subr_autoconf.c revision 1.252.4.2 1 /* $NetBSD: subr_autoconf.c,v 1.252.4.2 2017/04/28 06:00:33 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.252.4.2 2017/04/28 06:00:33 pgoyette Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110 #include <sys/localcount.h>
111
112 #include <sys/disk.h>
113
114 #include <sys/rndsource.h>
115
116 #include <machine/limits.h>
117
118 /*
119 * Autoconfiguration subroutines.
120 */
121
122 /*
123 * Device autoconfiguration timings are mixed into the entropy pool.
124 */
125 extern krndsource_t rnd_autoconf_source;
126
127 /*
128 * ioconf.c exports exactly two names: cfdata and cfroots. All system
129 * devices and drivers are found via these tables.
130 */
131 extern struct cfdata cfdata[];
132 extern const short cfroots[];
133
134 /*
135 * List of all cfdriver structures. We use this to detect duplicates
136 * when other cfdrivers are loaded.
137 */
138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
139 extern struct cfdriver * const cfdriver_list_initial[];
140
141 /*
142 * Initial list of cfattach's.
143 */
144 extern const struct cfattachinit cfattachinit[];
145
146 /*
147 * List of cfdata tables. We always have one such list -- the one
148 * built statically when the kernel was configured.
149 */
150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
151 static struct cftable initcftable;
152
153 #define ROOT ((device_t)NULL)
154
155 struct matchinfo {
156 cfsubmatch_t fn;
157 device_t parent;
158 const int *locs;
159 void *aux;
160 struct cfdata *match;
161 int pri;
162 };
163
164 struct alldevs_foray {
165 int af_s;
166 struct devicelist af_garbage;
167 };
168
169 static char *number(char *, int);
170 static void mapply(struct matchinfo *, cfdata_t);
171 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
172 static void config_devdelete(device_t);
173 static void config_devunlink(device_t, struct devicelist *);
174 static void config_makeroom(int, struct cfdriver *);
175 static void config_devlink(device_t);
176 static void config_alldevs_enter(struct alldevs_foray *);
177 static void config_alldevs_exit(struct alldevs_foray *);
178 static void config_add_attrib_dict(device_t);
179
180 static void config_collect_garbage(struct devicelist *);
181 static void config_dump_garbage(struct devicelist *);
182
183 static void pmflock_debug(device_t, const char *, int);
184
185 static device_t deviter_next1(deviter_t *);
186 static void deviter_reinit(deviter_t *);
187
188 struct deferred_config {
189 TAILQ_ENTRY(deferred_config) dc_queue;
190 device_t dc_dev;
191 void (*dc_func)(device_t);
192 };
193
194 TAILQ_HEAD(deferred_config_head, deferred_config);
195
196 struct deferred_config_head deferred_config_queue =
197 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
198 struct deferred_config_head interrupt_config_queue =
199 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
200 int interrupt_config_threads = 8;
201 struct deferred_config_head mountroot_config_queue =
202 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
203 int mountroot_config_threads = 2;
204 static lwp_t **mountroot_config_lwpids;
205 static size_t mountroot_config_lwpids_size;
206 static bool root_is_mounted = false;
207
208 static void config_process_deferred(struct deferred_config_head *, device_t);
209
210 /* Hooks to finalize configuration once all real devices have been found. */
211 struct finalize_hook {
212 TAILQ_ENTRY(finalize_hook) f_list;
213 int (*f_func)(device_t);
214 device_t f_dev;
215 };
216 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
217 TAILQ_HEAD_INITIALIZER(config_finalize_list);
218 static int config_finalize_done;
219
220 /* list of all devices */
221 static struct {
222 kmutex_t lock;
223 struct devicelist list;
224 devgen_t gen;
225 int nread;
226 int nwrite;
227 bool garbage;
228 } alldevs __cacheline_aligned = {
229 .list = TAILQ_HEAD_INITIALIZER(alldevs.list),
230 .gen = 1,
231 .nread = 0,
232 .nwrite = 0,
233 .garbage = false,
234 };
235
236 static int config_pending; /* semaphore for mountroot */
237 static kmutex_t config_misc_lock;
238 static kcondvar_t config_misc_cv;
239 static kcondvar_t config_drain_cv;
240
241 static bool detachall = false;
242
243 #define STREQ(s1, s2) \
244 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
245
246 static bool config_initialized = false; /* config_init() has been called. */
247
248 static int config_do_twiddle;
249 static callout_t config_twiddle_ch;
250
251 static void sysctl_detach_setup(struct sysctllog **);
252
253 int no_devmon_insert(const char *, prop_dictionary_t);
254 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
255
256 typedef int (*cfdriver_fn)(struct cfdriver *);
257 static int
258 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
259 cfdriver_fn drv_do, cfdriver_fn drv_undo,
260 const char *style, bool dopanic)
261 {
262 void (*pr)(const char *, ...) __printflike(1, 2) =
263 dopanic ? panic : printf;
264 int i, error = 0, e2 __diagused;
265
266 for (i = 0; cfdriverv[i] != NULL; i++) {
267 if ((error = drv_do(cfdriverv[i])) != 0) {
268 pr("configure: `%s' driver %s failed: %d",
269 cfdriverv[i]->cd_name, style, error);
270 goto bad;
271 }
272 }
273
274 KASSERT(error == 0);
275 return 0;
276
277 bad:
278 printf("\n");
279 for (i--; i >= 0; i--) {
280 e2 = drv_undo(cfdriverv[i]);
281 KASSERT(e2 == 0);
282 }
283
284 return error;
285 }
286
287 typedef int (*cfattach_fn)(const char *, struct cfattach *);
288 static int
289 frob_cfattachvec(const struct cfattachinit *cfattachv,
290 cfattach_fn att_do, cfattach_fn att_undo,
291 const char *style, bool dopanic)
292 {
293 const struct cfattachinit *cfai = NULL;
294 void (*pr)(const char *, ...) __printflike(1, 2) =
295 dopanic ? panic : printf;
296 int j = 0, error = 0, e2 __diagused;
297
298 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
299 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
300 if ((error = att_do(cfai->cfai_name,
301 cfai->cfai_list[j])) != 0) {
302 pr("configure: attachment `%s' "
303 "of `%s' driver %s failed: %d",
304 cfai->cfai_list[j]->ca_name,
305 cfai->cfai_name, style, error);
306 goto bad;
307 }
308 }
309 }
310
311 KASSERT(error == 0);
312 return 0;
313
314 bad:
315 /*
316 * Rollback in reverse order. dunno if super-important, but
317 * do that anyway. Although the code looks a little like
318 * someone did a little integration (in the math sense).
319 */
320 printf("\n");
321 if (cfai) {
322 bool last;
323
324 for (last = false; last == false; ) {
325 if (cfai == &cfattachv[0])
326 last = true;
327 for (j--; j >= 0; j--) {
328 e2 = att_undo(cfai->cfai_name,
329 cfai->cfai_list[j]);
330 KASSERT(e2 == 0);
331 }
332 if (!last) {
333 cfai--;
334 for (j = 0; cfai->cfai_list[j] != NULL; j++)
335 ;
336 }
337 }
338 }
339
340 return error;
341 }
342
343 /*
344 * Initialize the autoconfiguration data structures. Normally this
345 * is done by configure(), but some platforms need to do this very
346 * early (to e.g. initialize the console).
347 */
348 void
349 config_init(void)
350 {
351
352 KASSERT(config_initialized == false);
353
354 mutex_init(&alldevs.lock, MUTEX_DEFAULT, IPL_VM);
355
356 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
357 cv_init(&config_misc_cv, "cfgmisc");
358 cv_init(&config_drain_cv, "cfgdrain");
359
360 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
361
362 frob_cfdrivervec(cfdriver_list_initial,
363 config_cfdriver_attach, NULL, "bootstrap", true);
364 frob_cfattachvec(cfattachinit,
365 config_cfattach_attach, NULL, "bootstrap", true);
366
367 initcftable.ct_cfdata = cfdata;
368 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
369
370 config_initialized = true;
371 }
372
373 /*
374 * Init or fini drivers and attachments. Either all or none
375 * are processed (via rollback). It would be nice if this were
376 * atomic to outside consumers, but with the current state of
377 * locking ...
378 */
379 int
380 config_init_component(struct cfdriver * const *cfdriverv,
381 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
382 {
383 int error;
384
385 if ((error = frob_cfdrivervec(cfdriverv,
386 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
387 return error;
388 if ((error = frob_cfattachvec(cfattachv,
389 config_cfattach_attach, config_cfattach_detach,
390 "init", false)) != 0) {
391 frob_cfdrivervec(cfdriverv,
392 config_cfdriver_detach, NULL, "init rollback", true);
393 return error;
394 }
395 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
396 frob_cfattachvec(cfattachv,
397 config_cfattach_detach, NULL, "init rollback", true);
398 frob_cfdrivervec(cfdriverv,
399 config_cfdriver_detach, NULL, "init rollback", true);
400 return error;
401 }
402
403 return 0;
404 }
405
406 int
407 config_fini_component(struct cfdriver * const *cfdriverv,
408 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
409 {
410 int error;
411
412 if ((error = config_cfdata_detach(cfdatav)) != 0)
413 return error;
414 if ((error = frob_cfattachvec(cfattachv,
415 config_cfattach_detach, config_cfattach_attach,
416 "fini", false)) != 0) {
417 if (config_cfdata_attach(cfdatav, 0) != 0)
418 panic("config_cfdata fini rollback failed");
419 return error;
420 }
421 if ((error = frob_cfdrivervec(cfdriverv,
422 config_cfdriver_detach, config_cfdriver_attach,
423 "fini", false)) != 0) {
424 frob_cfattachvec(cfattachv,
425 config_cfattach_attach, NULL, "fini rollback", true);
426 if (config_cfdata_attach(cfdatav, 0) != 0)
427 panic("config_cfdata fini rollback failed");
428 return error;
429 }
430
431 return 0;
432 }
433
434 void
435 config_init_mi(void)
436 {
437
438 if (!config_initialized)
439 config_init();
440
441 sysctl_detach_setup(NULL);
442 }
443
444 void
445 config_deferred(device_t dev)
446 {
447 config_process_deferred(&deferred_config_queue, dev);
448 config_process_deferred(&interrupt_config_queue, dev);
449 config_process_deferred(&mountroot_config_queue, dev);
450 }
451
452 static void
453 config_interrupts_thread(void *cookie)
454 {
455 struct deferred_config *dc;
456
457 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
458 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
459 (*dc->dc_func)(dc->dc_dev);
460 config_pending_decr(dc->dc_dev);
461 kmem_free(dc, sizeof(*dc));
462 }
463 kthread_exit(0);
464 }
465
466 void
467 config_create_interruptthreads(void)
468 {
469 int i;
470
471 for (i = 0; i < interrupt_config_threads; i++) {
472 (void)kthread_create(PRI_NONE, 0, NULL,
473 config_interrupts_thread, NULL, NULL, "configintr");
474 }
475 }
476
477 static void
478 config_mountroot_thread(void *cookie)
479 {
480 struct deferred_config *dc;
481
482 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
483 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
484 (*dc->dc_func)(dc->dc_dev);
485 kmem_free(dc, sizeof(*dc));
486 }
487 kthread_exit(0);
488 }
489
490 void
491 config_create_mountrootthreads(void)
492 {
493 int i;
494
495 if (!root_is_mounted)
496 root_is_mounted = true;
497
498 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
499 mountroot_config_threads;
500 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
501 KM_NOSLEEP);
502 KASSERT(mountroot_config_lwpids);
503 for (i = 0; i < mountroot_config_threads; i++) {
504 mountroot_config_lwpids[i] = 0;
505 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
506 config_mountroot_thread, NULL,
507 &mountroot_config_lwpids[i],
508 "configroot");
509 }
510 }
511
512 void
513 config_finalize_mountroot(void)
514 {
515 int i, error;
516
517 for (i = 0; i < mountroot_config_threads; i++) {
518 if (mountroot_config_lwpids[i] == 0)
519 continue;
520
521 error = kthread_join(mountroot_config_lwpids[i]);
522 if (error)
523 printf("%s: thread %x joined with error %d\n",
524 __func__, i, error);
525 }
526 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
527 }
528
529 /*
530 * Announce device attach/detach to userland listeners.
