subr_autoconf.c revision 1.262.2.1 1 /* $NetBSD: subr_autoconf.c,v 1.262.2.1 2019/06/10 22:09:03 christos Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.262.2.1 2019/06/10 22:09:03 christos Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110
111 #include <sys/disk.h>
112
113 #include <sys/rndsource.h>
114
115 #include <machine/limits.h>
116
117 /*
118 * Autoconfiguration subroutines.
119 */
120
121 /*
122 * Device autoconfiguration timings are mixed into the entropy pool.
123 */
124 extern krndsource_t rnd_autoconf_source;
125
126 /*
127 * ioconf.c exports exactly two names: cfdata and cfroots. All system
128 * devices and drivers are found via these tables.
129 */
130 extern struct cfdata cfdata[];
131 extern const short cfroots[];
132
133 /*
134 * List of all cfdriver structures. We use this to detect duplicates
135 * when other cfdrivers are loaded.
136 */
137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
138 extern struct cfdriver * const cfdriver_list_initial[];
139
140 /*
141 * Initial list of cfattach's.
142 */
143 extern const struct cfattachinit cfattachinit[];
144
145 /*
146 * List of cfdata tables. We always have one such list -- the one
147 * built statically when the kernel was configured.
148 */
149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
150 static struct cftable initcftable;
151
152 #define ROOT ((device_t)NULL)
153
154 struct matchinfo {
155 cfsubmatch_t fn;
156 device_t parent;
157 const int *locs;
158 void *aux;
159 struct cfdata *match;
160 int pri;
161 };
162
163 struct alldevs_foray {
164 int af_s;
165 struct devicelist af_garbage;
166 };
167
168 static char *number(char *, int);
169 static void mapply(struct matchinfo *, cfdata_t);
170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
171 static void config_devdelete(device_t);
172 static void config_devunlink(device_t, struct devicelist *);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_alldevs_enter(struct alldevs_foray *);
176 static void config_alldevs_exit(struct alldevs_foray *);
177 static void config_add_attrib_dict(device_t);
178
179 static void config_collect_garbage(struct devicelist *);
180 static void config_dump_garbage(struct devicelist *);
181
182 static void pmflock_debug(device_t, const char *, int);
183
184 static device_t deviter_next1(deviter_t *);
185 static void deviter_reinit(deviter_t *);
186
187 struct deferred_config {
188 TAILQ_ENTRY(deferred_config) dc_queue;
189 device_t dc_dev;
190 void (*dc_func)(device_t);
191 };
192
193 TAILQ_HEAD(deferred_config_head, deferred_config);
194
195 static struct deferred_config_head deferred_config_queue =
196 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
197 static struct deferred_config_head interrupt_config_queue =
198 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
199 static int interrupt_config_threads = 8;
200 static struct deferred_config_head mountroot_config_queue =
201 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
202 static int mountroot_config_threads = 2;
203 static lwp_t **mountroot_config_lwpids;
204 static size_t mountroot_config_lwpids_size;
205 bool root_is_mounted = false;
206
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 TAILQ_ENTRY(finalize_hook) f_list;
212 int (*f_func)(device_t);
213 device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218
219 /* list of all devices */
220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
221 static kmutex_t alldevs_lock __cacheline_aligned;
222 static devgen_t alldevs_gen = 1;
223 static int alldevs_nread = 0;
224 static int alldevs_nwrite = 0;
225 static bool alldevs_garbage = false;
226
227 static int config_pending; /* semaphore for mountroot */
228 static kmutex_t config_misc_lock;
229 static kcondvar_t config_misc_cv;
230
231 static bool detachall = false;
232
233 #define STREQ(s1, s2) \
234 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
235
236 static bool config_initialized = false; /* config_init() has been called. */
237
238 static int config_do_twiddle;
239 static callout_t config_twiddle_ch;
240
241 static void sysctl_detach_setup(struct sysctllog **);
242
243 int no_devmon_insert(const char *, prop_dictionary_t);
244 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
245
246 typedef int (*cfdriver_fn)(struct cfdriver *);
247 static int
248 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
249 cfdriver_fn drv_do, cfdriver_fn drv_undo,
250 const char *style, bool dopanic)
251 {
252 void (*pr)(const char *, ...) __printflike(1, 2) =
253 dopanic ? panic : printf;
254 int i, error = 0, e2 __diagused;
255
256 for (i = 0; cfdriverv[i] != NULL; i++) {
257 if ((error = drv_do(cfdriverv[i])) != 0) {
258 pr("configure: `%s' driver %s failed: %d",
259 cfdriverv[i]->cd_name, style, error);
260 goto bad;
261 }
262 }
263
264 KASSERT(error == 0);
265 return 0;
266
267 bad:
268 printf("\n");
269 for (i--; i >= 0; i--) {
270 e2 = drv_undo(cfdriverv[i]);
271 KASSERT(e2 == 0);
272 }
273
274 return error;
275 }
276
277 typedef int (*cfattach_fn)(const char *, struct cfattach *);
278 static int
279 frob_cfattachvec(const struct cfattachinit *cfattachv,
280 cfattach_fn att_do, cfattach_fn att_undo,
281 const char *style, bool dopanic)
282 {
283 const struct cfattachinit *cfai = NULL;
284 void (*pr)(const char *, ...) __printflike(1, 2) =
285 dopanic ? panic : printf;
286 int j = 0, error = 0, e2 __diagused;
287
288 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
289 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
290 if ((error = att_do(cfai->cfai_name,
291 cfai->cfai_list[j])) != 0) {
292 pr("configure: attachment `%s' "
293 "of `%s' driver %s failed: %d",
294 cfai->cfai_list[j]->ca_name,
295 cfai->cfai_name, style, error);
296 goto bad;
297 }
298 }
299 }
300
301 KASSERT(error == 0);
302 return 0;
303
304 bad:
305 /*
306 * Rollback in reverse order. dunno if super-important, but
307 * do that anyway. Although the code looks a little like
308 * someone did a little integration (in the math sense).
309 */
310 printf("\n");
311 if (cfai) {
312 bool last;
313
314 for (last = false; last == false; ) {
315 if (cfai == &cfattachv[0])
316 last = true;
317 for (j--; j >= 0; j--) {
318 e2 = att_undo(cfai->cfai_name,
319 cfai->cfai_list[j]);
320 KASSERT(e2 == 0);
321 }
322 if (!last) {
323 cfai--;
324 for (j = 0; cfai->cfai_list[j] != NULL; j++)
325 ;
326 }
327 }
328 }
329
330 return error;
331 }
332
333 /*
334 * Initialize the autoconfiguration data structures. Normally this
335 * is done by configure(), but some platforms need to do this very
336 * early (to e.g. initialize the console).
337 */
338 void
339 config_init(void)
340 {
341
342 KASSERT(config_initialized == false);
343
344 mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
345
346 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
347 cv_init(&config_misc_cv, "cfgmisc");
348
349 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
350
351 frob_cfdrivervec(cfdriver_list_initial,
352 config_cfdriver_attach, NULL, "bootstrap", true);
353 frob_cfattachvec(cfattachinit,
354 config_cfattach_attach, NULL, "bootstrap", true);
355
356 initcftable.ct_cfdata = cfdata;
357 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
358
359 config_initialized = true;
360 }
361
362 /*
363 * Init or fini drivers and attachments. Either all or none
364 * are processed (via rollback). It would be nice if this were
365 * atomic to outside consumers, but with the current state of
366 * locking ...
