1112 device_t
   1113 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1114     cfprint_t print)
   1115 {
   1116 
   1117 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
   1118 }
   1119 
   1120 device_t
   1121 config_found(device_t parent, void *aux, cfprint_t print)
   1122 {
   1123 
   1124 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
   1125 }
   1126 
   1127 /*
   1128  * As above, but for root devices.
   1129  */
   1130 device_t
   1131 config_rootfound(const char *rootname, void *aux)
   1132 {
   1133 	cfdata_t cf;
   1134 
   1135 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1136 		return config_attach(ROOT, cf, aux, NULL);
   1137 	aprint_error("root device %s not configured\n", rootname);
   1138 	return NULL;
   1139 }
   1140 
   1141 /* just like sprintf(buf, "%d") except that it works from the end */
   1142 static char *
   1143 number(char *ep, int n)
   1144 {
   1145 
   1146 	*--ep = 0;
   1147 	while (n >= 10) {
   1148 		*--ep = (n % 10) + '0';
   1149 		n /= 10;
   1150 	}
   1151 	*--ep = n + '0';
   1152 	return ep;
   1153 }
   1154 
   1155 /*
   1156  * Expand the size of the cd_devs array if necessary.
   1157  *
   1158  * The caller must hold alldevs_mtx. config_makeroom() may release and
   1159  * re-acquire alldevs_mtx, so callers should re-check conditions such
   1160  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1161  * returns.
   1162  */
   1163 static void
   1164 config_makeroom(int n, struct cfdriver *cd)
   1165 {
   1166 	int ondevs, nndevs;
   1167 	device_t *osp, *nsp;
   1168 
   1169 	KASSERT(mutex_owned(&alldevs_mtx));
   1170 	alldevs_nwrite++;
   1171 
   1172 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
   1173 		;
   1174 
   1175 	while (n >= cd->cd_ndevs) {
   1176 		/*
   1177 		 * Need to expand the array.
   1178 		 */
   1179 		ondevs = cd->cd_ndevs;
   1180 		osp = cd->cd_devs;
   1181 
   1182 		/* Release alldevs_mtx around allocation, which may
   1183 		 * sleep.
   1184 		 */
   1185 		mutex_exit(&alldevs_mtx);
   1186 		nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
   1187 		if (nsp == NULL)
   1188 			panic("%s: could not expand cd_devs", __func__);
   1189 		mutex_enter(&alldevs_mtx);
   1190 
   1191 		/* If another thread moved the array while we did
   1192 		 * not hold alldevs_mtx, try again.
   1193 		 */
   1194 		if (cd->cd_devs != osp) {
   1195 			mutex_exit(&alldevs_mtx);
   1196 			kmem_free(nsp, sizeof(device_t[nndevs]));
   1197 			mutex_enter(&alldevs_mtx);
   1198 			continue;
   1199 		}
   1200 
   1201 		memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
   1202 		if (ondevs != 0)
   1203 			memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
   1204 
   1205 		cd->cd_ndevs = nndevs;
   1206 		cd->cd_devs = nsp;
   1207 		if (ondevs != 0) {
   1208 			mutex_exit(&alldevs_mtx);
   1209 			kmem_free(osp, sizeof(device_t[ondevs]));
   1210 			mutex_enter(&alldevs_mtx);
   1211 		}
   1212 	}
   1213 	KASSERT(mutex_owned(&alldevs_mtx));
   1214 	alldevs_nwrite--;
   1215 }
   1216 
   1217 /*
   1218  * Put dev into the devices list.
   1219  */
   1220 static void
   1221 config_devlink(device_t dev)
   1222 {
   1223 
   1224 	mutex_enter(&alldevs_mtx);
   1225 
   1226 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1227 
   1228 	dev->dv_add_gen = alldevs_gen;
   1229 	/* It is safe to add a device to the tail of the list while
   1230 	 * readers and writers are in the list.
   1231 	 */
   1232 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1233 	mutex_exit(&alldevs_mtx);
   1234 }
   1235 
   1236 static void
   1237 config_devfree(device_t dev)
   1238 {
   1239 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
   1240 
   1241 	if (dev->dv_cfattach->ca_devsize > 0)
   1242 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1243 	if (priv)
   1244 		kmem_free(dev, sizeof(*dev));
   1245 }
   1246 
   1247 /*
   1248  * Caller must hold alldevs_mtx.
   1249  */
   1250 static void
   1251 config_devunlink(device_t dev, struct devicelist *garbage)
   1252 {
   1253 	struct device_garbage *dg = &dev->dv_garbage;
   1254 	cfdriver_t cd = device_cfdriver(dev);
   1255 	int i;
   1256 
   1257 	KASSERT(mutex_owned(&alldevs_mtx));
   1258 
   1259  	/* Unlink from device list.  Link to garbage list. */
   1260 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1261 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1262 
   1263 	/* Remove from cfdriver's array. */
   1264 	cd->cd_devs[dev->dv_unit] = NULL;
   1265 
   1266 	/*
   1267 	 * If the device now has no units in use, unlink its softc array.
   1268 	 */
   1269 	for (i = 0; i < cd->cd_ndevs; i++) {
   1270 		if (cd->cd_devs[i] != NULL)
   1271 			break;
   1272 	}
   1273 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1274 	if (i == cd->cd_ndevs) {
   1275 		dg->dg_ndevs = cd->cd_ndevs;
   1276 		dg->dg_devs = cd->cd_devs;
   1277 		cd->cd_devs = NULL;
   1278 		cd->cd_ndevs = 0;
   1279 	}
   1280 }
   1281 
   1282 static void
   1283 config_devdelete(device_t dev)
   1284 {
   1285 	struct device_garbage *dg = &dev->dv_garbage;
   1286 	device_lock_t dvl = device_getlock(dev);
   1287 
   1288 	if (dg->dg_devs != NULL)
   1289 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
   1290 
   1291 	cv_destroy(&dvl->dvl_cv);
   1292 	mutex_destroy(&dvl->dvl_mtx);
   1293 
   1294 	KASSERT(dev->dv_properties != NULL);
   1295 	prop_object_release(dev->dv_properties);
   1296 
   1297 	if (dev->dv_activity_handlers)
   1298 		panic("%s with registered handlers", __func__);
   1299 
   1300 	if (dev->dv_locators) {
   1301 		size_t amount = *--dev->dv_locators;
   1302 		kmem_free(dev->dv_locators, amount);
   1303 	}
   1304 
   1305 	config_devfree(dev);
   1306 }
   1307 
   1308 static int
   1309 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1310 {
   1311 	int unit;
   1312 
   1313 	if (cf->cf_fstate == FSTATE_STAR) {
   1314 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1315 			if (cd->cd_devs[unit] == NULL)
   1316 				break;
   1317 		/*
   1318 		 * unit is now the unit of the first NULL device pointer,
   1319 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1320 		 */
   1321 	} else {
   1322 		unit = cf->cf_unit;
   1323 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1324 			unit = -1;
   1325 	}
   1326 	return unit;
   1327 }
   1328 
   1329 static int
   1330 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1331 {
   1332 	struct alldevs_foray af;
   1333 	int unit;
   1334 
   1335 	config_alldevs_enter(&af);
   1336 	for (;;) {
   1337 		unit = config_unit_nextfree(cd, cf);
   1338 		if (unit == -1)
   1339 			break;
   1340 		if (unit < cd->cd_ndevs) {
   1341 			cd->cd_devs[unit] = dev;
   1342 			dev->dv_unit = unit;
   1343 			break;
   1344 		}
   1345 		config_makeroom(unit, cd);
   1346 	}
   1347 	config_alldevs_exit(&af);
   1348 
   1349 	return unit;
   1350 }
   1351 
   1352 static device_t
   1353 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1354 {
   1355 	cfdriver_t cd;
   1356 	cfattach_t ca;
   1357 	size_t lname, lunit;
   1358 	const char *xunit;
   1359 	int myunit;
   1360 	char num[10];
   1361 	device_t dev;