531 */
532
533 int
534 no_devmon_insert(const char *name, prop_dictionary_t p)
535 {
536
537 return ENODEV;
538 }
539
540 static void
541 devmon_report_device(device_t dev, bool isattach)
542 {
543 prop_dictionary_t ev;
544 const char *parent;
545 const char *what;
546 device_t pdev = device_parent(dev);
547
548 /* If currently no drvctl device, just return */
549 if (devmon_insert_vec == no_devmon_insert)
550 return;
551
552 ev = prop_dictionary_create();
553 if (ev == NULL)
554 return;
555
556 what = (isattach ? "device-attach" : "device-detach");
557 parent = (pdev == NULL ? "root" : device_xname(pdev));
558 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
559 !prop_dictionary_set_cstring(ev, "parent", parent)) {
560 prop_object_release(ev);
561 return;
562 }
563
564 if ((*devmon_insert_vec)(what, ev) != 0)
565 prop_object_release(ev);
566 }
567
568 /*
569 * Add a cfdriver to the system.
570 */
571 int
572 config_cfdriver_attach(struct cfdriver *cd)
573 {
574 struct cfdriver *lcd;
575
576 /* Make sure this driver isn't already in the system. */
577 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
578 if (STREQ(lcd->cd_name, cd->cd_name))
579 return EEXIST;
580 }
581 LIST_INIT(&cd->cd_attach);
582 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
583
584 return 0;
585 }
586
587 /*
588 * Remove a cfdriver from the system.
589 */
590 int
591 config_cfdriver_detach(struct cfdriver *cd)
592 {
593 struct alldevs_foray af;
594 int i, rc = 0;
595
596 config_alldevs_enter(&af);
597 /* Make sure there are no active instances. */
598 for (i = 0; i < cd->cd_ndevs; i++) {
599 if (cd->cd_devs[i] != NULL) {
600 rc = EBUSY;
601 break;
602 }
603 }
604 config_alldevs_exit(&af);
605 if (rc != 0)
606 return rc;
607
608 /* ...and no attachments loaded. */
609 if (LIST_EMPTY(&cd->cd_attach) == 0)
610 return EBUSY;
611
612 LIST_REMOVE(cd, cd_list);
613
614 KASSERT(cd->cd_devs == NULL);
615
616 return 0;
617 }
618
619 /*
620 * Look up a cfdriver by name.
621 */
622 struct cfdriver *
623 config_cfdriver_lookup(const char *name)
624 {
625 struct cfdriver *cd;
626
627 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
628 if (STREQ(cd->cd_name, name))
629 return cd;
630 }
631
632 return NULL;
633 }
634
635 /*
636 * Add a cfattach to the specified driver.
637 */
638 int
639 config_cfattach_attach(const char *driver, struct cfattach *ca)
640 {
641 struct cfattach *lca;
642 struct cfdriver *cd;
643
644 cd = config_cfdriver_lookup(driver);
645 if (cd == NULL)
646 return ESRCH;
647
648 /* Make sure this attachment isn't already on this driver. */
649 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
650 if (STREQ(lca->ca_name, ca->ca_name))
651 return EEXIST;
652 }
653
654 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
655
656 return 0;
657 }
658
659 /*
660 * Remove a cfattach from the specified driver.
661 */
662 int
663 config_cfattach_detach(const char *driver, struct cfattach *ca)
664 {
665 struct alldevs_foray af;
666 struct cfdriver *cd;
667 device_t dev;
668 int i, rc = 0;
669
670 cd = config_cfdriver_lookup(driver);
671 if (cd == NULL)
672 return ESRCH;
673
674 config_alldevs_enter(&af);
675 /* Make sure there are no active instances. */
676 for (i = 0; i < cd->cd_ndevs; i++) {
677 if ((dev = cd->cd_devs[i]) == NULL)
678 continue;
679 if (dev->dv_cfattach == ca) {
680 rc = EBUSY;
681 break;
682 }
683 }
684 config_alldevs_exit(&af);
685
686 if (rc != 0)
687 return rc;
688
689 LIST_REMOVE(ca, ca_list);
690
691 return 0;
692 }
693
694 /*
695 * Look up a cfattach by name.
696 */
697 static struct cfattach *
698 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
699 {
700 struct cfattach *ca;
701
702 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
703 if (STREQ(ca->ca_name, atname))
704 return ca;
705 }
706
707 return NULL;
708 }
709
710 /*
711 * Look up a cfattach by driver/attachment name.
712 */
713 struct cfattach *
714 config_cfattach_lookup(const char *name, const char *atname)
715 {
716 struct cfdriver *cd;
717
718 cd = config_cfdriver_lookup(name);
719 if (cd == NULL)
720 return NULL;
721
722 return config_cfattach_lookup_cd(cd, atname);
723 }
724
725 /*
726 * Apply the matching function and choose the best. This is used
727 * a few times and we want to keep the code small.
728 */
729 static void
730 mapply(struct matchinfo *m, cfdata_t cf)
731 {
732 int pri;
733
734 if (m->fn != NULL) {
735 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
736 } else {
737 pri = config_match(m->parent, cf, m->aux);
738 }
739 if (pri > m->pri) {
740 m->match = cf;
741 m->pri = pri;
742 }
743 }
744
745 int
746 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
747 {
748 const struct cfiattrdata *ci;
749 const struct cflocdesc *cl;
750 int nlocs, i;
751
752 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
753 KASSERT(ci);
754 nlocs = ci->ci_loclen;
755 KASSERT(!nlocs || locs);
756 for (i = 0; i < nlocs; i++) {
757 cl = &ci->ci_locdesc[i];
758 if (cl->cld_defaultstr != NULL &&
759 cf->cf_loc[i] == cl->cld_default)
760 continue;
761 if (cf->cf_loc[i] == locs[i])
762 continue;
763 return 0;
764 }
765
766 return config_match(parent, cf, aux);
767 }
768
769 /*
770 * Helper function: check whether the driver supports the interface attribute
771 * and return its descriptor structure.
772 */
773 static const struct cfiattrdata *
774 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
775 {
776 const struct cfiattrdata * const *cpp;
777
778 if (cd->cd_attrs == NULL)
779 return 0;
780
781 for (cpp = cd->cd_attrs; *cpp; cpp++) {
782 if (STREQ((*cpp)->ci_name, ia)) {
783 /* Match. */
784 return *cpp;
785 }
786 }
787 return 0;
788 }
789
790 /*
791 * Lookup an interface attribute description by name.
792 * If the driver is given, consider only its supported attributes.
793 */
794 const struct cfiattrdata *
795 cfiattr_lookup(const char *name, const struct cfdriver *cd)
796 {
797 const struct cfdriver *d;
798 const struct cfiattrdata *ia;
799
800 if (cd)
801 return cfdriver_get_iattr(cd, name);
802
803 LIST_FOREACH(d, &allcfdrivers, cd_list) {
804 ia = cfdriver_get_iattr(d, name);
805 if (ia)
806 return ia;
807 }
808 return 0;
809 }
810
811 /*
812 * Determine if `parent' is a potential parent for a device spec based
813 * on `cfp'.
814 */
815 static int
816 cfparent_match(const device_t parent, const struct cfparent *cfp)
817 {
818 struct cfdriver *pcd;
819
820 /* We don't match root nodes here. */
821 if (cfp == NULL)
822 return 0;
823
824 pcd = parent->dv_cfdriver;
825 KASSERT(pcd != NULL);
826
827 /*
828 * First, ensure this parent has the correct interface
829 * attribute.
830 */
831 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
832 return 0;
833
834 /*
835 * If no specific parent device instance was specified (i.e.
836 * we're attaching to the attribute only), we're done!
837 */
838 if (cfp->cfp_parent == NULL)
839 return 1;
840
841 /*
842 * Check the parent device's name.
843 */
844 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
845 return 0; /* not the same parent */
846
847 /*
848 * Make sure the unit number matches.
849 */
850 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
851 cfp->cfp_unit == parent->dv_unit)
852 return 1;
853
854 /* Unit numbers don't match. */
855 return 0;
856 }
857
858 /*
859 * Helper for config_cfdata_attach(): check all devices whether it could be
860 * parent any attachment in the config data table passed, and rescan.
861 */
862 static void
863 rescan_with_cfdata(const struct cfdata *cf)
864 {
865 device_t d;
866 const struct cfdata *cf1;
867 deviter_t di;
868
869
870 /*
871 * "alldevs" is likely longer than a modules's cfdata, so make it
872 * the outer loop.
873 */
874 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
875
876 if (!(d->dv_cfattach->ca_rescan))
877 continue;
878
879 for (cf1 = cf; cf1->cf_name; cf1++) {
880
881 if (!cfparent_match(d, cf1->cf_pspec))
882 continue;
883
884 (*d->dv_cfattach->ca_rescan)(d,
885 cfdata_ifattr(cf1), cf1->cf_loc);
886
887 config_deferred(d);
888 }
889 }
890 deviter_release(&di);
891 }
892
893 /*
894 * Attach a supplemental config data table and rescan potential
895 * parent devices if required.
