Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.252
      1 /* $NetBSD: subr_autoconf.c,v 1.252 2017/03/20 01:24:06 riastradh Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.252 2017/03/20 01:24:06 riastradh Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/disklabel.h>
     90 #include <sys/conf.h>
     91 #include <sys/kauth.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/mount.h>
    102 #include <sys/namei.h>
    103 #include <sys/unistd.h>
    104 #include <sys/fcntl.h>
    105 #include <sys/lockf.h>
    106 #include <sys/callout.h>
    107 #include <sys/devmon.h>
    108 #include <sys/cpu.h>
    109 #include <sys/sysctl.h>
    110 
    111 #include <sys/disk.h>
    112 
    113 #include <sys/rndsource.h>
    114 
    115 #include <machine/limits.h>
    116 
    117 /*
    118  * Autoconfiguration subroutines.
    119  */
    120 
    121 /*
    122  * Device autoconfiguration timings are mixed into the entropy pool.
    123  */
    124 extern krndsource_t rnd_autoconf_source;
    125 
    126 /*
    127  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    128  * devices and drivers are found via these tables.
    129  */
    130 extern struct cfdata cfdata[];
    131 extern const short cfroots[];
    132 
    133 /*
    134  * List of all cfdriver structures.  We use this to detect duplicates
    135  * when other cfdrivers are loaded.
    136  */
    137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    138 extern struct cfdriver * const cfdriver_list_initial[];
    139 
    140 /*
    141  * Initial list of cfattach's.
    142  */
    143 extern const struct cfattachinit cfattachinit[];
    144 
    145 /*
    146  * List of cfdata tables.  We always have one such list -- the one
    147  * built statically when the kernel was configured.
    148  */
    149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    150 static struct cftable initcftable;
    151 
    152 #define	ROOT ((device_t)NULL)
    153 
    154 struct matchinfo {
    155 	cfsubmatch_t fn;
    156 	device_t parent;
    157 	const int *locs;
    158 	void	*aux;
    159 	struct	cfdata *match;
    160 	int	pri;
    161 };
    162 
    163 struct alldevs_foray {
    164 	int			af_s;
    165 	struct devicelist	af_garbage;
    166 };
    167 
    168 static char *number(char *, int);
    169 static void mapply(struct matchinfo *, cfdata_t);
    170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    171 static void config_devdelete(device_t);
    172 static void config_devunlink(device_t, struct devicelist *);
    173 static void config_makeroom(int, struct cfdriver *);
    174 static void config_devlink(device_t);
    175 static void config_alldevs_enter(struct alldevs_foray *);
    176 static void config_alldevs_exit(struct alldevs_foray *);
    177 static void config_add_attrib_dict(device_t);
    178 
    179 static void config_collect_garbage(struct devicelist *);
    180 static void config_dump_garbage(struct devicelist *);
    181 
    182 static void pmflock_debug(device_t, const char *, int);
    183 
    184 static device_t deviter_next1(deviter_t *);
    185 static void deviter_reinit(deviter_t *);
    186 
    187 struct deferred_config {
    188 	TAILQ_ENTRY(deferred_config) dc_queue;
    189 	device_t dc_dev;
    190 	void (*dc_func)(device_t);
    191 };
    192 
    193 TAILQ_HEAD(deferred_config_head, deferred_config);
    194 
    195 struct deferred_config_head deferred_config_queue =
    196 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    197 struct deferred_config_head interrupt_config_queue =
    198 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    199 int interrupt_config_threads = 8;
    200 struct deferred_config_head mountroot_config_queue =
    201 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    202 int mountroot_config_threads = 2;
    203 static lwp_t **mountroot_config_lwpids;
    204 static size_t mountroot_config_lwpids_size;
    205 static bool root_is_mounted = false;
    206 
    207 static void config_process_deferred(struct deferred_config_head *, device_t);
    208 
    209 /* Hooks to finalize configuration once all real devices have been found. */
    210 struct finalize_hook {
    211 	TAILQ_ENTRY(finalize_hook) f_list;
    212 	int (*f_func)(device_t);
    213 	device_t f_dev;
    214 };
    215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    216 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    217 static int config_finalize_done;
    218 
    219 /* list of all devices */
    220 static struct {
    221 	kmutex_t		lock;
    222 	struct devicelist	list;
    223 	devgen_t		gen;
    224 	int			nread;
    225 	int			nwrite;
    226 	bool			garbage;
    227 } alldevs __cacheline_aligned = {
    228 	.list = TAILQ_HEAD_INITIALIZER(alldevs.list),
    229 	.gen = 1,
    230 	.nread = 0,
    231 	.nwrite = 0,
    232 	.garbage = false,
    233 };
    234 
    235 static int config_pending;		/* semaphore for mountroot */
    236 static kmutex_t config_misc_lock;
    237 static kcondvar_t config_misc_cv;
    238 
    239 static bool detachall = false;
    240 
    241 #define	STREQ(s1, s2)			\
    242 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    243 
    244 static bool config_initialized = false;	/* config_init() has been called. */
    245 
    246 static int config_do_twiddle;
    247 static callout_t config_twiddle_ch;
    248 
    249 static void sysctl_detach_setup(struct sysctllog **);
    250 
    251 int no_devmon_insert(const char *, prop_dictionary_t);
    252 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
    253 
    254 typedef int (*cfdriver_fn)(struct cfdriver *);
    255 static int
    256 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    257 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    258 	const char *style, bool dopanic)
    259 {
    260 	void (*pr)(const char *, ...) __printflike(1, 2) =
    261 	    dopanic ? panic : printf;
    262 	int i, error = 0, e2 __diagused;
    263 
    264 	for (i = 0; cfdriverv[i] != NULL; i++) {
    265 		if ((error = drv_do(cfdriverv[i])) != 0) {
    266 			pr("configure: `%s' driver %s failed: %d",
    267 			    cfdriverv[i]->cd_name, style, error);
    268 			goto bad;
    269 		}
    270 	}
    271 
    272 	KASSERT(error == 0);
    273 	return 0;
    274 
    275  bad:
    276 	printf("\n");
    277 	for (i--; i >= 0; i--) {
    278 		e2 = drv_undo(cfdriverv[i]);
    279 		KASSERT(e2 == 0);
    280 	}
    281 
    282 	return error;
    283 }
    284 
    285 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    286 static int
    287 frob_cfattachvec(const struct cfattachinit *cfattachv,
    288 	cfattach_fn att_do, cfattach_fn att_undo,
    289 	const char *style, bool dopanic)
    290 {
    291 	const struct cfattachinit *cfai = NULL;
    292 	void (*pr)(const char *, ...) __printflike(1, 2) =
    293 	    dopanic ? panic : printf;
    294 	int j = 0, error = 0, e2 __diagused;
    295 
    296 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    297 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    298 			if ((error = att_do(cfai->cfai_name,
    299 			    cfai->cfai_list[j])) != 0) {
    300 				pr("configure: attachment `%s' "
    301 				    "of `%s' driver %s failed: %d",
    302 				    cfai->cfai_list[j]->ca_name,
    303 				    cfai->cfai_name, style, error);
    304 				goto bad;
    305 			}
    306 		}
    307 	}
    308 
    309 	KASSERT(error == 0);
    310 	return 0;
    311 
    312  bad:
    313 	/*
    314 	 * Rollback in reverse order.  dunno if super-important, but
    315 	 * do that anyway.  Although the code looks a little like
    316 	 * someone did a little integration (in the math sense).
    317 	 */
    318 	printf("\n");
    319 	if (cfai) {
    320 		bool last;
    321 
    322 		for (last = false; last == false; ) {
    323 			if (cfai == &cfattachv[0])
    324 				last = true;
    325 			for (j--; j >= 0; j--) {
    326 				e2 = att_undo(cfai->cfai_name,
    327 				    cfai->cfai_list[j]);
    328 				KASSERT(e2 == 0);
    329 			}
    330 			if (!last) {
    331 				cfai--;
    332 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    333 					;
    334 			}
    335 		}
    336 	}
    337 
    338 	return error;
    339 }
    340 
    341 /*
    342  * Initialize the autoconfiguration data structures.  Normally this
    343  * is done by configure(), but some platforms need to do this very
    344  * early (to e.g. initialize the console).
    345  */
    346 void
    347 config_init(void)
    348 {
    349 
    350 	KASSERT(config_initialized == false);
    351 
    352 	mutex_init(&alldevs.lock, MUTEX_DEFAULT, IPL_VM);
    353 
    354 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    355 	cv_init(&config_misc_cv, "cfgmisc");
    356 
    357 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    358 
    359 	frob_cfdrivervec(cfdriver_list_initial,
    360 	    config_cfdriver_attach, NULL, "bootstrap", true);
    361 	frob_cfattachvec(cfattachinit,
    362 	    config_cfattach_attach, NULL, "bootstrap", true);
    363 
    364 	initcftable.ct_cfdata = cfdata;
    365 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    366 
    367 	config_initialized = true;
    368 }
    369 
    370 /*
    371  * Init or fini drivers and attachments.  Either all or none
    372  * are processed (via rollback).  It would be nice if this were
    373  * atomic to outside consumers, but with the current state of
    374  * locking ...
