subr_autoconf.c revision 1.249 1 /* $NetBSD: subr_autoconf.c,v 1.249 2017/03/20 01:05:03 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.249 2017/03/20 01:05:03 riastradh Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110
111 #include <sys/disk.h>
112
113 #include <sys/rndsource.h>
114
115 #include <machine/limits.h>
116
117 /*
118 * Autoconfiguration subroutines.
119 */
120
121 /*
122 * Device autoconfiguration timings are mixed into the entropy pool.
123 */
124 extern krndsource_t rnd_autoconf_source;
125
126 /*
127 * ioconf.c exports exactly two names: cfdata and cfroots. All system
128 * devices and drivers are found via these tables.
129 */
130 extern struct cfdata cfdata[];
131 extern const short cfroots[];
132
133 /*
134 * List of all cfdriver structures. We use this to detect duplicates
135 * when other cfdrivers are loaded.
136 */
137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
138 extern struct cfdriver * const cfdriver_list_initial[];
139
140 /*
141 * Initial list of cfattach's.
142 */
143 extern const struct cfattachinit cfattachinit[];
144
145 /*
146 * List of cfdata tables. We always have one such list -- the one
147 * built statically when the kernel was configured.
148 */
149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
150 static struct cftable initcftable;
151
152 #define ROOT ((device_t)NULL)
153
154 struct matchinfo {
155 cfsubmatch_t fn;
156 device_t parent;
157 const int *locs;
158 void *aux;
159 struct cfdata *match;
160 int pri;
161 };
162
163 struct alldevs_foray {
164 int af_s;
165 struct devicelist af_garbage;
166 };
167
168 static char *number(char *, int);
169 static void mapply(struct matchinfo *, cfdata_t);
170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
171 static void config_devdelete(device_t);
172 static void config_devunlink(device_t, struct devicelist *);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_alldevs_enter(struct alldevs_foray *);
176 static void config_alldevs_exit(struct alldevs_foray *);
177 static void config_add_attrib_dict(device_t);
178
179 static void config_collect_garbage(struct devicelist *);
180 static void config_dump_garbage(struct devicelist *);
181
182 static void pmflock_debug(device_t, const char *, int);
183
184 static device_t deviter_next1(deviter_t *);
185 static void deviter_reinit(deviter_t *);
186
187 struct deferred_config {
188 TAILQ_ENTRY(deferred_config) dc_queue;
189 device_t dc_dev;
190 void (*dc_func)(device_t);
191 };
192
193 TAILQ_HEAD(deferred_config_head, deferred_config);
194
195 struct deferred_config_head deferred_config_queue =
196 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
197 struct deferred_config_head interrupt_config_queue =
198 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
199 int interrupt_config_threads = 8;
200 struct deferred_config_head mountroot_config_queue =
201 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
202 int mountroot_config_threads = 2;
203 static lwp_t **mountroot_config_lwpids;
204 static size_t mountroot_config_lwpids_size;
205 static bool root_is_mounted = false;
206
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 TAILQ_ENTRY(finalize_hook) f_list;
212 int (*f_func)(device_t);
213 device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218
219 /* list of all devices */
220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
221 static kmutex_t alldevs_mtx;
222 static volatile bool alldevs_garbage = false;
223 static volatile devgen_t alldevs_gen = 1;
224 static volatile int alldevs_nread = 0;
225 static volatile int alldevs_nwrite = 0;
226
227 static int config_pending; /* semaphore for mountroot */
228 static kmutex_t config_misc_lock;
229 static kcondvar_t config_misc_cv;
230
231 static bool detachall = false;
232
233 #define STREQ(s1, s2) \
234 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
235
236 static bool config_initialized = false; /* config_init() has been called. */
237
238 static int config_do_twiddle;
239 static callout_t config_twiddle_ch;
240
241 static void sysctl_detach_setup(struct sysctllog **);
242
243 int no_devmon_insert(const char *, prop_dictionary_t);
244 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
245
246 typedef int (*cfdriver_fn)(struct cfdriver *);
247 static int
248 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
249 cfdriver_fn drv_do, cfdriver_fn drv_undo,
250 const char *style, bool dopanic)
251 {
252 void (*pr)(const char *, ...) __printflike(1, 2) =
253 dopanic ? panic : printf;
254 int i, error = 0, e2 __diagused;
255
256 for (i = 0; cfdriverv[i] != NULL; i++) {
257 if ((error = drv_do(cfdriverv[i])) != 0) {
258 pr("configure: `%s' driver %s failed: %d",
259 cfdriverv[i]->cd_name, style, error);
260 goto bad;
261 }
262 }
263
264 KASSERT(error == 0);
265 return 0;
266
267 bad:
268 printf("\n");
269 for (i--; i >= 0; i--) {
270 e2 = drv_undo(cfdriverv[i]);
271 KASSERT(e2 == 0);
272 }
273
274 return error;
275 }
276
277 typedef int (*cfattach_fn)(const char *, struct cfattach *);
278 static int
279 frob_cfattachvec(const struct cfattachinit *cfattachv,
280 cfattach_fn att_do, cfattach_fn att_undo,
281 const char *style, bool dopanic)
282 {
283 const struct cfattachinit *cfai = NULL;
284 void (*pr)(const char *, ...) __printflike(1, 2) =
285 dopanic ? panic : printf;
286 int j = 0, error = 0, e2 __diagused;
287
288 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
289 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
290 if ((error = att_do(cfai->cfai_name,
291 cfai->cfai_list[j])) != 0) {
292 pr("configure: attachment `%s' "
293 "of `%s' driver %s failed: %d",
294 cfai->cfai_list[j]->ca_name,
295 cfai->cfai_name, style, error);
296 goto bad;
297 }
298 }
299 }
300
301 KASSERT(error == 0);
302 return 0;
303
304 bad:
305 /*
306 * Rollback in reverse order. dunno if super-important, but
307 * do that anyway. Although the code looks a little like
308 * someone did a little integration (in the math sense).
309 */
310 printf("\n");
311 if (cfai) {
312 bool last;
313
314 for (last = false; last == false; ) {
315 if (cfai == &cfattachv[0])
316 last = true;
317 for (j--; j >= 0; j--) {
318 e2 = att_undo(cfai->cfai_name,
319 cfai->cfai_list[j]);
320 KASSERT(e2 == 0);
321 }
322 if (!last) {
323 cfai--;
324 for (j = 0; cfai->cfai_list[j] != NULL; j++)
325 ;
326 }
327 }
328 }
329
330 return error;
331 }
332
333 /*
334 * Initialize the autoconfiguration data structures. Normally this
335 * is done by configure(), but some platforms need to do this very
336 * early (to e.g. initialize the console).
337 */
338 void
339 config_init(void)
340 {
341
342 KASSERT(config_initialized == false);
343
344 mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_VM);
345
346 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
347 cv_init(&config_misc_cv, "cfgmisc");
348
349 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
350
351 frob_cfdrivervec(cfdriver_list_initial,
352 config_cfdriver_attach, NULL, "bootstrap", true);
353 frob_cfattachvec(cfattachinit,
354 config_cfattach_attach, NULL, "bootstrap", true);
355
356 initcftable.ct_cfdata = cfdata;
357 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
358
359 config_initialized = true;
360 }
361
362 /*
363 * Init or fini drivers and attachments. Either all or none
364 * are processed (via rollback). It would be nice if this were
365 * atomic to outside consumers, but with the current state of
366 * locking ...
367 */
368 int
369 config_init_component(struct cfdriver * const *cfdriverv,
370 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
371 {
372 int error;
373
374 if ((error = frob_cfdrivervec(cfdriverv,
375 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
376 return error;
377 if ((error = frob_cfattachvec(cfattachv,
378 config_cfattach_attach, config_cfattach_detach,
379 "init", false)) != 0) {
380 frob_cfdrivervec(cfdriverv,
381 config_cfdriver_detach, NULL, "init rollback", true);
382 return error;
383 }
384 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
385 frob_cfattachvec(cfattachv,
386 config_cfattach_detach, NULL, "init rollback", true);
387 frob_cfdrivervec(cfdriverv,
388 config_cfdriver_detach, NULL, "init rollback", true);
389 return error;
390 }
391
392 return 0;
393 }
394
395 int
396 config_fini_component(struct cfdriver * const *cfdriverv,
397 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
398 {
399 int error;
400
401 if ((error = config_cfdata_detach(cfdatav)) != 0)
402 return error;
403 if ((error = frob_cfattachvec(cfattachv,
404 config_cfattach_detach, config_cfattach_attach,
405 "fini", false)) != 0) {
406 if (config_cfdata_attach(cfdatav, 0) != 0)
407 panic("config_cfdata fini rollback failed");
408 return error;
409 }
410 if ((error = frob_cfdrivervec(cfdriverv,
411 config_cfdriver_detach, config_cfdriver_attach,
412 "fini", false)) != 0) {
413 frob_cfattachvec(cfattachv,
414 config_cfattach_attach, NULL, "fini rollback", true);
415 if (config_cfdata_attach(cfdatav, 0) != 0)
416 panic("config_cfdata fini rollback failed");
417 return error;
418 }
419
420 return 0;
421 }
422
423 void
424 config_init_mi(void)
425 {
426
427 if (!config_initialized)
428 config_init();
429
430 sysctl_detach_setup(NULL);
431 }
432
433 void
434 config_deferred(device_t dev)
435 {
436 config_process_deferred(&deferred_config_queue, dev);
437 config_process_deferred(&interrupt_config_queue, dev);
438 config_process_deferred(&mountroot_config_queue, dev);
439 }
440
441 static void
442 config_interrupts_thread(void *cookie)
443 {
444 struct deferred_config *dc;
445
446 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
447 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
448 (*dc->dc_func)(dc->dc_dev);
449 config_pending_decr(dc->dc_dev);
450 kmem_free(dc, sizeof(*dc));
451 }
452 kthread_exit(0);
453 }
454
455 void
456 config_create_interruptthreads(void)
457 {
458 int i;
459
460 for (i = 0; i < interrupt_config_threads; i++) {
461 (void)kthread_create(PRI_NONE, 0, NULL,
462 config_interrupts_thread, NULL, NULL, "configintr");
463 }
464 }
465
466 static void
467 config_mountroot_thread(void *cookie)
468 {
469 struct deferred_config *dc;
470
471 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
472 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
473 (*dc->dc_func)(dc->dc_dev);
474 kmem_free(dc, sizeof(*dc));
475 }
476 kthread_exit(0);
477 }
478
479 void
480 config_create_mountrootthreads(void)
481 {
482 int i;
483
484 if (!root_is_mounted)
485 root_is_mounted = true;
486
487 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
488 mountroot_config_threads;
489 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
490 KM_NOSLEEP);
491 KASSERT(mountroot_config_lwpids);
492 for (i = 0; i < mountroot_config_threads; i++) {
493 mountroot_config_lwpids[i] = 0;
494 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
495 config_mountroot_thread, NULL,
496 &mountroot_config_lwpids[i],
497 "configroot");
498 }
499 }
500
501 void
502 config_finalize_mountroot(void)
503 {
504 int i, error;
505
506 for (i = 0; i < mountroot_config_threads; i++) {
507 if (mountroot_config_lwpids[i] == 0)
508 continue;
509
510 error = kthread_join(mountroot_config_lwpids[i]);
511 if (error)
512 printf("%s: thread %x joined with error %d\n",
513 __func__, i, error);
514 }
515 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
516 }
517
518 /*
519 * Announce device attach/detach to userland listeners.
