subr_autoconf.c revision 1.254 1 /* $NetBSD: subr_autoconf.c,v 1.254 2017/10/27 09:59:16 utkarsh009 Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.254 2017/10/27 09:59:16 utkarsh009 Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110
111 #include <sys/disk.h>
112
113 #include <sys/rndsource.h>
114
115 #include <machine/limits.h>
116
117 /*
118 * Autoconfiguration subroutines.
119 */
120
121 /*
122 * Device autoconfiguration timings are mixed into the entropy pool.
123 */
124 extern krndsource_t rnd_autoconf_source;
125
126 /*
127 * ioconf.c exports exactly two names: cfdata and cfroots. All system
128 * devices and drivers are found via these tables.
129 */
130 extern struct cfdata cfdata[];
131 extern const short cfroots[];
132
133 /*
134 * List of all cfdriver structures. We use this to detect duplicates
135 * when other cfdrivers are loaded.
136 */
137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
138 extern struct cfdriver * const cfdriver_list_initial[];
139
140 /*
141 * Initial list of cfattach's.
142 */
143 extern const struct cfattachinit cfattachinit[];
144
145 /*
146 * List of cfdata tables. We always have one such list -- the one
147 * built statically when the kernel was configured.
148 */
149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
150 static struct cftable initcftable;
151
152 #define ROOT ((device_t)NULL)
153
154 struct matchinfo {
155 cfsubmatch_t fn;
156 device_t parent;
157 const int *locs;
158 void *aux;
159 struct cfdata *match;
160 int pri;
161 };
162
163 struct alldevs_foray {
164 int af_s;
165 struct devicelist af_garbage;
166 };
167
168 static char *number(char *, int);
169 static void mapply(struct matchinfo *, cfdata_t);
170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
171 static void config_devdelete(device_t);
172 static void config_devunlink(device_t, struct devicelist *);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_alldevs_enter(struct alldevs_foray *);
176 static void config_alldevs_exit(struct alldevs_foray *);
177 static void config_add_attrib_dict(device_t);
178
179 static void config_collect_garbage(struct devicelist *);
180 static void config_dump_garbage(struct devicelist *);
181
182 static void pmflock_debug(device_t, const char *, int);
183
184 static device_t deviter_next1(deviter_t *);
185 static void deviter_reinit(deviter_t *);
186
187 struct deferred_config {
188 TAILQ_ENTRY(deferred_config) dc_queue;
189 device_t dc_dev;
190 void (*dc_func)(device_t);
191 };
192
193 TAILQ_HEAD(deferred_config_head, deferred_config);
194
195 struct deferred_config_head deferred_config_queue =
196 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
197 struct deferred_config_head interrupt_config_queue =
198 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
199 int interrupt_config_threads = 8;
200 struct deferred_config_head mountroot_config_queue =
201 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
202 int mountroot_config_threads = 2;
203 static lwp_t **mountroot_config_lwpids;
204 static size_t mountroot_config_lwpids_size;
205 static bool root_is_mounted = false;
206
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 TAILQ_ENTRY(finalize_hook) f_list;
212 int (*f_func)(device_t);
213 device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218
219 /* list of all devices */
220 static struct {
221 kmutex_t lock;
222 struct devicelist list;
223 devgen_t gen;
224 int nread;
225 int nwrite;
226 bool garbage;
227 } alldevs __cacheline_aligned = {
228 .list = TAILQ_HEAD_INITIALIZER(alldevs.list),
229 .gen = 1,
230 .nread = 0,
231 .nwrite = 0,
232 .garbage = false,
233 };
234
235 static int config_pending; /* semaphore for mountroot */
236 static kmutex_t config_misc_lock;
237 static kcondvar_t config_misc_cv;
238
239 static bool detachall = false;
240
241 #define STREQ(s1, s2) \
242 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
243
244 static bool config_initialized = false; /* config_init() has been called. */
245
246 static int config_do_twiddle;
247 static callout_t config_twiddle_ch;
248
249 static void sysctl_detach_setup(struct sysctllog **);
250
251 int no_devmon_insert(const char *, prop_dictionary_t);
252 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
253
254 typedef int (*cfdriver_fn)(struct cfdriver *);
255 static int
256 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
257 cfdriver_fn drv_do, cfdriver_fn drv_undo,
258 const char *style, bool dopanic)
259 {
260 void (*pr)(const char *, ...) __printflike(1, 2) =
261 dopanic ? panic : (void *)printf;
262 int i, error = 0, e2 __diagused;
263
264 for (i = 0; cfdriverv[i] != NULL; i++) {
265 if ((error = drv_do(cfdriverv[i])) != 0) {
266 pr("configure: `%s' driver %s failed: %d",
267 cfdriverv[i]->cd_name, style, error);
268 goto bad;
269 }
270 }
271
272 KASSERT(error == 0);
273 return 0;
274
275 bad:
276 printf("\n");
277 for (i--; i >= 0; i--) {
278 e2 = drv_undo(cfdriverv[i]);
279 KASSERT(e2 == 0);
280 }
281
282 return error;
283 }
284
285 typedef int (*cfattach_fn)(const char *, struct cfattach *);
286 static int
287 frob_cfattachvec(const struct cfattachinit *cfattachv,
288 cfattach_fn att_do, cfattach_fn att_undo,
289 const char *style, bool dopanic)
290 {
291 const struct cfattachinit *cfai = NULL;
292 void (*pr)(const char *, ...) __printflike(1, 2) =
293 dopanic ? panic : (void *)printf;
294 int j = 0, error = 0, e2 __diagused;
295
296 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
297 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
298 if ((error = att_do(cfai->cfai_name,
299 cfai->cfai_list[j])) != 0) {
300 pr("configure: attachment `%s' "
301 "of `%s' driver %s failed: %d",
302 cfai->cfai_list[j]->ca_name,
303 cfai->cfai_name, style, error);
304 goto bad;
305 }
306 }
307 }
308
309 KASSERT(error == 0);
310 return 0;
311
312 bad:
313 /*
314 * Rollback in reverse order. dunno if super-important, but
315 * do that anyway. Although the code looks a little like
316 * someone did a little integration (in the math sense).
317 */
318 printf("\n");
319 if (cfai) {
320 bool last;
321
322 for (last = false; last == false; ) {
323 if (cfai == &cfattachv[0])
324 last = true;
325 for (j--; j >= 0; j--) {
326 e2 = att_undo(cfai->cfai_name,
327 cfai->cfai_list[j]);
328 KASSERT(e2 == 0);
329 }
330 if (!last) {
331 cfai--;
332 for (j = 0; cfai->cfai_list[j] != NULL; j++)
333 ;
334 }
335 }
336 }
337
338 return error;
339 }
340
341 /*
342 * Initialize the autoconfiguration data structures. Normally this
343 * is done by configure(), but some platforms need to do this very
344 * early (to e.g. initialize the console).
345 */
346 void
347 config_init(void)
348 {
349
350 KASSERT(config_initialized == false);
351
352 mutex_init(&alldevs.lock, MUTEX_DEFAULT, IPL_VM);
353
354 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
355 cv_init(&config_misc_cv, "cfgmisc");
356
357 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
358
359 frob_cfdrivervec(cfdriver_list_initial,
360 config_cfdriver_attach, NULL, "bootstrap", true);
361 frob_cfattachvec(cfattachinit,
362 config_cfattach_attach, NULL, "bootstrap", true);
363
364 initcftable.ct_cfdata = cfdata;
365 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
366
367 config_initialized = true;
368 }
369
370 /*
371 * Init or fini drivers and attachments. Either all or none
372 * are processed (via rollback). It would be nice if this were
373 * atomic to outside consumers, but with the current state of
374 * locking ...
375 */
376 int
377 config_init_component(struct cfdriver * const *cfdriverv,
378 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
379 {
380 int error;
381
382 if ((error = frob_cfdrivervec(cfdriverv,
383 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
384 return error;
385 if ((error = frob_cfattachvec(cfattachv,
386 config_cfattach_attach, config_cfattach_detach,
387 "init", false)) != 0) {
388 frob_cfdrivervec(cfdriverv,
389 config_cfdriver_detach, NULL, "init rollback", true);
390 return error;
391 }
392 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
393 frob_cfattachvec(cfattachv,
394 config_cfattach_detach, NULL, "init rollback", true);
395 frob_cfdrivervec(cfdriverv,
396 config_cfdriver_detach, NULL, "init rollback", true);
397 return error;
398 }
399
400 return 0;
401 }
402
403 int
404 config_fini_component(struct cfdriver * const *cfdriverv,
405 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
406 {
407 int error;
408
409 if ((error = config_cfdata_detach(cfdatav)) != 0)
410 return error;
411 if ((error = frob_cfattachvec(cfattachv,
412 config_cfattach_detach, config_cfattach_attach,
413 "fini", false)) != 0) {
414 if (config_cfdata_attach(cfdatav, 0) != 0)
415 panic("config_cfdata fini rollback failed");
416 return error;
417 }
418 if ((error = frob_cfdrivervec(cfdriverv,
419 config_cfdriver_detach, config_cfdriver_attach,
420 "fini", false)) != 0) {
421 frob_cfattachvec(cfattachv,
422 config_cfattach_attach, NULL, "fini rollback", true);
423 if (config_cfdata_attach(cfdatav, 0) != 0)
424 panic("config_cfdata fini rollback failed");
425 return error;
426 }
427
428 return 0;
429 }
430
431 void
432 config_init_mi(void)
433 {
434
435 if (!config_initialized)
436 config_init();
437
438 sysctl_detach_setup(NULL);
439 }
440
441 void
442 config_deferred(device_t dev)
443 {
444 config_process_deferred(&deferred_config_queue, dev);
445 config_process_deferred(&interrupt_config_queue, dev);
446 config_process_deferred(&mountroot_config_queue, dev);
447 }
448
449 static void
450 config_interrupts_thread(void *cookie)
451 {
452 struct deferred_config *dc;
453
454 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
455 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
456 (*dc->dc_func)(dc->dc_dev);
457 config_pending_decr(dc->dc_dev);
458 kmem_free(dc, sizeof(*dc));
459 }
460 kthread_exit(0);
461 }
462
463 void
464 config_create_interruptthreads(void)
465 {
466 int i;
467
468 for (i = 0; i < interrupt_config_threads; i++) {
469 (void)kthread_create(PRI_NONE, 0, NULL,
470 config_interrupts_thread, NULL, NULL, "configintr");
471 }
472 }
473
474 static void
475 config_mountroot_thread(void *cookie)
476 {
477 struct deferred_config *dc;
478
479 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
480 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
481 (*dc->dc_func)(dc->dc_dev);
482 kmem_free(dc, sizeof(*dc));
483 }
484 kthread_exit(0);
485 }
486
487 void
488 config_create_mountrootthreads(void)
489 {
490 int i;
491
492 if (!root_is_mounted)
493 root_is_mounted = true;
494
495 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
496 mountroot_config_threads;
497 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
498 KM_NOSLEEP);
499 KASSERT(mountroot_config_lwpids);
500 for (i = 0; i < mountroot_config_threads; i++) {
501 mountroot_config_lwpids[i] = 0;
502 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
503 config_mountroot_thread, NULL,
504 &mountroot_config_lwpids[i],
505 "configroot");
506 }
507 }
508
509 void
510 config_finalize_mountroot(void)
511 {
512 int i, error;
513
514 for (i = 0; i < mountroot_config_threads; i++) {
515 if (mountroot_config_lwpids[i] == 0)
516 continue;
517
518 error = kthread_join(mountroot_config_lwpids[i]);
519 if (error)
520 printf("%s: thread %x joined with error %d\n",
521 __func__, i, error);
522 }
523 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
524 }
525
526 /*
527 * Announce device attach/detach to userland listeners.