    375  */
    376 int
    377 config_init_component(struct cfdriver * const *cfdriverv,
    378 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    379 {
    380 	int error;
    381 
    382 	if ((error = frob_cfdrivervec(cfdriverv,
    383 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    384 		return error;
    385 	if ((error = frob_cfattachvec(cfattachv,
    386 	    config_cfattach_attach, config_cfattach_detach,
    387 	    "init", false)) != 0) {
    388 		frob_cfdrivervec(cfdriverv,
    389 	            config_cfdriver_detach, NULL, "init rollback", true);
    390 		return error;
    391 	}
    392 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    393 		frob_cfattachvec(cfattachv,
    394 		    config_cfattach_detach, NULL, "init rollback", true);
    395 		frob_cfdrivervec(cfdriverv,
    396 	            config_cfdriver_detach, NULL, "init rollback", true);
    397 		return error;
    398 	}
    399 
    400 	return 0;
    401 }
    402 
    403 int
    404 config_fini_component(struct cfdriver * const *cfdriverv,
    405 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    406 {
    407 	int error;
    408 
    409 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    410 		return error;
    411 	if ((error = frob_cfattachvec(cfattachv,
    412 	    config_cfattach_detach, config_cfattach_attach,
    413 	    "fini", false)) != 0) {
    414 		if (config_cfdata_attach(cfdatav, 0) != 0)
    415 			panic("config_cfdata fini rollback failed");
    416 		return error;
    417 	}
    418 	if ((error = frob_cfdrivervec(cfdriverv,
    419 	    config_cfdriver_detach, config_cfdriver_attach,
    420 	    "fini", false)) != 0) {
    421 		frob_cfattachvec(cfattachv,
    422 	            config_cfattach_attach, NULL, "fini rollback", true);
    423 		if (config_cfdata_attach(cfdatav, 0) != 0)
    424 			panic("config_cfdata fini rollback failed");
    425 		return error;
    426 	}
    427 
    428 	return 0;
    429 }
    430 
    431 void
    432 config_init_mi(void)
    433 {
    434 
    435 	if (!config_initialized)
    436 		config_init();
    437 
    438 	sysctl_detach_setup(NULL);
    439 }
    440 
    441 void
    442 config_deferred(device_t dev)
    443 {
    444 	config_process_deferred(&deferred_config_queue, dev);
    445 	config_process_deferred(&interrupt_config_queue, dev);
    446 	config_process_deferred(&mountroot_config_queue, dev);
    447 }
    448 
    449 static void
    450 config_interrupts_thread(void *cookie)
    451 {
    452 	struct deferred_config *dc;
    453 
    454 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    455 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    456 		(*dc->dc_func)(dc->dc_dev);
    457 		config_pending_decr(dc->dc_dev);
    458 		kmem_free(dc, sizeof(*dc));
    459 	}
    460 	kthread_exit(0);
    461 }
    462 
    463 void
    464 config_create_interruptthreads(void)
    465 {
    466 	int i;
    467 
    468 	for (i = 0; i < interrupt_config_threads; i++) {
    469 		(void)kthread_create(PRI_NONE, 0, NULL,
    470 		    config_interrupts_thread, NULL, NULL, "configintr");
    471 	}
    472 }
    473 
    474 static void
    475 config_mountroot_thread(void *cookie)
    476 {
    477 	struct deferred_config *dc;
    478 
    479 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    480 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    481 		(*dc->dc_func)(dc->dc_dev);
    482 		kmem_free(dc, sizeof(*dc));
    483 	}
    484 	kthread_exit(0);
    485 }
    486 
    487 void
    488 config_create_mountrootthreads(void)
    489 {
    490 	int i;
    491 
    492 	if (!root_is_mounted)
    493 		root_is_mounted = true;
    494 
    495 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
    496 				       mountroot_config_threads;
    497 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
    498 					     KM_NOSLEEP);
    499 	KASSERT(mountroot_config_lwpids);
    500 	for (i = 0; i < mountroot_config_threads; i++) {
    501 		mountroot_config_lwpids[i] = 0;
    502 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
    503 				     config_mountroot_thread, NULL,
    504 				     &mountroot_config_lwpids[i],
    505 				     "configroot");
    506 	}
    507 }
    508 
    509 void
    510 config_finalize_mountroot(void)
    511 {
    512 	int i, error;
    513 
    514 	for (i = 0; i < mountroot_config_threads; i++) {
    515 		if (mountroot_config_lwpids[i] == 0)
    516 			continue;
    517 
    518 		error = kthread_join(mountroot_config_lwpids[i]);
    519 		if (error)
    520 			printf("%s: thread %x joined with error %d\n",
    521 			       __func__, i, error);
    522 	}
    523 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
    524 }
    525 
    526 /*
    527  * Announce device attach/detach to userland listeners.
    528  */
    529 
    530 int
    531 no_devmon_insert(const char *name, prop_dictionary_t p)
    532 {
    533 
    534 	return ENODEV;
    535 }
    536 
    537 static void
    538 devmon_report_device(device_t dev, bool isattach)
    539 {
    540 	prop_dictionary_t ev;
    541 	const char *parent;
    542 	const char *what;
    543 	device_t pdev = device_parent(dev);
    544 
    545 	/* If currently no drvctl device, just return */
    546 	if (devmon_insert_vec == no_devmon_insert)
    547 		return;
    548 
    549 	ev = prop_dictionary_create();
    550 	if (ev == NULL)
    551 		return;
    552 
    553 	what = (isattach ? "device-attach" : "device-detach");
    554 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    555 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
    556 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
    557 		prop_object_release(ev);
    558 		return;
    559 	}
    560 
    561 	if ((*devmon_insert_vec)(what, ev) != 0)
    562 		prop_object_release(ev);
    563 }
    564 
    565 /*
    566  * Add a cfdriver to the system.
    567  */
    568 int
    569 config_cfdriver_attach(struct cfdriver *cd)
    570 {
    571 	struct cfdriver *lcd;
    572 
    573 	/* Make sure this driver isn't already in the system. */
    574 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    575 		if (STREQ(lcd->cd_name, cd->cd_name))
    576 			return EEXIST;
    577 	}
    578 
    579 	LIST_INIT(&cd->cd_attach);
    580 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    581 
    582 	return 0;
    583 }
    584 
    585 /*
    586  * Remove a cfdriver from the system.
    587  */
    588 int
    589 config_cfdriver_detach(struct cfdriver *cd)
    590 {
    591 	struct alldevs_foray af;
    592 	int i, rc = 0;
    593 
    594 	config_alldevs_enter(&af);
    595 	/* Make sure there are no active instances. */
    596 	for (i = 0; i < cd->cd_ndevs; i++) {
    597 		if (cd->cd_devs[i] != NULL) {
    598 			rc = EBUSY;
    599 			break;
    600 		}
    601 	}
    602 	config_alldevs_exit(&af);
    603 
    604 	if (rc != 0)
    605 		return rc;
    606 
    607 	/* ...and no attachments loaded. */
    608 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    609 		return EBUSY;
    610 
    611 	LIST_REMOVE(cd, cd_list);
    612 
    613 	KASSERT(cd->cd_devs == NULL);
    614 
    615 	return 0;
    616 }
    617 
    618 /*
    619  * Look up a cfdriver by name.
    620  */
    621 struct cfdriver *
    622 config_cfdriver_lookup(const char *name)
    623 {
    624 	struct cfdriver *cd;
    625 
    626 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    627 		if (STREQ(cd->cd_name, name))
    628 			return cd;
    629 	}
    630 
    631 	return NULL;
    632 }
    633 
    634 /*
    635  * Add a cfattach to the specified driver.
    636  */
    637 int
    638 config_cfattach_attach(const char *driver, struct cfattach *ca)
    639 {
    640 	struct cfattach *lca;
    641 	struct cfdriver *cd;
    642 
    643 	cd = config_cfdriver_lookup(driver);
    644 	if (cd == NULL)
    645 		return ESRCH;
    646 
    647 	/* Make sure this attachment isn't already on this driver. */
    648 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    649 		if (STREQ(lca->ca_name, ca->ca_name))
    650 			return EEXIST;
    651 	}
    652 
    653 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    654 
    655 	return 0;
    656 }
    657 
    658 /*
    659  * Remove a cfattach from the specified driver.
    660  */
    661 int
    662 config_cfattach_detach(const char *driver, struct cfattach *ca)
    663 {
    664 	struct alldevs_foray af;
    665 	struct cfdriver *cd;
    666 	device_t dev;
    667 	int i, rc = 0;
    668 
    669 	cd = config_cfdriver_lookup(driver);
    670 	if (cd == NULL)
    671 		return ESRCH;
    672 
    673 	config_alldevs_enter(&af);
    674 	/* Make sure there are no active instances. */
    675 	for (i = 0; i < cd->cd_ndevs; i++) {
    676 		if ((dev = cd->cd_devs[i]) == NULL)
    677 			continue;
    678 		if (dev->dv_cfattach == ca) {
    679 			rc = EBUSY;
    680 			break;
    681 		}
    682 	}
    683 	config_alldevs_exit(&af);
    684 
    685 	if (rc != 0)
    686 		return rc;
    687 
    688 	LIST_REMOVE(ca, ca_list);
    689 
    690 	return 0;
    691 }
    692 
    693 /*
    694  * Look up a cfattach by name.
    695  */
    696 static struct cfattach *
    697 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    698 {
    699 	struct cfattach *ca;
    700 
    701 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    702 		if (STREQ(ca->ca_name, atname))
    703 			return ca;
    704 	}
    705 
    706 	return NULL;
    707 }
    708 
    709 /*
    710  * Look up a cfattach by driver/attachment name.
    711  */
    712 struct cfattach *
    713 config_cfattach_lookup(const char *name, const char *atname)
    714 {
    715 	struct cfdriver *cd;
    716 
    717 	cd = config_cfdriver_lookup(name);
    718 	if (cd == NULL)
    719 		return NULL;
    720 
    721 	return config_cfattach_lookup_cd(cd, atname);
    722 }
    723 
    724 /*
    725  * Apply the matching function and choose the best.  This is used
    726  * a few times and we want to keep the code small.
    727  */
    728 static void
    729 mapply(struct matchinfo *m, cfdata_t cf)
    730 {
    731 	int pri;
    732 
    733 	if (m->fn != NULL) {
    734 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    735 	} else {
    736 		pri = config_match(m->parent, cf, m->aux);
    737 	}
    738 	if (pri > m->pri) {
    739 		m->match = cf;
    740 		m->pri = pri;
    741 	}
    742 }
    743 
    744 int
    745 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    746 {
    747 	const struct cfiattrdata *ci;
    748 	const struct cflocdesc *cl;
    749 	int nlocs, i;
    750 
    751 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    752 	KASSERT(ci);
    753 	nlocs = ci->ci_loclen;
    754 	KASSERT(!nlocs || locs);
    755 	for (i = 0; i < nlocs; i++) {
    756 		cl = &ci->ci_locdesc[i];
    757 		if (cl->cld_defaultstr != NULL &&
    758 		    cf->cf_loc[i] == cl->cld_default)
    759 			continue;
    760 		if (cf->cf_loc[i] == locs[i])
    761 			continue;
    762 		return 0;
    763 	}
    764 
    765 	return config_match(parent, cf, aux);
    766 }
    767 
    768 /*
    769  * Helper function: check whether the driver supports the interface attribute
    770  * and return its descriptor structure.
    771  */
    772 static const struct cfiattrdata *
    773 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    774 {
    775 	const struct cfiattrdata * const *cpp;
    776 
    777 	if (cd->cd_attrs == NULL)
    778 		return 0;
    779 
    780 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    781 		if (STREQ((*cpp)->ci_name, ia)) {
    782 			/* Match. */
    783 			return *cpp;
    784 		}
    785 	}
    786 	return 0;
    787 }
    788 
    789 /*
    790  * Lookup an interface attribute description by name.
    791  * If the driver is given, consider only its supported attributes.
    792  */
    793 const struct cfiattrdata *
    794 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    795 {
    796 	const struct cfdriver *d;
    797 	const struct cfiattrdata *ia;
    798 
    799 	if (cd)
    800 		return cfdriver_get_iattr(cd, name);
    801 
    802 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    803 		ia = cfdriver_get_iattr(d, name);
    804 		if (ia)
    805 			return ia;
    806 	}
    807 	return 0;
    808 }
    809 
    810 /*
    811  * Determine if `parent' is a potential parent for a device spec based
    812  * on `cfp'.
    813  */
    814 static int
    815 cfparent_match(const device_t parent, const struct cfparent *cfp)
    816 {
    817 	struct cfdriver *pcd;
    818 
    819 	/* We don't match root nodes here. */
    820 	if (cfp == NULL)
    821 		return 0;
    822 
    823 	pcd = parent->dv_cfdriver;
    824 	KASSERT(pcd != NULL);
    825 
    826 	/*
    827 	 * First, ensure this parent has the correct interface
    828 	 * attribute.
    829 	 */
    830 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    831 		return 0;
    832 
    833 	/*
    834 	 * If no specific parent device instance was specified (i.e.
    835 	 * we're attaching to the attribute only), we're done!
    836 	 */
    837 	if (cfp->cfp_parent == NULL)
    838 		return 1;
    839 
    840 	/*
    841 	 * Check the parent device's name.