367 */
368 int
369 config_init_component(struct cfdriver * const *cfdriverv,
370 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
371 {
372 int error;
373
374 if ((error = frob_cfdrivervec(cfdriverv,
375 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
376 return error;
377 if ((error = frob_cfattachvec(cfattachv,
378 config_cfattach_attach, config_cfattach_detach,
379 "init", false)) != 0) {
380 frob_cfdrivervec(cfdriverv,
381 config_cfdriver_detach, NULL, "init rollback", true);
382 return error;
383 }
384 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
385 frob_cfattachvec(cfattachv,
386 config_cfattach_detach, NULL, "init rollback", true);
387 frob_cfdrivervec(cfdriverv,
388 config_cfdriver_detach, NULL, "init rollback", true);
389 return error;
390 }
391
392 return 0;
393 }
394
395 int
396 config_fini_component(struct cfdriver * const *cfdriverv,
397 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
398 {
399 int error;
400
401 if ((error = config_cfdata_detach(cfdatav)) != 0)
402 return error;
403 if ((error = frob_cfattachvec(cfattachv,
404 config_cfattach_detach, config_cfattach_attach,
405 "fini", false)) != 0) {
406 if (config_cfdata_attach(cfdatav, 0) != 0)
407 panic("config_cfdata fini rollback failed");
408 return error;
409 }
410 if ((error = frob_cfdrivervec(cfdriverv,
411 config_cfdriver_detach, config_cfdriver_attach,
412 "fini", false)) != 0) {
413 frob_cfattachvec(cfattachv,
414 config_cfattach_attach, NULL, "fini rollback", true);
415 if (config_cfdata_attach(cfdatav, 0) != 0)
416 panic("config_cfdata fini rollback failed");
417 return error;
418 }
419
420 return 0;
421 }
422
423 void
424 config_init_mi(void)
425 {
426
427 if (!config_initialized)
428 config_init();
429
430 sysctl_detach_setup(NULL);
431 }
432
433 void
434 config_deferred(device_t dev)
435 {
436 config_process_deferred(&deferred_config_queue, dev);
437 config_process_deferred(&interrupt_config_queue, dev);
438 config_process_deferred(&mountroot_config_queue, dev);
439 }
440
441 static void
442 config_interrupts_thread(void *cookie)
443 {
444 struct deferred_config *dc;
445
446 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
447 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
448 (*dc->dc_func)(dc->dc_dev);
449 dc->dc_dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
450 if (!device_pmf_is_registered(dc->dc_dev))
451 aprint_debug_dev(dc->dc_dev,
452 "WARNING: power management not supported\n");
453 config_pending_decr(dc->dc_dev);
454 kmem_free(dc, sizeof(*dc));
455 }
456 kthread_exit(0);
457 }
458
459 void
460 config_create_interruptthreads(void)
461 {
462 int i;
463
464 for (i = 0; i < interrupt_config_threads; i++) {
465 (void)kthread_create(PRI_NONE, 0, NULL,
466 config_interrupts_thread, NULL, NULL, "configintr");
467 }
468 }
469
470 static void
471 config_mountroot_thread(void *cookie)
472 {
473 struct deferred_config *dc;
474
475 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
476 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
477 (*dc->dc_func)(dc->dc_dev);
478 kmem_free(dc, sizeof(*dc));
479 }
480 kthread_exit(0);
481 }
482
483 void
484 config_create_mountrootthreads(void)
485 {
486 int i;
487
488 if (!root_is_mounted)
489 root_is_mounted = true;
490
491 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
492 mountroot_config_threads;
493 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
494 KM_NOSLEEP);
495 KASSERT(mountroot_config_lwpids);
496 for (i = 0; i < mountroot_config_threads; i++) {
497 mountroot_config_lwpids[i] = 0;
498 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL,
499 config_mountroot_thread, NULL,
500 &mountroot_config_lwpids[i],
501 "configroot");
502 }
503 }
504
505 void
506 config_finalize_mountroot(void)
507 {
508 int i, error;
509
510 for (i = 0; i < mountroot_config_threads; i++) {
511 if (mountroot_config_lwpids[i] == 0)
512 continue;
513
514 error = kthread_join(mountroot_config_lwpids[i]);
515 if (error)
516 printf("%s: thread %x joined with error %d\n",
517 __func__, i, error);
518 }
519 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
520 }
521
522 /*
523 * Announce device attach/detach to userland listeners.
524 */
525
526 int
527 no_devmon_insert(const char *name, prop_dictionary_t p)
528 {
529
530 return ENODEV;
531 }
532
533 static void
534 devmon_report_device(device_t dev, bool isattach)
535 {
536 prop_dictionary_t ev;
537 const char *parent;
538 const char *what;
539 device_t pdev = device_parent(dev);
540
541 /* If currently no drvctl device, just return */
542 if (devmon_insert_vec == no_devmon_insert)
543 return;
544
545 ev = prop_dictionary_create();
546 if (ev == NULL)
547 return;
548
549 what = (isattach ? "device-attach" : "device-detach");
550 parent = (pdev == NULL ? "root" : device_xname(pdev));
551 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
552 !prop_dictionary_set_cstring(ev, "parent", parent)) {
553 prop_object_release(ev);
554 return;
555 }
556
557 if ((*devmon_insert_vec)(what, ev) != 0)
558 prop_object_release(ev);
559 }
560
561 /*
562 * Add a cfdriver to the system.
563 */
564 int
565 config_cfdriver_attach(struct cfdriver *cd)
566 {
567 struct cfdriver *lcd;
568
569 /* Make sure this driver isn't already in the system. */
570 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
571 if (STREQ(lcd->cd_name, cd->cd_name))
572 return EEXIST;
573 }
574
575 LIST_INIT(&cd->cd_attach);
576 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
577
578 return 0;
579 }
580
581 /*
582 * Remove a cfdriver from the system.
583 */
584 int
585 config_cfdriver_detach(struct cfdriver *cd)
586 {
587 struct alldevs_foray af;
588 int i, rc = 0;
589
590 config_alldevs_enter(&af);
591 /* Make sure there are no active instances. */
592 for (i = 0; i < cd->cd_ndevs; i++) {
593 if (cd->cd_devs[i] != NULL) {
594 rc = EBUSY;
595 break;
596 }
597 }
598 config_alldevs_exit(&af);
599
600 if (rc != 0)
601 return rc;
602
603 /* ...and no attachments loaded. */
604 if (LIST_EMPTY(&cd->cd_attach) == 0)
605 return EBUSY;
606
607 LIST_REMOVE(cd, cd_list);
608
609 KASSERT(cd->cd_devs == NULL);
610
611 return 0;
612 }
613
614 /*
615 * Look up a cfdriver by name.
616 */
617 struct cfdriver *
618 config_cfdriver_lookup(const char *name)
619 {
620 struct cfdriver *cd;
621
622 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
623 if (STREQ(cd->cd_name, name))
624 return cd;
625 }
626
627 return NULL;
628 }
629
630 /*
631 * Add a cfattach to the specified driver.
632 */
633 int
634 config_cfattach_attach(const char *driver, struct cfattach *ca)
635 {
636 struct cfattach *lca;
637 struct cfdriver *cd;
638
639 cd = config_cfdriver_lookup(driver);
640 if (cd == NULL)
641 return ESRCH;
642
643 /* Make sure this attachment isn't already on this driver. */
644 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
645 if (STREQ(lca->ca_name, ca->ca_name))
646 return EEXIST;
647 }
648
649 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
650
651 return 0;
652 }
653
654 /*
655 * Remove a cfattach from the specified driver.