520 */
521
522 int
523 no_devmon_insert(const char *name, prop_dictionary_t p)
524 {
525
526 return ENODEV;
527 }
528
529 static void
530 devmon_report_device(device_t dev, bool isattach)
531 {
532 prop_dictionary_t ev;
533 const char *parent;
534 const char *what;
535 device_t pdev = device_parent(dev);
536
537 /* If currently no drvctl device, just return */
538 if (devmon_insert_vec == no_devmon_insert)
539 return;
540
541 ev = prop_dictionary_create();
542 if (ev == NULL)
543 return;
544
545 what = (isattach ? "device-attach" : "device-detach");
546 parent = (pdev == NULL ? "root" : device_xname(pdev));
547 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
548 !prop_dictionary_set_cstring(ev, "parent", parent)) {
549 prop_object_release(ev);
550 return;
551 }
552
553 if ((*devmon_insert_vec)(what, ev) != 0)
554 prop_object_release(ev);
555 }
556
557 /*
558 * Add a cfdriver to the system.
559 */
560 int
561 config_cfdriver_attach(struct cfdriver *cd)
562 {
563 struct cfdriver *lcd;
564
565 /* Make sure this driver isn't already in the system. */
566 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
567 if (STREQ(lcd->cd_name, cd->cd_name))
568 return EEXIST;
569 }
570
571 LIST_INIT(&cd->cd_attach);
572 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
573
574 return 0;
575 }
576
577 /*
578 * Remove a cfdriver from the system.
579 */
580 int
581 config_cfdriver_detach(struct cfdriver *cd)
582 {
583 struct alldevs_foray af;
584 int i, rc = 0;
585
586 config_alldevs_enter(&af);
587 /* Make sure there are no active instances. */
588 for (i = 0; i < cd->cd_ndevs; i++) {
589 if (cd->cd_devs[i] != NULL) {
590 rc = EBUSY;
591 break;
592 }
593 }
594 config_alldevs_exit(&af);
595
596 if (rc != 0)
597 return rc;
598
599 /* ...and no attachments loaded. */
600 if (LIST_EMPTY(&cd->cd_attach) == 0)
601 return EBUSY;
602
603 LIST_REMOVE(cd, cd_list);
604
605 KASSERT(cd->cd_devs == NULL);
606
607 return 0;
608 }
609
610 /*
611 * Look up a cfdriver by name.
612 */
613 struct cfdriver *
614 config_cfdriver_lookup(const char *name)
615 {
616 struct cfdriver *cd;
617
618 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
619 if (STREQ(cd->cd_name, name))
620 return cd;
621 }
622
623 return NULL;
624 }
625
626 /*
627 * Add a cfattach to the specified driver.
628 */
629 int
630 config_cfattach_attach(const char *driver, struct cfattach *ca)
631 {
632 struct cfattach *lca;
633 struct cfdriver *cd;
634
635 cd = config_cfdriver_lookup(driver);
636 if (cd == NULL)
637 return ESRCH;
638
639 /* Make sure this attachment isn't already on this driver. */
640 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
641 if (STREQ(lca->ca_name, ca->ca_name))
642 return EEXIST;
643 }
644
645 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
646
647 return 0;
648 }
649
650 /*
651 * Remove a cfattach from the specified driver.
652 */
653 int
654 config_cfattach_detach(const char *driver, struct cfattach *ca)
655 {
656 struct alldevs_foray af;
657 struct cfdriver *cd;
658 device_t dev;
659 int i, rc = 0;
660
661 cd = config_cfdriver_lookup(driver);
662 if (cd == NULL)
663 return ESRCH;
664
665 config_alldevs_enter(&af);
666 /* Make sure there are no active instances. */
667 for (i = 0; i < cd->cd_ndevs; i++) {
668 if ((dev = cd->cd_devs[i]) == NULL)
669 continue;
670 if (dev->dv_cfattach == ca) {
671 rc = EBUSY;
672 break;
673 }
674 }
675 config_alldevs_exit(&af);
676
677 if (rc != 0)
678 return rc;
679
680 LIST_REMOVE(ca, ca_list);
681
682 return 0;
683 }
684
685 /*
686 * Look up a cfattach by name.
687 */
688 static struct cfattach *
689 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
690 {
691 struct cfattach *ca;
692
693 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
694 if (STREQ(ca->ca_name, atname))
695 return ca;
696 }
697
698 return NULL;
699 }
700
701 /*
702 * Look up a cfattach by driver/attachment name.
703 */
704 struct cfattach *
705 config_cfattach_lookup(const char *name, const char *atname)
706 {
707 struct cfdriver *cd;
708
709 cd = config_cfdriver_lookup(name);
710 if (cd == NULL)
711 return NULL;
712
713 return config_cfattach_lookup_cd(cd, atname);
714 }
715
716 /*
717 * Apply the matching function and choose the best. This is used
718 * a few times and we want to keep the code small.
719 */
720 static void
721 mapply(struct matchinfo *m, cfdata_t cf)
722 {
723 int pri;
724
725 if (m->fn != NULL) {
726 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
727 } else {
728 pri = config_match(m->parent, cf, m->aux);
729 }
730 if (pri > m->pri) {
731 m->match = cf;
732 m->pri = pri;
733 }
734 }
735
736 int
737 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
738 {
739 const struct cfiattrdata *ci;
740 const struct cflocdesc *cl;
741 int nlocs, i;
742
743 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
744 KASSERT(ci);
745 nlocs = ci->ci_loclen;
746 KASSERT(!nlocs || locs);
747 for (i = 0; i < nlocs; i++) {
748 cl = &ci->ci_locdesc[i];
749 if (cl->cld_defaultstr != NULL &&
750 cf->cf_loc[i] == cl->cld_default)
751 continue;
752 if (cf->cf_loc[i] == locs[i])
753 continue;
754 return 0;
755 }
756
757 return config_match(parent, cf, aux);
758 }
759
760 /*
761 * Helper function: check whether the driver supports the interface attribute
762 * and return its descriptor structure.
763 */
764 static const struct cfiattrdata *
765 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
766 {
767 const struct cfiattrdata * const *cpp;
768
769 if (cd->cd_attrs == NULL)
770 return 0;
771
772 for (cpp = cd->cd_attrs; *cpp; cpp++) {
773 if (STREQ((*cpp)->ci_name, ia)) {
774 /* Match. */
775 return *cpp;
776 }
777 }
778 return 0;
779 }
780
781 /*
782 * Lookup an interface attribute description by name.
783 * If the driver is given, consider only its supported attributes.
784 */
785 const struct cfiattrdata *
786 cfiattr_lookup(const char *name, const struct cfdriver *cd)
787 {
788 const struct cfdriver *d;
789 const struct cfiattrdata *ia;
790
791 if (cd)
792 return cfdriver_get_iattr(cd, name);
793
794 LIST_FOREACH(d, &allcfdrivers, cd_list) {
795 ia = cfdriver_get_iattr(d, name);
796 if (ia)
797 return ia;
798 }
799 return 0;
800 }
801
802 /*
803 * Determine if `parent' is a potential parent for a device spec based
804 * on `cfp'.
805 */
806 static int
807 cfparent_match(const device_t parent, const struct cfparent *cfp)
808 {
809 struct cfdriver *pcd;
810
811 /* We don't match root nodes here. */
812 if (cfp == NULL)
813 return 0;
814
815 pcd = parent->dv_cfdriver;
816 KASSERT(pcd != NULL);
817
818 /*
819 * First, ensure this parent has the correct interface
820 * attribute.
821 */
822 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
823 return 0;
824
825 /*
826 * If no specific parent device instance was specified (i.e.
827 * we're attaching to the attribute only), we're done!
828 */
829 if (cfp->cfp_parent == NULL)
830 return 1;
831
832 /*
833 * Check the parent device's name.
834 */
835 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
836 return 0; /* not the same parent */
837
838 /*
839 * Make sure the unit number matches.
840 */
841 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
842 cfp->cfp_unit == parent->dv_unit)
843 return 1;
844
845 /* Unit numbers don't match. */
846 return 0;
847 }
848
849 /*
850 * Helper for config_cfdata_attach(): check all devices whether it could be
851 * parent any attachment in the config data table passed, and rescan.
852 */
853 static void
854 rescan_with_cfdata(const struct cfdata *cf)
855 {
856 device_t d;
857 const struct cfdata *cf1;
858 deviter_t di;
859
860
861 /*
862 * "alldevs" is likely longer than a modules's cfdata, so make it
863 * the outer loop.