   1362 	void *dev_private;
   1363 	const struct cfiattrdata *ia;
   1364 	device_lock_t dvl;
   1365 
   1366 	cd = config_cfdriver_lookup(cf->cf_name);
   1367 	if (cd == NULL)
   1368 		return NULL;
   1369 
   1370 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1371 	if (ca == NULL)
   1372 		return NULL;
   1373 
   1374 	/* get memory for all device vars */
   1375 	KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
   1376 	    || ca->ca_devsize >= sizeof(struct device),
   1377 	    "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
   1378 	    sizeof(struct device));
   1379 	if (ca->ca_devsize > 0) {
   1380 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1381 		if (dev_private == NULL)
   1382 			panic("config_devalloc: memory allocation for device "
   1383 			    "softc failed");
   1384 	} else {
   1385 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1386 		dev_private = NULL;
   1387 	}
   1388 
   1389 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1390 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1391 	} else {
   1392 		dev = dev_private;
   1393 #ifdef DIAGNOSTIC
   1394 		printf("%s has not been converted to device_t\n", cd->cd_name);
   1395 #endif
   1396 	}
   1397 	if (dev == NULL)
   1398 		panic("config_devalloc: memory allocation for device_t failed");
   1399 
   1400 	dev->dv_class = cd->cd_class;
   1401 	dev->dv_cfdata = cf;
   1402 	dev->dv_cfdriver = cd;
   1403 	dev->dv_cfattach = ca;
   1404 	dev->dv_activity_count = 0;
   1405 	dev->dv_activity_handlers = NULL;
   1406 	dev->dv_private = dev_private;
   1407 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1408 
   1409 	myunit = config_unit_alloc(dev, cd, cf);
   1410 	if (myunit == -1) {
   1411 		config_devfree(dev);
   1412 		return NULL;
   1413 	}
   1414 
   1415 	/* compute length of name and decimal expansion of unit number */
   1416 	lname = strlen(cd->cd_name);
   1417 	xunit = number(&num[sizeof(num)], myunit);
   1418 	lunit = &num[sizeof(num)] - xunit;
   1419 	if (lname + lunit > sizeof(dev->dv_xname))
   1420 		panic("config_devalloc: device name too long");
   1421 
   1422 	dvl = device_getlock(dev);
   1423 
   1424 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1425 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1426 
   1427 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1428 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1429 	dev->dv_parent = parent;
   1430 	if (parent != NULL)
   1431 		dev->dv_depth = parent->dv_depth + 1;
   1432 	else
   1433 		dev->dv_depth = 0;
   1434 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1435 	if (locs) {
   1436 		KASSERT(parent); /* no locators at root */
   1437 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1438 		dev->dv_locators =
   1439 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
   1440 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
   1441 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
   1442 	}
   1443 	dev->dv_properties = prop_dictionary_create();
   1444 	KASSERT(dev->dv_properties != NULL);
   1445 
   1446 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
   1447 	    "device-driver", dev->dv_cfdriver->cd_name);
   1448 	prop_dictionary_set_uint16(dev->dv_properties,
   1449 	    "device-unit", dev->dv_unit);
   1450 	if (parent != NULL) {
   1451 		prop_dictionary_set_cstring(dev->dv_properties,
   1452 		    "device-parent", device_xname(parent));
   1453 	}
   1454 
   1455 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1456 		config_add_attrib_dict(dev);
   1457 
   1458 	return dev;
   1459 }
   1460 
   1461 /*
   1462  * Create an array of device attach attributes and add it
   1463  * to the device's dv_properties dictionary.
   1464  *
   1465  * <key>interface-attributes</key>
   1466  * <array>
   1467  *    <dict>
   1468  *       <key>attribute-name</key>
   1469  *       <string>foo</string>
   1470  *       <key>locators</key>
   1471  *       <array>
   1472  *          <dict>
   1473  *             <key>loc-name</key>
   1474  *             <string>foo-loc1</string>
   1475  *          </dict>
   1476  *          <dict>
   1477  *             <key>loc-name</key>
   1478  *             <string>foo-loc2</string>
   1479  *             <key>default</key>
   1480  *             <string>foo-loc2-default</string>
   1481  *          </dict>
   1482  *          ...
   1483  *       </array>
   1484  *    </dict>
   1485  *    ...
   1486  * </array>
   1487  */
   1488 
   1489 static void
   1490 config_add_attrib_dict(device_t dev)
   1491 {
   1492 	int i, j;
   1493 	const struct cfiattrdata *ci;
   1494 	prop_dictionary_t attr_dict, loc_dict;
   1495 	prop_array_t attr_array, loc_array;
   1496 
   1497 	if ((attr_array = prop_array_create()) == NULL)
   1498 		return;
   1499 
   1500 	for (i = 0; ; i++) {
   1501 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1502 			break;
   1503 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1504 			break;
   1505 		prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
   1506 		    ci->ci_name);
   1507 
   1508 		/* Create an array of the locator names and defaults */
   1509 
   1510 		if (ci->ci_loclen != 0 &&
   1511 		    (loc_array = prop_array_create()) != NULL) {
   1512 			for (j = 0; j < ci->ci_loclen; j++) {
   1513 				loc_dict = prop_dictionary_create();
   1514 				if (loc_dict == NULL)
   1515 					continue;
   1516 				prop_dictionary_set_cstring_nocopy(loc_dict,
   1517 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1518 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1519 					prop_dictionary_set_cstring_nocopy(
   1520 					    loc_dict, "default",
   1521 					    ci->ci_locdesc[j].cld_defaultstr);
   1522 				prop_array_set(loc_array, j, loc_dict);
   1523 				prop_object_release(loc_dict);
   1524 			}
   1525 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1526 			    loc_array);
   1527 		}
   1528 		prop_array_add(attr_array, attr_dict);
   1529 		prop_object_release(attr_dict);
   1530 	}
   1531 	if (i == 0)
   1532 		prop_object_release(attr_array);
   1533 	else
   1534 		prop_dictionary_set_and_rel(dev->dv_properties,
   1535 		    "interface-attributes", attr_array);
   1536 
   1537 	return;
   1538 }
   1539 
   1540 /*
   1541  * Attach a found device.
   1542  */
   1543 device_t
   1544 config_attach_loc(device_t parent, cfdata_t cf,
   1545 	const int *locs, void *aux, cfprint_t print)
   1546 {
   1547 	device_t dev;
   1548 	struct cftable *ct;
   1549 	const char *drvname;
   1550 
   1551 	dev = config_devalloc(parent, cf, locs);
   1552 	if (!dev)
   1553 		panic("config_attach: allocation of device softc failed");
   1554 
   1555 	/* XXX redundant - see below? */
   1556 	if (cf->cf_fstate != FSTATE_STAR) {
   1557 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1558 		cf->cf_fstate = FSTATE_FOUND;
   1559 	}
   1560 
   1561 	config_devlink(dev);
   1562 
   1563 	if (config_do_twiddle && cold)
   1564 		twiddle();
   1565 	else
   1566 		aprint_naive("Found ");
   1567 	/*
   1568 	 * We want the next two printfs for normal, verbose, and quiet,
   1569 	 * but not silent (in which case, we're twiddling, instead).
