Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.262.2.1
      1 /* $NetBSD: subr_autoconf.c,v 1.262.2.1 2019/06/10 22:09:03 christos Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.262.2.1 2019/06/10 22:09:03 christos Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/disklabel.h>
     90 #include <sys/conf.h>
     91 #include <sys/kauth.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/mount.h>
    102 #include <sys/namei.h>
    103 #include <sys/unistd.h>
    104 #include <sys/fcntl.h>
    105 #include <sys/lockf.h>
    106 #include <sys/callout.h>
    107 #include <sys/devmon.h>
    108 #include <sys/cpu.h>
    109 #include <sys/sysctl.h>
    110 
    111 #include <sys/disk.h>
    112 
    113 #include <sys/rndsource.h>
    114 
    115 #include <machine/limits.h>
    116 
    117 /*
    118  * Autoconfiguration subroutines.
    119  */
    120 
    121 /*
    122  * Device autoconfiguration timings are mixed into the entropy pool.
    123  */
    124 extern krndsource_t rnd_autoconf_source;
    125 
    126 /*
    127  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    128  * devices and drivers are found via these tables.
    129  */
    130 extern struct cfdata cfdata[];
    131 extern const short cfroots[];
    132 
    133 /*
    134  * List of all cfdriver structures.  We use this to detect duplicates
    135  * when other cfdrivers are loaded.
    136  */
    137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    138 extern struct cfdriver * const cfdriver_list_initial[];
    139 
    140 /*
    141  * Initial list of cfattach's.
    142  */
    143 extern const struct cfattachinit cfattachinit[];
    144 
    145 /*
    146  * List of cfdata tables.  We always have one such list -- the one
    147  * built statically when the kernel was configured.
    148  */
    149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    150 static struct cftable initcftable;
    151 
    152 #define	ROOT ((device_t)NULL)
    153 
    154 struct matchinfo {
    155 	cfsubmatch_t fn;
    156 	device_t parent;
    157 	const int *locs;
    158 	void	*aux;
    159 	struct	cfdata *match;
    160 	int	pri;
    161 };
    162 
    163 struct alldevs_foray {
    164 	int			af_s;
    165 	struct devicelist	af_garbage;
    166 };
    167 
    168 static char *number(char *, int);
    169 static void mapply(struct matchinfo *, cfdata_t);
    170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    171 static void config_devdelete(device_t);
    172 static void config_devunlink(device_t, struct devicelist *);
    173 static void config_makeroom(int, struct cfdriver *);
    174 static void config_devlink(device_t);
    175 static void config_alldevs_enter(struct alldevs_foray *);
    176 static void config_alldevs_exit(struct alldevs_foray *);
    177 static void config_add_attrib_dict(device_t);
    178 
    179 static void config_collect_garbage(struct devicelist *);
    180 static void config_dump_garbage(struct devicelist *);
    181 
    182 static void pmflock_debug(device_t, const char *, int);
    183 
    184 static device_t deviter_next1(deviter_t *);
    185 static void deviter_reinit(deviter_t *);
    186 
    187 struct deferred_config {
    188 	TAILQ_ENTRY(deferred_config) dc_queue;
    189 	device_t dc_dev;
    190 	void (*dc_func)(device_t);
    191 };
    192 
    193 TAILQ_HEAD(deferred_config_head, deferred_config);
    194 
    195 static struct deferred_config_head deferred_config_queue =
    196 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    197 static struct deferred_config_head interrupt_config_queue =
    198 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    199 static int interrupt_config_threads = 8;
    200 static struct deferred_config_head mountroot_config_queue =
    201 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    202 static int mountroot_config_threads = 2;
    203 static lwp_t **mountroot_config_lwpids;
    204 static size_t mountroot_config_lwpids_size;
    205 bool root_is_mounted = false;
    206 
    207 static void config_process_deferred(struct deferred_config_head *, device_t);
    208 
    209 /* Hooks to finalize configuration once all real devices have been found. */
    210 struct finalize_hook {
    211 	TAILQ_ENTRY(finalize_hook) f_list;
    212 	int (*f_func)(device_t);
    213 	device_t f_dev;
    214 };
    215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    216 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    217 static int config_finalize_done;
    218 
    219 /* list of all devices */
    220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    221 static kmutex_t alldevs_lock __cacheline_aligned;
    222 static devgen_t alldevs_gen = 1;
    223 static int alldevs_nread = 0;
    224 static int alldevs_nwrite = 0;
    225 static bool alldevs_garbage = false;
    226 
    227 static int config_pending;		/* semaphore for mountroot */
    228 static kmutex_t config_misc_lock;
    229 static kcondvar_t config_misc_cv;
    230 
    231 static bool detachall = false;
    232 
    233 #define	STREQ(s1, s2)			\
    234 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    235 
    236 static bool config_initialized = false;	/* config_init() has been called. */
    237 
    238 static int config_do_twiddle;
    239 static callout_t config_twiddle_ch;
    240 
    241 static void sysctl_detach_setup(struct sysctllog **);
    242 
    243 int no_devmon_insert(const char *, prop_dictionary_t);
    244 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
    245 
    246 typedef int (*cfdriver_fn)(struct cfdriver *);
    247 static int
    248 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    249 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    250 	const char *style, bool dopanic)
    251 {
    252 	void (*pr)(const char *, ...) __printflike(1, 2) =
    253 	    dopanic ? panic : printf;
    254 	int i, error = 0, e2 __diagused;
    255 
    256 	for (i = 0; cfdriverv[i] != NULL; i++) {
    257 		if ((error = drv_do(cfdriverv[i])) != 0) {
    258 			pr("configure: `%s' driver %s failed: %d",
    259 			    cfdriverv[i]->cd_name, style, error);
    260 			goto bad;
    261 		}
    262 	}
    263 
    264 	KASSERT(error == 0);
    265 	return 0;
    266 
    267  bad:
    268 	printf("\n");
    269 	for (i--; i >= 0; i--) {
    270 		e2 = drv_undo(cfdriverv[i]);
    271 		KASSERT(e2 == 0);
    272 	}
    273 
    274 	return error;
    275 }
    276 
    277 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    278 static int
    279 frob_cfattachvec(const struct cfattachinit *cfattachv,
    280 	cfattach_fn att_do, cfattach_fn att_undo,
    281 	const char *style, bool dopanic)
    282 {
    283 	const struct cfattachinit *cfai = NULL;
    284 	void (*pr)(const char *, ...) __printflike(1, 2) =
    285 	    dopanic ? panic : printf;
    286 	int j = 0, error = 0, e2 __diagused;
    287 
    288 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    289 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    290 			if ((error = att_do(cfai->cfai_name,
    291 			    cfai->cfai_list[j])) != 0) {
    292 				pr("configure: attachment `%s' "
    293 				    "of `%s' driver %s failed: %d",
    294 				    cfai->cfai_list[j]->ca_name,
    295 				    cfai->cfai_name, style, error);
    296 				goto bad;
    297 			}
    298 		}
    299 	}
    300 
    301 	KASSERT(error == 0);
    302 	return 0;
    303 
    304  bad:
    305 	/*
    306 	 * Rollback in reverse order.  dunno if super-important, but
    307 	 * do that anyway.  Although the code looks a little like
    308 	 * someone did a little integration (in the math sense).
    309 	 */
    310 	printf("\n");
    311 	if (cfai) {
    312 		bool last;
    313 
    314 		for (last = false; last == false; ) {
    315 			if (cfai == &cfattachv[0])
    316 				last = true;
    317 			for (j--; j >= 0; j--) {
    318 				e2 = att_undo(cfai->cfai_name,
    319 				    cfai->cfai_list[j]);
    320 				KASSERT(e2 == 0);
    321 			}
    322 			if (!last) {
    323 				cfai--;
    324 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    325 					;
    326 			}
    327 		}
    328 	}
    329 
    330 	return error;
    331 }
    332 
    333 /*
    334  * Initialize the autoconfiguration data structures.  Normally this
    335  * is done by configure(), but some platforms need to do this very
    336  * early (to e.g. initialize the console).
    337  */
    338 void
    339 config_init(void)
    340 {
    341 
    342 	KASSERT(config_initialized == false);
    343 
    344 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
    345 
    346 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    347 	cv_init(&config_misc_cv, "cfgmisc");
    348 
    349 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    350 
    351 	frob_cfdrivervec(cfdriver_list_initial,
    352 	    config_cfdriver_attach, NULL, "bootstrap", true);
    353 	frob_cfattachvec(cfattachinit,
    354 	    config_cfattach_attach, NULL, "bootstrap", true);
    355 
    356 	initcftable.ct_cfdata = cfdata;
    357 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    358 
    359 	config_initialized = true;
    360 }
    361 
    362 /*
    363  * Init or fini drivers and attachments.  Either all or none
    364  * are processed (via rollback).  It would be nice if this were
    365  * atomic to outside consumers, but with the current state of
    366  * locking ...