    842 	 */
    843 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    844 		return 0;	/* not the same parent */
    845 
    846 	/*
    847 	 * Make sure the unit number matches.
    848 	 */
    849 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    850 	    cfp->cfp_unit == parent->dv_unit)
    851 		return 1;
    852 
    853 	/* Unit numbers don't match. */
    854 	return 0;
    855 }
    856 
    857 /*
    858  * Helper for config_cfdata_attach(): check all devices whether it could be
    859  * parent any attachment in the config data table passed, and rescan.
    860  */
    861 static void
    862 rescan_with_cfdata(const struct cfdata *cf)
    863 {
    864 	device_t d;
    865 	const struct cfdata *cf1;
    866 	deviter_t di;
    867 
    868 
    869 	/*
    870 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    871 	 * the outer loop.
    872 	 */
    873 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    874 
    875 		if (!(d->dv_cfattach->ca_rescan))
    876 			continue;
    877 
    878 		for (cf1 = cf; cf1->cf_name; cf1++) {
    879 
    880 			if (!cfparent_match(d, cf1->cf_pspec))
    881 				continue;
    882 
    883 			(*d->dv_cfattach->ca_rescan)(d,
    884 				cfdata_ifattr(cf1), cf1->cf_loc);
    885 
    886 			config_deferred(d);
    887 		}
    888 	}
    889 	deviter_release(&di);
    890 }
    891 
    892 /*
    893  * Attach a supplemental config data table and rescan potential
    894  * parent devices if required.
    895  */
    896 int
    897 config_cfdata_attach(cfdata_t cf, int scannow)
    898 {
    899 	struct cftable *ct;
    900 
    901 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    902 	ct->ct_cfdata = cf;
    903 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    904 
    905 	if (scannow)
    906 		rescan_with_cfdata(cf);
    907 
    908 	return 0;
    909 }
    910 
    911 /*
    912  * Helper for config_cfdata_detach: check whether a device is
    913  * found through any attachment in the config data table.
    914  */
    915 static int
    916 dev_in_cfdata(device_t d, cfdata_t cf)
    917 {
    918 	const struct cfdata *cf1;
    919 
    920 	for (cf1 = cf; cf1->cf_name; cf1++)
    921 		if (d->dv_cfdata == cf1)
    922 			return 1;
    923 
    924 	return 0;
    925 }
    926 
    927 /*
    928  * Detach a supplemental config data table. Detach all devices found
    929  * through that table (and thus keeping references to it) before.
    930  */
    931 int
    932 config_cfdata_detach(cfdata_t cf)
    933 {
    934 	device_t d;
    935 	int error = 0;
    936 	struct cftable *ct;
    937 	deviter_t di;
    938 
    939 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    940 	     d = deviter_next(&di)) {
    941 		if (!dev_in_cfdata(d, cf))
    942 			continue;
    943 		if ((error = config_detach(d, 0)) != 0)
    944 			break;
    945 	}
    946 	deviter_release(&di);
    947 	if (error) {
    948 		aprint_error_dev(d, "unable to detach instance\n");
    949 		return error;
    950 	}
    951 
    952 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    953 		if (ct->ct_cfdata == cf) {
    954 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    955 			kmem_free(ct, sizeof(*ct));
    956 			return 0;
    957 		}
    958 	}
    959 
    960 	/* not found -- shouldn't happen */
    961 	return EINVAL;
    962 }
    963 
    964 /*
    965  * Invoke the "match" routine for a cfdata entry on behalf of
    966  * an external caller, usually a "submatch" routine.
    967  */
    968 int
    969 config_match(device_t parent, cfdata_t cf, void *aux)
    970 {
    971 	struct cfattach *ca;
    972 
    973 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    974 	if (ca == NULL) {
    975 		/* No attachment for this entry, oh well. */
    976 		return 0;
    977 	}
    978 
    979 	return (*ca->ca_match)(parent, cf, aux);
    980 }
    981 
    982 /*
    983  * Iterate over all potential children of some device, calling the given
    984  * function (default being the child's match function) for each one.
    985  * Nonzero returns are matches; the highest value returned is considered
    986  * the best match.  Return the `found child' if we got a match, or NULL
    987  * otherwise.  The `aux' pointer is simply passed on through.
    988  *
    989  * Note that this function is designed so that it can be used to apply
    990  * an arbitrary function to all potential children (its return value
    991  * can be ignored).
    992  */
    993 cfdata_t
    994 config_search_loc(cfsubmatch_t fn, device_t parent,
    995 		  const char *ifattr, const int *locs, void *aux)
    996 {
    997 	struct cftable *ct;
    998 	cfdata_t cf;
    999 	struct matchinfo m;
   1000 
   1001 	KASSERT(config_initialized);
   1002 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
   1003 
   1004 	m.fn = fn;
   1005 	m.parent = parent;
   1006 	m.locs = locs;
   1007 	m.aux = aux;
   1008 	m.match = NULL;
   1009 	m.pri = 0;
   1010 
   1011 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1012 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1013 
   1014 			/* We don't match root nodes here. */
   1015 			if (!cf->cf_pspec)
   1016 				continue;
   1017 
   1018 			/*
   1019 			 * Skip cf if no longer eligible, otherwise scan
   1020 			 * through parents for one matching `parent', and
   1021 			 * try match function.
   1022 			 */
   1023 			if (cf->cf_fstate == FSTATE_FOUND)
   1024 				continue;
   1025 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
   1026 			    cf->cf_fstate == FSTATE_DSTAR)
   1027 				continue;
   1028 
   1029 			/*
   1030 			 * If an interface attribute was specified,
   1031 			 * consider only children which attach to
   1032 			 * that attribute.
   1033 			 */
   1034 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
   1035 				continue;
   1036 
   1037 			if (cfparent_match(parent, cf->cf_pspec))
   1038 				mapply(&m, cf);
   1039 		}
   1040 	}
   1041 	return m.match;
   1042 }
   1043 
   1044 cfdata_t
   1045 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
   1046     void *aux)
   1047 {
   1048 
   1049 	return config_search_loc(fn, parent, ifattr, NULL, aux);
   1050 }
   1051 
   1052 /*
   1053  * Find the given root device.
   1054  * This is much like config_search, but there is no parent.
   1055  * Don't bother with multiple cfdata tables; the root node
   1056  * must always be in the initial table.
   1057  */
   1058 cfdata_t
   1059 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1060 {
   1061 	cfdata_t cf;
   1062 	const short *p;
   1063 	struct matchinfo m;
   1064 
   1065 	m.fn = fn;
   1066 	m.parent = ROOT;
   1067 	m.aux = aux;
   1068 	m.match = NULL;
   1069 	m.pri = 0;
   1070 	m.locs = 0;
   1071 	/*
   1072 	 * Look at root entries for matching name.  We do not bother
   1073 	 * with found-state here since only one root should ever be
   1074 	 * searched (and it must be done first).
   1075 	 */
   1076 	for (p = cfroots; *p >= 0; p++) {
   1077 		cf = &cfdata[*p];
   1078 		if (strcmp(cf->cf_name, rootname) == 0)
   1079 			mapply(&m, cf);
   1080 	}
   1081 	return m.match;
   1082 }
   1083 
   1084 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1085 
   1086 /*
   1087  * The given `aux' argument describes a device that has been found
   1088  * on the given parent, but not necessarily configured.  Locate the
   1089  * configuration data for that device (using the submatch function
   1090  * provided, or using candidates' cd_match configuration driver
   1091  * functions) and attach it, and return its device_t.  If the device was
   1092  * not configured, call the given `print' function and return NULL.
   1093  */
   1094 device_t
   1095 config_found_sm_loc(device_t parent,
   1096 		const char *ifattr, const int *locs, void *aux,
   1097 		cfprint_t print, cfsubmatch_t submatch)
   1098 {
   1099 	cfdata_t cf;
   1100 
   1101 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
   1102 		return(config_attach_loc(parent, cf, locs, aux, print));
   1103 	if (print) {
   1104 		if (config_do_twiddle && cold)
   1105 			twiddle();
   1106 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1107 	}
   1108 
   1109 	/*
   1110 	 * This has the effect of mixing in a single timestamp to the
   1111 	 * entropy pool.  Experiments indicate the estimator will almost
   1112 	 * always attribute one bit of entropy to this sample; analysis
   1113 	 * of device attach/detach timestamps on FreeBSD indicates 4
   1114 	 * bits of entropy/sample so this seems appropriately conservative.
   1115 	 */
   1116 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1117 	return NULL;
   1118 }
   1119 
   1120 device_t
   1121 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1122     cfprint_t print)
   1123 {
   1124 
   1125 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
   1126 }
   1127 
   1128 device_t
   1129 config_found(device_t parent, void *aux, cfprint_t print)
   1130 {
   1131 
   1132 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
   1133 }
   1134 
   1135 /*
   1136  * As above, but for root devices.
   1137  */
   1138 device_t
   1139 config_rootfound(const char *rootname, void *aux)
   1140 {
   1141 	cfdata_t cf;
   1142 
   1143 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1144 		return config_attach(ROOT, cf, aux, NULL);
   1145 	aprint_error("root device %s not configured\n", rootname);
   1146 	return NULL;
   1147 }
   1148 
   1149 /* just like sprintf(buf, "%d") except that it works from the end */
   1150 static char *
   1151 number(char *ep, int n)
   1152 {
   1153 
   1154 	*--ep = 0;
   1155 	while (n >= 10) {
   1156 		*--ep = (n % 10) + '0';
   1157 		n /= 10;
   1158 	}
   1159 	*--ep = n + '0';
   1160 	return ep;
   1161 }
   1162 
   1163 /*
   1164  * Expand the size of the cd_devs array if necessary.
   1165  *
   1166  * The caller must hold alldevs.lock. config_makeroom() may release and
   1167  * re-acquire alldevs.lock, so callers should re-check conditions such
   1168  * as alldevs.nwrite == 0 and alldevs.nread == 0 when config_makeroom()
   1169  * returns.
   1170  */
   1171 static void
   1172 config_makeroom(int n, struct cfdriver *cd)
   1173 {
   1174 	int ondevs, nndevs;
   1175 	device_t *osp, *nsp;
   1176 
   1177 	KASSERT(mutex_owned(&alldevs.lock));
   1178 	alldevs.nwrite++;
   1179 
   1180 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
   1181 		;
   1182 
   1183 	while (n >= cd->cd_ndevs) {
   1184 		/*
   1185 		 * Need to expand the array.
   1186 		 */
   1187 		ondevs = cd->cd_ndevs;
   1188 		osp = cd->cd_devs;
   1189 
   1190 		/*
   1191 		 * Release alldevs.lock around allocation, which may
   1192 		 * sleep.
   1193 		 */
   1194 		mutex_exit(&alldevs.lock);
   1195 		nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
   1196 		if (nsp == NULL)
   1197 			panic("%s: could not expand cd_devs", __func__);
   1198 		mutex_enter(&alldevs.lock);
   1199 
   1200 		/*
   1201 		 * If another thread moved the array while we did
   1202 		 * not hold alldevs.lock, try again.