   1570 	 */
   1571 	if (parent == ROOT) {
   1572 		aprint_naive("%s (root)", device_xname(dev));
   1573 		aprint_normal("%s (root)", device_xname(dev));
   1574 	} else {
   1575 		aprint_naive("%s at %s", device_xname(dev),
   1576 		    device_xname(parent));
   1577 		aprint_normal("%s at %s", device_xname(dev),
   1578 		    device_xname(parent));
   1579 		if (print)
   1580 			(void) (*print)(aux, NULL);
   1581 	}
   1582 
   1583 	/*
   1584 	 * Before attaching, clobber any unfound devices that are
   1585 	 * otherwise identical.
   1586 	 * XXX code above is redundant?
   1587 	 */
   1588 	drvname = dev->dv_cfdriver->cd_name;
   1589 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1590 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1591 			if (STREQ(cf->cf_name, drvname) &&
   1592 			    cf->cf_unit == dev->dv_unit) {
   1593 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1594 					cf->cf_fstate = FSTATE_FOUND;
   1595 			}
   1596 		}
   1597 	}
   1598 	device_register(dev, aux);
   1599 
   1600 	/* Let userland know */
   1601 	devmon_report_device(dev, true);
   1602 
   1603 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1604 
   1605 	if (!device_pmf_is_registered(dev))
   1606 		aprint_debug_dev(dev, "WARNING: power management not "
   1607 		    "supported\n");
   1608 
   1609 	config_process_deferred(&deferred_config_queue, dev);
   1610 
   1611 	device_register_post_config(dev, aux);
   1612 	return dev;
   1613 }
   1614 
   1615 device_t
   1616 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1617 {
   1618 
   1619 	return config_attach_loc(parent, cf, NULL, aux, print);
   1620 }
   1621 
   1622 /*
   1623  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1624  * way are silently inserted into the device tree, and their children
   1625  * attached.
   1626  *
   1627  * Note that because pseudo-devices are attached silently, any information
   1628  * the attach routine wishes to print should be prefixed with the device
   1629  * name by the attach routine.
   1630  */
   1631 device_t
   1632 config_attach_pseudo(cfdata_t cf)
   1633 {
   1634 	device_t dev;
   1635 
   1636 	dev = config_devalloc(ROOT, cf, NULL);
   1637 	if (!dev)
   1638 		return NULL;
   1639 
   1640 	/* XXX mark busy in cfdata */
   1641 
   1642 	if (cf->cf_fstate != FSTATE_STAR) {
   1643 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1644 		cf->cf_fstate = FSTATE_FOUND;
   1645 	}
   1646 
   1647 	config_devlink(dev);
   1648 
   1649 #if 0	/* XXXJRT not yet */
   1650 	device_register(dev, NULL);	/* like a root node */
   1651 #endif
   1652 
   1653 	/* Let userland know */
   1654 	devmon_report_device(dev, true);
   1655 
   1656 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1657 
   1658 	config_process_deferred(&deferred_config_queue, dev);
   1659 	return dev;
   1660 }
   1661 
   1662 /*
   1663  * Caller must hold alldevs_mtx.
   1664  */
   1665 static void
   1666 config_collect_garbage(struct devicelist *garbage)
   1667 {
   1668 	device_t dv;
   1669 
   1670 	KASSERT(!cpu_intr_p());
   1671 	KASSERT(!cpu_softintr_p());
   1672 	KASSERT(mutex_owned(&alldevs_mtx));
   1673 
   1674 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1675 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1676 			if (dv->dv_del_gen != 0)
   1677 				break;
   1678 		}
   1679 		if (dv == NULL) {
   1680 			alldevs_garbage = false;
   1681 			break;
   1682 		}
   1683 		config_devunlink(dv, garbage);
   1684 	}
   1685 	KASSERT(mutex_owned(&alldevs_mtx));
   1686 }
   1687 
   1688 static void
   1689 config_dump_garbage(struct devicelist *garbage)
   1690 {
   1691 	device_t dv;
   1692 
   1693 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1694 		TAILQ_REMOVE(garbage, dv, dv_list);
   1695 		config_devdelete(dv);
   1696 	}
   1697 }
   1698 
   1699 /*
   1700  * Detach a device.  Optionally forced (e.g. because of hardware
   1701  * removal) and quiet.  Returns zero if successful, non-zero
   1702  * (an error code) otherwise.
   1703  *
   1704  * Note that this code wants to be run from a process context, so
   1705  * that the detach can sleep to allow processes which have a device
   1706  * open to run and unwind their stacks.
   1707  */
   1708 int
   1709 config_detach(device_t dev, int flags)
   1710 {
   1711 	struct alldevs_foray af;
   1712 	struct cftable *ct;
   1713 	cfdata_t cf;
   1714 	const struct cfattach *ca;
   1715 	struct cfdriver *cd;
   1716 #ifdef DIAGNOSTIC
   1717 	device_t d;
   1718 #endif
   1719 	int rv = 0;
   1720 
   1721 #ifdef DIAGNOSTIC
   1722 	cf = dev->dv_cfdata;
   1723 	if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
   1724 	    cf->cf_fstate != FSTATE_STAR)
   1725 		panic("config_detach: %s: bad device fstate %d",
   1726 		    device_xname(dev), cf ? cf->cf_fstate : -1);
   1727 #endif
   1728 	cd = dev->dv_cfdriver;
   1729 	KASSERT(cd != NULL);
   1730 
   1731 	ca = dev->dv_cfattach;
   1732 	KASSERT(ca != NULL);
   1733 
   1734 	mutex_enter(&alldevs_mtx);
   1735 	if (dev->dv_del_gen != 0) {
   1736 		mutex_exit(&alldevs_mtx);
   1737 #ifdef DIAGNOSTIC
   1738 		printf("%s: %s is already detached\n", __func__,
   1739 		    device_xname(dev));
   1740 #endif /* DIAGNOSTIC */
   1741 		return ENOENT;
   1742 	}
   1743 	alldevs_nwrite++;
   1744 	mutex_exit(&alldevs_mtx);
   1745 
   1746 	if (!detachall &&
   1747 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1748 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1749 		rv = EOPNOTSUPP;
   1750 	} else if (ca->ca_detach != NULL) {
   1751 		rv = (*ca->ca_detach)(dev, flags);
   1752 	} else
   1753 		rv = EOPNOTSUPP;
   1754 
   1755 	/*
   1756 	 * If it was not possible to detach the device, then we either
   1757 	 * panic() (for the forced but failed case), or return an error.
   1758 	 *
   1759 	 * If it was possible to detach the device, ensure that the
   1760 	 * device is deactivated.
   1761 	 */
   1762 	if (rv == 0)
   1763 		dev->dv_flags &= ~DVF_ACTIVE;
   1764 	else if ((flags & DETACH_FORCE) == 0)
   1765 		goto out;
   1766 	else {
   1767 		panic("config_detach: forced detach of %s failed (%d)",
   1768 		    device_xname(dev), rv);
   1769 	}
   1770 
   1771 	/*
   1772 	 * The device has now been successfully detached.