896 */
897 int
898 config_cfdata_attach(cfdata_t cf, int scannow)
899 {
900 struct cftable *ct;
901
902 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
903 ct->ct_cfdata = cf;
904 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
905
906 if (scannow)
907 rescan_with_cfdata(cf);
908
909 return 0;
910 }
911
912 /*
913 * Helper for config_cfdata_detach: check whether a device is
914 * found through any attachment in the config data table.
915 */
916 static int
917 dev_in_cfdata(device_t d, cfdata_t cf)
918 {
919 const struct cfdata *cf1;
920
921 for (cf1 = cf; cf1->cf_name; cf1++)
922 if (d->dv_cfdata == cf1)
923 return 1;
924
925 return 0;
926 }
927
928 /*
929 * Detach a supplemental config data table. Detach all devices found
930 * through that table (and thus keeping references to it) before.
931 */
932 int
933 config_cfdata_detach(cfdata_t cf)
934 {
935 device_t d;
936 int error = 0;
937 struct cftable *ct;
938 deviter_t di;
939
940 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
941 d = deviter_next(&di)) {
942 if (!dev_in_cfdata(d, cf))
943 continue;
944 if ((error = config_detach(d, 0)) != 0)
945 break;
946 }
947 deviter_release(&di);
948 if (error) {
949 aprint_error_dev(d, "unable to detach instance\n");
950 return error;
951 }
952
953 TAILQ_FOREACH(ct, &allcftables, ct_list) {
954 if (ct->ct_cfdata == cf) {
955 TAILQ_REMOVE(&allcftables, ct, ct_list);
956 kmem_free(ct, sizeof(*ct));
957 return 0;
958 }
959 }
960
961 /* not found -- shouldn't happen */
962 return EINVAL;
963 }
964
965 /*
966 * Invoke the "match" routine for a cfdata entry on behalf of
967 * an external caller, usually a "submatch" routine.
968 */
969 int
970 config_match(device_t parent, cfdata_t cf, void *aux)
971 {
972 struct cfattach *ca;
973
974 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
975 if (ca == NULL) {
976 /* No attachment for this entry, oh well. */
977 return 0;
978 }
979
980 return (*ca->ca_match)(parent, cf, aux);
981 }
982
983 /*
984 * Iterate over all potential children of some device, calling the given
985 * function (default being the child's match function) for each one.
986 * Nonzero returns are matches; the highest value returned is considered
987 * the best match. Return the `found child' if we got a match, or NULL
988 * otherwise. The `aux' pointer is simply passed on through.
989 *
990 * Note that this function is designed so that it can be used to apply
991 * an arbitrary function to all potential children (its return value
992 * can be ignored).
993 */
994 cfdata_t
995 config_search_loc(cfsubmatch_t fn, device_t parent,
996 const char *ifattr, const int *locs, void *aux)
997 {
998 struct cftable *ct;
999 cfdata_t cf;
1000 struct matchinfo m;
1001
1002 KASSERT(config_initialized);
1003 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
1004
1005 m.fn = fn;
1006 m.parent = parent;
1007 m.locs = locs;
1008 m.aux = aux;
1009 m.match = NULL;
1010 m.pri = 0;
1011
1012 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1013 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1014
1015 /* We don't match root nodes here. */
1016 if (!cf->cf_pspec)
1017 continue;
1018
1019 /*
1020 * Skip cf if no longer eligible, otherwise scan
1021 * through parents for one matching `parent', and
1022 * try match function.
1023 */
1024 if (cf->cf_fstate == FSTATE_FOUND)
1025 continue;
1026 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1027 cf->cf_fstate == FSTATE_DSTAR)
1028 continue;
1029
1030 /*
1031 * If an interface attribute was specified,
1032 * consider only children which attach to
1033 * that attribute.
1034 */
1035 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1036 continue;
1037
1038 if (cfparent_match(parent, cf->cf_pspec))
1039 mapply(&m, cf);
1040 }
1041 }
1042 return m.match;
1043 }
1044
1045 cfdata_t
1046 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
1047 void *aux)
1048 {
1049
1050 return config_search_loc(fn, parent, ifattr, NULL, aux);
1051 }
1052
1053 /*
1054 * Find the given root device.
1055 * This is much like config_search, but there is no parent.
1056 * Don't bother with multiple cfdata tables; the root node
1057 * must always be in the initial table.
1058 */
1059 cfdata_t
1060 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1061 {
1062 cfdata_t cf;
1063 const short *p;
1064 struct matchinfo m;
1065
1066 m.fn = fn;
1067 m.parent = ROOT;
1068 m.aux = aux;
1069 m.match = NULL;
1070 m.pri = 0;
1071 m.locs = 0;
1072 /*
1073 * Look at root entries for matching name. We do not bother
1074 * with found-state here since only one root should ever be
1075 * searched (and it must be done first).
1076 */
1077 for (p = cfroots; *p >= 0; p++) {
1078 cf = &cfdata[*p];
1079 if (strcmp(cf->cf_name, rootname) == 0)
1080 mapply(&m, cf);
1081 }
1082 return m.match;
1083 }
1084
1085 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1086
1087 /*
1088 * The given `aux' argument describes a device that has been found
1089 * on the given parent, but not necessarily configured. Locate the
1090 * configuration data for that device (using the submatch function
1091 * provided, or using candidates' cd_match configuration driver
1092 * functions) and attach it, and return its device_t. If the device was
1093 * not configured, call the given `print' function and return NULL.
1094 */
1095 device_t
1096 config_found_sm_loc(device_t parent,
1097 const char *ifattr, const int *locs, void *aux,
1098 cfprint_t print, cfsubmatch_t submatch)
1099 {
1100 cfdata_t cf;
1101
1102 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1103 return(config_attach_loc(parent, cf, locs, aux, print));
1104 if (print) {
1105 if (config_do_twiddle && cold)
1106 twiddle();
1107 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1108 }
1109
1110 /*
1111 * This has the effect of mixing in a single timestamp to the
1112 * entropy pool. Experiments indicate the estimator will almost
1113 * always attribute one bit of entropy to this sample; analysis
1114 * of device attach/detach timestamps on FreeBSD indicates 4
1115 * bits of entropy/sample so this seems appropriately conservative.
1116 */
1117 rnd_add_uint32(&rnd_autoconf_source, 0);
1118 return NULL;
1119 }
1120
1121 device_t
1122 config_found_ia(device_t parent, const char *ifattr, void *aux,
1123 cfprint_t print)
1124 {
1125
1126 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1127 }
1128
1129 device_t
1130 config_found(device_t parent, void *aux, cfprint_t print)
1131 {
1132
1133 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1134 }
1135
1136 /*
1137 * As above, but for root devices.
1138 */
1139 device_t
1140 config_rootfound(const char *rootname, void *aux)
1141 {
1142 cfdata_t cf;
1143
1144 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1145 return config_attach(ROOT, cf, aux, NULL);
1146 aprint_error("root device %s not configured\n", rootname);
1147 return NULL;
1148 }
1149
1150 /* just like sprintf(buf, "%d") except that it works from the end */
1151 static char *
1152 number(char *ep, int n)
1153 {
1154
1155 *--ep = 0;
1156 while (n >= 10) {
1157 *--ep = (n % 10) + '0';
1158 n /= 10;
1159 }
1160 *--ep = n + '0';
1161 return ep;
1162 }
1163
1164 /*
1165 * Expand the size of the cd_devs array if necessary.
1166 *
1167 * The caller must hold alldevs.lock. config_makeroom() may release and
1168 * re-acquire alldevs.lock, so callers should re-check conditions such
1169 * as alldevs.nwrite == 0 and alldevs.nread == 0 when config_makeroom()
1170 * returns.
1171 */
1172 static void
1173 config_makeroom(int n, struct cfdriver *cd)
1174 {
1175 int ondevs, nndevs;
1176 device_t *osp, *nsp;
1177
1178 KASSERT(mutex_owned(&alldevs.lock));
1179 alldevs.nwrite++;
1180
1181 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1182 ;
1183
1184 while (n >= cd->cd_ndevs) {
1185 /*
1186 * Need to expand the array.
1187 */
1188 ondevs = cd->cd_ndevs;
1189 osp = cd->cd_devs;
1190
1191 /*
1192 * Release alldevs.lock around allocation, which may
1193 * sleep.
1194 */
1195 mutex_exit(&alldevs.lock);
1196 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1197 if (nsp == NULL)
1198 panic("%s: could not expand cd_devs", __func__);
1199 mutex_enter(&alldevs.lock);
1200
1201 /*
1202 * If another thread moved the array while we did
1203 * not hold alldevs.lock, try again.
1204 */
1205 if (cd->cd_devs != osp) {
1206 mutex_exit(&alldevs.lock);
1207 kmem_free(nsp, sizeof(device_t[nndevs]));
1208 mutex_enter(&alldevs.lock);
1209 continue;
1210 }
1211
1212 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1213 if (ondevs != 0)
1214 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1215
1216 cd->cd_ndevs = nndevs;
1217 cd->cd_devs = nsp;
1218 if (ondevs != 0) {
1219 mutex_exit(&alldevs.lock);
1220 kmem_free(osp, sizeof(device_t[ondevs]));
1221 mutex_enter(&alldevs.lock);
1222 }
1223 }
1224 KASSERT(mutex_owned(&alldevs.lock));
1225 alldevs.nwrite--;
1226 }
1227
1228 /*
1229 * Put dev into the devices list.
1230 */
1231 static void
1232 config_devlink(device_t dev)
1233 {
1234
1235 mutex_enter(&alldevs.lock);
1236
1237 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1238
1239 dev->dv_add_gen = alldevs.gen;
1240 /* It is safe to add a device to the tail of the list while
1241 * readers and writers are in the list.
1242 */
1243 TAILQ_INSERT_TAIL(&alldevs.list, dev, dv_list);
1244 mutex_exit(&alldevs.lock);
1245 }
1246
1247 static void
1248 config_devfree(device_t dev)
1249 {
1250 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1251
1252 localcount_fini(&dev->dv_localcnt);
1253 if (dev->dv_cfattach->ca_devsize > 0)
1254 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1255 if (priv)
1256 kmem_free(dev, sizeof(*dev));
1257 }
1258
1259 /*
1260 * Caller must hold alldevs.lock.