528 */
529
530 int
531 no_devmon_insert(const char *name, prop_dictionary_t p)
532 {
533
534 return ENODEV;
535 }
536
537 static void
538 devmon_report_device(device_t dev, bool isattach)
539 {
540 prop_dictionary_t ev;
541 const char *parent;
542 const char *what;
543 device_t pdev = device_parent(dev);
544
545 /* If currently no drvctl device, just return */
546 if (devmon_insert_vec == no_devmon_insert)
547 return;
548
549 ev = prop_dictionary_create();
550 if (ev == NULL)
551 return;
552
553 what = (isattach ? "device-attach" : "device-detach");
554 parent = (pdev == NULL ? "root" : device_xname(pdev));
555 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
556 !prop_dictionary_set_cstring(ev, "parent", parent)) {
557 prop_object_release(ev);
558 return;
559 }
560
561 if ((*devmon_insert_vec)(what, ev) != 0)
562 prop_object_release(ev);
563 }
564
565 /*
566 * Add a cfdriver to the system.
567 */
568 int
569 config_cfdriver_attach(struct cfdriver *cd)
570 {
571 struct cfdriver *lcd;
572
573 /* Make sure this driver isn't already in the system. */
574 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
575 if (STREQ(lcd->cd_name, cd->cd_name))
576 return EEXIST;
577 }
578
579 LIST_INIT(&cd->cd_attach);
580 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
581
582 return 0;
583 }
584
585 /*
586 * Remove a cfdriver from the system.
587 */
588 int
589 config_cfdriver_detach(struct cfdriver *cd)
590 {
591 struct alldevs_foray af;
592 int i, rc = 0;
593
594 config_alldevs_enter(&af);
595 /* Make sure there are no active instances. */
596 for (i = 0; i < cd->cd_ndevs; i++) {
597 if (cd->cd_devs[i] != NULL) {
598 rc = EBUSY;
599 break;
600 }
601 }
602 config_alldevs_exit(&af);
603
604 if (rc != 0)
605 return rc;
606
607 /* ...and no attachments loaded. */
608 if (LIST_EMPTY(&cd->cd_attach) == 0)
609 return EBUSY;
610
611 LIST_REMOVE(cd, cd_list);
612
613 KASSERT(cd->cd_devs == NULL);
614
615 return 0;
616 }
617
618 /*
619 * Look up a cfdriver by name.
620 */
621 struct cfdriver *
622 config_cfdriver_lookup(const char *name)
623 {
624 struct cfdriver *cd;
625
626 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
627 if (STREQ(cd->cd_name, name))
628 return cd;
629 }
630
631 return NULL;
632 }
633
634 /*
635 * Add a cfattach to the specified driver.
636 */
637 int
638 config_cfattach_attach(const char *driver, struct cfattach *ca)
639 {
640 struct cfattach *lca;
641 struct cfdriver *cd;
642
643 cd = config_cfdriver_lookup(driver);
644 if (cd == NULL)
645 return ESRCH;
646
647 /* Make sure this attachment isn't already on this driver. */
648 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
649 if (STREQ(lca->ca_name, ca->ca_name))
650 return EEXIST;
651 }
652
653 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
654
655 return 0;
656 }
657
658 /*
659 * Remove a cfattach from the specified driver.
660 */
661 int
662 config_cfattach_detach(const char *driver, struct cfattach *ca)
663 {
664 struct alldevs_foray af;
665 struct cfdriver *cd;
666 device_t dev;
667 int i, rc = 0;
668
669 cd = config_cfdriver_lookup(driver);
670 if (cd == NULL)
671 return ESRCH;
672
673 config_alldevs_enter(&af);
674 /* Make sure there are no active instances. */
675 for (i = 0; i < cd->cd_ndevs; i++) {
676 if ((dev = cd->cd_devs[i]) == NULL)
677 continue;
678 if (dev->dv_cfattach == ca) {
679 rc = EBUSY;
680 break;
681 }
682 }
683 config_alldevs_exit(&af);
684
685 if (rc != 0)
686 return rc;
687
688 LIST_REMOVE(ca, ca_list);
689
690 return 0;
691 }
692
693 /*
694 * Look up a cfattach by name.
695 */
696 static struct cfattach *
697 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
698 {
699 struct cfattach *ca;
700
701 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
702 if (STREQ(ca->ca_name, atname))
703 return ca;
704 }
705
706 return NULL;
707 }
708
709 /*
710 * Look up a cfattach by driver/attachment name.
711 */
712 struct cfattach *
713 config_cfattach_lookup(const char *name, const char *atname)
714 {
715 struct cfdriver *cd;
716
717 cd = config_cfdriver_lookup(name);
718 if (cd == NULL)
719 return NULL;
720
721 return config_cfattach_lookup_cd(cd, atname);
722 }
723
724 /*
725 * Apply the matching function and choose the best. This is used
726 * a few times and we want to keep the code small.
727 */
728 static void
729 mapply(struct matchinfo *m, cfdata_t cf)
730 {
731 int pri;
732
733 if (m->fn != NULL) {
734 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
735 } else {
736 pri = config_match(m->parent, cf, m->aux);
737 }
738 if (pri > m->pri) {
739 m->match = cf;
740 m->pri = pri;
741 }
742 }
743
744 int
745 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
746 {
747 const struct cfiattrdata *ci;
748 const struct cflocdesc *cl;
749 int nlocs, i;
750
751 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
752 KASSERT(ci);
753 nlocs = ci->ci_loclen;
754 KASSERT(!nlocs || locs);
755 for (i = 0; i < nlocs; i++) {
756 cl = &ci->ci_locdesc[i];
757 if (cl->cld_defaultstr != NULL &&
758 cf->cf_loc[i] == cl->cld_default)
759 continue;
760 if (cf->cf_loc[i] == locs[i])
761 continue;
762 return 0;
763 }
764
765 return config_match(parent, cf, aux);
766 }
767
768 /*
769 * Helper function: check whether the driver supports the interface attribute
770 * and return its descriptor structure.
771 */
772 static const struct cfiattrdata *
773 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
774 {
775 const struct cfiattrdata * const *cpp;
776
777 if (cd->cd_attrs == NULL)
778 return 0;
779
780 for (cpp = cd->cd_attrs; *cpp; cpp++) {
781 if (STREQ((*cpp)->ci_name, ia)) {
782 /* Match. */
783 return *cpp;
784 }
785 }
786 return 0;
787 }
788
789 /*
790 * Lookup an interface attribute description by name.
791 * If the driver is given, consider only its supported attributes.
792 */
793 const struct cfiattrdata *
794 cfiattr_lookup(const char *name, const struct cfdriver *cd)
795 {
796 const struct cfdriver *d;
797 const struct cfiattrdata *ia;
798
799 if (cd)
800 return cfdriver_get_iattr(cd, name);
801
802 LIST_FOREACH(d, &allcfdrivers, cd_list) {
803 ia = cfdriver_get_iattr(d, name);
804 if (ia)
805 return ia;
806 }
807 return 0;
808 }
809
810 /*
811 * Determine if `parent' is a potential parent for a device spec based
812 * on `cfp'.
813 */
814 static int
815 cfparent_match(const device_t parent, const struct cfparent *cfp)
816 {
817 struct cfdriver *pcd;
818
819 /* We don't match root nodes here. */
820 if (cfp == NULL)
821 return 0;
822
823 pcd = parent->dv_cfdriver;
824 KASSERT(pcd != NULL);
825
826 /*
827 * First, ensure this parent has the correct interface
828 * attribute.
829 */
830 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
831 return 0;
832
833 /*
834 * If no specific parent device instance was specified (i.e.
835 * we're attaching to the attribute only), we're done!
836 */
837 if (cfp->cfp_parent == NULL)
838 return 1;
839
840 /*
841 * Check the parent device's name.
842 */
843 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
844 return 0; /* not the same parent */
845
846 /*
847 * Make sure the unit number matches.
848 */
849 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
850 cfp->cfp_unit == parent->dv_unit)
851 return 1;
852
853 /* Unit numbers don't match. */
854 return 0;
855 }
856
857 /*
858 * Helper for config_cfdata_attach(): check all devices whether it could be
859 * parent any attachment in the config data table passed, and rescan.
