subr_autoconf.c revision 1.252.4.3 1 /* $NetBSD: subr_autoconf.c,v 1.252.4.3 2017/04/30 05:18:53 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.252.4.3 2017/04/30 05:18:53 pgoyette Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110 #include <sys/localcount.h>
111
112 #include <sys/disk.h>
113
114 #include <sys/rndsource.h>
115
116 #include <machine/limits.h>
117
118 /*
119 * Autoconfiguration subroutines.
120 */
121
122 /*
123 * Device autoconfiguration timings are mixed into the entropy pool.
124 */
125 extern krndsource_t rnd_autoconf_source;
126
127 /*
128 * ioconf.c exports exactly two names: cfdata and cfroots. All system
129 * devices and drivers are found via these tables.
130 */
131 extern struct cfdata cfdata[];
132 extern const short cfroots[];
133
134 /*
135 * List of all cfdriver structures. We use this to detect duplicates
136 * when other cfdrivers are loaded.
137 */
138 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
139 extern struct cfdriver * const cfdriver_list_initial[];
140
141 /*
142 * Initial list of cfattach's.
143 */
144 extern const struct cfattachinit cfattachinit[];
145
146 /*
147 * List of cfdata tables. We always have one such list -- the one
148 * built statically when the kernel was configured.
149 */
150 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
151 static struct cftable initcftable;
152
153 #define ROOT ((device_t)NULL)
154
155 struct matchinfo {
156 cfsubmatch_t fn;
157 device_t parent;
158 const int *locs;
159 void *aux;
160 struct cfdata *match;
161 int pri;
162 };
163
164 struct alldevs_foray {
165 int af_s;
166 struct devicelist af_garbage;
167 };
168
169 static char *number(char *, int);
170 static void mapply(struct matchinfo *, cfdata_t);
171 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
172 static void config_devdelete(device_t);
173 static void config_devunlink(device_t, struct devicelist *);
174 static void config_makeroom(int, struct cfdriver *);
175 static void config_devlink(device_t);
176 static void config_alldevs_enter(struct alldevs_foray *);
177 static void config_alldevs_exit(struct alldevs_foray *);
178 static void config_add_attrib_dict(device_t);
179
180 static void config_collect_garbage(struct devicelist *);
181 static void config_dump_garbage(struct devicelist *);
182
183 static void pmflock_debug(device_t, const char *, int);
184
185 static device_t deviter_next1(deviter_t *);
186 static void deviter_reinit(deviter_t *);
187
188 struct deferred_config {
189 TAILQ_ENTRY(deferred_config) dc_queue;
190 device_t dc_dev;
191 void (*dc_func)(device_t);
192 };
193
194 TAILQ_HEAD(deferred_config_head, deferred_config);
195
196 struct deferred_config_head deferred_config_queue =
197 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
198 struct deferred_config_head interrupt_config_queue =
199 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
200 int interrupt_config_threads = 8;
201 struct deferred_config_head mountroot_config_queue =
202 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
203 int mountroot_config_threads = 2;
204 static lwp_t **mountroot_config_lwpids;
205 static size_t mountroot_config_lwpids_size;
206 static bool root_is_mounted = false;
207
208 static void config_process_deferred(struct deferred_config_head *, device_t);
209
210 /* Hooks to finalize configuration once all real devices have been found. */
211 struct finalize_hook {
212 TAILQ_ENTRY(finalize_hook) f_list;
213 int (*f_func)(device_t);
214 device_t f_dev;
215 };
216 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
217 TAILQ_HEAD_INITIALIZER(config_finalize_list);
218 static int config_finalize_done;
219
220 /* list of all devices */
221 static struct {
222 kmutex_t lock;
223 struct devicelist list;
224 devgen_t gen;
225 int nread;
226 int nwrite;
227 bool garbage;
228 } alldevs __cacheline_aligned = {
229 .list = TAILQ_HEAD_INITIALIZER(alldevs.list),
230 .gen = 1,
231 .nread = 0,
232 .nwrite = 0,
233 .garbage = false,
234 };
235
236 static int config_pending; /* semaphore for mountroot */
237 static kmutex_t config_misc_lock;
238 static kcondvar_t config_misc_cv;
239 static kcondvar_t config_drain_cv;
240
241 static bool detachall = false;
242
243 #define STREQ(s1, s2) \
244 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
245
246 static bool config_initialized = false; /* config_init() has been called. */
247
248 static int config_do_twiddle;
249 static callout_t config_twiddle_ch;
250
251 static void sysctl_detach_setup(struct sysctllog **);
252
253 int no_devmon_insert(const char *, prop_dictionary_t);
254 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
255
256 typedef int (*cfdriver_fn)(struct cfdriver *);
257 static int
258 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
259 cfdriver_fn drv_do, cfdriver_fn drv_undo,
260 const char *style, bool dopanic)
261 {
262 void (*pr)(const char *, ...) __printflike(1, 2) =
263 dopanic ? panic : printf;
264 int i, error = 0, e2 __diagused;
265
266 for (i = 0; cfdriverv[i] != NULL; i++) {
267 if ((error = drv_do(cfdriverv[i])) != 0) {
268 pr("configure: `%s' driver %s failed: %d",
269 cfdriverv[i]->cd_name, style, error);
270 goto bad;
271 }
272 }
273
274 KASSERT(error == 0);
275 return 0;
276
277 bad:
278 printf("\n");
279 for (i--; i >= 0; i--) {
280 e2 = drv_undo(cfdriverv[i]);
281 KASSERT(e2 == 0);
282 }
283
284 return error;
285 }
286
287 typedef int (*cfattach_fn)(const char *, struct cfattach *);
288 static int
289 frob_cfattachvec(const struct cfattachinit *cfattachv,
290 cfattach_fn att_do, cfattach_fn att_undo,
291 const char *style, bool dopanic)
292 {
293 const struct cfattachinit *cfai = NULL;
294 void (*pr)(const char *, ...) __printflike(1, 2) =
295 dopanic ? panic : printf;
296 int j = 0, error = 0, e2 __diagused;
297
298 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
299 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
300 if ((error = att_do(cfai->cfai_name,
301 cfai->cfai_list[j])) != 0) {
302 pr("configure: attachment `%s' "
303 "of `%s' driver %s failed: %d",
304 cfai->cfai_list[j]->ca_name,
305 cfai->cfai_name, style, error);
306 goto bad;
307 }
308 }
309 }
310
311 KASSERT(error == 0);
312 return 0;
313
314 bad:
315 /*
316 * Rollback in reverse order. dunno if super-important, but
317 * do that anyway. Although the code looks a little like
318 * someone did a little integration (in the math sense).
319 */
320 printf("\n");
321 if (cfai) {
322 bool last;
323
324 for (last = false; last == false; ) {
325 if (cfai == &cfattachv[0])
326 last = true;
327 for (j--; j >= 0; j--) {
328 e2 = att_undo(cfai->cfai_name,
329 cfai->cfai_list[j]);
330 KASSERT(e2 == 0);
331 }
332 if (!last) {
333 cfai--;
334 for (j = 0; cfai->cfai_list[j] != NULL; j++)
335 ;
336 }
337 }
338 }
339
340 return error;
341 }
342
343 /*
344 * Initialize the autoconfiguration data structures. Normally this
345 * is done by configure(), but some platforms need to do this very
346 * early (to e.g. initialize the console).
347 */
348 void
349 config_init(void)
350 {
351
352 KASSERT(config_initialized == false);
353
354 mutex_init(&alldevs.lock, MUTEX_DEFAULT, IPL_VM);
355
356 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
357 cv_init(&config_misc_cv, "cfgmisc");
358 cv_init(&config_drain_cv, "cfgdrain");
359
360 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
361
362 frob_cfdrivervec(cfdriver_list_initial,
363 config_cfdriver_attach, NULL, "bootstrap", true);
364 frob_cfattachvec(cfattachinit,
365 config_cfattach_attach, NULL, "bootstrap", true);
366
367 initcftable.ct_cfdata = cfdata;
368 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
369
370 config_initialized = true;
371 }
372
373 /*
374 * Init or fini drivers and attachments. Either all or none
375 * are processed (via rollback). It would be nice if this were
376 * atomic to outside consumers, but with the current state of
377 * locking ...
378 */
379 int
380 config_init_component(struct cfdriver * const *cfdriverv,
381 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
382 {
383 int error;
384
385 if ((error = frob_cfdrivervec(cfdriverv,
386 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
387 return error;
388 if ((error = frob_cfattachvec(cfattachv,
389 config_cfattach_attach, config_cfattach_detach,
390 "init", false)) != 0) {
391 frob_cfdrivervec(cfdriverv,
392 config_cfdriver_detach, NULL, "init rollback", true);
393 return error;
394 }
395 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
396 frob_cfattachvec(cfattachv,
397 config_cfattach_detach, NULL, "init rollback", true);
398 frob_cfdrivervec(cfdriverv,
399 config_cfdriver_detach, NULL, "init rollback", true);
400 return error;
401 }
402
403 return 0;
404 }
405
406 int
407 config_fini_component(struct cfdriver * const *cfdriverv,
408 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
409 {
410 int error;
411
412 if ((error = config_cfdata_detach(cfdatav)) != 0)
413 return error;
414 if ((error = frob_cfattachvec(cfattachv,
415 config_cfattach_detach, config_cfattach_attach,
416 "fini", false)) != 0) {
417 if (config_cfdata_attach(cfdatav, 0) != 0)
418 panic("config_cfdata fini rollback failed");
419 return error;
420 }
421 if ((error = frob_cfdrivervec(cfdriverv,
422 config_cfdriver_detach, config_cfdriver_attach,
423 "fini", false)) != 0) {
424 frob_cfattachvec(cfattachv,
425 config_cfattach_attach, NULL, "fini rollback", true);
426 if (config_cfdata_attach(cfdatav, 0) != 0)
427 panic("config_cfdata fini rollback failed");
428 return error;
429 }
430
431 return 0;
432 }
433
434 void
435 config_init_mi(void)
436 {
437
438 if (!config_initialized)
439 config_init();
440
441 sysctl_detach_setup(NULL);
442 }
443
444 void
445 config_deferred(device_t dev)
446 {
447 config_process_deferred(&deferred_config_queue, dev);
448 config_process_deferred(&interrupt_config_queue, dev);
449 config_process_deferred(&mountroot_config_queue, dev);
450 }
451
452 static void
453 config_interrupts_thread(void *cookie)
454 {
455 struct deferred_config *dc;
456
457 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
458 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
459 (*dc->dc_func)(dc->dc_dev);
460 config_pending_decr(dc->dc_dev);
461 kmem_free(dc, sizeof(*dc));
462 }
463 kthread_exit(0);
464 }
465
466 void
467 config_create_interruptthreads(void)
468 {
469 int i;
470
471 for (i = 0; i < interrupt_config_threads; i++) {
472 (void)kthread_create(PRI_NONE, 0, NULL,
473 config_interrupts_thread, NULL, NULL, "configintr");
474 }
475 }
476
477 static void
478 config_mountroot_thread(void *cookie)
479 {
480 struct deferred_config *dc;
481
482 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
483 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
484 (*dc->dc_func)(dc->dc_dev);
485 kmem_free(dc, sizeof(*dc));
486 }
487 kthread_exit(0);
488 }
489
490 void
491 config_create_mountrootthreads(void)
492 {
493 int i;
494
495 if (!root_is_mounted)
496 root_is_mounted = true;
497
498 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
499 mountroot_config_threads;
500 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
501 KM_NOSLEEP);
502 KASSERT(mountroot_config_lwpids);
503 for (i = 0; i < mountroot_config_threads; i++) {
504 mountroot_config_lwpids[i] = 0;
505 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
506 config_mountroot_thread, NULL,
507 &mountroot_config_lwpids[i],
508 "configroot");
509 }
510 }
511
512 void
513 config_finalize_mountroot(void)
514 {
515 int i, error;
516
517 for (i = 0; i < mountroot_config_threads; i++) {
518 if (mountroot_config_lwpids[i] == 0)
519 continue;
520
521 error = kthread_join(mountroot_config_lwpids[i]);
522 if (error)
523 printf("%s: thread %x joined with error %d\n",
524 __func__, i, error);
525 }
526 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
527 }
528
529 /*
530 * Announce device attach/detach to userland listeners.