   1773 	 */
   1774 
   1775 	/* Let userland know */
   1776 	devmon_report_device(dev, false);
   1777 
   1778 #ifdef DIAGNOSTIC
   1779 	/*
   1780 	 * Sanity: If you're successfully detached, you should have no
   1781 	 * children.  (Note that because children must be attached
   1782 	 * after parents, we only need to search the latter part of
   1783 	 * the list.)
   1784 	 */
   1785 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1786 	    d = TAILQ_NEXT(d, dv_list)) {
   1787 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1788 			printf("config_detach: detached device %s"
   1789 			    " has children %s\n", device_xname(dev),
   1790 			    device_xname(d));
   1791 			panic("config_detach");
   1792 		}
   1793 	}
   1794 #endif
   1795 
   1796 	/* notify the parent that the child is gone */
   1797 	if (dev->dv_parent) {
   1798 		device_t p = dev->dv_parent;
   1799 		if (p->dv_cfattach->ca_childdetached)
   1800 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1801 	}
   1802 
   1803 	/*
   1804 	 * Mark cfdata to show that the unit can be reused, if possible.
   1805 	 */
   1806 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1807 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1808 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1809 				if (cf->cf_fstate == FSTATE_FOUND &&
   1810 				    cf->cf_unit == dev->dv_unit)
   1811 					cf->cf_fstate = FSTATE_NOTFOUND;
   1812 			}
   1813 		}
   1814 	}
   1815 
   1816 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1817 		aprint_normal_dev(dev, "detached\n");
   1818 
   1819 out:
   1820 	config_alldevs_enter(&af);
   1821 	KASSERT(alldevs_nwrite != 0);
   1822 	--alldevs_nwrite;
   1823 	if (rv == 0 && dev->dv_del_gen == 0) {
   1824 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   1825 			config_devunlink(dev, &af.af_garbage);
   1826 		else {
   1827 			dev->dv_del_gen = alldevs_gen;
   1828 			alldevs_garbage = true;
   1829 		}
   1830 	}
   1831 	config_alldevs_exit(&af);
   1832 
   1833 	return rv;
   1834 }
   1835 
   1836 int
   1837 config_detach_children(device_t parent, int flags)
   1838 {
   1839 	device_t dv;
   1840 	deviter_t di;
   1841 	int error = 0;
   1842 
   1843 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1844 	     dv = deviter_next(&di)) {
   1845 		if (device_parent(dv) != parent)
   1846 			continue;
   1847 		if ((error = config_detach(dv, flags)) != 0)
   1848 			break;
   1849 	}
   1850 	deviter_release(&di);
   1851 	return error;
   1852 }
   1853 
   1854 device_t
   1855 shutdown_first(struct shutdown_state *s)
   1856 {
   1857 	if (!s->initialized) {
   1858 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1859 		s->initialized = true;
   1860 	}
   1861 	return shutdown_next(s);
   1862 }
   1863 
   1864 device_t
   1865 shutdown_next(struct shutdown_state *s)
   1866 {
   1867 	device_t dv;
   1868 
   1869 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1870 		;
   1871 
   1872 	if (dv == NULL)
   1873 		s->initialized = false;
   1874 
   1875 	return dv;
   1876 }
   1877 
   1878 bool
   1879 config_detach_all(int how)
   1880 {
   1881 	static struct shutdown_state s;
   1882 	device_t curdev;
   1883 	bool progress = false;
   1884 	int flags;
   1885 
   1886 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
   1887 		return false;
   1888 
   1889 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
   1890 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
   1891 	else
   1892 		flags = DETACH_SHUTDOWN;
   1893 
   1894 	for (curdev = shutdown_first(&s); curdev != NULL;
   1895 	     curdev = shutdown_next(&s)) {
   1896 		aprint_debug(" detaching %s, ", device_xname(curdev));
   1897 		if (config_detach(curdev, flags) == 0) {
   1898 			progress = true;
   1899 			aprint_debug("success.");
   1900 		} else
   1901 			aprint_debug("failed.");
   1902 	}
   1903 	return progress;
   1904 }
   1905 
   1906 static bool
   1907 device_is_ancestor_of(device_t ancestor, device_t descendant)
   1908 {
   1909 	device_t dv;
   1910 
   1911 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   1912 		if (device_parent(dv) == ancestor)
   1913 			return true;
   1914 	}
   1915 	return false;
   1916 }
   1917 
   1918 int
   1919 config_deactivate(device_t dev)
   1920 {
   1921 	deviter_t di;
   1922 	const struct cfattach *ca;
   1923 	device_t descendant;
   1924 	int s, rv = 0, oflags;
   1925 
   1926 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   1927 	     descendant != NULL;
   1928 	     descendant = deviter_next(&di)) {
   1929 		if (dev != descendant &&
   1930 		    !device_is_ancestor_of(dev, descendant))
   1931 			continue;
   1932 
   1933 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   1934 			continue;
   1935 
   1936 		ca = descendant->dv_cfattach;
   1937 		oflags = descendant->dv_flags;
   1938 
   1939 		descendant->dv_flags &= ~DVF_ACTIVE;
   1940 		if (ca->ca_activate == NULL)
   1941 			continue;
   1942 		s = splhigh();
   1943 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   1944 		splx(s);
   1945 		if (rv != 0)
   1946 			descendant->dv_flags = oflags;
   1947 	}
   1948 	deviter_release(&di);
   1949 	return rv;
   1950 }
   1951 
   1952 /*
   1953  * Defer the configuration of the specified device until all
   1954  * of its parent's devices have been attached.
   1955  */
   1956 void
   1957 config_defer(device_t dev, void (*func)(device_t))
   1958 {
   1959 	struct deferred_config *dc;
   1960 
   1961 	if (dev->dv_parent == NULL)
   1962 		panic("config_defer: can't defer config of a root device");
   1963 
   1964 #ifdef DIAGNOSTIC
   1965 	TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
   1966 		if (dc->dc_dev == dev)
   1967 			panic("config_defer: deferred twice");
   1968 	}
   1969 #endif
   1970 
   1971 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1972 	if (dc == NULL)
   1973 		panic("config_defer: unable to allocate callback");
   1974 
   1975 	dc->dc_dev = dev;
   1976 	dc->dc_func = func;
   1977 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1978 	config_pending_incr(dev);
   1979 }
   1980 
   1981 /*
   1982  * Defer some autoconfiguration for a device until after interrupts
   1983  * are enabled.
   1984  */
   1985 void
   1986 config_interrupts(device_t dev, void (*func)(device_t))
   1987 {
   1988 	struct deferred_config *dc;
   1989 
   1990 	/*
   1991 	 * If interrupts are enabled, callback now.
   1992 	 */
   1993 	if (cold == 0) {
   1994 		(*func)(dev);
   1995 		return;
   1996 	}
   1997 
   1998 #ifdef DIAGNOSTIC
   1999 	TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
   2000 		if (dc->dc_dev == dev)
   2001 			panic("config_interrupts: deferred twice");
   2002 	}
   2003 #endif
   2004 
   2005 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2006 	if (dc == NULL)
   2007 		panic("config_interrupts: unable to allocate callback");
   2008 
   2009 	dc->dc_dev = dev;
   2010 	dc->dc_func = func;
   2011 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   2012 	config_pending_incr(dev);
   2013 }
   2014 
   2015 /*
   2016  * Defer some autoconfiguration for a device until after root file system
   2017  * is mounted (to load firmware etc).