1261 */
1262 static void
1263 config_devunlink(device_t dev, struct devicelist *garbage)
1264 {
1265 struct device_garbage *dg = &dev->dv_garbage;
1266 cfdriver_t cd = device_cfdriver(dev);
1267 int i;
1268
1269 KASSERT(mutex_owned(&alldevs.lock));
1270
1271 /* Unlink from device list. Link to garbage list. */
1272 TAILQ_REMOVE(&alldevs.list, dev, dv_list);
1273 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1274
1275 /* Remove from cfdriver's array. */
1276 cd->cd_devs[dev->dv_unit] = NULL;
1277
1278 /*
1279 * Release the reference that was held by (the caller of)
1280 * config_detach_release()
1281 */
1282 device_release(dev);
1283
1284 /* Now wait for references to drain - no new refs are possible */
1285 localcount_drain(&dev->dv_localcnt, &config_drain_cv,
1286 &alldevs.lock);
1287
1288 /*
1289 * If the device now has no units in use, unlink its softc array.
1290 */
1291 for (i = 0; i < cd->cd_ndevs; i++) {
1292 if (cd->cd_devs[i] != NULL)
1293 break;
1294 }
1295 /* Nothing found. Unlink, now. Deallocate, later. */
1296 if (i == cd->cd_ndevs) {
1297 dg->dg_ndevs = cd->cd_ndevs;
1298 dg->dg_devs = cd->cd_devs;
1299 cd->cd_devs = NULL;
1300 cd->cd_ndevs = 0;
1301 }
1302 }
1303
1304 static void
1305 config_devdelete(device_t dev)
1306 {
1307 struct device_garbage *dg = &dev->dv_garbage;
1308 device_lock_t dvl = device_getlock(dev);
1309
1310 if (dg->dg_devs != NULL)
1311 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1312
1313 cv_destroy(&dvl->dvl_cv);
1314 mutex_destroy(&dvl->dvl_mtx);
1315
1316 KASSERT(dev->dv_properties != NULL);
1317 prop_object_release(dev->dv_properties);
1318
1319 if (dev->dv_activity_handlers)
1320 panic("%s with registered handlers", __func__);
1321
1322 if (dev->dv_locators) {
1323 size_t amount = *--dev->dv_locators;
1324 kmem_free(dev->dv_locators, amount);
1325 }
1326
1327 config_devfree(dev);
1328 }
1329
1330 static int
1331 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1332 {
1333 int unit;
1334
1335 if (cf->cf_fstate == FSTATE_STAR) {
1336 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1337 if (cd->cd_devs[unit] == NULL)
1338 break;
1339 /*
1340 * unit is now the unit of the first NULL device pointer,
1341 * or max(cd->cd_ndevs,cf->cf_unit).
1342 */
1343 } else {
1344 unit = cf->cf_unit;
1345 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1346 unit = -1;
1347 }
1348 return unit;
1349 }
1350
1351 static int
1352 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1353 {
1354 struct alldevs_foray af;
1355 int unit;
1356
1357 config_alldevs_enter(&af);
1358 for (;;) {
1359 unit = config_unit_nextfree(cd, cf);
1360 if (unit == -1)
1361 break;
1362 if (unit < cd->cd_ndevs) {
1363 cd->cd_devs[unit] = dev;
1364 dev->dv_unit = unit;
1365 break;
1366 }
1367 config_makeroom(unit, cd);
1368 }
1369 config_alldevs_exit(&af);
1370
1371 return unit;
1372 }
1373
1374 static device_t
1375 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1376 {
1377 cfdriver_t cd;
1378 cfattach_t ca;
1379 size_t lname, lunit;
1380 const char *xunit;
1381 int myunit;
1382 char num[10];
1383 device_t dev;
1384 void *dev_private;
1385 const struct cfiattrdata *ia;
1386 device_lock_t dvl;
1387
1388 cd = config_cfdriver_lookup(cf->cf_name);
1389 if (cd == NULL)
1390 return NULL;
1391
1392 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1393 if (ca == NULL)
1394 return NULL;
1395
1396 /* get memory for all device vars */
1397 KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
1398 || ca->ca_devsize >= sizeof(struct device),
1399 "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
1400 sizeof(struct device));
1401 if (ca->ca_devsize > 0) {
1402 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1403 if (dev_private == NULL)
1404 panic("config_devalloc: memory allocation for device "
1405 "softc failed");
1406 } else {
1407 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1408 dev_private = NULL;
1409 }
1410
1411 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1412 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1413 } else {
1414 dev = dev_private;
1415 #ifdef DIAGNOSTIC
1416 printf("%s has not been converted to device_t\n", cd->cd_name);
1417 #endif
1418 }
1419 KASSERTMSG(dev, "%s: memory allocation for %s device_t failed",
1420 __func__, cd->cd_name);
1421
1422 dev->dv_class = cd->cd_class;
1423 dev->dv_cfdata = cf;
1424 dev->dv_cfdriver = cd;
1425 dev->dv_cfattach = ca;
1426 dev->dv_activity_count = 0;
1427 dev->dv_activity_handlers = NULL;
1428 dev->dv_private = dev_private;
1429 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1430 localcount_init(&dev->dv_localcnt);
1431
1432 myunit = config_unit_alloc(dev, cd, cf);
1433 if (myunit == -1) {
1434 config_devfree(dev);
1435 return NULL;
1436 }
1437
1438 /* compute length of name and decimal expansion of unit number */
1439 lname = strlen(cd->cd_name);
1440 xunit = number(&num[sizeof(num)], myunit);
1441 lunit = &num[sizeof(num)] - xunit;
1442 if (lname + lunit > sizeof(dev->dv_xname))
1443 panic("config_devalloc: device name too long");
1444
1445 dvl = device_getlock(dev);
1446
1447 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1448 cv_init(&dvl->dvl_cv, "pmfsusp");
1449
1450 memcpy(dev->dv_xname, cd->cd_name, lname);
1451 memcpy(dev->dv_xname + lname, xunit, lunit);
1452 dev->dv_parent = parent;
1453 if (parent != NULL)
1454 dev->dv_depth = parent->dv_depth + 1;
1455 else
1456 dev->dv_depth = 0;
1457 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1458 if (locs) {
1459 KASSERT(parent); /* no locators at root */
1460 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1461 dev->dv_locators =
1462 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1463 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1464 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1465 }
1466 dev->dv_properties = prop_dictionary_create();
1467 KASSERT(dev->dv_properties != NULL);
1468
1469 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1470 "device-driver", dev->dv_cfdriver->cd_name);
1471 prop_dictionary_set_uint16(dev->dv_properties,
1472 "device-unit", dev->dv_unit);
1473 if (parent != NULL) {
1474 prop_dictionary_set_cstring(dev->dv_properties,
1475 "device-parent", device_xname(parent));
1476 }
1477
1478 if (dev->dv_cfdriver->cd_attrs != NULL)
1479 config_add_attrib_dict(dev);
1480
1481 return dev;
1482 }
1483
1484 /*
1485 * Create an array of device attach attributes and add it
1486 * to the device's dv_properties dictionary.
1487 *
1488 * <key>interface-attributes</key>
1489 * <array>
1490 * <dict>
1491 * <key>attribute-name</key>
1492 * <string>foo</string>
1493 * <key>locators</key>
1494 * <array>
1495 * <dict>
1496 * <key>loc-name</key>
1497 * <string>foo-loc1</string>
1498 * </dict>
1499 * <dict>
1500 * <key>loc-name</key>
1501 * <string>foo-loc2</string>
1502 * <key>default</key>
1503 * <string>foo-loc2-default</string>
1504 * </dict>
1505 * ...
1506 * </array>
1507 * </dict>
1508 * ...
1509 * </array>
1510 */
1511
1512 static void
1513 config_add_attrib_dict(device_t dev)
1514 {
1515 int i, j;
1516 const struct cfiattrdata *ci;
1517 prop_dictionary_t attr_dict, loc_dict;
1518 prop_array_t attr_array, loc_array;
1519
1520 if ((attr_array = prop_array_create()) == NULL)
1521 return;
1522
1523 for (i = 0; ; i++) {
1524 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1525 break;
1526 if ((attr_dict = prop_dictionary_create()) == NULL)
1527 break;
1528 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1529 ci->ci_name);
1530
1531 /* Create an array of the locator names and defaults */
1532
1533 if (ci->ci_loclen != 0 &&
1534 (loc_array = prop_array_create()) != NULL) {
1535 for (j = 0; j < ci->ci_loclen; j++) {
1536 loc_dict = prop_dictionary_create();
1537 if (loc_dict == NULL)
1538 continue;
1539 prop_dictionary_set_cstring_nocopy(loc_dict,
1540 "loc-name", ci->ci_locdesc[j].cld_name);
1541 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1542 prop_dictionary_set_cstring_nocopy(
1543 loc_dict, "default",
1544 ci->ci_locdesc[j].cld_defaultstr);
1545 prop_array_set(loc_array, j, loc_dict);
1546 prop_object_release(loc_dict);
1547 }
1548 prop_dictionary_set_and_rel(attr_dict, "locators",
1549 loc_array);
1550 }
1551 prop_array_add(attr_array, attr_dict);
1552 prop_object_release(attr_dict);
1553 }
1554 if (i == 0)
1555 prop_object_release(attr_array);
1556 else
1557 prop_dictionary_set_and_rel(dev->dv_properties,
1558 "interface-attributes", attr_array);
1559
1560 return;
1561 }
1562
1563 /*
1564 * Attach a found device.
1565 */
1566 device_t
1567 config_attach_loc(device_t parent, cfdata_t cf,
1568 const int *locs, void *aux, cfprint_t print)
1569 {
1570 device_t dev;
1571 struct cftable *ct;
1572 const char *drvname;
1573
1574 dev = config_devalloc(parent, cf, locs);
1575 if (!dev)
1576 panic("config_attach: allocation of device softc failed");
1577
1578 /* XXX redundant - see below? */
1579 if (cf->cf_fstate != FSTATE_STAR) {
1580 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1581 cf->cf_fstate = FSTATE_FOUND;
1582 }
1583
1584 config_devlink(dev);
1585
1586 if (config_do_twiddle && cold)
1587 twiddle();
1588 else
1589 aprint_naive("Found ");
1590 /*
1591 * We want the next two printfs for normal, verbose, and quiet,
1592 * but not silent (in which case, we're twiddling, instead).