531 */
532
533 int
534 no_devmon_insert(const char *name, prop_dictionary_t p)
535 {
536
537 return ENODEV;
538 }
539
540 static void
541 devmon_report_device(device_t dev, bool isattach)
542 {
543 prop_dictionary_t ev;
544 const char *parent;
545 const char *what;
546 device_t pdev = device_parent(dev);
547
548 /* If currently no drvctl device, just return */
549 if (devmon_insert_vec == no_devmon_insert)
550 return;
551
552 ev = prop_dictionary_create();
553 if (ev == NULL)
554 return;
555
556 what = (isattach ? "device-attach" : "device-detach");
557 parent = (pdev == NULL ? "root" : device_xname(pdev));
558 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
559 !prop_dictionary_set_cstring(ev, "parent", parent)) {
560 prop_object_release(ev);
561 return;
562 }
563
564 if ((*devmon_insert_vec)(what, ev) != 0)
565 prop_object_release(ev);
566 }
567
568 /*
569 * Add a cfdriver to the system.
570 */
571 int
572 config_cfdriver_attach(struct cfdriver *cd)
573 {
574 struct cfdriver *lcd;
575
576 /* Make sure this driver isn't already in the system. */
577 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
578 if (STREQ(lcd->cd_name, cd->cd_name))
579 return EEXIST;
580 }
581 LIST_INIT(&cd->cd_attach);
582 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
583
584 return 0;
585 }
586
587 /*
588 * Remove a cfdriver from the system.
589 */
590 int
591 config_cfdriver_detach(struct cfdriver *cd)
592 {
593 struct alldevs_foray af;
594 int i, rc = 0;
595
596 config_alldevs_enter(&af);
597 /* Make sure there are no active instances. */
598 for (i = 0; i < cd->cd_ndevs; i++) {
599 if (cd->cd_devs[i] != NULL) {
600 rc = EBUSY;
601 break;
602 }
603 }
604 config_alldevs_exit(&af);
605 if (rc != 0)
606 return rc;
607
608 /* ...and no attachments loaded. */
609 if (LIST_EMPTY(&cd->cd_attach) == 0)
610 return EBUSY;
611
612 LIST_REMOVE(cd, cd_list);
613
614 KASSERT(cd->cd_devs == NULL);
615
616 return 0;
617 }
618
619 /*
620 * Look up a cfdriver by name.
621 */
622 struct cfdriver *
623 config_cfdriver_lookup(const char *name)
624 {
625 struct cfdriver *cd;
626
627 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
628 if (STREQ(cd->cd_name, name))
629 return cd;
630 }
631
632 return NULL;
633 }
634
635 /*
636 * Add a cfattach to the specified driver.
637 */
638 int
639 config_cfattach_attach(const char *driver, struct cfattach *ca)
640 {
641 struct cfattach *lca;
642 struct cfdriver *cd;
643
644 cd = config_cfdriver_lookup(driver);
645 if (cd == NULL)
646 return ESRCH;
647
648 /* Make sure this attachment isn't already on this driver. */
649 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
650 if (STREQ(lca->ca_name, ca->ca_name))
651 return EEXIST;
652 }
653
654 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
655
656 return 0;
657 }
658
659 /*
660 * Remove a cfattach from the specified driver.
661 */
662 int
663 config_cfattach_detach(const char *driver, struct cfattach *ca)
664 {
665 struct alldevs_foray af;
666 struct cfdriver *cd;
667 device_t dev;
668 int i, rc = 0;
669
670 cd = config_cfdriver_lookup(driver);
671 if (cd == NULL)
672 return ESRCH;
673
674 config_alldevs_enter(&af);
675 /* Make sure there are no active instances. */
676 for (i = 0; i < cd->cd_ndevs; i++) {
677 if ((dev = cd->cd_devs[i]) == NULL)
678 continue;
679 if (dev->dv_cfattach == ca) {
680 rc = EBUSY;
681 break;
682 }
683 }
684 config_alldevs_exit(&af);
685
686 if (rc != 0)
687 return rc;
688
689 LIST_REMOVE(ca, ca_list);
690
691 return 0;
692 }
693
694 /*
695 * Look up a cfattach by name.
696 */
697 static struct cfattach *
698 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
699 {
700 struct cfattach *ca;
701
702 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
703 if (STREQ(ca->ca_name, atname))
704 return ca;
705 }
706
707 return NULL;
708 }
709
710 /*
711 * Look up a cfattach by driver/attachment name.
712 */
713 struct cfattach *
714 config_cfattach_lookup(const char *name, const char *atname)
715 {
716 struct cfdriver *cd;
717
718 cd = config_cfdriver_lookup(name);
719 if (cd == NULL)
720 return NULL;
721
722 return config_cfattach_lookup_cd(cd, atname);
723 }
724
725 /*
726 * Apply the matching function and choose the best. This is used
727 * a few times and we want to keep the code small.
728 */
729 static void
730 mapply(struct matchinfo *m, cfdata_t cf)
731 {
732 int pri;
733
734 if (m->fn != NULL) {
735 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
736 } else {
737 pri = config_match(m->parent, cf, m->aux);
738 }
739 if (pri > m->pri) {
740 m->match = cf;
741 m->pri = pri;
742 }
743 }
744
745 int
746 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
747 {
748 const struct cfiattrdata *ci;
749 const struct cflocdesc *cl;
750 int nlocs, i;
751
752 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
753 KASSERT(ci);
754 nlocs = ci->ci_loclen;
755 KASSERT(!nlocs || locs);
756 for (i = 0; i < nlocs; i++) {
757 cl = &ci->ci_locdesc[i];
758 if (cl->cld_defaultstr != NULL &&
759 cf->cf_loc[i] == cl->cld_default)
760 continue;
761 if (cf->cf_loc[i] == locs[i])
762 continue;
763 return 0;
764 }
765
766 return config_match(parent, cf, aux);
767 }
768
769 /*
770 * Helper function: check whether the driver supports the interface attribute
771 * and return its descriptor structure.
772 */
773 static const struct cfiattrdata *
774 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
775 {
776 const struct cfiattrdata * const *cpp;
777
778 if (cd->cd_attrs == NULL)
779 return 0;
780
781 for (cpp = cd->cd_attrs; *cpp; cpp++) {
782 if (STREQ((*cpp)->ci_name, ia)) {
783 /* Match. */
784 return *cpp;
785 }
786 }
787 return 0;
788 }
789
790 /*
791 * Lookup an interface attribute description by name.
792 * If the driver is given, consider only its supported attributes.
793 */
794 const struct cfiattrdata *
795 cfiattr_lookup(const char *name, const struct cfdriver *cd)
796 {
797 const struct cfdriver *d;
798 const struct cfiattrdata *ia;
799
800 if (cd)
801 return cfdriver_get_iattr(cd, name);
802
803 LIST_FOREACH(d, &allcfdrivers, cd_list) {
804 ia = cfdriver_get_iattr(d, name);
805 if (ia)
806 return ia;
807 }
808 return 0;
809 }
810
811 /*
812 * Determine if `parent' is a potential parent for a device spec based
813 * on `cfp'.
814 */
815 static int
816 cfparent_match(const device_t parent, const struct cfparent *cfp)
817 {
818 struct cfdriver *pcd;
819
820 /* We don't match root nodes here. */
821 if (cfp == NULL)
822 return 0;
823
824 pcd = parent->dv_cfdriver;
825 KASSERT(pcd != NULL);
826
827 /*
828 * First, ensure this parent has the correct interface
829 * attribute.
830 */
831 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
832 return 0;
833
834 /*
835 * If no specific parent device instance was specified (i.e.
836 * we're attaching to the attribute only), we're done!
837 */
838 if (cfp->cfp_parent == NULL)
839 return 1;
840
841 /*
842 * Check the parent device's name.
843 */
844 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
845 return 0; /* not the same parent */
846
847 /*
848 * Make sure the unit number matches.
849 */
850 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
851 cfp->cfp_unit == parent->dv_unit)
852 return 1;
853
854 /* Unit numbers don't match. */
855 return 0;
856 }
857
858 /*
859 * Helper for config_cfdata_attach(): check all devices whether it could be
860 * parent any attachment in the config data table passed, and rescan.
861 */
862 static void
863 rescan_with_cfdata(const struct cfdata *cf)
864 {
865 device_t d;
866 const struct cfdata *cf1;
867 deviter_t di;
868
869
870 /*
871 * "alldevs" is likely longer than a modules's cfdata, so make it
872 * the outer loop.
873 */
874 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
875
876 if (!(d->dv_cfattach->ca_rescan))
877 continue;
878
879 for (cf1 = cf; cf1->cf_name; cf1++) {
880
881 if (!cfparent_match(d, cf1->cf_pspec))
882 continue;
883
884 (*d->dv_cfattach->ca_rescan)(d,
885 cfdata_ifattr(cf1), cf1->cf_loc);
886
887 config_deferred(d);
888 }
889 }
890 deviter_release(&di);
891 }
892
893 /*
894 * Attach a supplemental config data table and rescan potential
895 * parent devices if required.