    367  */
    368 int
    369 config_init_component(struct cfdriver * const *cfdriverv,
    370 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    371 {
    372 	int error;
    373 
    374 	if ((error = frob_cfdrivervec(cfdriverv,
    375 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    376 		return error;
    377 	if ((error = frob_cfattachvec(cfattachv,
    378 	    config_cfattach_attach, config_cfattach_detach,
    379 	    "init", false)) != 0) {
    380 		frob_cfdrivervec(cfdriverv,
    381 	            config_cfdriver_detach, NULL, "init rollback", true);
    382 		return error;
    383 	}
    384 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    385 		frob_cfattachvec(cfattachv,
    386 		    config_cfattach_detach, NULL, "init rollback", true);
    387 		frob_cfdrivervec(cfdriverv,
    388 	            config_cfdriver_detach, NULL, "init rollback", true);
    389 		return error;
    390 	}
    391 
    392 	return 0;
    393 }
    394 
    395 int
    396 config_fini_component(struct cfdriver * const *cfdriverv,
    397 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    398 {
    399 	int error;
    400 
    401 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    402 		return error;
    403 	if ((error = frob_cfattachvec(cfattachv,
    404 	    config_cfattach_detach, config_cfattach_attach,
    405 	    "fini", false)) != 0) {
    406 		if (config_cfdata_attach(cfdatav, 0) != 0)
    407 			panic("config_cfdata fini rollback failed");
    408 		return error;
    409 	}
    410 	if ((error = frob_cfdrivervec(cfdriverv,
    411 	    config_cfdriver_detach, config_cfdriver_attach,
    412 	    "fini", false)) != 0) {
    413 		frob_cfattachvec(cfattachv,
    414 	            config_cfattach_attach, NULL, "fini rollback", true);
    415 		if (config_cfdata_attach(cfdatav, 0) != 0)
    416 			panic("config_cfdata fini rollback failed");
    417 		return error;
    418 	}
    419 
    420 	return 0;
    421 }
    422 
    423 void
    424 config_init_mi(void)
    425 {
    426 
    427 	if (!config_initialized)
    428 		config_init();
    429 
    430 	sysctl_detach_setup(NULL);
    431 }
    432 
    433 void
    434 config_deferred(device_t dev)
    435 {
    436 	config_process_deferred(&deferred_config_queue, dev);
    437 	config_process_deferred(&interrupt_config_queue, dev);
    438 	config_process_deferred(&mountroot_config_queue, dev);
    439 }
    440 
    441 static void
    442 config_interrupts_thread(void *cookie)
    443 {
    444 	struct deferred_config *dc;
    445 
    446 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    447 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    448 		(*dc->dc_func)(dc->dc_dev);
    449 		dc->dc_dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
    450 		if (!device_pmf_is_registered(dc->dc_dev))
    451 			aprint_debug_dev(dc->dc_dev,
    452 			    "WARNING: power management not supported\n");
    453 		config_pending_decr(dc->dc_dev);
    454 		kmem_free(dc, sizeof(*dc));
    455 	}
    456 	kthread_exit(0);
    457 }
    458 
    459 void
    460 config_create_interruptthreads(void)
    461 {
    462 	int i;
    463 
    464 	for (i = 0; i < interrupt_config_threads; i++) {
    465 		(void)kthread_create(PRI_NONE, 0, NULL,
    466 		    config_interrupts_thread, NULL, NULL, "configintr");
    467 	}
    468 }
    469 
    470 static void
    471 config_mountroot_thread(void *cookie)
    472 {
    473 	struct deferred_config *dc;
    474 
    475 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    476 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    477 		(*dc->dc_func)(dc->dc_dev);
    478 		kmem_free(dc, sizeof(*dc));
    479 	}
    480 	kthread_exit(0);
    481 }
    482 
    483 void
    484 config_create_mountrootthreads(void)
    485 {
    486 	int i;
    487 
    488 	if (!root_is_mounted)
    489 		root_is_mounted = true;
    490 
    491 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
    492 				       mountroot_config_threads;
    493 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
    494 					     KM_NOSLEEP);
    495 	KASSERT(mountroot_config_lwpids);
    496 	for (i = 0; i < mountroot_config_threads; i++) {
    497 		mountroot_config_lwpids[i] = 0;
    498 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
    499 				     config_mountroot_thread, NULL,
    500 				     &mountroot_config_lwpids[i],
    501 				     "configroot");
    502 	}
    503 }
    504 
    505 void
    506 config_finalize_mountroot(void)
    507 {
    508 	int i, error;
    509 
    510 	for (i = 0; i < mountroot_config_threads; i++) {
    511 		if (mountroot_config_lwpids[i] == 0)
    512 			continue;
    513 
    514 		error = kthread_join(mountroot_config_lwpids[i]);
    515 		if (error)
    516 			printf("%s: thread %x joined with error %d\n",
    517 			       __func__, i, error);
    518 	}
    519 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
    520 }
    521 
    522 /*
    523  * Announce device attach/detach to userland listeners.
    524  */
    525 
    526 int
    527 no_devmon_insert(const char *name, prop_dictionary_t p)
    528 {
    529 
    530 	return ENODEV;
    531 }
    532 
    533 static void
    534 devmon_report_device(device_t dev, bool isattach)
    535 {
    536 	prop_dictionary_t ev;
    537 	const char *parent;
    538 	const char *what;
    539 	device_t pdev = device_parent(dev);
    540 
    541 	/* If currently no drvctl device, just return */
    542 	if (devmon_insert_vec == no_devmon_insert)
    543 		return;
    544 
    545 	ev = prop_dictionary_create();
    546 	if (ev == NULL)
    547 		return;
    548 
    549 	what = (isattach ? "device-attach" : "device-detach");
    550 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    551 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
    552 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
    553 		prop_object_release(ev);
    554 		return;
    555 	}
    556 
    557 	if ((*devmon_insert_vec)(what, ev) != 0)
    558 		prop_object_release(ev);
    559 }
    560 
    561 /*
    562  * Add a cfdriver to the system.
    563  */
    564 int
    565 config_cfdriver_attach(struct cfdriver *cd)
    566 {
    567 	struct cfdriver *lcd;
    568 
    569 	/* Make sure this driver isn't already in the system. */
    570 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    571 		if (STREQ(lcd->cd_name, cd->cd_name))
    572 			return EEXIST;
    573 	}
    574 
    575 	LIST_INIT(&cd->cd_attach);
    576 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    577 
    578 	return 0;
    579 }
    580 
    581 /*
    582  * Remove a cfdriver from the system.
    583  */
    584 int
    585 config_cfdriver_detach(struct cfdriver *cd)
    586 {
    587 	struct alldevs_foray af;
    588 	int i, rc = 0;
    589 
    590 	config_alldevs_enter(&af);
    591 	/* Make sure there are no active instances. */
    592 	for (i = 0; i < cd->cd_ndevs; i++) {
    593 		if (cd->cd_devs[i] != NULL) {
    594 			rc = EBUSY;
    595 			break;
    596 		}
    597 	}
    598 	config_alldevs_exit(&af);
    599 
    600 	if (rc != 0)
    601 		return rc;
    602 
    603 	/* ...and no attachments loaded. */
    604 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    605 		return EBUSY;
    606 
    607 	LIST_REMOVE(cd, cd_list);
    608 
    609 	KASSERT(cd->cd_devs == NULL);
    610 
    611 	return 0;
    612 }
    613 
    614 /*
    615  * Look up a cfdriver by name.
    616  */
    617 struct cfdriver *
    618 config_cfdriver_lookup(const char *name)
    619 {
    620 	struct cfdriver *cd;
    621 
    622 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    623 		if (STREQ(cd->cd_name, name))
    624 			return cd;
    625 	}
    626 
    627 	return NULL;
    628 }
    629 
    630 /*
    631  * Add a cfattach to the specified driver.
    632  */
    633 int
    634 config_cfattach_attach(const char *driver, struct cfattach *ca)
    635 {
    636 	struct cfattach *lca;
    637 	struct cfdriver *cd;
    638 
    639 	cd = config_cfdriver_lookup(driver);
    640 	if (cd == NULL)
    641 		return ESRCH;
    642 
    643 	/* Make sure this attachment isn't already on this driver. */
    644 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    645 		if (STREQ(lca->ca_name, ca->ca_name))
    646 			return EEXIST;
    647 	}
    648 
    649 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    650 
    651 	return 0;
    652 }
    653 
    654 /*
    655  * Remove a cfattach from the specified driver.
    656  */
    657 int
    658 config_cfattach_detach(const char *driver, struct cfattach *ca)
    659 {
    660 	struct alldevs_foray af;
    661 	struct cfdriver *cd;
    662 	device_t dev;
    663 	int i, rc = 0;
    664 
    665 	cd = config_cfdriver_lookup(driver);
    666 	if (cd == NULL)
    667 		return ESRCH;
    668 
    669 	config_alldevs_enter(&af);
    670 	/* Make sure there are no active instances. */
    671 	for (i = 0; i < cd->cd_ndevs; i++) {
    672 		if ((dev = cd->cd_devs[i]) == NULL)
    673 			continue;
    674 		if (dev->dv_cfattach == ca) {
    675 			rc = EBUSY;
    676 			break;
    677 		}
    678 	}
    679 	config_alldevs_exit(&af);
    680 
    681 	if (rc != 0)
    682 		return rc;
    683 
    684 	LIST_REMOVE(ca, ca_list);
    685 
    686 	return 0;
    687 }
    688 
    689 /*
    690  * Look up a cfattach by name.
    691  */
    692 static struct cfattach *
    693 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    694 {
    695 	struct cfattach *ca;
    696 
    697 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    698 		if (STREQ(ca->ca_name, atname))
    699 			return ca;
    700 	}
    701 
    702 	return NULL;
    703 }
    704 
    705 /*
    706  * Look up a cfattach by driver/attachment name.
    707  */
    708 struct cfattach *
    709 config_cfattach_lookup(const char *name, const char *atname)
    710 {
    711 	struct cfdriver *cd;
    712 
    713 	cd = config_cfdriver_lookup(name);
    714 	if (cd == NULL)
    715 		return NULL;
    716 
    717 	return config_cfattach_lookup_cd(cd, atname);
    718 }
    719 
    720 /*
    721  * Apply the matching function and choose the best.  This is used
    722  * a few times and we want to keep the code small.
    723  */
    724 static void
    725 mapply(struct matchinfo *m, cfdata_t cf)
    726 {
    727 	int pri;
    728 
    729 	if (m->fn != NULL) {
    730 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    731 	} else {
    732 		pri = config_match(m->parent, cf, m->aux);
    733 	}
    734 	if (pri > m->pri) {
    735 		m->match = cf;
    736 		m->pri = pri;
    737 	}
    738 }
    739 
    740 int
    741 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    742 {
    743 	const struct cfiattrdata *ci;
    744 	const struct cflocdesc *cl;
    745 	int nlocs, i;
    746 
    747 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    748 	KASSERT(ci);
    749 	nlocs = ci->ci_loclen;
    750 	KASSERT(!nlocs || locs);
    751 	for (i = 0; i < nlocs; i++) {
    752 		cl = &ci->ci_locdesc[i];
    753 		if (cl->cld_defaultstr != NULL &&
    754 		    cf->cf_loc[i] == cl->cld_default)
    755 			continue;
    756 		if (cf->cf_loc[i] == locs[i])
    757 			continue;
    758 		return 0;
    759 	}
    760 
    761 	return config_match(parent, cf, aux);
    762 }
    763 
    764 /*
    765  * Helper function: check whether the driver supports the interface attribute
    766  * and return its descriptor structure.
    767  */
    768 static const struct cfiattrdata *
    769 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    770 {
    771 	const struct cfiattrdata * const *cpp;
    772 
    773 	if (cd->cd_attrs == NULL)
    774 		return 0;
    775 
    776 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    777 		if (STREQ((*cpp)->ci_name, ia)) {
    778 			/* Match. */
    779 			return *cpp;
    780 		}
    781 	}
    782 	return 0;
    783 }
    784 
    785 /*
    786  * Lookup an interface attribute description by name.
    787  * If the driver is given, consider only its supported attributes.
    788  */
    789 const struct cfiattrdata *
    790 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    791 {
    792 	const struct cfdriver *d;
    793 	const struct cfiattrdata *ia;
    794 
    795 	if (cd)
    796 		return cfdriver_get_iattr(cd, name);
    797 
    798 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    799 		ia = cfdriver_get_iattr(d, name);
    800 		if (ia)
    801 			return ia;
    802 	}
    803 	return 0;
    804 }
    805 
    806 /*
    807  * Determine if `parent' is a potential parent for a device spec based
    808  * on `cfp'.
    809  */
    810 static int
    811 cfparent_match(const device_t parent, const struct cfparent *cfp)
    812 {
    813 	struct cfdriver *pcd;
    814 
    815 	/* We don't match root nodes here. */
    816 	if (cfp == NULL)
    817 		return 0;
    818 
    819 	pcd = parent->dv_cfdriver;
    820 	KASSERT(pcd != NULL);
    821 
    822 	/*
    823 	 * First, ensure this parent has the correct interface
    824 	 * attribute.
    825 	 */
    826 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    827 		return 0;
    828 
    829 	/*
    830 	 * If no specific parent device instance was specified (i.e.
    831 	 * we're attaching to the attribute only), we're done!
    832 	 */
    833 	if (cfp->cfp_parent == NULL)
    834 		return 1;
    835 
    836 	/*
    837 	 * Check the parent device's name.
    838 	 */
    839 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    840 		return 0;	/* not the same parent */
    841 
    842 	/*
    843 	 * Make sure the unit number matches.
