subr_autoconf.c revision 1.252 1 /* $NetBSD: subr_autoconf.c,v 1.252 2017/03/20 01:24:06 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.252 2017/03/20 01:24:06 riastradh Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110
111 #include <sys/disk.h>
112
113 #include <sys/rndsource.h>
114
115 #include <machine/limits.h>
116
117 /*
118 * Autoconfiguration subroutines.
119 */
120
121 /*
122 * Device autoconfiguration timings are mixed into the entropy pool.
123 */
124 extern krndsource_t rnd_autoconf_source;
125
126 /*
127 * ioconf.c exports exactly two names: cfdata and cfroots. All system
128 * devices and drivers are found via these tables.
129 */
130 extern struct cfdata cfdata[];
131 extern const short cfroots[];
132
133 /*
134 * List of all cfdriver structures. We use this to detect duplicates
135 * when other cfdrivers are loaded.
136 */
137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
138 extern struct cfdriver * const cfdriver_list_initial[];
139
140 /*
141 * Initial list of cfattach's.
142 */
143 extern const struct cfattachinit cfattachinit[];
144
145 /*
146 * List of cfdata tables. We always have one such list -- the one
147 * built statically when the kernel was configured.
148 */
149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
150 static struct cftable initcftable;
151
152 #define ROOT ((device_t)NULL)
153
154 struct matchinfo {
155 cfsubmatch_t fn;
156 device_t parent;
157 const int *locs;
158 void *aux;
159 struct cfdata *match;
160 int pri;
161 };
162
163 struct alldevs_foray {
164 int af_s;
165 struct devicelist af_garbage;
166 };
167
168 static char *number(char *, int);
169 static void mapply(struct matchinfo *, cfdata_t);
170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
171 static void config_devdelete(device_t);
172 static void config_devunlink(device_t, struct devicelist *);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_alldevs_enter(struct alldevs_foray *);
176 static void config_alldevs_exit(struct alldevs_foray *);
177 static void config_add_attrib_dict(device_t);
178
179 static void config_collect_garbage(struct devicelist *);
180 static void config_dump_garbage(struct devicelist *);
181
182 static void pmflock_debug(device_t, const char *, int);
183
184 static device_t deviter_next1(deviter_t *);
185 static void deviter_reinit(deviter_t *);
186
187 struct deferred_config {
188 TAILQ_ENTRY(deferred_config) dc_queue;
189 device_t dc_dev;
190 void (*dc_func)(device_t);
191 };
192
193 TAILQ_HEAD(deferred_config_head, deferred_config);
194
195 struct deferred_config_head deferred_config_queue =
196 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
197 struct deferred_config_head interrupt_config_queue =
198 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
199 int interrupt_config_threads = 8;
200 struct deferred_config_head mountroot_config_queue =
201 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
202 int mountroot_config_threads = 2;
203 static lwp_t **mountroot_config_lwpids;
204 static size_t mountroot_config_lwpids_size;
205 static bool root_is_mounted = false;
206
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 TAILQ_ENTRY(finalize_hook) f_list;
212 int (*f_func)(device_t);
213 device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218
219 /* list of all devices */
220 static struct {
221 kmutex_t lock;
222 struct devicelist list;
223 devgen_t gen;
224 int nread;
225 int nwrite;
226 bool garbage;
227 } alldevs __cacheline_aligned = {
228 .list = TAILQ_HEAD_INITIALIZER(alldevs.list),
229 .gen = 1,
230 .nread = 0,
231 .nwrite = 0,
232 .garbage = false,
233 };
234
235 static int config_pending; /* semaphore for mountroot */
236 static kmutex_t config_misc_lock;
237 static kcondvar_t config_misc_cv;
238
239 static bool detachall = false;
240
241 #define STREQ(s1, s2) \
242 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
243
244 static bool config_initialized = false; /* config_init() has been called. */
245
246 static int config_do_twiddle;
247 static callout_t config_twiddle_ch;
248
249 static void sysctl_detach_setup(struct sysctllog **);
250
251 int no_devmon_insert(const char *, prop_dictionary_t);
252 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
253
254 typedef int (*cfdriver_fn)(struct cfdriver *);
255 static int
256 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
257 cfdriver_fn drv_do, cfdriver_fn drv_undo,
258 const char *style, bool dopanic)
259 {
260 void (*pr)(const char *, ...) __printflike(1, 2) =
261 dopanic ? panic : printf;
262 int i, error = 0, e2 __diagused;
263
264 for (i = 0; cfdriverv[i] != NULL; i++) {
265 if ((error = drv_do(cfdriverv[i])) != 0) {
266 pr("configure: `%s' driver %s failed: %d",
267 cfdriverv[i]->cd_name, style, error);
268 goto bad;
269 }
270 }
271
272 KASSERT(error == 0);
273 return 0;
274
275 bad:
276 printf("\n");
277 for (i--; i >= 0; i--) {
278 e2 = drv_undo(cfdriverv[i]);
279 KASSERT(e2 == 0);
280 }
281
282 return error;
283 }
284
285 typedef int (*cfattach_fn)(const char *, struct cfattach *);
286 static int
287 frob_cfattachvec(const struct cfattachinit *cfattachv,
288 cfattach_fn att_do, cfattach_fn att_undo,
289 const char *style, bool dopanic)
290 {
291 const struct cfattachinit *cfai = NULL;
292 void (*pr)(const char *, ...) __printflike(1, 2) =
293 dopanic ? panic : printf;
294 int j = 0, error = 0, e2 __diagused;
295
296 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
297 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
298 if ((error = att_do(cfai->cfai_name,
299 cfai->cfai_list[j])) != 0) {
300 pr("configure: attachment `%s' "
301 "of `%s' driver %s failed: %d",
302 cfai->cfai_list[j]->ca_name,
303 cfai->cfai_name, style, error);
304 goto bad;
305 }
306 }
307 }
308
309 KASSERT(error == 0);
310 return 0;
311
312 bad:
313 /*
314 * Rollback in reverse order. dunno if super-important, but
315 * do that anyway. Although the code looks a little like
316 * someone did a little integration (in the math sense).
317 */
318 printf("\n");
319 if (cfai) {
320 bool last;
321
322 for (last = false; last == false; ) {
323 if (cfai == &cfattachv[0])
324 last = true;
325 for (j--; j >= 0; j--) {
326 e2 = att_undo(cfai->cfai_name,
327 cfai->cfai_list[j]);
328 KASSERT(e2 == 0);
329 }
330 if (!last) {
331 cfai--;
332 for (j = 0; cfai->cfai_list[j] != NULL; j++)
333 ;
334 }
335 }
336 }
337
338 return error;
339 }
340
341 /*
342 * Initialize the autoconfiguration data structures. Normally this
343 * is done by configure(), but some platforms need to do this very
344 * early (to e.g. initialize the console).
345 */
346 void
347 config_init(void)
348 {
349
350 KASSERT(config_initialized == false);
351
352 mutex_init(&alldevs.lock, MUTEX_DEFAULT, IPL_VM);
353
354 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
355 cv_init(&config_misc_cv, "cfgmisc");
356
357 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
358
359 frob_cfdrivervec(cfdriver_list_initial,
360 config_cfdriver_attach, NULL, "bootstrap", true);
361 frob_cfattachvec(cfattachinit,
362 config_cfattach_attach, NULL, "bootstrap", true);
363
364 initcftable.ct_cfdata = cfdata;
365 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
366
367 config_initialized = true;
368 }
369
370 /*
371 * Init or fini drivers and attachments. Either all or none
372 * are processed (via rollback). It would be nice if this were
373 * atomic to outside consumers, but with the current state of
374 * locking ...
375 */
376 int
377 config_init_component(struct cfdriver * const *cfdriverv,
378 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
379 {
380 int error;
381
382 if ((error = frob_cfdrivervec(cfdriverv,
383 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
384 return error;
385 if ((error = frob_cfattachvec(cfattachv,
386 config_cfattach_attach, config_cfattach_detach,
387 "init", false)) != 0) {
388 frob_cfdrivervec(cfdriverv,
389 config_cfdriver_detach, NULL, "init rollback", true);
390 return error;
391 }
392 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
393 frob_cfattachvec(cfattachv,
394 config_cfattach_detach, NULL, "init rollback", true);
395 frob_cfdrivervec(cfdriverv,
396 config_cfdriver_detach, NULL, "init rollback", true);
397 return error;
398 }
399
400 return 0;
401 }
402
403 int
404 config_fini_component(struct cfdriver * const *cfdriverv,
405 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
406 {
407 int error;
408
409 if ((error = config_cfdata_detach(cfdatav)) != 0)
410 return error;
411 if ((error = frob_cfattachvec(cfattachv,
412 config_cfattach_detach, config_cfattach_attach,
413 "fini", false)) != 0) {
414 if (config_cfdata_attach(cfdatav, 0) != 0)
415 panic("config_cfdata fini rollback failed");
416 return error;
417 }
418 if ((error = frob_cfdrivervec(cfdriverv,
419 config_cfdriver_detach, config_cfdriver_attach,
420 "fini", false)) != 0) {
421 frob_cfattachvec(cfattachv,
422 config_cfattach_attach, NULL, "fini rollback", true);
423 if (config_cfdata_attach(cfdatav, 0) != 0)
424 panic("config_cfdata fini rollback failed");
425 return error;
426 }
427
428 return 0;
429 }
430
431 void
432 config_init_mi(void)
433 {
434
435 if (!config_initialized)
436 config_init();
437
438 sysctl_detach_setup(NULL);
439 }
440
441 void
442 config_deferred(device_t dev)
443 {
444 config_process_deferred(&deferred_config_queue, dev);
445 config_process_deferred(&interrupt_config_queue, dev);
446 config_process_deferred(&mountroot_config_queue, dev);
447 }
448
449 static void
450 config_interrupts_thread(void *cookie)
451 {
452 struct deferred_config *dc;
453
454 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
455 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
456 (*dc->dc_func)(dc->dc_dev);
457 config_pending_decr(dc->dc_dev);
458 kmem_free(dc, sizeof(*dc));
459 }
460 kthread_exit(0);
461 }
462
463 void
464 config_create_interruptthreads(void)
465 {
466 int i;
467
468 for (i = 0; i < interrupt_config_threads; i++) {
469 (void)kthread_create(PRI_NONE, 0, NULL,
470 config_interrupts_thread, NULL, NULL, "configintr");
471 }
472 }
473
474 static void
475 config_mountroot_thread(void *cookie)
476 {
477 struct deferred_config *dc;
478
479 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
480 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
481 (*dc->dc_func)(dc->dc_dev);
482 kmem_free(dc, sizeof(*dc));
483 }
484 kthread_exit(0);
485 }
486
487 void
488 config_create_mountrootthreads(void)
489 {
490 int i;
491
492 if (!root_is_mounted)
493 root_is_mounted = true;
494
495 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
496 mountroot_config_threads;
497 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
498 KM_NOSLEEP);
499 KASSERT(mountroot_config_lwpids);
500 for (i = 0; i < mountroot_config_threads; i++) {
501 mountroot_config_lwpids[i] = 0;
502 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
503 config_mountroot_thread, NULL,
504 &mountroot_config_lwpids[i],
505 "configroot");
506 }
507 }
508
509 void
510 config_finalize_mountroot(void)
511 {
512 int i, error;
513
514 for (i = 0; i < mountroot_config_threads; i++) {
515 if (mountroot_config_lwpids[i] == 0)
516 continue;
517
518 error = kthread_join(mountroot_config_lwpids[i]);
519 if (error)
520 printf("%s: thread %x joined with error %d\n",
521 __func__, i, error);
522 }
523 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
524 }
525
526 /*
527 * Announce device attach/detach to userland listeners.