896 */
897 int
898 config_cfdata_attach(cfdata_t cf, int scannow)
899 {
900 struct cftable *ct;
901
902 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
903 ct->ct_cfdata = cf;
904 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
905
906 if (scannow)
907 rescan_with_cfdata(cf);
908
909 return 0;
910 }
911
912 /*
913 * Helper for config_cfdata_detach: check whether a device is
914 * found through any attachment in the config data table.
915 */
916 static int
917 dev_in_cfdata(device_t d, cfdata_t cf)
918 {
919 const struct cfdata *cf1;
920
921 for (cf1 = cf; cf1->cf_name; cf1++)
922 if (d->dv_cfdata == cf1)
923 return 1;
924
925 return 0;
926 }
927
928 /*
929 * Detach a supplemental config data table. Detach all devices found
930 * through that table (and thus keeping references to it) before.
931 */
932 int
933 config_cfdata_detach(cfdata_t cf)
934 {
935 device_t d;
936 int error = 0;
937 struct cftable *ct;
938 deviter_t di;
939
940 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
941 d = deviter_next(&di)) {
942 if (!dev_in_cfdata(d, cf))
943 continue;
944 if ((error = config_detach(d, 0)) != 0)
945 break;
946 }
947 deviter_release(&di);
948 if (error) {
949 aprint_error_dev(d, "unable to detach instance\n");
950 return error;
951 }
952
953 TAILQ_FOREACH(ct, &allcftables, ct_list) {
954 if (ct->ct_cfdata == cf) {
955 TAILQ_REMOVE(&allcftables, ct, ct_list);
956 kmem_free(ct, sizeof(*ct));
957 return 0;
958 }
959 }
960
961 /* not found -- shouldn't happen */
962 return EINVAL;
963 }
964
965 /*
966 * Invoke the "match" routine for a cfdata entry on behalf of
967 * an external caller, usually a "submatch" routine.
968 */
969 int
970 config_match(device_t parent, cfdata_t cf, void *aux)
971 {
972 struct cfattach *ca;
973
974 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
975 if (ca == NULL) {
976 /* No attachment for this entry, oh well. */
977 return 0;
978 }
979
980 return (*ca->ca_match)(parent, cf, aux);
981 }
982
983 /*
984 * Iterate over all potential children of some device, calling the given
985 * function (default being the child's match function) for each one.
986 * Nonzero returns are matches; the highest value returned is considered
987 * the best match. Return the `found child' if we got a match, or NULL
988 * otherwise. The `aux' pointer is simply passed on through.
989 *
990 * Note that this function is designed so that it can be used to apply
991 * an arbitrary function to all potential children (its return value
992 * can be ignored).
993 */
994 cfdata_t
995 config_search_loc(cfsubmatch_t fn, device_t parent,
996 const char *ifattr, const int *locs, void *aux)
997 {
998 struct cftable *ct;
999 cfdata_t cf;
1000 struct matchinfo m;
1001
1002 KASSERT(config_initialized);
1003 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
1004
1005 m.fn = fn;
1006 m.parent = parent;
1007 m.locs = locs;
1008 m.aux = aux;
1009 m.match = NULL;
1010 m.pri = 0;
1011
1012 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1013 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1014
1015 /* We don't match root nodes here. */
1016 if (!cf->cf_pspec)
1017 continue;
1018
1019 /*
1020 * Skip cf if no longer eligible, otherwise scan
1021 * through parents for one matching `parent', and
1022 * try match function.
1023 */
1024 if (cf->cf_fstate == FSTATE_FOUND)
1025 continue;
1026 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1027 cf->cf_fstate == FSTATE_DSTAR)
1028 continue;
1029
1030 /*
1031 * If an interface attribute was specified,
1032 * consider only children which attach to
1033 * that attribute.
1034 */
1035 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1036 continue;
1037
1038 if (cfparent_match(parent, cf->cf_pspec))
1039 mapply(&m, cf);
1040 }
1041 }
1042 return m.match;
1043 }
1044
1045 cfdata_t
1046 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
1047 void *aux)
1048 {
1049
1050 return config_search_loc(fn, parent, ifattr, NULL, aux);
1051 }
1052
1053 /*
1054 * Find the given root device.
1055 * This is much like config_search, but there is no parent.
1056 * Don't bother with multiple cfdata tables; the root node
1057 * must always be in the initial table.
1058 */
1059 cfdata_t
1060 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1061 {
1062 cfdata_t cf;
1063 const short *p;
1064 struct matchinfo m;
1065
1066 m.fn = fn;
1067 m.parent = ROOT;
1068 m.aux = aux;
1069 m.match = NULL;
1070 m.pri = 0;
1071 m.locs = 0;
1072 /*
1073 * Look at root entries for matching name. We do not bother
1074 * with found-state here since only one root should ever be
1075 * searched (and it must be done first).
1076 */
1077 for (p = cfroots; *p >= 0; p++) {
1078 cf = &cfdata[*p];
1079 if (strcmp(cf->cf_name, rootname) == 0)
1080 mapply(&m, cf);
1081 }
1082 return m.match;
1083 }
1084
1085 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1086
1087 /*
1088 * The given `aux' argument describes a device that has been found
1089 * on the given parent, but not necessarily configured. Locate the
1090 * configuration data for that device (using the submatch function
1091 * provided, or using candidates' cd_match configuration driver
1092 * functions) and attach it, and return its device_t. If the device was
1093 * not configured, call the given `print' function and return NULL.
1094 */
1095 device_t
1096 config_found_sm_loc(device_t parent,
1097 const char *ifattr, const int *locs, void *aux,
1098 cfprint_t print, cfsubmatch_t submatch)
1099 {
1100 cfdata_t cf;
1101
1102 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1103 return(config_attach_loc(parent, cf, locs, aux, print));
1104 if (print) {
1105 if (config_do_twiddle && cold)
1106 twiddle();
1107 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1108 }
1109
1110 /*
1111 * This has the effect of mixing in a single timestamp to the
1112 * entropy pool. Experiments indicate the estimator will almost
1113 * always attribute one bit of entropy to this sample; analysis
1114 * of device attach/detach timestamps on FreeBSD indicates 4
1115 * bits of entropy/sample so this seems appropriately conservative.
1116 */
1117 rnd_add_uint32(&rnd_autoconf_source, 0);
1118 return NULL;
1119 }
1120
1121 device_t
1122 config_found_ia(device_t parent, const char *ifattr, void *aux,
1123 cfprint_t print)
1124 {
1125
1126 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1127 }
1128
1129 device_t
1130 config_found(device_t parent, void *aux, cfprint_t print)
1131 {
1132
1133 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1134 }
1135
1136 /*
1137 * As above, but for root devices.
1138 */
1139 device_t
1140 config_rootfound(const char *rootname, void *aux)
1141 {
1142 cfdata_t cf;
1143
1144 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1145 return config_attach(ROOT, cf, aux, NULL);
1146 aprint_error("root device %s not configured\n", rootname);
1147 return NULL;
1148 }
1149
1150 /* just like sprintf(buf, "%d") except that it works from the end */
1151 static char *
1152 number(char *ep, int n)
1153 {
1154
1155 *--ep = 0;
1156 while (n >= 10) {
1157 *--ep = (n % 10) + '0';
1158 n /= 10;
1159 }
1160 *--ep = n + '0';
1161 return ep;
1162 }
1163
1164 /*
1165 * Expand the size of the cd_devs array if necessary.
1166 *
1167 * The caller must hold alldevs.lock. config_makeroom() may release and
1168 * re-acquire alldevs.lock, so callers should re-check conditions such
1169 * as alldevs.nwrite == 0 and alldevs.nread == 0 when config_makeroom()
1170 * returns.
1171 */
1172 static void
1173 config_makeroom(int n, struct cfdriver *cd)
1174 {
1175 int ondevs, nndevs;
1176 device_t *osp, *nsp;
1177
1178 KASSERT(mutex_owned(&alldevs.lock));
1179 alldevs.nwrite++;
1180
1181 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1182 ;
1183
1184 while (n >= cd->cd_ndevs) {
1185 /*
1186 * Need to expand the array.
1187 */
1188 ondevs = cd->cd_ndevs;
1189 osp = cd->cd_devs;
1190
1191 /*
1192 * Release alldevs.lock around allocation, which may
1193 * sleep.
1194 */
1195 mutex_exit(&alldevs.lock);
1196 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1197 if (nsp == NULL)
1198 panic("%s: could not expand cd_devs", __func__);
1199 mutex_enter(&alldevs.lock);
1200
1201 /*
1202 * If another thread moved the array while we did
1203 * not hold alldevs.lock, try again.
1204 */
1205 if (cd->cd_devs != osp) {
1206 mutex_exit(&alldevs.lock);
1207 kmem_free(nsp, sizeof(device_t[nndevs]));
1208 mutex_enter(&alldevs.lock);
1209 continue;
1210 }
1211
1212 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1213 if (ondevs != 0)
1214 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1215
1216 cd->cd_ndevs = nndevs;
1217 cd->cd_devs = nsp;
1218 if (ondevs != 0) {
1219 mutex_exit(&alldevs.lock);
1220 kmem_free(osp, sizeof(device_t[ondevs]));
1221 mutex_enter(&alldevs.lock);
1222 }
1223 }
1224 KASSERT(mutex_owned(&alldevs.lock));
1225 alldevs.nwrite--;
1226 }
1227
1228 /*
1229 * Put dev into the devices list.
1230 */
1231 static void
1232 config_devlink(device_t dev)
1233 {
1234
1235 mutex_enter(&alldevs.lock);
1236
1237 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1238
1239 dev->dv_add_gen = alldevs.gen;
1240 /* It is safe to add a device to the tail of the list while
1241 * readers and writers are in the list.
1242 */
1243 TAILQ_INSERT_TAIL(&alldevs.list, dev, dv_list);
1244 mutex_exit(&alldevs.lock);
1245 }
1246
1247 static void
1248 config_devfree(device_t dev)
1249 {
1250 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1251
1252 localcount_fini(&dev->dv_localcnt);
1253 if (dev->dv_cfattach->ca_devsize > 0)
1254 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1255 if (priv)
1256 kmem_free(dev, sizeof(*dev));
1257 }
1258
1259 /*
1260 * Caller must hold alldevs.lock.