    844 	 */
    845 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    846 	    cfp->cfp_unit == parent->dv_unit)
    847 		return 1;
    848 
    849 	/* Unit numbers don't match. */
    850 	return 0;
    851 }
    852 
    853 /*
    854  * Helper for config_cfdata_attach(): check all devices whether it could be
    855  * parent any attachment in the config data table passed, and rescan.
    856  */
    857 static void
    858 rescan_with_cfdata(const struct cfdata *cf)
    859 {
    860 	device_t d;
    861 	const struct cfdata *cf1;
    862 	deviter_t di;
    863 
    864 
    865 	/*
    866 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    867 	 * the outer loop.
    868 	 */
    869 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    870 
    871 		if (!(d->dv_cfattach->ca_rescan))
    872 			continue;
    873 
    874 		for (cf1 = cf; cf1->cf_name; cf1++) {
    875 
    876 			if (!cfparent_match(d, cf1->cf_pspec))
    877 				continue;
    878 
    879 			(*d->dv_cfattach->ca_rescan)(d,
    880 				cfdata_ifattr(cf1), cf1->cf_loc);
    881 
    882 			config_deferred(d);
    883 		}
    884 	}
    885 	deviter_release(&di);
    886 }
    887 
    888 /*
    889  * Attach a supplemental config data table and rescan potential
    890  * parent devices if required.
    891  */
    892 int
    893 config_cfdata_attach(cfdata_t cf, int scannow)
    894 {
    895 	struct cftable *ct;
    896 
    897 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    898 	ct->ct_cfdata = cf;
    899 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    900 
    901 	if (scannow)
    902 		rescan_with_cfdata(cf);
    903 
    904 	return 0;
    905 }
    906 
    907 /*
    908  * Helper for config_cfdata_detach: check whether a device is
    909  * found through any attachment in the config data table.
    910  */
    911 static int
    912 dev_in_cfdata(device_t d, cfdata_t cf)
    913 {
    914 	const struct cfdata *cf1;
    915 
    916 	for (cf1 = cf; cf1->cf_name; cf1++)
    917 		if (d->dv_cfdata == cf1)
    918 			return 1;
    919 
    920 	return 0;
    921 }
    922 
    923 /*
    924  * Detach a supplemental config data table. Detach all devices found
    925  * through that table (and thus keeping references to it) before.
    926  */
    927 int
    928 config_cfdata_detach(cfdata_t cf)
    929 {
    930 	device_t d;
    931 	int error = 0;
    932 	struct cftable *ct;
    933 	deviter_t di;
    934 
    935 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    936 	     d = deviter_next(&di)) {
    937 		if (!dev_in_cfdata(d, cf))
    938 			continue;
    939 		if ((error = config_detach(d, 0)) != 0)
    940 			break;
    941 	}
    942 	deviter_release(&di);
    943 	if (error) {
    944 		aprint_error_dev(d, "unable to detach instance\n");
    945 		return error;
    946 	}
    947 
    948 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    949 		if (ct->ct_cfdata == cf) {
    950 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    951 			kmem_free(ct, sizeof(*ct));
    952 			return 0;
    953 		}
    954 	}
    955 
    956 	/* not found -- shouldn't happen */
    957 	return EINVAL;
    958 }
    959 
    960 /*
    961  * Invoke the "match" routine for a cfdata entry on behalf of
    962  * an external caller, usually a "submatch" routine.
    963  */
    964 int
    965 config_match(device_t parent, cfdata_t cf, void *aux)
    966 {
    967 	struct cfattach *ca;
    968 
    969 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    970 	if (ca == NULL) {
    971 		/* No attachment for this entry, oh well. */
    972 		return 0;
    973 	}
    974 
    975 	return (*ca->ca_match)(parent, cf, aux);
    976 }
    977 
    978 /*
    979  * Iterate over all potential children of some device, calling the given
    980  * function (default being the child's match function) for each one.
    981  * Nonzero returns are matches; the highest value returned is considered
    982  * the best match.  Return the `found child' if we got a match, or NULL
    983  * otherwise.  The `aux' pointer is simply passed on through.
    984  *
    985  * Note that this function is designed so that it can be used to apply
    986  * an arbitrary function to all potential children (its return value
    987  * can be ignored).
    988  */
    989 cfdata_t
    990 config_search_loc(cfsubmatch_t fn, device_t parent,
    991 		  const char *ifattr, const int *locs, void *aux)
    992 {
    993 	struct cftable *ct;
    994 	cfdata_t cf;
    995 	struct matchinfo m;
    996 
    997 	KASSERT(config_initialized);
    998 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
    999 
   1000 	m.fn = fn;
   1001 	m.parent = parent;
   1002 	m.locs = locs;
   1003 	m.aux = aux;
   1004 	m.match = NULL;
   1005 	m.pri = 0;
   1006 
   1007 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1008 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1009 
   1010 			/* We don't match root nodes here. */
   1011 			if (!cf->cf_pspec)
   1012 				continue;
   1013 
   1014 			/*
   1015 			 * Skip cf if no longer eligible, otherwise scan
   1016 			 * through parents for one matching `parent', and
   1017 			 * try match function.
   1018 			 */
   1019 			if (cf->cf_fstate == FSTATE_FOUND)
   1020 				continue;
   1021 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
   1022 			    cf->cf_fstate == FSTATE_DSTAR)
   1023 				continue;
   1024 
   1025 			/*
   1026 			 * If an interface attribute was specified,
   1027 			 * consider only children which attach to
   1028 			 * that attribute.
   1029 			 */
   1030 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
   1031 				continue;
   1032 
   1033 			if (cfparent_match(parent, cf->cf_pspec))
   1034 				mapply(&m, cf);
   1035 		}
   1036 	}
   1037 	return m.match;
   1038 }
   1039 
   1040 cfdata_t
   1041 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
   1042     void *aux)
   1043 {
   1044 
   1045 	return config_search_loc(fn, parent, ifattr, NULL, aux);
   1046 }
   1047 
   1048 /*
   1049  * Find the given root device.
   1050  * This is much like config_search, but there is no parent.
   1051  * Don't bother with multiple cfdata tables; the root node
   1052  * must always be in the initial table.
   1053  */
   1054 cfdata_t
   1055 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1056 {
   1057 	cfdata_t cf;
   1058 	const short *p;
   1059 	struct matchinfo m;
   1060 
   1061 	m.fn = fn;
   1062 	m.parent = ROOT;
   1063 	m.aux = aux;
   1064 	m.match = NULL;
   1065 	m.pri = 0;
   1066 	m.locs = 0;
   1067 	/*
   1068 	 * Look at root entries for matching name.  We do not bother
   1069 	 * with found-state here since only one root should ever be
   1070 	 * searched (and it must be done first).
   1071 	 */
   1072 	for (p = cfroots; *p >= 0; p++) {
   1073 		cf = &cfdata[*p];
   1074 		if (strcmp(cf->cf_name, rootname) == 0)
   1075 			mapply(&m, cf);
   1076 	}
   1077 	return m.match;
   1078 }
   1079 
   1080 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1081 
   1082 /*
   1083  * The given `aux' argument describes a device that has been found
   1084  * on the given parent, but not necessarily configured.  Locate the
   1085  * configuration data for that device (using the submatch function
   1086  * provided, or using candidates' cd_match configuration driver
   1087  * functions) and attach it, and return its device_t.  If the device was
   1088  * not configured, call the given `print' function and return NULL.
   1089  */
   1090 device_t
   1091 config_found_sm_loc(device_t parent,
   1092 		const char *ifattr, const int *locs, void *aux,
   1093 		cfprint_t print, cfsubmatch_t submatch)
   1094 {
   1095 	cfdata_t cf;
   1096 
   1097 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
   1098 		return(config_attach_loc(parent, cf, locs, aux, print));
   1099 	if (print) {
   1100 		if (config_do_twiddle && cold)
   1101 			twiddle();
   1102 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1103 	}
   1104 
   1105 	/*
   1106 	 * This has the effect of mixing in a single timestamp to the
   1107 	 * entropy pool.  Experiments indicate the estimator will almost
   1108 	 * always attribute one bit of entropy to this sample; analysis
   1109 	 * of device attach/detach timestamps on FreeBSD indicates 4
   1110 	 * bits of entropy/sample so this seems appropriately conservative.
   1111 	 */
   1112 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1113 	return NULL;
   1114 }
   1115 
   1116 device_t
   1117 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1118     cfprint_t print)
   1119 {
   1120 
   1121 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
   1122 }
   1123 
   1124 device_t
   1125 config_found(device_t parent, void *aux, cfprint_t print)
   1126 {
   1127 
   1128 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
   1129 }
   1130 
   1131 /*
   1132  * As above, but for root devices.
   1133  */
   1134 device_t
   1135 config_rootfound(const char *rootname, void *aux)
   1136 {
   1137 	cfdata_t cf;
   1138 
   1139 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1140 		return config_attach(ROOT, cf, aux, NULL);
   1141 	aprint_error("root device %s not configured\n", rootname);
   1142 	return NULL;
   1143 }
   1144 
   1145 /* just like sprintf(buf, "%d") except that it works from the end */
   1146 static char *
   1147 number(char *ep, int n)
   1148 {
   1149 
   1150 	*--ep = 0;
   1151 	while (n >= 10) {
   1152 		*--ep = (n % 10) + '0';
   1153 		n /= 10;
   1154 	}
   1155 	*--ep = n + '0';
   1156 	return ep;
   1157 }
   1158 
   1159 /*
   1160  * Expand the size of the cd_devs array if necessary.
   1161  *
   1162  * The caller must hold alldevs_lock. config_makeroom() may release and
   1163  * re-acquire alldevs_lock, so callers should re-check conditions such
   1164  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1165  * returns.
   1166  */
   1167 static void
   1168 config_makeroom(int n, struct cfdriver *cd)
   1169 {
   1170 	int ondevs, nndevs;
   1171 	device_t *osp, *nsp;
   1172 
   1173 	KASSERT(mutex_owned(&alldevs_lock));
   1174 	alldevs_nwrite++;
   1175 
   1176 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
   1177 		;
   1178 
   1179 	while (n >= cd->cd_ndevs) {
   1180 		/*
   1181 		 * Need to expand the array.
   1182 		 */
   1183 		ondevs = cd->cd_ndevs;
   1184 		osp = cd->cd_devs;
   1185 
   1186 		/*
   1187 		 * Release alldevs_lock around allocation, which may
   1188 		 * sleep.
   1189 		 */
   1190 		mutex_exit(&alldevs_lock);
   1191 		nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
   1192 		mutex_enter(&alldevs_lock);
   1193 
   1194 		/*
   1195 		 * If another thread moved the array while we did
   1196 		 * not hold alldevs_lock, try again.
   1197 		 */
   1198 		if (cd->cd_devs != osp) {
   1199 			mutex_exit(&alldevs_lock);
   1200 			kmem_free(nsp, sizeof(device_t[nndevs]));
   1201 			mutex_enter(&alldevs_lock);
   1202 			continue;
   1203 		}
   1204 
   1205 		memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
   1206 		if (ondevs != 0)
   1207 			memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
   1208 
   1209 		cd->cd_ndevs = nndevs;
   1210 		cd->cd_devs = nsp;
   1211 		if (ondevs != 0) {
   1212 			mutex_exit(&alldevs_lock);
   1213 			kmem_free(osp, sizeof(device_t[ondevs]));
   1214 			mutex_enter(&alldevs_lock);
   1215 		}
   1216 	}
   1217 	KASSERT(mutex_owned(&alldevs_lock));
   1218 	alldevs_nwrite--;
   1219 }
   1220 
   1221 /*
   1222  * Put dev into the devices list.