656 */
657 int
658 config_cfattach_detach(const char *driver, struct cfattach *ca)
659 {
660 struct alldevs_foray af;
661 struct cfdriver *cd;
662 device_t dev;
663 int i, rc = 0;
664
665 cd = config_cfdriver_lookup(driver);
666 if (cd == NULL)
667 return ESRCH;
668
669 config_alldevs_enter(&af);
670 /* Make sure there are no active instances. */
671 for (i = 0; i < cd->cd_ndevs; i++) {
672 if ((dev = cd->cd_devs[i]) == NULL)
673 continue;
674 if (dev->dv_cfattach == ca) {
675 rc = EBUSY;
676 break;
677 }
678 }
679 config_alldevs_exit(&af);
680
681 if (rc != 0)
682 return rc;
683
684 LIST_REMOVE(ca, ca_list);
685
686 return 0;
687 }
688
689 /*
690 * Look up a cfattach by name.
691 */
692 static struct cfattach *
693 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
694 {
695 struct cfattach *ca;
696
697 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
698 if (STREQ(ca->ca_name, atname))
699 return ca;
700 }
701
702 return NULL;
703 }
704
705 /*
706 * Look up a cfattach by driver/attachment name.
707 */
708 struct cfattach *
709 config_cfattach_lookup(const char *name, const char *atname)
710 {
711 struct cfdriver *cd;
712
713 cd = config_cfdriver_lookup(name);
714 if (cd == NULL)
715 return NULL;
716
717 return config_cfattach_lookup_cd(cd, atname);
718 }
719
720 /*
721 * Apply the matching function and choose the best. This is used
722 * a few times and we want to keep the code small.
723 */
724 static void
725 mapply(struct matchinfo *m, cfdata_t cf)
726 {
727 int pri;
728
729 if (m->fn != NULL) {
730 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
731 } else {
732 pri = config_match(m->parent, cf, m->aux);
733 }
734 if (pri > m->pri) {
735 m->match = cf;
736 m->pri = pri;
737 }
738 }
739
740 int
741 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
742 {
743 const struct cfiattrdata *ci;
744 const struct cflocdesc *cl;
745 int nlocs, i;
746
747 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
748 KASSERT(ci);
749 nlocs = ci->ci_loclen;
750 KASSERT(!nlocs || locs);
751 for (i = 0; i < nlocs; i++) {
752 cl = &ci->ci_locdesc[i];
753 if (cl->cld_defaultstr != NULL &&
754 cf->cf_loc[i] == cl->cld_default)
755 continue;
756 if (cf->cf_loc[i] == locs[i])
757 continue;
758 return 0;
759 }
760
761 return config_match(parent, cf, aux);
762 }
763
764 /*
765 * Helper function: check whether the driver supports the interface attribute
766 * and return its descriptor structure.
767 */
768 static const struct cfiattrdata *
769 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
770 {
771 const struct cfiattrdata * const *cpp;
772
773 if (cd->cd_attrs == NULL)
774 return 0;
775
776 for (cpp = cd->cd_attrs; *cpp; cpp++) {
777 if (STREQ((*cpp)->ci_name, ia)) {
778 /* Match. */
779 return *cpp;
780 }
781 }
782 return 0;
783 }
784
785 /*
786 * Lookup an interface attribute description by name.
787 * If the driver is given, consider only its supported attributes.
788 */
789 const struct cfiattrdata *
790 cfiattr_lookup(const char *name, const struct cfdriver *cd)
791 {
792 const struct cfdriver *d;
793 const struct cfiattrdata *ia;
794
795 if (cd)
796 return cfdriver_get_iattr(cd, name);
797
798 LIST_FOREACH(d, &allcfdrivers, cd_list) {
799 ia = cfdriver_get_iattr(d, name);
800 if (ia)
801 return ia;
802 }
803 return 0;
804 }
805
806 /*
807 * Determine if `parent' is a potential parent for a device spec based
808 * on `cfp'.
809 */
810 static int
811 cfparent_match(const device_t parent, const struct cfparent *cfp)
812 {
813 struct cfdriver *pcd;
814
815 /* We don't match root nodes here. */
816 if (cfp == NULL)
817 return 0;
818
819 pcd = parent->dv_cfdriver;
820 KASSERT(pcd != NULL);
821
822 /*
823 * First, ensure this parent has the correct interface
824 * attribute.
825 */
826 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
827 return 0;
828
829 /*
830 * If no specific parent device instance was specified (i.e.
831 * we're attaching to the attribute only), we're done!
832 */
833 if (cfp->cfp_parent == NULL)
834 return 1;
835
836 /*
837 * Check the parent device's name.
838 */
839 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
840 return 0; /* not the same parent */
841
842 /*
843 * Make sure the unit number matches.
844 */
845 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
846 cfp->cfp_unit == parent->dv_unit)
847 return 1;
848
849 /* Unit numbers don't match. */
850 return 0;
851 }
852
853 /*
854 * Helper for config_cfdata_attach(): check all devices whether it could be
855 * parent any attachment in the config data table passed, and rescan.
856 */
857 static void
858 rescan_with_cfdata(const struct cfdata *cf)
859 {
860 device_t d;
861 const struct cfdata *cf1;
862 deviter_t di;
863
864
865 /*
866 * "alldevs" is likely longer than a modules's cfdata, so make it
867 * the outer loop.
868 */
869 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
870
871 if (!(d->dv_cfattach->ca_rescan))
872 continue;
873
874 for (cf1 = cf; cf1->cf_name; cf1++) {
875
876 if (!cfparent_match(d, cf1->cf_pspec))
877 continue;
878
879 (*d->dv_cfattach->ca_rescan)(d,
880 cfdata_ifattr(cf1), cf1->cf_loc);
881
882 config_deferred(d);
883 }
884 }
885 deviter_release(&di);
886 }
887
888 /*
889 * Attach a supplemental config data table and rescan potential
890 * parent devices if required.
891 */
892 int
893 config_cfdata_attach(cfdata_t cf, int scannow)
894 {
895 struct cftable *ct;
896
897 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
898 ct->ct_cfdata = cf;
899 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
900
901 if (scannow)
902 rescan_with_cfdata(cf);
903
904 return 0;
905 }
906
907 /*
908 * Helper for config_cfdata_detach: check whether a device is
909 * found through any attachment in the config data table.
910 */
911 static int
912 dev_in_cfdata(device_t d, cfdata_t cf)
913 {
914 const struct cfdata *cf1;
915
916 for (cf1 = cf; cf1->cf_name; cf1++)
917 if (d->dv_cfdata == cf1)
918 return 1;
919
920 return 0;
921 }
922
923 /*
924 * Detach a supplemental config data table. Detach all devices found
925 * through that table (and thus keeping references to it) before.
926 */
927 int
928 config_cfdata_detach(cfdata_t cf)
929 {
930 device_t d;
931 int error = 0;
932 struct cftable *ct;
933 deviter_t di;
934
935 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
936 d = deviter_next(&di)) {
937 if (!dev_in_cfdata(d, cf))
938 continue;
939 if ((error = config_detach(d, 0)) != 0)
940 break;
941 }
942 deviter_release(&di);
943 if (error) {
944 aprint_error_dev(d, "unable to detach instance\n");
945 return error;
946 }
947
948 TAILQ_FOREACH(ct, &allcftables, ct_list) {
949 if (ct->ct_cfdata == cf) {
950 TAILQ_REMOVE(&allcftables, ct, ct_list);
951 kmem_free(ct, sizeof(*ct));
952 return 0;
953 }
954 }
955
956 /* not found -- shouldn't happen */
957 return EINVAL;
958 }
959
960 /*
961 * Invoke the "match" routine for a cfdata entry on behalf of
962 * an external caller, usually a "submatch" routine.