864 */
865 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
866
867 if (!(d->dv_cfattach->ca_rescan))
868 continue;
869
870 for (cf1 = cf; cf1->cf_name; cf1++) {
871
872 if (!cfparent_match(d, cf1->cf_pspec))
873 continue;
874
875 (*d->dv_cfattach->ca_rescan)(d,
876 cfdata_ifattr(cf1), cf1->cf_loc);
877
878 config_deferred(d);
879 }
880 }
881 deviter_release(&di);
882 }
883
884 /*
885 * Attach a supplemental config data table and rescan potential
886 * parent devices if required.
887 */
888 int
889 config_cfdata_attach(cfdata_t cf, int scannow)
890 {
891 struct cftable *ct;
892
893 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
894 ct->ct_cfdata = cf;
895 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
896
897 if (scannow)
898 rescan_with_cfdata(cf);
899
900 return 0;
901 }
902
903 /*
904 * Helper for config_cfdata_detach: check whether a device is
905 * found through any attachment in the config data table.
906 */
907 static int
908 dev_in_cfdata(device_t d, cfdata_t cf)
909 {
910 const struct cfdata *cf1;
911
912 for (cf1 = cf; cf1->cf_name; cf1++)
913 if (d->dv_cfdata == cf1)
914 return 1;
915
916 return 0;
917 }
918
919 /*
920 * Detach a supplemental config data table. Detach all devices found
921 * through that table (and thus keeping references to it) before.
922 */
923 int
924 config_cfdata_detach(cfdata_t cf)
925 {
926 device_t d;
927 int error = 0;
928 struct cftable *ct;
929 deviter_t di;
930
931 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
932 d = deviter_next(&di)) {
933 if (!dev_in_cfdata(d, cf))
934 continue;
935 if ((error = config_detach(d, 0)) != 0)
936 break;
937 }
938 deviter_release(&di);
939 if (error) {
940 aprint_error_dev(d, "unable to detach instance\n");
941 return error;
942 }
943
944 TAILQ_FOREACH(ct, &allcftables, ct_list) {
945 if (ct->ct_cfdata == cf) {
946 TAILQ_REMOVE(&allcftables, ct, ct_list);
947 kmem_free(ct, sizeof(*ct));
948 return 0;
949 }
950 }
951
952 /* not found -- shouldn't happen */
953 return EINVAL;
954 }
955
956 /*
957 * Invoke the "match" routine for a cfdata entry on behalf of
958 * an external caller, usually a "submatch" routine.
959 */
960 int
961 config_match(device_t parent, cfdata_t cf, void *aux)
962 {
963 struct cfattach *ca;
964
965 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
966 if (ca == NULL) {
967 /* No attachment for this entry, oh well. */
968 return 0;
969 }
970
971 return (*ca->ca_match)(parent, cf, aux);
972 }
973
974 /*
975 * Iterate over all potential children of some device, calling the given
976 * function (default being the child's match function) for each one.
977 * Nonzero returns are matches; the highest value returned is considered
978 * the best match. Return the `found child' if we got a match, or NULL
979 * otherwise. The `aux' pointer is simply passed on through.
980 *
981 * Note that this function is designed so that it can be used to apply
982 * an arbitrary function to all potential children (its return value
983 * can be ignored).
984 */
985 cfdata_t
986 config_search_loc(cfsubmatch_t fn, device_t parent,
987 const char *ifattr, const int *locs, void *aux)
988 {
989 struct cftable *ct;
990 cfdata_t cf;
991 struct matchinfo m;
992
993 KASSERT(config_initialized);
994 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
995
996 m.fn = fn;
997 m.parent = parent;
998 m.locs = locs;
999 m.aux = aux;
1000 m.match = NULL;
1001 m.pri = 0;
1002
1003 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1004 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1005
1006 /* We don't match root nodes here. */
1007 if (!cf->cf_pspec)
1008 continue;
1009
1010 /*
1011 * Skip cf if no longer eligible, otherwise scan
1012 * through parents for one matching `parent', and
1013 * try match function.
1014 */
1015 if (cf->cf_fstate == FSTATE_FOUND)
1016 continue;
1017 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1018 cf->cf_fstate == FSTATE_DSTAR)
1019 continue;
1020
1021 /*
1022 * If an interface attribute was specified,
1023 * consider only children which attach to
1024 * that attribute.
1025 */
1026 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1027 continue;
1028
1029 if (cfparent_match(parent, cf->cf_pspec))
1030 mapply(&m, cf);
1031 }
1032 }
1033 return m.match;
1034 }
1035
1036 cfdata_t
1037 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
1038 void *aux)
1039 {
1040
1041 return config_search_loc(fn, parent, ifattr, NULL, aux);
1042 }
1043
1044 /*
1045 * Find the given root device.
1046 * This is much like config_search, but there is no parent.
1047 * Don't bother with multiple cfdata tables; the root node
1048 * must always be in the initial table.
1049 */
1050 cfdata_t
1051 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1052 {
1053 cfdata_t cf;
1054 const short *p;
1055 struct matchinfo m;
1056
1057 m.fn = fn;
1058 m.parent = ROOT;
1059 m.aux = aux;
1060 m.match = NULL;
1061 m.pri = 0;
1062 m.locs = 0;
1063 /*
1064 * Look at root entries for matching name. We do not bother
1065 * with found-state here since only one root should ever be
1066 * searched (and it must be done first).
1067 */
1068 for (p = cfroots; *p >= 0; p++) {
1069 cf = &cfdata[*p];
1070 if (strcmp(cf->cf_name, rootname) == 0)
1071 mapply(&m, cf);
1072 }
1073 return m.match;
1074 }
1075
1076 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1077
1078 /*
1079 * The given `aux' argument describes a device that has been found
1080 * on the given parent, but not necessarily configured. Locate the
1081 * configuration data for that device (using the submatch function
1082 * provided, or using candidates' cd_match configuration driver
1083 * functions) and attach it, and return its device_t. If the device was
1084 * not configured, call the given `print' function and return NULL.
1085 */
1086 device_t
1087 config_found_sm_loc(device_t parent,
1088 const char *ifattr, const int *locs, void *aux,
1089 cfprint_t print, cfsubmatch_t submatch)
1090 {
1091 cfdata_t cf;
1092
1093 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1094 return(config_attach_loc(parent, cf, locs, aux, print));
1095 if (print) {
1096 if (config_do_twiddle && cold)
1097 twiddle();
1098 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1099 }
1100
1101 /*
1102 * This has the effect of mixing in a single timestamp to the
1103 * entropy pool. Experiments indicate the estimator will almost
1104 * always attribute one bit of entropy to this sample; analysis
1105 * of device attach/detach timestamps on FreeBSD indicates 4
1106 * bits of entropy/sample so this seems appropriately conservative.
1107 */
1108 rnd_add_uint32(&rnd_autoconf_source, 0);
1109 return NULL;
1110 }
1111
1112 device_t
1113 config_found_ia(device_t parent, const char *ifattr, void *aux,
1114 cfprint_t print)
1115 {
1116
1117 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1118 }
1119
1120 device_t
1121 config_found(device_t parent, void *aux, cfprint_t print)
1122 {
1123
1124 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1125 }
1126
1127 /*
1128 * As above, but for root devices.
1129 */
1130 device_t
1131 config_rootfound(const char *rootname, void *aux)
1132 {
1133 cfdata_t cf;
1134
1135 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1136 return config_attach(ROOT, cf, aux, NULL);
1137 aprint_error("root device %s not configured\n", rootname);
1138 return NULL;
1139 }
1140
1141 /* just like sprintf(buf, "%d") except that it works from the end */
1142 static char *
1143 number(char *ep, int n)
1144 {
1145
1146 *--ep = 0;
1147 while (n >= 10) {
1148 *--ep = (n % 10) + '0';
1149 n /= 10;
1150 }
1151 *--ep = n + '0';
1152 return ep;
1153 }
1154
1155 /*
1156 * Expand the size of the cd_devs array if necessary.
1157 *
1158 * The caller must hold alldevs_mtx. config_makeroom() may release and
1159 * re-acquire alldevs_mtx, so callers should re-check conditions such
1160 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1161 * returns.
1162 */
1163 static void
1164 config_makeroom(int n, struct cfdriver *cd)
1165 {
1166 int ondevs, nndevs;
1167 device_t *osp, *nsp;
1168
1169 KASSERT(mutex_owned(&alldevs_mtx));
1170 alldevs_nwrite++;
1171
1172 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1173 ;
1174
1175 while (n >= cd->cd_ndevs) {
1176 /*
1177 * Need to expand the array.
1178 */
1179 ondevs = cd->cd_ndevs;
1180 osp = cd->cd_devs;
1181
1182 /* Release alldevs_mtx around allocation, which may
1183 * sleep.
1184 */
1185 mutex_exit(&alldevs_mtx);
1186 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1187 if (nsp == NULL)
1188 panic("%s: could not expand cd_devs", __func__);
1189 mutex_enter(&alldevs_mtx);
1190
1191 /* If another thread moved the array while we did
1192 * not hold alldevs_mtx, try again.
1193 */
1194 if (cd->cd_devs != osp) {
1195 mutex_exit(&alldevs_mtx);
1196 kmem_free(nsp, sizeof(device_t[nndevs]));
1197 mutex_enter(&alldevs_mtx);
1198 continue;
1199 }
1200
1201 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1202 if (ondevs != 0)
1203 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1204
1205 cd->cd_ndevs = nndevs;
1206 cd->cd_devs = nsp;
1207 if (ondevs != 0) {
1208 mutex_exit(&alldevs_mtx);
1209 kmem_free(osp, sizeof(device_t[ondevs]));
1210 mutex_enter(&alldevs_mtx);
1211 }
1212 }
1213 KASSERT(mutex_owned(&alldevs_mtx));
1214 alldevs_nwrite--;
1215 }
1216
1217 /*
1218 * Put dev into the devices list.