   2018  */
   2019 void
   2020 config_mountroot(device_t dev, void (*func)(device_t))
   2021 {
   2022 	struct deferred_config *dc;
   2023 
   2024 	/*
   2025 	 * If root file system is mounted, callback now.
   2026 	 */
   2027 	if (root_is_mounted) {
   2028 		(*func)(dev);
   2029 		return;
   2030 	}
   2031 
   2032 #ifdef DIAGNOSTIC
   2033 	TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
   2034 		if (dc->dc_dev == dev)
   2035 			panic("%s: deferred twice", __func__);
   2036 	}
   2037 #endif
   2038 
   2039 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2040 	if (dc == NULL)
   2041 		panic("%s: unable to allocate callback", __func__);
   2042 
   2043 	dc->dc_dev = dev;
   2044 	dc->dc_func = func;
   2045 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   2046 }
   2047 
   2048 /*
   2049  * Process a deferred configuration queue.
   2050  */
   2051 static void
   2052 config_process_deferred(struct deferred_config_head *queue, device_t parent)
   2053 {
   2054 	struct deferred_config *dc, *ndc;
   2055 
   2056 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   2057 		ndc = TAILQ_NEXT(dc, dc_queue);
   2058 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2059 			TAILQ_REMOVE(queue, dc, dc_queue);
   2060 			(*dc->dc_func)(dc->dc_dev);
   2061 			config_pending_decr(dc->dc_dev);
   2062 			kmem_free(dc, sizeof(*dc));
   2063 		}
   2064 	}
   2065 }
   2066 
   2067 /*
   2068  * Manipulate the config_pending semaphore.
   2069  */
   2070 void
   2071 config_pending_incr(device_t dev)
   2072 {
   2073 
   2074 	mutex_enter(&config_misc_lock);
   2075 	config_pending++;
   2076 #ifdef DEBUG_AUTOCONF
   2077 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
   2078 #endif
   2079 	mutex_exit(&config_misc_lock);
   2080 }
   2081 
   2082 void
   2083 config_pending_decr(device_t dev)
   2084 {
   2085 
   2086 #ifdef DIAGNOSTIC
   2087 	if (config_pending == 0)
   2088 		panic("config_pending_decr: config_pending == 0");
   2089 #endif
   2090 	mutex_enter(&config_misc_lock);
   2091 	config_pending--;
   2092 #ifdef DEBUG_AUTOCONF
   2093 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
   2094 #endif
   2095 	if (config_pending == 0)
   2096 		cv_broadcast(&config_misc_cv);
   2097 	mutex_exit(&config_misc_lock);
   2098 }
   2099 
   2100 /*
   2101  * Register a "finalization" routine.  Finalization routines are
   2102  * called iteratively once all real devices have been found during
   2103  * autoconfiguration, for as long as any one finalizer has done
   2104  * any work.
   2105  */
   2106 int
   2107 config_finalize_register(device_t dev, int (*fn)(device_t))
   2108 {
   2109 	struct finalize_hook *f;
   2110 
   2111 	/*
   2112 	 * If finalization has already been done, invoke the
   2113 	 * callback function now.
   2114 	 */
   2115 	if (config_finalize_done) {
   2116 		while ((*fn)(dev) != 0)
   2117 			/* loop */ ;
   2118 		return 0;
   2119 	}
   2120 
   2121 	/* Ensure this isn't already on the list. */
   2122 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2123 		if (f->f_func == fn && f->f_dev == dev)
   2124 			return EEXIST;
   2125 	}
   2126 
   2127 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2128 	f->f_func = fn;
   2129 	f->f_dev = dev;
   2130 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2131 
   2132 	return 0;
   2133 }
   2134 
   2135 void
   2136 config_finalize(void)
   2137 {
   2138 	struct finalize_hook *f;
   2139 	struct pdevinit *pdev;
   2140 	extern struct pdevinit pdevinit[];
   2141 	int errcnt, rv;
   2142 
   2143 	/*
   2144 	 * Now that device driver threads have been created, wait for
   2145 	 * them to finish any deferred autoconfiguration.
   2146 	 */
   2147 	mutex_enter(&config_misc_lock);
   2148 	while (config_pending != 0)
   2149 		cv_wait(&config_misc_cv, &config_misc_lock);
   2150 	mutex_exit(&config_misc_lock);
   2151 
   2152 	KERNEL_LOCK(1, NULL);
   2153 
   2154 	/* Attach pseudo-devices. */
   2155 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2156 		(*pdev->pdev_attach)(pdev->pdev_count);
   2157 
   2158 	/* Run the hooks until none of them does any work. */
   2159 	do {
   2160 		rv = 0;
   2161 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2162 			rv |= (*f->f_func)(f->f_dev);
   2163 	} while (rv != 0);
   2164 
   2165 	config_finalize_done = 1;
   2166 
   2167 	/* Now free all the hooks. */
   2168 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2169 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2170 		kmem_free(f, sizeof(*f));
   2171 	}
   2172 
   2173 	KERNEL_UNLOCK_ONE(NULL);
   2174 
   2175 	errcnt = aprint_get_error_count();
   2176 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2177 	    (boothowto & AB_VERBOSE) == 0) {
   2178 		mutex_enter(&config_misc_lock);
   2179 		if (config_do_twiddle) {
   2180 			config_do_twiddle = 0;
   2181 			printf_nolog(" done.\n");
   2182 		}
   2183 		mutex_exit(&config_misc_lock);
   2184 	}
   2185 	if (errcnt != 0) {
   2186 		printf("WARNING: %d error%s while detecting hardware; "
   2187 		    "check system log.\n", errcnt,
   2188 		    errcnt == 1 ? "" : "s");
   2189 	}
   2190 }
   2191 
   2192 void
   2193 config_twiddle_init(void)
   2194 {
   2195 
   2196 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2197 		config_do_twiddle = 1;
   2198 	}
   2199 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2200 }
   2201 
   2202 void
   2203 config_twiddle_fn(void *cookie)
   2204 {
   2205 
   2206 	mutex_enter(&config_misc_lock);
   2207 	if (config_do_twiddle) {
   2208 		twiddle();
   2209 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2210 	}
   2211 	mutex_exit(&config_misc_lock);
   2212 }
   2213 
   2214 static void
   2215 config_alldevs_enter(struct alldevs_foray *af)
   2216 {
   2217 	TAILQ_INIT(&af->af_garbage);
   2218 	mutex_enter(&alldevs_mtx);
   2219 	config_collect_garbage(&af->af_garbage);
   2220 }
   2221 
   2222 static void
   2223 config_alldevs_exit(struct alldevs_foray *af)
   2224 {
   2225 	mutex_exit(&alldevs_mtx);
   2226 	config_dump_garbage(&af->af_garbage);
   2227 }
   2228 
   2229 /*
   2230  * device_lookup:
   2231  *
   2232  *	Look up a device instance for a given driver.
   2233  */
   2234 device_t
   2235 device_lookup(cfdriver_t cd, int unit)
   2236 {
   2237 	device_t dv;
   2238 
   2239 	mutex_enter(&alldevs_mtx);
   2240 	if (unit < 0 || unit >= cd->cd_ndevs)
   2241 		dv = NULL;
   2242 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2243 		dv = NULL;
   2244 	mutex_exit(&alldevs_mtx);
   2245 
   2246 	return dv;
   2247 }
   2248 
   2249 /*
   2250  * device_lookup_private:
   2251  *
   2252  *	Look up a softc instance for a given driver.