   1203 		 */
   1204 		if (cd->cd_devs != osp) {
   1205 			mutex_exit(&alldevs.lock);
   1206 			kmem_free(nsp, sizeof(device_t[nndevs]));
   1207 			mutex_enter(&alldevs.lock);
   1208 			continue;
   1209 		}
   1210 
   1211 		memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
   1212 		if (ondevs != 0)
   1213 			memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
   1214 
   1215 		cd->cd_ndevs = nndevs;
   1216 		cd->cd_devs = nsp;
   1217 		if (ondevs != 0) {
   1218 			mutex_exit(&alldevs.lock);
   1219 			kmem_free(osp, sizeof(device_t[ondevs]));
   1220 			mutex_enter(&alldevs.lock);
   1221 		}
   1222 	}
   1223 	KASSERT(mutex_owned(&alldevs.lock));
   1224 	alldevs.nwrite--;
   1225 }
   1226 
   1227 /*
   1228  * Put dev into the devices list.
   1229  */
   1230 static void
   1231 config_devlink(device_t dev)
   1232 {
   1233 
   1234 	mutex_enter(&alldevs.lock);
   1235 
   1236 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1237 
   1238 	dev->dv_add_gen = alldevs.gen;
   1239 	/* It is safe to add a device to the tail of the list while
   1240 	 * readers and writers are in the list.
   1241 	 */
   1242 	TAILQ_INSERT_TAIL(&alldevs.list, dev, dv_list);
   1243 	mutex_exit(&alldevs.lock);
   1244 }
   1245 
   1246 static void
   1247 config_devfree(device_t dev)
   1248 {
   1249 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
   1250 
   1251 	if (dev->dv_cfattach->ca_devsize > 0)
   1252 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1253 	if (priv)
   1254 		kmem_free(dev, sizeof(*dev));
   1255 }
   1256 
   1257 /*
   1258  * Caller must hold alldevs.lock.
   1259  */
   1260 static void
   1261 config_devunlink(device_t dev, struct devicelist *garbage)
   1262 {
   1263 	struct device_garbage *dg = &dev->dv_garbage;
   1264 	cfdriver_t cd = device_cfdriver(dev);
   1265 	int i;
   1266 
   1267 	KASSERT(mutex_owned(&alldevs.lock));
   1268 
   1269  	/* Unlink from device list.  Link to garbage list. */
   1270 	TAILQ_REMOVE(&alldevs.list, dev, dv_list);
   1271 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1272 
   1273 	/* Remove from cfdriver's array. */
   1274 	cd->cd_devs[dev->dv_unit] = NULL;
   1275 
   1276 	/*
   1277 	 * If the device now has no units in use, unlink its softc array.
   1278 	 */
   1279 	for (i = 0; i < cd->cd_ndevs; i++) {
   1280 		if (cd->cd_devs[i] != NULL)
   1281 			break;
   1282 	}
   1283 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1284 	if (i == cd->cd_ndevs) {
   1285 		dg->dg_ndevs = cd->cd_ndevs;
   1286 		dg->dg_devs = cd->cd_devs;
   1287 		cd->cd_devs = NULL;
   1288 		cd->cd_ndevs = 0;
   1289 	}
   1290 }
   1291 
   1292 static void
   1293 config_devdelete(device_t dev)
   1294 {
   1295 	struct device_garbage *dg = &dev->dv_garbage;
   1296 	device_lock_t dvl = device_getlock(dev);
   1297 
   1298 	if (dg->dg_devs != NULL)
   1299 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
   1300 
   1301 	cv_destroy(&dvl->dvl_cv);
   1302 	mutex_destroy(&dvl->dvl_mtx);
   1303 
   1304 	KASSERT(dev->dv_properties != NULL);
   1305 	prop_object_release(dev->dv_properties);
   1306 
   1307 	if (dev->dv_activity_handlers)
   1308 		panic("%s with registered handlers", __func__);
   1309 
   1310 	if (dev->dv_locators) {
   1311 		size_t amount = *--dev->dv_locators;
   1312 		kmem_free(dev->dv_locators, amount);
   1313 	}
   1314 
   1315 	config_devfree(dev);
   1316 }
   1317 
   1318 static int
   1319 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1320 {
   1321 	int unit;
   1322 
   1323 	if (cf->cf_fstate == FSTATE_STAR) {
   1324 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1325 			if (cd->cd_devs[unit] == NULL)
   1326 				break;
   1327 		/*
   1328 		 * unit is now the unit of the first NULL device pointer,
   1329 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1330 		 */
   1331 	} else {
   1332 		unit = cf->cf_unit;
   1333 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1334 			unit = -1;
   1335 	}
   1336 	return unit;
   1337 }
   1338 
   1339 static int
   1340 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1341 {
   1342 	struct alldevs_foray af;
   1343 	int unit;
   1344 
   1345 	config_alldevs_enter(&af);
   1346 	for (;;) {
   1347 		unit = config_unit_nextfree(cd, cf);
   1348 		if (unit == -1)
   1349 			break;
   1350 		if (unit < cd->cd_ndevs) {
   1351 			cd->cd_devs[unit] = dev;
   1352 			dev->dv_unit = unit;
   1353 			break;
   1354 		}
   1355 		config_makeroom(unit, cd);
   1356 	}
   1357 	config_alldevs_exit(&af);
   1358 
   1359 	return unit;
   1360 }
   1361 
   1362 static device_t
   1363 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1364 {
   1365 	cfdriver_t cd;
   1366 	cfattach_t ca;
   1367 	size_t lname, lunit;
   1368 	const char *xunit;
   1369 	int myunit;
   1370 	char num[10];
   1371 	device_t dev;
   1372 	void *dev_private;
   1373 	const struct cfiattrdata *ia;
   1374 	device_lock_t dvl;
   1375 
   1376 	cd = config_cfdriver_lookup(cf->cf_name);
   1377 	if (cd == NULL)
   1378 		return NULL;
   1379 
   1380 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1381 	if (ca == NULL)
   1382 		return NULL;
   1383 
   1384 	/* get memory for all device vars */
   1385 	KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
   1386 	    || ca->ca_devsize >= sizeof(struct device),
   1387 	    "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
   1388 	    sizeof(struct device));
   1389 	if (ca->ca_devsize > 0) {
   1390 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1391 		if (dev_private == NULL)
   1392 			panic("config_devalloc: memory allocation for device "
   1393 			    "softc failed");
   1394 	} else {
   1395 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1396 		dev_private = NULL;
   1397 	}
   1398 
   1399 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1400 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1401 	} else {
   1402 		dev = dev_private;
   1403 #ifdef DIAGNOSTIC
   1404 		printf("%s has not been converted to device_t\n", cd->cd_name);
   1405 #endif
   1406 	}
   1407 	if (dev == NULL)
   1408 		panic("config_devalloc: memory allocation for device_t failed");
   1409 
   1410 	dev->dv_class = cd->cd_class;
   1411 	dev->dv_cfdata = cf;
   1412 	dev->dv_cfdriver = cd;
   1413 	dev->dv_cfattach = ca;
   1414 	dev->dv_activity_count = 0;
   1415 	dev->dv_activity_handlers = NULL;
   1416 	dev->dv_private = dev_private;
   1417 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1418 
   1419 	myunit = config_unit_alloc(dev, cd, cf);
   1420 	if (myunit == -1) {
   1421 		config_devfree(dev);
   1422 		return NULL;
   1423 	}
   1424 
   1425 	/* compute length of name and decimal expansion of unit number */
   1426 	lname = strlen(cd->cd_name);
   1427 	xunit = number(&num[sizeof(num)], myunit);
   1428 	lunit = &num[sizeof(num)] - xunit;
   1429 	if (lname + lunit > sizeof(dev->dv_xname))
   1430 		panic("config_devalloc: device name too long");
   1431 
   1432 	dvl = device_getlock(dev);
   1433 
   1434 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1435 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1436 
   1437 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1438 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1439 	dev->dv_parent = parent;
   1440 	if (parent != NULL)
   1441 		dev->dv_depth = parent->dv_depth + 1;
   1442 	else
   1443 		dev->dv_depth = 0;
   1444 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1445 	if (locs) {
   1446 		KASSERT(parent); /* no locators at root */
   1447 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1448 		dev->dv_locators =
   1449 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
   1450 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
   1451 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
   1452 	}
   1453 	dev->dv_properties = prop_dictionary_create();
   1454 	KASSERT(dev->dv_properties != NULL);
   1455 
   1456 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
   1457 	    "device-driver", dev->dv_cfdriver->cd_name);
   1458 	prop_dictionary_set_uint16(dev->dv_properties,
   1459 	    "device-unit", dev->dv_unit);
   1460 	if (parent != NULL) {
   1461 		prop_dictionary_set_cstring(dev->dv_properties,
   1462 		    "device-parent", device_xname(parent));
   1463 	}
   1464 
   1465 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1466 		config_add_attrib_dict(dev);
   1467 
   1468 	return dev;
   1469 }
   1470 
   1471 /*
   1472  * Create an array of device attach attributes and add it
   1473  * to the device's dv_properties dictionary.
   1474  *
   1475  * <key>interface-attributes</key>
   1476  * <array>
   1477  *    <dict>
   1478  *       <key>attribute-name</key>
   1479  *       <string>foo</string>
   1480  *       <key>locators</key>
   1481  *       <array>
   1482  *          <dict>
   1483  *             <key>loc-name</key>
   1484  *             <string>foo-loc1</string>
   1485  *          </dict>
   1486  *          <dict>
   1487  *             <key>loc-name</key>
   1488  *             <string>foo-loc2</string>
   1489  *             <key>default</key>
   1490  *             <string>foo-loc2-default</string>
   1491  *          </dict>
   1492  *          ...
   1493  *       </array>
   1494  *    </dict>
   1495  *    ...
   1496  * </array>
   1497  */
   1498 
   1499 static void
   1500 config_add_attrib_dict(device_t dev)
   1501 {
   1502 	int i, j;
   1503 	const struct cfiattrdata *ci;
   1504 	prop_dictionary_t attr_dict, loc_dict;
   1505 	prop_array_t attr_array, loc_array;
   1506 
   1507 	if ((attr_array = prop_array_create()) == NULL)
   1508 		return;
   1509 
   1510 	for (i = 0; ; i++) {
   1511 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1512 			break;
   1513 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1514 			break;
   1515 		prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
   1516 		    ci->ci_name);
   1517 
   1518 		/* Create an array of the locator names and defaults */
   1519 
   1520 		if (ci->ci_loclen != 0 &&
   1521 		    (loc_array = prop_array_create()) != NULL) {
   1522 			for (j = 0; j < ci->ci_loclen; j++) {
   1523 				loc_dict = prop_dictionary_create();
   1524 				if (loc_dict == NULL)
   1525 					continue;
   1526 				prop_dictionary_set_cstring_nocopy(loc_dict,
   1527 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1528 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1529 					prop_dictionary_set_cstring_nocopy(
   1530 					    loc_dict, "default",
   1531 					    ci->ci_locdesc[j].cld_defaultstr);
   1532 				prop_array_set(loc_array, j, loc_dict);
   1533 				prop_object_release(loc_dict);
   1534 			}
   1535 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1536 			    loc_array);
   1537 		}
   1538 		prop_array_add(attr_array, attr_dict);
   1539 		prop_object_release(attr_dict);
   1540 	}
   1541 	if (i == 0)
   1542 		prop_object_release(attr_array);
   1543 	else
   1544 		prop_dictionary_set_and_rel(dev->dv_properties,
   1545 		    "interface-attributes", attr_array);
   1546 
   1547 	return;
   1548 }
   1549 
   1550 /*
   1551  * Attach a found device.