1219 */
1220 static void
1221 config_devlink(device_t dev)
1222 {
1223
1224 mutex_enter(&alldevs_mtx);
1225
1226 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1227
1228 dev->dv_add_gen = alldevs_gen;
1229 /* It is safe to add a device to the tail of the list while
1230 * readers and writers are in the list.
1231 */
1232 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1233 mutex_exit(&alldevs_mtx);
1234 }
1235
1236 static void
1237 config_devfree(device_t dev)
1238 {
1239 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1240
1241 if (dev->dv_cfattach->ca_devsize > 0)
1242 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1243 if (priv)
1244 kmem_free(dev, sizeof(*dev));
1245 }
1246
1247 /*
1248 * Caller must hold alldevs_mtx.
1249 */
1250 static void
1251 config_devunlink(device_t dev, struct devicelist *garbage)
1252 {
1253 struct device_garbage *dg = &dev->dv_garbage;
1254 cfdriver_t cd = device_cfdriver(dev);
1255 int i;
1256
1257 KASSERT(mutex_owned(&alldevs_mtx));
1258
1259 /* Unlink from device list. Link to garbage list. */
1260 TAILQ_REMOVE(&alldevs, dev, dv_list);
1261 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1262
1263 /* Remove from cfdriver's array. */
1264 cd->cd_devs[dev->dv_unit] = NULL;
1265
1266 /*
1267 * If the device now has no units in use, unlink its softc array.
1268 */
1269 for (i = 0; i < cd->cd_ndevs; i++) {
1270 if (cd->cd_devs[i] != NULL)
1271 break;
1272 }
1273 /* Nothing found. Unlink, now. Deallocate, later. */
1274 if (i == cd->cd_ndevs) {
1275 dg->dg_ndevs = cd->cd_ndevs;
1276 dg->dg_devs = cd->cd_devs;
1277 cd->cd_devs = NULL;
1278 cd->cd_ndevs = 0;
1279 }
1280 }
1281
1282 static void
1283 config_devdelete(device_t dev)
1284 {
1285 struct device_garbage *dg = &dev->dv_garbage;
1286 device_lock_t dvl = device_getlock(dev);
1287
1288 if (dg->dg_devs != NULL)
1289 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1290
1291 cv_destroy(&dvl->dvl_cv);
1292 mutex_destroy(&dvl->dvl_mtx);
1293
1294 KASSERT(dev->dv_properties != NULL);
1295 prop_object_release(dev->dv_properties);
1296
1297 if (dev->dv_activity_handlers)
1298 panic("%s with registered handlers", __func__);
1299
1300 if (dev->dv_locators) {
1301 size_t amount = *--dev->dv_locators;
1302 kmem_free(dev->dv_locators, amount);
1303 }
1304
1305 config_devfree(dev);
1306 }
1307
1308 static int
1309 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1310 {
1311 int unit;
1312
1313 if (cf->cf_fstate == FSTATE_STAR) {
1314 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1315 if (cd->cd_devs[unit] == NULL)
1316 break;
1317 /*
1318 * unit is now the unit of the first NULL device pointer,
1319 * or max(cd->cd_ndevs,cf->cf_unit).
1320 */
1321 } else {
1322 unit = cf->cf_unit;
1323 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1324 unit = -1;
1325 }
1326 return unit;
1327 }
1328
1329 static int
1330 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1331 {
1332 struct alldevs_foray af;
1333 int unit;
1334
1335 config_alldevs_enter(&af);
1336 for (;;) {
1337 unit = config_unit_nextfree(cd, cf);
1338 if (unit == -1)
1339 break;
1340 if (unit < cd->cd_ndevs) {
1341 cd->cd_devs[unit] = dev;
1342 dev->dv_unit = unit;
1343 break;
1344 }
1345 config_makeroom(unit, cd);
1346 }
1347 config_alldevs_exit(&af);
1348
1349 return unit;
1350 }
1351
1352 static device_t
1353 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1354 {
1355 cfdriver_t cd;
1356 cfattach_t ca;
1357 size_t lname, lunit;
1358 const char *xunit;
1359 int myunit;
1360 char num[10];
1361 device_t dev;
1362 void *dev_private;
1363 const struct cfiattrdata *ia;
1364 device_lock_t dvl;
1365
1366 cd = config_cfdriver_lookup(cf->cf_name);
1367 if (cd == NULL)
1368 return NULL;
1369
1370 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1371 if (ca == NULL)
1372 return NULL;
1373
1374 /* get memory for all device vars */
1375 KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
1376 || ca->ca_devsize >= sizeof(struct device),
1377 "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
1378 sizeof(struct device));
1379 if (ca->ca_devsize > 0) {
1380 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1381 if (dev_private == NULL)
1382 panic("config_devalloc: memory allocation for device "
1383 "softc failed");
1384 } else {
1385 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1386 dev_private = NULL;
1387 }
1388
1389 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1390 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1391 } else {
1392 dev = dev_private;
1393 #ifdef DIAGNOSTIC
1394 printf("%s has not been converted to device_t\n", cd->cd_name);
1395 #endif
1396 }
1397 if (dev == NULL)
1398 panic("config_devalloc: memory allocation for device_t failed");
1399
1400 dev->dv_class = cd->cd_class;
1401 dev->dv_cfdata = cf;
1402 dev->dv_cfdriver = cd;
1403 dev->dv_cfattach = ca;
1404 dev->dv_activity_count = 0;
1405 dev->dv_activity_handlers = NULL;
1406 dev->dv_private = dev_private;
1407 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1408
1409 myunit = config_unit_alloc(dev, cd, cf);
1410 if (myunit == -1) {
1411 config_devfree(dev);
1412 return NULL;
1413 }
1414
1415 /* compute length of name and decimal expansion of unit number */
1416 lname = strlen(cd->cd_name);
1417 xunit = number(&num[sizeof(num)], myunit);
1418 lunit = &num[sizeof(num)] - xunit;
1419 if (lname + lunit > sizeof(dev->dv_xname))
1420 panic("config_devalloc: device name too long");
1421
1422 dvl = device_getlock(dev);
1423
1424 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1425 cv_init(&dvl->dvl_cv, "pmfsusp");
1426
1427 memcpy(dev->dv_xname, cd->cd_name, lname);
1428 memcpy(dev->dv_xname + lname, xunit, lunit);
1429 dev->dv_parent = parent;
1430 if (parent != NULL)
1431 dev->dv_depth = parent->dv_depth + 1;
1432 else
1433 dev->dv_depth = 0;
1434 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1435 if (locs) {
1436 KASSERT(parent); /* no locators at root */
1437 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1438 dev->dv_locators =
1439 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1440 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1441 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1442 }
1443 dev->dv_properties = prop_dictionary_create();
1444 KASSERT(dev->dv_properties != NULL);
1445
1446 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1447 "device-driver", dev->dv_cfdriver->cd_name);
1448 prop_dictionary_set_uint16(dev->dv_properties,
1449 "device-unit", dev->dv_unit);
1450 if (parent != NULL) {
1451 prop_dictionary_set_cstring(dev->dv_properties,
1452 "device-parent", device_xname(parent));
1453 }
1454
1455 if (dev->dv_cfdriver->cd_attrs != NULL)
1456 config_add_attrib_dict(dev);
1457
1458 return dev;
1459 }
1460
1461 /*
1462 * Create an array of device attach attributes and add it
1463 * to the device's dv_properties dictionary.
1464 *
1465 * <key>interface-attributes</key>
1466 * <array>
1467 * <dict>
1468 * <key>attribute-name</key>
1469 * <string>foo</string>
1470 * <key>locators</key>
1471 * <array>
1472 * <dict>
1473 * <key>loc-name</key>
1474 * <string>foo-loc1</string>
1475 * </dict>
1476 * <dict>
1477 * <key>loc-name</key>
1478 * <string>foo-loc2</string>
1479 * <key>default</key>
1480 * <string>foo-loc2-default</string>
1481 * </dict>
1482 * ...
1483 * </array>
1484 * </dict>
1485 * ...
1486 * </array>
1487 */
1488
1489 static void
1490 config_add_attrib_dict(device_t dev)
1491 {
1492 int i, j;
1493 const struct cfiattrdata *ci;
1494 prop_dictionary_t attr_dict, loc_dict;
1495 prop_array_t attr_array, loc_array;
1496
1497 if ((attr_array = prop_array_create()) == NULL)
1498 return;
1499
1500 for (i = 0; ; i++) {
1501 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1502 break;
1503 if ((attr_dict = prop_dictionary_create()) == NULL)
1504 break;
1505 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1506 ci->ci_name);
1507
1508 /* Create an array of the locator names and defaults */
1509
1510 if (ci->ci_loclen != 0 &&
1511 (loc_array = prop_array_create()) != NULL) {
1512 for (j = 0; j < ci->ci_loclen; j++) {
1513 loc_dict = prop_dictionary_create();
1514 if (loc_dict == NULL)
1515 continue;
1516 prop_dictionary_set_cstring_nocopy(loc_dict,
1517 "loc-name", ci->ci_locdesc[j].cld_name);
1518 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1519 prop_dictionary_set_cstring_nocopy(
1520 loc_dict, "default",
1521 ci->ci_locdesc[j].cld_defaultstr);
1522 prop_array_set(loc_array, j, loc_dict);
1523 prop_object_release(loc_dict);
1524 }
1525 prop_dictionary_set_and_rel(attr_dict, "locators",
1526 loc_array);
1527 }
1528 prop_array_add(attr_array, attr_dict);
1529 prop_object_release(attr_dict);
1530 }
1531 if (i == 0)
1532 prop_object_release(attr_array);
1533 else
1534 prop_dictionary_set_and_rel(dev->dv_properties,
1535 "interface-attributes", attr_array);
1536
1537 return;
1538 }
1539
1540 /*
1541 * Attach a found device.