860 */
861 static void
862 rescan_with_cfdata(const struct cfdata *cf)
863 {
864 device_t d;
865 const struct cfdata *cf1;
866 deviter_t di;
867
868
869 /*
870 * "alldevs" is likely longer than a modules's cfdata, so make it
871 * the outer loop.
872 */
873 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
874
875 if (!(d->dv_cfattach->ca_rescan))
876 continue;
877
878 for (cf1 = cf; cf1->cf_name; cf1++) {
879
880 if (!cfparent_match(d, cf1->cf_pspec))
881 continue;
882
883 (*d->dv_cfattach->ca_rescan)(d,
884 cfdata_ifattr(cf1), cf1->cf_loc);
885
886 config_deferred(d);
887 }
888 }
889 deviter_release(&di);
890 }
891
892 /*
893 * Attach a supplemental config data table and rescan potential
894 * parent devices if required.
895 */
896 int
897 config_cfdata_attach(cfdata_t cf, int scannow)
898 {
899 struct cftable *ct;
900
901 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
902 ct->ct_cfdata = cf;
903 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
904
905 if (scannow)
906 rescan_with_cfdata(cf);
907
908 return 0;
909 }
910
911 /*
912 * Helper for config_cfdata_detach: check whether a device is
913 * found through any attachment in the config data table.
914 */
915 static int
916 dev_in_cfdata(device_t d, cfdata_t cf)
917 {
918 const struct cfdata *cf1;
919
920 for (cf1 = cf; cf1->cf_name; cf1++)
921 if (d->dv_cfdata == cf1)
922 return 1;
923
924 return 0;
925 }
926
927 /*
928 * Detach a supplemental config data table. Detach all devices found
929 * through that table (and thus keeping references to it) before.
930 */
931 int
932 config_cfdata_detach(cfdata_t cf)
933 {
934 device_t d;
935 int error = 0;
936 struct cftable *ct;
937 deviter_t di;
938
939 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
940 d = deviter_next(&di)) {
941 if (!dev_in_cfdata(d, cf))
942 continue;
943 if ((error = config_detach(d, 0)) != 0)
944 break;
945 }
946 deviter_release(&di);
947 if (error) {
948 aprint_error_dev(d, "unable to detach instance\n");
949 return error;
950 }
951
952 TAILQ_FOREACH(ct, &allcftables, ct_list) {
953 if (ct->ct_cfdata == cf) {
954 TAILQ_REMOVE(&allcftables, ct, ct_list);
955 kmem_free(ct, sizeof(*ct));
956 return 0;
957 }
958 }
959
960 /* not found -- shouldn't happen */
961 return EINVAL;
962 }
963
964 /*
965 * Invoke the "match" routine for a cfdata entry on behalf of
966 * an external caller, usually a "submatch" routine.
967 */
968 int
969 config_match(device_t parent, cfdata_t cf, void *aux)
970 {
971 struct cfattach *ca;
972
973 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
974 if (ca == NULL) {
975 /* No attachment for this entry, oh well. */
976 return 0;
977 }
978
979 return (*ca->ca_match)(parent, cf, aux);
980 }
981
982 /*
983 * Iterate over all potential children of some device, calling the given
984 * function (default being the child's match function) for each one.
985 * Nonzero returns are matches; the highest value returned is considered
986 * the best match. Return the `found child' if we got a match, or NULL
987 * otherwise. The `aux' pointer is simply passed on through.
988 *
989 * Note that this function is designed so that it can be used to apply
990 * an arbitrary function to all potential children (its return value
991 * can be ignored).
992 */
993 cfdata_t
994 config_search_loc(cfsubmatch_t fn, device_t parent,
995 const char *ifattr, const int *locs, void *aux)
996 {
997 struct cftable *ct;
998 cfdata_t cf;
999 struct matchinfo m;
1000
1001 KASSERT(config_initialized);
1002 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
1003
1004 m.fn = fn;
1005 m.parent = parent;
1006 m.locs = locs;
1007 m.aux = aux;
1008 m.match = NULL;
1009 m.pri = 0;
1010
1011 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1012 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1013
1014 /* We don't match root nodes here. */
1015 if (!cf->cf_pspec)
1016 continue;
1017
1018 /*
1019 * Skip cf if no longer eligible, otherwise scan
1020 * through parents for one matching `parent', and
1021 * try match function.
1022 */
1023 if (cf->cf_fstate == FSTATE_FOUND)
1024 continue;
1025 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1026 cf->cf_fstate == FSTATE_DSTAR)
1027 continue;
1028
1029 /*
1030 * If an interface attribute was specified,
1031 * consider only children which attach to
1032 * that attribute.
1033 */
1034 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1035 continue;
1036
1037 if (cfparent_match(parent, cf->cf_pspec))
1038 mapply(&m, cf);
1039 }
1040 }
1041 return m.match;
1042 }
1043
1044 cfdata_t
1045 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
1046 void *aux)
1047 {
1048
1049 return config_search_loc(fn, parent, ifattr, NULL, aux);
1050 }
1051
1052 /*
1053 * Find the given root device.
1054 * This is much like config_search, but there is no parent.
1055 * Don't bother with multiple cfdata tables; the root node
1056 * must always be in the initial table.
1057 */
1058 cfdata_t
1059 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1060 {
1061 cfdata_t cf;
1062 const short *p;
1063 struct matchinfo m;
1064
1065 m.fn = fn;
1066 m.parent = ROOT;
1067 m.aux = aux;
1068 m.match = NULL;
1069 m.pri = 0;
1070 m.locs = 0;
1071 /*
1072 * Look at root entries for matching name. We do not bother
1073 * with found-state here since only one root should ever be
1074 * searched (and it must be done first).
1075 */
1076 for (p = cfroots; *p >= 0; p++) {
1077 cf = &cfdata[*p];
1078 if (strcmp(cf->cf_name, rootname) == 0)
1079 mapply(&m, cf);
1080 }
1081 return m.match;
1082 }
1083
1084 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1085
1086 /*
1087 * The given `aux' argument describes a device that has been found
1088 * on the given parent, but not necessarily configured. Locate the
1089 * configuration data for that device (using the submatch function
1090 * provided, or using candidates' cd_match configuration driver
1091 * functions) and attach it, and return its device_t. If the device was
1092 * not configured, call the given `print' function and return NULL.
1093 */
1094 device_t
1095 config_found_sm_loc(device_t parent,
1096 const char *ifattr, const int *locs, void *aux,
1097 cfprint_t print, cfsubmatch_t submatch)
1098 {
1099 cfdata_t cf;
1100
1101 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1102 return(config_attach_loc(parent, cf, locs, aux, print));
1103 if (print) {
1104 if (config_do_twiddle && cold)
1105 twiddle();
1106 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1107 }
1108
1109 /*
1110 * This has the effect of mixing in a single timestamp to the
1111 * entropy pool. Experiments indicate the estimator will almost
1112 * always attribute one bit of entropy to this sample; analysis
1113 * of device attach/detach timestamps on FreeBSD indicates 4
1114 * bits of entropy/sample so this seems appropriately conservative.
1115 */
1116 rnd_add_uint32(&rnd_autoconf_source, 0);
1117 return NULL;
1118 }
1119
1120 device_t
1121 config_found_ia(device_t parent, const char *ifattr, void *aux,
1122 cfprint_t print)
1123 {
1124
1125 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1126 }
1127
1128 device_t
1129 config_found(device_t parent, void *aux, cfprint_t print)
1130 {
1131
1132 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1133 }
1134
1135 /*
1136 * As above, but for root devices.
1137 */
1138 device_t
1139 config_rootfound(const char *rootname, void *aux)
1140 {
1141 cfdata_t cf;
1142
1143 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1144 return config_attach(ROOT, cf, aux, NULL);
1145 aprint_error("root device %s not configured\n", rootname);
1146 return NULL;
1147 }
1148
1149 /* just like sprintf(buf, "%d") except that it works from the end */
1150 static char *
1151 number(char *ep, int n)
1152 {
1153
1154 *--ep = 0;
1155 while (n >= 10) {
1156 *--ep = (n % 10) + '0';
1157 n /= 10;
1158 }
1159 *--ep = n + '0';
1160 return ep;
1161 }
1162
1163 /*
1164 * Expand the size of the cd_devs array if necessary.
1165 *
1166 * The caller must hold alldevs.lock. config_makeroom() may release and
1167 * re-acquire alldevs.lock, so callers should re-check conditions such
1168 * as alldevs.nwrite == 0 and alldevs.nread == 0 when config_makeroom()
1169 * returns.
1170 */
1171 static void
1172 config_makeroom(int n, struct cfdriver *cd)
1173 {
1174 int ondevs, nndevs;
1175 device_t *osp, *nsp;
1176
1177 KASSERT(mutex_owned(&alldevs.lock));
1178 alldevs.nwrite++;
1179
1180 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1181 ;
1182
1183 while (n >= cd->cd_ndevs) {
1184 /*
1185 * Need to expand the array.
1186 */
1187 ondevs = cd->cd_ndevs;
1188 osp = cd->cd_devs;
1189
1190 /*
1191 * Release alldevs.lock around allocation, which may
1192 * sleep.
1193 */
1194 mutex_exit(&alldevs.lock);
1195 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1196 mutex_enter(&alldevs.lock);
1197
1198 /*
1199 * If another thread moved the array while we did
1200 * not hold alldevs.lock, try again.
1201 */
1202 if (cd->cd_devs != osp) {
1203 mutex_exit(&alldevs.lock);
1204 kmem_free(nsp, sizeof(device_t[nndevs]));
1205 mutex_enter(&alldevs.lock);
1206 continue;
1207 }
1208
1209 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1210 if (ondevs != 0)
1211 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1212
1213 cd->cd_ndevs = nndevs;
1214 cd->cd_devs = nsp;
1215 if (ondevs != 0) {
1216 mutex_exit(&alldevs.lock);
1217 kmem_free(osp, sizeof(device_t[ondevs]));
1218 mutex_enter(&alldevs.lock);
1219 }
1220 }
1221 KASSERT(mutex_owned(&alldevs.lock));
1222 alldevs.nwrite--;
1223 }
1224
1225 /*
1226 * Put dev into the devices list.