528 */
529
530 int
531 no_devmon_insert(const char *name, prop_dictionary_t p)
532 {
533
534 return ENODEV;
535 }
536
537 static void
538 devmon_report_device(device_t dev, bool isattach)
539 {
540 prop_dictionary_t ev;
541 const char *parent;
542 const char *what;
543 device_t pdev = device_parent(dev);
544
545 /* If currently no drvctl device, just return */
546 if (devmon_insert_vec == no_devmon_insert)
547 return;
548
549 ev = prop_dictionary_create();
550 if (ev == NULL)
551 return;
552
553 what = (isattach ? "device-attach" : "device-detach");
554 parent = (pdev == NULL ? "root" : device_xname(pdev));
555 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
556 !prop_dictionary_set_cstring(ev, "parent", parent)) {
557 prop_object_release(ev);
558 return;
559 }
560
561 if ((*devmon_insert_vec)(what, ev) != 0)
562 prop_object_release(ev);
563 }
564
565 /*
566 * Add a cfdriver to the system.
567 */
568 int
569 config_cfdriver_attach(struct cfdriver *cd)
570 {
571 struct cfdriver *lcd;
572
573 /* Make sure this driver isn't already in the system. */
574 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
575 if (STREQ(lcd->cd_name, cd->cd_name))
576 return EEXIST;
577 }
578
579 LIST_INIT(&cd->cd_attach);
580 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
581
582 return 0;
583 }
584
585 /*
586 * Remove a cfdriver from the system.
587 */
588 int
589 config_cfdriver_detach(struct cfdriver *cd)
590 {
591 struct alldevs_foray af;
592 int i, rc = 0;
593
594 config_alldevs_enter(&af);
595 /* Make sure there are no active instances. */
596 for (i = 0; i < cd->cd_ndevs; i++) {
597 if (cd->cd_devs[i] != NULL) {
598 rc = EBUSY;
599 break;
600 }
601 }
602 config_alldevs_exit(&af);
603
604 if (rc != 0)
605 return rc;
606
607 /* ...and no attachments loaded. */
608 if (LIST_EMPTY(&cd->cd_attach) == 0)
609 return EBUSY;
610
611 LIST_REMOVE(cd, cd_list);
612
613 KASSERT(cd->cd_devs == NULL);
614
615 return 0;
616 }
617
618 /*
619 * Look up a cfdriver by name.
620 */
621 struct cfdriver *
622 config_cfdriver_lookup(const char *name)
623 {
624 struct cfdriver *cd;
625
626 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
627 if (STREQ(cd->cd_name, name))
628 return cd;
629 }
630
631 return NULL;
632 }
633
634 /*
635 * Add a cfattach to the specified driver.
636 */
637 int
638 config_cfattach_attach(const char *driver, struct cfattach *ca)
639 {
640 struct cfattach *lca;
641 struct cfdriver *cd;
642
643 cd = config_cfdriver_lookup(driver);
644 if (cd == NULL)
645 return ESRCH;
646
647 /* Make sure this attachment isn't already on this driver. */
648 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
649 if (STREQ(lca->ca_name, ca->ca_name))
650 return EEXIST;
651 }
652
653 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
654
655 return 0;
656 }
657
658 /*
659 * Remove a cfattach from the specified driver.
660 */
661 int
662 config_cfattach_detach(const char *driver, struct cfattach *ca)
663 {
664 struct alldevs_foray af;
665 struct cfdriver *cd;
666 device_t dev;
667 int i, rc = 0;
668
669 cd = config_cfdriver_lookup(driver);
670 if (cd == NULL)
671 return ESRCH;
672
673 config_alldevs_enter(&af);
674 /* Make sure there are no active instances. */
675 for (i = 0; i < cd->cd_ndevs; i++) {
676 if ((dev = cd->cd_devs[i]) == NULL)
677 continue;
678 if (dev->dv_cfattach == ca) {
679 rc = EBUSY;
680 break;
681 }
682 }
683 config_alldevs_exit(&af);
684
685 if (rc != 0)
686 return rc;
687
688 LIST_REMOVE(ca, ca_list);
689
690 return 0;
691 }
692
693 /*
694 * Look up a cfattach by name.
695 */
696 static struct cfattach *
697 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
698 {
699 struct cfattach *ca;
700
701 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
702 if (STREQ(ca->ca_name, atname))
703 return ca;
704 }
705
706 return NULL;
707 }
708
709 /*
710 * Look up a cfattach by driver/attachment name.
711 */
712 struct cfattach *
713 config_cfattach_lookup(const char *name, const char *atname)
714 {
715 struct cfdriver *cd;
716
717 cd = config_cfdriver_lookup(name);
718 if (cd == NULL)
719 return NULL;
720
721 return config_cfattach_lookup_cd(cd, atname);
722 }
723
724 /*
725 * Apply the matching function and choose the best. This is used
726 * a few times and we want to keep the code small.
727 */
728 static void
729 mapply(struct matchinfo *m, cfdata_t cf)
730 {
731 int pri;
732
733 if (m->fn != NULL) {
734 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
735 } else {
736 pri = config_match(m->parent, cf, m->aux);
737 }
738 if (pri > m->pri) {
739 m->match = cf;
740 m->pri = pri;
741 }
742 }
743
744 int
745 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
746 {
747 const struct cfiattrdata *ci;
748 const struct cflocdesc *cl;
749 int nlocs, i;
750
751 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
752 KASSERT(ci);
753 nlocs = ci->ci_loclen;
754 KASSERT(!nlocs || locs);
755 for (i = 0; i < nlocs; i++) {
756 cl = &ci->ci_locdesc[i];
757 if (cl->cld_defaultstr != NULL &&
758 cf->cf_loc[i] == cl->cld_default)
759 continue;
760 if (cf->cf_loc[i] == locs[i])
761 continue;
762 return 0;
763 }
764
765 return config_match(parent, cf, aux);
766 }
767
768 /*
769 * Helper function: check whether the driver supports the interface attribute
770 * and return its descriptor structure.
771 */
772 static const struct cfiattrdata *
773 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
774 {
775 const struct cfiattrdata * const *cpp;
776
777 if (cd->cd_attrs == NULL)
778 return 0;
779
780 for (cpp = cd->cd_attrs; *cpp; cpp++) {
781 if (STREQ((*cpp)->ci_name, ia)) {
782 /* Match. */
783 return *cpp;
784 }
785 }
786 return 0;
787 }
788
789 /*
790 * Lookup an interface attribute description by name.
791 * If the driver is given, consider only its supported attributes.
792 */
793 const struct cfiattrdata *
794 cfiattr_lookup(const char *name, const struct cfdriver *cd)
795 {
796 const struct cfdriver *d;
797 const struct cfiattrdata *ia;
798
799 if (cd)
800 return cfdriver_get_iattr(cd, name);
801
802 LIST_FOREACH(d, &allcfdrivers, cd_list) {
803 ia = cfdriver_get_iattr(d, name);
804 if (ia)
805 return ia;
806 }
807 return 0;
808 }
809
810 /*
811 * Determine if `parent' is a potential parent for a device spec based
812 * on `cfp'.
813 */
814 static int
815 cfparent_match(const device_t parent, const struct cfparent *cfp)
816 {
817 struct cfdriver *pcd;
818
819 /* We don't match root nodes here. */
820 if (cfp == NULL)
821 return 0;
822
823 pcd = parent->dv_cfdriver;
824 KASSERT(pcd != NULL);
825
826 /*
827 * First, ensure this parent has the correct interface
828 * attribute.
829 */
830 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
831 return 0;
832
833 /*
834 * If no specific parent device instance was specified (i.e.
835 * we're attaching to the attribute only), we're done!
836 */
837 if (cfp->cfp_parent == NULL)
838 return 1;
839
840 /*
841 * Check the parent device's name.
842 */
843 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
844 return 0; /* not the same parent */
845
846 /*
847 * Make sure the unit number matches.
848 */
849 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
850 cfp->cfp_unit == parent->dv_unit)
851 return 1;
852
853 /* Unit numbers don't match. */
854 return 0;
855 }
856
857 /*
858 * Helper for config_cfdata_attach(): check all devices whether it could be
859 * parent any attachment in the config data table passed, and rescan.