963 */
964 int
965 config_match(device_t parent, cfdata_t cf, void *aux)
966 {
967 struct cfattach *ca;
968
969 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
970 if (ca == NULL) {
971 /* No attachment for this entry, oh well. */
972 return 0;
973 }
974
975 return (*ca->ca_match)(parent, cf, aux);
976 }
977
978 /*
979 * Iterate over all potential children of some device, calling the given
980 * function (default being the child's match function) for each one.
981 * Nonzero returns are matches; the highest value returned is considered
982 * the best match. Return the `found child' if we got a match, or NULL
983 * otherwise. The `aux' pointer is simply passed on through.
984 *
985 * Note that this function is designed so that it can be used to apply
986 * an arbitrary function to all potential children (its return value
987 * can be ignored).
988 */
989 cfdata_t
990 config_search_loc(cfsubmatch_t fn, device_t parent,
991 const char *ifattr, const int *locs, void *aux)
992 {
993 struct cftable *ct;
994 cfdata_t cf;
995 struct matchinfo m;
996
997 KASSERT(config_initialized);
998 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
999
1000 m.fn = fn;
1001 m.parent = parent;
1002 m.locs = locs;
1003 m.aux = aux;
1004 m.match = NULL;
1005 m.pri = 0;
1006
1007 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1008 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1009
1010 /* We don't match root nodes here. */
1011 if (!cf->cf_pspec)
1012 continue;
1013
1014 /*
1015 * Skip cf if no longer eligible, otherwise scan
1016 * through parents for one matching `parent', and
1017 * try match function.
1018 */
1019 if (cf->cf_fstate == FSTATE_FOUND)
1020 continue;
1021 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1022 cf->cf_fstate == FSTATE_DSTAR)
1023 continue;
1024
1025 /*
1026 * If an interface attribute was specified,
1027 * consider only children which attach to
1028 * that attribute.
1029 */
1030 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1031 continue;
1032
1033 if (cfparent_match(parent, cf->cf_pspec))
1034 mapply(&m, cf);
1035 }
1036 }
1037 return m.match;
1038 }
1039
1040 cfdata_t
1041 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
1042 void *aux)
1043 {
1044
1045 return config_search_loc(fn, parent, ifattr, NULL, aux);
1046 }
1047
1048 /*
1049 * Find the given root device.
1050 * This is much like config_search, but there is no parent.
1051 * Don't bother with multiple cfdata tables; the root node
1052 * must always be in the initial table.
1053 */
1054 cfdata_t
1055 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1056 {
1057 cfdata_t cf;
1058 const short *p;
1059 struct matchinfo m;
1060
1061 m.fn = fn;
1062 m.parent = ROOT;
1063 m.aux = aux;
1064 m.match = NULL;
1065 m.pri = 0;
1066 m.locs = 0;
1067 /*
1068 * Look at root entries for matching name. We do not bother
1069 * with found-state here since only one root should ever be
1070 * searched (and it must be done first).
1071 */
1072 for (p = cfroots; *p >= 0; p++) {
1073 cf = &cfdata[*p];
1074 if (strcmp(cf->cf_name, rootname) == 0)
1075 mapply(&m, cf);
1076 }
1077 return m.match;
1078 }
1079
1080 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1081
1082 /*
1083 * The given `aux' argument describes a device that has been found
1084 * on the given parent, but not necessarily configured. Locate the
1085 * configuration data for that device (using the submatch function
1086 * provided, or using candidates' cd_match configuration driver
1087 * functions) and attach it, and return its device_t. If the device was
1088 * not configured, call the given `print' function and return NULL.
1089 */
1090 device_t
1091 config_found_sm_loc(device_t parent,
1092 const char *ifattr, const int *locs, void *aux,
1093 cfprint_t print, cfsubmatch_t submatch)
1094 {
1095 cfdata_t cf;
1096
1097 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1098 return(config_attach_loc(parent, cf, locs, aux, print));
1099 if (print) {
1100 if (config_do_twiddle && cold)
1101 twiddle();
1102 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1103 }
1104
1105 /*
1106 * This has the effect of mixing in a single timestamp to the
1107 * entropy pool. Experiments indicate the estimator will almost
1108 * always attribute one bit of entropy to this sample; analysis
1109 * of device attach/detach timestamps on FreeBSD indicates 4
1110 * bits of entropy/sample so this seems appropriately conservative.
1111 */
1112 rnd_add_uint32(&rnd_autoconf_source, 0);
1113 return NULL;
1114 }
1115
1116 device_t
1117 config_found_ia(device_t parent, const char *ifattr, void *aux,
1118 cfprint_t print)
1119 {
1120
1121 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1122 }
1123
1124 device_t
1125 config_found(device_t parent, void *aux, cfprint_t print)
1126 {
1127
1128 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1129 }
1130
1131 /*
1132 * As above, but for root devices.
1133 */
1134 device_t
1135 config_rootfound(const char *rootname, void *aux)
1136 {
1137 cfdata_t cf;
1138
1139 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1140 return config_attach(ROOT, cf, aux, NULL);
1141 aprint_error("root device %s not configured\n", rootname);
1142 return NULL;
1143 }
1144
1145 /* just like sprintf(buf, "%d") except that it works from the end */
1146 static char *
1147 number(char *ep, int n)
1148 {
1149
1150 *--ep = 0;
1151 while (n >= 10) {
1152 *--ep = (n % 10) + '0';
1153 n /= 10;
1154 }
1155 *--ep = n + '0';
1156 return ep;
1157 }
1158
1159 /*
1160 * Expand the size of the cd_devs array if necessary.
1161 *
1162 * The caller must hold alldevs_lock. config_makeroom() may release and
1163 * re-acquire alldevs_lock, so callers should re-check conditions such
1164 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1165 * returns.
1166 */
1167 static void
1168 config_makeroom(int n, struct cfdriver *cd)
1169 {
1170 int ondevs, nndevs;
1171 device_t *osp, *nsp;
1172
1173 KASSERT(mutex_owned(&alldevs_lock));
1174 alldevs_nwrite++;
1175
1176 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1177 ;
1178
1179 while (n >= cd->cd_ndevs) {
1180 /*
1181 * Need to expand the array.
1182 */
1183 ondevs = cd->cd_ndevs;
1184 osp = cd->cd_devs;
1185
1186 /*
1187 * Release alldevs_lock around allocation, which may
1188 * sleep.
1189 */
1190 mutex_exit(&alldevs_lock);
1191 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1192 mutex_enter(&alldevs_lock);
1193
1194 /*
1195 * If another thread moved the array while we did
1196 * not hold alldevs_lock, try again.