1227 */
1228 static void
1229 config_devlink(device_t dev)
1230 {
1231
1232 mutex_enter(&alldevs.lock);
1233
1234 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1235
1236 dev->dv_add_gen = alldevs.gen;
1237 /* It is safe to add a device to the tail of the list while
1238 * readers and writers are in the list.
1239 */
1240 TAILQ_INSERT_TAIL(&alldevs.list, dev, dv_list);
1241 mutex_exit(&alldevs.lock);
1242 }
1243
1244 static void
1245 config_devfree(device_t dev)
1246 {
1247 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1248
1249 if (dev->dv_cfattach->ca_devsize > 0)
1250 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1251 if (priv)
1252 kmem_free(dev, sizeof(*dev));
1253 }
1254
1255 /*
1256 * Caller must hold alldevs.lock.
1257 */
1258 static void
1259 config_devunlink(device_t dev, struct devicelist *garbage)
1260 {
1261 struct device_garbage *dg = &dev->dv_garbage;
1262 cfdriver_t cd = device_cfdriver(dev);
1263 int i;
1264
1265 KASSERT(mutex_owned(&alldevs.lock));
1266
1267 /* Unlink from device list. Link to garbage list. */
1268 TAILQ_REMOVE(&alldevs.list, dev, dv_list);
1269 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1270
1271 /* Remove from cfdriver's array. */
1272 cd->cd_devs[dev->dv_unit] = NULL;
1273
1274 /*
1275 * If the device now has no units in use, unlink its softc array.
1276 */
1277 for (i = 0; i < cd->cd_ndevs; i++) {
1278 if (cd->cd_devs[i] != NULL)
1279 break;
1280 }
1281 /* Nothing found. Unlink, now. Deallocate, later. */
1282 if (i == cd->cd_ndevs) {
1283 dg->dg_ndevs = cd->cd_ndevs;
1284 dg->dg_devs = cd->cd_devs;
1285 cd->cd_devs = NULL;
1286 cd->cd_ndevs = 0;
1287 }
1288 }
1289
1290 static void
1291 config_devdelete(device_t dev)
1292 {
1293 struct device_garbage *dg = &dev->dv_garbage;
1294 device_lock_t dvl = device_getlock(dev);
1295
1296 if (dg->dg_devs != NULL)
1297 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1298
1299 cv_destroy(&dvl->dvl_cv);
1300 mutex_destroy(&dvl->dvl_mtx);
1301
1302 KASSERT(dev->dv_properties != NULL);
1303 prop_object_release(dev->dv_properties);
1304
1305 if (dev->dv_activity_handlers)
1306 panic("%s with registered handlers", __func__);
1307
1308 if (dev->dv_locators) {
1309 size_t amount = *--dev->dv_locators;
1310 kmem_free(dev->dv_locators, amount);
1311 }
1312
1313 config_devfree(dev);
1314 }
1315
1316 static int
1317 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1318 {
1319 int unit;
1320
1321 if (cf->cf_fstate == FSTATE_STAR) {
1322 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1323 if (cd->cd_devs[unit] == NULL)
1324 break;
1325 /*
1326 * unit is now the unit of the first NULL device pointer,
1327 * or max(cd->cd_ndevs,cf->cf_unit).
1328 */
1329 } else {
1330 unit = cf->cf_unit;
1331 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1332 unit = -1;
1333 }
1334 return unit;
1335 }
1336
1337 static int
1338 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1339 {
1340 struct alldevs_foray af;
1341 int unit;
1342
1343 config_alldevs_enter(&af);
1344 for (;;) {
1345 unit = config_unit_nextfree(cd, cf);
1346 if (unit == -1)
1347 break;
1348 if (unit < cd->cd_ndevs) {
1349 cd->cd_devs[unit] = dev;
1350 dev->dv_unit = unit;
1351 break;
1352 }
1353 config_makeroom(unit, cd);
1354 }
1355 config_alldevs_exit(&af);
1356
1357 return unit;
1358 }
1359
1360 static device_t
1361 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1362 {
1363 cfdriver_t cd;
1364 cfattach_t ca;
1365 size_t lname, lunit;
1366 const char *xunit;
1367 int myunit;
1368 char num[10];
1369 device_t dev;
1370 void *dev_private;
1371 const struct cfiattrdata *ia;
1372 device_lock_t dvl;
1373
1374 cd = config_cfdriver_lookup(cf->cf_name);
1375 if (cd == NULL)
1376 return NULL;
1377
1378 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1379 if (ca == NULL)
1380 return NULL;
1381
1382 /* get memory for all device vars */
1383 KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
1384 || ca->ca_devsize >= sizeof(struct device),
1385 "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
1386 sizeof(struct device));
1387 if (ca->ca_devsize > 0) {
1388 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1389 } else {
1390 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1391 dev_private = NULL;
1392 }
1393
1394 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1395 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1396 } else {
1397 dev = dev_private;
1398 #ifdef DIAGNOSTIC
1399 printf("%s has not been converted to device_t\n", cd->cd_name);
1400 #endif
1401 }
1402 dev->dv_class = cd->cd_class;
1403 dev->dv_cfdata = cf;
1404 dev->dv_cfdriver = cd;
1405 dev->dv_cfattach = ca;
1406 dev->dv_activity_count = 0;
1407 dev->dv_activity_handlers = NULL;
1408 dev->dv_private = dev_private;
1409 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1410
1411 myunit = config_unit_alloc(dev, cd, cf);
1412 if (myunit == -1) {
1413 config_devfree(dev);
1414 return NULL;
1415 }
1416
1417 /* compute length of name and decimal expansion of unit number */
1418 lname = strlen(cd->cd_name);
1419 xunit = number(&num[sizeof(num)], myunit);
1420 lunit = &num[sizeof(num)] - xunit;
1421 if (lname + lunit > sizeof(dev->dv_xname))
1422 panic("config_devalloc: device name too long");
1423
1424 dvl = device_getlock(dev);
1425
1426 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1427 cv_init(&dvl->dvl_cv, "pmfsusp");
1428
1429 memcpy(dev->dv_xname, cd->cd_name, lname);
1430 memcpy(dev->dv_xname + lname, xunit, lunit);
1431 dev->dv_parent = parent;
1432 if (parent != NULL)
1433 dev->dv_depth = parent->dv_depth + 1;
1434 else
1435 dev->dv_depth = 0;
1436 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1437 if (locs) {
1438 KASSERT(parent); /* no locators at root */
1439 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1440 dev->dv_locators =
1441 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1442 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1443 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1444 }
1445 dev->dv_properties = prop_dictionary_create();
1446 KASSERT(dev->dv_properties != NULL);
1447
1448 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1449 "device-driver", dev->dv_cfdriver->cd_name);
1450 prop_dictionary_set_uint16(dev->dv_properties,
1451 "device-unit", dev->dv_unit);
1452 if (parent != NULL) {
1453 prop_dictionary_set_cstring(dev->dv_properties,
1454 "device-parent", device_xname(parent));
1455 }
1456
1457 if (dev->dv_cfdriver->cd_attrs != NULL)
1458 config_add_attrib_dict(dev);
1459
1460 return dev;
1461 }
1462
1463 /*
1464 * Create an array of device attach attributes and add it
1465 * to the device's dv_properties dictionary.
1466 *
1467 * <key>interface-attributes</key>
1468 * <array>
1469 * <dict>
1470 * <key>attribute-name</key>
1471 * <string>foo</string>
1472 * <key>locators</key>
1473 * <array>
1474 * <dict>
1475 * <key>loc-name</key>
1476 * <string>foo-loc1</string>
1477 * </dict>
1478 * <dict>
1479 * <key>loc-name</key>
1480 * <string>foo-loc2</string>
1481 * <key>default</key>
1482 * <string>foo-loc2-default</string>
1483 * </dict>
1484 * ...
1485 * </array>
1486 * </dict>
1487 * ...
1488 * </array>
1489 */
1490
1491 static void
1492 config_add_attrib_dict(device_t dev)
1493 {
1494 int i, j;
1495 const struct cfiattrdata *ci;
1496 prop_dictionary_t attr_dict, loc_dict;
1497 prop_array_t attr_array, loc_array;
1498
1499 if ((attr_array = prop_array_create()) == NULL)
1500 return;
1501
1502 for (i = 0; ; i++) {
1503 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1504 break;
1505 if ((attr_dict = prop_dictionary_create()) == NULL)
1506 break;
1507 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1508 ci->ci_name);
1509
1510 /* Create an array of the locator names and defaults */
1511
1512 if (ci->ci_loclen != 0 &&
1513 (loc_array = prop_array_create()) != NULL) {
1514 for (j = 0; j < ci->ci_loclen; j++) {
1515 loc_dict = prop_dictionary_create();
1516 if (loc_dict == NULL)
1517 continue;
1518 prop_dictionary_set_cstring_nocopy(loc_dict,
1519 "loc-name", ci->ci_locdesc[j].cld_name);
1520 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1521 prop_dictionary_set_cstring_nocopy(
1522 loc_dict, "default",
1523 ci->ci_locdesc[j].cld_defaultstr);
1524 prop_array_set(loc_array, j, loc_dict);
1525 prop_object_release(loc_dict);
1526 }
1527 prop_dictionary_set_and_rel(attr_dict, "locators",
1528 loc_array);
1529 }
1530 prop_array_add(attr_array, attr_dict);
1531 prop_object_release(attr_dict);
1532 }
1533 if (i == 0)
1534 prop_object_release(attr_array);
1535 else
1536 prop_dictionary_set_and_rel(dev->dv_properties,
1537 "interface-attributes", attr_array);
1538
1539 return;
1540 }
1541
1542 /*
1543 * Attach a found device.