   1552  */
   1553 device_t
   1554 config_attach_loc(device_t parent, cfdata_t cf,
   1555 	const int *locs, void *aux, cfprint_t print)
   1556 {
   1557 	device_t dev;
   1558 	struct cftable *ct;
   1559 	const char *drvname;
   1560 
   1561 	dev = config_devalloc(parent, cf, locs);
   1562 	if (!dev)
   1563 		panic("config_attach: allocation of device softc failed");
   1564 
   1565 	/* XXX redundant - see below? */
   1566 	if (cf->cf_fstate != FSTATE_STAR) {
   1567 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1568 		cf->cf_fstate = FSTATE_FOUND;
   1569 	}
   1570 
   1571 	config_devlink(dev);
   1572 
   1573 	if (config_do_twiddle && cold)
   1574 		twiddle();
   1575 	else
   1576 		aprint_naive("Found ");
   1577 	/*
   1578 	 * We want the next two printfs for normal, verbose, and quiet,
   1579 	 * but not silent (in which case, we're twiddling, instead).
   1580 	 */
   1581 	if (parent == ROOT) {
   1582 		aprint_naive("%s (root)", device_xname(dev));
   1583 		aprint_normal("%s (root)", device_xname(dev));
   1584 	} else {
   1585 		aprint_naive("%s at %s", device_xname(dev),
   1586 		    device_xname(parent));
   1587 		aprint_normal("%s at %s", device_xname(dev),
   1588 		    device_xname(parent));
   1589 		if (print)
   1590 			(void) (*print)(aux, NULL);
   1591 	}
   1592 
   1593 	/*
   1594 	 * Before attaching, clobber any unfound devices that are
   1595 	 * otherwise identical.
   1596 	 * XXX code above is redundant?
   1597 	 */
   1598 	drvname = dev->dv_cfdriver->cd_name;
   1599 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1600 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1601 			if (STREQ(cf->cf_name, drvname) &&
   1602 			    cf->cf_unit == dev->dv_unit) {
   1603 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1604 					cf->cf_fstate = FSTATE_FOUND;
   1605 			}
   1606 		}
   1607 	}
   1608 	device_register(dev, aux);
   1609 
   1610 	/* Let userland know */
   1611 	devmon_report_device(dev, true);
   1612 
   1613 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1614 
   1615 	if (!device_pmf_is_registered(dev))
   1616 		aprint_debug_dev(dev, "WARNING: power management not "
   1617 		    "supported\n");
   1618 
   1619 	config_process_deferred(&deferred_config_queue, dev);
   1620 
   1621 	device_register_post_config(dev, aux);
   1622 	return dev;
   1623 }
   1624 
   1625 device_t
   1626 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1627 {
   1628 
   1629 	return config_attach_loc(parent, cf, NULL, aux, print);
   1630 }
   1631 
   1632 /*
   1633  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1634  * way are silently inserted into the device tree, and their children
   1635  * attached.
   1636  *
   1637  * Note that because pseudo-devices are attached silently, any information
   1638  * the attach routine wishes to print should be prefixed with the device
   1639  * name by the attach routine.
   1640  */
   1641 device_t
   1642 config_attach_pseudo(cfdata_t cf)
   1643 {
   1644 	device_t dev;
   1645 
   1646 	dev = config_devalloc(ROOT, cf, NULL);
   1647 	if (!dev)
   1648 		return NULL;
   1649 
   1650 	/* XXX mark busy in cfdata */
   1651 
   1652 	if (cf->cf_fstate != FSTATE_STAR) {
   1653 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1654 		cf->cf_fstate = FSTATE_FOUND;
   1655 	}
   1656 
   1657 	config_devlink(dev);
   1658 
   1659 #if 0	/* XXXJRT not yet */
   1660 	device_register(dev, NULL);	/* like a root node */
   1661 #endif
   1662 
   1663 	/* Let userland know */
   1664 	devmon_report_device(dev, true);
   1665 
   1666 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1667 
   1668 	config_process_deferred(&deferred_config_queue, dev);
   1669 	return dev;
   1670 }
   1671 
   1672 /*
   1673  * Caller must hold alldevs.lock.
   1674  */
   1675 static void
   1676 config_collect_garbage(struct devicelist *garbage)
   1677 {
   1678 	device_t dv;
   1679 
   1680 	KASSERT(!cpu_intr_p());
   1681 	KASSERT(!cpu_softintr_p());
   1682 	KASSERT(mutex_owned(&alldevs.lock));
   1683 
   1684 	while (alldevs.nwrite == 0 && alldevs.nread == 0 && alldevs.garbage) {
   1685 		TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
   1686 			if (dv->dv_del_gen != 0)
   1687 				break;
   1688 		}
   1689 		if (dv == NULL) {
   1690 			alldevs.garbage = false;
   1691 			break;
   1692 		}
   1693 		config_devunlink(dv, garbage);
   1694 	}
   1695 	KASSERT(mutex_owned(&alldevs.lock));
   1696 }
   1697 
   1698 static void
   1699 config_dump_garbage(struct devicelist *garbage)
   1700 {
   1701 	device_t dv;
   1702 
   1703 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1704 		TAILQ_REMOVE(garbage, dv, dv_list);
   1705 		config_devdelete(dv);
   1706 	}
   1707 }
   1708 
   1709 /*
   1710  * Detach a device.  Optionally forced (e.g. because of hardware
   1711  * removal) and quiet.  Returns zero if successful, non-zero
   1712  * (an error code) otherwise.
   1713  *
   1714  * Note that this code wants to be run from a process context, so
   1715  * that the detach can sleep to allow processes which have a device
   1716  * open to run and unwind their stacks.
   1717  */
   1718 int
   1719 config_detach(device_t dev, int flags)
   1720 {
   1721 	struct alldevs_foray af;
   1722 	struct cftable *ct;
   1723 	cfdata_t cf;
   1724 	const struct cfattach *ca;
   1725 	struct cfdriver *cd;
   1726 	device_t d __diagused;
   1727 	int rv = 0;
   1728 
   1729 	cf = dev->dv_cfdata;
   1730 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
   1731 		cf->cf_fstate == FSTATE_STAR),
   1732 	    "config_detach: %s: bad device fstate: %d",
   1733 	    device_xname(dev), cf ? cf->cf_fstate : -1);
   1734 
   1735 	cd = dev->dv_cfdriver;
   1736 	KASSERT(cd != NULL);
   1737 
   1738 	ca = dev->dv_cfattach;
   1739 	KASSERT(ca != NULL);
   1740 
   1741 	mutex_enter(&alldevs.lock);
   1742 	if (dev->dv_del_gen != 0) {
   1743 		mutex_exit(&alldevs.lock);
   1744 #ifdef DIAGNOSTIC
   1745 		printf("%s: %s is already detached\n", __func__,
   1746 		    device_xname(dev));
   1747 #endif /* DIAGNOSTIC */
   1748 		return ENOENT;
   1749 	}
   1750 	alldevs.nwrite++;
   1751 	mutex_exit(&alldevs.lock);
   1752 
   1753 	if (!detachall &&
   1754 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1755 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1756 		rv = EOPNOTSUPP;
   1757 	} else if (ca->ca_detach != NULL) {
   1758 		rv = (*ca->ca_detach)(dev, flags);
   1759 	} else
   1760 		rv = EOPNOTSUPP;
   1761 
   1762 	/*
   1763 	 * If it was not possible to detach the device, then we either
   1764 	 * panic() (for the forced but failed case), or return an error.
   1765 	 *
   1766 	 * If it was possible to detach the device, ensure that the
   1767 	 * device is deactivated.
   1768 	 */
   1769 	if (rv == 0)
   1770 		dev->dv_flags &= ~DVF_ACTIVE;
   1771 	else if ((flags & DETACH_FORCE) == 0)
   1772 		goto out;
   1773 	else {
   1774 		panic("config_detach: forced detach of %s failed (%d)",
   1775 		    device_xname(dev), rv);
   1776 	}
   1777 
   1778 	/*
   1779 	 * The device has now been successfully detached.
   1780 	 */
   1781 
   1782 	/* Let userland know */
   1783 	devmon_report_device(dev, false);
   1784 
   1785 #ifdef DIAGNOSTIC
   1786 	/*
   1787 	 * Sanity: If you're successfully detached, you should have no
   1788 	 * children.  (Note that because children must be attached
   1789 	 * after parents, we only need to search the latter part of
   1790 	 * the list.)
   1791 	 */
   1792 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1793 	    d = TAILQ_NEXT(d, dv_list)) {
   1794 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1795 			printf("config_detach: detached device %s"
   1796 			    " has children %s\n", device_xname(dev),
   1797 			    device_xname(d));
   1798 			panic("config_detach");
   1799 		}
   1800 	}
   1801 #endif
   1802 
   1803 	/* notify the parent that the child is gone */
   1804 	if (dev->dv_parent) {
   1805 		device_t p = dev->dv_parent;
   1806 		if (p->dv_cfattach->ca_childdetached)
   1807 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1808 	}
   1809 
   1810 	/*
   1811 	 * Mark cfdata to show that the unit can be reused, if possible.