   2253  */
   2254 void *
   2255 device_lookup_private(cfdriver_t cd, int unit)
   2256 {
   2257 
   2258 	return device_private(device_lookup(cd, unit));
   2259 }
   2260 
   2261 /*
   2262  * device_find_by_xname:
   2263  *
   2264  *	Returns the device of the given name or NULL if it doesn't exist.
   2265  */
   2266 device_t
   2267 device_find_by_xname(const char *name)
   2268 {
   2269 	device_t dv;
   2270 	deviter_t di;
   2271 
   2272 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2273 		if (strcmp(device_xname(dv), name) == 0)
   2274 			break;
   2275 	}
   2276 	deviter_release(&di);
   2277 
   2278 	return dv;
   2279 }
   2280 
   2281 /*
   2282  * device_find_by_driver_unit:
   2283  *
   2284  *	Returns the device of the given driver name and unit or
   2285  *	NULL if it doesn't exist.
   2286  */
   2287 device_t
   2288 device_find_by_driver_unit(const char *name, int unit)
   2289 {
   2290 	struct cfdriver *cd;
   2291 
   2292 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2293 		return NULL;
   2294 	return device_lookup(cd, unit);
   2295 }
   2296 
   2297 /*
   2298  * Power management related functions.
   2299  */
   2300 
   2301 bool
   2302 device_pmf_is_registered(device_t dev)
   2303 {
   2304 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2305 }
   2306 
   2307 bool
   2308 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2309 {
   2310 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2311 		return true;
   2312 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2313 		return false;
   2314 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2315 	    dev->dv_driver_suspend != NULL &&
   2316 	    !(*dev->dv_driver_suspend)(dev, qual))
   2317 		return false;
   2318 
   2319 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2320 	return true;
   2321 }
   2322 
   2323 bool
   2324 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2325 {
   2326 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2327 		return true;
   2328 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2329 		return false;
   2330 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2331 	    dev->dv_driver_resume != NULL &&
   2332 	    !(*dev->dv_driver_resume)(dev, qual))
   2333 		return false;
   2334 
   2335 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2336 	return true;
   2337 }
   2338 
   2339 bool
   2340 device_pmf_driver_shutdown(device_t dev, int how)
   2341 {
   2342 
   2343 	if (*dev->dv_driver_shutdown != NULL &&
   2344 	    !(*dev->dv_driver_shutdown)(dev, how))
   2345 		return false;
   2346 	return true;
   2347 }
   2348 
   2349 bool
   2350 device_pmf_driver_register(device_t dev,
   2351     bool (*suspend)(device_t, const pmf_qual_t *),
   2352     bool (*resume)(device_t, const pmf_qual_t *),
   2353     bool (*shutdown)(device_t, int))
   2354 {
   2355 	dev->dv_driver_suspend = suspend;
   2356 	dev->dv_driver_resume = resume;
   2357 	dev->dv_driver_shutdown = shutdown;
   2358 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2359 	return true;
   2360 }
   2361 
   2362 static const char *
   2363 curlwp_name(void)
   2364 {
   2365 	if (curlwp->l_name != NULL)
   2366 		return curlwp->l_name;
   2367 	else
   2368 		return curlwp->l_proc->p_comm;
   2369 }
   2370 
   2371 void
   2372 device_pmf_driver_deregister(device_t dev)
   2373 {
   2374 	device_lock_t dvl = device_getlock(dev);
   2375 
   2376 	dev->dv_driver_suspend = NULL;
   2377 	dev->dv_driver_resume = NULL;
   2378 
   2379 	mutex_enter(&dvl->dvl_mtx);
   2380 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2381 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2382 		/* Wake a thread that waits for the lock.  That
   2383 		 * thread will fail to acquire the lock, and then
   2384 		 * it will wake the next thread that waits for the
   2385 		 * lock, or else it will wake us.
   2386 		 */
   2387 		cv_signal(&dvl->dvl_cv);
   2388 		pmflock_debug(dev, __func__, __LINE__);
   2389 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2390 		pmflock_debug(dev, __func__, __LINE__);
   2391 	}
   2392 	mutex_exit(&dvl->dvl_mtx);
   2393 }
   2394 
   2395 bool
   2396 device_pmf_driver_child_register(device_t dev)
   2397 {
   2398 	device_t parent = device_parent(dev);
   2399 
   2400 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2401 		return true;
   2402 	return (*parent->dv_driver_child_register)(dev);
   2403 }
   2404 
   2405 void
   2406 device_pmf_driver_set_child_register(device_t dev,
   2407     bool (*child_register)(device_t))
   2408 {
   2409 	dev->dv_driver_child_register = child_register;
   2410 }
   2411 
   2412 static void
   2413 pmflock_debug(device_t dev, const char *func, int line)
   2414 {
   2415 	device_lock_t dvl = device_getlock(dev);
   2416 
   2417 	aprint_debug_dev(dev,
   2418 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
   2419 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
   2420 }
   2421 
   2422 static bool
   2423 device_pmf_lock1(device_t dev)
   2424 {
   2425 	device_lock_t dvl = device_getlock(dev);
   2426 
   2427 	while (device_pmf_is_registered(dev) &&
   2428 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2429 		dvl->dvl_nwait++;
   2430 		pmflock_debug(dev, __func__, __LINE__);
   2431 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2432 		pmflock_debug(dev, __func__, __LINE__);
   2433 		dvl->dvl_nwait--;
   2434 	}
   2435 	if (!device_pmf_is_registered(dev)) {
   2436 		pmflock_debug(dev, __func__, __LINE__);
   2437 		/* We could not acquire the lock, but some other thread may
   2438 		 * wait for it, also.  Wake that thread.