1593 */
1594 if (parent == ROOT) {
1595 aprint_naive("%s (root)", device_xname(dev));
1596 aprint_normal("%s (root)", device_xname(dev));
1597 } else {
1598 aprint_naive("%s at %s", device_xname(dev),
1599 device_xname(parent));
1600 aprint_normal("%s at %s", device_xname(dev),
1601 device_xname(parent));
1602 if (print)
1603 (void) (*print)(aux, NULL);
1604 }
1605
1606 /*
1607 * Before attaching, clobber any unfound devices that are
1608 * otherwise identical.
1609 * XXX code above is redundant?
1610 */
1611 drvname = dev->dv_cfdriver->cd_name;
1612 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1613 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1614 if (STREQ(cf->cf_name, drvname) &&
1615 cf->cf_unit == dev->dv_unit) {
1616 if (cf->cf_fstate == FSTATE_NOTFOUND)
1617 cf->cf_fstate = FSTATE_FOUND;
1618 }
1619 }
1620 }
1621 device_register(dev, aux);
1622
1623 /* Let userland know */
1624 devmon_report_device(dev, true);
1625
1626 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1627
1628 if (!device_pmf_is_registered(dev))
1629 aprint_debug_dev(dev, "WARNING: power management not "
1630 "supported\n");
1631
1632 config_process_deferred(&deferred_config_queue, dev);
1633
1634 device_register_post_config(dev, aux);
1635 return dev;
1636 }
1637
1638 device_t
1639 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1640 {
1641
1642 return config_attach_loc(parent, cf, NULL, aux, print);
1643 }
1644
1645 /*
1646 * As above, but for pseudo-devices. Pseudo-devices attached in this
1647 * way are silently inserted into the device tree, and their children
1648 * attached.
1649 *
1650 * Note that because pseudo-devices are attached silently, any information
1651 * the attach routine wishes to print should be prefixed with the device
1652 * name by the attach routine.
1653 */
1654 device_t
1655 config_attach_pseudo(cfdata_t cf)
1656 {
1657 device_t dev;
1658
1659 dev = config_devalloc(ROOT, cf, NULL);
1660 if (!dev)
1661 return NULL;
1662
1663 /* XXX mark busy in cfdata */
1664
1665 if (cf->cf_fstate != FSTATE_STAR) {
1666 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1667 cf->cf_fstate = FSTATE_FOUND;
1668 }
1669
1670 config_devlink(dev);
1671
1672 #if 0 /* XXXJRT not yet */
1673 device_register(dev, NULL); /* like a root node */
1674 #endif
1675
1676 /* Let userland know */
1677 devmon_report_device(dev, true);
1678
1679 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1680
1681 config_process_deferred(&deferred_config_queue, dev);
1682 return dev;
1683 }
1684
1685 /*
1686 * Caller must hold alldevs.lock.
1687 */
1688 static void
1689 config_collect_garbage(struct devicelist *garbage)
1690 {
1691 device_t dv;
1692
1693 KASSERT(!cpu_intr_p());
1694 KASSERT(!cpu_softintr_p());
1695 KASSERT(mutex_owned(&alldevs.lock));
1696
1697 while (alldevs.nwrite == 0 && alldevs.nread == 0 && alldevs.garbage) {
1698 TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
1699 if (dv->dv_del_gen != 0)
1700 break;
1701 }
1702 if (dv == NULL) {
1703 alldevs.garbage = false;
1704 break;
1705 }
1706 config_devunlink(dv, garbage);
1707 }
1708 KASSERT(mutex_owned(&alldevs.lock));
1709 }
1710
1711 static void
1712 config_dump_garbage(struct devicelist *garbage)
1713 {
1714 device_t dv;
1715
1716 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1717 TAILQ_REMOVE(garbage, dv, dv_list);
1718 config_devdelete(dv);
1719 }
1720 }
1721
1722 /*
1723 * Acquire a reference to a device, and then detach it.
1724 */
1725 int
1726 config_detach(device_t dev, int flags)
1727 {
1728
1729 device_acquire(dev);
1730 return config_detach_release(dev, flags);
1731 }
1732
1733 /*
1734 * Detach a device. Optionally forced (e.g. because of hardware
1735 * removal) and quiet. Returns zero if successful, non-zero
1736 * (an error code) otherwise.
1737 *
1738 * Note that this code wants to be run from a process context, so
1739 * that the detach can sleep to allow processes which have a device
1740 * open to run and unwind their stacks.
1741 *
1742 * Also note that this code requires that the caller have acquired
1743 * a reference to the device; callers that have not been updated
1744 * for localcount should instead call config_detach(). The reference
1745 * is released in all cases.
1746 */
1747 int
1748 config_detach_release(device_t dev, int flags)
1749 {
1750 struct alldevs_foray af;
1751 struct cftable *ct;
1752 cfdata_t cf;
1753 const struct cfattach *ca;
1754 struct cfdriver *cd;
1755 device_t d __diagused;
1756 int rv = 0;
1757
1758 cf = dev->dv_cfdata;
1759 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
1760 cf->cf_fstate == FSTATE_STAR),
1761 "config_detach: %s: bad device fstate: %d",
1762 device_xname(dev), cf ? cf->cf_fstate : -1);
1763
1764 cd = dev->dv_cfdriver;
1765 KASSERT(cd != NULL);
1766
1767 ca = dev->dv_cfattach;
1768 KASSERT(ca != NULL);
1769
1770 mutex_enter(&alldevs.lock);
1771 if (dev->dv_del_gen != 0) {
1772 mutex_exit(&alldevs.lock);
1773 #ifdef DIAGNOSTIC
1774 printf("%s: %s is already detached\n", __func__,
1775 device_xname(dev));
1776 #endif /* DIAGNOSTIC */
1777 device_release(dev);
1778 return ENOENT;
1779 }
1780 alldevs.nwrite++;
1781 mutex_exit(&alldevs.lock);
1782
1783 if (!detachall &&
1784 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1785 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1786 rv = EOPNOTSUPP;
1787 } else if (ca->ca_detach != NULL) {
1788 rv = (*ca->ca_detach)(dev, flags);
1789 } else
1790 rv = EOPNOTSUPP;
1791
1792 /*
1793 * If it was not possible to detach the device, then we either
1794 * panic() (for the forced but failed case), or return an error.
1795 *
1796 * If it was possible to detach the device, ensure that the
1797 * device is deactivated.
1798 */
1799 if (rv == 0)
1800 dev->dv_flags &= ~DVF_ACTIVE;
1801 else if ((flags & DETACH_FORCE) == 0)
1802 goto out;
1803 else {
1804 panic("config_detach: forced detach of %s failed (%d)",
1805 device_xname(dev), rv);
1806 }
1807
1808 /*
1809 * The device has now been successfully detached.
1810 */
1811
1812 /* Let userland know */
1813 devmon_report_device(dev, false);
1814
1815 #ifdef DIAGNOSTIC
1816 /*
1817 * Sanity: If you're successfully detached, you should have no
1818 * children. (Note that because children must be attached
1819 * after parents, we only need to search the latter part of
1820 * the list.)
1821 */
1822 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1823 d = TAILQ_NEXT(d, dv_list)) {
1824 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1825 printf("config_detach: detached device %s"
1826 " has children %s\n", device_xname(dev),
1827 device_xname(d));
1828 panic("config_detach");
1829 }
1830 }
1831 #endif
1832
1833 /* notify the parent that the child is gone */
1834 if (dev->dv_parent) {
1835 device_t p = dev->dv_parent;
1836 if (p->dv_cfattach->ca_childdetached)
1837 (*p->dv_cfattach->ca_childdetached)(p, dev);
1838 }
1839
1840 /*
1841 * Mark cfdata to show that the unit can be reused, if possible.
1842 */
1843 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1844 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1845 if (STREQ(cf->cf_name, cd->cd_name)) {
1846 if (cf->cf_fstate == FSTATE_FOUND &&
1847 cf->cf_unit == dev->dv_unit)
1848 cf->cf_fstate = FSTATE_NOTFOUND;
1849 }
1850 }
1851 }
1852
1853 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1854 aprint_normal_dev(dev, "detached\n");
1855
1856 out:
1857 config_alldevs_enter(&af);
1858 KASSERT(alldevs.nwrite != 0);
1859 --alldevs.nwrite;
1860 if (rv == 0 && dev->dv_del_gen == 0) {
1861 if (alldevs.nwrite == 0 && alldevs.nread == 0)
1862 config_devunlink(dev, &af.af_garbage);
1863 else {
1864 dev->dv_del_gen = alldevs.gen;
1865 alldevs.garbage = true;
1866 }
1867 }
1868 config_alldevs_exit(&af);
1869
1870 return rv;
1871 }
1872
1873 int
1874 config_detach_children(device_t parent, int flags)
1875 {
1876 device_t dv;
1877 deviter_t di;
1878 int error = 0;
1879
1880 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1881 dv = deviter_next(&di)) {
1882 if (device_parent(dv) != parent)
1883 continue;
1884 if ((error = config_detach(dv, flags)) != 0)
1885 break;
1886 }
1887 deviter_release(&di);
1888 return error;
1889 }
1890
1891 device_t
1892 shutdown_first(struct shutdown_state *s)
1893 {
1894 if (!s->initialized) {
1895 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1896 s->initialized = true;
1897 }
1898 return shutdown_next(s);
1899 }
1900
1901 device_t
1902 shutdown_next(struct shutdown_state *s)
1903 {
1904 device_t dv;
1905
1906 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1907 ;
1908
1909 if (dv == NULL)
1910 s->initialized = false;
1911
1912 return dv;
1913 }
1914
1915 bool
1916 config_detach_all(int how)
1917 {
1918 static struct shutdown_state s;
1919 device_t curdev;
1920 bool progress = false;
1921 int flags;
1922
1923 if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1924 return false;
1925
1926 if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1927 flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1928 else
1929 flags = DETACH_SHUTDOWN;
1930
1931 for (curdev = shutdown_first(&s); curdev != NULL;
1932 curdev = shutdown_next(&s)) {
1933 aprint_debug(" detaching %s, ", device_xname(curdev));
1934 if (config_detach(curdev, flags) == 0) {
1935 progress = true;
1936 aprint_debug("success.");
1937 } else
1938 aprint_debug("failed.");
1939 }
1940 return progress;
1941 }
1942
1943 static bool
1944 device_is_ancestor_of(device_t ancestor, device_t descendant)
1945 {
1946 device_t dv;
1947
1948 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1949 if (device_parent(dv) == ancestor)
1950 return true;
1951 }
1952 return false;
1953 }
1954
1955 int
1956 config_deactivate(device_t dev)
1957 {
1958 deviter_t di;
1959 const struct cfattach *ca;
1960 device_t descendant;
1961 int s, rv = 0, oflags;
1962
1963 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1964 descendant != NULL;
1965 descendant = deviter_next(&di)) {
1966 if (dev != descendant &&
1967 !device_is_ancestor_of(dev, descendant))
1968 continue;
1969
1970 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1971 continue;
1972
1973 ca = descendant->dv_cfattach;
1974 oflags = descendant->dv_flags;
1975
1976 descendant->dv_flags &= ~DVF_ACTIVE;
1977 if (ca->ca_activate == NULL)
1978 continue;
1979 s = splhigh();
1980 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1981 splx(s);
1982 if (rv != 0)
1983 descendant->dv_flags = oflags;
1984 }
1985 deviter_release(&di);
1986 return rv;
1987 }
1988
1989 /*
1990 * Defer the configuration of the specified device until all
1991 * of its parent's devices have been attached.