860 */
861 static void
862 rescan_with_cfdata(const struct cfdata *cf)
863 {
864 device_t d;
865 const struct cfdata *cf1;
866 deviter_t di;
867
868
869 /*
870 * "alldevs" is likely longer than a modules's cfdata, so make it
871 * the outer loop.
872 */
873 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
874
875 if (!(d->dv_cfattach->ca_rescan))
876 continue;
877
878 for (cf1 = cf; cf1->cf_name; cf1++) {
879
880 if (!cfparent_match(d, cf1->cf_pspec))
881 continue;
882
883 (*d->dv_cfattach->ca_rescan)(d,
884 cfdata_ifattr(cf1), cf1->cf_loc);
885
886 config_deferred(d);
887 }
888 }
889 deviter_release(&di);
890 }
891
892 /*
893 * Attach a supplemental config data table and rescan potential
894 * parent devices if required.
895 */
896 int
897 config_cfdata_attach(cfdata_t cf, int scannow)
898 {
899 struct cftable *ct;
900
901 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
902 ct->ct_cfdata = cf;
903 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
904
905 if (scannow)
906 rescan_with_cfdata(cf);
907
908 return 0;
909 }
910
911 /*
912 * Helper for config_cfdata_detach: check whether a device is
913 * found through any attachment in the config data table.
914 */
915 static int
916 dev_in_cfdata(device_t d, cfdata_t cf)
917 {
918 const struct cfdata *cf1;
919
920 for (cf1 = cf; cf1->cf_name; cf1++)
921 if (d->dv_cfdata == cf1)
922 return 1;
923
924 return 0;
925 }
926
927 /*
928 * Detach a supplemental config data table. Detach all devices found
929 * through that table (and thus keeping references to it) before.
930 */
931 int
932 config_cfdata_detach(cfdata_t cf)
933 {
934 device_t d;
935 int error = 0;
936 struct cftable *ct;
937 deviter_t di;
938
939 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
940 d = deviter_next(&di)) {
941 if (!dev_in_cfdata(d, cf))
942 continue;
943 if ((error = config_detach(d, 0)) != 0)
944 break;
945 }
946 deviter_release(&di);
947 if (error) {
948 aprint_error_dev(d, "unable to detach instance\n");
949 return error;
950 }
951
952 TAILQ_FOREACH(ct, &allcftables, ct_list) {
953 if (ct->ct_cfdata == cf) {
954 TAILQ_REMOVE(&allcftables, ct, ct_list);
955 kmem_free(ct, sizeof(*ct));
956 return 0;
957 }
958 }
959
960 /* not found -- shouldn't happen */
961 return EINVAL;
962 }
963
964 /*
965 * Invoke the "match" routine for a cfdata entry on behalf of
966 * an external caller, usually a "submatch" routine.
967 */
968 int
969 config_match(device_t parent, cfdata_t cf, void *aux)
970 {
971 struct cfattach *ca;
972
973 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
974 if (ca == NULL) {
975 /* No attachment for this entry, oh well. */
976 return 0;
977 }
978
979 return (*ca->ca_match)(parent, cf, aux);
980 }
981
982 /*
983 * Iterate over all potential children of some device, calling the given
984 * function (default being the child's match function) for each one.
985 * Nonzero returns are matches; the highest value returned is considered
986 * the best match. Return the `found child' if we got a match, or NULL
987 * otherwise. The `aux' pointer is simply passed on through.
988 *
989 * Note that this function is designed so that it can be used to apply
990 * an arbitrary function to all potential children (its return value
991 * can be ignored).
992 */
993 cfdata_t
994 config_search_loc(cfsubmatch_t fn, device_t parent,
995 const char *ifattr, const int *locs, void *aux)
996 {
997 struct cftable *ct;
998 cfdata_t cf;
999 struct matchinfo m;
1000
1001 KASSERT(config_initialized);
1002 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
1003
1004 m.fn = fn;
1005 m.parent = parent;
1006 m.locs = locs;
1007 m.aux = aux;
1008 m.match = NULL;
1009 m.pri = 0;
1010
1011 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1012 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1013
1014 /* We don't match root nodes here. */
1015 if (!cf->cf_pspec)
1016 continue;
1017
1018 /*
1019 * Skip cf if no longer eligible, otherwise scan
1020 * through parents for one matching `parent', and
1021 * try match function.
1022 */
1023 if (cf->cf_fstate == FSTATE_FOUND)
1024 continue;
1025 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1026 cf->cf_fstate == FSTATE_DSTAR)
1027 continue;
1028
1029 /*
1030 * If an interface attribute was specified,
1031 * consider only children which attach to
1032 * that attribute.
1033 */
1034 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1035 continue;
1036
1037 if (cfparent_match(parent, cf->cf_pspec))
1038 mapply(&m, cf);
1039 }
1040 }
1041 return m.match;
1042 }
1043
1044 cfdata_t
1045 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
1046 void *aux)
1047 {
1048
1049 return config_search_loc(fn, parent, ifattr, NULL, aux);
1050 }
1051
1052 /*
1053 * Find the given root device.
1054 * This is much like config_search, but there is no parent.
1055 * Don't bother with multiple cfdata tables; the root node
1056 * must always be in the initial table.
1057 */
1058 cfdata_t
1059 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1060 {
1061 cfdata_t cf;
1062 const short *p;
1063 struct matchinfo m;
1064
1065 m.fn = fn;
1066 m.parent = ROOT;
1067 m.aux = aux;
1068 m.match = NULL;
1069 m.pri = 0;
1070 m.locs = 0;
1071 /*
1072 * Look at root entries for matching name. We do not bother
1073 * with found-state here since only one root should ever be
1074 * searched (and it must be done first).
1075 */
1076 for (p = cfroots; *p >= 0; p++) {
1077 cf = &cfdata[*p];
1078 if (strcmp(cf->cf_name, rootname) == 0)
1079 mapply(&m, cf);
1080 }
1081 return m.match;
1082 }
1083
1084 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1085
1086 /*
1087 * The given `aux' argument describes a device that has been found
1088 * on the given parent, but not necessarily configured. Locate the
1089 * configuration data for that device (using the submatch function
1090 * provided, or using candidates' cd_match configuration driver
1091 * functions) and attach it, and return its device_t. If the device was
1092 * not configured, call the given `print' function and return NULL.
1093 */
1094 device_t
1095 config_found_sm_loc(device_t parent,
1096 const char *ifattr, const int *locs, void *aux,
1097 cfprint_t print, cfsubmatch_t submatch)
1098 {
1099 cfdata_t cf;
1100
1101 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1102 return(config_attach_loc(parent, cf, locs, aux, print));
1103 if (print) {
1104 if (config_do_twiddle && cold)
1105 twiddle();
1106 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1107 }
1108
1109 /*
1110 * This has the effect of mixing in a single timestamp to the
1111 * entropy pool. Experiments indicate the estimator will almost
1112 * always attribute one bit of entropy to this sample; analysis
1113 * of device attach/detach timestamps on FreeBSD indicates 4
1114 * bits of entropy/sample so this seems appropriately conservative.
1115 */
1116 rnd_add_uint32(&rnd_autoconf_source, 0);
1117 return NULL;
1118 }
1119
1120 device_t
1121 config_found_ia(device_t parent, const char *ifattr, void *aux,
1122 cfprint_t print)
1123 {
1124
1125 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1126 }
1127
1128 device_t
1129 config_found(device_t parent, void *aux, cfprint_t print)
1130 {
1131
1132 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1133 }
1134
1135 /*
1136 * As above, but for root devices.
1137 */
1138 device_t
1139 config_rootfound(const char *rootname, void *aux)
1140 {
1141 cfdata_t cf;
1142
1143 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1144 return config_attach(ROOT, cf, aux, NULL);
1145 aprint_error("root device %s not configured\n", rootname);
1146 return NULL;
1147 }
1148
1149 /* just like sprintf(buf, "%d") except that it works from the end */
1150 static char *
1151 number(char *ep, int n)
1152 {
1153
1154 *--ep = 0;
1155 while (n >= 10) {
1156 *--ep = (n % 10) + '0';
1157 n /= 10;
1158 }
1159 *--ep = n + '0';
1160 return ep;
1161 }
1162
1163 /*
1164 * Expand the size of the cd_devs array if necessary.
1165 *
1166 * The caller must hold alldevs.lock. config_makeroom() may release and
1167 * re-acquire alldevs.lock, so callers should re-check conditions such
1168 * as alldevs.nwrite == 0 and alldevs.nread == 0 when config_makeroom()
1169 * returns.
1170 */
1171 static void
1172 config_makeroom(int n, struct cfdriver *cd)
1173 {
1174 int ondevs, nndevs;
1175 device_t *osp, *nsp;
1176
1177 KASSERT(mutex_owned(&alldevs.lock));
1178 alldevs.nwrite++;
1179
1180 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1181 ;
1182
1183 while (n >= cd->cd_ndevs) {
1184 /*
1185 * Need to expand the array.
1186 */
1187 ondevs = cd->cd_ndevs;
1188 osp = cd->cd_devs;
1189
1190 /*
1191 * Release alldevs.lock around allocation, which may
1192 * sleep.
1193 */
1194 mutex_exit(&alldevs.lock);
1195 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1196 if (nsp == NULL)
1197 panic("%s: could not expand cd_devs", __func__);
1198 mutex_enter(&alldevs.lock);
1199
1200 /*
1201 * If another thread moved the array while we did
1202 * not hold alldevs.lock, try again.
1203 */
1204 if (cd->cd_devs != osp) {
1205 mutex_exit(&alldevs.lock);
1206 kmem_free(nsp, sizeof(device_t[nndevs]));
1207 mutex_enter(&alldevs.lock);
1208 continue;
1209 }
1210
1211 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1212 if (ondevs != 0)
1213 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1214
1215 cd->cd_ndevs = nndevs;
1216 cd->cd_devs = nsp;
1217 if (ondevs != 0) {
1218 mutex_exit(&alldevs.lock);
1219 kmem_free(osp, sizeof(device_t[ondevs]));
1220 mutex_enter(&alldevs.lock);
1221 }
1222 }
1223 KASSERT(mutex_owned(&alldevs.lock));
1224 alldevs.nwrite--;
1225 }
1226
1227 /*
1228 * Put dev into the devices list.