1261 */
1262 static void
1263 config_devunlink(device_t dev, struct devicelist *garbage)
1264 {
1265 struct device_garbage *dg = &dev->dv_garbage;
1266 cfdriver_t cd = device_cfdriver(dev);
1267 int i;
1268
1269 KASSERT(mutex_owned(&alldevs.lock));
1270
1271 /* Unlink from device list. Link to garbage list. */
1272 TAILQ_REMOVE(&alldevs.list, dev, dv_list);
1273 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1274
1275 /* Remove from cfdriver's array. */
1276 cd->cd_devs[dev->dv_unit] = NULL;
1277
1278 /*
1279 * Release the reference that was held by (the caller of)
1280 * config_detach_release(). Note that since device_release()
1281 * might need to acquire the alldevs.lock mutex, we need to
1282 * release and then reacquire the mutex.
1283 */
1284 mutex_exit(&alldevs.lock);
1285 device_release(dev);
1286 mutex_enter(&alldevs.lock);
1287
1288 /* Now wait for references to drain - no new refs are possible */
1289 localcount_drain(&dev->dv_localcnt, &config_drain_cv,
1290 &alldevs.lock);
1291
1292 /*
1293 * If the device now has no units in use, unlink its softc array.
1294 */
1295 for (i = 0; i < cd->cd_ndevs; i++) {
1296 if (cd->cd_devs[i] != NULL)
1297 break;
1298 }
1299 /* Nothing found. Unlink, now. Deallocate, later. */
1300 if (i == cd->cd_ndevs) {
1301 dg->dg_ndevs = cd->cd_ndevs;
1302 dg->dg_devs = cd->cd_devs;
1303 cd->cd_devs = NULL;
1304 cd->cd_ndevs = 0;
1305 }
1306 }
1307
1308 static void
1309 config_devdelete(device_t dev)
1310 {
1311 struct device_garbage *dg = &dev->dv_garbage;
1312 device_lock_t dvl = device_getlock(dev);
1313
1314 if (dg->dg_devs != NULL)
1315 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1316
1317 cv_destroy(&dvl->dvl_cv);
1318 mutex_destroy(&dvl->dvl_mtx);
1319
1320 KASSERT(dev->dv_properties != NULL);
1321 prop_object_release(dev->dv_properties);
1322
1323 if (dev->dv_activity_handlers)
1324 panic("%s with registered handlers", __func__);
1325
1326 if (dev->dv_locators) {
1327 size_t amount = *--dev->dv_locators;
1328 kmem_free(dev->dv_locators, amount);
1329 }
1330
1331 config_devfree(dev);
1332 }
1333
1334 static int
1335 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1336 {
1337 int unit;
1338
1339 if (cf->cf_fstate == FSTATE_STAR) {
1340 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1341 if (cd->cd_devs[unit] == NULL)
1342 break;
1343 /*
1344 * unit is now the unit of the first NULL device pointer,
1345 * or max(cd->cd_ndevs,cf->cf_unit).
1346 */
1347 } else {
1348 unit = cf->cf_unit;
1349 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1350 unit = -1;
1351 }
1352 return unit;
1353 }
1354
1355 static int
1356 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1357 {
1358 struct alldevs_foray af;
1359 int unit;
1360
1361 config_alldevs_enter(&af);
1362 for (;;) {
1363 unit = config_unit_nextfree(cd, cf);
1364 if (unit == -1)
1365 break;
1366 if (unit < cd->cd_ndevs) {
1367 cd->cd_devs[unit] = dev;
1368 dev->dv_unit = unit;
1369 break;
1370 }
1371 config_makeroom(unit, cd);
1372 }
1373 config_alldevs_exit(&af);
1374
1375 return unit;
1376 }
1377
1378 static device_t
1379 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1380 {
1381 cfdriver_t cd;
1382 cfattach_t ca;
1383 size_t lname, lunit;
1384 const char *xunit;
1385 int myunit;
1386 char num[10];
1387 device_t dev;
1388 void *dev_private;
1389 const struct cfiattrdata *ia;
1390 device_lock_t dvl;
1391
1392 cd = config_cfdriver_lookup(cf->cf_name);
1393 if (cd == NULL)
1394 return NULL;
1395
1396 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1397 if (ca == NULL)
1398 return NULL;
1399
1400 /* get memory for all device vars */
1401 KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
1402 || ca->ca_devsize >= sizeof(struct device),
1403 "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
1404 sizeof(struct device));
1405 if (ca->ca_devsize > 0) {
1406 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1407 if (dev_private == NULL)
1408 panic("config_devalloc: memory allocation for device "
1409 "softc failed");
1410 } else {
1411 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1412 dev_private = NULL;
1413 }
1414
1415 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1416 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1417 } else {
1418 dev = dev_private;
1419 #ifdef DIAGNOSTIC
1420 printf("%s has not been converted to device_t\n", cd->cd_name);
1421 #endif
1422 }
1423 KASSERTMSG(dev, "%s: memory allocation for %s device_t failed",
1424 __func__, cd->cd_name);
1425
1426 dev->dv_class = cd->cd_class;
1427 dev->dv_cfdata = cf;
1428 dev->dv_cfdriver = cd;
1429 dev->dv_cfattach = ca;
1430 dev->dv_activity_count = 0;
1431 dev->dv_activity_handlers = NULL;
1432 dev->dv_private = dev_private;
1433 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1434 localcount_init(&dev->dv_localcnt);
1435
1436 myunit = config_unit_alloc(dev, cd, cf);
1437 if (myunit == -1) {
1438 config_devfree(dev);
1439 return NULL;
1440 }
1441
1442 /* compute length of name and decimal expansion of unit number */
1443 lname = strlen(cd->cd_name);
1444 xunit = number(&num[sizeof(num)], myunit);
1445 lunit = &num[sizeof(num)] - xunit;
1446 if (lname + lunit > sizeof(dev->dv_xname))
1447 panic("config_devalloc: device name too long");
1448
1449 dvl = device_getlock(dev);
1450
1451 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1452 cv_init(&dvl->dvl_cv, "pmfsusp");
1453
1454 memcpy(dev->dv_xname, cd->cd_name, lname);
1455 memcpy(dev->dv_xname + lname, xunit, lunit);
1456 dev->dv_parent = parent;
1457 if (parent != NULL)
1458 dev->dv_depth = parent->dv_depth + 1;
1459 else
1460 dev->dv_depth = 0;
1461 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1462 if (locs) {
1463 KASSERT(parent); /* no locators at root */
1464 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1465 dev->dv_locators =
1466 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1467 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1468 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1469 }
1470 dev->dv_properties = prop_dictionary_create();
1471 KASSERT(dev->dv_properties != NULL);
1472
1473 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1474 "device-driver", dev->dv_cfdriver->cd_name);
1475 prop_dictionary_set_uint16(dev->dv_properties,
1476 "device-unit", dev->dv_unit);
1477 if (parent != NULL) {
1478 prop_dictionary_set_cstring(dev->dv_properties,
1479 "device-parent", device_xname(parent));
1480 }
1481
1482 if (dev->dv_cfdriver->cd_attrs != NULL)
1483 config_add_attrib_dict(dev);
1484
1485 return dev;
1486 }
1487
1488 /*
1489 * Create an array of device attach attributes and add it
1490 * to the device's dv_properties dictionary.
1491 *
1492 * <key>interface-attributes</key>
1493 * <array>
1494 * <dict>
1495 * <key>attribute-name</key>
1496 * <string>foo</string>
1497 * <key>locators</key>
1498 * <array>
1499 * <dict>
1500 * <key>loc-name</key>
1501 * <string>foo-loc1</string>
1502 * </dict>
1503 * <dict>
1504 * <key>loc-name</key>
1505 * <string>foo-loc2</string>
1506 * <key>default</key>
1507 * <string>foo-loc2-default</string>
1508 * </dict>
1509 * ...
1510 * </array>
1511 * </dict>
1512 * ...
1513 * </array>
1514 */
1515
1516 static void
1517 config_add_attrib_dict(device_t dev)
1518 {
1519 int i, j;
1520 const struct cfiattrdata *ci;
1521 prop_dictionary_t attr_dict, loc_dict;
1522 prop_array_t attr_array, loc_array;
1523
1524 if ((attr_array = prop_array_create()) == NULL)
1525 return;
1526
1527 for (i = 0; ; i++) {
1528 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1529 break;
1530 if ((attr_dict = prop_dictionary_create()) == NULL)
1531 break;
1532 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1533 ci->ci_name);
1534
1535 /* Create an array of the locator names and defaults */
1536
1537 if (ci->ci_loclen != 0 &&
1538 (loc_array = prop_array_create()) != NULL) {
1539 for (j = 0; j < ci->ci_loclen; j++) {
1540 loc_dict = prop_dictionary_create();
1541 if (loc_dict == NULL)
1542 continue;
1543 prop_dictionary_set_cstring_nocopy(loc_dict,
1544 "loc-name", ci->ci_locdesc[j].cld_name);
1545 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1546 prop_dictionary_set_cstring_nocopy(
1547 loc_dict, "default",
1548 ci->ci_locdesc[j].cld_defaultstr);
1549 prop_array_set(loc_array, j, loc_dict);
1550 prop_object_release(loc_dict);
1551 }
1552 prop_dictionary_set_and_rel(attr_dict, "locators",
1553 loc_array);
1554 }
1555 prop_array_add(attr_array, attr_dict);
1556 prop_object_release(attr_dict);
1557 }
1558 if (i == 0)
1559 prop_object_release(attr_array);
1560 else
1561 prop_dictionary_set_and_rel(dev->dv_properties,
1562 "interface-attributes", attr_array);
1563
1564 return;
1565 }
1566
1567 /*
1568 * Attach a found device.
1569 */
1570 device_t
1571 config_attach_loc(device_t parent, cfdata_t cf,
1572 const int *locs, void *aux, cfprint_t print)
1573 {
1574 device_t dev;
1575 struct cftable *ct;
1576 const char *drvname;
1577
1578 dev = config_devalloc(parent, cf, locs);
1579 if (!dev)
1580 panic("config_attach: allocation of device softc failed");
1581
1582 /* XXX redundant - see below? */
1583 if (cf->cf_fstate != FSTATE_STAR) {
1584 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1585 cf->cf_fstate = FSTATE_FOUND;
1586 }
1587
1588 config_devlink(dev);
1589
1590 if (config_do_twiddle && cold)
1591 twiddle();
1592 else
1593 aprint_naive("Found ");
1594 /*
1595 * We want the next two printfs for normal, verbose, and quiet,
1596 * but not silent (in which case, we're twiddling, instead).