1544 */
1545 device_t
1546 config_attach_loc(device_t parent, cfdata_t cf,
1547 const int *locs, void *aux, cfprint_t print)
1548 {
1549 device_t dev;
1550 struct cftable *ct;
1551 const char *drvname;
1552
1553 dev = config_devalloc(parent, cf, locs);
1554 if (!dev)
1555 panic("config_attach: allocation of device softc failed");
1556
1557 /* XXX redundant - see below? */
1558 if (cf->cf_fstate != FSTATE_STAR) {
1559 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1560 cf->cf_fstate = FSTATE_FOUND;
1561 }
1562
1563 config_devlink(dev);
1564
1565 if (config_do_twiddle && cold)
1566 twiddle();
1567 else
1568 aprint_naive("Found ");
1569 /*
1570 * We want the next two printfs for normal, verbose, and quiet,
1571 * but not silent (in which case, we're twiddling, instead).
1572 */
1573 if (parent == ROOT) {
1574 aprint_naive("%s (root)", device_xname(dev));
1575 aprint_normal("%s (root)", device_xname(dev));
1576 } else {
1577 aprint_naive("%s at %s", device_xname(dev),
1578 device_xname(parent));
1579 aprint_normal("%s at %s", device_xname(dev),
1580 device_xname(parent));
1581 if (print)
1582 (void) (*print)(aux, NULL);
1583 }
1584
1585 /*
1586 * Before attaching, clobber any unfound devices that are
1587 * otherwise identical.
1588 * XXX code above is redundant?
1589 */
1590 drvname = dev->dv_cfdriver->cd_name;
1591 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1592 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1593 if (STREQ(cf->cf_name, drvname) &&
1594 cf->cf_unit == dev->dv_unit) {
1595 if (cf->cf_fstate == FSTATE_NOTFOUND)
1596 cf->cf_fstate = FSTATE_FOUND;
1597 }
1598 }
1599 }
1600 device_register(dev, aux);
1601
1602 /* Let userland know */
1603 devmon_report_device(dev, true);
1604
1605 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1606
1607 if (!device_pmf_is_registered(dev))
1608 aprint_debug_dev(dev, "WARNING: power management not "
1609 "supported\n");
1610
1611 config_process_deferred(&deferred_config_queue, dev);
1612
1613 device_register_post_config(dev, aux);
1614 return dev;
1615 }
1616
1617 device_t
1618 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1619 {
1620
1621 return config_attach_loc(parent, cf, NULL, aux, print);
1622 }
1623
1624 /*
1625 * As above, but for pseudo-devices. Pseudo-devices attached in this
1626 * way are silently inserted into the device tree, and their children
1627 * attached.
1628 *
1629 * Note that because pseudo-devices are attached silently, any information
1630 * the attach routine wishes to print should be prefixed with the device
1631 * name by the attach routine.
1632 */
1633 device_t
1634 config_attach_pseudo(cfdata_t cf)
1635 {
1636 device_t dev;
1637
1638 dev = config_devalloc(ROOT, cf, NULL);
1639 if (!dev)
1640 return NULL;
1641
1642 /* XXX mark busy in cfdata */
1643
1644 if (cf->cf_fstate != FSTATE_STAR) {
1645 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1646 cf->cf_fstate = FSTATE_FOUND;
1647 }
1648
1649 config_devlink(dev);
1650
1651 #if 0 /* XXXJRT not yet */
1652 device_register(dev, NULL); /* like a root node */
1653 #endif
1654
1655 /* Let userland know */
1656 devmon_report_device(dev, true);
1657
1658 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1659
1660 config_process_deferred(&deferred_config_queue, dev);
1661 return dev;
1662 }
1663
1664 /*
1665 * Caller must hold alldevs.lock.
1666 */
1667 static void
1668 config_collect_garbage(struct devicelist *garbage)
1669 {
1670 device_t dv;
1671
1672 KASSERT(!cpu_intr_p());
1673 KASSERT(!cpu_softintr_p());
1674 KASSERT(mutex_owned(&alldevs.lock));
1675
1676 while (alldevs.nwrite == 0 && alldevs.nread == 0 && alldevs.garbage) {
1677 TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
1678 if (dv->dv_del_gen != 0)
1679 break;
1680 }
1681 if (dv == NULL) {
1682 alldevs.garbage = false;
1683 break;
1684 }
1685 config_devunlink(dv, garbage);
1686 }
1687 KASSERT(mutex_owned(&alldevs.lock));
1688 }
1689
1690 static void
1691 config_dump_garbage(struct devicelist *garbage)
1692 {
1693 device_t dv;
1694
1695 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1696 TAILQ_REMOVE(garbage, dv, dv_list);
1697 config_devdelete(dv);
1698 }
1699 }
1700
1701 /*
1702 * Detach a device. Optionally forced (e.g. because of hardware
1703 * removal) and quiet. Returns zero if successful, non-zero
1704 * (an error code) otherwise.
1705 *
1706 * Note that this code wants to be run from a process context, so
1707 * that the detach can sleep to allow processes which have a device
1708 * open to run and unwind their stacks.
1709 */
1710 int
1711 config_detach(device_t dev, int flags)
1712 {
1713 struct alldevs_foray af;
1714 struct cftable *ct;
1715 cfdata_t cf;
1716 const struct cfattach *ca;
1717 struct cfdriver *cd;
1718 device_t d __diagused;
1719 int rv = 0;
1720
1721 cf = dev->dv_cfdata;
1722 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
1723 cf->cf_fstate == FSTATE_STAR),
1724 "config_detach: %s: bad device fstate: %d",
1725 device_xname(dev), cf ? cf->cf_fstate : -1);
1726
1727 cd = dev->dv_cfdriver;
1728 KASSERT(cd != NULL);
1729
1730 ca = dev->dv_cfattach;
1731 KASSERT(ca != NULL);
1732
1733 mutex_enter(&alldevs.lock);
1734 if (dev->dv_del_gen != 0) {
1735 mutex_exit(&alldevs.lock);
1736 #ifdef DIAGNOSTIC
1737 printf("%s: %s is already detached\n", __func__,
1738 device_xname(dev));
1739 #endif /* DIAGNOSTIC */
1740 return ENOENT;
1741 }
1742 alldevs.nwrite++;
1743 mutex_exit(&alldevs.lock);
1744
1745 if (!detachall &&
1746 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1747 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1748 rv = EOPNOTSUPP;
1749 } else if (ca->ca_detach != NULL) {
1750 rv = (*ca->ca_detach)(dev, flags);
1751 } else
1752 rv = EOPNOTSUPP;
1753
1754 /*
1755 * If it was not possible to detach the device, then we either
1756 * panic() (for the forced but failed case), or return an error.
1757 *
1758 * If it was possible to detach the device, ensure that the
1759 * device is deactivated.
1760 */
1761 if (rv == 0)
1762 dev->dv_flags &= ~DVF_ACTIVE;
1763 else if ((flags & DETACH_FORCE) == 0)
1764 goto out;
1765 else {
1766 panic("config_detach: forced detach of %s failed (%d)",
1767 device_xname(dev), rv);
1768 }
1769
1770 /*
1771 * The device has now been successfully detached.
1772 */
1773
1774 /* Let userland know */
1775 devmon_report_device(dev, false);
1776
1777 #ifdef DIAGNOSTIC
1778 /*
1779 * Sanity: If you're successfully detached, you should have no
1780 * children. (Note that because children must be attached
1781 * after parents, we only need to search the latter part of
1782 * the list.)
1783 */
1784 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1785 d = TAILQ_NEXT(d, dv_list)) {
1786 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1787 printf("config_detach: detached device %s"
1788 " has children %s\n", device_xname(dev),
1789 device_xname(d));
1790 panic("config_detach");
1791 }
1792 }
1793 #endif
1794
1795 /* notify the parent that the child is gone */
1796 if (dev->dv_parent) {
1797 device_t p = dev->dv_parent;
1798 if (p->dv_cfattach->ca_childdetached)
1799 (*p->dv_cfattach->ca_childdetached)(p, dev);
1800 }
1801
1802 /*
1803 * Mark cfdata to show that the unit can be reused, if possible.