1229 */
1230 static void
1231 config_devlink(device_t dev)
1232 {
1233
1234 mutex_enter(&alldevs.lock);
1235
1236 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1237
1238 dev->dv_add_gen = alldevs.gen;
1239 /* It is safe to add a device to the tail of the list while
1240 * readers and writers are in the list.
1241 */
1242 TAILQ_INSERT_TAIL(&alldevs.list, dev, dv_list);
1243 mutex_exit(&alldevs.lock);
1244 }
1245
1246 static void
1247 config_devfree(device_t dev)
1248 {
1249 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1250
1251 if (dev->dv_cfattach->ca_devsize > 0)
1252 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1253 if (priv)
1254 kmem_free(dev, sizeof(*dev));
1255 }
1256
1257 /*
1258 * Caller must hold alldevs.lock.
1259 */
1260 static void
1261 config_devunlink(device_t dev, struct devicelist *garbage)
1262 {
1263 struct device_garbage *dg = &dev->dv_garbage;
1264 cfdriver_t cd = device_cfdriver(dev);
1265 int i;
1266
1267 KASSERT(mutex_owned(&alldevs.lock));
1268
1269 /* Unlink from device list. Link to garbage list. */
1270 TAILQ_REMOVE(&alldevs.list, dev, dv_list);
1271 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1272
1273 /* Remove from cfdriver's array. */
1274 cd->cd_devs[dev->dv_unit] = NULL;
1275
1276 /*
1277 * If the device now has no units in use, unlink its softc array.
1278 */
1279 for (i = 0; i < cd->cd_ndevs; i++) {
1280 if (cd->cd_devs[i] != NULL)
1281 break;
1282 }
1283 /* Nothing found. Unlink, now. Deallocate, later. */
1284 if (i == cd->cd_ndevs) {
1285 dg->dg_ndevs = cd->cd_ndevs;
1286 dg->dg_devs = cd->cd_devs;
1287 cd->cd_devs = NULL;
1288 cd->cd_ndevs = 0;
1289 }
1290 }
1291
1292 static void
1293 config_devdelete(device_t dev)
1294 {
1295 struct device_garbage *dg = &dev->dv_garbage;
1296 device_lock_t dvl = device_getlock(dev);
1297
1298 if (dg->dg_devs != NULL)
1299 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1300
1301 cv_destroy(&dvl->dvl_cv);
1302 mutex_destroy(&dvl->dvl_mtx);
1303
1304 KASSERT(dev->dv_properties != NULL);
1305 prop_object_release(dev->dv_properties);
1306
1307 if (dev->dv_activity_handlers)
1308 panic("%s with registered handlers", __func__);
1309
1310 if (dev->dv_locators) {
1311 size_t amount = *--dev->dv_locators;
1312 kmem_free(dev->dv_locators, amount);
1313 }
1314
1315 config_devfree(dev);
1316 }
1317
1318 static int
1319 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1320 {
1321 int unit;
1322
1323 if (cf->cf_fstate == FSTATE_STAR) {
1324 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1325 if (cd->cd_devs[unit] == NULL)
1326 break;
1327 /*
1328 * unit is now the unit of the first NULL device pointer,
1329 * or max(cd->cd_ndevs,cf->cf_unit).
1330 */
1331 } else {
1332 unit = cf->cf_unit;
1333 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1334 unit = -1;
1335 }
1336 return unit;
1337 }
1338
1339 static int
1340 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1341 {
1342 struct alldevs_foray af;
1343 int unit;
1344
1345 config_alldevs_enter(&af);
1346 for (;;) {
1347 unit = config_unit_nextfree(cd, cf);
1348 if (unit == -1)
1349 break;
1350 if (unit < cd->cd_ndevs) {
1351 cd->cd_devs[unit] = dev;
1352 dev->dv_unit = unit;
1353 break;
1354 }
1355 config_makeroom(unit, cd);
1356 }
1357 config_alldevs_exit(&af);
1358
1359 return unit;
1360 }
1361
1362 static device_t
1363 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1364 {
1365 cfdriver_t cd;
1366 cfattach_t ca;
1367 size_t lname, lunit;
1368 const char *xunit;
1369 int myunit;
1370 char num[10];
1371 device_t dev;
1372 void *dev_private;
1373 const struct cfiattrdata *ia;
1374 device_lock_t dvl;
1375
1376 cd = config_cfdriver_lookup(cf->cf_name);
1377 if (cd == NULL)
1378 return NULL;
1379
1380 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1381 if (ca == NULL)
1382 return NULL;
1383
1384 /* get memory for all device vars */
1385 KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
1386 || ca->ca_devsize >= sizeof(struct device),
1387 "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
1388 sizeof(struct device));
1389 if (ca->ca_devsize > 0) {
1390 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1391 if (dev_private == NULL)
1392 panic("config_devalloc: memory allocation for device "
1393 "softc failed");
1394 } else {
1395 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1396 dev_private = NULL;
1397 }
1398
1399 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1400 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1401 } else {
1402 dev = dev_private;
1403 #ifdef DIAGNOSTIC
1404 printf("%s has not been converted to device_t\n", cd->cd_name);
1405 #endif
1406 }
1407 if (dev == NULL)
1408 panic("config_devalloc: memory allocation for device_t failed");
1409
1410 dev->dv_class = cd->cd_class;
1411 dev->dv_cfdata = cf;
1412 dev->dv_cfdriver = cd;
1413 dev->dv_cfattach = ca;
1414 dev->dv_activity_count = 0;
1415 dev->dv_activity_handlers = NULL;
1416 dev->dv_private = dev_private;
1417 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1418
1419 myunit = config_unit_alloc(dev, cd, cf);
1420 if (myunit == -1) {
1421 config_devfree(dev);
1422 return NULL;
1423 }
1424
1425 /* compute length of name and decimal expansion of unit number */
1426 lname = strlen(cd->cd_name);
1427 xunit = number(&num[sizeof(num)], myunit);
1428 lunit = &num[sizeof(num)] - xunit;
1429 if (lname + lunit > sizeof(dev->dv_xname))
1430 panic("config_devalloc: device name too long");
1431
1432 dvl = device_getlock(dev);
1433
1434 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1435 cv_init(&dvl->dvl_cv, "pmfsusp");
1436
1437 memcpy(dev->dv_xname, cd->cd_name, lname);
1438 memcpy(dev->dv_xname + lname, xunit, lunit);
1439 dev->dv_parent = parent;
1440 if (parent != NULL)
1441 dev->dv_depth = parent->dv_depth + 1;
1442 else
1443 dev->dv_depth = 0;
1444 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1445 if (locs) {
1446 KASSERT(parent); /* no locators at root */
1447 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1448 dev->dv_locators =
1449 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1450 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1451 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1452 }
1453 dev->dv_properties = prop_dictionary_create();
1454 KASSERT(dev->dv_properties != NULL);
1455
1456 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1457 "device-driver", dev->dv_cfdriver->cd_name);
1458 prop_dictionary_set_uint16(dev->dv_properties,
1459 "device-unit", dev->dv_unit);
1460 if (parent != NULL) {
1461 prop_dictionary_set_cstring(dev->dv_properties,
1462 "device-parent", device_xname(parent));
1463 }
1464
1465 if (dev->dv_cfdriver->cd_attrs != NULL)
1466 config_add_attrib_dict(dev);
1467
1468 return dev;
1469 }
1470
1471 /*
1472 * Create an array of device attach attributes and add it
1473 * to the device's dv_properties dictionary.
1474 *
1475 * <key>interface-attributes</key>
1476 * <array>
1477 * <dict>
1478 * <key>attribute-name</key>
1479 * <string>foo</string>
1480 * <key>locators</key>
1481 * <array>
1482 * <dict>
1483 * <key>loc-name</key>
1484 * <string>foo-loc1</string>
1485 * </dict>
1486 * <dict>
1487 * <key>loc-name</key>
1488 * <string>foo-loc2</string>
1489 * <key>default</key>
1490 * <string>foo-loc2-default</string>
1491 * </dict>
1492 * ...
1493 * </array>
1494 * </dict>
1495 * ...
1496 * </array>
1497 */
1498
1499 static void
1500 config_add_attrib_dict(device_t dev)
1501 {
1502 int i, j;
1503 const struct cfiattrdata *ci;
1504 prop_dictionary_t attr_dict, loc_dict;
1505 prop_array_t attr_array, loc_array;
1506
1507 if ((attr_array = prop_array_create()) == NULL)
1508 return;
1509
1510 for (i = 0; ; i++) {
1511 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1512 break;
1513 if ((attr_dict = prop_dictionary_create()) == NULL)
1514 break;
1515 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1516 ci->ci_name);
1517
1518 /* Create an array of the locator names and defaults */
1519
1520 if (ci->ci_loclen != 0 &&
1521 (loc_array = prop_array_create()) != NULL) {
1522 for (j = 0; j < ci->ci_loclen; j++) {
1523 loc_dict = prop_dictionary_create();
1524 if (loc_dict == NULL)
1525 continue;
1526 prop_dictionary_set_cstring_nocopy(loc_dict,
1527 "loc-name", ci->ci_locdesc[j].cld_name);
1528 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1529 prop_dictionary_set_cstring_nocopy(
1530 loc_dict, "default",
1531 ci->ci_locdesc[j].cld_defaultstr);
1532 prop_array_set(loc_array, j, loc_dict);
1533 prop_object_release(loc_dict);
1534 }
1535 prop_dictionary_set_and_rel(attr_dict, "locators",
1536 loc_array);
1537 }
1538 prop_array_add(attr_array, attr_dict);
1539 prop_object_release(attr_dict);
1540 }
1541 if (i == 0)
1542 prop_object_release(attr_array);
1543 else
1544 prop_dictionary_set_and_rel(dev->dv_properties,
1545 "interface-attributes", attr_array);
1546
1547 return;
1548 }
1549
1550 /*
1551 * Attach a found device.