1542 */
1543 device_t
1544 config_attach_loc(device_t parent, cfdata_t cf,
1545 const int *locs, void *aux, cfprint_t print)
1546 {
1547 device_t dev;
1548 struct cftable *ct;
1549 const char *drvname;
1550
1551 dev = config_devalloc(parent, cf, locs);
1552 if (!dev)
1553 panic("config_attach: allocation of device softc failed");
1554
1555 /* XXX redundant - see below? */
1556 if (cf->cf_fstate != FSTATE_STAR) {
1557 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1558 cf->cf_fstate = FSTATE_FOUND;
1559 }
1560
1561 config_devlink(dev);
1562
1563 if (config_do_twiddle && cold)
1564 twiddle();
1565 else
1566 aprint_naive("Found ");
1567 /*
1568 * We want the next two printfs for normal, verbose, and quiet,
1569 * but not silent (in which case, we're twiddling, instead).
1570 */
1571 if (parent == ROOT) {
1572 aprint_naive("%s (root)", device_xname(dev));
1573 aprint_normal("%s (root)", device_xname(dev));
1574 } else {
1575 aprint_naive("%s at %s", device_xname(dev),
1576 device_xname(parent));
1577 aprint_normal("%s at %s", device_xname(dev),
1578 device_xname(parent));
1579 if (print)
1580 (void) (*print)(aux, NULL);
1581 }
1582
1583 /*
1584 * Before attaching, clobber any unfound devices that are
1585 * otherwise identical.
1586 * XXX code above is redundant?
1587 */
1588 drvname = dev->dv_cfdriver->cd_name;
1589 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1590 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1591 if (STREQ(cf->cf_name, drvname) &&
1592 cf->cf_unit == dev->dv_unit) {
1593 if (cf->cf_fstate == FSTATE_NOTFOUND)
1594 cf->cf_fstate = FSTATE_FOUND;
1595 }
1596 }
1597 }
1598 device_register(dev, aux);
1599
1600 /* Let userland know */
1601 devmon_report_device(dev, true);
1602
1603 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1604
1605 if (!device_pmf_is_registered(dev))
1606 aprint_debug_dev(dev, "WARNING: power management not "
1607 "supported\n");
1608
1609 config_process_deferred(&deferred_config_queue, dev);
1610
1611 device_register_post_config(dev, aux);
1612 return dev;
1613 }
1614
1615 device_t
1616 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1617 {
1618
1619 return config_attach_loc(parent, cf, NULL, aux, print);
1620 }
1621
1622 /*
1623 * As above, but for pseudo-devices. Pseudo-devices attached in this
1624 * way are silently inserted into the device tree, and their children
1625 * attached.
1626 *
1627 * Note that because pseudo-devices are attached silently, any information
1628 * the attach routine wishes to print should be prefixed with the device
1629 * name by the attach routine.
1630 */
1631 device_t
1632 config_attach_pseudo(cfdata_t cf)
1633 {
1634 device_t dev;
1635
1636 dev = config_devalloc(ROOT, cf, NULL);
1637 if (!dev)
1638 return NULL;
1639
1640 /* XXX mark busy in cfdata */
1641
1642 if (cf->cf_fstate != FSTATE_STAR) {
1643 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1644 cf->cf_fstate = FSTATE_FOUND;
1645 }
1646
1647 config_devlink(dev);
1648
1649 #if 0 /* XXXJRT not yet */
1650 device_register(dev, NULL); /* like a root node */
1651 #endif
1652
1653 /* Let userland know */
1654 devmon_report_device(dev, true);
1655
1656 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1657
1658 config_process_deferred(&deferred_config_queue, dev);
1659 return dev;
1660 }
1661
1662 /*
1663 * Caller must hold alldevs_mtx.
1664 */
1665 static void
1666 config_collect_garbage(struct devicelist *garbage)
1667 {
1668 device_t dv;
1669
1670 KASSERT(!cpu_intr_p());
1671 KASSERT(!cpu_softintr_p());
1672 KASSERT(mutex_owned(&alldevs_mtx));
1673
1674 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1675 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1676 if (dv->dv_del_gen != 0)
1677 break;
1678 }
1679 if (dv == NULL) {
1680 alldevs_garbage = false;
1681 break;
1682 }
1683 config_devunlink(dv, garbage);
1684 }
1685 KASSERT(mutex_owned(&alldevs_mtx));
1686 }
1687
1688 static void
1689 config_dump_garbage(struct devicelist *garbage)
1690 {
1691 device_t dv;
1692
1693 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1694 TAILQ_REMOVE(garbage, dv, dv_list);
1695 config_devdelete(dv);
1696 }
1697 }
1698
1699 /*
1700 * Detach a device. Optionally forced (e.g. because of hardware
1701 * removal) and quiet. Returns zero if successful, non-zero
1702 * (an error code) otherwise.
1703 *
1704 * Note that this code wants to be run from a process context, so
1705 * that the detach can sleep to allow processes which have a device
1706 * open to run and unwind their stacks.
1707 */
1708 int
1709 config_detach(device_t dev, int flags)
1710 {
1711 struct alldevs_foray af;
1712 struct cftable *ct;
1713 cfdata_t cf;
1714 const struct cfattach *ca;
1715 struct cfdriver *cd;
1716 #ifdef DIAGNOSTIC
1717 device_t d;
1718 #endif
1719 int rv = 0;
1720
1721 #ifdef DIAGNOSTIC
1722 cf = dev->dv_cfdata;
1723 if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
1724 cf->cf_fstate != FSTATE_STAR)
1725 panic("config_detach: %s: bad device fstate %d",
1726 device_xname(dev), cf ? cf->cf_fstate : -1);
1727 #endif
1728 cd = dev->dv_cfdriver;
1729 KASSERT(cd != NULL);
1730
1731 ca = dev->dv_cfattach;
1732 KASSERT(ca != NULL);
1733
1734 mutex_enter(&alldevs_mtx);
1735 if (dev->dv_del_gen != 0) {
1736 mutex_exit(&alldevs_mtx);
1737 #ifdef DIAGNOSTIC
1738 printf("%s: %s is already detached\n", __func__,
1739 device_xname(dev));
1740 #endif /* DIAGNOSTIC */
1741 return ENOENT;
1742 }
1743 alldevs_nwrite++;
1744 mutex_exit(&alldevs_mtx);
1745
1746 if (!detachall &&
1747 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1748 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1749 rv = EOPNOTSUPP;
1750 } else if (ca->ca_detach != NULL) {
1751 rv = (*ca->ca_detach)(dev, flags);
1752 } else
1753 rv = EOPNOTSUPP;
1754
1755 /*
1756 * If it was not possible to detach the device, then we either
1757 * panic() (for the forced but failed case), or return an error.
1758 *
1759 * If it was possible to detach the device, ensure that the
1760 * device is deactivated.
1761 */
1762 if (rv == 0)
1763 dev->dv_flags &= ~DVF_ACTIVE;
1764 else if ((flags & DETACH_FORCE) == 0)
1765 goto out;
1766 else {
1767 panic("config_detach: forced detach of %s failed (%d)",
1768 device_xname(dev), rv);
1769 }
1770
1771 /*
1772 * The device has now been successfully detached.
1773 */
1774
1775 /* Let userland know */
1776 devmon_report_device(dev, false);
1777
1778 #ifdef DIAGNOSTIC
1779 /*
1780 * Sanity: If you're successfully detached, you should have no
1781 * children. (Note that because children must be attached
1782 * after parents, we only need to search the latter part of
1783 * the list.)
1784 */
1785 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1786 d = TAILQ_NEXT(d, dv_list)) {
1787 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1788 printf("config_detach: detached device %s"
1789 " has children %s\n", device_xname(dev),
1790 device_xname(d));
1791 panic("config_detach");
1792 }
1793 }
1794 #endif
1795
1796 /* notify the parent that the child is gone */
1797 if (dev->dv_parent) {
1798 device_t p = dev->dv_parent;
1799 if (p->dv_cfattach->ca_childdetached)
1800 (*p->dv_cfattach->ca_childdetached)(p, dev);
1801 }
1802
1803 /*
1804 * Mark cfdata to show that the unit can be reused, if possible.
1805 */
1806 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1807 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1808 if (STREQ(cf->cf_name, cd->cd_name)) {
1809 if (cf->cf_fstate == FSTATE_FOUND &&
1810 cf->cf_unit == dev->dv_unit)
1811 cf->cf_fstate = FSTATE_NOTFOUND;
1812 }
1813 }
1814 }
1815
1816 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1817 aprint_normal_dev(dev, "detached\n");
1818
1819 out:
1820 config_alldevs_enter(&af);
1821 KASSERT(alldevs_nwrite != 0);
1822 --alldevs_nwrite;
1823 if (rv == 0 && dev->dv_del_gen == 0) {
1824 if (alldevs_nwrite == 0 && alldevs_nread == 0)
1825 config_devunlink(dev, &af.af_garbage);
1826 else {
1827 dev->dv_del_gen = alldevs_gen;
1828 alldevs_garbage = true;
1829 }
1830 }
1831 config_alldevs_exit(&af);
1832
1833 return rv;
1834 }
1835
1836 int
1837 config_detach_children(device_t parent, int flags)
1838 {
1839 device_t dv;
1840 deviter_t di;
1841 int error = 0;
1842
1843 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1844 dv = deviter_next(&di)) {
1845 if (device_parent(dv) != parent)
1846 continue;
1847 if ((error = config_detach(dv, flags)) != 0)
1848 break;
1849 }
1850 deviter_release(&di);
1851 return error;
1852 }
1853
1854 device_t
1855 shutdown_first(struct shutdown_state *s)
1856 {
1857 if (!s->initialized) {
1858 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1859 s->initialized = true;
1860 }
1861 return shutdown_next(s);
1862 }
1863
1864 device_t
1865 shutdown_next(struct shutdown_state *s)
1866 {
1867 device_t dv;
1868
1869 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1870 ;
1871
1872 if (dv == NULL)
1873 s->initialized = false;
1874
1875 return dv;
1876 }
1877
1878 bool
1879 config_detach_all(int how)
1880 {
1881 static struct shutdown_state s;
1882 device_t curdev;
1883 bool progress = false;
1884 int flags;
1885
1886 if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1887 return false;
1888
1889 if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1890 flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1891 else
1892 flags = DETACH_SHUTDOWN;
1893
1894 for (curdev = shutdown_first(&s); curdev != NULL;
1895 curdev = shutdown_next(&s)) {
1896 aprint_debug(" detaching %s, ", device_xname(curdev));
1897 if (config_detach(curdev, flags) == 0) {
1898 progress = true;
1899 aprint_debug("success.");
1900 } else
1901 aprint_debug("failed.");
1902 }
1903 return progress;
1904 }
1905
1906 static bool
1907 device_is_ancestor_of(device_t ancestor, device_t descendant)
1908 {
1909 device_t dv;
1910
1911 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1912 if (device_parent(dv) == ancestor)
1913 return true;
1914 }
1915 return false;
1916 }
1917
1918 int
1919 config_deactivate(device_t dev)
1920 {
1921 deviter_t di;
1922 const struct cfattach *ca;
1923 device_t descendant;
1924 int s, rv = 0, oflags;
1925
1926 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1927 descendant != NULL;
1928 descendant = deviter_next(&di)) {
1929 if (dev != descendant &&
1930 !device_is_ancestor_of(dev, descendant))
1931 continue;
1932
1933 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1934 continue;
1935
1936 ca = descendant->dv_cfattach;
1937 oflags = descendant->dv_flags;
1938
1939 descendant->dv_flags &= ~DVF_ACTIVE;
1940 if (ca->ca_activate == NULL)
1941 continue;
1942 s = splhigh();
1943 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1944 splx(s);
1945 if (rv != 0)
1946 descendant->dv_flags = oflags;
1947 }
1948 deviter_release(&di);
1949 return rv;
1950 }
1951
1952 /*
1953 * Defer the configuration of the specified device until all
1954 * of its parent's devices have been attached.