1804 */
1805 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1806 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1807 if (STREQ(cf->cf_name, cd->cd_name)) {
1808 if (cf->cf_fstate == FSTATE_FOUND &&
1809 cf->cf_unit == dev->dv_unit)
1810 cf->cf_fstate = FSTATE_NOTFOUND;
1811 }
1812 }
1813 }
1814
1815 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1816 aprint_normal_dev(dev, "detached\n");
1817
1818 out:
1819 config_alldevs_enter(&af);
1820 KASSERT(alldevs.nwrite != 0);
1821 --alldevs.nwrite;
1822 if (rv == 0 && dev->dv_del_gen == 0) {
1823 if (alldevs.nwrite == 0 && alldevs.nread == 0)
1824 config_devunlink(dev, &af.af_garbage);
1825 else {
1826 dev->dv_del_gen = alldevs.gen;
1827 alldevs.garbage = true;
1828 }
1829 }
1830 config_alldevs_exit(&af);
1831
1832 return rv;
1833 }
1834
1835 int
1836 config_detach_children(device_t parent, int flags)
1837 {
1838 device_t dv;
1839 deviter_t di;
1840 int error = 0;
1841
1842 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1843 dv = deviter_next(&di)) {
1844 if (device_parent(dv) != parent)
1845 continue;
1846 if ((error = config_detach(dv, flags)) != 0)
1847 break;
1848 }
1849 deviter_release(&di);
1850 return error;
1851 }
1852
1853 device_t
1854 shutdown_first(struct shutdown_state *s)
1855 {
1856 if (!s->initialized) {
1857 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1858 s->initialized = true;
1859 }
1860 return shutdown_next(s);
1861 }
1862
1863 device_t
1864 shutdown_next(struct shutdown_state *s)
1865 {
1866 device_t dv;
1867
1868 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1869 ;
1870
1871 if (dv == NULL)
1872 s->initialized = false;
1873
1874 return dv;
1875 }
1876
1877 bool
1878 config_detach_all(int how)
1879 {
1880 static struct shutdown_state s;
1881 device_t curdev;
1882 bool progress = false;
1883 int flags;
1884
1885 if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1886 return false;
1887
1888 if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1889 flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1890 else
1891 flags = DETACH_SHUTDOWN;
1892
1893 for (curdev = shutdown_first(&s); curdev != NULL;
1894 curdev = shutdown_next(&s)) {
1895 aprint_debug(" detaching %s, ", device_xname(curdev));
1896 if (config_detach(curdev, flags) == 0) {
1897 progress = true;
1898 aprint_debug("success.");
1899 } else
1900 aprint_debug("failed.");
1901 }
1902 return progress;
1903 }
1904
1905 static bool
1906 device_is_ancestor_of(device_t ancestor, device_t descendant)
1907 {
1908 device_t dv;
1909
1910 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1911 if (device_parent(dv) == ancestor)
1912 return true;
1913 }
1914 return false;
1915 }
1916
1917 int
1918 config_deactivate(device_t dev)
1919 {
1920 deviter_t di;
1921 const struct cfattach *ca;
1922 device_t descendant;
1923 int s, rv = 0, oflags;
1924
1925 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1926 descendant != NULL;
1927 descendant = deviter_next(&di)) {
1928 if (dev != descendant &&
1929 !device_is_ancestor_of(dev, descendant))
1930 continue;
1931
1932 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1933 continue;
1934
1935 ca = descendant->dv_cfattach;
1936 oflags = descendant->dv_flags;
1937
1938 descendant->dv_flags &= ~DVF_ACTIVE;
1939 if (ca->ca_activate == NULL)
1940 continue;
1941 s = splhigh();
1942 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1943 splx(s);
1944 if (rv != 0)
1945 descendant->dv_flags = oflags;
1946 }
1947 deviter_release(&di);
1948 return rv;
1949 }
1950
1951 /*
1952 * Defer the configuration of the specified device until all
1953 * of its parent's devices have been attached.
1954 */
1955 void
1956 config_defer(device_t dev, void (*func)(device_t))
1957 {
1958 struct deferred_config *dc;
1959
1960 if (dev->dv_parent == NULL)
1961 panic("config_defer: can't defer config of a root device");
1962
1963 #ifdef DIAGNOSTIC
1964 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1965 if (dc->dc_dev == dev)
1966 panic("config_defer: deferred twice");
1967 }
1968 #endif
1969
1970 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1971 dc->dc_dev = dev;
1972 dc->dc_func = func;
1973 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1974 config_pending_incr(dev);
1975 }
1976
1977 /*
1978 * Defer some autoconfiguration for a device until after interrupts
1979 * are enabled.
1980 */
1981 void
1982 config_interrupts(device_t dev, void (*func)(device_t))
1983 {
1984 struct deferred_config *dc;
1985
1986 /*
1987 * If interrupts are enabled, callback now.
1988 */
1989 if (cold == 0) {
1990 (*func)(dev);
1991 return;
1992 }
1993
1994 #ifdef DIAGNOSTIC
1995 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1996 if (dc->dc_dev == dev)
1997 panic("config_interrupts: deferred twice");
1998 }
1999 #endif
2000
2001 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2002 dc->dc_dev = dev;
2003 dc->dc_func = func;
2004 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2005 config_pending_incr(dev);
2006 }
2007
2008 /*
2009 * Defer some autoconfiguration for a device until after root file system
2010 * is mounted (to load firmware etc).
2011 */
2012 void
2013 config_mountroot(device_t dev, void (*func)(device_t))
2014 {
2015 struct deferred_config *dc;
2016
2017 /*
2018 * If root file system is mounted, callback now.
2019 */
2020 if (root_is_mounted) {
2021 (*func)(dev);
2022 return;
2023 }
2024
2025 #ifdef DIAGNOSTIC
2026 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
2027 if (dc->dc_dev == dev)
2028 panic("%s: deferred twice", __func__);
2029 }
2030 #endif
2031
2032 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2033 dc->dc_dev = dev;
2034 dc->dc_func = func;
2035 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2036 }
2037
2038 /*
2039 * Process a deferred configuration queue.
2040 */
2041 static void
2042 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2043 {
2044 struct deferred_config *dc, *ndc;
2045
2046 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
2047 ndc = TAILQ_NEXT(dc, dc_queue);
2048 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2049 TAILQ_REMOVE(queue, dc, dc_queue);
2050 (*dc->dc_func)(dc->dc_dev);
2051 config_pending_decr(dc->dc_dev);
2052 kmem_free(dc, sizeof(*dc));
2053 }
2054 }
2055 }
2056
2057 /*
2058 * Manipulate the config_pending semaphore.
2059 */
2060 void
2061 config_pending_incr(device_t dev)
2062 {
2063
2064 mutex_enter(&config_misc_lock);
2065 config_pending++;
2066 #ifdef DEBUG_AUTOCONF
2067 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2068 #endif
2069 mutex_exit(&config_misc_lock);
2070 }
2071
2072 void
2073 config_pending_decr(device_t dev)
2074 {
2075
2076 KASSERT(0 < config_pending);
2077 mutex_enter(&config_misc_lock);
2078 config_pending--;
2079 #ifdef DEBUG_AUTOCONF
2080 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2081 #endif
2082 if (config_pending == 0)
2083 cv_broadcast(&config_misc_cv);
2084 mutex_exit(&config_misc_lock);
2085 }
2086
2087 /*
2088 * Register a "finalization" routine. Finalization routines are
2089 * called iteratively once all real devices have been found during
2090 * autoconfiguration, for as long as any one finalizer has done
2091 * any work.
2092 */
2093 int
2094 config_finalize_register(device_t dev, int (*fn)(device_t))
2095 {
2096 struct finalize_hook *f;
2097
2098 /*
2099 * If finalization has already been done, invoke the
2100 * callback function now.
2101 */
2102 if (config_finalize_done) {
2103 while ((*fn)(dev) != 0)
2104 /* loop */ ;
2105 return 0;
2106 }
2107
2108 /* Ensure this isn't already on the list. */
2109 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2110 if (f->f_func == fn && f->f_dev == dev)
2111 return EEXIST;
2112 }
2113
2114 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2115 f->f_func = fn;
2116 f->f_dev = dev;
2117 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2118
2119 return 0;
2120 }
2121
2122 void
2123 config_finalize(void)
2124 {
2125 struct finalize_hook *f;
2126 struct pdevinit *pdev;
2127 extern struct pdevinit pdevinit[];
2128 int errcnt, rv;
2129
2130 /*
2131 * Now that device driver threads have been created, wait for
2132 * them to finish any deferred autoconfiguration.
2133 */
2134 mutex_enter(&config_misc_lock);
2135 while (config_pending != 0)
2136 cv_wait(&config_misc_cv, &config_misc_lock);
2137 mutex_exit(&config_misc_lock);
2138
2139 KERNEL_LOCK(1, NULL);
2140
2141 /* Attach pseudo-devices. */
2142 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2143 (*pdev->pdev_attach)(pdev->pdev_count);
2144
2145 /* Run the hooks until none of them does any work. */
2146 do {
2147 rv = 0;
2148 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2149 rv |= (*f->f_func)(f->f_dev);
2150 } while (rv != 0);
2151
2152 config_finalize_done = 1;
2153
2154 /* Now free all the hooks. */
2155 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2156 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2157 kmem_free(f, sizeof(*f));
2158 }
2159
2160 KERNEL_UNLOCK_ONE(NULL);
2161
2162 errcnt = aprint_get_error_count();
2163 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2164 (boothowto & AB_VERBOSE) == 0) {
2165 mutex_enter(&config_misc_lock);
2166 if (config_do_twiddle) {
2167 config_do_twiddle = 0;
2168 printf_nolog(" done.\n");
2169 }
2170 mutex_exit(&config_misc_lock);
2171 }
2172 if (errcnt != 0) {
2173 printf("WARNING: %d error%s while detecting hardware; "
2174 "check system log.\n", errcnt,
2175 errcnt == 1 ? "" : "s");
2176 }
2177 }
2178
2179 void
2180 config_twiddle_init(void)
2181 {
2182
2183 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2184 config_do_twiddle = 1;
2185 }
2186 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2187 }
2188
2189 void
2190 config_twiddle_fn(void *cookie)
2191 {
2192
2193 mutex_enter(&config_misc_lock);
2194 if (config_do_twiddle) {
2195 twiddle();
2196 callout_schedule(&config_twiddle_ch, mstohz(100));
2197 }
2198 mutex_exit(&config_misc_lock);
2199 }
2200
2201 static void
2202 config_alldevs_enter(struct alldevs_foray *af)
2203 {
2204 TAILQ_INIT(&af->af_garbage);
2205 mutex_enter(&alldevs.lock);
2206 config_collect_garbage(&af->af_garbage);
2207 }
2208
2209 static void
2210 config_alldevs_exit(struct alldevs_foray *af)
2211 {
2212 mutex_exit(&alldevs.lock);
2213 config_dump_garbage(&af->af_garbage);
2214 }
2215
2216 /*
2217 * device_lookup:
2218 *
2219 * Look up a device instance for a given driver.
2220 */
2221 device_t
2222 device_lookup(cfdriver_t cd, int unit)
2223 {
2224 device_t dv;
2225
2226 mutex_enter(&alldevs.lock);
2227 if (unit < 0 || unit >= cd->cd_ndevs)
2228 dv = NULL;
2229 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2230 dv = NULL;
2231 mutex_exit(&alldevs.lock);
2232
2233 return dv;
2234 }
2235
2236 /*
2237 * device_lookup_private:
2238 *
2239 * Look up a softc instance for a given driver.
2240 */
2241 void *
2242 device_lookup_private(cfdriver_t cd, int unit)
2243 {
2244
2245 return device_private(device_lookup(cd, unit));
2246 }
2247
2248 /*
2249 * device_find_by_xname:
2250 *
2251 * Returns the device of the given name or NULL if it doesn't exist.