1992 */
1993 void
1994 config_defer(device_t dev, void (*func)(device_t))
1995 {
1996 struct deferred_config *dc;
1997
1998 if (dev->dv_parent == NULL)
1999 panic("config_defer: can't defer config of a root device");
2000
2001 #ifdef DIAGNOSTIC
2002 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
2003 if (dc->dc_dev == dev)
2004 panic("config_defer: deferred twice");
2005 }
2006 #endif
2007
2008 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2009 if (dc == NULL)
2010 panic("config_defer: unable to allocate callback");
2011
2012 dc->dc_dev = dev;
2013 dc->dc_func = func;
2014 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
2015 config_pending_incr(dev);
2016 }
2017
2018 /*
2019 * Defer some autoconfiguration for a device until after interrupts
2020 * are enabled.
2021 */
2022 void
2023 config_interrupts(device_t dev, void (*func)(device_t))
2024 {
2025 struct deferred_config *dc;
2026
2027 /*
2028 * If interrupts are enabled, callback now.
2029 */
2030 if (cold == 0) {
2031 (*func)(dev);
2032 return;
2033 }
2034
2035 #ifdef DIAGNOSTIC
2036 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
2037 if (dc->dc_dev == dev)
2038 panic("config_interrupts: deferred twice");
2039 }
2040 #endif
2041
2042 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2043 if (dc == NULL)
2044 panic("config_interrupts: unable to allocate callback");
2045
2046 dc->dc_dev = dev;
2047 dc->dc_func = func;
2048 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2049 config_pending_incr(dev);
2050 }
2051
2052 /*
2053 * Defer some autoconfiguration for a device until after root file system
2054 * is mounted (to load firmware etc).
2055 */
2056 void
2057 config_mountroot(device_t dev, void (*func)(device_t))
2058 {
2059 struct deferred_config *dc;
2060
2061 /*
2062 * If root file system is mounted, callback now.
2063 */
2064 if (root_is_mounted) {
2065 (*func)(dev);
2066 return;
2067 }
2068
2069 #ifdef DIAGNOSTIC
2070 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
2071 if (dc->dc_dev == dev)
2072 panic("%s: deferred twice", __func__);
2073 }
2074 #endif
2075
2076 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2077 if (dc == NULL)
2078 panic("%s: unable to allocate callback", __func__);
2079
2080 dc->dc_dev = dev;
2081 dc->dc_func = func;
2082 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2083 }
2084
2085 /*
2086 * Process a deferred configuration queue.
2087 */
2088 static void
2089 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2090 {
2091 struct deferred_config *dc, *ndc;
2092
2093 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
2094 ndc = TAILQ_NEXT(dc, dc_queue);
2095 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2096 TAILQ_REMOVE(queue, dc, dc_queue);
2097 (*dc->dc_func)(dc->dc_dev);
2098 config_pending_decr(dc->dc_dev);
2099 kmem_free(dc, sizeof(*dc));
2100 }
2101 }
2102 }
2103
2104 /*
2105 * Manipulate the config_pending semaphore.
2106 */
2107 void
2108 config_pending_incr(device_t dev)
2109 {
2110
2111 mutex_enter(&config_misc_lock);
2112 config_pending++;
2113 #ifdef DEBUG_AUTOCONF
2114 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2115 #endif
2116 mutex_exit(&config_misc_lock);
2117 }
2118
2119 void
2120 config_pending_decr(device_t dev)
2121 {
2122
2123 KASSERT(0 < config_pending);
2124 mutex_enter(&config_misc_lock);
2125 config_pending--;
2126 #ifdef DEBUG_AUTOCONF
2127 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2128 #endif
2129 if (config_pending == 0)
2130 cv_broadcast(&config_misc_cv);
2131 mutex_exit(&config_misc_lock);
2132 }
2133
2134 /*
2135 * Register a "finalization" routine. Finalization routines are
2136 * called iteratively once all real devices have been found during
2137 * autoconfiguration, for as long as any one finalizer has done
2138 * any work.
2139 */
2140 int
2141 config_finalize_register(device_t dev, int (*fn)(device_t))
2142 {
2143 struct finalize_hook *f;
2144
2145 /*
2146 * If finalization has already been done, invoke the
2147 * callback function now.
2148 */
2149 if (config_finalize_done) {
2150 while ((*fn)(dev) != 0)
2151 /* loop */ ;
2152 return 0;
2153 }
2154
2155 /* Ensure this isn't already on the list. */
2156 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2157 if (f->f_func == fn && f->f_dev == dev)
2158 return EEXIST;
2159 }
2160
2161 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2162 f->f_func = fn;
2163 f->f_dev = dev;
2164 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2165
2166 return 0;
2167 }
2168
2169 void
2170 config_finalize(void)
2171 {
2172 struct finalize_hook *f;
2173 struct pdevinit *pdev;
2174 extern struct pdevinit pdevinit[];
2175 int errcnt, rv;
2176
2177 /*
2178 * Now that device driver threads have been created, wait for
2179 * them to finish any deferred autoconfiguration.
2180 */
2181 mutex_enter(&config_misc_lock);
2182 while (config_pending != 0)
2183 cv_wait(&config_misc_cv, &config_misc_lock);
2184 mutex_exit(&config_misc_lock);
2185
2186 KERNEL_LOCK(1, NULL);
2187
2188 /* Attach pseudo-devices. */
2189 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2190 (*pdev->pdev_attach)(pdev->pdev_count);
2191
2192 /* Run the hooks until none of them does any work. */
2193 do {
2194 rv = 0;
2195 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2196 rv |= (*f->f_func)(f->f_dev);
2197 } while (rv != 0);
2198
2199 config_finalize_done = 1;
2200
2201 /* Now free all the hooks. */
2202 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2203 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2204 kmem_free(f, sizeof(*f));
2205 }
2206
2207 KERNEL_UNLOCK_ONE(NULL);
2208
2209 errcnt = aprint_get_error_count();
2210 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2211 (boothowto & AB_VERBOSE) == 0) {
2212 mutex_enter(&config_misc_lock);
2213 if (config_do_twiddle) {
2214 config_do_twiddle = 0;
2215 printf_nolog(" done.\n");
2216 }
2217 mutex_exit(&config_misc_lock);
2218 }
2219 if (errcnt != 0) {
2220 printf("WARNING: %d error%s while detecting hardware; "
2221 "check system log.\n", errcnt,
2222 errcnt == 1 ? "" : "s");
2223 }
2224 }
2225
2226 void
2227 config_twiddle_init(void)
2228 {
2229
2230 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2231 config_do_twiddle = 1;
2232 }
2233 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2234 }
2235
2236 void
2237 config_twiddle_fn(void *cookie)
2238 {
2239
2240 mutex_enter(&config_misc_lock);
2241 if (config_do_twiddle) {
2242 twiddle();
2243 callout_schedule(&config_twiddle_ch, mstohz(100));
2244 }
2245 mutex_exit(&config_misc_lock);
2246 }
2247
2248 static void
2249 config_alldevs_enter(struct alldevs_foray *af)
2250 {
2251 TAILQ_INIT(&af->af_garbage);
2252 mutex_enter(&alldevs.lock);
2253 config_collect_garbage(&af->af_garbage);
2254 }
2255
2256 static void
2257 config_alldevs_exit(struct alldevs_foray *af)
2258 {
2259 mutex_exit(&alldevs.lock);
2260 config_dump_garbage(&af->af_garbage);
2261 }
2262
2263 /*
2264 * device_acquire:
2265 *
2266 * Acquire a reference to the device.
2267 */
2268 void
2269 device_acquire(device_t dv)
2270 {
2271
2272 localcount_acquire(&dv->dv_localcnt);
2273 }
2274
2275 /*
2276 * device_lookup:
2277 *
2278 * Look up a device instance for a given driver.
2279 */
2280 device_t
2281 device_lookup(cfdriver_t cd, int unit)
2282 {
2283 device_t dv;
2284
2285 mutex_enter(&alldevs.lock);
2286 if (unit < 0 || unit >= cd->cd_ndevs)
2287 dv = NULL;
2288 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2289 dv = NULL;
2290 mutex_exit(&alldevs.lock);
2291
2292 return dv;
2293 }
2294
2295 /*
2296 * device_lookup_acquire:
2297 *
2298 * Look up a device instance for a given driver and
2299 * hold a reference to the device.
2300 */
2301 device_t
2302 device_lookup_acquire(cfdriver_t cd, int unit)
2303 {
2304 device_t dv;
2305
2306 mutex_enter(&alldevs.lock);
2307 if (unit < 0 || unit >= cd->cd_ndevs)
2308 dv = NULL;
2309 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2310 dv = NULL;
2311 if (dv != NULL)
2312 device_acquire(dv);
2313 mutex_exit(&alldevs.lock);
2314
2315 return dv;
2316 }
2317
2318 /*
2319 * device_release:
2320 *
2321 * Release the reference that was created by an earlier call to
2322 * device_acquire() or device_lookup_acquire().
2323 */
2324 void
2325 device_release(device_t dv)
2326 {
2327
2328 localcount_release(&dv->dv_localcnt, &config_drain_cv,
2329 &alldevs.lock);
2330 }
2331
2332 /*
2333 * device_lookup_private:
2334 *
2335 * Look up a softc instance for a given driver.
2336 */
2337 void *
2338 device_lookup_private(cfdriver_t cd, int unit)
2339 {
2340
2341 return device_private(device_lookup(cd, unit));
2342 }
2343
2344 /*
2345 * device_lookup_private_acquire:
2346 *
2347 * Look up the softc and acquire a reference to the device so it
2348 * won't disappear. Note that the caller must ensure that it is
2349 * capable of calling device_release() at some later point in
2350 * time, thus the returned private data must contain some data
2351 * to locate the original device. Thus the private data must be
2352 * present, not NULL! If this cannot be guaranteed, the caller
2353 * should use device_lookup_acquire() in order to retain the
2354 * device_t pointer.