1552 */
1553 device_t
1554 config_attach_loc(device_t parent, cfdata_t cf,
1555 const int *locs, void *aux, cfprint_t print)
1556 {
1557 device_t dev;
1558 struct cftable *ct;
1559 const char *drvname;
1560
1561 dev = config_devalloc(parent, cf, locs);
1562 if (!dev)
1563 panic("config_attach: allocation of device softc failed");
1564
1565 /* XXX redundant - see below? */
1566 if (cf->cf_fstate != FSTATE_STAR) {
1567 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1568 cf->cf_fstate = FSTATE_FOUND;
1569 }
1570
1571 config_devlink(dev);
1572
1573 if (config_do_twiddle && cold)
1574 twiddle();
1575 else
1576 aprint_naive("Found ");
1577 /*
1578 * We want the next two printfs for normal, verbose, and quiet,
1579 * but not silent (in which case, we're twiddling, instead).
1580 */
1581 if (parent == ROOT) {
1582 aprint_naive("%s (root)", device_xname(dev));
1583 aprint_normal("%s (root)", device_xname(dev));
1584 } else {
1585 aprint_naive("%s at %s", device_xname(dev),
1586 device_xname(parent));
1587 aprint_normal("%s at %s", device_xname(dev),
1588 device_xname(parent));
1589 if (print)
1590 (void) (*print)(aux, NULL);
1591 }
1592
1593 /*
1594 * Before attaching, clobber any unfound devices that are
1595 * otherwise identical.
1596 * XXX code above is redundant?
1597 */
1598 drvname = dev->dv_cfdriver->cd_name;
1599 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1600 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1601 if (STREQ(cf->cf_name, drvname) &&
1602 cf->cf_unit == dev->dv_unit) {
1603 if (cf->cf_fstate == FSTATE_NOTFOUND)
1604 cf->cf_fstate = FSTATE_FOUND;
1605 }
1606 }
1607 }
1608 device_register(dev, aux);
1609
1610 /* Let userland know */
1611 devmon_report_device(dev, true);
1612
1613 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1614
1615 if (!device_pmf_is_registered(dev))
1616 aprint_debug_dev(dev, "WARNING: power management not "
1617 "supported\n");
1618
1619 config_process_deferred(&deferred_config_queue, dev);
1620
1621 device_register_post_config(dev, aux);
1622 return dev;
1623 }
1624
1625 device_t
1626 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1627 {
1628
1629 return config_attach_loc(parent, cf, NULL, aux, print);
1630 }
1631
1632 /*
1633 * As above, but for pseudo-devices. Pseudo-devices attached in this
1634 * way are silently inserted into the device tree, and their children
1635 * attached.
1636 *
1637 * Note that because pseudo-devices are attached silently, any information
1638 * the attach routine wishes to print should be prefixed with the device
1639 * name by the attach routine.
1640 */
1641 device_t
1642 config_attach_pseudo(cfdata_t cf)
1643 {
1644 device_t dev;
1645
1646 dev = config_devalloc(ROOT, cf, NULL);
1647 if (!dev)
1648 return NULL;
1649
1650 /* XXX mark busy in cfdata */
1651
1652 if (cf->cf_fstate != FSTATE_STAR) {
1653 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1654 cf->cf_fstate = FSTATE_FOUND;
1655 }
1656
1657 config_devlink(dev);
1658
1659 #if 0 /* XXXJRT not yet */
1660 device_register(dev, NULL); /* like a root node */
1661 #endif
1662
1663 /* Let userland know */
1664 devmon_report_device(dev, true);
1665
1666 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1667
1668 config_process_deferred(&deferred_config_queue, dev);
1669 return dev;
1670 }
1671
1672 /*
1673 * Caller must hold alldevs.lock.
1674 */
1675 static void
1676 config_collect_garbage(struct devicelist *garbage)
1677 {
1678 device_t dv;
1679
1680 KASSERT(!cpu_intr_p());
1681 KASSERT(!cpu_softintr_p());
1682 KASSERT(mutex_owned(&alldevs.lock));
1683
1684 while (alldevs.nwrite == 0 && alldevs.nread == 0 && alldevs.garbage) {
1685 TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
1686 if (dv->dv_del_gen != 0)
1687 break;
1688 }
1689 if (dv == NULL) {
1690 alldevs.garbage = false;
1691 break;
1692 }
1693 config_devunlink(dv, garbage);
1694 }
1695 KASSERT(mutex_owned(&alldevs.lock));
1696 }
1697
1698 static void
1699 config_dump_garbage(struct devicelist *garbage)
1700 {
1701 device_t dv;
1702
1703 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1704 TAILQ_REMOVE(garbage, dv, dv_list);
1705 config_devdelete(dv);
1706 }
1707 }
1708
1709 /*
1710 * Detach a device. Optionally forced (e.g. because of hardware
1711 * removal) and quiet. Returns zero if successful, non-zero
1712 * (an error code) otherwise.
1713 *
1714 * Note that this code wants to be run from a process context, so
1715 * that the detach can sleep to allow processes which have a device
1716 * open to run and unwind their stacks.
1717 */
1718 int
1719 config_detach(device_t dev, int flags)
1720 {
1721 struct alldevs_foray af;
1722 struct cftable *ct;
1723 cfdata_t cf;
1724 const struct cfattach *ca;
1725 struct cfdriver *cd;
1726 device_t d __diagused;
1727 int rv = 0;
1728
1729 cf = dev->dv_cfdata;
1730 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
1731 cf->cf_fstate == FSTATE_STAR),
1732 "config_detach: %s: bad device fstate: %d",
1733 device_xname(dev), cf ? cf->cf_fstate : -1);
1734
1735 cd = dev->dv_cfdriver;
1736 KASSERT(cd != NULL);
1737
1738 ca = dev->dv_cfattach;
1739 KASSERT(ca != NULL);
1740
1741 mutex_enter(&alldevs.lock);
1742 if (dev->dv_del_gen != 0) {
1743 mutex_exit(&alldevs.lock);
1744 #ifdef DIAGNOSTIC
1745 printf("%s: %s is already detached\n", __func__,
1746 device_xname(dev));
1747 #endif /* DIAGNOSTIC */
1748 return ENOENT;
1749 }
1750 alldevs.nwrite++;
1751 mutex_exit(&alldevs.lock);
1752
1753 if (!detachall &&
1754 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1755 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1756 rv = EOPNOTSUPP;
1757 } else if (ca->ca_detach != NULL) {
1758 rv = (*ca->ca_detach)(dev, flags);
1759 } else
1760 rv = EOPNOTSUPP;
1761
1762 /*
1763 * If it was not possible to detach the device, then we either
1764 * panic() (for the forced but failed case), or return an error.
1765 *
1766 * If it was possible to detach the device, ensure that the
1767 * device is deactivated.
1768 */
1769 if (rv == 0)
1770 dev->dv_flags &= ~DVF_ACTIVE;
1771 else if ((flags & DETACH_FORCE) == 0)
1772 goto out;
1773 else {
1774 panic("config_detach: forced detach of %s failed (%d)",
1775 device_xname(dev), rv);
1776 }
1777
1778 /*
1779 * The device has now been successfully detached.
1780 */
1781
1782 /* Let userland know */
1783 devmon_report_device(dev, false);
1784
1785 #ifdef DIAGNOSTIC
1786 /*
1787 * Sanity: If you're successfully detached, you should have no
1788 * children. (Note that because children must be attached
1789 * after parents, we only need to search the latter part of
1790 * the list.)
1791 */
1792 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1793 d = TAILQ_NEXT(d, dv_list)) {
1794 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1795 printf("config_detach: detached device %s"
1796 " has children %s\n", device_xname(dev),
1797 device_xname(d));
1798 panic("config_detach");
1799 }
1800 }
1801 #endif
1802
1803 /* notify the parent that the child is gone */
1804 if (dev->dv_parent) {
1805 device_t p = dev->dv_parent;
1806 if (p->dv_cfattach->ca_childdetached)
1807 (*p->dv_cfattach->ca_childdetached)(p, dev);
1808 }
1809
1810 /*
1811 * Mark cfdata to show that the unit can be reused, if possible.