   2439 		 */
   2440 		cv_signal(&dvl->dvl_cv);
   2441 		return false;
   2442 	}
   2443 	dvl->dvl_nlock++;
   2444 	dvl->dvl_holder = curlwp;
   2445 	pmflock_debug(dev, __func__, __LINE__);
   2446 	return true;
   2447 }
   2448 
   2449 bool
   2450 device_pmf_lock(device_t dev)
   2451 {
   2452 	bool rc;
   2453 	device_lock_t dvl = device_getlock(dev);
   2454 
   2455 	mutex_enter(&dvl->dvl_mtx);
   2456 	rc = device_pmf_lock1(dev);
   2457 	mutex_exit(&dvl->dvl_mtx);
   2458 
   2459 	return rc;
   2460 }
   2461 
   2462 void
   2463 device_pmf_unlock(device_t dev)
   2464 {
   2465 	device_lock_t dvl = device_getlock(dev);
   2466 
   2467 	KASSERT(dvl->dvl_nlock > 0);
   2468 	mutex_enter(&dvl->dvl_mtx);
   2469 	if (--dvl->dvl_nlock == 0)
   2470 		dvl->dvl_holder = NULL;
   2471 	cv_signal(&dvl->dvl_cv);
   2472 	pmflock_debug(dev, __func__, __LINE__);
   2473 	mutex_exit(&dvl->dvl_mtx);
   2474 }
   2475 
   2476 device_lock_t
   2477 device_getlock(device_t dev)
   2478 {
   2479 	return &dev->dv_lock;
   2480 }
   2481 
   2482 void *
   2483 device_pmf_bus_private(device_t dev)
   2484 {
   2485 	return dev->dv_bus_private;
   2486 }
   2487 
   2488 bool
   2489 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   2490 {
   2491 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2492 		return true;
   2493 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2494 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2495 		return false;
   2496 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2497 	    dev->dv_bus_suspend != NULL &&
   2498 	    !(*dev->dv_bus_suspend)(dev, qual))
   2499 		return false;
   2500 
   2501 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2502 	return true;
   2503 }
   2504 
   2505 bool
   2506 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   2507 {
   2508 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2509 		return true;
   2510 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2511 	    dev->dv_bus_resume != NULL &&
   2512 	    !(*dev->dv_bus_resume)(dev, qual))
   2513 		return false;
   2514 
   2515 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2516 	return true;
   2517 }
   2518 
   2519 bool
   2520 device_pmf_bus_shutdown(device_t dev, int how)
   2521 {
   2522 
   2523 	if (*dev->dv_bus_shutdown != NULL &&
   2524 	    !(*dev->dv_bus_shutdown)(dev, how))
   2525 		return false;
   2526 	return true;
   2527 }
   2528 
   2529 void
   2530 device_pmf_bus_register(device_t dev, void *priv,
   2531     bool (*suspend)(device_t, const pmf_qual_t *),
   2532     bool (*resume)(device_t, const pmf_qual_t *),
   2533     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2534 {
   2535 	dev->dv_bus_private = priv;
   2536 	dev->dv_bus_resume = resume;
   2537 	dev->dv_bus_suspend = suspend;
   2538 	dev->dv_bus_shutdown = shutdown;
   2539 	dev->dv_bus_deregister = deregister;
   2540 }
   2541 
   2542 void
   2543 device_pmf_bus_deregister(device_t dev)
   2544 {
   2545 	if (dev->dv_bus_deregister == NULL)
   2546 		return;
   2547 	(*dev->dv_bus_deregister)(dev);
   2548 	dev->dv_bus_private = NULL;
   2549 	dev->dv_bus_suspend = NULL;
   2550 	dev->dv_bus_resume = NULL;
   2551 	dev->dv_bus_deregister = NULL;
   2552 }
   2553 
   2554 void *
   2555 device_pmf_class_private(device_t dev)
   2556 {
   2557 	return dev->dv_class_private;
   2558 }
   2559 
   2560 bool
   2561 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   2562 {
   2563 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2564 		return true;
   2565 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2566 	    dev->dv_class_suspend != NULL &&
   2567 	    !(*dev->dv_class_suspend)(dev, qual))
   2568 		return false;
   2569 
   2570 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2571 	return true;
   2572 }
   2573 
   2574 bool
   2575 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   2576 {
   2577 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2578 		return true;
   2579 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2580 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2581 		return false;
   2582 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2583 	    dev->dv_class_resume != NULL &&
   2584 	    !(*dev->dv_class_resume)(dev, qual))
   2585 		return false;
   2586 
   2587 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2588 	return true;
   2589 }
   2590 
   2591 void
   2592 device_pmf_class_register(device_t dev, void *priv,
   2593     bool (*suspend)(device_t, const pmf_qual_t *),
   2594     bool (*resume)(device_t, const pmf_qual_t *),
   2595     void (*deregister)(device_t))
   2596 {
   2597 	dev->dv_class_private = priv;
   2598 	dev->dv_class_suspend = suspend;
   2599 	dev->dv_class_resume = resume;
   2600 	dev->dv_class_deregister = deregister;
   2601 }
   2602 
   2603 void
   2604 device_pmf_class_deregister(device_t dev)
   2605 {
   2606 	if (dev->dv_class_deregister == NULL)
   2607 		return;
   2608 	(*dev->dv_class_deregister)(dev);
   2609 	dev->dv_class_private = NULL;
   2610 	dev->dv_class_suspend = NULL;
   2611 	dev->dv_class_resume = NULL;
   2612 	dev->dv_class_deregister = NULL;
   2613 }
   2614 
   2615 bool
   2616 device_active(device_t dev, devactive_t type)
   2617 {
   2618 	size_t i;
   2619 
   2620 	if (dev->dv_activity_count == 0)
   2621 		return false;
   2622 
   2623 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2624 		if (dev->dv_activity_handlers[i] == NULL)
   2625 			break;
   2626 		(*dev->dv_activity_handlers[i])(dev, type);
   2627 	}
   2628 
   2629 	return true;
   2630 }
   2631 
   2632 bool
   2633 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2634 {
   2635 	void (**new_handlers)(device_t, devactive_t);
   2636 	void (**old_handlers)(device_t, devactive_t);
   2637 	size_t i, old_size, new_size;
   2638 	int s;
   2639 
   2640 	old_handlers = dev->dv_activity_handlers;
   2641 	old_size = dev->dv_activity_count;
   2642 
   2643 	KASSERT(old_size == 0 || old_handlers != NULL);
   2644 
   2645 	for (i = 0; i < old_size; ++i) {
   2646 		KASSERT(old_handlers[i] != handler);
   2647 		if (old_handlers[i] == NULL) {
   2648 			old_handlers[i] = handler;
   2649 			return true;
   2650 		}
   2651 	}
   2652 
   2653 	new_size = old_size + 4;
   2654 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
   2655 
   2656 	for (i = 0; i < old_size; ++i)
   2657 		new_handlers[i] = old_handlers[i];
   2658 	new_handlers[old_size] = handler;
   2659 	for (i = old_size+1; i < new_size; ++i)
   2660 		new_handlers[i] = NULL;
   2661 
   2662 	s = splhigh();
   2663 	dev->dv_activity_count = new_size;
   2664 	dev->dv_activity_handlers = new_handlers;
   2665 	splx(s);
   2666 
   2667 	if (old_size > 0)
   2668 		kmem_free(old_handlers, sizeof(void * [old_size]));
   2669 
   2670 	return true;
   2671 }
   2672 
   2673 void
   2674 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2675 {
   2676 	void (**old_handlers)(device_t, devactive_t);
   2677 	size_t i, old_size;
   2678 	int s;
   2679 
   2680 	old_handlers = dev->dv_activity_handlers;
   2681 	old_size = dev->dv_activity_count;
   2682 
   2683 	for (i = 0; i < old_size; ++i) {
   2684 		if (old_handlers[i] == handler)
   2685 			break;
   2686 		if (old_handlers[i] == NULL)
   2687 			return; /* XXX panic? */
   2688 	}
   2689 
   2690 	if (i == old_size)
   2691 		return; /* XXX panic? */
   2692 
   2693 	for (; i < old_size - 1; ++i) {
   2694 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   2695 			continue;
   2696 
   2697 		if (i == 0) {
   2698 			s = splhigh();
   2699 			dev->dv_activity_count = 0;
   2700 			dev->dv_activity_handlers = NULL;
   2701 			splx(s);
   2702 			kmem_free(old_handlers, sizeof(void *[old_size]));
   2703 		}
   2704 		return;
   2705 	}
   2706 	old_handlers[i] = NULL;
   2707 }
   2708 
   2709 /* Return true iff the device_t `dev' exists at generation `gen'. */
   2710 static bool
   2711 device_exists_at(device_t dv, devgen_t gen)
   2712 {
   2713 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   2714 	    dv->dv_add_gen <= gen;
   2715 }
   2716 
   2717 static bool
   2718 deviter_visits(const deviter_t *di, device_t dv)
   2719 {
   2720 	return device_exists_at(dv, di->di_gen);
   2721 }
   2722 
   2723 /*
   2724  * Device Iteration
   2725  *
   2726  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2727  *     each device_t's in the device tree.