2355 */
2356 void *
2357 device_lookup_private_acquire(cfdriver_t cd, int unit)
2358 {
2359 device_t dv;
2360 void *p;
2361
2362 dv = device_lookup_acquire(cd, unit);
2363 p = device_private(dv);
2364 KASSERTMSG(p != NULL || dv == NULL,
2365 "%s: device %s has no private data", __func__, cd->cd_name);
2366 return p;
2367 }
2368
2369 /*
2370 * device_find_by_xname:
2371 *
2372 * Returns the device of the given name or NULL if it doesn't exist.
2373 */
2374 device_t
2375 device_find_by_xname(const char *name)
2376 {
2377 device_t dv;
2378 deviter_t di;
2379
2380 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2381 if (strcmp(device_xname(dv), name) == 0)
2382 break;
2383 }
2384 deviter_release(&di);
2385
2386 return dv;
2387 }
2388
2389 /*
2390 * device_find_by_driver_unit:
2391 *
2392 * Returns the device of the given driver name and unit or
2393 * NULL if it doesn't exist.
2394 */
2395 device_t
2396 device_find_by_driver_unit(const char *name, int unit)
2397 {
2398 struct cfdriver *cd;
2399
2400 if ((cd = config_cfdriver_lookup(name)) == NULL)
2401 return NULL;
2402 return device_lookup(cd, unit);
2403 }
2404
2405 /*
2406 * device_find_by_driver_unit_acquire:
2407 *
2408 * Returns the device of the given driver name and unit or
2409 * NULL if it doesn't exist. If driver is found, it's
2410 * reference count is incremented so it won't go away.
2411 */
2412 device_t
2413 device_find_by_driver_unit_acquire(const char *name, int unit)
2414 {
2415 struct cfdriver *cd;
2416
2417 if ((cd = config_cfdriver_lookup(name)) == NULL)
2418 return NULL;
2419 return device_lookup_acquire(cd, unit);
2420 }
2421
2422 /*
2423 * Power management related functions.
2424 */
2425
2426 bool
2427 device_pmf_is_registered(device_t dev)
2428 {
2429 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2430 }
2431
2432 bool
2433 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2434 {
2435 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2436 return true;
2437 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2438 return false;
2439 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2440 dev->dv_driver_suspend != NULL &&
2441 !(*dev->dv_driver_suspend)(dev, qual))
2442 return false;
2443
2444 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2445 return true;
2446 }
2447
2448 bool
2449 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2450 {
2451 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2452 return true;
2453 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2454 return false;
2455 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2456 dev->dv_driver_resume != NULL &&
2457 !(*dev->dv_driver_resume)(dev, qual))
2458 return false;
2459
2460 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2461 return true;
2462 }
2463
2464 bool
2465 device_pmf_driver_shutdown(device_t dev, int how)
2466 {
2467
2468 if (*dev->dv_driver_shutdown != NULL &&
2469 !(*dev->dv_driver_shutdown)(dev, how))
2470 return false;
2471 return true;
2472 }
2473
2474 bool
2475 device_pmf_driver_register(device_t dev,
2476 bool (*suspend)(device_t, const pmf_qual_t *),
2477 bool (*resume)(device_t, const pmf_qual_t *),
2478 bool (*shutdown)(device_t, int))
2479 {
2480 dev->dv_driver_suspend = suspend;
2481 dev->dv_driver_resume = resume;
2482 dev->dv_driver_shutdown = shutdown;
2483 dev->dv_flags |= DVF_POWER_HANDLERS;
2484 return true;
2485 }
2486
2487 static const char *
2488 curlwp_name(void)
2489 {
2490 if (curlwp->l_name != NULL)
2491 return curlwp->l_name;
2492 else
2493 return curlwp->l_proc->p_comm;
2494 }
2495
2496 void
2497 device_pmf_driver_deregister(device_t dev)
2498 {
2499 device_lock_t dvl = device_getlock(dev);
2500
2501 dev->dv_driver_suspend = NULL;
2502 dev->dv_driver_resume = NULL;
2503
2504 mutex_enter(&dvl->dvl_mtx);
2505 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2506 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2507 /* Wake a thread that waits for the lock. That
2508 * thread will fail to acquire the lock, and then
2509 * it will wake the next thread that waits for the
2510 * lock, or else it will wake us.
2511 */
2512 cv_signal(&dvl->dvl_cv);
2513 pmflock_debug(dev, __func__, __LINE__);
2514 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2515 pmflock_debug(dev, __func__, __LINE__);
2516 }
2517 mutex_exit(&dvl->dvl_mtx);
2518 }
2519
2520 bool
2521 device_pmf_driver_child_register(device_t dev)
2522 {
2523 device_t parent = device_parent(dev);
2524
2525 if (parent == NULL || parent->dv_driver_child_register == NULL)
2526 return true;
2527 return (*parent->dv_driver_child_register)(dev);
2528 }
2529
2530 void
2531 device_pmf_driver_set_child_register(device_t dev,
2532 bool (*child_register)(device_t))
2533 {
2534 dev->dv_driver_child_register = child_register;
2535 }
2536
2537 static void
2538 pmflock_debug(device_t dev, const char *func, int line)
2539 {
2540 device_lock_t dvl = device_getlock(dev);
2541
2542 aprint_debug_dev(dev,
2543 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2544 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2545 }
2546
2547 static bool
2548 device_pmf_lock1(device_t dev)
2549 {
2550 device_lock_t dvl = device_getlock(dev);
2551
2552 while (device_pmf_is_registered(dev) &&
2553 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2554 dvl->dvl_nwait++;
2555 pmflock_debug(dev, __func__, __LINE__);
2556 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2557 pmflock_debug(dev, __func__, __LINE__);
2558 dvl->dvl_nwait--;
2559 }
2560 if (!device_pmf_is_registered(dev)) {
2561 pmflock_debug(dev, __func__, __LINE__);
2562 /* We could not acquire the lock, but some other thread may
2563 * wait for it, also. Wake that thread.
2564 */
2565 cv_signal(&dvl->dvl_cv);
2566 return false;
2567 }
2568 dvl->dvl_nlock++;
2569 dvl->dvl_holder = curlwp;
2570 pmflock_debug(dev, __func__, __LINE__);
2571 return true;
2572 }
2573
2574 bool
2575 device_pmf_lock(device_t dev)
2576 {
2577 bool rc;
2578 device_lock_t dvl = device_getlock(dev);
2579
2580 mutex_enter(&dvl->dvl_mtx);
2581 rc = device_pmf_lock1(dev);
2582 mutex_exit(&dvl->dvl_mtx);
2583
2584 return rc;
2585 }
2586
2587 void
2588 device_pmf_unlock(device_t dev)
2589 {
2590 device_lock_t dvl = device_getlock(dev);
2591
2592 KASSERT(dvl->dvl_nlock > 0);
2593 mutex_enter(&dvl->dvl_mtx);
2594 if (--dvl->dvl_nlock == 0)
2595 dvl->dvl_holder = NULL;
2596 cv_signal(&dvl->dvl_cv);
2597 pmflock_debug(dev, __func__, __LINE__);
2598 mutex_exit(&dvl->dvl_mtx);
2599 }
2600
2601 device_lock_t
2602 device_getlock(device_t dev)
2603 {
2604 return &dev->dv_lock;
2605 }
2606
2607 void *
2608 device_pmf_bus_private(device_t dev)
2609 {
2610 return dev->dv_bus_private;
2611 }
2612
2613 bool
2614 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2615 {
2616 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2617 return true;
2618 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2619 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2620 return false;
2621 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2622 dev->dv_bus_suspend != NULL &&
2623 !(*dev->dv_bus_suspend)(dev, qual))
2624 return false;
2625
2626 dev->dv_flags |= DVF_BUS_SUSPENDED;
2627 return true;
2628 }
2629
2630 bool
2631 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2632 {
2633 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2634 return true;
2635 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2636 dev->dv_bus_resume != NULL &&
2637 !(*dev->dv_bus_resume)(dev, qual))
2638 return false;
2639
2640 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2641 return true;
2642 }
2643
2644 bool
2645 device_pmf_bus_shutdown(device_t dev, int how)
2646 {
2647
2648 if (*dev->dv_bus_shutdown != NULL &&
2649 !(*dev->dv_bus_shutdown)(dev, how))
2650 return false;
2651 return true;
2652 }
2653
2654 void
2655 device_pmf_bus_register(device_t dev, void *priv,
2656 bool (*suspend)(device_t, const pmf_qual_t *),
2657 bool (*resume)(device_t, const pmf_qual_t *),
2658 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2659 {
2660 dev->dv_bus_private = priv;
2661 dev->dv_bus_resume = resume;
2662 dev->dv_bus_suspend = suspend;
2663 dev->dv_bus_shutdown = shutdown;
2664 dev->dv_bus_deregister = deregister;
2665 }
2666
2667 void
2668 device_pmf_bus_deregister(device_t dev)
2669 {
2670 if (dev->dv_bus_deregister == NULL)
2671 return;
2672 (*dev->dv_bus_deregister)(dev);
2673 dev->dv_bus_private = NULL;
2674 dev->dv_bus_suspend = NULL;
2675 dev->dv_bus_resume = NULL;
2676 dev->dv_bus_deregister = NULL;
2677 }
2678
2679 void *
2680 device_pmf_class_private(device_t dev)
2681 {
2682 return dev->dv_class_private;
2683 }
2684
2685 bool
2686 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2687 {
2688 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2689 return true;
2690 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2691 dev->dv_class_suspend != NULL &&
2692 !(*dev->dv_class_suspend)(dev, qual))
2693 return false;
2694
2695 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2696 return true;
2697 }
2698
2699 bool
2700 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2701 {
2702 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2703 return true;
2704 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2705 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2706 return false;
2707 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2708 dev->dv_class_resume != NULL &&
2709 !(*dev->dv_class_resume)(dev, qual))
2710 return false;
2711
2712 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2713 return true;
2714 }
2715
2716 void
2717 device_pmf_class_register(device_t dev, void *priv,