1197 */
1198 if (cd->cd_devs != osp) {
1199 mutex_exit(&alldevs_lock);
1200 kmem_free(nsp, sizeof(device_t[nndevs]));
1201 mutex_enter(&alldevs_lock);
1202 continue;
1203 }
1204
1205 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1206 if (ondevs != 0)
1207 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1208
1209 cd->cd_ndevs = nndevs;
1210 cd->cd_devs = nsp;
1211 if (ondevs != 0) {
1212 mutex_exit(&alldevs_lock);
1213 kmem_free(osp, sizeof(device_t[ondevs]));
1214 mutex_enter(&alldevs_lock);
1215 }
1216 }
1217 KASSERT(mutex_owned(&alldevs_lock));
1218 alldevs_nwrite--;
1219 }
1220
1221 /*
1222 * Put dev into the devices list.
1223 */
1224 static void
1225 config_devlink(device_t dev)
1226 {
1227
1228 mutex_enter(&alldevs_lock);
1229
1230 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1231
1232 dev->dv_add_gen = alldevs_gen;
1233 /* It is safe to add a device to the tail of the list while
1234 * readers and writers are in the list.
1235 */
1236 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1237 mutex_exit(&alldevs_lock);
1238 }
1239
1240 static void
1241 config_devfree(device_t dev)
1242 {
1243 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1244
1245 if (dev->dv_cfattach->ca_devsize > 0)
1246 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1247 if (priv)
1248 kmem_free(dev, sizeof(*dev));
1249 }
1250
1251 /*
1252 * Caller must hold alldevs_lock.
1253 */
1254 static void
1255 config_devunlink(device_t dev, struct devicelist *garbage)
1256 {
1257 struct device_garbage *dg = &dev->dv_garbage;
1258 cfdriver_t cd = device_cfdriver(dev);
1259 int i;
1260
1261 KASSERT(mutex_owned(&alldevs_lock));
1262
1263 /* Unlink from device list. Link to garbage list. */
1264 TAILQ_REMOVE(&alldevs, dev, dv_list);
1265 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1266
1267 /* Remove from cfdriver's array. */
1268 cd->cd_devs[dev->dv_unit] = NULL;
1269
1270 /*
1271 * If the device now has no units in use, unlink its softc array.
1272 */
1273 for (i = 0; i < cd->cd_ndevs; i++) {
1274 if (cd->cd_devs[i] != NULL)
1275 break;
1276 }
1277 /* Nothing found. Unlink, now. Deallocate, later. */
1278 if (i == cd->cd_ndevs) {
1279 dg->dg_ndevs = cd->cd_ndevs;
1280 dg->dg_devs = cd->cd_devs;
1281 cd->cd_devs = NULL;
1282 cd->cd_ndevs = 0;
1283 }
1284 }
1285
1286 static void
1287 config_devdelete(device_t dev)
1288 {
1289 struct device_garbage *dg = &dev->dv_garbage;
1290 device_lock_t dvl = device_getlock(dev);
1291
1292 if (dg->dg_devs != NULL)
1293 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1294
1295 cv_destroy(&dvl->dvl_cv);
1296 mutex_destroy(&dvl->dvl_mtx);
1297
1298 KASSERT(dev->dv_properties != NULL);
1299 prop_object_release(dev->dv_properties);
1300
1301 if (dev->dv_activity_handlers)
1302 panic("%s with registered handlers", __func__);
1303
1304 if (dev->dv_locators) {
1305 size_t amount = *--dev->dv_locators;
1306 kmem_free(dev->dv_locators, amount);
1307 }
1308
1309 config_devfree(dev);
1310 }
1311
1312 static int
1313 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1314 {
1315 int unit;
1316
1317 if (cf->cf_fstate == FSTATE_STAR) {
1318 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1319 if (cd->cd_devs[unit] == NULL)
1320 break;
1321 /*
1322 * unit is now the unit of the first NULL device pointer,
1323 * or max(cd->cd_ndevs,cf->cf_unit).
1324 */
1325 } else {
1326 unit = cf->cf_unit;
1327 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1328 unit = -1;
1329 }
1330 return unit;
1331 }
1332
1333 static int
1334 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1335 {
1336 struct alldevs_foray af;
1337 int unit;
1338
1339 config_alldevs_enter(&af);
1340 for (;;) {
1341 unit = config_unit_nextfree(cd, cf);
1342 if (unit == -1)
1343 break;
1344 if (unit < cd->cd_ndevs) {
1345 cd->cd_devs[unit] = dev;
1346 dev->dv_unit = unit;
1347 break;
1348 }
1349 config_makeroom(unit, cd);
1350 }
1351 config_alldevs_exit(&af);
1352
1353 return unit;
1354 }
1355
1356 static device_t
1357 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1358 {
1359 cfdriver_t cd;
1360 cfattach_t ca;
1361 size_t lname, lunit;
1362 const char *xunit;
1363 int myunit;
1364 char num[10];
1365 device_t dev;
1366 void *dev_private;
1367 const struct cfiattrdata *ia;
1368 device_lock_t dvl;
1369
1370 cd = config_cfdriver_lookup(cf->cf_name);
1371 if (cd == NULL)
1372 return NULL;
1373
1374 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1375 if (ca == NULL)
1376 return NULL;
1377
1378 /* get memory for all device vars */
1379 KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
1380 || ca->ca_devsize >= sizeof(struct device),
1381 "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
1382 sizeof(struct device));
1383 if (ca->ca_devsize > 0) {
1384 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1385 } else {
1386 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1387 dev_private = NULL;
1388 }
1389
1390 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1391 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1392 } else {
1393 dev = dev_private;
1394 #ifdef DIAGNOSTIC
1395 printf("%s has not been converted to device_t\n", cd->cd_name);
1396 #endif
1397 KASSERT(dev != NULL);
1398 }
1399 dev->dv_class = cd->cd_class;
1400 dev->dv_cfdata = cf;
1401 dev->dv_cfdriver = cd;
1402 dev->dv_cfattach = ca;
1403 dev->dv_activity_count = 0;
1404 dev->dv_activity_handlers = NULL;
1405 dev->dv_private = dev_private;
1406 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1407
1408 myunit = config_unit_alloc(dev, cd, cf);
1409 if (myunit == -1) {
1410 config_devfree(dev);
1411 return NULL;
1412 }
1413
1414 /* compute length of name and decimal expansion of unit number */
1415 lname = strlen(cd->cd_name);
1416 xunit = number(&num[sizeof(num)], myunit);
1417 lunit = &num[sizeof(num)] - xunit;
1418 if (lname + lunit > sizeof(dev->dv_xname))
1419 panic("config_devalloc: device name too long");
1420
1421 dvl = device_getlock(dev);
1422
1423 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1424 cv_init(&dvl->dvl_cv, "pmfsusp");
1425
1426 memcpy(dev->dv_xname, cd->cd_name, lname);
1427 memcpy(dev->dv_xname + lname, xunit, lunit);
1428 dev->dv_parent = parent;
1429 if (parent != NULL)
1430 dev->dv_depth = parent->dv_depth + 1;
1431 else
1432 dev->dv_depth = 0;
1433 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1434 if (locs) {
1435 KASSERT(parent); /* no locators at root */
1436 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1437 dev->dv_locators =
1438 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1439 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1440 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1441 }
1442 dev->dv_properties = prop_dictionary_create();
1443 KASSERT(dev->dv_properties != NULL);
1444
1445 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1446 "device-driver", dev->dv_cfdriver->cd_name);
1447 prop_dictionary_set_uint16(dev->dv_properties,
1448 "device-unit", dev->dv_unit);
1449 if (parent != NULL) {
1450 prop_dictionary_set_cstring(dev->dv_properties,
1451 "device-parent", device_xname(parent));
1452 }
1453
1454 if (dev->dv_cfdriver->cd_attrs != NULL)
1455 config_add_attrib_dict(dev);
1456
1457 return dev;
1458 }
1459
1460 /*
1461 * Create an array of device attach attributes and add it
1462 * to the device's dv_properties dictionary.