1812 */
1813 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1814 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1815 if (STREQ(cf->cf_name, cd->cd_name)) {
1816 if (cf->cf_fstate == FSTATE_FOUND &&
1817 cf->cf_unit == dev->dv_unit)
1818 cf->cf_fstate = FSTATE_NOTFOUND;
1819 }
1820 }
1821 }
1822
1823 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1824 aprint_normal_dev(dev, "detached\n");
1825
1826 out:
1827 config_alldevs_enter(&af);
1828 KASSERT(alldevs.nwrite != 0);
1829 --alldevs.nwrite;
1830 if (rv == 0 && dev->dv_del_gen == 0) {
1831 if (alldevs.nwrite == 0 && alldevs.nread == 0)
1832 config_devunlink(dev, &af.af_garbage);
1833 else {
1834 dev->dv_del_gen = alldevs.gen;
1835 alldevs.garbage = true;
1836 }
1837 }
1838 config_alldevs_exit(&af);
1839
1840 return rv;
1841 }
1842
1843 int
1844 config_detach_children(device_t parent, int flags)
1845 {
1846 device_t dv;
1847 deviter_t di;
1848 int error = 0;
1849
1850 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1851 dv = deviter_next(&di)) {
1852 if (device_parent(dv) != parent)
1853 continue;
1854 if ((error = config_detach(dv, flags)) != 0)
1855 break;
1856 }
1857 deviter_release(&di);
1858 return error;
1859 }
1860
1861 device_t
1862 shutdown_first(struct shutdown_state *s)
1863 {
1864 if (!s->initialized) {
1865 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1866 s->initialized = true;
1867 }
1868 return shutdown_next(s);
1869 }
1870
1871 device_t
1872 shutdown_next(struct shutdown_state *s)
1873 {
1874 device_t dv;
1875
1876 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1877 ;
1878
1879 if (dv == NULL)
1880 s->initialized = false;
1881
1882 return dv;
1883 }
1884
1885 bool
1886 config_detach_all(int how)
1887 {
1888 static struct shutdown_state s;
1889 device_t curdev;
1890 bool progress = false;
1891 int flags;
1892
1893 if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1894 return false;
1895
1896 if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1897 flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1898 else
1899 flags = DETACH_SHUTDOWN;
1900
1901 for (curdev = shutdown_first(&s); curdev != NULL;
1902 curdev = shutdown_next(&s)) {
1903 aprint_debug(" detaching %s, ", device_xname(curdev));
1904 if (config_detach(curdev, flags) == 0) {
1905 progress = true;
1906 aprint_debug("success.");
1907 } else
1908 aprint_debug("failed.");
1909 }
1910 return progress;
1911 }
1912
1913 static bool
1914 device_is_ancestor_of(device_t ancestor, device_t descendant)
1915 {
1916 device_t dv;
1917
1918 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1919 if (device_parent(dv) == ancestor)
1920 return true;
1921 }
1922 return false;
1923 }
1924
1925 int
1926 config_deactivate(device_t dev)
1927 {
1928 deviter_t di;
1929 const struct cfattach *ca;
1930 device_t descendant;
1931 int s, rv = 0, oflags;
1932
1933 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1934 descendant != NULL;
1935 descendant = deviter_next(&di)) {
1936 if (dev != descendant &&
1937 !device_is_ancestor_of(dev, descendant))
1938 continue;
1939
1940 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1941 continue;
1942
1943 ca = descendant->dv_cfattach;
1944 oflags = descendant->dv_flags;
1945
1946 descendant->dv_flags &= ~DVF_ACTIVE;
1947 if (ca->ca_activate == NULL)
1948 continue;
1949 s = splhigh();
1950 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1951 splx(s);
1952 if (rv != 0)
1953 descendant->dv_flags = oflags;
1954 }
1955 deviter_release(&di);
1956 return rv;
1957 }
1958
1959 /*
1960 * Defer the configuration of the specified device until all
1961 * of its parent's devices have been attached.
1962 */
1963 void
1964 config_defer(device_t dev, void (*func)(device_t))
1965 {
1966 struct deferred_config *dc;
1967
1968 if (dev->dv_parent == NULL)
1969 panic("config_defer: can't defer config of a root device");
1970
1971 #ifdef DIAGNOSTIC
1972 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1973 if (dc->dc_dev == dev)
1974 panic("config_defer: deferred twice");
1975 }
1976 #endif
1977
1978 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1979 if (dc == NULL)
1980 panic("config_defer: unable to allocate callback");
1981
1982 dc->dc_dev = dev;
1983 dc->dc_func = func;
1984 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1985 config_pending_incr(dev);
1986 }
1987
1988 /*
1989 * Defer some autoconfiguration for a device until after interrupts
1990 * are enabled.
1991 */
1992 void
1993 config_interrupts(device_t dev, void (*func)(device_t))
1994 {
1995 struct deferred_config *dc;
1996
1997 /*
1998 * If interrupts are enabled, callback now.
1999 */
2000 if (cold == 0) {
2001 (*func)(dev);
2002 return;
2003 }
2004
2005 #ifdef DIAGNOSTIC
2006 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
2007 if (dc->dc_dev == dev)
2008 panic("config_interrupts: deferred twice");
2009 }
2010 #endif
2011
2012 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2013 if (dc == NULL)
2014 panic("config_interrupts: unable to allocate callback");
2015
2016 dc->dc_dev = dev;
2017 dc->dc_func = func;
2018 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2019 config_pending_incr(dev);
2020 }
2021
2022 /*
2023 * Defer some autoconfiguration for a device until after root file system
2024 * is mounted (to load firmware etc).
2025 */
2026 void
2027 config_mountroot(device_t dev, void (*func)(device_t))
2028 {
2029 struct deferred_config *dc;
2030
2031 /*
2032 * If root file system is mounted, callback now.
2033 */
2034 if (root_is_mounted) {
2035 (*func)(dev);
2036 return;
2037 }
2038
2039 #ifdef DIAGNOSTIC
2040 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
2041 if (dc->dc_dev == dev)
2042 panic("%s: deferred twice", __func__);
2043 }
2044 #endif
2045
2046 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2047 if (dc == NULL)
2048 panic("%s: unable to allocate callback", __func__);
2049
2050 dc->dc_dev = dev;
2051 dc->dc_func = func;
2052 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2053 }
2054
2055 /*
2056 * Process a deferred configuration queue.
2057 */
2058 static void
2059 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2060 {
2061 struct deferred_config *dc, *ndc;
2062
2063 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
2064 ndc = TAILQ_NEXT(dc, dc_queue);
2065 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2066 TAILQ_REMOVE(queue, dc, dc_queue);
2067 (*dc->dc_func)(dc->dc_dev);
2068 config_pending_decr(dc->dc_dev);
2069 kmem_free(dc, sizeof(*dc));
2070 }
2071 }
2072 }
2073
2074 /*
2075 * Manipulate the config_pending semaphore.
2076 */
2077 void
2078 config_pending_incr(device_t dev)
2079 {
2080
2081 mutex_enter(&config_misc_lock);
2082 config_pending++;
2083 #ifdef DEBUG_AUTOCONF
2084 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2085 #endif
2086 mutex_exit(&config_misc_lock);
2087 }
2088
2089 void
2090 config_pending_decr(device_t dev)
2091 {
2092
2093 KASSERT(0 < config_pending);
2094 mutex_enter(&config_misc_lock);
2095 config_pending--;
2096 #ifdef DEBUG_AUTOCONF
2097 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2098 #endif
2099 if (config_pending == 0)
2100 cv_broadcast(&config_misc_cv);
2101 mutex_exit(&config_misc_lock);
2102 }
2103
2104 /*
2105 * Register a "finalization" routine. Finalization routines are
2106 * called iteratively once all real devices have been found during
2107 * autoconfiguration, for as long as any one finalizer has done
2108 * any work.
2109 */
2110 int
2111 config_finalize_register(device_t dev, int (*fn)(device_t))
2112 {
2113 struct finalize_hook *f;
2114
2115 /*
2116 * If finalization has already been done, invoke the
2117 * callback function now.
2118 */
2119 if (config_finalize_done) {
2120 while ((*fn)(dev) != 0)
2121 /* loop */ ;
2122 return 0;
2123 }
2124
2125 /* Ensure this isn't already on the list. */
2126 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2127 if (f->f_func == fn && f->f_dev == dev)
2128 return EEXIST;
2129 }
2130
2131 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2132 f->f_func = fn;
2133 f->f_dev = dev;
2134 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2135
2136 return 0;
2137 }
2138
2139 void
2140 config_finalize(void)
2141 {
2142 struct finalize_hook *f;
2143 struct pdevinit *pdev;
2144 extern struct pdevinit pdevinit[];
2145 int errcnt, rv;
2146
2147 /*
2148 * Now that device driver threads have been created, wait for
2149 * them to finish any deferred autoconfiguration.
2150 */
2151 mutex_enter(&config_misc_lock);
2152 while (config_pending != 0)
2153 cv_wait(&config_misc_cv, &config_misc_lock);
2154 mutex_exit(&config_misc_lock);
2155
2156 KERNEL_LOCK(1, NULL);
2157
2158 /* Attach pseudo-devices. */
2159 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2160 (*pdev->pdev_attach)(pdev->pdev_count);
2161
2162 /* Run the hooks until none of them does any work. */
2163 do {
2164 rv = 0;
2165 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2166 rv |= (*f->f_func)(f->f_dev);
2167 } while (rv != 0);
2168
2169 config_finalize_done = 1;
2170
2171 /* Now free all the hooks. */
2172 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2173 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2174 kmem_free(f, sizeof(*f));
2175 }
2176
2177 KERNEL_UNLOCK_ONE(NULL);
2178
2179 errcnt = aprint_get_error_count();
2180 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2181 (boothowto & AB_VERBOSE) == 0) {
2182 mutex_enter(&config_misc_lock);
2183 if (config_do_twiddle) {
2184 config_do_twiddle = 0;
2185 printf_nolog(" done.\n");
2186 }
2187 mutex_exit(&config_misc_lock);
2188 }
2189 if (errcnt != 0) {
2190 printf("WARNING: %d error%s while detecting hardware; "
2191 "check system log.\n", errcnt,
2192 errcnt == 1 ? "" : "s");
2193 }
2194 }
2195
2196 void
2197 config_twiddle_init(void)
2198 {
2199
2200 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2201 config_do_twiddle = 1;
2202 }
2203 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2204 }
2205
2206 void
2207 config_twiddle_fn(void *cookie)
2208 {
2209
2210 mutex_enter(&config_misc_lock);
2211 if (config_do_twiddle) {
2212 twiddle();
2213 callout_schedule(&config_twiddle_ch, mstohz(100));
2214 }
2215 mutex_exit(&config_misc_lock);
2216 }
2217
2218 static void
2219 config_alldevs_enter(struct alldevs_foray *af)
2220 {
2221 TAILQ_INIT(&af->af_garbage);
2222 mutex_enter(&alldevs.lock);
2223 config_collect_garbage(&af->af_garbage);
2224 }
2225
2226 static void
2227 config_alldevs_exit(struct alldevs_foray *af)
2228 {
2229 mutex_exit(&alldevs.lock);
2230 config_dump_garbage(&af->af_garbage);
2231 }
2232
2233 /*
2234 * device_lookup:
2235 *
2236 * Look up a device instance for a given driver.
2237 */
2238 device_t
2239 device_lookup(cfdriver_t cd, int unit)
2240 {
2241 device_t dv;
2242
2243 mutex_enter(&alldevs.lock);
2244 if (unit < 0 || unit >= cd->cd_ndevs)
2245 dv = NULL;
2246 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2247 dv = NULL;
2248 mutex_exit(&alldevs.lock);
2249
2250 return dv;
2251 }
2252
2253 /*
2254 * device_lookup_private:
2255 *
2256 * Look up a softc instance for a given driver.