   1223  */
   1224 static void
   1225 config_devlink(device_t dev)
   1226 {
   1227 
   1228 	mutex_enter(&alldevs_lock);
   1229 
   1230 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1231 
   1232 	dev->dv_add_gen = alldevs_gen;
   1233 	/* It is safe to add a device to the tail of the list while
   1234 	 * readers and writers are in the list.
   1235 	 */
   1236 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1237 	mutex_exit(&alldevs_lock);
   1238 }
   1239 
   1240 static void
   1241 config_devfree(device_t dev)
   1242 {
   1243 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
   1244 
   1245 	if (dev->dv_cfattach->ca_devsize > 0)
   1246 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1247 	if (priv)
   1248 		kmem_free(dev, sizeof(*dev));
   1249 }
   1250 
   1251 /*
   1252  * Caller must hold alldevs_lock.
   1253  */
   1254 static void
   1255 config_devunlink(device_t dev, struct devicelist *garbage)
   1256 {
   1257 	struct device_garbage *dg = &dev->dv_garbage;
   1258 	cfdriver_t cd = device_cfdriver(dev);
   1259 	int i;
   1260 
   1261 	KASSERT(mutex_owned(&alldevs_lock));
   1262 
   1263  	/* Unlink from device list.  Link to garbage list. */
   1264 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1265 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1266 
   1267 	/* Remove from cfdriver's array. */
   1268 	cd->cd_devs[dev->dv_unit] = NULL;
   1269 
   1270 	/*
   1271 	 * If the device now has no units in use, unlink its softc array.
   1272 	 */
   1273 	for (i = 0; i < cd->cd_ndevs; i++) {
   1274 		if (cd->cd_devs[i] != NULL)
   1275 			break;
   1276 	}
   1277 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1278 	if (i == cd->cd_ndevs) {
   1279 		dg->dg_ndevs = cd->cd_ndevs;
   1280 		dg->dg_devs = cd->cd_devs;
   1281 		cd->cd_devs = NULL;
   1282 		cd->cd_ndevs = 0;
   1283 	}
   1284 }
   1285 
   1286 static void
   1287 config_devdelete(device_t dev)
   1288 {
   1289 	struct device_garbage *dg = &dev->dv_garbage;
   1290 	device_lock_t dvl = device_getlock(dev);
   1291 
   1292 	if (dg->dg_devs != NULL)
   1293 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
   1294 
   1295 	cv_destroy(&dvl->dvl_cv);
   1296 	mutex_destroy(&dvl->dvl_mtx);
   1297 
   1298 	KASSERT(dev->dv_properties != NULL);
   1299 	prop_object_release(dev->dv_properties);
   1300 
   1301 	if (dev->dv_activity_handlers)
   1302 		panic("%s with registered handlers", __func__);
   1303 
   1304 	if (dev->dv_locators) {
   1305 		size_t amount = *--dev->dv_locators;
   1306 		kmem_free(dev->dv_locators, amount);
   1307 	}
   1308 
   1309 	config_devfree(dev);
   1310 }
   1311 
   1312 static int
   1313 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1314 {
   1315 	int unit;
   1316 
   1317 	if (cf->cf_fstate == FSTATE_STAR) {
   1318 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1319 			if (cd->cd_devs[unit] == NULL)
   1320 				break;
   1321 		/*
   1322 		 * unit is now the unit of the first NULL device pointer,
   1323 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1324 		 */
   1325 	} else {
   1326 		unit = cf->cf_unit;
   1327 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1328 			unit = -1;
   1329 	}
   1330 	return unit;
   1331 }
   1332 
   1333 static int
   1334 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1335 {
   1336 	struct alldevs_foray af;
   1337 	int unit;
   1338 
   1339 	config_alldevs_enter(&af);
   1340 	for (;;) {
   1341 		unit = config_unit_nextfree(cd, cf);
   1342 		if (unit == -1)
   1343 			break;
   1344 		if (unit < cd->cd_ndevs) {
   1345 			cd->cd_devs[unit] = dev;
   1346 			dev->dv_unit = unit;
   1347 			break;
   1348 		}
   1349 		config_makeroom(unit, cd);
   1350 	}
   1351 	config_alldevs_exit(&af);
   1352 
   1353 	return unit;
   1354 }
   1355 
   1356 static device_t
   1357 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1358 {
   1359 	cfdriver_t cd;
   1360 	cfattach_t ca;
   1361 	size_t lname, lunit;
   1362 	const char *xunit;
   1363 	int myunit;
   1364 	char num[10];
   1365 	device_t dev;
   1366 	void *dev_private;
   1367 	const struct cfiattrdata *ia;
   1368 	device_lock_t dvl;
   1369 
   1370 	cd = config_cfdriver_lookup(cf->cf_name);
   1371 	if (cd == NULL)
   1372 		return NULL;
   1373 
   1374 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1375 	if (ca == NULL)
   1376 		return NULL;
   1377 
   1378 	/* get memory for all device vars */
   1379 	KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
   1380 	    || ca->ca_devsize >= sizeof(struct device),
   1381 	    "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
   1382 	    sizeof(struct device));
   1383 	if (ca->ca_devsize > 0) {
   1384 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1385 	} else {
   1386 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1387 		dev_private = NULL;
   1388 	}
   1389 
   1390 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1391 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1392 	} else {
   1393 		dev = dev_private;
   1394 #ifdef DIAGNOSTIC
   1395 		printf("%s has not been converted to device_t\n", cd->cd_name);
   1396 #endif
   1397 		KASSERT(dev != NULL);
   1398 	}
   1399 	dev->dv_class = cd->cd_class;
   1400 	dev->dv_cfdata = cf;
   1401 	dev->dv_cfdriver = cd;
   1402 	dev->dv_cfattach = ca;
   1403 	dev->dv_activity_count = 0;
   1404 	dev->dv_activity_handlers = NULL;
   1405 	dev->dv_private = dev_private;
   1406 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1407 
   1408 	myunit = config_unit_alloc(dev, cd, cf);
   1409 	if (myunit == -1) {
   1410 		config_devfree(dev);
   1411 		return NULL;
   1412 	}
   1413 
   1414 	/* compute length of name and decimal expansion of unit number */
   1415 	lname = strlen(cd->cd_name);
   1416 	xunit = number(&num[sizeof(num)], myunit);
   1417 	lunit = &num[sizeof(num)] - xunit;
   1418 	if (lname + lunit > sizeof(dev->dv_xname))
   1419 		panic("config_devalloc: device name too long");
   1420 
   1421 	dvl = device_getlock(dev);
   1422 
   1423 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1424 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1425 
   1426 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1427 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1428 	dev->dv_parent = parent;
   1429 	if (parent != NULL)
   1430 		dev->dv_depth = parent->dv_depth + 1;
   1431 	else
   1432 		dev->dv_depth = 0;
   1433 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1434 	if (locs) {
   1435 		KASSERT(parent); /* no locators at root */
   1436 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1437 		dev->dv_locators =
   1438 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
   1439 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
   1440 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
   1441 	}
   1442 	dev->dv_properties = prop_dictionary_create();
   1443 	KASSERT(dev->dv_properties != NULL);
   1444 
   1445 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
   1446 	    "device-driver", dev->dv_cfdriver->cd_name);
   1447 	prop_dictionary_set_uint16(dev->dv_properties,
   1448 	    "device-unit", dev->dv_unit);
   1449 	if (parent != NULL) {
   1450 		prop_dictionary_set_cstring(dev->dv_properties,
   1451 		    "device-parent", device_xname(parent));
   1452 	}
   1453 
   1454 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1455 		config_add_attrib_dict(dev);
   1456 
   1457 	return dev;
   1458 }
   1459 
   1460 /*
   1461  * Create an array of device attach attributes and add it
   1462  * to the device's dv_properties dictionary.
   1463  *
   1464  * <key>interface-attributes</key>
   1465  * <array>
   1466  *    <dict>
   1467  *       <key>attribute-name</key>
   1468  *       <string>foo</string>
   1469  *       <key>locators</key>
   1470  *       <array>
   1471  *          <dict>
   1472  *             <key>loc-name</key>
   1473  *             <string>foo-loc1</string>
   1474  *          </dict>
   1475  *          <dict>
   1476  *             <key>loc-name</key>
   1477  *             <string>foo-loc2</string>
   1478  *             <key>default</key>
   1479  *             <string>foo-loc2-default</string>
   1480  *          </dict>
   1481  *          ...
   1482  *       </array>
   1483  *    </dict>
   1484  *    ...
   1485  * </array>
   1486  */
   1487 
   1488 static void
   1489 config_add_attrib_dict(device_t dev)
   1490 {
   1491 	int i, j;
   1492 	const struct cfiattrdata *ci;
   1493 	prop_dictionary_t attr_dict, loc_dict;
   1494 	prop_array_t attr_array, loc_array;
   1495 
   1496 	if ((attr_array = prop_array_create()) == NULL)
   1497 		return;
   1498 
   1499 	for (i = 0; ; i++) {
   1500 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1501 			break;
   1502 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1503 			break;
   1504 		prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
   1505 		    ci->ci_name);
   1506 
   1507 		/* Create an array of the locator names and defaults */
   1508 
   1509 		if (ci->ci_loclen != 0 &&
   1510 		    (loc_array = prop_array_create()) != NULL) {
   1511 			for (j = 0; j < ci->ci_loclen; j++) {
   1512 				loc_dict = prop_dictionary_create();
   1513 				if (loc_dict == NULL)
   1514 					continue;
   1515 				prop_dictionary_set_cstring_nocopy(loc_dict,
   1516 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1517 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1518 					prop_dictionary_set_cstring_nocopy(
   1519 					    loc_dict, "default",
   1520 					    ci->ci_locdesc[j].cld_defaultstr);
   1521 				prop_array_set(loc_array, j, loc_dict);
   1522 				prop_object_release(loc_dict);
   1523 			}
   1524 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1525 			    loc_array);
   1526 		}
   1527 		prop_array_add(attr_array, attr_dict);
   1528 		prop_object_release(attr_dict);
   1529 	}
   1530 	if (i == 0)
   1531 		prop_object_release(attr_array);
   1532 	else
   1533 		prop_dictionary_set_and_rel(dev->dv_properties,
   1534 		    "interface-attributes", attr_array);
   1535 
   1536 	return;
   1537 }
   1538 
   1539 /*
   1540  * Attach a found device.
   1541  */
   1542 device_t
   1543 config_attach_loc(device_t parent, cfdata_t cf,
   1544 	const int *locs, void *aux, cfprint_t print)
   1545 {
   1546 	device_t dev;
   1547 	struct cftable *ct;
   1548 	const char *drvname;
   1549 
   1550 	dev = config_devalloc(parent, cf, locs);
   1551 	if (!dev)
   1552 		panic("config_attach: allocation of device softc failed");
   1553 
   1554 	/* XXX redundant - see below? */
   1555 	if (cf->cf_fstate != FSTATE_STAR) {
   1556 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1557 		cf->cf_fstate = FSTATE_FOUND;
   1558 	}
   1559 
   1560 	config_devlink(dev);
   1561 
   1562 	if (config_do_twiddle && cold)
   1563 		twiddle();
   1564 	else
   1565 		aprint_naive("Found ");
   1566 	/*
   1567 	 * We want the next two printfs for normal, verbose, and quiet,
   1568 	 * but not silent (in which case, we're twiddling, instead).