1463 *
1464 * <key>interface-attributes</key>
1465 * <array>
1466 * <dict>
1467 * <key>attribute-name</key>
1468 * <string>foo</string>
1469 * <key>locators</key>
1470 * <array>
1471 * <dict>
1472 * <key>loc-name</key>
1473 * <string>foo-loc1</string>
1474 * </dict>
1475 * <dict>
1476 * <key>loc-name</key>
1477 * <string>foo-loc2</string>
1478 * <key>default</key>
1479 * <string>foo-loc2-default</string>
1480 * </dict>
1481 * ...
1482 * </array>
1483 * </dict>
1484 * ...
1485 * </array>
1486 */
1487
1488 static void
1489 config_add_attrib_dict(device_t dev)
1490 {
1491 int i, j;
1492 const struct cfiattrdata *ci;
1493 prop_dictionary_t attr_dict, loc_dict;
1494 prop_array_t attr_array, loc_array;
1495
1496 if ((attr_array = prop_array_create()) == NULL)
1497 return;
1498
1499 for (i = 0; ; i++) {
1500 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1501 break;
1502 if ((attr_dict = prop_dictionary_create()) == NULL)
1503 break;
1504 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1505 ci->ci_name);
1506
1507 /* Create an array of the locator names and defaults */
1508
1509 if (ci->ci_loclen != 0 &&
1510 (loc_array = prop_array_create()) != NULL) {
1511 for (j = 0; j < ci->ci_loclen; j++) {
1512 loc_dict = prop_dictionary_create();
1513 if (loc_dict == NULL)
1514 continue;
1515 prop_dictionary_set_cstring_nocopy(loc_dict,
1516 "loc-name", ci->ci_locdesc[j].cld_name);
1517 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1518 prop_dictionary_set_cstring_nocopy(
1519 loc_dict, "default",
1520 ci->ci_locdesc[j].cld_defaultstr);
1521 prop_array_set(loc_array, j, loc_dict);
1522 prop_object_release(loc_dict);
1523 }
1524 prop_dictionary_set_and_rel(attr_dict, "locators",
1525 loc_array);
1526 }
1527 prop_array_add(attr_array, attr_dict);
1528 prop_object_release(attr_dict);
1529 }
1530 if (i == 0)
1531 prop_object_release(attr_array);
1532 else
1533 prop_dictionary_set_and_rel(dev->dv_properties,
1534 "interface-attributes", attr_array);
1535
1536 return;
1537 }
1538
1539 /*
1540 * Attach a found device.
1541 */
1542 device_t
1543 config_attach_loc(device_t parent, cfdata_t cf,
1544 const int *locs, void *aux, cfprint_t print)
1545 {
1546 device_t dev;
1547 struct cftable *ct;
1548 const char *drvname;
1549
1550 dev = config_devalloc(parent, cf, locs);
1551 if (!dev)
1552 panic("config_attach: allocation of device softc failed");
1553
1554 /* XXX redundant - see below? */
1555 if (cf->cf_fstate != FSTATE_STAR) {
1556 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1557 cf->cf_fstate = FSTATE_FOUND;
1558 }
1559
1560 config_devlink(dev);
1561
1562 if (config_do_twiddle && cold)
1563 twiddle();
1564 else
1565 aprint_naive("Found ");
1566 /*
1567 * We want the next two printfs for normal, verbose, and quiet,
1568 * but not silent (in which case, we're twiddling, instead).
1569 */
1570 if (parent == ROOT) {
1571 aprint_naive("%s (root)", device_xname(dev));
1572 aprint_normal("%s (root)", device_xname(dev));
1573 } else {
1574 aprint_naive("%s at %s", device_xname(dev),
1575 device_xname(parent));
1576 aprint_normal("%s at %s", device_xname(dev),
1577 device_xname(parent));
1578 if (print)
1579 (void) (*print)(aux, NULL);
1580 }
1581
1582 /*
1583 * Before attaching, clobber any unfound devices that are
1584 * otherwise identical.
1585 * XXX code above is redundant?
1586 */
1587 drvname = dev->dv_cfdriver->cd_name;
1588 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1589 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1590 if (STREQ(cf->cf_name, drvname) &&
1591 cf->cf_unit == dev->dv_unit) {
1592 if (cf->cf_fstate == FSTATE_NOTFOUND)
1593 cf->cf_fstate = FSTATE_FOUND;
1594 }
1595 }
1596 }
1597 device_register(dev, aux);
1598
1599 /* Let userland know */
1600 devmon_report_device(dev, true);
1601
1602 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1603
1604 if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
1605 && !device_pmf_is_registered(dev))
1606 aprint_debug_dev(dev,
1607 "WARNING: power management not supported\n");
1608
1609 config_process_deferred(&deferred_config_queue, dev);
1610
1611 device_register_post_config(dev, aux);
1612 return dev;
1613 }
1614
1615 device_t
1616 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1617 {
1618
1619 return config_attach_loc(parent, cf, NULL, aux, print);
1620 }
1621
1622 /*
1623 * As above, but for pseudo-devices. Pseudo-devices attached in this
1624 * way are silently inserted into the device tree, and their children
1625 * attached.
1626 *
1627 * Note that because pseudo-devices are attached silently, any information
1628 * the attach routine wishes to print should be prefixed with the device
1629 * name by the attach routine.
1630 */
1631 device_t
1632 config_attach_pseudo(cfdata_t cf)
1633 {
1634 device_t dev;
1635
1636 dev = config_devalloc(ROOT, cf, NULL);
1637 if (!dev)
1638 return NULL;
1639
1640 /* XXX mark busy in cfdata */
1641
1642 if (cf->cf_fstate != FSTATE_STAR) {
1643 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1644 cf->cf_fstate = FSTATE_FOUND;
1645 }
1646
1647 config_devlink(dev);
1648
1649 #if 0 /* XXXJRT not yet */
1650 device_register(dev, NULL); /* like a root node */
1651 #endif
1652
1653 /* Let userland know */
1654 devmon_report_device(dev, true);
1655
1656 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1657
1658 config_process_deferred(&deferred_config_queue, dev);
1659 return dev;
1660 }
1661
1662 /*
1663 * Caller must hold alldevs_lock.
1664 */
1665 static void
1666 config_collect_garbage(struct devicelist *garbage)
1667 {
1668 device_t dv;
1669
1670 KASSERT(!cpu_intr_p());
1671 KASSERT(!cpu_softintr_p());
1672 KASSERT(mutex_owned(&alldevs_lock));
1673
1674 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1675 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1676 if (dv->dv_del_gen != 0)
1677 break;
1678 }
1679 if (dv == NULL) {
1680 alldevs_garbage = false;
1681 break;
1682 }
1683 config_devunlink(dv, garbage);
1684 }
1685 KASSERT(mutex_owned(&alldevs_lock));
1686 }
1687
1688 static void
1689 config_dump_garbage(struct devicelist *garbage)
1690 {
1691 device_t dv;
1692
1693 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1694 TAILQ_REMOVE(garbage, dv, dv_list);
1695 config_devdelete(dv);
1696 }
1697 }
1698
1699 /*
1700 * Detach a device. Optionally forced (e.g. because of hardware
1701 * removal) and quiet. Returns zero if successful, non-zero
1702 * (an error code) otherwise.