1955 */
1956 void
1957 config_defer(device_t dev, void (*func)(device_t))
1958 {
1959 struct deferred_config *dc;
1960
1961 if (dev->dv_parent == NULL)
1962 panic("config_defer: can't defer config of a root device");
1963
1964 #ifdef DIAGNOSTIC
1965 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1966 if (dc->dc_dev == dev)
1967 panic("config_defer: deferred twice");
1968 }
1969 #endif
1970
1971 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1972 if (dc == NULL)
1973 panic("config_defer: unable to allocate callback");
1974
1975 dc->dc_dev = dev;
1976 dc->dc_func = func;
1977 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1978 config_pending_incr(dev);
1979 }
1980
1981 /*
1982 * Defer some autoconfiguration for a device until after interrupts
1983 * are enabled.
1984 */
1985 void
1986 config_interrupts(device_t dev, void (*func)(device_t))
1987 {
1988 struct deferred_config *dc;
1989
1990 /*
1991 * If interrupts are enabled, callback now.
1992 */
1993 if (cold == 0) {
1994 (*func)(dev);
1995 return;
1996 }
1997
1998 #ifdef DIAGNOSTIC
1999 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
2000 if (dc->dc_dev == dev)
2001 panic("config_interrupts: deferred twice");
2002 }
2003 #endif
2004
2005 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2006 if (dc == NULL)
2007 panic("config_interrupts: unable to allocate callback");
2008
2009 dc->dc_dev = dev;
2010 dc->dc_func = func;
2011 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2012 config_pending_incr(dev);
2013 }
2014
2015 /*
2016 * Defer some autoconfiguration for a device until after root file system
2017 * is mounted (to load firmware etc).
2018 */
2019 void
2020 config_mountroot(device_t dev, void (*func)(device_t))
2021 {
2022 struct deferred_config *dc;
2023
2024 /*
2025 * If root file system is mounted, callback now.
2026 */
2027 if (root_is_mounted) {
2028 (*func)(dev);
2029 return;
2030 }
2031
2032 #ifdef DIAGNOSTIC
2033 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
2034 if (dc->dc_dev == dev)
2035 panic("%s: deferred twice", __func__);
2036 }
2037 #endif
2038
2039 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2040 if (dc == NULL)
2041 panic("%s: unable to allocate callback", __func__);
2042
2043 dc->dc_dev = dev;
2044 dc->dc_func = func;
2045 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2046 }
2047
2048 /*
2049 * Process a deferred configuration queue.
2050 */
2051 static void
2052 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2053 {
2054 struct deferred_config *dc, *ndc;
2055
2056 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
2057 ndc = TAILQ_NEXT(dc, dc_queue);
2058 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2059 TAILQ_REMOVE(queue, dc, dc_queue);
2060 (*dc->dc_func)(dc->dc_dev);
2061 config_pending_decr(dc->dc_dev);
2062 kmem_free(dc, sizeof(*dc));
2063 }
2064 }
2065 }
2066
2067 /*
2068 * Manipulate the config_pending semaphore.
2069 */
2070 void
2071 config_pending_incr(device_t dev)
2072 {
2073
2074 mutex_enter(&config_misc_lock);
2075 config_pending++;
2076 #ifdef DEBUG_AUTOCONF
2077 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2078 #endif
2079 mutex_exit(&config_misc_lock);
2080 }
2081
2082 void
2083 config_pending_decr(device_t dev)
2084 {
2085
2086 #ifdef DIAGNOSTIC
2087 if (config_pending == 0)
2088 panic("config_pending_decr: config_pending == 0");
2089 #endif
2090 mutex_enter(&config_misc_lock);
2091 config_pending--;
2092 #ifdef DEBUG_AUTOCONF
2093 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2094 #endif
2095 if (config_pending == 0)
2096 cv_broadcast(&config_misc_cv);
2097 mutex_exit(&config_misc_lock);
2098 }
2099
2100 /*
2101 * Register a "finalization" routine. Finalization routines are
2102 * called iteratively once all real devices have been found during
2103 * autoconfiguration, for as long as any one finalizer has done
2104 * any work.
2105 */
2106 int
2107 config_finalize_register(device_t dev, int (*fn)(device_t))
2108 {
2109 struct finalize_hook *f;
2110
2111 /*
2112 * If finalization has already been done, invoke the
2113 * callback function now.
2114 */
2115 if (config_finalize_done) {
2116 while ((*fn)(dev) != 0)
2117 /* loop */ ;
2118 return 0;
2119 }
2120
2121 /* Ensure this isn't already on the list. */
2122 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2123 if (f->f_func == fn && f->f_dev == dev)
2124 return EEXIST;
2125 }
2126
2127 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2128 f->f_func = fn;
2129 f->f_dev = dev;
2130 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2131
2132 return 0;
2133 }
2134
2135 void
2136 config_finalize(void)
2137 {
2138 struct finalize_hook *f;
2139 struct pdevinit *pdev;
2140 extern struct pdevinit pdevinit[];
2141 int errcnt, rv;
2142
2143 /*
2144 * Now that device driver threads have been created, wait for
2145 * them to finish any deferred autoconfiguration.
2146 */
2147 mutex_enter(&config_misc_lock);
2148 while (config_pending != 0)
2149 cv_wait(&config_misc_cv, &config_misc_lock);
2150 mutex_exit(&config_misc_lock);
2151
2152 KERNEL_LOCK(1, NULL);
2153
2154 /* Attach pseudo-devices. */
2155 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2156 (*pdev->pdev_attach)(pdev->pdev_count);
2157
2158 /* Run the hooks until none of them does any work. */
2159 do {
2160 rv = 0;
2161 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2162 rv |= (*f->f_func)(f->f_dev);
2163 } while (rv != 0);
2164
2165 config_finalize_done = 1;
2166
2167 /* Now free all the hooks. */
2168 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2169 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2170 kmem_free(f, sizeof(*f));
2171 }
2172
2173 KERNEL_UNLOCK_ONE(NULL);
2174
2175 errcnt = aprint_get_error_count();
2176 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2177 (boothowto & AB_VERBOSE) == 0) {
2178 mutex_enter(&config_misc_lock);
2179 if (config_do_twiddle) {
2180 config_do_twiddle = 0;
2181 printf_nolog(" done.\n");
2182 }
2183 mutex_exit(&config_misc_lock);
2184 }
2185 if (errcnt != 0) {
2186 printf("WARNING: %d error%s while detecting hardware; "
2187 "check system log.\n", errcnt,
2188 errcnt == 1 ? "" : "s");
2189 }
2190 }
2191
2192 void
2193 config_twiddle_init(void)
2194 {
2195
2196 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2197 config_do_twiddle = 1;
2198 }
2199 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2200 }
2201
2202 void
2203 config_twiddle_fn(void *cookie)
2204 {
2205
2206 mutex_enter(&config_misc_lock);
2207 if (config_do_twiddle) {
2208 twiddle();
2209 callout_schedule(&config_twiddle_ch, mstohz(100));
2210 }
2211 mutex_exit(&config_misc_lock);
2212 }
2213
2214 static void
2215 config_alldevs_enter(struct alldevs_foray *af)
2216 {
2217 TAILQ_INIT(&af->af_garbage);
2218 mutex_enter(&alldevs_mtx);
2219 config_collect_garbage(&af->af_garbage);
2220 }
2221
2222 static void
2223 config_alldevs_exit(struct alldevs_foray *af)
2224 {
2225 mutex_exit(&alldevs_mtx);
2226 config_dump_garbage(&af->af_garbage);
2227 }
2228
2229 /*
2230 * device_lookup:
2231 *
2232 * Look up a device instance for a given driver.
2233 */
2234 device_t
2235 device_lookup(cfdriver_t cd, int unit)
2236 {
2237 device_t dv;
2238
2239 mutex_enter(&alldevs_mtx);
2240 if (unit < 0 || unit >= cd->cd_ndevs)
2241 dv = NULL;
2242 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2243 dv = NULL;
2244 mutex_exit(&alldevs_mtx);
2245
2246 return dv;
2247 }
2248
2249 /*
2250 * device_lookup_private:
2251 *
2252 * Look up a softc instance for a given driver.