   1569 	 */
   1570 	if (parent == ROOT) {
   1571 		aprint_naive("%s (root)", device_xname(dev));
   1572 		aprint_normal("%s (root)", device_xname(dev));
   1573 	} else {
   1574 		aprint_naive("%s at %s", device_xname(dev),
   1575 		    device_xname(parent));
   1576 		aprint_normal("%s at %s", device_xname(dev),
   1577 		    device_xname(parent));
   1578 		if (print)
   1579 			(void) (*print)(aux, NULL);
   1580 	}
   1581 
   1582 	/*
   1583 	 * Before attaching, clobber any unfound devices that are
   1584 	 * otherwise identical.
   1585 	 * XXX code above is redundant?
   1586 	 */
   1587 	drvname = dev->dv_cfdriver->cd_name;
   1588 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1589 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1590 			if (STREQ(cf->cf_name, drvname) &&
   1591 			    cf->cf_unit == dev->dv_unit) {
   1592 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1593 					cf->cf_fstate = FSTATE_FOUND;
   1594 			}
   1595 		}
   1596 	}
   1597 	device_register(dev, aux);
   1598 
   1599 	/* Let userland know */
   1600 	devmon_report_device(dev, true);
   1601 
   1602 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1603 
   1604 	if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
   1605 	    && !device_pmf_is_registered(dev))
   1606 		aprint_debug_dev(dev,
   1607 		    "WARNING: power management not supported\n");
   1608 
   1609 	config_process_deferred(&deferred_config_queue, dev);
   1610 
   1611 	device_register_post_config(dev, aux);
   1612 	return dev;
   1613 }
   1614 
   1615 device_t
   1616 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1617 {
   1618 
   1619 	return config_attach_loc(parent, cf, NULL, aux, print);
   1620 }
   1621 
   1622 /*
   1623  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1624  * way are silently inserted into the device tree, and their children
   1625  * attached.
   1626  *
   1627  * Note that because pseudo-devices are attached silently, any information
   1628  * the attach routine wishes to print should be prefixed with the device
   1629  * name by the attach routine.
   1630  */
   1631 device_t
   1632 config_attach_pseudo(cfdata_t cf)
   1633 {
   1634 	device_t dev;
   1635 
   1636 	dev = config_devalloc(ROOT, cf, NULL);
   1637 	if (!dev)
   1638 		return NULL;
   1639 
   1640 	/* XXX mark busy in cfdata */
   1641 
   1642 	if (cf->cf_fstate != FSTATE_STAR) {
   1643 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1644 		cf->cf_fstate = FSTATE_FOUND;
   1645 	}
   1646 
   1647 	config_devlink(dev);
   1648 
   1649 #if 0	/* XXXJRT not yet */
   1650 	device_register(dev, NULL);	/* like a root node */
   1651 #endif
   1652 
   1653 	/* Let userland know */
   1654 	devmon_report_device(dev, true);
   1655 
   1656 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1657 
   1658 	config_process_deferred(&deferred_config_queue, dev);
   1659 	return dev;
   1660 }
   1661 
   1662 /*
   1663  * Caller must hold alldevs_lock.
   1664  */
   1665 static void
   1666 config_collect_garbage(struct devicelist *garbage)
   1667 {
   1668 	device_t dv;
   1669 
   1670 	KASSERT(!cpu_intr_p());
   1671 	KASSERT(!cpu_softintr_p());
   1672 	KASSERT(mutex_owned(&alldevs_lock));
   1673 
   1674 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1675 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1676 			if (dv->dv_del_gen != 0)
   1677 				break;
   1678 		}
   1679 		if (dv == NULL) {
   1680 			alldevs_garbage = false;
   1681 			break;
   1682 		}
   1683 		config_devunlink(dv, garbage);
   1684 	}
   1685 	KASSERT(mutex_owned(&alldevs_lock));
   1686 }
   1687 
   1688 static void
   1689 config_dump_garbage(struct devicelist *garbage)
   1690 {
   1691 	device_t dv;
   1692 
   1693 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1694 		TAILQ_REMOVE(garbage, dv, dv_list);
   1695 		config_devdelete(dv);
   1696 	}
   1697 }
   1698 
   1699 /*
   1700  * Detach a device.  Optionally forced (e.g. because of hardware
   1701  * removal) and quiet.  Returns zero if successful, non-zero
   1702  * (an error code) otherwise.
   1703  *
   1704  * Note that this code wants to be run from a process context, so
   1705  * that the detach can sleep to allow processes which have a device
   1706  * open to run and unwind their stacks.
   1707  */
   1708 int
   1709 config_detach(device_t dev, int flags)
   1710 {
   1711 	struct alldevs_foray af;
   1712 	struct cftable *ct;
   1713 	cfdata_t cf;
   1714 	const struct cfattach *ca;
   1715 	struct cfdriver *cd;
   1716 	device_t d __diagused;
   1717 	int rv = 0;
   1718 
   1719 	cf = dev->dv_cfdata;
   1720 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
   1721 		cf->cf_fstate == FSTATE_STAR),
   1722 	    "config_detach: %s: bad device fstate: %d",
   1723 	    device_xname(dev), cf ? cf->cf_fstate : -1);
   1724 
   1725 	cd = dev->dv_cfdriver;
   1726 	KASSERT(cd != NULL);
   1727 
   1728 	ca = dev->dv_cfattach;
   1729 	KASSERT(ca != NULL);
   1730 
   1731 	mutex_enter(&alldevs_lock);
   1732 	if (dev->dv_del_gen != 0) {
   1733 		mutex_exit(&alldevs_lock);
   1734 #ifdef DIAGNOSTIC
   1735 		printf("%s: %s is already detached\n", __func__,
   1736 		    device_xname(dev));
   1737 #endif /* DIAGNOSTIC */
   1738 		return ENOENT;
   1739 	}
   1740 	alldevs_nwrite++;
   1741 	mutex_exit(&alldevs_lock);
   1742 
   1743 	if (!detachall &&
   1744 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1745 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1746 		rv = EOPNOTSUPP;
   1747 	} else if (ca->ca_detach != NULL) {
   1748 		rv = (*ca->ca_detach)(dev, flags);
   1749 	} else
   1750 		rv = EOPNOTSUPP;
   1751 
   1752 	/*
   1753 	 * If it was not possible to detach the device, then we either
   1754 	 * panic() (for the forced but failed case), or return an error.
   1755 	 *
   1756 	 * If it was possible to detach the device, ensure that the
   1757 	 * device is deactivated.
   1758 	 */
   1759 	if (rv == 0)
   1760 		dev->dv_flags &= ~DVF_ACTIVE;
   1761 	else if ((flags & DETACH_FORCE) == 0)
   1762 		goto out;
   1763 	else {
   1764 		panic("config_detach: forced detach of %s failed (%d)",
   1765 		    device_xname(dev), rv);
   1766 	}
   1767 
   1768 	/*
   1769 	 * The device has now been successfully detached.
   1770 	 */
   1771 
   1772 	/* Let userland know */
   1773 	devmon_report_device(dev, false);
   1774 
   1775 #ifdef DIAGNOSTIC
   1776 	/*
   1777 	 * Sanity: If you're successfully detached, you should have no
   1778 	 * children.  (Note that because children must be attached
   1779 	 * after parents, we only need to search the latter part of
   1780 	 * the list.)
   1781 	 */
   1782 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1783 	    d = TAILQ_NEXT(d, dv_list)) {
   1784 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1785 			printf("config_detach: detached device %s"
   1786 			    " has children %s\n", device_xname(dev),
   1787 			    device_xname(d));
   1788 			panic("config_detach");
   1789 		}
   1790 	}
   1791 #endif
   1792 
   1793 	/* notify the parent that the child is gone */
   1794 	if (dev->dv_parent) {
   1795 		device_t p = dev->dv_parent;
   1796 		if (p->dv_cfattach->ca_childdetached)
   1797 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1798 	}
   1799 
   1800 	/*
   1801 	 * Mark cfdata to show that the unit can be reused, if possible.
   1802 	 */
   1803 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1804 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1805 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1806 				if (cf->cf_fstate == FSTATE_FOUND &&
   1807 				    cf->cf_unit == dev->dv_unit)
   1808 					cf->cf_fstate = FSTATE_NOTFOUND;
   1809 			}
   1810 		}
   1811 	}
   1812 
   1813 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1814 		aprint_normal_dev(dev, "detached\n");
   1815 
   1816 out:
   1817 	config_alldevs_enter(&af);
   1818 	KASSERT(alldevs_nwrite != 0);
   1819 	--alldevs_nwrite;
   1820 	if (rv == 0 && dev->dv_del_gen == 0) {
   1821 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   1822 			config_devunlink(dev, &af.af_garbage);
   1823 		else {
   1824 			dev->dv_del_gen = alldevs_gen;
   1825 			alldevs_garbage = true;
   1826 		}
   1827 	}
   1828 	config_alldevs_exit(&af);
   1829 
   1830 	return rv;
   1831 }
   1832 
   1833 int
   1834 config_detach_children(device_t parent, int flags)
   1835 {
   1836 	device_t dv;
   1837 	deviter_t di;
   1838 	int error = 0;
   1839 
   1840 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1841 	     dv = deviter_next(&di)) {
   1842 		if (device_parent(dv) != parent)
   1843 			continue;
   1844 		if ((error = config_detach(dv, flags)) != 0)
   1845 			break;
   1846 	}
   1847 	deviter_release(&di);
   1848 	return error;
   1849 }
   1850 
   1851 device_t
   1852 shutdown_first(struct shutdown_state *s)
   1853 {
   1854 	if (!s->initialized) {
   1855 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1856 		s->initialized = true;
   1857 	}
   1858 	return shutdown_next(s);
   1859 }
   1860 
   1861 device_t
   1862 shutdown_next(struct shutdown_state *s)
   1863 {
   1864 	device_t dv;
   1865 
   1866 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1867 		;
   1868 
   1869 	if (dv == NULL)
   1870 		s->initialized = false;
   1871 
   1872 	return dv;
   1873 }
   1874 
   1875 bool
   1876 config_detach_all(int how)
   1877 {
   1878 	static struct shutdown_state s;
   1879 	device_t curdev;
   1880 	bool progress = false;
   1881 	int flags;
   1882 
   1883 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
   1884 		return false;
   1885 
   1886 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
   1887 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
   1888 	else
   1889 		flags = DETACH_SHUTDOWN;
   1890 
   1891 	for (curdev = shutdown_first(&s); curdev != NULL;
   1892 	     curdev = shutdown_next(&s)) {
   1893 		aprint_debug(" detaching %s, ", device_xname(curdev));
   1894 		if (config_detach(curdev, flags) == 0) {
   1895 			progress = true;
   1896 			aprint_debug("success.");
   1897 		} else
   1898 			aprint_debug("failed.");
   1899 	}
   1900 	return progress;
   1901 }
   1902 
   1903 static bool
   1904 device_is_ancestor_of(device_t ancestor, device_t descendant)
   1905 {
   1906 	device_t dv;
   1907 
   1908 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   1909 		if (device_parent(dv) == ancestor)
   1910 			return true;
   1911 	}
   1912 	return false;
   1913 }
   1914 
   1915 int
   1916 config_deactivate(device_t dev)
   1917 {
   1918 	deviter_t di;
   1919 	const struct cfattach *ca;
   1920 	device_t descendant;
   1921 	int s, rv = 0, oflags;
   1922 
   1923 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   1924 	     descendant != NULL;
   1925 	     descendant = deviter_next(&di)) {
   1926 		if (dev != descendant &&
   1927 		    !device_is_ancestor_of(dev, descendant))
   1928 			continue;
   1929 
   1930 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   1931 			continue;
   1932 
   1933 		ca = descendant->dv_cfattach;
   1934 		oflags = descendant->dv_flags;
   1935 
   1936 		descendant->dv_flags &= ~DVF_ACTIVE;
   1937 		if (ca->ca_activate == NULL)
   1938 			continue;
   1939 		s = splhigh();
   1940 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   1941 		splx(s);
   1942 		if (rv != 0)
   1943 			descendant->dv_flags = oflags;
   1944 	}
   1945 	deviter_release(&di);
   1946 	return rv;
   1947 }
   1948 
   1949 /*
   1950  * Defer the configuration of the specified device until all
   1951  * of its parent's devices have been attached.