1703 *
1704 * Note that this code wants to be run from a process context, so
1705 * that the detach can sleep to allow processes which have a device
1706 * open to run and unwind their stacks.
1707 */
1708 int
1709 config_detach(device_t dev, int flags)
1710 {
1711 struct alldevs_foray af;
1712 struct cftable *ct;
1713 cfdata_t cf;
1714 const struct cfattach *ca;
1715 struct cfdriver *cd;
1716 device_t d __diagused;
1717 int rv = 0;
1718
1719 cf = dev->dv_cfdata;
1720 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
1721 cf->cf_fstate == FSTATE_STAR),
1722 "config_detach: %s: bad device fstate: %d",
1723 device_xname(dev), cf ? cf->cf_fstate : -1);
1724
1725 cd = dev->dv_cfdriver;
1726 KASSERT(cd != NULL);
1727
1728 ca = dev->dv_cfattach;
1729 KASSERT(ca != NULL);
1730
1731 mutex_enter(&alldevs_lock);
1732 if (dev->dv_del_gen != 0) {
1733 mutex_exit(&alldevs_lock);
1734 #ifdef DIAGNOSTIC
1735 printf("%s: %s is already detached\n", __func__,
1736 device_xname(dev));
1737 #endif /* DIAGNOSTIC */
1738 return ENOENT;
1739 }
1740 alldevs_nwrite++;
1741 mutex_exit(&alldevs_lock);
1742
1743 if (!detachall &&
1744 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1745 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1746 rv = EOPNOTSUPP;
1747 } else if (ca->ca_detach != NULL) {
1748 rv = (*ca->ca_detach)(dev, flags);
1749 } else
1750 rv = EOPNOTSUPP;
1751
1752 /*
1753 * If it was not possible to detach the device, then we either
1754 * panic() (for the forced but failed case), or return an error.
1755 *
1756 * If it was possible to detach the device, ensure that the
1757 * device is deactivated.
1758 */
1759 if (rv == 0)
1760 dev->dv_flags &= ~DVF_ACTIVE;
1761 else if ((flags & DETACH_FORCE) == 0)
1762 goto out;
1763 else {
1764 panic("config_detach: forced detach of %s failed (%d)",
1765 device_xname(dev), rv);
1766 }
1767
1768 /*
1769 * The device has now been successfully detached.
1770 */
1771
1772 /* Let userland know */
1773 devmon_report_device(dev, false);
1774
1775 #ifdef DIAGNOSTIC
1776 /*
1777 * Sanity: If you're successfully detached, you should have no
1778 * children. (Note that because children must be attached
1779 * after parents, we only need to search the latter part of
1780 * the list.)
1781 */
1782 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1783 d = TAILQ_NEXT(d, dv_list)) {
1784 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1785 printf("config_detach: detached device %s"
1786 " has children %s\n", device_xname(dev),
1787 device_xname(d));
1788 panic("config_detach");
1789 }
1790 }
1791 #endif
1792
1793 /* notify the parent that the child is gone */
1794 if (dev->dv_parent) {
1795 device_t p = dev->dv_parent;
1796 if (p->dv_cfattach->ca_childdetached)
1797 (*p->dv_cfattach->ca_childdetached)(p, dev);
1798 }
1799
1800 /*
1801 * Mark cfdata to show that the unit can be reused, if possible.
1802 */
1803 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1804 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1805 if (STREQ(cf->cf_name, cd->cd_name)) {
1806 if (cf->cf_fstate == FSTATE_FOUND &&
1807 cf->cf_unit == dev->dv_unit)
1808 cf->cf_fstate = FSTATE_NOTFOUND;
1809 }
1810 }
1811 }
1812
1813 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1814 aprint_normal_dev(dev, "detached\n");
1815
1816 out:
1817 config_alldevs_enter(&af);
1818 KASSERT(alldevs_nwrite != 0);
1819 --alldevs_nwrite;
1820 if (rv == 0 && dev->dv_del_gen == 0) {
1821 if (alldevs_nwrite == 0 && alldevs_nread == 0)
1822 config_devunlink(dev, &af.af_garbage);
1823 else {
1824 dev->dv_del_gen = alldevs_gen;
1825 alldevs_garbage = true;
1826 }
1827 }
1828 config_alldevs_exit(&af);
1829
1830 return rv;
1831 }
1832
1833 int
1834 config_detach_children(device_t parent, int flags)
1835 {
1836 device_t dv;
1837 deviter_t di;
1838 int error = 0;
1839
1840 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1841 dv = deviter_next(&di)) {
1842 if (device_parent(dv) != parent)
1843 continue;
1844 if ((error = config_detach(dv, flags)) != 0)
1845 break;
1846 }
1847 deviter_release(&di);
1848 return error;
1849 }
1850
1851 device_t
1852 shutdown_first(struct shutdown_state *s)
1853 {
1854 if (!s->initialized) {
1855 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1856 s->initialized = true;
1857 }
1858 return shutdown_next(s);
1859 }
1860
1861 device_t
1862 shutdown_next(struct shutdown_state *s)
1863 {
1864 device_t dv;
1865
1866 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1867 ;
1868
1869 if (dv == NULL)
1870 s->initialized = false;
1871
1872 return dv;
1873 }
1874
1875 bool
1876 config_detach_all(int how)
1877 {
1878 static struct shutdown_state s;
1879 device_t curdev;
1880 bool progress = false;
1881 int flags;
1882
1883 if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1884 return false;
1885
1886 if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1887 flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1888 else
1889 flags = DETACH_SHUTDOWN;
1890
1891 for (curdev = shutdown_first(&s); curdev != NULL;
1892 curdev = shutdown_next(&s)) {
1893 aprint_debug(" detaching %s, ", device_xname(curdev));
1894 if (config_detach(curdev, flags) == 0) {
1895 progress = true;
1896 aprint_debug("success.");
1897 } else
1898 aprint_debug("failed.");
1899 }
1900 return progress;
1901 }
1902
1903 static bool
1904 device_is_ancestor_of(device_t ancestor, device_t descendant)
1905 {
1906 device_t dv;
1907
1908 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1909 if (device_parent(dv) == ancestor)
1910 return true;
1911 }
1912 return false;
1913 }
1914
1915 int
1916 config_deactivate(device_t dev)
1917 {
1918 deviter_t di;
1919 const struct cfattach *ca;
1920 device_t descendant;
1921 int s, rv = 0, oflags;
1922
1923 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1924 descendant != NULL;
1925 descendant = deviter_next(&di)) {
1926 if (dev != descendant &&
1927 !device_is_ancestor_of(dev, descendant))
1928 continue;
1929
1930 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1931 continue;
1932
1933 ca = descendant->dv_cfattach;
1934 oflags = descendant->dv_flags;
1935
1936 descendant->dv_flags &= ~DVF_ACTIVE;
1937 if (ca->ca_activate == NULL)
1938 continue;
1939 s = splhigh();
1940 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1941 splx(s);
1942 if (rv != 0)
1943 descendant->dv_flags = oflags;
1944 }
1945 deviter_release(&di);
1946 return rv;
1947 }
1948
1949 /*
1950 * Defer the configuration of the specified device until all
1951 * of its parent's devices have been attached.