   1812 	 */
   1813 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1814 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1815 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1816 				if (cf->cf_fstate == FSTATE_FOUND &&
   1817 				    cf->cf_unit == dev->dv_unit)
   1818 					cf->cf_fstate = FSTATE_NOTFOUND;
   1819 			}
   1820 		}
   1821 	}
   1822 
   1823 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1824 		aprint_normal_dev(dev, "detached\n");
   1825 
   1826 out:
   1827 	config_alldevs_enter(&af);
   1828 	KASSERT(alldevs.nwrite != 0);
   1829 	--alldevs.nwrite;
   1830 	if (rv == 0 && dev->dv_del_gen == 0) {
   1831 		if (alldevs.nwrite == 0 && alldevs.nread == 0)
   1832 			config_devunlink(dev, &af.af_garbage);
   1833 		else {
   1834 			dev->dv_del_gen = alldevs.gen;
   1835 			alldevs.garbage = true;
   1836 		}
   1837 	}
   1838 	config_alldevs_exit(&af);
   1839 
   1840 	return rv;
   1841 }
   1842 
   1843 int
   1844 config_detach_children(device_t parent, int flags)
   1845 {
   1846 	device_t dv;
   1847 	deviter_t di;
   1848 	int error = 0;
   1849 
   1850 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1851 	     dv = deviter_next(&di)) {
   1852 		if (device_parent(dv) != parent)
   1853 			continue;
   1854 		if ((error = config_detach(dv, flags)) != 0)
   1855 			break;
   1856 	}
   1857 	deviter_release(&di);
   1858 	return error;
   1859 }
   1860 
   1861 device_t
   1862 shutdown_first(struct shutdown_state *s)
   1863 {
   1864 	if (!s->initialized) {
   1865 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1866 		s->initialized = true;
   1867 	}
   1868 	return shutdown_next(s);
   1869 }
   1870 
   1871 device_t
   1872 shutdown_next(struct shutdown_state *s)
   1873 {
   1874 	device_t dv;
   1875 
   1876 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1877 		;
   1878 
   1879 	if (dv == NULL)
   1880 		s->initialized = false;
   1881 
   1882 	return dv;
   1883 }
   1884 
   1885 bool
   1886 config_detach_all(int how)
   1887 {
   1888 	static struct shutdown_state s;
   1889 	device_t curdev;
   1890 	bool progress = false;
   1891 	int flags;
   1892 
   1893 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
   1894 		return false;
   1895 
   1896 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
   1897 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
   1898 	else
   1899 		flags = DETACH_SHUTDOWN;
   1900 
   1901 	for (curdev = shutdown_first(&s); curdev != NULL;
   1902 	     curdev = shutdown_next(&s)) {
   1903 		aprint_debug(" detaching %s, ", device_xname(curdev));
   1904 		if (config_detach(curdev, flags) == 0) {
   1905 			progress = true;
   1906 			aprint_debug("success.");
   1907 		} else
   1908 			aprint_debug("failed.");
   1909 	}
   1910 	return progress;
   1911 }
   1912 
   1913 static bool
   1914 device_is_ancestor_of(device_t ancestor, device_t descendant)
   1915 {
   1916 	device_t dv;
   1917 
   1918 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   1919 		if (device_parent(dv) == ancestor)
   1920 			return true;
   1921 	}
   1922 	return false;
   1923 }
   1924 
   1925 int
   1926 config_deactivate(device_t dev)
   1927 {
   1928 	deviter_t di;
   1929 	const struct cfattach *ca;
   1930 	device_t descendant;
   1931 	int s, rv = 0, oflags;
   1932 
   1933 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   1934 	     descendant != NULL;
   1935 	     descendant = deviter_next(&di)) {
   1936 		if (dev != descendant &&
   1937 		    !device_is_ancestor_of(dev, descendant))
   1938 			continue;
   1939 
   1940 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   1941 			continue;
   1942 
   1943 		ca = descendant->dv_cfattach;
   1944 		oflags = descendant->dv_flags;
   1945 
   1946 		descendant->dv_flags &= ~DVF_ACTIVE;
   1947 		if (ca->ca_activate == NULL)
   1948 			continue;
   1949 		s = splhigh();
   1950 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   1951 		splx(s);
   1952 		if (rv != 0)
   1953 			descendant->dv_flags = oflags;
   1954 	}
   1955 	deviter_release(&di);
   1956 	return rv;
   1957 }
   1958 
   1959 /*
   1960  * Defer the configuration of the specified device until all
   1961  * of its parent's devices have been attached.
   1962  */
   1963 void
   1964 config_defer(device_t dev, void (*func)(device_t))
   1965 {
   1966 	struct deferred_config *dc;
   1967 
   1968 	if (dev->dv_parent == NULL)
   1969 		panic("config_defer: can't defer config of a root device");
   1970 
   1971 #ifdef DIAGNOSTIC
   1972 	TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
   1973 		if (dc->dc_dev == dev)
   1974 			panic("config_defer: deferred twice");
   1975 	}
   1976 #endif
   1977 
   1978 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1979 	if (dc == NULL)
   1980 		panic("config_defer: unable to allocate callback");
   1981 
   1982 	dc->dc_dev = dev;
   1983 	dc->dc_func = func;
   1984 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1985 	config_pending_incr(dev);
   1986 }
   1987 
   1988 /*
   1989  * Defer some autoconfiguration for a device until after interrupts
   1990  * are enabled.
   1991  */
   1992 void
   1993 config_interrupts(device_t dev, void (*func)(device_t))
   1994 {
   1995 	struct deferred_config *dc;
   1996 
   1997 	/*
   1998 	 * If interrupts are enabled, callback now.
   1999 	 */
   2000 	if (cold == 0) {
   2001 		(*func)(dev);
   2002 		return;
   2003 	}
   2004 
   2005 #ifdef DIAGNOSTIC
   2006 	TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
   2007 		if (dc->dc_dev == dev)
   2008 			panic("config_interrupts: deferred twice");
   2009 	}
   2010 #endif
   2011 
   2012 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2013 	if (dc == NULL)
   2014 		panic("config_interrupts: unable to allocate callback");
   2015 
   2016 	dc->dc_dev = dev;
   2017 	dc->dc_func = func;
   2018 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   2019 	config_pending_incr(dev);
   2020 }
   2021 
   2022 /*
   2023  * Defer some autoconfiguration for a device until after root file system
   2024  * is mounted (to load firmware etc).
   2025  */
   2026 void
   2027 config_mountroot(device_t dev, void (*func)(device_t))
   2028 {
   2029 	struct deferred_config *dc;
   2030 
   2031 	/*
   2032 	 * If root file system is mounted, callback now.
   2033 	 */
   2034 	if (root_is_mounted) {
   2035 		(*func)(dev);
   2036 		return;
   2037 	}
   2038 
   2039 #ifdef DIAGNOSTIC
   2040 	TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
   2041 		if (dc->dc_dev == dev)
   2042 			panic("%s: deferred twice", __func__);
   2043 	}
   2044 #endif
   2045 
   2046 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2047 	if (dc == NULL)
   2048 		panic("%s: unable to allocate callback", __func__);
   2049 
   2050 	dc->dc_dev = dev;
   2051 	dc->dc_func = func;
   2052 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   2053 }
   2054 
   2055 /*
   2056  * Process a deferred configuration queue.
   2057  */
   2058 static void
   2059 config_process_deferred(struct deferred_config_head *queue, device_t parent)
   2060 {
   2061 	struct deferred_config *dc, *ndc;
   2062 
   2063 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   2064 		ndc = TAILQ_NEXT(dc, dc_queue);
   2065 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2066 			TAILQ_REMOVE(queue, dc, dc_queue);
   2067 			(*dc->dc_func)(dc->dc_dev);
   2068 			config_pending_decr(dc->dc_dev);
   2069 			kmem_free(dc, sizeof(*dc));
   2070 		}
   2071 	}
   2072 }
   2073 
   2074 /*
   2075  * Manipulate the config_pending semaphore.
   2076  */
   2077 void
   2078 config_pending_incr(device_t dev)
   2079 {
   2080 
   2081 	mutex_enter(&config_misc_lock);
   2082 	config_pending++;
   2083 #ifdef DEBUG_AUTOCONF
   2084 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
   2085 #endif
   2086 	mutex_exit(&config_misc_lock);
   2087 }
   2088 
   2089 void
   2090 config_pending_decr(device_t dev)
   2091 {
   2092 
   2093 	KASSERT(0 < config_pending);
   2094 	mutex_enter(&config_misc_lock);
   2095 	config_pending--;
   2096 #ifdef DEBUG_AUTOCONF
   2097 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
   2098 #endif
   2099 	if (config_pending == 0)
   2100 		cv_broadcast(&config_misc_cv);
   2101 	mutex_exit(&config_misc_lock);
   2102 }
   2103 
   2104 /*
   2105  * Register a "finalization" routine.  Finalization routines are
   2106  * called iteratively once all real devices have been found during
   2107  * autoconfiguration, for as long as any one finalizer has done
   2108  * any work.
   2109  */
   2110 int
   2111 config_finalize_register(device_t dev, int (*fn)(device_t))
   2112 {
   2113 	struct finalize_hook *f;
   2114 
   2115 	/*
   2116 	 * If finalization has already been done, invoke the
   2117 	 * callback function now.
   2118 	 */
   2119 	if (config_finalize_done) {
   2120 		while ((*fn)(dev) != 0)
   2121 			/* loop */ ;
   2122 		return 0;
   2123 	}
   2124 
   2125 	/* Ensure this isn't already on the list. */
   2126 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2127 		if (f->f_func == fn && f->f_dev == dev)
   2128 			return EEXIST;
   2129 	}
   2130 
   2131 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2132 	f->f_func = fn;
   2133 	f->f_dev = dev;
   2134 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2135 
   2136 	return 0;
   2137 }
   2138 
   2139 void
   2140 config_finalize(void)
   2141 {
   2142 	struct finalize_hook *f;
   2143 	struct pdevinit *pdev;
   2144 	extern struct pdevinit pdevinit[];
   2145 	int errcnt, rv;
   2146 
   2147 	/*
   2148 	 * Now that device driver threads have been created, wait for
   2149 	 * them to finish any deferred autoconfiguration.
   2150 	 */
   2151 	mutex_enter(&config_misc_lock);
   2152 	while (config_pending != 0)
   2153 		cv_wait(&config_misc_cv, &config_misc_lock);
   2154 	mutex_exit(&config_misc_lock);
   2155 
   2156 	KERNEL_LOCK(1, NULL);
   2157 
   2158 	/* Attach pseudo-devices. */
   2159 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2160 		(*pdev->pdev_attach)(pdev->pdev_count);
   2161 
   2162 	/* Run the hooks until none of them does any work. */
   2163 	do {
   2164 		rv = 0;
   2165 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2166 			rv |= (*f->f_func)(f->f_dev);
   2167 	} while (rv != 0);
   2168 
   2169 	config_finalize_done = 1;
   2170 
   2171 	/* Now free all the hooks. */
   2172 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2173 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2174 		kmem_free(f, sizeof(*f));
   2175 	}
   2176 
   2177 	KERNEL_UNLOCK_ONE(NULL);
   2178 
   2179 	errcnt = aprint_get_error_count();
   2180 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2181 	    (boothowto & AB_VERBOSE) == 0) {
   2182 		mutex_enter(&config_misc_lock);
   2183 		if (config_do_twiddle) {
   2184 			config_do_twiddle = 0;
   2185 			printf_nolog(" done.\n");
   2186 		}
   2187 		mutex_exit(&config_misc_lock);
   2188 	}
   2189 	if (errcnt != 0) {
   2190 		printf("WARNING: %d error%s while detecting hardware; "
   2191 		    "check system log.\n", errcnt,
   2192 		    errcnt == 1 ? "" : "s");
   2193 	}
   2194 }
   2195 
   2196 void
   2197 config_twiddle_init(void)
   2198 {
   2199 
   2200 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2201 		config_do_twiddle = 1;
   2202 	}
   2203 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2204 }
   2205 
   2206 void
   2207 config_twiddle_fn(void *cookie)
   2208 {
   2209 
   2210 	mutex_enter(&config_misc_lock);
   2211 	if (config_do_twiddle) {
   2212 		twiddle();
   2213 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2214 	}
   2215 	mutex_exit(&config_misc_lock);
   2216 }
   2217 
   2218 static void
   2219 config_alldevs_enter(struct alldevs_foray *af)
   2220 {
   2221 	TAILQ_INIT(&af->af_garbage);
   2222 	mutex_enter(&alldevs.lock);
   2223 	config_collect_garbage(&af->af_garbage);
   2224 }
   2225 
   2226 static void
   2227 config_alldevs_exit(struct alldevs_foray *af)
   2228 {
   2229 	mutex_exit(&alldevs.lock);
   2230 	config_dump_garbage(&af->af_garbage);
   2231 }
   2232 
   2233 /*
   2234  * device_lookup:
   2235  *
   2236  *	Look up a device instance for a given driver.