1597 */
1598 if (parent == ROOT) {
1599 aprint_naive("%s (root)", device_xname(dev));
1600 aprint_normal("%s (root)", device_xname(dev));
1601 } else {
1602 aprint_naive("%s at %s", device_xname(dev),
1603 device_xname(parent));
1604 aprint_normal("%s at %s", device_xname(dev),
1605 device_xname(parent));
1606 if (print)
1607 (void) (*print)(aux, NULL);
1608 }
1609
1610 /*
1611 * Before attaching, clobber any unfound devices that are
1612 * otherwise identical.
1613 * XXX code above is redundant?
1614 */
1615 drvname = dev->dv_cfdriver->cd_name;
1616 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1617 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1618 if (STREQ(cf->cf_name, drvname) &&
1619 cf->cf_unit == dev->dv_unit) {
1620 if (cf->cf_fstate == FSTATE_NOTFOUND)
1621 cf->cf_fstate = FSTATE_FOUND;
1622 }
1623 }
1624 }
1625 device_register(dev, aux);
1626
1627 /* Let userland know */
1628 devmon_report_device(dev, true);
1629
1630 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1631
1632 if (!device_pmf_is_registered(dev))
1633 aprint_debug_dev(dev, "WARNING: power management not "
1634 "supported\n");
1635
1636 config_process_deferred(&deferred_config_queue, dev);
1637
1638 device_register_post_config(dev, aux);
1639 return dev;
1640 }
1641
1642 device_t
1643 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1644 {
1645
1646 return config_attach_loc(parent, cf, NULL, aux, print);
1647 }
1648
1649 /*
1650 * As above, but for pseudo-devices. Pseudo-devices attached in this
1651 * way are silently inserted into the device tree, and their children
1652 * attached.
1653 *
1654 * Note that because pseudo-devices are attached silently, any information
1655 * the attach routine wishes to print should be prefixed with the device
1656 * name by the attach routine.
1657 */
1658 device_t
1659 config_attach_pseudo(cfdata_t cf)
1660 {
1661 device_t dev;
1662
1663 dev = config_devalloc(ROOT, cf, NULL);
1664 if (!dev)
1665 return NULL;
1666
1667 /* XXX mark busy in cfdata */
1668
1669 if (cf->cf_fstate != FSTATE_STAR) {
1670 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1671 cf->cf_fstate = FSTATE_FOUND;
1672 }
1673
1674 config_devlink(dev);
1675
1676 #if 0 /* XXXJRT not yet */
1677 device_register(dev, NULL); /* like a root node */
1678 #endif
1679
1680 /* Let userland know */
1681 devmon_report_device(dev, true);
1682
1683 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1684
1685 config_process_deferred(&deferred_config_queue, dev);
1686 return dev;
1687 }
1688
1689 /*
1690 * Caller must hold alldevs.lock.
1691 */
1692 static void
1693 config_collect_garbage(struct devicelist *garbage)
1694 {
1695 device_t dv;
1696
1697 KASSERT(!cpu_intr_p());
1698 KASSERT(!cpu_softintr_p());
1699 KASSERT(mutex_owned(&alldevs.lock));
1700
1701 while (alldevs.nwrite == 0 && alldevs.nread == 0 && alldevs.garbage) {
1702 TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
1703 if (dv->dv_del_gen != 0)
1704 break;
1705 }
1706 if (dv == NULL) {
1707 alldevs.garbage = false;
1708 break;
1709 }
1710 config_devunlink(dv, garbage);
1711 }
1712 KASSERT(mutex_owned(&alldevs.lock));
1713 }
1714
1715 static void
1716 config_dump_garbage(struct devicelist *garbage)
1717 {
1718 device_t dv;
1719
1720 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1721 TAILQ_REMOVE(garbage, dv, dv_list);
1722 config_devdelete(dv);
1723 }
1724 }
1725
1726 /*
1727 * Acquire a reference to a device, and then detach it.
1728 */
1729 int
1730 config_detach(device_t dev, int flags)
1731 {
1732
1733 device_acquire(dev);
1734 return config_detach_release(dev, flags);
1735 }
1736
1737 /*
1738 * Detach a device. Optionally forced (e.g. because of hardware
1739 * removal) and quiet. Returns zero if successful, non-zero
1740 * (an error code) otherwise.
1741 *
1742 * Note that this code wants to be run from a process context, so
1743 * that the detach can sleep to allow processes which have a device
1744 * open to run and unwind their stacks.
1745 *
1746 * Also note that this code requires that the caller have acquired
1747 * a reference to the device; callers that have not been updated
1748 * for localcount should instead call config_detach(). The reference
1749 * is released in all cases.
1750 */
1751 int
1752 config_detach_release(device_t dev, int flags)
1753 {
1754 struct alldevs_foray af;
1755 struct cftable *ct;
1756 cfdata_t cf;
1757 const struct cfattach *ca;
1758 struct cfdriver *cd;
1759 device_t d __diagused;
1760 int rv = 0;
1761
1762 cf = dev->dv_cfdata;
1763 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
1764 cf->cf_fstate == FSTATE_STAR),
1765 "config_detach: %s: bad device fstate: %d",
1766 device_xname(dev), cf ? cf->cf_fstate : -1);
1767
1768 cd = dev->dv_cfdriver;
1769 KASSERT(cd != NULL);
1770
1771 ca = dev->dv_cfattach;
1772 KASSERT(ca != NULL);
1773
1774 mutex_enter(&alldevs.lock);
1775 if (dev->dv_del_gen != 0) {
1776 mutex_exit(&alldevs.lock);
1777 #ifdef DIAGNOSTIC
1778 printf("%s: %s is already detached\n", __func__,
1779 device_xname(dev));
1780 #endif /* DIAGNOSTIC */
1781 device_release(dev);
1782 return ENOENT;
1783 }
1784 alldevs.nwrite++;
1785 mutex_exit(&alldevs.lock);
1786
1787 if (!detachall &&
1788 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1789 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1790 rv = EOPNOTSUPP;
1791 } else if (ca->ca_detach != NULL) {
1792 rv = (*ca->ca_detach)(dev, flags);
1793 } else
1794 rv = EOPNOTSUPP;
1795
1796 /*
1797 * If it was not possible to detach the device, then we either
1798 * panic() (for the forced but failed case), or return an error.
1799 *
1800 * If it was possible to detach the device, ensure that the
1801 * device is deactivated.
1802 */
1803 if (rv == 0)
1804 dev->dv_flags &= ~DVF_ACTIVE;
1805 else if ((flags & DETACH_FORCE) == 0)
1806 goto out;
1807 else {
1808 panic("config_detach: forced detach of %s failed (%d)",
1809 device_xname(dev), rv);
1810 }
1811
1812 /*
1813 * The device has now been successfully detached.
1814 */
1815
1816 /* Let userland know */
1817 devmon_report_device(dev, false);
1818
1819 #ifdef DIAGNOSTIC
1820 /*
1821 * Sanity: If you're successfully detached, you should have no
1822 * children. (Note that because children must be attached
1823 * after parents, we only need to search the latter part of
1824 * the list.)
1825 */
1826 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1827 d = TAILQ_NEXT(d, dv_list)) {
1828 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1829 printf("config_detach: detached device %s"
1830 " has children %s\n", device_xname(dev),
1831 device_xname(d));
1832 panic("config_detach");
1833 }
1834 }
1835 #endif
1836
1837 /* notify the parent that the child is gone */
1838 if (dev->dv_parent) {
1839 device_t p = dev->dv_parent;
1840 if (p->dv_cfattach->ca_childdetached)
1841 (*p->dv_cfattach->ca_childdetached)(p, dev);
1842 }
1843
1844 /*
1845 * Mark cfdata to show that the unit can be reused, if possible.
1846 */
1847 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1848 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1849 if (STREQ(cf->cf_name, cd->cd_name)) {
1850 if (cf->cf_fstate == FSTATE_FOUND &&
1851 cf->cf_unit == dev->dv_unit)
1852 cf->cf_fstate = FSTATE_NOTFOUND;
1853 }
1854 }
1855 }
1856
1857 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1858 aprint_normal_dev(dev, "detached\n");
1859
1860 out:
1861 config_alldevs_enter(&af);
1862 KASSERT(alldevs.nwrite != 0);
1863 --alldevs.nwrite;
1864 if (rv == 0 && dev->dv_del_gen == 0) {
1865 if (alldevs.nwrite == 0 && alldevs.nread == 0)
1866 config_devunlink(dev, &af.af_garbage);
1867 else {
1868 dev->dv_del_gen = alldevs.gen;
1869 alldevs.garbage = true;
1870 }
1871 }
1872 config_alldevs_exit(&af);
1873 if (rv != 0)
1874 device_release(dev);
1875
1876 return rv;
1877 }
1878
1879 int
1880 config_detach_children(device_t parent, int flags)
1881 {
1882 device_t dv;
1883 deviter_t di;
1884 int error = 0;
1885
1886 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1887 dv = deviter_next(&di)) {
1888 if (device_parent(dv) != parent)
1889 continue;
1890 if ((error = config_detach(dv, flags)) != 0)
1891 break;
1892 }
1893 deviter_release(&di);
1894 return error;
1895 }
1896
1897 device_t
1898 shutdown_first(struct shutdown_state *s)
1899 {
1900 if (!s->initialized) {
1901 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1902 s->initialized = true;
1903 }
1904 return shutdown_next(s);
1905 }
1906
1907 device_t
1908 shutdown_next(struct shutdown_state *s)
1909 {
1910 device_t dv;
1911
1912 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1913 ;
1914
1915 if (dv == NULL)
1916 s->initialized = false;
1917
1918 return dv;
1919 }
1920
1921 bool
1922 config_detach_all(int how)
1923 {
1924 static struct shutdown_state s;
1925 device_t curdev;
1926 bool progress = false;
1927 int flags;
1928
1929 if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1930 return false;
1931
1932 if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1933 flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1934 else
1935 flags = DETACH_SHUTDOWN;
1936
1937 for (curdev = shutdown_first(&s); curdev != NULL;
1938 curdev = shutdown_next(&s)) {
1939 aprint_debug(" detaching %s, ", device_xname(curdev));
1940 if (config_detach(curdev, flags) == 0) {
1941 progress = true;
1942 aprint_debug("success.");
1943 } else
1944 aprint_debug("failed.");
1945 }
1946 return progress;
1947 }
1948
1949 static bool
1950 device_is_ancestor_of(device_t ancestor, device_t descendant)
1951 {
1952 device_t dv;
1953
1954 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1955 if (device_parent(dv) == ancestor)
1956 return true;
1957 }
1958 return false;
1959 }
1960
1961 int
1962 config_deactivate(device_t dev)
1963 {
1964 deviter_t di;
1965 const struct cfattach *ca;
1966 device_t descendant;
1967 int s, rv = 0, oflags;
1968
1969 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1970 descendant != NULL;
1971 descendant = deviter_next(&di)) {
1972 if (dev != descendant &&
1973 !device_is_ancestor_of(dev, descendant))
1974 continue;
1975
1976 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1977 continue;
1978
1979 ca = descendant->dv_cfattach;
1980 oflags = descendant->dv_flags;
1981
1982 descendant->dv_flags &= ~DVF_ACTIVE;
1983 if (ca->ca_activate == NULL)
1984 continue;
1985 s = splhigh();
1986 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1987 splx(s);
1988 if (rv != 0)
1989 descendant->dv_flags = oflags;
1990 }
1991 deviter_release(&di);
1992 return rv;
1993 }
1994
1995 /*
1996 * Defer the configuration of the specified device until all
1997 * of its parent's devices have been attached.