2252 */
2253 device_t
2254 device_find_by_xname(const char *name)
2255 {
2256 device_t dv;
2257 deviter_t di;
2258
2259 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2260 if (strcmp(device_xname(dv), name) == 0)
2261 break;
2262 }
2263 deviter_release(&di);
2264
2265 return dv;
2266 }
2267
2268 /*
2269 * device_find_by_driver_unit:
2270 *
2271 * Returns the device of the given driver name and unit or
2272 * NULL if it doesn't exist.
2273 */
2274 device_t
2275 device_find_by_driver_unit(const char *name, int unit)
2276 {
2277 struct cfdriver *cd;
2278
2279 if ((cd = config_cfdriver_lookup(name)) == NULL)
2280 return NULL;
2281 return device_lookup(cd, unit);
2282 }
2283
2284 /*
2285 * Power management related functions.
2286 */
2287
2288 bool
2289 device_pmf_is_registered(device_t dev)
2290 {
2291 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2292 }
2293
2294 bool
2295 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2296 {
2297 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2298 return true;
2299 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2300 return false;
2301 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2302 dev->dv_driver_suspend != NULL &&
2303 !(*dev->dv_driver_suspend)(dev, qual))
2304 return false;
2305
2306 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2307 return true;
2308 }
2309
2310 bool
2311 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2312 {
2313 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2314 return true;
2315 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2316 return false;
2317 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2318 dev->dv_driver_resume != NULL &&
2319 !(*dev->dv_driver_resume)(dev, qual))
2320 return false;
2321
2322 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2323 return true;
2324 }
2325
2326 bool
2327 device_pmf_driver_shutdown(device_t dev, int how)
2328 {
2329
2330 if (*dev->dv_driver_shutdown != NULL &&
2331 !(*dev->dv_driver_shutdown)(dev, how))
2332 return false;
2333 return true;
2334 }
2335
2336 bool
2337 device_pmf_driver_register(device_t dev,
2338 bool (*suspend)(device_t, const pmf_qual_t *),
2339 bool (*resume)(device_t, const pmf_qual_t *),
2340 bool (*shutdown)(device_t, int))
2341 {
2342 dev->dv_driver_suspend = suspend;
2343 dev->dv_driver_resume = resume;
2344 dev->dv_driver_shutdown = shutdown;
2345 dev->dv_flags |= DVF_POWER_HANDLERS;
2346 return true;
2347 }
2348
2349 static const char *
2350 curlwp_name(void)
2351 {
2352 if (curlwp->l_name != NULL)
2353 return curlwp->l_name;
2354 else
2355 return curlwp->l_proc->p_comm;
2356 }
2357
2358 void
2359 device_pmf_driver_deregister(device_t dev)
2360 {
2361 device_lock_t dvl = device_getlock(dev);
2362
2363 dev->dv_driver_suspend = NULL;
2364 dev->dv_driver_resume = NULL;
2365
2366 mutex_enter(&dvl->dvl_mtx);
2367 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2368 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2369 /* Wake a thread that waits for the lock. That
2370 * thread will fail to acquire the lock, and then
2371 * it will wake the next thread that waits for the
2372 * lock, or else it will wake us.
2373 */
2374 cv_signal(&dvl->dvl_cv);
2375 pmflock_debug(dev, __func__, __LINE__);
2376 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2377 pmflock_debug(dev, __func__, __LINE__);
2378 }
2379 mutex_exit(&dvl->dvl_mtx);
2380 }
2381
2382 bool
2383 device_pmf_driver_child_register(device_t dev)
2384 {
2385 device_t parent = device_parent(dev);
2386
2387 if (parent == NULL || parent->dv_driver_child_register == NULL)
2388 return true;
2389 return (*parent->dv_driver_child_register)(dev);
2390 }
2391
2392 void
2393 device_pmf_driver_set_child_register(device_t dev,
2394 bool (*child_register)(device_t))
2395 {
2396 dev->dv_driver_child_register = child_register;
2397 }
2398
2399 static void
2400 pmflock_debug(device_t dev, const char *func, int line)
2401 {
2402 device_lock_t dvl = device_getlock(dev);
2403
2404 aprint_debug_dev(dev,
2405 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2406 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2407 }
2408
2409 static bool
2410 device_pmf_lock1(device_t dev)
2411 {
2412 device_lock_t dvl = device_getlock(dev);
2413
2414 while (device_pmf_is_registered(dev) &&
2415 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2416 dvl->dvl_nwait++;
2417 pmflock_debug(dev, __func__, __LINE__);
2418 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2419 pmflock_debug(dev, __func__, __LINE__);
2420 dvl->dvl_nwait--;
2421 }
2422 if (!device_pmf_is_registered(dev)) {
2423 pmflock_debug(dev, __func__, __LINE__);
2424 /* We could not acquire the lock, but some other thread may
2425 * wait for it, also. Wake that thread.
2426 */
2427 cv_signal(&dvl->dvl_cv);
2428 return false;
2429 }
2430 dvl->dvl_nlock++;
2431 dvl->dvl_holder = curlwp;
2432 pmflock_debug(dev, __func__, __LINE__);
2433 return true;
2434 }
2435
2436 bool
2437 device_pmf_lock(device_t dev)
2438 {
2439 bool rc;
2440 device_lock_t dvl = device_getlock(dev);
2441
2442 mutex_enter(&dvl->dvl_mtx);
2443 rc = device_pmf_lock1(dev);
2444 mutex_exit(&dvl->dvl_mtx);
2445
2446 return rc;
2447 }
2448
2449 void
2450 device_pmf_unlock(device_t dev)
2451 {
2452 device_lock_t dvl = device_getlock(dev);
2453
2454 KASSERT(dvl->dvl_nlock > 0);
2455 mutex_enter(&dvl->dvl_mtx);
2456 if (--dvl->dvl_nlock == 0)
2457 dvl->dvl_holder = NULL;
2458 cv_signal(&dvl->dvl_cv);
2459 pmflock_debug(dev, __func__, __LINE__);
2460 mutex_exit(&dvl->dvl_mtx);
2461 }
2462
2463 device_lock_t
2464 device_getlock(device_t dev)
2465 {
2466 return &dev->dv_lock;
2467 }
2468
2469 void *
2470 device_pmf_bus_private(device_t dev)
2471 {
2472 return dev->dv_bus_private;
2473 }
2474
2475 bool
2476 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2477 {
2478 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2479 return true;
2480 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2481 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2482 return false;
2483 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2484 dev->dv_bus_suspend != NULL &&
2485 !(*dev->dv_bus_suspend)(dev, qual))
2486 return false;
2487
2488 dev->dv_flags |= DVF_BUS_SUSPENDED;
2489 return true;
2490 }
2491
2492 bool
2493 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2494 {
2495 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2496 return true;
2497 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2498 dev->dv_bus_resume != NULL &&
2499 !(*dev->dv_bus_resume)(dev, qual))
2500 return false;
2501
2502 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2503 return true;
2504 }
2505
2506 bool
2507 device_pmf_bus_shutdown(device_t dev, int how)
2508 {
2509
2510 if (*dev->dv_bus_shutdown != NULL &&
2511 !(*dev->dv_bus_shutdown)(dev, how))
2512 return false;
2513 return true;
2514 }
2515
2516 void
2517 device_pmf_bus_register(device_t dev, void *priv,
2518 bool (*suspend)(device_t, const pmf_qual_t *),
2519 bool (*resume)(device_t, const pmf_qual_t *),
2520 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2521 {
2522 dev->dv_bus_private = priv;
2523 dev->dv_bus_resume = resume;
2524 dev->dv_bus_suspend = suspend;
2525 dev->dv_bus_shutdown = shutdown;
2526 dev->dv_bus_deregister = deregister;
2527 }
2528
2529 void
2530 device_pmf_bus_deregister(device_t dev)
2531 {
2532 if (dev->dv_bus_deregister == NULL)
2533 return;
2534 (*dev->dv_bus_deregister)(dev);
2535 dev->dv_bus_private = NULL;
2536 dev->dv_bus_suspend = NULL;
2537 dev->dv_bus_resume = NULL;
2538 dev->dv_bus_deregister = NULL;
2539 }
2540
2541 void *
2542 device_pmf_class_private(device_t dev)
2543 {
2544 return dev->dv_class_private;
2545 }
2546
2547 bool
2548 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2549 {
2550 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2551 return true;
2552 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2553 dev->dv_class_suspend != NULL &&
2554 !(*dev->dv_class_suspend)(dev, qual))
2555 return false;
2556
2557 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2558 return true;
2559 }
2560
2561 bool
2562 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2563 {
2564 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2565 return true;
2566 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2567 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2568 return false;
2569 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2570 dev->dv_class_resume != NULL &&
2571 !(*dev->dv_class_resume)(dev, qual))
2572 return false;
2573
2574 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2575 return true;
2576 }
2577
2578 void
2579 device_pmf_class_register(device_t dev, void *priv,
2580 bool (*suspend)(device_t, const pmf_qual_t *),
2581 bool (*resume)(device_t, const pmf_qual_t *),
2582 void (*deregister)(device_t))
2583 {
2584 dev->dv_class_private = priv;
2585 dev->dv_class_suspend = suspend;
2586 dev->dv_class_resume = resume;
2587 dev->dv_class_deregister = deregister;
2588 }
2589
2590 void
2591 device_pmf_class_deregister(device_t dev)
2592 {
2593 if (dev->dv_class_deregister == NULL)
2594 return;