   2237  */
   2238 device_t
   2239 device_lookup(cfdriver_t cd, int unit)
   2240 {
   2241 	device_t dv;
   2242 
   2243 	mutex_enter(&alldevs.lock);
   2244 	if (unit < 0 || unit >= cd->cd_ndevs)
   2245 		dv = NULL;
   2246 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2247 		dv = NULL;
   2248 	mutex_exit(&alldevs.lock);
   2249 
   2250 	return dv;
   2251 }
   2252 
   2253 /*
   2254  * device_lookup_private:
   2255  *
   2256  *	Look up a softc instance for a given driver.
   2257  */
   2258 void *
   2259 device_lookup_private(cfdriver_t cd, int unit)
   2260 {
   2261 
   2262 	return device_private(device_lookup(cd, unit));
   2263 }
   2264 
   2265 /*
   2266  * device_find_by_xname:
   2267  *
   2268  *	Returns the device of the given name or NULL if it doesn't exist.
   2269  */
   2270 device_t
   2271 device_find_by_xname(const char *name)
   2272 {
   2273 	device_t dv;
   2274 	deviter_t di;
   2275 
   2276 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2277 		if (strcmp(device_xname(dv), name) == 0)
   2278 			break;
   2279 	}
   2280 	deviter_release(&di);
   2281 
   2282 	return dv;
   2283 }
   2284 
   2285 /*
   2286  * device_find_by_driver_unit:
   2287  *
   2288  *	Returns the device of the given driver name and unit or
   2289  *	NULL if it doesn't exist.
   2290  */
   2291 device_t
   2292 device_find_by_driver_unit(const char *name, int unit)
   2293 {
   2294 	struct cfdriver *cd;
   2295 
   2296 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2297 		return NULL;
   2298 	return device_lookup(cd, unit);
   2299 }
   2300 
   2301 /*
   2302  * Power management related functions.
   2303  */
   2304 
   2305 bool
   2306 device_pmf_is_registered(device_t dev)
   2307 {
   2308 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2309 }
   2310 
   2311 bool
   2312 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2313 {
   2314 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2315 		return true;
   2316 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2317 		return false;
   2318 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2319 	    dev->dv_driver_suspend != NULL &&
   2320 	    !(*dev->dv_driver_suspend)(dev, qual))
   2321 		return false;
   2322 
   2323 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2324 	return true;
   2325 }
   2326 
   2327 bool
   2328 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2329 {
   2330 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2331 		return true;
   2332 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2333 		return false;
   2334 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2335 	    dev->dv_driver_resume != NULL &&
   2336 	    !(*dev->dv_driver_resume)(dev, qual))
   2337 		return false;
   2338 
   2339 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2340 	return true;
   2341 }
   2342 
   2343 bool
   2344 device_pmf_driver_shutdown(device_t dev, int how)
   2345 {
   2346 
   2347 	if (*dev->dv_driver_shutdown != NULL &&
   2348 	    !(*dev->dv_driver_shutdown)(dev, how))
   2349 		return false;
   2350 	return true;
   2351 }
   2352 
   2353 bool
   2354 device_pmf_driver_register(device_t dev,
   2355     bool (*suspend)(device_t, const pmf_qual_t *),
   2356     bool (*resume)(device_t, const pmf_qual_t *),
   2357     bool (*shutdown)(device_t, int))
   2358 {
   2359 	dev->dv_driver_suspend = suspend;
   2360 	dev->dv_driver_resume = resume;
   2361 	dev->dv_driver_shutdown = shutdown;
   2362 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2363 	return true;
   2364 }
   2365 
   2366 static const char *
   2367 curlwp_name(void)
   2368 {
   2369 	if (curlwp->l_name != NULL)
   2370 		return curlwp->l_name;
   2371 	else
   2372 		return curlwp->l_proc->p_comm;
   2373 }
   2374 
   2375 void
   2376 device_pmf_driver_deregister(device_t dev)
   2377 {
   2378 	device_lock_t dvl = device_getlock(dev);
   2379 
   2380 	dev->dv_driver_suspend = NULL;
   2381 	dev->dv_driver_resume = NULL;
   2382 
   2383 	mutex_enter(&dvl->dvl_mtx);
   2384 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2385 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2386 		/* Wake a thread that waits for the lock.  That
   2387 		 * thread will fail to acquire the lock, and then
   2388 		 * it will wake the next thread that waits for the
   2389 		 * lock, or else it will wake us.
   2390 		 */
   2391 		cv_signal(&dvl->dvl_cv);
   2392 		pmflock_debug(dev, __func__, __LINE__);
   2393 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2394 		pmflock_debug(dev, __func__, __LINE__);
   2395 	}
   2396 	mutex_exit(&dvl->dvl_mtx);
   2397 }
   2398 
   2399 bool
   2400 device_pmf_driver_child_register(device_t dev)
   2401 {
   2402 	device_t parent = device_parent(dev);
   2403 
   2404 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2405 		return true;
   2406 	return (*parent->dv_driver_child_register)(dev);
   2407 }
   2408 
   2409 void
   2410 device_pmf_driver_set_child_register(device_t dev,
   2411     bool (*child_register)(device_t))
   2412 {
   2413 	dev->dv_driver_child_register = child_register;
   2414 }
   2415 
   2416 static void
   2417 pmflock_debug(device_t dev, const char *func, int line)
   2418 {
   2419 	device_lock_t dvl = device_getlock(dev);
   2420 
   2421 	aprint_debug_dev(dev,
   2422 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
   2423 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
   2424 }
   2425 
   2426 static bool
   2427 device_pmf_lock1(device_t dev)
   2428 {
   2429 	device_lock_t dvl = device_getlock(dev);
   2430 
   2431 	while (device_pmf_is_registered(dev) &&
   2432 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2433 		dvl->dvl_nwait++;
   2434 		pmflock_debug(dev, __func__, __LINE__);
   2435 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2436 		pmflock_debug(dev, __func__, __LINE__);
   2437 		dvl->dvl_nwait--;
   2438 	}
   2439 	if (!device_pmf_is_registered(dev)) {
   2440 		pmflock_debug(dev, __func__, __LINE__);
   2441 		/* We could not acquire the lock, but some other thread may
   2442 		 * wait for it, also.  Wake that thread.
   2443 		 */
   2444 		cv_signal(&dvl->dvl_cv);
   2445 		return false;
   2446 	}
   2447 	dvl->dvl_nlock++;
   2448 	dvl->dvl_holder = curlwp;
   2449 	pmflock_debug(dev, __func__, __LINE__);
   2450 	return true;
   2451 }
   2452 
   2453 bool
   2454 device_pmf_lock(device_t dev)
   2455 {
   2456 	bool rc;
   2457 	device_lock_t dvl = device_getlock(dev);
   2458 
   2459 	mutex_enter(&dvl->dvl_mtx);
   2460 	rc = device_pmf_lock1(dev);
   2461 	mutex_exit(&dvl->dvl_mtx);
   2462 
   2463 	return rc;
   2464 }
   2465 
   2466 void
   2467 device_pmf_unlock(device_t dev)
   2468 {
   2469 	device_lock_t dvl = device_getlock(dev);
   2470 
   2471 	KASSERT(dvl->dvl_nlock > 0);
   2472 	mutex_enter(&dvl->dvl_mtx);
   2473 	if (--dvl->dvl_nlock == 0)
   2474 		dvl->dvl_holder = NULL;
   2475 	cv_signal(&dvl->dvl_cv);
   2476 	pmflock_debug(dev, __func__, __LINE__);
   2477 	mutex_exit(&dvl->dvl_mtx);
   2478 }
   2479 
   2480 device_lock_t
   2481 device_getlock(device_t dev)
   2482 {
   2483 	return &dev->dv_lock;
   2484 }
   2485 
   2486 void *
   2487 device_pmf_bus_private(device_t dev)
   2488 {
   2489 	return dev->dv_bus_private;
   2490 }
   2491 
   2492 bool
   2493 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   2494 {
   2495 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2496 		return true;
   2497 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2498 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2499 		return false;
   2500 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2501 	    dev->dv_bus_suspend != NULL &&
   2502 	    !(*dev->dv_bus_suspend)(dev, qual))
   2503 		return false;
   2504 
   2505 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2506 	return true;
   2507 }
   2508 
   2509 bool
   2510 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   2511 {
   2512 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2513 		return true;
   2514 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2515 	    dev->dv_bus_resume != NULL &&
   2516 	    !(*dev->dv_bus_resume)(dev, qual))
   2517 		return false;
   2518 
   2519 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2520 	return true;
   2521 }
   2522 
   2523 bool
   2524 device_pmf_bus_shutdown(device_t dev, int how)
   2525 {
   2526 
   2527 	if (*dev->dv_bus_shutdown != NULL &&
   2528 	    !(*dev->dv_bus_shutdown)(dev, how))
   2529 		return false;
   2530 	return true;
   2531 }
   2532 
   2533 void
   2534 device_pmf_bus_register(device_t dev, void *priv,
   2535     bool (*suspend)(device_t, const pmf_qual_t *),
   2536     bool (*resume)(device_t, const pmf_qual_t *),
   2537     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2538 {
   2539 	dev->dv_bus_private = priv;
   2540 	dev->dv_bus_resume = resume;
   2541 	dev->dv_bus_suspend = suspend;
   2542 	dev->dv_bus_shutdown = shutdown;
   2543 	dev->dv_bus_deregister = deregister;
   2544 }
   2545 
   2546 void
   2547 device_pmf_bus_deregister(device_t dev)
   2548 {
   2549 	if (dev->dv_bus_deregister == NULL)
   2550 		return;
   2551 	(*dev->dv_bus_deregister)(dev);
   2552 	dev->dv_bus_private = NULL;
   2553 	dev->dv_bus_suspend = NULL;
   2554 	dev->dv_bus_resume = NULL;
   2555 	dev->dv_bus_deregister = NULL;
   2556 }
   2557 
   2558 void *
   2559 device_pmf_class_private(device_t dev)
   2560 {
   2561 	return dev->dv_class_private;
   2562 }
   2563 
   2564 bool
   2565 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   2566 {
   2567 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2568 		return true;
   2569 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2570 	    dev->dv_class_suspend != NULL &&
   2571 	    !(*dev->dv_class_suspend)(dev, qual))
   2572 		return false;
   2573 
   2574 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2575 	return true;
   2576 }
   2577 
   2578 bool
   2579 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   2580 {
   2581 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2582 		return true;
   2583 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2584 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2585 		return false;
   2586 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2587 	    dev->dv_class_resume != NULL &&
   2588 	    !(*dev->dv_class_resume)(dev, qual))
   2589 		return false;
   2590 
   2591 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2592 	return true;
   2593 }
   2594 
   2595 void
   2596 device_pmf_class_register(device_t dev, void *priv,
   2597     bool (*suspend)(device_t, const pmf_qual_t *),
   2598     bool (*resume)(device_t, const pmf_qual_t *),
   2599     void (*deregister)(device_t))
   2600 {
   2601 	dev->dv_class_private = priv;