1998 */
1999 void
2000 config_defer(device_t dev, void (*func)(device_t))
2001 {
2002 struct deferred_config *dc;
2003
2004 if (dev->dv_parent == NULL)
2005 panic("config_defer: can't defer config of a root device");
2006
2007 #ifdef DIAGNOSTIC
2008 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
2009 if (dc->dc_dev == dev)
2010 panic("config_defer: deferred twice");
2011 }
2012 #endif
2013
2014 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2015 if (dc == NULL)
2016 panic("config_defer: unable to allocate callback");
2017
2018 dc->dc_dev = dev;
2019 dc->dc_func = func;
2020 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
2021 config_pending_incr(dev);
2022 }
2023
2024 /*
2025 * Defer some autoconfiguration for a device until after interrupts
2026 * are enabled.
2027 */
2028 void
2029 config_interrupts(device_t dev, void (*func)(device_t))
2030 {
2031 struct deferred_config *dc;
2032
2033 /*
2034 * If interrupts are enabled, callback now.
2035 */
2036 if (cold == 0) {
2037 (*func)(dev);
2038 return;
2039 }
2040
2041 #ifdef DIAGNOSTIC
2042 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
2043 if (dc->dc_dev == dev)
2044 panic("config_interrupts: deferred twice");
2045 }
2046 #endif
2047
2048 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2049 if (dc == NULL)
2050 panic("config_interrupts: unable to allocate callback");
2051
2052 dc->dc_dev = dev;
2053 dc->dc_func = func;
2054 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2055 config_pending_incr(dev);
2056 }
2057
2058 /*
2059 * Defer some autoconfiguration for a device until after root file system
2060 * is mounted (to load firmware etc).
2061 */
2062 void
2063 config_mountroot(device_t dev, void (*func)(device_t))
2064 {
2065 struct deferred_config *dc;
2066
2067 /*
2068 * If root file system is mounted, callback now.
2069 */
2070 if (root_is_mounted) {
2071 (*func)(dev);
2072 return;
2073 }
2074
2075 #ifdef DIAGNOSTIC
2076 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
2077 if (dc->dc_dev == dev)
2078 panic("%s: deferred twice", __func__);
2079 }
2080 #endif
2081
2082 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2083 if (dc == NULL)
2084 panic("%s: unable to allocate callback", __func__);
2085
2086 dc->dc_dev = dev;
2087 dc->dc_func = func;
2088 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2089 }
2090
2091 /*
2092 * Process a deferred configuration queue.
2093 */
2094 static void
2095 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2096 {
2097 struct deferred_config *dc, *ndc;
2098
2099 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
2100 ndc = TAILQ_NEXT(dc, dc_queue);
2101 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2102 TAILQ_REMOVE(queue, dc, dc_queue);
2103 (*dc->dc_func)(dc->dc_dev);
2104 config_pending_decr(dc->dc_dev);
2105 kmem_free(dc, sizeof(*dc));
2106 }
2107 }
2108 }
2109
2110 /*
2111 * Manipulate the config_pending semaphore.
2112 */
2113 void
2114 config_pending_incr(device_t dev)
2115 {
2116
2117 mutex_enter(&config_misc_lock);
2118 config_pending++;
2119 #ifdef DEBUG_AUTOCONF
2120 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2121 #endif
2122 mutex_exit(&config_misc_lock);
2123 }
2124
2125 void
2126 config_pending_decr(device_t dev)
2127 {
2128
2129 KASSERT(0 < config_pending);
2130 mutex_enter(&config_misc_lock);
2131 config_pending--;
2132 #ifdef DEBUG_AUTOCONF
2133 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2134 #endif
2135 if (config_pending == 0)
2136 cv_broadcast(&config_misc_cv);
2137 mutex_exit(&config_misc_lock);
2138 }
2139
2140 /*
2141 * Register a "finalization" routine. Finalization routines are
2142 * called iteratively once all real devices have been found during
2143 * autoconfiguration, for as long as any one finalizer has done
2144 * any work.
2145 */
2146 int
2147 config_finalize_register(device_t dev, int (*fn)(device_t))
2148 {
2149 struct finalize_hook *f;
2150
2151 /*
2152 * If finalization has already been done, invoke the
2153 * callback function now.
2154 */
2155 if (config_finalize_done) {
2156 while ((*fn)(dev) != 0)
2157 /* loop */ ;
2158 return 0;
2159 }
2160
2161 /* Ensure this isn't already on the list. */
2162 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2163 if (f->f_func == fn && f->f_dev == dev)
2164 return EEXIST;
2165 }
2166
2167 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2168 f->f_func = fn;
2169 f->f_dev = dev;
2170 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2171
2172 return 0;
2173 }
2174
2175 void
2176 config_finalize(void)
2177 {
2178 struct finalize_hook *f;
2179 struct pdevinit *pdev;
2180 extern struct pdevinit pdevinit[];
2181 int errcnt, rv;
2182
2183 /*
2184 * Now that device driver threads have been created, wait for
2185 * them to finish any deferred autoconfiguration.
2186 */
2187 mutex_enter(&config_misc_lock);
2188 while (config_pending != 0)
2189 cv_wait(&config_misc_cv, &config_misc_lock);
2190 mutex_exit(&config_misc_lock);
2191
2192 KERNEL_LOCK(1, NULL);
2193
2194 /* Attach pseudo-devices. */
2195 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2196 (*pdev->pdev_attach)(pdev->pdev_count);
2197
2198 /* Run the hooks until none of them does any work. */
2199 do {
2200 rv = 0;
2201 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2202 rv |= (*f->f_func)(f->f_dev);
2203 } while (rv != 0);
2204
2205 config_finalize_done = 1;
2206
2207 /* Now free all the hooks. */
2208 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2209 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2210 kmem_free(f, sizeof(*f));
2211 }
2212
2213 KERNEL_UNLOCK_ONE(NULL);
2214
2215 errcnt = aprint_get_error_count();
2216 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2217 (boothowto & AB_VERBOSE) == 0) {
2218 mutex_enter(&config_misc_lock);
2219 if (config_do_twiddle) {
2220 config_do_twiddle = 0;
2221 printf_nolog(" done.\n");
2222 }
2223 mutex_exit(&config_misc_lock);
2224 }
2225 if (errcnt != 0) {
2226 printf("WARNING: %d error%s while detecting hardware; "
2227 "check system log.\n", errcnt,
2228 errcnt == 1 ? "" : "s");
2229 }
2230 }
2231
2232 void
2233 config_twiddle_init(void)
2234 {
2235
2236 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2237 config_do_twiddle = 1;
2238 }
2239 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2240 }
2241
2242 void
2243 config_twiddle_fn(void *cookie)
2244 {
2245
2246 mutex_enter(&config_misc_lock);
2247 if (config_do_twiddle) {
2248 twiddle();
2249 callout_schedule(&config_twiddle_ch, mstohz(100));
2250 }
2251 mutex_exit(&config_misc_lock);
2252 }
2253
2254 static void
2255 config_alldevs_enter(struct alldevs_foray *af)
2256 {
2257 TAILQ_INIT(&af->af_garbage);
2258 mutex_enter(&alldevs.lock);
2259 config_collect_garbage(&af->af_garbage);
2260 }
2261
2262 static void
2263 config_alldevs_exit(struct alldevs_foray *af)
2264 {
2265 mutex_exit(&alldevs.lock);
2266 config_dump_garbage(&af->af_garbage);
2267 }
2268
2269 /*
2270 * device_acquire:
2271 *
2272 * Acquire a reference to the device.
2273 */
2274 void
2275 device_acquire(device_t dv)
2276 {
2277
2278 localcount_acquire(&dv->dv_localcnt);
2279 }
2280
2281 /*
2282 * device_lookup:
2283 *
2284 * Look up a device instance for a given driver.
2285 */
2286 device_t
2287 device_lookup(cfdriver_t cd, int unit)
2288 {
2289 device_t dv;
2290
2291 mutex_enter(&alldevs.lock);
2292 if (unit < 0 || unit >= cd->cd_ndevs)
2293 dv = NULL;
2294 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2295 dv = NULL;
2296 mutex_exit(&alldevs.lock);
2297
2298 return dv;
2299 }
2300
2301 /*
2302 * device_lookup_acquire:
2303 *
2304 * Look up a device instance for a given driver and
2305 * hold a reference to the device.
2306 */
2307 device_t
2308 device_lookup_acquire(cfdriver_t cd, int unit)
2309 {
2310 device_t dv;
2311
2312 mutex_enter(&alldevs.lock);
2313 if (unit < 0 || unit >= cd->cd_ndevs)
2314 dv = NULL;
2315 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2316 dv = NULL;
2317 if (dv != NULL)
2318 device_acquire(dv);
2319 mutex_exit(&alldevs.lock);
2320
2321 return dv;
2322 }
2323
2324 /*
2325 * device_release:
2326 *
2327 * Release the reference that was created by an earlier call to
2328 * device_acquire() or device_lookup_acquire().
2329 */
2330 void
2331 device_release(device_t dv)
2332 {
2333
2334 localcount_release(&dv->dv_localcnt, &config_drain_cv,
2335 &alldevs.lock);
2336 }
2337
2338 /*
2339 * device_lookup_private:
2340 *
2341 * Look up a softc instance for a given driver.
2342 */
2343 void *
2344 device_lookup_private(cfdriver_t cd, int unit)
2345 {
2346
2347 return device_private(device_lookup(cd, unit));
2348 }
2349
2350 /*
2351 * device_lookup_private_acquire:
2352 *
2353 * Look up the softc and acquire a reference to the device so it
2354 * won't disappear. Note that the caller must ensure that it is
2355 * capable of calling device_release() at some later point in
2356 * time, thus the returned private data must contain some data
2357 * to locate the original device. Thus the private data must be
2358 * present, not NULL! If this cannot be guaranteed, the caller
2359 * should use device_lookup_acquire() in order to retain the
2360 * device_t pointer.