2257 */
2258 void *
2259 device_lookup_private(cfdriver_t cd, int unit)
2260 {
2261
2262 return device_private(device_lookup(cd, unit));
2263 }
2264
2265 /*
2266 * device_find_by_xname:
2267 *
2268 * Returns the device of the given name or NULL if it doesn't exist.
2269 */
2270 device_t
2271 device_find_by_xname(const char *name)
2272 {
2273 device_t dv;
2274 deviter_t di;
2275
2276 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2277 if (strcmp(device_xname(dv), name) == 0)
2278 break;
2279 }
2280 deviter_release(&di);
2281
2282 return dv;
2283 }
2284
2285 /*
2286 * device_find_by_driver_unit:
2287 *
2288 * Returns the device of the given driver name and unit or
2289 * NULL if it doesn't exist.
2290 */
2291 device_t
2292 device_find_by_driver_unit(const char *name, int unit)
2293 {
2294 struct cfdriver *cd;
2295
2296 if ((cd = config_cfdriver_lookup(name)) == NULL)
2297 return NULL;
2298 return device_lookup(cd, unit);
2299 }
2300
2301 /*
2302 * Power management related functions.
2303 */
2304
2305 bool
2306 device_pmf_is_registered(device_t dev)
2307 {
2308 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2309 }
2310
2311 bool
2312 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2313 {
2314 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2315 return true;
2316 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2317 return false;
2318 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2319 dev->dv_driver_suspend != NULL &&
2320 !(*dev->dv_driver_suspend)(dev, qual))
2321 return false;
2322
2323 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2324 return true;
2325 }
2326
2327 bool
2328 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2329 {
2330 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2331 return true;
2332 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2333 return false;
2334 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2335 dev->dv_driver_resume != NULL &&
2336 !(*dev->dv_driver_resume)(dev, qual))
2337 return false;
2338
2339 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2340 return true;
2341 }
2342
2343 bool
2344 device_pmf_driver_shutdown(device_t dev, int how)
2345 {
2346
2347 if (*dev->dv_driver_shutdown != NULL &&
2348 !(*dev->dv_driver_shutdown)(dev, how))
2349 return false;
2350 return true;
2351 }
2352
2353 bool
2354 device_pmf_driver_register(device_t dev,
2355 bool (*suspend)(device_t, const pmf_qual_t *),
2356 bool (*resume)(device_t, const pmf_qual_t *),
2357 bool (*shutdown)(device_t, int))
2358 {
2359 dev->dv_driver_suspend = suspend;
2360 dev->dv_driver_resume = resume;
2361 dev->dv_driver_shutdown = shutdown;
2362 dev->dv_flags |= DVF_POWER_HANDLERS;
2363 return true;
2364 }
2365
2366 static const char *
2367 curlwp_name(void)
2368 {
2369 if (curlwp->l_name != NULL)
2370 return curlwp->l_name;
2371 else
2372 return curlwp->l_proc->p_comm;
2373 }
2374
2375 void
2376 device_pmf_driver_deregister(device_t dev)
2377 {
2378 device_lock_t dvl = device_getlock(dev);
2379
2380 dev->dv_driver_suspend = NULL;
2381 dev->dv_driver_resume = NULL;
2382
2383 mutex_enter(&dvl->dvl_mtx);
2384 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2385 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2386 /* Wake a thread that waits for the lock. That
2387 * thread will fail to acquire the lock, and then
2388 * it will wake the next thread that waits for the
2389 * lock, or else it will wake us.
2390 */
2391 cv_signal(&dvl->dvl_cv);
2392 pmflock_debug(dev, __func__, __LINE__);
2393 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2394 pmflock_debug(dev, __func__, __LINE__);
2395 }
2396 mutex_exit(&dvl->dvl_mtx);
2397 }
2398
2399 bool
2400 device_pmf_driver_child_register(device_t dev)
2401 {
2402 device_t parent = device_parent(dev);
2403
2404 if (parent == NULL || parent->dv_driver_child_register == NULL)
2405 return true;
2406 return (*parent->dv_driver_child_register)(dev);
2407 }
2408
2409 void
2410 device_pmf_driver_set_child_register(device_t dev,
2411 bool (*child_register)(device_t))
2412 {
2413 dev->dv_driver_child_register = child_register;
2414 }
2415
2416 static void
2417 pmflock_debug(device_t dev, const char *func, int line)
2418 {
2419 device_lock_t dvl = device_getlock(dev);
2420
2421 aprint_debug_dev(dev,
2422 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2423 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2424 }
2425
2426 static bool
2427 device_pmf_lock1(device_t dev)
2428 {
2429 device_lock_t dvl = device_getlock(dev);
2430
2431 while (device_pmf_is_registered(dev) &&
2432 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2433 dvl->dvl_nwait++;
2434 pmflock_debug(dev, __func__, __LINE__);
2435 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2436 pmflock_debug(dev, __func__, __LINE__);
2437 dvl->dvl_nwait--;
2438 }
2439 if (!device_pmf_is_registered(dev)) {
2440 pmflock_debug(dev, __func__, __LINE__);
2441 /* We could not acquire the lock, but some other thread may
2442 * wait for it, also. Wake that thread.
2443 */
2444 cv_signal(&dvl->dvl_cv);
2445 return false;
2446 }
2447 dvl->dvl_nlock++;
2448 dvl->dvl_holder = curlwp;
2449 pmflock_debug(dev, __func__, __LINE__);
2450 return true;
2451 }
2452
2453 bool
2454 device_pmf_lock(device_t dev)
2455 {
2456 bool rc;
2457 device_lock_t dvl = device_getlock(dev);
2458
2459 mutex_enter(&dvl->dvl_mtx);
2460 rc = device_pmf_lock1(dev);
2461 mutex_exit(&dvl->dvl_mtx);
2462
2463 return rc;
2464 }
2465
2466 void
2467 device_pmf_unlock(device_t dev)
2468 {
2469 device_lock_t dvl = device_getlock(dev);
2470
2471 KASSERT(dvl->dvl_nlock > 0);
2472 mutex_enter(&dvl->dvl_mtx);
2473 if (--dvl->dvl_nlock == 0)
2474 dvl->dvl_holder = NULL;
2475 cv_signal(&dvl->dvl_cv);
2476 pmflock_debug(dev, __func__, __LINE__);
2477 mutex_exit(&dvl->dvl_mtx);
2478 }
2479
2480 device_lock_t
2481 device_getlock(device_t dev)
2482 {
2483 return &dev->dv_lock;
2484 }
2485
2486 void *
2487 device_pmf_bus_private(device_t dev)
2488 {
2489 return dev->dv_bus_private;
2490 }
2491
2492 bool
2493 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2494 {
2495 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2496 return true;
2497 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2498 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2499 return false;
2500 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2501 dev->dv_bus_suspend != NULL &&
2502 !(*dev->dv_bus_suspend)(dev, qual))
2503 return false;
2504
2505 dev->dv_flags |= DVF_BUS_SUSPENDED;
2506 return true;
2507 }
2508
2509 bool
2510 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2511 {
2512 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2513 return true;
2514 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2515 dev->dv_bus_resume != NULL &&
2516 !(*dev->dv_bus_resume)(dev, qual))
2517 return false;
2518
2519 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2520 return true;
2521 }
2522
2523 bool
2524 device_pmf_bus_shutdown(device_t dev, int how)
2525 {
2526
2527 if (*dev->dv_bus_shutdown != NULL &&
2528 !(*dev->dv_bus_shutdown)(dev, how))
2529 return false;
2530 return true;
2531 }
2532
2533 void
2534 device_pmf_bus_register(device_t dev, void *priv,
2535 bool (*suspend)(device_t, const pmf_qual_t *),
2536 bool (*resume)(device_t, const pmf_qual_t *),
2537 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2538 {
2539 dev->dv_bus_private = priv;
2540 dev->dv_bus_resume = resume;
2541 dev->dv_bus_suspend = suspend;
2542 dev->dv_bus_shutdown = shutdown;
2543 dev->dv_bus_deregister = deregister;
2544 }
2545
2546 void
2547 device_pmf_bus_deregister(device_t dev)
2548 {
2549 if (dev->dv_bus_deregister == NULL)
2550 return;
2551 (*dev->dv_bus_deregister)(dev);
2552 dev->dv_bus_private = NULL;
2553 dev->dv_bus_suspend = NULL;
2554 dev->dv_bus_resume = NULL;
2555 dev->dv_bus_deregister = NULL;
2556 }
2557
2558 void *
2559 device_pmf_class_private(device_t dev)
2560 {
2561 return dev->dv_class_private;
2562 }
2563
2564 bool
2565 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2566 {
2567 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2568 return true;
2569 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2570 dev->dv_class_suspend != NULL &&
2571 !(*dev->dv_class_suspend)(dev, qual))
2572 return false;
2573
2574 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2575 return true;
2576 }
2577
2578 bool
2579 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2580 {
2581 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2582 return true;
2583 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2584 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2585 return false;
2586 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2587 dev->dv_class_resume != NULL &&
2588 !(*dev->dv_class_resume)(dev, qual))
2589 return false;
2590
2591 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2592 return true;
2593 }
2594
2595 void
2596 device_pmf_class_register(device_t dev, void *priv,
2597 bool (*suspend)(device_t, const pmf_qual_t *),
2598 bool (*resume)(device_t, const pmf_qual_t *),
2599 void (*deregister)(device_t))
2600 {
2601 dev->dv_class_private = priv;
2602 dev->dv_class_suspend = suspend;
2603 dev->dv_class_resume = resume;
2604 dev->dv_class_deregister = deregister;
2605 }
2606
2607 void