2718 bool (*suspend)(device_t, const pmf_qual_t *),
2719 bool (*resume)(device_t, const pmf_qual_t *),
2720 void (*deregister)(device_t))
2721 {
2722 dev->dv_class_private = priv;
2723 dev->dv_class_suspend = suspend;
2724 dev->dv_class_resume = resume;
2725 dev->dv_class_deregister = deregister;
2726 }
2727
2728 void
2729 device_pmf_class_deregister(device_t dev)
2730 {
2731 if (dev->dv_class_deregister == NULL)
2732 return;
2733 (*dev->dv_class_deregister)(dev);
2734 dev->dv_class_private = NULL;
2735 dev->dv_class_suspend = NULL;
2736 dev->dv_class_resume = NULL;
2737 dev->dv_class_deregister = NULL;
2738 }
2739
2740 bool
2741 device_active(device_t dev, devactive_t type)
2742 {
2743 size_t i;
2744
2745 if (dev->dv_activity_count == 0)
2746 return false;
2747
2748 for (i = 0; i < dev->dv_activity_count; ++i) {
2749 if (dev->dv_activity_handlers[i] == NULL)
2750 break;
2751 (*dev->dv_activity_handlers[i])(dev, type);
2752 }
2753
2754 return true;
2755 }
2756
2757 bool
2758 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2759 {
2760 void (**new_handlers)(device_t, devactive_t);
2761 void (**old_handlers)(device_t, devactive_t);
2762 size_t i, old_size, new_size;
2763 int s;
2764
2765 old_handlers = dev->dv_activity_handlers;
2766 old_size = dev->dv_activity_count;
2767
2768 KASSERT(old_size == 0 || old_handlers != NULL);
2769
2770 for (i = 0; i < old_size; ++i) {
2771 KASSERT(old_handlers[i] != handler);
2772 if (old_handlers[i] == NULL) {
2773 old_handlers[i] = handler;
2774 return true;
2775 }
2776 }
2777
2778 new_size = old_size + 4;
2779 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2780
2781 for (i = 0; i < old_size; ++i)
2782 new_handlers[i] = old_handlers[i];
2783 new_handlers[old_size] = handler;
2784 for (i = old_size+1; i < new_size; ++i)
2785 new_handlers[i] = NULL;
2786
2787 s = splhigh();
2788 dev->dv_activity_count = new_size;
2789 dev->dv_activity_handlers = new_handlers;
2790 splx(s);
2791
2792 if (old_size > 0)
2793 kmem_free(old_handlers, sizeof(void * [old_size]));
2794
2795 return true;
2796 }
2797
2798 void
2799 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2800 {
2801 void (**old_handlers)(device_t, devactive_t);
2802 size_t i, old_size;
2803 int s;
2804
2805 old_handlers = dev->dv_activity_handlers;
2806 old_size = dev->dv_activity_count;
2807
2808 for (i = 0; i < old_size; ++i) {
2809 if (old_handlers[i] == handler)
2810 break;
2811 if (old_handlers[i] == NULL)
2812 return; /* XXX panic? */
2813 }
2814
2815 if (i == old_size)
2816 return; /* XXX panic? */
2817
2818 for (; i < old_size - 1; ++i) {
2819 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2820 continue;
2821
2822 if (i == 0) {
2823 s = splhigh();
2824 dev->dv_activity_count = 0;
2825 dev->dv_activity_handlers = NULL;
2826 splx(s);
2827 kmem_free(old_handlers, sizeof(void *[old_size]));
2828 }
2829 return;
2830 }
2831 old_handlers[i] = NULL;
2832 }
2833
2834 /* Return true iff the device_t `dev' exists at generation `gen'. */
2835 static bool
2836 device_exists_at(device_t dv, devgen_t gen)
2837 {
2838 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2839 dv->dv_add_gen <= gen;
2840 }
2841
2842 static bool
2843 deviter_visits(const deviter_t *di, device_t dv)
2844 {
2845 return device_exists_at(dv, di->di_gen);
2846 }
2847
2848 /*
2849 * Device Iteration
2850 *
2851 * deviter_t: a device iterator. Holds state for a "walk" visiting
2852 * each device_t's in the device tree.
2853 *
2854 * deviter_init(di, flags): initialize the device iterator `di'
2855 * to "walk" the device tree. deviter_next(di) will return
2856 * the first device_t in the device tree, or NULL if there are
2857 * no devices.
2858 *
2859 * `flags' is one or more of DEVITER_F_RW, indicating that the
2860 * caller intends to modify the device tree by calling
2861 * config_detach(9) on devices in the order that the iterator
2862 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2863 * nearest the "root" of the device tree to be returned, first;
2864 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2865 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2866 * indicating both that deviter_init() should not respect any
2867 * locks on the device tree, and that deviter_next(di) may run
2868 * in more than one LWP before the walk has finished.
2869 *
2870 * Only one DEVITER_F_RW iterator may be in the device tree at
2871 * once.
2872 *
2873 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2874 *
2875 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2876 * DEVITER_F_LEAVES_FIRST are used in combination.
2877 *
2878 * deviter_first(di, flags): initialize the device iterator `di'
2879 * and return the first device_t in the device tree, or NULL
2880 * if there are no devices. The statement
2881 *
2882 * dv = deviter_first(di);
2883 *
2884 * is shorthand for
2885 *
2886 * deviter_init(di);
2887 * dv = deviter_next(di);
2888 *
2889 * deviter_next(di): return the next device_t in the device tree,
2890 * or NULL if there are no more devices. deviter_next(di)
2891 * is undefined if `di' was not initialized with deviter_init() or
2892 * deviter_first().
2893 *
2894 * deviter_release(di): stops iteration (subsequent calls to
2895 * deviter_next() will return NULL), releases any locks and
2896 * resources held by the device iterator.
2897 *
2898 * Device iteration does not return device_t's in any particular
2899 * order. An iterator will never return the same device_t twice.
2900 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2901 * is called repeatedly on the same `di', it will eventually return
2902 * NULL. It is ok to attach/detach devices during device iteration.
2903 */
2904 void
2905 deviter_init(deviter_t *di, deviter_flags_t flags)
2906 {
2907 device_t dv;
2908
2909 memset(di, 0, sizeof(*di));
2910
2911 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2912 flags |= DEVITER_F_RW;
2913
2914 mutex_enter(&alldevs.lock);
2915 if ((flags & DEVITER_F_RW) != 0)
2916 alldevs.nwrite++;
2917 else
2918 alldevs.nread++;
2919 di->di_gen = alldevs.gen++;
2920 di->di_flags = flags;
2921
2922 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2923 case DEVITER_F_LEAVES_FIRST:
2924 TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
2925 if (!deviter_visits(di, dv))
2926 continue;
2927 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2928 }
2929 break;
2930 case DEVITER_F_ROOT_FIRST:
2931 TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
2932 if (!deviter_visits(di, dv))
2933 continue;
2934 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2935 }
2936 break;
2937 default:
2938 break;
2939 }
2940
2941 deviter_reinit(di);
2942 mutex_exit(&alldevs.lock);
2943 }
2944
2945 static void
2946 deviter_reinit(deviter_t *di)
2947 {
2948
2949 KASSERT(mutex_owned(&alldevs.lock));
2950 if ((di->di_flags & DEVITER_F_RW) != 0)
2951 di->di_prev = TAILQ_LAST(&alldevs.list, devicelist);
2952 else
2953 di->di_prev = TAILQ_FIRST(&alldevs.list);
2954 }
2955
2956 device_t
2957 deviter_first(deviter_t *di, deviter_flags_t flags)
2958 {
2959
2960 deviter_init(di, flags);
2961 return deviter_next(di);
2962 }
2963
2964 static device_t
2965 deviter_next2(deviter_t *di)
2966 {
2967 device_t dv;
2968
2969 KASSERT(mutex_owned(&alldevs.lock));
2970
2971 dv = di->di_prev;
2972
2973 if (dv == NULL)
2974 return NULL;
2975
2976 if ((di->di_flags & DEVITER_F_RW) != 0)
2977 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2978 else
2979 di->di_prev = TAILQ_NEXT(dv, dv_list);
2980
2981 return dv;
2982 }
2983
2984 static device_t
2985 deviter_next1(deviter_t *di)
2986 {
2987 device_t dv;
2988
2989 KASSERT(mutex_owned(&alldevs.lock));
2990
2991 do {
2992 dv = deviter_next2(di);
2993 } while (dv != NULL && !deviter_visits(di, dv));
2994
2995 return dv;
2996 }
2997
2998 device_t
2999 deviter_next(deviter_t *di)
3000 {
3001 device_t dv = NULL;
3002
3003 mutex_enter(&alldevs.lock);
3004 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
3005 case 0:
3006 dv = deviter_next1(di);
3007 break;
3008 case DEVITER_F_LEAVES_FIRST:
3009 while (di->di_curdepth >= 0) {
3010 if ((dv = deviter_next1(di)) == NULL) {
3011 di->di_curdepth--;
3012 deviter_reinit(di);
3013 } else if (dv->dv_depth == di->di_curdepth)
3014 break;
3015 }
3016 break;
3017 case DEVITER_F_ROOT_FIRST:
3018 while (di->di_curdepth <= di->di_maxdepth) {
3019 if ((dv = deviter_next1(di)) == NULL) {
3020 di->di_curdepth++;
3021 deviter_reinit(di);
3022 } else if (dv->dv_depth == di->di_curdepth)
3023 break;
3024 }
3025 break;
3026 default:
3027 break;
3028 }
3029 mutex_exit(&alldevs.lock);
3030
3031 return dv;
3032 }
3033
3034 void
3035 deviter_release(deviter_t *di)
3036 {
3037 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
3038
3039 mutex_enter(&alldevs.lock);
3040 if (rw)
3041 --alldevs.nwrite;
3042 else
3043 --alldevs.nread;
3044 /* XXX wake a garbage-collection thread */
3045 mutex_exit(&alldevs.lock);
3046 }
3047
3048 const char *
3049 cfdata_ifattr(const struct cfdata *cf)
3050 {
3051 return cf->cf_pspec->cfp_iattr;
3052 }
3053
3054 bool
3055 ifattr_match(const char *snull, const char *t)
3056 {
3057 return (snull == NULL) || strcmp(snull, t) == 0;
3058 }
3059
3060 void
3061 null_childdetached(device_t self, device_t child)
3062 {
3063 /* do nothing */
3064 }
3065
3066 static void
3067 sysctl_detach_setup(struct sysctllog **clog)
3068 {
3069
3070 sysctl_createv(clog, 0, NULL, NULL,
3071 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3072 CTLTYPE_BOOL, "detachall",
3073 SYSCTL_DESCR("Detach all devices at shutdown"),
3074 NULL, 0, &detachall, 0,
3075 CTL_KERN, CTL_CREATE, CTL_EOL);
3076 }
3077