2361 */
2362 void *
2363 device_lookup_private_acquire(cfdriver_t cd, int unit)
2364 {
2365 device_t dv;
2366 void *p;
2367
2368 dv = device_lookup_acquire(cd, unit);
2369 p = device_private(dv);
2370 KASSERTMSG(p != NULL || dv == NULL,
2371 "%s: device %s has no private data", __func__, cd->cd_name);
2372 return p;
2373 }
2374
2375 /*
2376 * device_find_by_xname:
2377 *
2378 * Returns the device of the given name or NULL if it doesn't exist.
2379 */
2380 device_t
2381 device_find_by_xname(const char *name)
2382 {
2383 device_t dv;
2384 deviter_t di;
2385
2386 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2387 if (strcmp(device_xname(dv), name) == 0)
2388 break;
2389 }
2390 deviter_release(&di);
2391
2392 return dv;
2393 }
2394
2395 /*
2396 * device_find_by_driver_unit:
2397 *
2398 * Returns the device of the given driver name and unit or
2399 * NULL if it doesn't exist.
2400 */
2401 device_t
2402 device_find_by_driver_unit(const char *name, int unit)
2403 {
2404 struct cfdriver *cd;
2405
2406 if ((cd = config_cfdriver_lookup(name)) == NULL)
2407 return NULL;
2408 return device_lookup(cd, unit);
2409 }
2410
2411 /*
2412 * device_find_by_driver_unit_acquire:
2413 *
2414 * Returns the device of the given driver name and unit or
2415 * NULL if it doesn't exist. If driver is found, it's
2416 * reference count is incremented so it won't go away.
2417 */
2418 device_t
2419 device_find_by_driver_unit_acquire(const char *name, int unit)
2420 {
2421 struct cfdriver *cd;
2422
2423 if ((cd = config_cfdriver_lookup(name)) == NULL)
2424 return NULL;
2425 return device_lookup_acquire(cd, unit);
2426 }
2427
2428 /*
2429 * Power management related functions.
2430 */
2431
2432 bool
2433 device_pmf_is_registered(device_t dev)
2434 {
2435 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2436 }
2437
2438 bool
2439 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2440 {
2441 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2442 return true;
2443 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2444 return false;
2445 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2446 dev->dv_driver_suspend != NULL &&
2447 !(*dev->dv_driver_suspend)(dev, qual))
2448 return false;
2449
2450 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2451 return true;
2452 }
2453
2454 bool
2455 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2456 {
2457 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2458 return true;
2459 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2460 return false;
2461 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2462 dev->dv_driver_resume != NULL &&
2463 !(*dev->dv_driver_resume)(dev, qual))
2464 return false;
2465
2466 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2467 return true;
2468 }
2469
2470 bool
2471 device_pmf_driver_shutdown(device_t dev, int how)
2472 {
2473
2474 if (*dev->dv_driver_shutdown != NULL &&
2475 !(*dev->dv_driver_shutdown)(dev, how))
2476 return false;
2477 return true;
2478 }
2479
2480 bool
2481 device_pmf_driver_register(device_t dev,
2482 bool (*suspend)(device_t, const pmf_qual_t *),
2483 bool (*resume)(device_t, const pmf_qual_t *),
2484 bool (*shutdown)(device_t, int))
2485 {
2486 dev->dv_driver_suspend = suspend;
2487 dev->dv_driver_resume = resume;
2488 dev->dv_driver_shutdown = shutdown;
2489 dev->dv_flags |= DVF_POWER_HANDLERS;
2490 return true;
2491 }
2492
2493 static const char *
2494 curlwp_name(void)
2495 {
2496 if (curlwp->l_name != NULL)
2497 return curlwp->l_name;
2498 else
2499 return curlwp->l_proc->p_comm;
2500 }
2501
2502 void
2503 device_pmf_driver_deregister(device_t dev)
2504 {
2505 device_lock_t dvl = device_getlock(dev);
2506
2507 dev->dv_driver_suspend = NULL;
2508 dev->dv_driver_resume = NULL;
2509
2510 mutex_enter(&dvl->dvl_mtx);
2511 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2512 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2513 /* Wake a thread that waits for the lock. That
2514 * thread will fail to acquire the lock, and then
2515 * it will wake the next thread that waits for the
2516 * lock, or else it will wake us.
2517 */
2518 cv_signal(&dvl->dvl_cv);
2519 pmflock_debug(dev, __func__, __LINE__);
2520 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2521 pmflock_debug(dev, __func__, __LINE__);
2522 }
2523 mutex_exit(&dvl->dvl_mtx);
2524 }
2525
2526 bool
2527 device_pmf_driver_child_register(device_t dev)
2528 {
2529 device_t parent = device_parent(dev);
2530
2531 if (parent == NULL || parent->dv_driver_child_register == NULL)
2532 return true;
2533 return (*parent->dv_driver_child_register)(dev);
2534 }
2535
2536 void
2537 device_pmf_driver_set_child_register(device_t dev,
2538 bool (*child_register)(device_t))
2539 {
2540 dev->dv_driver_child_register = child_register;
2541 }
2542
2543 static void
2544 pmflock_debug(device_t dev, const char *func, int line)
2545 {
2546 device_lock_t dvl = device_getlock(dev);
2547
2548 aprint_debug_dev(dev,
2549 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2550 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2551 }
2552
2553 static bool
2554 device_pmf_lock1(device_t dev)
2555 {
2556 device_lock_t dvl = device_getlock(dev);
2557
2558 while (device_pmf_is_registered(dev) &&
2559 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2560 dvl->dvl_nwait++;
2561 pmflock_debug(dev, __func__, __LINE__);
2562 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2563 pmflock_debug(dev, __func__, __LINE__);
2564 dvl->dvl_nwait--;
2565 }
2566 if (!device_pmf_is_registered(dev)) {
2567 pmflock_debug(dev, __func__, __LINE__);
2568 /* We could not acquire the lock, but some other thread may
2569 * wait for it, also. Wake that thread.
2570 */
2571 cv_signal(&dvl->dvl_cv);
2572 return false;
2573 }
2574 dvl->dvl_nlock++;
2575 dvl->dvl_holder = curlwp;
2576 pmflock_debug(dev, __func__, __LINE__);
2577 return true;
2578 }
2579
2580 bool
2581 device_pmf_lock(device_t dev)
2582 {
2583 bool rc;
2584 device_lock_t dvl = device_getlock(dev);
2585
2586 mutex_enter(&dvl->dvl_mtx);
2587 rc = device_pmf_lock1(dev);
2588 mutex_exit(&dvl->dvl_mtx);
2589
2590 return rc;
2591 }
2592
2593 void
2594 device_pmf_unlock(device_t dev)
2595 {
2596 device_lock_t dvl = device_getlock(dev);
2597
2598 KASSERT(dvl->dvl_nlock > 0);
2599 mutex_enter(&dvl->dvl_mtx);
2600 if (--dvl->dvl_nlock == 0)
2601 dvl->dvl_holder = NULL;
2602 cv_signal(&dvl->dvl_cv);
2603 pmflock_debug(dev, __func__, __LINE__);
2604 mutex_exit(&dvl->dvl_mtx);
2605 }
2606
2607 device_lock_t
2608 device_getlock(device_t dev)
2609 {
2610 return &dev->dv_lock;
2611 }
2612
2613 void *
2614 device_pmf_bus_private(device_t dev)
2615 {
2616 return dev->dv_bus_private;
2617 }
2618
2619 bool
2620 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2621 {
2622 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2623 return true;
2624 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2625 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2626 return false;
2627 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2628 dev->dv_bus_suspend != NULL &&
2629 !(*dev->dv_bus_suspend)(dev, qual))
2630 return false;
2631
2632 dev->dv_flags |= DVF_BUS_SUSPENDED;
2633 return true;
2634 }
2635
2636 bool
2637 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2638 {
2639 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2640 return true;
2641 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2642 dev->dv_bus_resume != NULL &&
2643 !(*dev->dv_bus_resume)(dev, qual))
2644 return false;
2645
2646 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2647 return true;
2648 }
2649
2650 bool
2651 device_pmf_bus_shutdown(device_t dev, int how)
2652 {
2653
2654 if (*dev->dv_bus_shutdown != NULL &&
2655 !(*dev->dv_bus_shutdown)(dev, how))
2656 return false;
2657 return true;
2658 }
2659
2660 void
2661 device_pmf_bus_register(device_t dev, void *priv,
2662 bool (*suspend)(device_t, const pmf_qual_t *),
2663 bool (*resume)(device_t, const pmf_qual_t *),
2664 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2665 {
2666 dev->dv_bus_private = priv;
2667 dev->dv_bus_resume = resume;
2668 dev->dv_bus_suspend = suspend;
2669 dev->dv_bus_shutdown = shutdown;
2670 dev->dv_bus_deregister = deregister;
2671 }
2672
2673 void
2674 device_pmf_bus_deregister(device_t dev)
2675 {
2676 if (dev->dv_bus_deregister == NULL)
2677 return;
2678 (*dev->dv_bus_deregister)(dev);
2679 dev->dv_bus_private = NULL;
2680 dev->dv_bus_suspend = NULL;
2681 dev->dv_bus_resume = NULL;
2682 dev->dv_bus_deregister = NULL;
2683 }
2684
2685 void *
2686 device_pmf_class_private(device_t dev)
2687 {
2688 return dev->dv_class_private;
2689 }
2690
2691 bool
2692 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2693 {
2694 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2695 return true;
2696 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2697 dev->dv_class_suspend != NULL &&
2698 !(*dev->dv_class_suspend)(dev, qual))
2699 return false;
2700
2701 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2702 return true;
2703 }
2704
2705 bool
2706 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2707 {
2708 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2709 return true;
2710 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2711 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2712 return false;
2713 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2714 dev->dv_class_resume != NULL &&
2715 !(*dev->dv_class_resume)(dev, qual))
2716 return false;
2717
2718 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2719 return true;
2720 }
2721
2722 void
2723 device_pmf_class_register(device_t dev, void *priv,