   1952  */
   1953 void
   1954 config_defer(device_t dev, void (*func)(device_t))
   1955 {
   1956 	struct deferred_config *dc;
   1957 
   1958 	if (dev->dv_parent == NULL)
   1959 		panic("config_defer: can't defer config of a root device");
   1960 
   1961 #ifdef DIAGNOSTIC
   1962 	TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
   1963 		if (dc->dc_dev == dev)
   1964 			panic("config_defer: deferred twice");
   1965 	}
   1966 #endif
   1967 
   1968 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1969 	dc->dc_dev = dev;
   1970 	dc->dc_func = func;
   1971 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1972 	config_pending_incr(dev);
   1973 }
   1974 
   1975 /*
   1976  * Defer some autoconfiguration for a device until after interrupts
   1977  * are enabled.
   1978  */
   1979 void
   1980 config_interrupts(device_t dev, void (*func)(device_t))
   1981 {
   1982 	struct deferred_config *dc;
   1983 
   1984 	/*
   1985 	 * If interrupts are enabled, callback now.
   1986 	 */
   1987 	if (cold == 0) {
   1988 		(*func)(dev);
   1989 		return;
   1990 	}
   1991 
   1992 #ifdef DIAGNOSTIC
   1993 	TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
   1994 		if (dc->dc_dev == dev)
   1995 			panic("config_interrupts: deferred twice");
   1996 	}
   1997 #endif
   1998 
   1999 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2000 	dc->dc_dev = dev;
   2001 	dc->dc_func = func;
   2002 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   2003 	config_pending_incr(dev);
   2004 	dev->dv_flags |= DVF_ATTACH_INPROGRESS;
   2005 }
   2006 
   2007 /*
   2008  * Defer some autoconfiguration for a device until after root file system
   2009  * is mounted (to load firmware etc).
   2010  */
   2011 void
   2012 config_mountroot(device_t dev, void (*func)(device_t))
   2013 {
   2014 	struct deferred_config *dc;
   2015 
   2016 	/*
   2017 	 * If root file system is mounted, callback now.
   2018 	 */
   2019 	if (root_is_mounted) {
   2020 		(*func)(dev);
   2021 		return;
   2022 	}
   2023 
   2024 #ifdef DIAGNOSTIC
   2025 	TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
   2026 		if (dc->dc_dev == dev)
   2027 			panic("%s: deferred twice", __func__);
   2028 	}
   2029 #endif
   2030 
   2031 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2032 	dc->dc_dev = dev;
   2033 	dc->dc_func = func;
   2034 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   2035 }
   2036 
   2037 /*
   2038  * Process a deferred configuration queue.
   2039  */
   2040 static void
   2041 config_process_deferred(struct deferred_config_head *queue, device_t parent)
   2042 {
   2043 	struct deferred_config *dc, *ndc;
   2044 
   2045 	for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
   2046 		ndc = TAILQ_NEXT(dc, dc_queue);
   2047 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2048 			TAILQ_REMOVE(queue, dc, dc_queue);
   2049 			(*dc->dc_func)(dc->dc_dev);
   2050 			config_pending_decr(dc->dc_dev);
   2051 			kmem_free(dc, sizeof(*dc));
   2052 		}
   2053 	}
   2054 }
   2055 
   2056 /*
   2057  * Manipulate the config_pending semaphore.
   2058  */
   2059 void
   2060 config_pending_incr(device_t dev)
   2061 {
   2062 
   2063 	mutex_enter(&config_misc_lock);
   2064 	config_pending++;
   2065 #ifdef DEBUG_AUTOCONF
   2066 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
   2067 #endif
   2068 	mutex_exit(&config_misc_lock);
   2069 }
   2070 
   2071 void
   2072 config_pending_decr(device_t dev)
   2073 {
   2074 
   2075 	KASSERT(0 < config_pending);
   2076 	mutex_enter(&config_misc_lock);
   2077 	config_pending--;
   2078 #ifdef DEBUG_AUTOCONF
   2079 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
   2080 #endif
   2081 	if (config_pending == 0)
   2082 		cv_broadcast(&config_misc_cv);
   2083 	mutex_exit(&config_misc_lock);
   2084 }
   2085 
   2086 /*
   2087  * Register a "finalization" routine.  Finalization routines are
   2088  * called iteratively once all real devices have been found during
   2089  * autoconfiguration, for as long as any one finalizer has done
   2090  * any work.
   2091  */
   2092 int
   2093 config_finalize_register(device_t dev, int (*fn)(device_t))
   2094 {
   2095 	struct finalize_hook *f;
   2096 
   2097 	/*
   2098 	 * If finalization has already been done, invoke the
   2099 	 * callback function now.
   2100 	 */
   2101 	if (config_finalize_done) {
   2102 		while ((*fn)(dev) != 0)
   2103 			/* loop */ ;
   2104 		return 0;
   2105 	}
   2106 
   2107 	/* Ensure this isn't already on the list. */
   2108 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2109 		if (f->f_func == fn && f->f_dev == dev)
   2110 			return EEXIST;
   2111 	}
   2112 
   2113 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2114 	f->f_func = fn;
   2115 	f->f_dev = dev;
   2116 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2117 
   2118 	return 0;
   2119 }
   2120 
   2121 void
   2122 config_finalize(void)
   2123 {
   2124 	struct finalize_hook *f;
   2125 	struct pdevinit *pdev;
   2126 	extern struct pdevinit pdevinit[];
   2127 	int errcnt, rv;
   2128 
   2129 	/*
   2130 	 * Now that device driver threads have been created, wait for
   2131 	 * them to finish any deferred autoconfiguration.
   2132 	 */
   2133 	mutex_enter(&config_misc_lock);
   2134 	while (config_pending != 0)
   2135 		cv_wait(&config_misc_cv, &config_misc_lock);
   2136 	mutex_exit(&config_misc_lock);
   2137 
   2138 	KERNEL_LOCK(1, NULL);
   2139 
   2140 	/* Attach pseudo-devices. */
   2141 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2142 		(*pdev->pdev_attach)(pdev->pdev_count);
   2143 
   2144 	/* Run the hooks until none of them does any work. */
   2145 	do {
   2146 		rv = 0;
   2147 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2148 			rv |= (*f->f_func)(f->f_dev);
   2149 	} while (rv != 0);
   2150 
   2151 	config_finalize_done = 1;
   2152 
   2153 	/* Now free all the hooks. */
   2154 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2155 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2156 		kmem_free(f, sizeof(*f));
   2157 	}
   2158 
   2159 	KERNEL_UNLOCK_ONE(NULL);
   2160 
   2161 	errcnt = aprint_get_error_count();
   2162 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2163 	    (boothowto & AB_VERBOSE) == 0) {
   2164 		mutex_enter(&config_misc_lock);
   2165 		if (config_do_twiddle) {
   2166 			config_do_twiddle = 0;
   2167 			printf_nolog(" done.\n");
   2168 		}
   2169 		mutex_exit(&config_misc_lock);
   2170 	}
   2171 	if (errcnt != 0) {
   2172 		printf("WARNING: %d error%s while detecting hardware; "
   2173 		    "check system log.\n", errcnt,
   2174 		    errcnt == 1 ? "" : "s");
   2175 	}
   2176 }
   2177 
   2178 void
   2179 config_twiddle_init(void)
   2180 {
   2181 
   2182 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2183 		config_do_twiddle = 1;
   2184 	}
   2185 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2186 }
   2187 
   2188 void
   2189 config_twiddle_fn(void *cookie)
   2190 {
   2191 
   2192 	mutex_enter(&config_misc_lock);
   2193 	if (config_do_twiddle) {
   2194 		twiddle();
   2195 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2196 	}
   2197 	mutex_exit(&config_misc_lock);
   2198 }
   2199 
   2200 static void
   2201 config_alldevs_enter(struct alldevs_foray *af)
   2202 {
   2203 	TAILQ_INIT(&af->af_garbage);
   2204 	mutex_enter(&alldevs_lock);
   2205 	config_collect_garbage(&af->af_garbage);
   2206 }
   2207 
   2208 static void
   2209 config_alldevs_exit(struct alldevs_foray *af)
   2210 {
   2211 	mutex_exit(&alldevs_lock);
   2212 	config_dump_garbage(&af->af_garbage);
   2213 }
   2214 
   2215 /*
   2216  * device_lookup:
   2217  *
   2218  *	Look up a device instance for a given driver.
   2219  */
   2220 device_t
   2221 device_lookup(cfdriver_t cd, int unit)
   2222 {
   2223 	device_t dv;
   2224 
   2225 	mutex_enter(&alldevs_lock);
   2226 	if (unit < 0 || unit >= cd->cd_ndevs)
   2227 		dv = NULL;
   2228 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2229 		dv = NULL;
   2230 	mutex_exit(&alldevs_lock);
   2231 
   2232 	return dv;
   2233 }
   2234 
   2235 /*
   2236  * device_lookup_private:
   2237  *
   2238  *	Look up a softc instance for a given driver.
   2239  */
   2240 void *
   2241 device_lookup_private(cfdriver_t cd, int unit)
   2242 {
   2243 
   2244 	return device_private(device_lookup(cd, unit));
   2245 }
   2246 
   2247 /*
   2248  * device_find_by_xname:
   2249  *
   2250  *	Returns the device of the given name or NULL if it doesn't exist.
   2251  */
   2252 device_t
   2253 device_find_by_xname(const char *name)
   2254 {
   2255 	device_t dv;
   2256 	deviter_t di;
   2257 
   2258 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2259 		if (strcmp(device_xname(dv), name) == 0)
   2260 			break;
   2261 	}
   2262 	deviter_release(&di);
   2263 
   2264 	return dv;
   2265 }
   2266 
   2267 /*
   2268  * device_find_by_driver_unit:
   2269  *
   2270  *	Returns the device of the given driver name and unit or
   2271  *	NULL if it doesn't exist.