2253 */
2254 void *
2255 device_lookup_private(cfdriver_t cd, int unit)
2256 {
2257
2258 return device_private(device_lookup(cd, unit));
2259 }
2260
2261 /*
2262 * device_find_by_xname:
2263 *
2264 * Returns the device of the given name or NULL if it doesn't exist.
2265 */
2266 device_t
2267 device_find_by_xname(const char *name)
2268 {
2269 device_t dv;
2270 deviter_t di;
2271
2272 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2273 if (strcmp(device_xname(dv), name) == 0)
2274 break;
2275 }
2276 deviter_release(&di);
2277
2278 return dv;
2279 }
2280
2281 /*
2282 * device_find_by_driver_unit:
2283 *
2284 * Returns the device of the given driver name and unit or
2285 * NULL if it doesn't exist.
2286 */
2287 device_t
2288 device_find_by_driver_unit(const char *name, int unit)
2289 {
2290 struct cfdriver *cd;
2291
2292 if ((cd = config_cfdriver_lookup(name)) == NULL)
2293 return NULL;
2294 return device_lookup(cd, unit);
2295 }
2296
2297 /*
2298 * Power management related functions.
2299 */
2300
2301 bool
2302 device_pmf_is_registered(device_t dev)
2303 {
2304 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2305 }
2306
2307 bool
2308 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2309 {
2310 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2311 return true;
2312 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2313 return false;
2314 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2315 dev->dv_driver_suspend != NULL &&
2316 !(*dev->dv_driver_suspend)(dev, qual))
2317 return false;
2318
2319 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2320 return true;
2321 }
2322
2323 bool
2324 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2325 {
2326 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2327 return true;
2328 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2329 return false;
2330 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2331 dev->dv_driver_resume != NULL &&
2332 !(*dev->dv_driver_resume)(dev, qual))
2333 return false;
2334
2335 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2336 return true;
2337 }
2338
2339 bool
2340 device_pmf_driver_shutdown(device_t dev, int how)
2341 {
2342
2343 if (*dev->dv_driver_shutdown != NULL &&
2344 !(*dev->dv_driver_shutdown)(dev, how))
2345 return false;
2346 return true;
2347 }
2348
2349 bool
2350 device_pmf_driver_register(device_t dev,
2351 bool (*suspend)(device_t, const pmf_qual_t *),
2352 bool (*resume)(device_t, const pmf_qual_t *),
2353 bool (*shutdown)(device_t, int))
2354 {
2355 dev->dv_driver_suspend = suspend;
2356 dev->dv_driver_resume = resume;
2357 dev->dv_driver_shutdown = shutdown;
2358 dev->dv_flags |= DVF_POWER_HANDLERS;
2359 return true;
2360 }
2361
2362 static const char *
2363 curlwp_name(void)
2364 {
2365 if (curlwp->l_name != NULL)
2366 return curlwp->l_name;
2367 else
2368 return curlwp->l_proc->p_comm;
2369 }
2370
2371 void
2372 device_pmf_driver_deregister(device_t dev)
2373 {
2374 device_lock_t dvl = device_getlock(dev);
2375
2376 dev->dv_driver_suspend = NULL;
2377 dev->dv_driver_resume = NULL;
2378
2379 mutex_enter(&dvl->dvl_mtx);
2380 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2381 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2382 /* Wake a thread that waits for the lock. That
2383 * thread will fail to acquire the lock, and then
2384 * it will wake the next thread that waits for the
2385 * lock, or else it will wake us.
2386 */
2387 cv_signal(&dvl->dvl_cv);
2388 pmflock_debug(dev, __func__, __LINE__);
2389 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2390 pmflock_debug(dev, __func__, __LINE__);
2391 }
2392 mutex_exit(&dvl->dvl_mtx);
2393 }
2394
2395 bool
2396 device_pmf_driver_child_register(device_t dev)
2397 {
2398 device_t parent = device_parent(dev);
2399
2400 if (parent == NULL || parent->dv_driver_child_register == NULL)
2401 return true;
2402 return (*parent->dv_driver_child_register)(dev);
2403 }
2404
2405 void
2406 device_pmf_driver_set_child_register(device_t dev,
2407 bool (*child_register)(device_t))
2408 {
2409 dev->dv_driver_child_register = child_register;
2410 }
2411
2412 static void
2413 pmflock_debug(device_t dev, const char *func, int line)
2414 {
2415 device_lock_t dvl = device_getlock(dev);
2416
2417 aprint_debug_dev(dev,
2418 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2419 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2420 }
2421
2422 static bool
2423 device_pmf_lock1(device_t dev)
2424 {
2425 device_lock_t dvl = device_getlock(dev);
2426
2427 while (device_pmf_is_registered(dev) &&
2428 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2429 dvl->dvl_nwait++;
2430 pmflock_debug(dev, __func__, __LINE__);
2431 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2432 pmflock_debug(dev, __func__, __LINE__);
2433 dvl->dvl_nwait--;
2434 }
2435 if (!device_pmf_is_registered(dev)) {
2436 pmflock_debug(dev, __func__, __LINE__);
2437 /* We could not acquire the lock, but some other thread may
2438 * wait for it, also. Wake that thread.
2439 */
2440 cv_signal(&dvl->dvl_cv);
2441 return false;
2442 }
2443 dvl->dvl_nlock++;
2444 dvl->dvl_holder = curlwp;
2445 pmflock_debug(dev, __func__, __LINE__);
2446 return true;
2447 }
2448
2449 bool
2450 device_pmf_lock(device_t dev)
2451 {
2452 bool rc;
2453 device_lock_t dvl = device_getlock(dev);
2454
2455 mutex_enter(&dvl->dvl_mtx);
2456 rc = device_pmf_lock1(dev);
2457 mutex_exit(&dvl->dvl_mtx);
2458
2459 return rc;
2460 }
2461
2462 void
2463 device_pmf_unlock(device_t dev)
2464 {
2465 device_lock_t dvl = device_getlock(dev);
2466
2467 KASSERT(dvl->dvl_nlock > 0);
2468 mutex_enter(&dvl->dvl_mtx);
2469 if (--dvl->dvl_nlock == 0)
2470 dvl->dvl_holder = NULL;
2471 cv_signal(&dvl->dvl_cv);
2472 pmflock_debug(dev, __func__, __LINE__);
2473 mutex_exit(&dvl->dvl_mtx);
2474 }
2475
2476 device_lock_t
2477 device_getlock(device_t dev)
2478 {
2479 return &dev->dv_lock;
2480 }
2481
2482 void *
2483 device_pmf_bus_private(device_t dev)
2484 {
2485 return dev->dv_bus_private;
2486 }
2487
2488 bool
2489 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2490 {
2491 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2492 return true;
2493 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2494 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2495 return false;
2496 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2497 dev->dv_bus_suspend != NULL &&
2498 !(*dev->dv_bus_suspend)(dev, qual))
2499 return false;
2500
2501 dev->dv_flags |= DVF_BUS_SUSPENDED;
2502 return true;
2503 }
2504
2505 bool
2506 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2507 {
2508 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2509 return true;
2510 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2511 dev->dv_bus_resume != NULL &&
2512 !(*dev->dv_bus_resume)(dev, qual))
2513 return false;
2514
2515 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2516 return true;
2517 }
2518
2519 bool
2520 device_pmf_bus_shutdown(device_t dev, int how)
2521 {
2522
2523 if (*dev->dv_bus_shutdown != NULL &&
2524 !(*dev->dv_bus_shutdown)(dev, how))
2525 return false;
2526 return true;
2527 }
2528
2529 void
2530 device_pmf_bus_register(device_t dev, void *priv,
2531 bool (*suspend)(device_t, const pmf_qual_t *),
2532 bool (*resume)(device_t, const pmf_qual_t *),
2533 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2534 {
2535 dev->dv_bus_private = priv;
2536 dev->dv_bus_resume = resume;
2537 dev->dv_bus_suspend = suspend;
2538 dev->dv_bus_shutdown = shutdown;
2539 dev->dv_bus_deregister = deregister;
2540 }
2541
2542 void
2543 device_pmf_bus_deregister(device_t dev)
2544 {
2545 if (dev->dv_bus_deregister == NULL)
2546 return;
2547 (*dev->dv_bus_deregister)(dev);
2548 dev->dv_bus_private = NULL;
2549 dev->dv_bus_suspend = NULL;
2550 dev->dv_bus_resume = NULL;
2551 dev->dv_bus_deregister = NULL;
2552 }
2553
2554 void *
2555 device_pmf_class_private(device_t dev)
2556 {
2557 return dev->dv_class_private;
2558 }
2559
2560 bool
2561 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2562 {
2563 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2564 return true;
2565 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2566 dev->dv_class_suspend != NULL &&
2567 !(*dev->dv_class_suspend)(dev, qual))
2568 return false;
2569
2570 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2571 return true;
2572 }
2573
2574 bool
2575 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2576 {
2577 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2578 return true;
2579 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2580 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2581 return false;
2582 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2583 dev->dv_class_resume != NULL &&
2584 !(*dev->dv_class_resume)(dev, qual))
2585 return false;
2586
2587 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2588 return true;
2589 }
2590
2591 void
2592 device_pmf_class_register(device_t dev, void *priv,
2593 bool (*suspend)(device_t, const pmf_qual_t *),
2594 bool (*resume)(device_t, const pmf_qual_t *),
2595 void (*deregister)(device_t))
2596 {
2597 dev->dv_class_private = priv;
2598 dev->dv_class_suspend = suspend;
2599 dev->dv_class_resume = resume;
2600 dev->dv_class_deregister = deregister;
2601 }