2608 device_pmf_class_deregister(device_t dev)
2609 {
2610 if (dev->dv_class_deregister == NULL)
2611 return;
2612 (*dev->dv_class_deregister)(dev);
2613 dev->dv_class_private = NULL;
2614 dev->dv_class_suspend = NULL;
2615 dev->dv_class_resume = NULL;
2616 dev->dv_class_deregister = NULL;
2617 }
2618
2619 bool
2620 device_active(device_t dev, devactive_t type)
2621 {
2622 size_t i;
2623
2624 if (dev->dv_activity_count == 0)
2625 return false;
2626
2627 for (i = 0; i < dev->dv_activity_count; ++i) {
2628 if (dev->dv_activity_handlers[i] == NULL)
2629 break;
2630 (*dev->dv_activity_handlers[i])(dev, type);
2631 }
2632
2633 return true;
2634 }
2635
2636 bool
2637 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2638 {
2639 void (**new_handlers)(device_t, devactive_t);
2640 void (**old_handlers)(device_t, devactive_t);
2641 size_t i, old_size, new_size;
2642 int s;
2643
2644 old_handlers = dev->dv_activity_handlers;
2645 old_size = dev->dv_activity_count;
2646
2647 KASSERT(old_size == 0 || old_handlers != NULL);
2648
2649 for (i = 0; i < old_size; ++i) {
2650 KASSERT(old_handlers[i] != handler);
2651 if (old_handlers[i] == NULL) {
2652 old_handlers[i] = handler;
2653 return true;
2654 }
2655 }
2656
2657 new_size = old_size + 4;
2658 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2659
2660 for (i = 0; i < old_size; ++i)
2661 new_handlers[i] = old_handlers[i];
2662 new_handlers[old_size] = handler;
2663 for (i = old_size+1; i < new_size; ++i)
2664 new_handlers[i] = NULL;
2665
2666 s = splhigh();
2667 dev->dv_activity_count = new_size;
2668 dev->dv_activity_handlers = new_handlers;
2669 splx(s);
2670
2671 if (old_size > 0)
2672 kmem_free(old_handlers, sizeof(void * [old_size]));
2673
2674 return true;
2675 }
2676
2677 void
2678 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2679 {
2680 void (**old_handlers)(device_t, devactive_t);
2681 size_t i, old_size;
2682 int s;
2683
2684 old_handlers = dev->dv_activity_handlers;
2685 old_size = dev->dv_activity_count;
2686
2687 for (i = 0; i < old_size; ++i) {
2688 if (old_handlers[i] == handler)
2689 break;
2690 if (old_handlers[i] == NULL)
2691 return; /* XXX panic? */
2692 }
2693
2694 if (i == old_size)
2695 return; /* XXX panic? */
2696
2697 for (; i < old_size - 1; ++i) {
2698 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2699 continue;
2700
2701 if (i == 0) {
2702 s = splhigh();
2703 dev->dv_activity_count = 0;
2704 dev->dv_activity_handlers = NULL;
2705 splx(s);
2706 kmem_free(old_handlers, sizeof(void *[old_size]));
2707 }
2708 return;
2709 }
2710 old_handlers[i] = NULL;
2711 }
2712
2713 /* Return true iff the device_t `dev' exists at generation `gen'. */
2714 static bool
2715 device_exists_at(device_t dv, devgen_t gen)
2716 {
2717 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2718 dv->dv_add_gen <= gen;
2719 }
2720
2721 static bool
2722 deviter_visits(const deviter_t *di, device_t dv)
2723 {
2724 return device_exists_at(dv, di->di_gen);
2725 }
2726
2727 /*
2728 * Device Iteration
2729 *
2730 * deviter_t: a device iterator. Holds state for a "walk" visiting
2731 * each device_t's in the device tree.
2732 *
2733 * deviter_init(di, flags): initialize the device iterator `di'
2734 * to "walk" the device tree. deviter_next(di) will return
2735 * the first device_t in the device tree, or NULL if there are
2736 * no devices.
2737 *
2738 * `flags' is one or more of DEVITER_F_RW, indicating that the
2739 * caller intends to modify the device tree by calling
2740 * config_detach(9) on devices in the order that the iterator
2741 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2742 * nearest the "root" of the device tree to be returned, first;
2743 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2744 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2745 * indicating both that deviter_init() should not respect any
2746 * locks on the device tree, and that deviter_next(di) may run
2747 * in more than one LWP before the walk has finished.
2748 *
2749 * Only one DEVITER_F_RW iterator may be in the device tree at
2750 * once.
2751 *
2752 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2753 *
2754 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2755 * DEVITER_F_LEAVES_FIRST are used in combination.
2756 *
2757 * deviter_first(di, flags): initialize the device iterator `di'
2758 * and return the first device_t in the device tree, or NULL
2759 * if there are no devices. The statement
2760 *
2761 * dv = deviter_first(di);
2762 *
2763 * is shorthand for
2764 *
2765 * deviter_init(di);
2766 * dv = deviter_next(di);
2767 *
2768 * deviter_next(di): return the next device_t in the device tree,
2769 * or NULL if there are no more devices. deviter_next(di)
2770 * is undefined if `di' was not initialized with deviter_init() or
2771 * deviter_first().
2772 *
2773 * deviter_release(di): stops iteration (subsequent calls to
2774 * deviter_next() will return NULL), releases any locks and
2775 * resources held by the device iterator.
2776 *
2777 * Device iteration does not return device_t's in any particular
2778 * order. An iterator will never return the same device_t twice.
2779 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2780 * is called repeatedly on the same `di', it will eventually return
2781 * NULL. It is ok to attach/detach devices during device iteration.
2782 */
2783 void
2784 deviter_init(deviter_t *di, deviter_flags_t flags)
2785 {
2786 device_t dv;
2787
2788 memset(di, 0, sizeof(*di));
2789
2790 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2791 flags |= DEVITER_F_RW;
2792
2793 mutex_enter(&alldevs.lock);
2794 if ((flags & DEVITER_F_RW) != 0)
2795 alldevs.nwrite++;
2796 else
2797 alldevs.nread++;
2798 di->di_gen = alldevs.gen++;
2799 di->di_flags = flags;
2800
2801 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2802 case DEVITER_F_LEAVES_FIRST:
2803 TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
2804 if (!deviter_visits(di, dv))
2805 continue;
2806 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2807 }
2808 break;
2809 case DEVITER_F_ROOT_FIRST:
2810 TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
2811 if (!deviter_visits(di, dv))
2812 continue;
2813 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2814 }
2815 break;
2816 default:
2817 break;
2818 }
2819
2820 deviter_reinit(di);
2821 mutex_exit(&alldevs.lock);
2822 }
2823
2824 static void
2825 deviter_reinit(deviter_t *di)
2826 {
2827
2828 KASSERT(mutex_owned(&alldevs.lock));
2829 if ((di->di_flags & DEVITER_F_RW) != 0)
2830 di->di_prev = TAILQ_LAST(&alldevs.list, devicelist);
2831 else
2832 di->di_prev = TAILQ_FIRST(&alldevs.list);
2833 }
2834
2835 device_t
2836 deviter_first(deviter_t *di, deviter_flags_t flags)
2837 {
2838
2839 deviter_init(di, flags);
2840 return deviter_next(di);
2841 }
2842
2843 static device_t
2844 deviter_next2(deviter_t *di)
2845 {
2846 device_t dv;
2847
2848 KASSERT(mutex_owned(&alldevs.lock));
2849
2850 dv = di->di_prev;
2851
2852 if (dv == NULL)
2853 return NULL;
2854
2855 if ((di->di_flags & DEVITER_F_RW) != 0)
2856 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2857 else
2858 di->di_prev = TAILQ_NEXT(dv, dv_list);
2859
2860 return dv;
2861 }
2862
2863 static device_t
2864 deviter_next1(deviter_t *di)
2865 {
2866 device_t dv;
2867
2868 KASSERT(mutex_owned(&alldevs.lock));
2869
2870 do {
2871 dv = deviter_next2(di);
2872 } while (dv != NULL && !deviter_visits(di, dv));
2873
2874 return dv;
2875 }
2876
2877 device_t
2878 deviter_next(deviter_t *di)
2879 {
2880 device_t dv = NULL;
2881
2882 mutex_enter(&alldevs.lock);
2883 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2884 case 0:
2885 dv = deviter_next1(di);
2886 break;
2887 case DEVITER_F_LEAVES_FIRST:
2888 while (di->di_curdepth >= 0) {
2889 if ((dv = deviter_next1(di)) == NULL) {
2890 di->di_curdepth--;
2891 deviter_reinit(di);
2892 } else if (dv->dv_depth == di->di_curdepth)
2893 break;
2894 }
2895 break;
2896 case DEVITER_F_ROOT_FIRST:
2897 while (di->di_curdepth <= di->di_maxdepth) {
2898 if ((dv = deviter_next1(di)) == NULL) {
2899 di->di_curdepth++;
2900 deviter_reinit(di);
2901 } else if (dv->dv_depth == di->di_curdepth)
2902 break;
2903 }
2904 break;
2905 default:
2906 break;
2907 }
2908 mutex_exit(&alldevs.lock);
2909
2910 return dv;
2911 }
2912
2913 void
2914 deviter_release(deviter_t *di)
2915 {
2916 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2917
2918 mutex_enter(&alldevs.lock);
2919 if (rw)
2920 --alldevs.nwrite;
2921 else
2922 --alldevs.nread;
2923 /* XXX wake a garbage-collection thread */
2924 mutex_exit(&alldevs.lock);
2925 }
2926
2927 const char *
2928 cfdata_ifattr(const struct cfdata *cf)
2929 {
2930 return cf->cf_pspec->cfp_iattr;
2931 }
2932
2933 bool
2934 ifattr_match(const char *snull, const char *t)
2935 {
2936 return (snull == NULL) || strcmp(snull, t) == 0;
2937 }
2938
2939 void
2940 null_childdetached(device_t self, device_t child)
2941 {
2942 /* do nothing */
2943 }
2944
2945 static void
2946 sysctl_detach_setup(struct sysctllog **clog)
2947 {
2948
2949 sysctl_createv(clog, 0, NULL, NULL,
2950 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2951 CTLTYPE_BOOL, "detachall",
2952 SYSCTL_DESCR("Detach all devices at shutdown"),
2953 NULL, 0, &detachall, 0,
2954 CTL_KERN, CTL_CREATE, CTL_EOL);
2955 }
2956