   2272  */
   2273 device_t
   2274 device_find_by_driver_unit(const char *name, int unit)
   2275 {
   2276 	struct cfdriver *cd;
   2277 
   2278 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2279 		return NULL;
   2280 	return device_lookup(cd, unit);
   2281 }
   2282 
   2283 /*
   2284  * device_compatible_match:
   2285  *
   2286  *	Match a driver's "compatible" data against a device's
   2287  *	"compatible" strings.  If a match is found, we return
   2288  *	a weighted match result, and optionally the matching
   2289  *	entry.
   2290  */
   2291 int
   2292 device_compatible_match(const char **device_compats, int ndevice_compats,
   2293 			const struct device_compatible_entry *driver_compats,
   2294 			const struct device_compatible_entry **matching_entryp)
   2295 {
   2296 	const struct device_compatible_entry *dce = NULL;
   2297 	int i, match_weight;
   2298 
   2299 	if (ndevice_compats == 0 || device_compats == NULL ||
   2300 	    driver_compats == NULL)
   2301 		return 0;
   2302 
   2303 	/*
   2304 	 * We take the first match because we start with the most-specific
   2305 	 * device compatible string.
   2306 	 */
   2307 	for (i = 0, match_weight = ndevice_compats - 1;
   2308 	     i < ndevice_compats;
   2309 	     i++, match_weight--) {
   2310 		for (dce = driver_compats; dce->compat != NULL; dce++) {
   2311 			if (strcmp(dce->compat, device_compats[i]) == 0) {
   2312 				KASSERT(match_weight >= 0);
   2313 				if (matching_entryp)
   2314 					*matching_entryp = dce;
   2315 				return 1 + match_weight;
   2316 			}
   2317 		}
   2318 	}
   2319 	return 0;
   2320 }
   2321 
   2322 /*
   2323  * Power management related functions.
   2324  */
   2325 
   2326 bool
   2327 device_pmf_is_registered(device_t dev)
   2328 {
   2329 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2330 }
   2331 
   2332 bool
   2333 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2334 {
   2335 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2336 		return true;
   2337 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2338 		return false;
   2339 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2340 	    dev->dv_driver_suspend != NULL &&
   2341 	    !(*dev->dv_driver_suspend)(dev, qual))
   2342 		return false;
   2343 
   2344 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2345 	return true;
   2346 }
   2347 
   2348 bool
   2349 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2350 {
   2351 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2352 		return true;
   2353 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2354 		return false;
   2355 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2356 	    dev->dv_driver_resume != NULL &&
   2357 	    !(*dev->dv_driver_resume)(dev, qual))
   2358 		return false;
   2359 
   2360 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2361 	return true;
   2362 }
   2363 
   2364 bool
   2365 device_pmf_driver_shutdown(device_t dev, int how)
   2366 {
   2367 
   2368 	if (*dev->dv_driver_shutdown != NULL &&
   2369 	    !(*dev->dv_driver_shutdown)(dev, how))
   2370 		return false;
   2371 	return true;
   2372 }
   2373 
   2374 bool
   2375 device_pmf_driver_register(device_t dev,
   2376     bool (*suspend)(device_t, const pmf_qual_t *),
   2377     bool (*resume)(device_t, const pmf_qual_t *),
   2378     bool (*shutdown)(device_t, int))
   2379 {
   2380 	dev->dv_driver_suspend = suspend;
   2381 	dev->dv_driver_resume = resume;
   2382 	dev->dv_driver_shutdown = shutdown;
   2383 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2384 	return true;
   2385 }
   2386 
   2387 static const char *
   2388 curlwp_name(void)
   2389 {
   2390 	if (curlwp->l_name != NULL)
   2391 		return curlwp->l_name;
   2392 	else
   2393 		return curlwp->l_proc->p_comm;
   2394 }
   2395 
   2396 void
   2397 device_pmf_driver_deregister(device_t dev)
   2398 {
   2399 	device_lock_t dvl = device_getlock(dev);
   2400 
   2401 	dev->dv_driver_suspend = NULL;
   2402 	dev->dv_driver_resume = NULL;
   2403 
   2404 	mutex_enter(&dvl->dvl_mtx);
   2405 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2406 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2407 		/* Wake a thread that waits for the lock.  That
   2408 		 * thread will fail to acquire the lock, and then
   2409 		 * it will wake the next thread that waits for the
   2410 		 * lock, or else it will wake us.
   2411 		 */
   2412 		cv_signal(&dvl->dvl_cv);
   2413 		pmflock_debug(dev, __func__, __LINE__);
   2414 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2415 		pmflock_debug(dev, __func__, __LINE__);
   2416 	}
   2417 	mutex_exit(&dvl->dvl_mtx);
   2418 }
   2419 
   2420 bool
   2421 device_pmf_driver_child_register(device_t dev)
   2422 {
   2423 	device_t parent = device_parent(dev);
   2424 
   2425 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2426 		return true;
   2427 	return (*parent->dv_driver_child_register)(dev);
   2428 }
   2429 
   2430 void
   2431 device_pmf_driver_set_child_register(device_t dev,
   2432     bool (*child_register)(device_t))
   2433 {
   2434 	dev->dv_driver_child_register = child_register;
   2435 }
   2436 
   2437 static void
   2438 pmflock_debug(device_t dev, const char *func, int line)
   2439 {
   2440 	device_lock_t dvl = device_getlock(dev);
   2441 
   2442 	aprint_debug_dev(dev,
   2443 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
   2444 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
   2445 }
   2446 
   2447 static bool
   2448 device_pmf_lock1(device_t dev)
   2449 {
   2450 	device_lock_t dvl = device_getlock(dev);
   2451 
   2452 	while (device_pmf_is_registered(dev) &&
   2453 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2454 		dvl->dvl_nwait++;
   2455 		pmflock_debug(dev, __func__, __LINE__);
   2456 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2457 		pmflock_debug(dev, __func__, __LINE__);
   2458 		dvl->dvl_nwait--;
   2459 	}
   2460 	if (!device_pmf_is_registered(dev)) {
   2461 		pmflock_debug(dev, __func__, __LINE__);
   2462 		/* We could not acquire the lock, but some other thread may
   2463 		 * wait for it, also.  Wake that thread.
   2464 		 */
   2465 		cv_signal(&dvl->dvl_cv);
   2466 		return false;
   2467 	}
   2468 	dvl->dvl_nlock++;
   2469 	dvl->dvl_holder = curlwp;
   2470 	pmflock_debug(dev, __func__, __LINE__);
   2471 	return true;
   2472 }
   2473 
   2474 bool
   2475 device_pmf_lock(device_t dev)
   2476 {
   2477 	bool rc;
   2478 	device_lock_t dvl = device_getlock(dev);
   2479 
   2480 	mutex_enter(&dvl->dvl_mtx);
   2481 	rc = device_pmf_lock1(dev);
   2482 	mutex_exit(&dvl->dvl_mtx);
   2483 
   2484 	return rc;
   2485 }
   2486 
   2487 void
   2488 device_pmf_unlock(device_t dev)
   2489 {
   2490 	device_lock_t dvl = device_getlock(dev);
   2491 
   2492 	KASSERT(dvl->dvl_nlock > 0);
   2493 	mutex_enter(&dvl->dvl_mtx);
   2494 	if (--dvl->dvl_nlock == 0)
   2495 		dvl->dvl_holder = NULL;
   2496 	cv_signal(&dvl->dvl_cv);
   2497 	pmflock_debug(dev, __func__, __LINE__);
   2498 	mutex_exit(&dvl->dvl_mtx);
   2499 }
   2500 
   2501 device_lock_t
   2502 device_getlock(device_t dev)
   2503 {
   2504 	return &dev->dv_lock;
   2505 }
   2506 
   2507 void *
   2508 device_pmf_bus_private(device_t dev)
   2509 {
   2510 	return dev->dv_bus_private;
   2511 }
   2512 
   2513 bool
   2514 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   2515 {
   2516 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2517 		return true;
   2518 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2519 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2520 		return false;
   2521 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2522 	    dev->dv_bus_suspend != NULL &&
   2523 	    !(*dev->dv_bus_suspend)(dev, qual))
   2524 		return false;
   2525 
   2526 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2527 	return true;
   2528 }
   2529 
   2530 bool
   2531 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   2532 {
   2533 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2534 		return true;
   2535 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2536 	    dev->dv_bus_resume != NULL &&
   2537 	    !(*dev->dv_bus_resume)(dev, qual))
   2538 		return false;
   2539 
   2540 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2541 	return true;
   2542 }
   2543 
   2544 bool
   2545 device_pmf_bus_shutdown(device_t dev, int how)
   2546 {
   2547 
   2548 	if (*dev->dv_bus_shutdown != NULL &&
   2549 	    !(*dev->dv_bus_shutdown)(dev, how))
   2550 		return false;
   2551 	return true;
   2552 }
   2553 
   2554 void
   2555 device_pmf_bus_register(device_t dev, void *priv,
   2556     bool (*suspend)(device_t, const pmf_qual_t *),
   2557     bool (*resume)(device_t, const pmf_qual_t *),
   2558     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2559 {
   2560 	dev->dv_bus_private = priv;
   2561 	dev->dv_bus_resume = resume;
   2562 	dev->dv_bus_suspend = suspend;
   2563 	dev->dv_bus_shutdown = shutdown;
   2564 	dev->dv_bus_deregister = deregister;
   2565 }
   2566 
   2567 void
   2568 device_pmf_bus_deregister(device_t dev)
   2569 {
   2570 	if (dev->dv_bus_deregister == NULL)
   2571 		return;
   2572 	(*dev->dv_bus_deregister)(dev);
   2573 	dev->dv_bus_private = NULL;
   2574 	dev->dv_bus_suspend = NULL;
   2575 	dev->dv_bus_resume = NULL;
   2576 	dev->dv_bus_deregister = NULL;
   2577 }
   2578 
   2579 void *
   2580 device_pmf_class_private(device_t dev)
   2581 {
   2582 	return dev->dv_class_private;
   2583 }
   2584 
   2585 bool
   2586 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   2587 {
   2588 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2589 		return true;
   2590 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2591 	    dev->dv_class_suspend != NULL &&
   2592 	    !(*dev->dv_class_suspend)(dev, qual))
   2593 		return false;
   2594 
   2595 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2596 	return true;
   2597 }
   2598 
   2599 bool
   2600 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   2601 {
   2602 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2603 		return true;
   2604 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2605 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2606 		return false;
   2607 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2608 	    dev->dv_class_resume != NULL &&
   2609 	    !(*dev->dv_class_resume)(dev, qual))
   2610 		return false;
   2611 
   2612 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2613 	return true;
   2614 }
   2615 
   2616 void
   2617 device_pmf_class_register(device_t dev, void *priv,
   2618     bool (*suspend)(device_t, const pmf_qual_t *),
   2619     bool (*resume)(device_t, const pmf_qual_t *),
   2620     void (*deregister)(device_t))
   2621 {