2724 bool (*suspend)(device_t, const pmf_qual_t *),
2725 bool (*resume)(device_t, const pmf_qual_t *),
2726 void (*deregister)(device_t))
2727 {
2728 dev->dv_class_private = priv;
2729 dev->dv_class_suspend = suspend;
2730 dev->dv_class_resume = resume;
2731 dev->dv_class_deregister = deregister;
2732 }
2733
2734 void
2735 device_pmf_class_deregister(device_t dev)
2736 {
2737 if (dev->dv_class_deregister == NULL)
2738 return;
2739 (*dev->dv_class_deregister)(dev);
2740 dev->dv_class_private = NULL;
2741 dev->dv_class_suspend = NULL;
2742 dev->dv_class_resume = NULL;
2743 dev->dv_class_deregister = NULL;
2744 }
2745
2746 bool
2747 device_active(device_t dev, devactive_t type)
2748 {
2749 size_t i;
2750
2751 if (dev->dv_activity_count == 0)
2752 return false;
2753
2754 for (i = 0; i < dev->dv_activity_count; ++i) {
2755 if (dev->dv_activity_handlers[i] == NULL)
2756 break;
2757 (*dev->dv_activity_handlers[i])(dev, type);
2758 }
2759
2760 return true;
2761 }
2762
2763 bool
2764 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2765 {
2766 void (**new_handlers)(device_t, devactive_t);
2767 void (**old_handlers)(device_t, devactive_t);
2768 size_t i, old_size, new_size;
2769 int s;
2770
2771 old_handlers = dev->dv_activity_handlers;
2772 old_size = dev->dv_activity_count;
2773
2774 KASSERT(old_size == 0 || old_handlers != NULL);
2775
2776 for (i = 0; i < old_size; ++i) {
2777 KASSERT(old_handlers[i] != handler);
2778 if (old_handlers[i] == NULL) {
2779 old_handlers[i] = handler;
2780 return true;
2781 }
2782 }
2783
2784 new_size = old_size + 4;
2785 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2786
2787 for (i = 0; i < old_size; ++i)
2788 new_handlers[i] = old_handlers[i];
2789 new_handlers[old_size] = handler;
2790 for (i = old_size+1; i < new_size; ++i)
2791 new_handlers[i] = NULL;
2792
2793 s = splhigh();
2794 dev->dv_activity_count = new_size;
2795 dev->dv_activity_handlers = new_handlers;
2796 splx(s);
2797
2798 if (old_size > 0)
2799 kmem_free(old_handlers, sizeof(void * [old_size]));
2800
2801 return true;
2802 }
2803
2804 void
2805 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2806 {
2807 void (**old_handlers)(device_t, devactive_t);
2808 size_t i, old_size;
2809 int s;
2810
2811 old_handlers = dev->dv_activity_handlers;
2812 old_size = dev->dv_activity_count;
2813
2814 for (i = 0; i < old_size; ++i) {
2815 if (old_handlers[i] == handler)
2816 break;
2817 if (old_handlers[i] == NULL)
2818 return; /* XXX panic? */
2819 }
2820
2821 if (i == old_size)
2822 return; /* XXX panic? */
2823
2824 for (; i < old_size - 1; ++i) {
2825 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2826 continue;
2827
2828 if (i == 0) {
2829 s = splhigh();
2830 dev->dv_activity_count = 0;
2831 dev->dv_activity_handlers = NULL;
2832 splx(s);
2833 kmem_free(old_handlers, sizeof(void *[old_size]));
2834 }
2835 return;
2836 }
2837 old_handlers[i] = NULL;
2838 }
2839
2840 /* Return true iff the device_t `dev' exists at generation `gen'. */
2841 static bool
2842 device_exists_at(device_t dv, devgen_t gen)
2843 {
2844 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2845 dv->dv_add_gen <= gen;
2846 }
2847
2848 static bool
2849 deviter_visits(const deviter_t *di, device_t dv)
2850 {
2851 return device_exists_at(dv, di->di_gen);
2852 }
2853
2854 /*
2855 * Device Iteration
2856 *
2857 * deviter_t: a device iterator. Holds state for a "walk" visiting
2858 * each device_t's in the device tree.
2859 *
2860 * deviter_init(di, flags): initialize the device iterator `di'
2861 * to "walk" the device tree. deviter_next(di) will return
2862 * the first device_t in the device tree, or NULL if there are
2863 * no devices.
2864 *
2865 * `flags' is one or more of DEVITER_F_RW, indicating that the
2866 * caller intends to modify the device tree by calling
2867 * config_detach(9) on devices in the order that the iterator
2868 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2869 * nearest the "root" of the device tree to be returned, first;
2870 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2871 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2872 * indicating both that deviter_init() should not respect any
2873 * locks on the device tree, and that deviter_next(di) may run
2874 * in more than one LWP before the walk has finished.
2875 *
2876 * Only one DEVITER_F_RW iterator may be in the device tree at
2877 * once.
2878 *
2879 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2880 *
2881 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2882 * DEVITER_F_LEAVES_FIRST are used in combination.
2883 *
2884 * deviter_first(di, flags): initialize the device iterator `di'
2885 * and return the first device_t in the device tree, or NULL
2886 * if there are no devices. The statement
2887 *
2888 * dv = deviter_first(di);
2889 *
2890 * is shorthand for
2891 *
2892 * deviter_init(di);
2893 * dv = deviter_next(di);
2894 *
2895 * deviter_next(di): return the next device_t in the device tree,
2896 * or NULL if there are no more devices. deviter_next(di)
2897 * is undefined if `di' was not initialized with deviter_init() or
2898 * deviter_first().
2899 *
2900 * deviter_release(di): stops iteration (subsequent calls to
2901 * deviter_next() will return NULL), releases any locks and
2902 * resources held by the device iterator.
2903 *
2904 * Device iteration does not return device_t's in any particular
2905 * order. An iterator will never return the same device_t twice.
2906 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2907 * is called repeatedly on the same `di', it will eventually return
2908 * NULL. It is ok to attach/detach devices during device iteration.
2909 */
2910 void
2911 deviter_init(deviter_t *di, deviter_flags_t flags)
2912 {
2913 device_t dv;
2914
2915 memset(di, 0, sizeof(*di));
2916
2917 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2918 flags |= DEVITER_F_RW;
2919
2920 mutex_enter(&alldevs.lock);
2921 if ((flags & DEVITER_F_RW) != 0)
2922 alldevs.nwrite++;
2923 else
2924 alldevs.nread++;
2925 di->di_gen = alldevs.gen++;
2926 di->di_flags = flags;
2927
2928 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2929 case DEVITER_F_LEAVES_FIRST:
2930 TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
2931 if (!deviter_visits(di, dv))
2932 continue;
2933 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2934 }
2935 break;
2936 case DEVITER_F_ROOT_FIRST:
2937 TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
2938 if (!deviter_visits(di, dv))
2939 continue;
2940 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2941 }
2942 break;
2943 default:
2944 break;
2945 }
2946
2947 deviter_reinit(di);
2948 mutex_exit(&alldevs.lock);
2949 }
2950
2951 static void
2952 deviter_reinit(deviter_t *di)
2953 {
2954
2955 KASSERT(mutex_owned(&alldevs.lock));
2956 if ((di->di_flags & DEVITER_F_RW) != 0)
2957 di->di_prev = TAILQ_LAST(&alldevs.list, devicelist);
2958 else
2959 di->di_prev = TAILQ_FIRST(&alldevs.list);
2960 }
2961
2962 device_t
2963 deviter_first(deviter_t *di, deviter_flags_t flags)
2964 {
2965
2966 deviter_init(di, flags);
2967 return deviter_next(di);
2968 }
2969
2970 static device_t
2971 deviter_next2(deviter_t *di)
2972 {
2973 device_t dv;
2974
2975 KASSERT(mutex_owned(&alldevs.lock));
2976
2977 dv = di->di_prev;
2978
2979 if (dv == NULL)
2980 return NULL;
2981
2982 if ((di->di_flags & DEVITER_F_RW) != 0)
2983 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2984 else
2985 di->di_prev = TAILQ_NEXT(dv, dv_list);
2986
2987 return dv;
2988 }
2989
2990 static device_t
2991 deviter_next1(deviter_t *di)
2992 {
2993 device_t dv;
2994
2995 KASSERT(mutex_owned(&alldevs.lock));
2996
2997 do {
2998 dv = deviter_next2(di);
2999 } while (dv != NULL && !deviter_visits(di, dv));
3000
3001 return dv;
3002 }
3003
3004 device_t
3005 deviter_next(deviter_t *di)
3006 {
3007 device_t dv = NULL;
3008
3009 mutex_enter(&alldevs.lock);
3010 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
3011 case 0:
3012 dv = deviter_next1(di);
3013 break;
3014 case DEVITER_F_LEAVES_FIRST:
3015 while (di->di_curdepth >= 0) {
3016 if ((dv = deviter_next1(di)) == NULL) {
3017 di->di_curdepth--;
3018 deviter_reinit(di);
3019 } else if (dv->dv_depth == di->di_curdepth)
3020 break;
3021 }
3022 break;
3023 case DEVITER_F_ROOT_FIRST:
3024 while (di->di_curdepth <= di->di_maxdepth) {
3025 if ((dv = deviter_next1(di)) == NULL) {
3026 di->di_curdepth++;
3027 deviter_reinit(di);
3028 } else if (dv->dv_depth == di->di_curdepth)
3029 break;
3030 }
3031 break;
3032 default:
3033 break;
3034 }
3035 mutex_exit(&alldevs.lock);
3036
3037 return dv;
3038 }
3039
3040 void
3041 deviter_release(deviter_t *di)
3042 {
3043 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
3044
3045 mutex_enter(&alldevs.lock);
3046 if (rw)
3047 --alldevs.nwrite;
3048 else
3049 --alldevs.nread;
3050 /* XXX wake a garbage-collection thread */
3051 mutex_exit(&alldevs.lock);
3052 }
3053
3054 const char *
3055 cfdata_ifattr(const struct cfdata *cf)
3056 {
3057 return cf->cf_pspec->cfp_iattr;
3058 }
3059
3060 bool
3061 ifattr_match(const char *snull, const char *t)
3062 {
3063 return (snull == NULL) || strcmp(snull, t) == 0;
3064 }
3065
3066 void
3067 null_childdetached(device_t self, device_t child)
3068 {
3069 /* do nothing */
3070 }
3071
3072 static void
3073 sysctl_detach_setup(struct sysctllog **clog)
3074 {
3075
3076 sysctl_createv(clog, 0, NULL, NULL,
3077 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3078 CTLTYPE_BOOL, "detachall",
3079 SYSCTL_DESCR("Detach all devices at shutdown"),
3080 NULL, 0, &detachall, 0,
3081 CTL_KERN, CTL_CREATE, CTL_EOL);
3082 }
3083