   2728  *
   2729  * deviter_init(di, flags): initialize the device iterator `di'
   2730  *     to "walk" the device tree.  deviter_next(di) will return
   2731  *     the first device_t in the device tree, or NULL if there are
   2732  *     no devices.
   2733  *
   2734  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2735  *     caller intends to modify the device tree by calling
   2736  *     config_detach(9) on devices in the order that the iterator
   2737  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2738  *     nearest the "root" of the device tree to be returned, first;
   2739  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2740  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2741  *     indicating both that deviter_init() should not respect any
   2742  *     locks on the device tree, and that deviter_next(di) may run
   2743  *     in more than one LWP before the walk has finished.
   2744  *
   2745  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2746  *     once.
   2747  *
   2748  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2749  *
   2750  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2751  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2752  *
   2753  * deviter_first(di, flags): initialize the device iterator `di'
   2754  *     and return the first device_t in the device tree, or NULL
   2755  *     if there are no devices.  The statement
   2756  *
   2757  *         dv = deviter_first(di);
   2758  *
   2759  *     is shorthand for
   2760  *
   2761  *         deviter_init(di);
   2762  *         dv = deviter_next(di);
   2763  *
   2764  * deviter_next(di): return the next device_t in the device tree,
   2765  *     or NULL if there are no more devices.  deviter_next(di)
   2766  *     is undefined if `di' was not initialized with deviter_init() or
   2767  *     deviter_first().
   2768  *
   2769  * deviter_release(di): stops iteration (subsequent calls to
   2770  *     deviter_next() will return NULL), releases any locks and
   2771  *     resources held by the device iterator.
   2772  *
   2773  * Device iteration does not return device_t's in any particular
   2774  * order.  An iterator will never return the same device_t twice.
   2775  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2776  * is called repeatedly on the same `di', it will eventually return
   2777  * NULL.  It is ok to attach/detach devices during device iteration.
   2778  */
   2779 void
   2780 deviter_init(deviter_t *di, deviter_flags_t flags)
   2781 {
   2782 	device_t dv;
   2783 
   2784 	memset(di, 0, sizeof(*di));
   2785 
   2786 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   2787 		flags |= DEVITER_F_RW;
   2788 
   2789 	mutex_enter(&alldevs_mtx);
   2790 	if ((flags & DEVITER_F_RW) != 0)
   2791 		alldevs_nwrite++;
   2792 	else
   2793 		alldevs_nread++;
   2794 	di->di_gen = alldevs_gen++;
   2795 	di->di_flags = flags;
   2796 
   2797 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2798 	case DEVITER_F_LEAVES_FIRST:
   2799 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2800 			if (!deviter_visits(di, dv))
   2801 				continue;
   2802 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2803 		}
   2804 		break;
   2805 	case DEVITER_F_ROOT_FIRST:
   2806 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2807 			if (!deviter_visits(di, dv))
   2808 				continue;
   2809 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2810 		}
   2811 		break;
   2812 	default:
   2813 		break;
   2814 	}
   2815 
   2816 	deviter_reinit(di);
   2817 	mutex_exit(&alldevs_mtx);
   2818 }
   2819 
   2820 static void
   2821 deviter_reinit(deviter_t *di)
   2822 {
   2823 
   2824 	KASSERT(mutex_owned(&alldevs_mtx));
   2825 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2826 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2827 	else
   2828 		di->di_prev = TAILQ_FIRST(&alldevs);
   2829 }
   2830 
   2831 device_t
   2832 deviter_first(deviter_t *di, deviter_flags_t flags)
   2833 {
   2834 
   2835 	deviter_init(di, flags);
   2836 	return deviter_next(di);
   2837 }
   2838 
   2839 static device_t
   2840 deviter_next2(deviter_t *di)
   2841 {
   2842 	device_t dv;
   2843 
   2844 	KASSERT(mutex_owned(&alldevs_mtx));
   2845 
   2846 	dv = di->di_prev;
   2847 
   2848 	if (dv == NULL)
   2849 		return NULL;
   2850 
   2851 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2852 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2853 	else
   2854 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2855 
   2856 	return dv;
   2857 }
   2858 
   2859 static device_t
   2860 deviter_next1(deviter_t *di)
   2861 {
   2862 	device_t dv;
   2863 
   2864 	KASSERT(mutex_owned(&alldevs_mtx));
   2865 
   2866 	do {
   2867 		dv = deviter_next2(di);
   2868 	} while (dv != NULL && !deviter_visits(di, dv));
   2869 
   2870 	return dv;
   2871 }
   2872 
   2873 device_t
   2874 deviter_next(deviter_t *di)
   2875 {
   2876 	device_t dv = NULL;
   2877 
   2878 	mutex_enter(&alldevs_mtx);
   2879 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2880 	case 0:
   2881 		dv = deviter_next1(di);
   2882 		break;
   2883 	case DEVITER_F_LEAVES_FIRST:
   2884 		while (di->di_curdepth >= 0) {
   2885 			if ((dv = deviter_next1(di)) == NULL) {
   2886 				di->di_curdepth--;
   2887 				deviter_reinit(di);
   2888 			} else if (dv->dv_depth == di->di_curdepth)
   2889 				break;
   2890 		}
   2891 		break;
   2892 	case DEVITER_F_ROOT_FIRST:
   2893 		while (di->di_curdepth <= di->di_maxdepth) {
   2894 			if ((dv = deviter_next1(di)) == NULL) {
   2895 				di->di_curdepth++;
   2896 				deviter_reinit(di);
   2897 			} else if (dv->dv_depth == di->di_curdepth)
   2898 				break;
   2899 		}
   2900 		break;
   2901 	default:
   2902 		break;
   2903 	}
   2904 	mutex_exit(&alldevs_mtx);
   2905 
   2906 	return dv;
   2907 }
   2908 
   2909 void
   2910 deviter_release(deviter_t *di)
   2911 {
   2912 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2913 
   2914 	mutex_enter(&alldevs_mtx);
   2915 	if (rw)
   2916 		--alldevs_nwrite;
   2917 	else
   2918 		--alldevs_nread;
   2919 	/* XXX wake a garbage-collection thread */
   2920 	mutex_exit(&alldevs_mtx);
   2921 }
   2922 
   2923 const char *
   2924 cfdata_ifattr(const struct cfdata *cf)
   2925 {
   2926 	return cf->cf_pspec->cfp_iattr;
   2927 }
   2928 
   2929 bool
   2930 ifattr_match(const char *snull, const char *t)
   2931 {
   2932 	return (snull == NULL) || strcmp(snull, t) == 0;
   2933 }
   2934 
   2935 void
   2936 null_childdetached(device_t self, device_t child)
   2937 {
   2938 	/* do nothing */
   2939 }
   2940 
   2941 static void
   2942 sysctl_detach_setup(struct sysctllog **clog)
   2943 {
   2944 
   2945 	sysctl_createv(clog, 0, NULL, NULL,
   2946 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   2947 		CTLTYPE_BOOL, "detachall",
   2948 		SYSCTL_DESCR("Detach all devices at shutdown"),
   2949 		NULL, 0, &detachall, 0,
   2950 		CTL_KERN, CTL_CREATE, CTL_EOL);
   2951 }
   2952