   2622 	dev->dv_class_private = priv;
   2623 	dev->dv_class_suspend = suspend;
   2624 	dev->dv_class_resume = resume;
   2625 	dev->dv_class_deregister = deregister;
   2626 }
   2627 
   2628 void
   2629 device_pmf_class_deregister(device_t dev)
   2630 {
   2631 	if (dev->dv_class_deregister == NULL)
   2632 		return;
   2633 	(*dev->dv_class_deregister)(dev);
   2634 	dev->dv_class_private = NULL;
   2635 	dev->dv_class_suspend = NULL;
   2636 	dev->dv_class_resume = NULL;
   2637 	dev->dv_class_deregister = NULL;
   2638 }
   2639 
   2640 bool
   2641 device_active(device_t dev, devactive_t type)
   2642 {
   2643 	size_t i;
   2644 
   2645 	if (dev->dv_activity_count == 0)
   2646 		return false;
   2647 
   2648 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2649 		if (dev->dv_activity_handlers[i] == NULL)
   2650 			break;
   2651 		(*dev->dv_activity_handlers[i])(dev, type);
   2652 	}
   2653 
   2654 	return true;
   2655 }
   2656 
   2657 bool
   2658 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2659 {
   2660 	void (**new_handlers)(device_t, devactive_t);
   2661 	void (**old_handlers)(device_t, devactive_t);
   2662 	size_t i, old_size, new_size;
   2663 	int s;
   2664 
   2665 	old_handlers = dev->dv_activity_handlers;
   2666 	old_size = dev->dv_activity_count;
   2667 
   2668 	KASSERT(old_size == 0 || old_handlers != NULL);
   2669 
   2670 	for (i = 0; i < old_size; ++i) {
   2671 		KASSERT(old_handlers[i] != handler);
   2672 		if (old_handlers[i] == NULL) {
   2673 			old_handlers[i] = handler;
   2674 			return true;
   2675 		}
   2676 	}
   2677 
   2678 	new_size = old_size + 4;
   2679 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
   2680 
   2681 	for (i = 0; i < old_size; ++i)
   2682 		new_handlers[i] = old_handlers[i];
   2683 	new_handlers[old_size] = handler;
   2684 	for (i = old_size+1; i < new_size; ++i)
   2685 		new_handlers[i] = NULL;
   2686 
   2687 	s = splhigh();
   2688 	dev->dv_activity_count = new_size;
   2689 	dev->dv_activity_handlers = new_handlers;
   2690 	splx(s);
   2691 
   2692 	if (old_size > 0)
   2693 		kmem_free(old_handlers, sizeof(void * [old_size]));
   2694 
   2695 	return true;
   2696 }
   2697 
   2698 void
   2699 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2700 {
   2701 	void (**old_handlers)(device_t, devactive_t);
   2702 	size_t i, old_size;
   2703 	int s;
   2704 
   2705 	old_handlers = dev->dv_activity_handlers;
   2706 	old_size = dev->dv_activity_count;
   2707 
   2708 	for (i = 0; i < old_size; ++i) {
   2709 		if (old_handlers[i] == handler)
   2710 			break;
   2711 		if (old_handlers[i] == NULL)
   2712 			return; /* XXX panic? */
   2713 	}
   2714 
   2715 	if (i == old_size)
   2716 		return; /* XXX panic? */
   2717 
   2718 	for (; i < old_size - 1; ++i) {
   2719 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   2720 			continue;
   2721 
   2722 		if (i == 0) {
   2723 			s = splhigh();
   2724 			dev->dv_activity_count = 0;
   2725 			dev->dv_activity_handlers = NULL;
   2726 			splx(s);
   2727 			kmem_free(old_handlers, sizeof(void *[old_size]));
   2728 		}
   2729 		return;
   2730 	}
   2731 	old_handlers[i] = NULL;
   2732 }
   2733 
   2734 /* Return true iff the device_t `dev' exists at generation `gen'. */
   2735 static bool
   2736 device_exists_at(device_t dv, devgen_t gen)
   2737 {
   2738 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   2739 	    dv->dv_add_gen <= gen;
   2740 }
   2741 
   2742 static bool
   2743 deviter_visits(const deviter_t *di, device_t dv)
   2744 {
   2745 	return device_exists_at(dv, di->di_gen);
   2746 }
   2747 
   2748 /*
   2749  * Device Iteration
   2750  *
   2751  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2752  *     each device_t's in the device tree.
   2753  *
   2754  * deviter_init(di, flags): initialize the device iterator `di'
   2755  *     to "walk" the device tree.  deviter_next(di) will return
   2756  *     the first device_t in the device tree, or NULL if there are
   2757  *     no devices.
   2758  *
   2759  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2760  *     caller intends to modify the device tree by calling
   2761  *     config_detach(9) on devices in the order that the iterator
   2762  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2763  *     nearest the "root" of the device tree to be returned, first;
   2764  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2765  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2766  *     indicating both that deviter_init() should not respect any
   2767  *     locks on the device tree, and that deviter_next(di) may run
   2768  *     in more than one LWP before the walk has finished.
   2769  *
   2770  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2771  *     once.
   2772  *
   2773  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2774  *
   2775  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2776  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2777  *
   2778  * deviter_first(di, flags): initialize the device iterator `di'
   2779  *     and return the first device_t in the device tree, or NULL
   2780  *     if there are no devices.  The statement
   2781  *
   2782  *         dv = deviter_first(di);
   2783  *
   2784  *     is shorthand for
   2785  *
   2786  *         deviter_init(di);
   2787  *         dv = deviter_next(di);
   2788  *
   2789  * deviter_next(di): return the next device_t in the device tree,
   2790  *     or NULL if there are no more devices.  deviter_next(di)
   2791  *     is undefined if `di' was not initialized with deviter_init() or
   2792  *     deviter_first().
   2793  *
   2794  * deviter_release(di): stops iteration (subsequent calls to
   2795  *     deviter_next() will return NULL), releases any locks and
   2796  *     resources held by the device iterator.
   2797  *
   2798  * Device iteration does not return device_t's in any particular
   2799  * order.  An iterator will never return the same device_t twice.
   2800  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2801  * is called repeatedly on the same `di', it will eventually return
   2802  * NULL.  It is ok to attach/detach devices during device iteration.
   2803  */
   2804 void
   2805 deviter_init(deviter_t *di, deviter_flags_t flags)
   2806 {
   2807 	device_t dv;
   2808 
   2809 	memset(di, 0, sizeof(*di));
   2810 
   2811 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   2812 		flags |= DEVITER_F_RW;
   2813 
   2814 	mutex_enter(&alldevs_lock);
   2815 	if ((flags & DEVITER_F_RW) != 0)
   2816 		alldevs_nwrite++;
   2817 	else
   2818 		alldevs_nread++;
   2819 	di->di_gen = alldevs_gen++;
   2820 	di->di_flags = flags;
   2821 
   2822 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2823 	case DEVITER_F_LEAVES_FIRST:
   2824 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2825 			if (!deviter_visits(di, dv))
   2826 				continue;
   2827 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2828 		}
   2829 		break;
   2830 	case DEVITER_F_ROOT_FIRST:
   2831 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2832 			if (!deviter_visits(di, dv))
   2833 				continue;
   2834 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2835 		}
   2836 		break;
   2837 	default:
   2838 		break;
   2839 	}
   2840 
   2841 	deviter_reinit(di);
   2842 	mutex_exit(&alldevs_lock);
   2843 }
   2844 
   2845 static void
   2846 deviter_reinit(deviter_t *di)
   2847 {
   2848 
   2849 	KASSERT(mutex_owned(&alldevs_lock));
   2850 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2851 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2852 	else
   2853 		di->di_prev = TAILQ_FIRST(&alldevs);
   2854 }
   2855 
   2856 device_t
   2857 deviter_first(deviter_t *di, deviter_flags_t flags)
   2858 {
   2859 
   2860 	deviter_init(di, flags);
   2861 	return deviter_next(di);
   2862 }
   2863 
   2864 static device_t
   2865 deviter_next2(deviter_t *di)
   2866 {
   2867 	device_t dv;
   2868 
   2869 	KASSERT(mutex_owned(&alldevs_lock));
   2870 
   2871 	dv = di->di_prev;
   2872 
   2873 	if (dv == NULL)
   2874 		return NULL;
   2875 
   2876 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2877 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2878 	else
   2879 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2880 
   2881 	return dv;
   2882 }
   2883 
   2884 static device_t
   2885 deviter_next1(deviter_t *di)
   2886 {
   2887 	device_t dv;
   2888 
   2889 	KASSERT(mutex_owned(&alldevs_lock));
   2890 
   2891 	do {
   2892 		dv = deviter_next2(di);
   2893 	} while (dv != NULL && !deviter_visits(di, dv));
   2894 
   2895 	return dv;
   2896 }
   2897 
   2898 device_t
   2899 deviter_next(deviter_t *di)
   2900 {
   2901 	device_t dv = NULL;
   2902 
   2903 	mutex_enter(&alldevs_lock);
   2904 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2905 	case 0:
   2906 		dv = deviter_next1(di);
   2907 		break;
   2908 	case DEVITER_F_LEAVES_FIRST:
   2909 		while (di->di_curdepth >= 0) {
   2910 			if ((dv = deviter_next1(di)) == NULL) {
   2911 				di->di_curdepth--;
   2912 				deviter_reinit(di);
   2913 			} else if (dv->dv_depth == di->di_curdepth)
   2914 				break;
   2915 		}
   2916 		break;
   2917 	case DEVITER_F_ROOT_FIRST:
   2918 		while (di->di_curdepth <= di->di_maxdepth) {
   2919 			if ((dv = deviter_next1(di)) == NULL) {
   2920 				di->di_curdepth++;
   2921 				deviter_reinit(di);
   2922 			} else if (dv->dv_depth == di->di_curdepth)
   2923 				break;
   2924 		}
   2925 		break;
   2926 	default:
   2927 		break;
   2928 	}
   2929 	mutex_exit(&alldevs_lock);
   2930 
   2931 	return dv;
   2932 }
   2933 
   2934 void
   2935 deviter_release(deviter_t *di)
   2936 {
   2937 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2938 
   2939 	mutex_enter(&alldevs_lock);
   2940 	if (rw)
   2941 		--alldevs_nwrite;
   2942 	else
   2943 		--alldevs_nread;
   2944 	/* XXX wake a garbage-collection thread */
   2945 	mutex_exit(&alldevs_lock);
   2946 }
   2947 
   2948 const char *
   2949 cfdata_ifattr(const struct cfdata *cf)
   2950 {
   2951 	return cf->cf_pspec->cfp_iattr;
   2952 }
   2953 
   2954 bool
   2955 ifattr_match(const char *snull, const char *t)
   2956 {
   2957 	return (snull == NULL) || strcmp(snull, t) == 0;
   2958 }
   2959 
   2960 void
   2961 null_childdetached(device_t self, device_t child)
   2962 {
   2963 	/* do nothing */
   2964 }
   2965 
   2966 static void
   2967 sysctl_detach_setup(struct sysctllog **clog)
   2968 {
   2969 
   2970 	sysctl_createv(clog, 0, NULL, NULL,
   2971 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   2972 		CTLTYPE_BOOL, "detachall",
   2973 		SYSCTL_DESCR("Detach all devices at shutdown"),
   2974 		NULL, 0, &detachall, 0,
   2975 		CTL_KERN, CTL_CREATE, CTL_EOL);
   2976 }
   2977