2595 (*dev->dv_class_deregister)(dev);
2596 dev->dv_class_private = NULL;
2597 dev->dv_class_suspend = NULL;
2598 dev->dv_class_resume = NULL;
2599 dev->dv_class_deregister = NULL;
2600 }
2601
2602 bool
2603 device_active(device_t dev, devactive_t type)
2604 {
2605 size_t i;
2606
2607 if (dev->dv_activity_count == 0)
2608 return false;
2609
2610 for (i = 0; i < dev->dv_activity_count; ++i) {
2611 if (dev->dv_activity_handlers[i] == NULL)
2612 break;
2613 (*dev->dv_activity_handlers[i])(dev, type);
2614 }
2615
2616 return true;
2617 }
2618
2619 bool
2620 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2621 {
2622 void (**new_handlers)(device_t, devactive_t);
2623 void (**old_handlers)(device_t, devactive_t);
2624 size_t i, old_size, new_size;
2625 int s;
2626
2627 old_handlers = dev->dv_activity_handlers;
2628 old_size = dev->dv_activity_count;
2629
2630 KASSERT(old_size == 0 || old_handlers != NULL);
2631
2632 for (i = 0; i < old_size; ++i) {
2633 KASSERT(old_handlers[i] != handler);
2634 if (old_handlers[i] == NULL) {
2635 old_handlers[i] = handler;
2636 return true;
2637 }
2638 }
2639
2640 new_size = old_size + 4;
2641 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2642
2643 for (i = 0; i < old_size; ++i)
2644 new_handlers[i] = old_handlers[i];
2645 new_handlers[old_size] = handler;
2646 for (i = old_size+1; i < new_size; ++i)
2647 new_handlers[i] = NULL;
2648
2649 s = splhigh();
2650 dev->dv_activity_count = new_size;
2651 dev->dv_activity_handlers = new_handlers;
2652 splx(s);
2653
2654 if (old_size > 0)
2655 kmem_free(old_handlers, sizeof(void * [old_size]));
2656
2657 return true;
2658 }
2659
2660 void
2661 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2662 {
2663 void (**old_handlers)(device_t, devactive_t);
2664 size_t i, old_size;
2665 int s;
2666
2667 old_handlers = dev->dv_activity_handlers;
2668 old_size = dev->dv_activity_count;
2669
2670 for (i = 0; i < old_size; ++i) {
2671 if (old_handlers[i] == handler)
2672 break;
2673 if (old_handlers[i] == NULL)
2674 return; /* XXX panic? */
2675 }
2676
2677 if (i == old_size)
2678 return; /* XXX panic? */
2679
2680 for (; i < old_size - 1; ++i) {
2681 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2682 continue;
2683
2684 if (i == 0) {
2685 s = splhigh();
2686 dev->dv_activity_count = 0;
2687 dev->dv_activity_handlers = NULL;
2688 splx(s);
2689 kmem_free(old_handlers, sizeof(void *[old_size]));
2690 }
2691 return;
2692 }
2693 old_handlers[i] = NULL;
2694 }
2695
2696 /* Return true iff the device_t `dev' exists at generation `gen'. */
2697 static bool
2698 device_exists_at(device_t dv, devgen_t gen)
2699 {
2700 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2701 dv->dv_add_gen <= gen;
2702 }
2703
2704 static bool
2705 deviter_visits(const deviter_t *di, device_t dv)
2706 {
2707 return device_exists_at(dv, di->di_gen);
2708 }
2709
2710 /*
2711 * Device Iteration
2712 *
2713 * deviter_t: a device iterator. Holds state for a "walk" visiting
2714 * each device_t's in the device tree.
2715 *
2716 * deviter_init(di, flags): initialize the device iterator `di'
2717 * to "walk" the device tree. deviter_next(di) will return
2718 * the first device_t in the device tree, or NULL if there are
2719 * no devices.
2720 *
2721 * `flags' is one or more of DEVITER_F_RW, indicating that the
2722 * caller intends to modify the device tree by calling
2723 * config_detach(9) on devices in the order that the iterator
2724 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2725 * nearest the "root" of the device tree to be returned, first;
2726 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2727 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2728 * indicating both that deviter_init() should not respect any
2729 * locks on the device tree, and that deviter_next(di) may run
2730 * in more than one LWP before the walk has finished.
2731 *
2732 * Only one DEVITER_F_RW iterator may be in the device tree at
2733 * once.
2734 *
2735 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2736 *
2737 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2738 * DEVITER_F_LEAVES_FIRST are used in combination.
2739 *
2740 * deviter_first(di, flags): initialize the device iterator `di'
2741 * and return the first device_t in the device tree, or NULL
2742 * if there are no devices. The statement
2743 *
2744 * dv = deviter_first(di);
2745 *
2746 * is shorthand for
2747 *
2748 * deviter_init(di);
2749 * dv = deviter_next(di);
2750 *
2751 * deviter_next(di): return the next device_t in the device tree,
2752 * or NULL if there are no more devices. deviter_next(di)
2753 * is undefined if `di' was not initialized with deviter_init() or
2754 * deviter_first().
2755 *
2756 * deviter_release(di): stops iteration (subsequent calls to
2757 * deviter_next() will return NULL), releases any locks and
2758 * resources held by the device iterator.
2759 *
2760 * Device iteration does not return device_t's in any particular
2761 * order. An iterator will never return the same device_t twice.
2762 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2763 * is called repeatedly on the same `di', it will eventually return
2764 * NULL. It is ok to attach/detach devices during device iteration.
2765 */
2766 void
2767 deviter_init(deviter_t *di, deviter_flags_t flags)
2768 {
2769 device_t dv;
2770
2771 memset(di, 0, sizeof(*di));
2772
2773 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2774 flags |= DEVITER_F_RW;
2775
2776 mutex_enter(&alldevs.lock);
2777 if ((flags & DEVITER_F_RW) != 0)
2778 alldevs.nwrite++;
2779 else
2780 alldevs.nread++;
2781 di->di_gen = alldevs.gen++;
2782 di->di_flags = flags;
2783
2784 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2785 case DEVITER_F_LEAVES_FIRST:
2786 TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
2787 if (!deviter_visits(di, dv))
2788 continue;
2789 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2790 }
2791 break;
2792 case DEVITER_F_ROOT_FIRST:
2793 TAILQ_FOREACH(dv, &alldevs.list, dv_list) {
2794 if (!deviter_visits(di, dv))
2795 continue;
2796 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2797 }
2798 break;
2799 default:
2800 break;
2801 }
2802
2803 deviter_reinit(di);
2804 mutex_exit(&alldevs.lock);
2805 }
2806
2807 static void
2808 deviter_reinit(deviter_t *di)
2809 {
2810
2811 KASSERT(mutex_owned(&alldevs.lock));
2812 if ((di->di_flags & DEVITER_F_RW) != 0)
2813 di->di_prev = TAILQ_LAST(&alldevs.list, devicelist);
2814 else
2815 di->di_prev = TAILQ_FIRST(&alldevs.list);
2816 }
2817
2818 device_t
2819 deviter_first(deviter_t *di, deviter_flags_t flags)
2820 {
2821
2822 deviter_init(di, flags);
2823 return deviter_next(di);
2824 }
2825
2826 static device_t
2827 deviter_next2(deviter_t *di)
2828 {
2829 device_t dv;
2830
2831 KASSERT(mutex_owned(&alldevs.lock));
2832
2833 dv = di->di_prev;
2834
2835 if (dv == NULL)
2836 return NULL;
2837
2838 if ((di->di_flags & DEVITER_F_RW) != 0)
2839 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2840 else
2841 di->di_prev = TAILQ_NEXT(dv, dv_list);
2842
2843 return dv;
2844 }
2845
2846 static device_t
2847 deviter_next1(deviter_t *di)
2848 {
2849 device_t dv;
2850
2851 KASSERT(mutex_owned(&alldevs.lock));
2852
2853 do {
2854 dv = deviter_next2(di);
2855 } while (dv != NULL && !deviter_visits(di, dv));
2856
2857 return dv;
2858 }
2859
2860 device_t
2861 deviter_next(deviter_t *di)
2862 {
2863 device_t dv = NULL;
2864
2865 mutex_enter(&alldevs.lock);
2866 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2867 case 0:
2868 dv = deviter_next1(di);
2869 break;
2870 case DEVITER_F_LEAVES_FIRST:
2871 while (di->di_curdepth >= 0) {
2872 if ((dv = deviter_next1(di)) == NULL) {
2873 di->di_curdepth--;
2874 deviter_reinit(di);
2875 } else if (dv->dv_depth == di->di_curdepth)
2876 break;
2877 }
2878 break;
2879 case DEVITER_F_ROOT_FIRST:
2880 while (di->di_curdepth <= di->di_maxdepth) {
2881 if ((dv = deviter_next1(di)) == NULL) {
2882 di->di_curdepth++;
2883 deviter_reinit(di);
2884 } else if (dv->dv_depth == di->di_curdepth)
2885 break;
2886 }
2887 break;
2888 default:
2889 break;
2890 }
2891 mutex_exit(&alldevs.lock);
2892
2893 return dv;
2894 }
2895
2896 void
2897 deviter_release(deviter_t *di)
2898 {
2899 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2900
2901 mutex_enter(&alldevs.lock);
2902 if (rw)
2903 --alldevs.nwrite;
2904 else
2905 --alldevs.nread;
2906 /* XXX wake a garbage-collection thread */
2907 mutex_exit(&alldevs.lock);
2908 }
2909
2910 const char *
2911 cfdata_ifattr(const struct cfdata *cf)
2912 {
2913 return cf->cf_pspec->cfp_iattr;
2914 }
2915
2916 bool
2917 ifattr_match(const char *snull, const char *t)
2918 {
2919 return (snull == NULL) || strcmp(snull, t) == 0;
2920 }
2921
2922 void
2923 null_childdetached(device_t self, device_t child)
2924 {
2925 /* do nothing */
2926 }
2927
2928 static void
2929 sysctl_detach_setup(struct sysctllog **clog)
2930 {
2931
2932 sysctl_createv(clog, 0, NULL, NULL,
2933 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2934 CTLTYPE_BOOL, "detachall",
2935 SYSCTL_DESCR("Detach all devices at shutdown"),
2936 NULL, 0, &detachall, 0,
2937 CTL_KERN, CTL_CREATE, CTL_EOL);
2938 }
2939