2602
2603 void
2604 device_pmf_class_deregister(device_t dev)
2605 {
2606 if (dev->dv_class_deregister == NULL)
2607 return;
2608 (*dev->dv_class_deregister)(dev);
2609 dev->dv_class_private = NULL;
2610 dev->dv_class_suspend = NULL;
2611 dev->dv_class_resume = NULL;
2612 dev->dv_class_deregister = NULL;
2613 }
2614
2615 bool
2616 device_active(device_t dev, devactive_t type)
2617 {
2618 size_t i;
2619
2620 if (dev->dv_activity_count == 0)
2621 return false;
2622
2623 for (i = 0; i < dev->dv_activity_count; ++i) {
2624 if (dev->dv_activity_handlers[i] == NULL)
2625 break;
2626 (*dev->dv_activity_handlers[i])(dev, type);
2627 }
2628
2629 return true;
2630 }
2631
2632 bool
2633 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2634 {
2635 void (**new_handlers)(device_t, devactive_t);
2636 void (**old_handlers)(device_t, devactive_t);
2637 size_t i, old_size, new_size;
2638 int s;
2639
2640 old_handlers = dev->dv_activity_handlers;
2641 old_size = dev->dv_activity_count;
2642
2643 KASSERT(old_size == 0 || old_handlers != NULL);
2644
2645 for (i = 0; i < old_size; ++i) {
2646 KASSERT(old_handlers[i] != handler);
2647 if (old_handlers[i] == NULL) {
2648 old_handlers[i] = handler;
2649 return true;
2650 }
2651 }
2652
2653 new_size = old_size + 4;
2654 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2655
2656 for (i = 0; i < old_size; ++i)
2657 new_handlers[i] = old_handlers[i];
2658 new_handlers[old_size] = handler;
2659 for (i = old_size+1; i < new_size; ++i)
2660 new_handlers[i] = NULL;
2661
2662 s = splhigh();
2663 dev->dv_activity_count = new_size;
2664 dev->dv_activity_handlers = new_handlers;
2665 splx(s);
2666
2667 if (old_size > 0)
2668 kmem_free(old_handlers, sizeof(void * [old_size]));
2669
2670 return true;
2671 }
2672
2673 void
2674 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2675 {
2676 void (**old_handlers)(device_t, devactive_t);
2677 size_t i, old_size;
2678 int s;
2679
2680 old_handlers = dev->dv_activity_handlers;
2681 old_size = dev->dv_activity_count;
2682
2683 for (i = 0; i < old_size; ++i) {
2684 if (old_handlers[i] == handler)
2685 break;
2686 if (old_handlers[i] == NULL)
2687 return; /* XXX panic? */
2688 }
2689
2690 if (i == old_size)
2691 return; /* XXX panic? */
2692
2693 for (; i < old_size - 1; ++i) {
2694 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2695 continue;
2696
2697 if (i == 0) {
2698 s = splhigh();
2699 dev->dv_activity_count = 0;
2700 dev->dv_activity_handlers = NULL;
2701 splx(s);
2702 kmem_free(old_handlers, sizeof(void *[old_size]));
2703 }
2704 return;
2705 }
2706 old_handlers[i] = NULL;
2707 }
2708
2709 /* Return true iff the device_t `dev' exists at generation `gen'. */
2710 static bool
2711 device_exists_at(device_t dv, devgen_t gen)
2712 {
2713 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2714 dv->dv_add_gen <= gen;
2715 }
2716
2717 static bool
2718 deviter_visits(const deviter_t *di, device_t dv)
2719 {
2720 return device_exists_at(dv, di->di_gen);
2721 }
2722
2723 /*
2724 * Device Iteration
2725 *
2726 * deviter_t: a device iterator. Holds state for a "walk" visiting
2727 * each device_t's in the device tree.
2728 *
2729 * deviter_init(di, flags): initialize the device iterator `di'
2730 * to "walk" the device tree. deviter_next(di) will return
2731 * the first device_t in the device tree, or NULL if there are
2732 * no devices.
2733 *
2734 * `flags' is one or more of DEVITER_F_RW, indicating that the
2735 * caller intends to modify the device tree by calling
2736 * config_detach(9) on devices in the order that the iterator
2737 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2738 * nearest the "root" of the device tree to be returned, first;
2739 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2740 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2741 * indicating both that deviter_init() should not respect any
2742 * locks on the device tree, and that deviter_next(di) may run
2743 * in more than one LWP before the walk has finished.
2744 *
2745 * Only one DEVITER_F_RW iterator may be in the device tree at
2746 * once.
2747 *
2748 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2749 *
2750 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2751 * DEVITER_F_LEAVES_FIRST are used in combination.
2752 *
2753 * deviter_first(di, flags): initialize the device iterator `di'
2754 * and return the first device_t in the device tree, or NULL
2755 * if there are no devices. The statement
2756 *
2757 * dv = deviter_first(di);
2758 *
2759 * is shorthand for
2760 *
2761 * deviter_init(di);
2762 * dv = deviter_next(di);
2763 *
2764 * deviter_next(di): return the next device_t in the device tree,
2765 * or NULL if there are no more devices. deviter_next(di)
2766 * is undefined if `di' was not initialized with deviter_init() or
2767 * deviter_first().
2768 *
2769 * deviter_release(di): stops iteration (subsequent calls to
2770 * deviter_next() will return NULL), releases any locks and
2771 * resources held by the device iterator.
2772 *
2773 * Device iteration does not return device_t's in any particular
2774 * order. An iterator will never return the same device_t twice.
2775 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2776 * is called repeatedly on the same `di', it will eventually return
2777 * NULL. It is ok to attach/detach devices during device iteration.
2778 */
2779 void
2780 deviter_init(deviter_t *di, deviter_flags_t flags)
2781 {
2782 device_t dv;
2783
2784 memset(di, 0, sizeof(*di));
2785
2786 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2787 flags |= DEVITER_F_RW;
2788
2789 mutex_enter(&alldevs_mtx);
2790 if ((flags & DEVITER_F_RW) != 0)
2791 alldevs_nwrite++;
2792 else
2793 alldevs_nread++;
2794 di->di_gen = alldevs_gen++;
2795 di->di_flags = flags;
2796
2797 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2798 case DEVITER_F_LEAVES_FIRST:
2799 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2800 if (!deviter_visits(di, dv))
2801 continue;
2802 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2803 }
2804 break;
2805 case DEVITER_F_ROOT_FIRST:
2806 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2807 if (!deviter_visits(di, dv))
2808 continue;
2809 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2810 }
2811 break;
2812 default:
2813 break;
2814 }
2815
2816 deviter_reinit(di);
2817 mutex_exit(&alldevs_mtx);
2818 }
2819
2820 static void
2821 deviter_reinit(deviter_t *di)
2822 {
2823
2824 KASSERT(mutex_owned(&alldevs_mtx));
2825 if ((di->di_flags & DEVITER_F_RW) != 0)
2826 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2827 else
2828 di->di_prev = TAILQ_FIRST(&alldevs);
2829 }
2830
2831 device_t
2832 deviter_first(deviter_t *di, deviter_flags_t flags)
2833 {
2834
2835 deviter_init(di, flags);
2836 return deviter_next(di);
2837 }
2838
2839 static device_t
2840 deviter_next2(deviter_t *di)
2841 {
2842 device_t dv;
2843
2844 KASSERT(mutex_owned(&alldevs_mtx));
2845
2846 dv = di->di_prev;
2847
2848 if (dv == NULL)
2849 return NULL;
2850
2851 if ((di->di_flags & DEVITER_F_RW) != 0)
2852 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2853 else
2854 di->di_prev = TAILQ_NEXT(dv, dv_list);
2855
2856 return dv;
2857 }
2858
2859 static device_t
2860 deviter_next1(deviter_t *di)
2861 {
2862 device_t dv;
2863
2864 KASSERT(mutex_owned(&alldevs_mtx));
2865
2866 do {
2867 dv = deviter_next2(di);
2868 } while (dv != NULL && !deviter_visits(di, dv));
2869
2870 return dv;
2871 }
2872
2873 device_t
2874 deviter_next(deviter_t *di)
2875 {
2876 device_t dv = NULL;
2877
2878 mutex_enter(&alldevs_mtx);
2879 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2880 case 0:
2881 dv = deviter_next1(di);
2882 break;
2883 case DEVITER_F_LEAVES_FIRST:
2884 while (di->di_curdepth >= 0) {
2885 if ((dv = deviter_next1(di)) == NULL) {
2886 di->di_curdepth--;
2887 deviter_reinit(di);
2888 } else if (dv->dv_depth == di->di_curdepth)
2889 break;
2890 }
2891 break;
2892 case DEVITER_F_ROOT_FIRST:
2893 while (di->di_curdepth <= di->di_maxdepth) {
2894 if ((dv = deviter_next1(di)) == NULL) {
2895 di->di_curdepth++;
2896 deviter_reinit(di);
2897 } else if (dv->dv_depth == di->di_curdepth)
2898 break;
2899 }
2900 break;
2901 default:
2902 break;
2903 }
2904 mutex_exit(&alldevs_mtx);
2905
2906 return dv;
2907 }
2908
2909 void
2910 deviter_release(deviter_t *di)
2911 {
2912 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2913
2914 mutex_enter(&alldevs_mtx);
2915 if (rw)
2916 --alldevs_nwrite;
2917 else
2918 --alldevs_nread;
2919 /* XXX wake a garbage-collection thread */
2920 mutex_exit(&alldevs_mtx);
2921 }
2922
2923 const char *
2924 cfdata_ifattr(const struct cfdata *cf)
2925 {
2926 return cf->cf_pspec->cfp_iattr;
2927 }
2928
2929 bool
2930 ifattr_match(const char *snull, const char *t)
2931 {
2932 return (snull == NULL) || strcmp(snull, t) == 0;
2933 }
2934
2935 void
2936 null_childdetached(device_t self, device_t child)
2937 {
2938 /* do nothing */
2939 }
2940
2941 static void
2942 sysctl_detach_setup(struct sysctllog **clog)
2943 {
2944
2945 sysctl_createv(clog, 0, NULL, NULL,
2946 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2947 CTLTYPE_BOOL, "detachall",
2948 SYSCTL_DESCR("Detach all devices at shutdown"),
2949 NULL, 0, &detachall, 0,
2950 CTL_KERN, CTL_CREATE, CTL_EOL);
2951 }
2952