   2602 	dev->dv_class_suspend = suspend;
   2603 	dev->dv_class_resume = resume;
   2604 	dev->dv_class_deregister = deregister;
   2605 }
   2606 
   2607 void
   2608 device_pmf_class_deregister(device_t dev)
   2609 {
   2610 	if (dev->dv_class_deregister == NULL)
   2611 		return;
   2612 	(*dev->dv_class_deregister)(dev);
   2613 	dev->dv_class_private = NULL;
   2614 	dev->dv_class_suspend = NULL;
   2615 	dev->dv_class_resume = NULL;
   2616 	dev->dv_class_deregister = NULL;
   2617 }
   2618 
   2619 bool
   2620 device_active(device_t dev, devactive_t type)
   2621 {
   2622 	size_t i;
   2623 
   2624 	if (dev->dv_activity_count == 0)
   2625 		return false;
   2626 
   2627 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2628 		if (dev->dv_activity_handlers[i] == NULL)
   2629 			break;
   2630 		(*dev->dv_activity_handlers[i])(dev, type);
   2631 	}
   2632 
   2633 	return true;
   2634 }
   2635 
   2636 bool
   2637 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2638 {
   2639 	void (**new_handlers)(device_t, devactive_t);
   2640 	void (**old_handlers)(device_t, devactive_t);
   2641 	size_t i, old_size, new_size;
   2642 	int s;
   2643 
   2644 	old_handlers = dev->dv_activity_handlers;
   2645 	old_size = dev->dv_activity_count;
   2646 
   2647 	KASSERT(old_size == 0 || old_handlers != NULL);
   2648 
   2649 	for (i = 0; i < old_size; ++i) {
   2650 		KASSERT(old_handlers[i] != handler);
   2651 		if (old_handlers[i] == NULL) {
   2652 			old_handlers[i] = handler;
   2653 			return true;
   2654 		}
   2655 	}
   2656 
   2657 	new_size = old_size + 4;
   2658 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
   2659 
   2660 	for (i = 0; i < old_size; ++i)
   2661 		new_handlers[i] = old_handlers[i];
   2662 	new_handlers[old_size] = handler;
   2663 	for (i = old_size+1; i < new_size; ++i)
   2664 		new_handlers[i] = NULL;
   2665 
   2666 	s = splhigh();
   2667 	dev->dv_activity_count = new_size;
   2668 	dev->dv_activity_handlers = new_handlers;
   2669 	splx(s);
   2670 
   2671 	if (old_size > 0)
   2672 		kmem_free(old_handlers, sizeof(void * [old_size]));
   2673 
   2674 	return true;
   2675 }
   2676 
   2677 void
   2678 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2679 {
   2680 	void (**old_handlers)(device_t, devactive_t);
   2681 	size_t i, old_size;
   2682 	int s;
   2683 
   2684 	old_handlers = dev->dv_activity_handlers;
   2685 	old_size = dev->dv_activity_count;
   2686 
   2687 	for (i = 0; i < old_size; ++i) {
   2688 		if (old_handlers[i] == handler)
   2689 			break;
   2690 		if (old_handlers[i] == NULL)
   2691 			return; /* XXX panic? */
   2692 	}
   2693 
   2694 	if (i == old_size)
   2695 		return; /* XXX panic? */
   2696 
   2697 	for (; i < old_size - 1; ++i) {
   2698 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   2699 			continue;
   2700 
   2701 		if (i == 0) {
   2702 			s = splhigh();
   2703 			dev->dv_activity_count = 0;
   2704 			dev->dv_activity_handlers = NULL;
   2705 			splx(s);
   2706 			kmem_free(old_handlers, sizeof(void *[old_size]));
   2707 		}
   2708 		return;
   2709 	}
   2710 	old_handlers[i] = NULL;
   2711 }
   2712 
   2713 /* Return true iff the device_t `dev' exists at generation `gen'. */
   2714 static bool
   2715 device_exists_at(device_t dv, devgen_t gen)
   2716 {
   2717 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   2718 	    dv->dv_add_gen <= gen;
   2719 }
   2720 
   2721 static bool
   2722 deviter_visits(const deviter_t *di, device_t dv)
   2723 {
   2724 	return device_exists_at(dv, di->di_gen);
   2725 }
   2726 
   2727 /*
   2728  * Device Iteration
   2729  *
   2730  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2731  *     each device_t's in the device tree.
   2732  *
   2733  * deviter_init(di, flags): initialize the device iterator `di'
   2734  *     to "walk" the device tree.  deviter_next(di) will return
   2735  *     the first device_t in the device tree, or NULL if there are
   2736  *     no devices.
   2737  *
   2738  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2739  *     caller intends to modify the device tree by calling
   2740  *     config_detach(9) on devices in the order that the iterator
   2741  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2742  *     nearest the "root" of the device tree to be returned, first;
   2743  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2744  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2745  *     indicating both that deviter_init() should not respect any
   2746  *     locks on the device tree, and that deviter_next(di) may run
   2747  *     in more than one LWP before the walk has finished.
   2748  *
   2749  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2750  *     once.
   2751  *
   2752  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2753  *
   2754  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2755  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2756  *
   2757  * deviter_first(di, flags): initialize the device iterator `di'
   2758  *     and return the first device_t in the device tree, or NULL
   2759  *     if there are no devices.  The statement
   2760  *
   2761  *         dv = deviter_first(di);
   2762  *
   2763  *     is shorthand for
   2764  *
   2765  *         deviter_init(di);
   2766  *         dv = deviter_next(di);
   2767  *
   2768  * deviter_next(di): return the next device_t in the device tree,
   2769  *     or NULL if there are no more devices.  deviter_next(di)
   2770  *     is undefined if `di' was not initialized with deviter_init() or
   2771  *     deviter_first().
   2772  *
   2773  * deviter_release(di): stops iteration (subsequent calls to
   2774  *     deviter_next() will return NULL), releases any locks and
   2775  *     resources held by the device iterator.
   2776  *
   2777  * Device iteration does not return device_t's in any particular
   2778  * order.  An iterator will never return the same device_t twice.
   2779  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2780  * is called repeatedly on the same `di', it will eventually return
   2781  * NULL.  It is ok to attach/detach devices during device iteration.
   2782  */
   2783 void
   2784 deviter_init(deviter_t *di, deviter_flags_t flags)
   2785 {
   2786 	device_t dv;
   2787 
   2788 	memset(di, 0, sizeof(*di));
   2789 
   2790 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   2791 		flags |= DEVITER_F_RW;
   2792 
   2793 	mutex_enter(&alldevs.lock);
   2794 	if ((flags & DEVITER_F_RW) != 0)
   2795 		alldevs.nwrite++;
   2796 	else
   2797 		alldevs.nread++;
   2798 	di->di_gen = alldevs.gen++;
   2799 	di->di_flags = flags;
   2800 
   2801 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2802 	case DEVITER_F_LEAVES_FIRST:
   2803 		TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
   2804 			if (!deviter_visits(di, dv))
   2805 				continue;
   2806 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2807 		}
   2808 		break;
   2809 	case DEVITER_F_ROOT_FIRST:
   2810 		TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
   2811 			if (!deviter_visits(di, dv))
   2812 				continue;
   2813 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2814 		}
   2815 		break;
   2816 	default:
   2817 		break;
   2818 	}
   2819 
   2820 	deviter_reinit(di);
   2821 	mutex_exit(&alldevs.lock);
   2822 }
   2823 
   2824 static void
   2825 deviter_reinit(deviter_t *di)
   2826 {
   2827 
   2828 	KASSERT(mutex_owned(&alldevs.lock));
   2829 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2830 		di->di_prev = TAILQ_LAST(&alldevs.list, devicelist);
   2831 	else
   2832 		di->di_prev = TAILQ_FIRST(&alldevs.list);
   2833 }
   2834 
   2835 device_t
   2836 deviter_first(deviter_t *di, deviter_flags_t flags)
   2837 {
   2838 
   2839 	deviter_init(di, flags);
   2840 	return deviter_next(di);
   2841 }
   2842 
   2843 static device_t
   2844 deviter_next2(deviter_t *di)
   2845 {
   2846 	device_t dv;
   2847 
   2848 	KASSERT(mutex_owned(&alldevs.lock));
   2849 
   2850 	dv = di->di_prev;
   2851 
   2852 	if (dv == NULL)
   2853 		return NULL;
   2854 
   2855 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2856 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2857 	else
   2858 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2859 
   2860 	return dv;
   2861 }
   2862 
   2863 static device_t
   2864 deviter_next1(deviter_t *di)
   2865 {
   2866 	device_t dv;
   2867 
   2868 	KASSERT(mutex_owned(&alldevs.lock));
   2869 
   2870 	do {
   2871 		dv = deviter_next2(di);
   2872 	} while (dv != NULL && !deviter_visits(di, dv));
   2873 
   2874 	return dv;
   2875 }
   2876 
   2877 device_t
   2878 deviter_next(deviter_t *di)
   2879 {
   2880 	device_t dv = NULL;
   2881 
   2882 	mutex_enter(&alldevs.lock);
   2883 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2884 	case 0:
   2885 		dv = deviter_next1(di);
   2886 		break;
   2887 	case DEVITER_F_LEAVES_FIRST:
   2888 		while (di->di_curdepth >= 0) {
   2889 			if ((dv = deviter_next1(di)) == NULL) {
   2890 				di->di_curdepth--;
   2891 				deviter_reinit(di);
   2892 			} else if (dv->dv_depth == di->di_curdepth)
   2893 				break;
   2894 		}
   2895 		break;
   2896 	case DEVITER_F_ROOT_FIRST:
   2897 		while (di->di_curdepth <= di->di_maxdepth) {
   2898 			if ((dv = deviter_next1(di)) == NULL) {
   2899 				di->di_curdepth++;
   2900 				deviter_reinit(di);
   2901 			} else if (dv->dv_depth == di->di_curdepth)
   2902 				break;
   2903 		}
   2904 		break;
   2905 	default:
   2906 		break;
   2907 	}
   2908 	mutex_exit(&alldevs.lock);
   2909 
   2910 	return dv;
   2911 }
   2912 
   2913 void
   2914 deviter_release(deviter_t *di)
   2915 {
   2916 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2917 
   2918 	mutex_enter(&alldevs.lock);
   2919 	if (rw)
   2920 		--alldevs.nwrite;
   2921 	else
   2922 		--alldevs.nread;
   2923 	/* XXX wake a garbage-collection thread */
   2924 	mutex_exit(&alldevs.lock);
   2925 }
   2926 
   2927 const char *
   2928 cfdata_ifattr(const struct cfdata *cf)
   2929 {
   2930 	return cf->cf_pspec->cfp_iattr;
   2931 }
   2932 
   2933 bool
   2934 ifattr_match(const char *snull, const char *t)
   2935 {
   2936 	return (snull == NULL) || strcmp(snull, t) == 0;
   2937 }
   2938 
   2939 void
   2940 null_childdetached(device_t self, device_t child)
   2941 {
   2942 	/* do nothing */
   2943 }
   2944 
   2945 static void
   2946 sysctl_detach_setup(struct sysctllog **clog)
   2947 {
   2948 
   2949 	sysctl_createv(clog, 0, NULL, NULL,
   2950 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   2951 		CTLTYPE_BOOL, "detachall",
   2952 		SYSCTL_DESCR("Detach all devices at shutdown"),
   2953 		NULL, 0, &detachall, 0,
   2954 		CTL_KERN, CTL_CREATE, CTL_EOL);
   2955 }
   2956