1952 */
1953 void
1954 config_defer(device_t dev, void (*func)(device_t))
1955 {
1956 struct deferred_config *dc;
1957
1958 if (dev->dv_parent == NULL)
1959 panic("config_defer: can't defer config of a root device");
1960
1961 #ifdef DIAGNOSTIC
1962 TAILQ_FOREACH(dc, &deferred_config_queue, dc_queue) {
1963 if (dc->dc_dev == dev)
1964 panic("config_defer: deferred twice");
1965 }
1966 #endif
1967
1968 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1969 dc->dc_dev = dev;
1970 dc->dc_func = func;
1971 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1972 config_pending_incr(dev);
1973 }
1974
1975 /*
1976 * Defer some autoconfiguration for a device until after interrupts
1977 * are enabled.
1978 */
1979 void
1980 config_interrupts(device_t dev, void (*func)(device_t))
1981 {
1982 struct deferred_config *dc;
1983
1984 /*
1985 * If interrupts are enabled, callback now.
1986 */
1987 if (cold == 0) {
1988 (*func)(dev);
1989 return;
1990 }
1991
1992 #ifdef DIAGNOSTIC
1993 TAILQ_FOREACH(dc, &interrupt_config_queue, dc_queue) {
1994 if (dc->dc_dev == dev)
1995 panic("config_interrupts: deferred twice");
1996 }
1997 #endif
1998
1999 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2000 dc->dc_dev = dev;
2001 dc->dc_func = func;
2002 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2003 config_pending_incr(dev);
2004 dev->dv_flags |= DVF_ATTACH_INPROGRESS;
2005 }
2006
2007 /*
2008 * Defer some autoconfiguration for a device until after root file system
2009 * is mounted (to load firmware etc).
2010 */
2011 void
2012 config_mountroot(device_t dev, void (*func)(device_t))
2013 {
2014 struct deferred_config *dc;
2015
2016 /*
2017 * If root file system is mounted, callback now.
2018 */
2019 if (root_is_mounted) {
2020 (*func)(dev);
2021 return;
2022 }
2023
2024 #ifdef DIAGNOSTIC
2025 TAILQ_FOREACH(dc, &mountroot_config_queue, dc_queue) {
2026 if (dc->dc_dev == dev)
2027 panic("%s: deferred twice", __func__);
2028 }
2029 #endif
2030
2031 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2032 dc->dc_dev = dev;
2033 dc->dc_func = func;
2034 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2035 }
2036
2037 /*
2038 * Process a deferred configuration queue.
2039 */
2040 static void
2041 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2042 {
2043 struct deferred_config *dc, *ndc;
2044
2045 for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
2046 ndc = TAILQ_NEXT(dc, dc_queue);
2047 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2048 TAILQ_REMOVE(queue, dc, dc_queue);
2049 (*dc->dc_func)(dc->dc_dev);
2050 config_pending_decr(dc->dc_dev);
2051 kmem_free(dc, sizeof(*dc));
2052 }
2053 }
2054 }
2055
2056 /*
2057 * Manipulate the config_pending semaphore.
2058 */
2059 void
2060 config_pending_incr(device_t dev)
2061 {
2062
2063 mutex_enter(&config_misc_lock);
2064 config_pending++;
2065 #ifdef DEBUG_AUTOCONF
2066 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2067 #endif
2068 mutex_exit(&config_misc_lock);
2069 }
2070
2071 void
2072 config_pending_decr(device_t dev)
2073 {
2074
2075 KASSERT(0 < config_pending);
2076 mutex_enter(&config_misc_lock);
2077 config_pending--;
2078 #ifdef DEBUG_AUTOCONF
2079 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2080 #endif
2081 if (config_pending == 0)
2082 cv_broadcast(&config_misc_cv);
2083 mutex_exit(&config_misc_lock);
2084 }
2085
2086 /*
2087 * Register a "finalization" routine. Finalization routines are
2088 * called iteratively once all real devices have been found during
2089 * autoconfiguration, for as long as any one finalizer has done
2090 * any work.
2091 */
2092 int
2093 config_finalize_register(device_t dev, int (*fn)(device_t))
2094 {
2095 struct finalize_hook *f;
2096
2097 /*
2098 * If finalization has already been done, invoke the
2099 * callback function now.
2100 */
2101 if (config_finalize_done) {
2102 while ((*fn)(dev) != 0)
2103 /* loop */ ;
2104 return 0;
2105 }
2106
2107 /* Ensure this isn't already on the list. */
2108 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2109 if (f->f_func == fn && f->f_dev == dev)
2110 return EEXIST;
2111 }
2112
2113 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2114 f->f_func = fn;
2115 f->f_dev = dev;
2116 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2117
2118 return 0;
2119 }
2120
2121 void
2122 config_finalize(void)
2123 {
2124 struct finalize_hook *f;
2125 struct pdevinit *pdev;
2126 extern struct pdevinit pdevinit[];
2127 int errcnt, rv;
2128
2129 /*
2130 * Now that device driver threads have been created, wait for
2131 * them to finish any deferred autoconfiguration.
2132 */
2133 mutex_enter(&config_misc_lock);
2134 while (config_pending != 0)
2135 cv_wait(&config_misc_cv, &config_misc_lock);
2136 mutex_exit(&config_misc_lock);
2137
2138 KERNEL_LOCK(1, NULL);
2139
2140 /* Attach pseudo-devices. */
2141 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2142 (*pdev->pdev_attach)(pdev->pdev_count);
2143
2144 /* Run the hooks until none of them does any work. */
2145 do {
2146 rv = 0;
2147 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2148 rv |= (*f->f_func)(f->f_dev);
2149 } while (rv != 0);
2150
2151 config_finalize_done = 1;
2152
2153 /* Now free all the hooks. */
2154 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2155 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2156 kmem_free(f, sizeof(*f));
2157 }
2158
2159 KERNEL_UNLOCK_ONE(NULL);
2160
2161 errcnt = aprint_get_error_count();
2162 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2163 (boothowto & AB_VERBOSE) == 0) {
2164 mutex_enter(&config_misc_lock);
2165 if (config_do_twiddle) {
2166 config_do_twiddle = 0;
2167 printf_nolog(" done.\n");
2168 }
2169 mutex_exit(&config_misc_lock);
2170 }
2171 if (errcnt != 0) {
2172 printf("WARNING: %d error%s while detecting hardware; "
2173 "check system log.\n", errcnt,
2174 errcnt == 1 ? "" : "s");
2175 }
2176 }
2177
2178 void
2179 config_twiddle_init(void)
2180 {
2181
2182 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2183 config_do_twiddle = 1;
2184 }
2185 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2186 }
2187
2188 void
2189 config_twiddle_fn(void *cookie)
2190 {
2191
2192 mutex_enter(&config_misc_lock);
2193 if (config_do_twiddle) {
2194 twiddle();
2195 callout_schedule(&config_twiddle_ch, mstohz(100));
2196 }
2197 mutex_exit(&config_misc_lock);
2198 }
2199
2200 static void
2201 config_alldevs_enter(struct alldevs_foray *af)
2202 {
2203 TAILQ_INIT(&af->af_garbage);
2204 mutex_enter(&alldevs_lock);
2205 config_collect_garbage(&af->af_garbage);
2206 }
2207
2208 static void
2209 config_alldevs_exit(struct alldevs_foray *af)
2210 {
2211 mutex_exit(&alldevs_lock);
2212 config_dump_garbage(&af->af_garbage);
2213 }
2214
2215 /*
2216 * device_lookup:
2217 *
2218 * Look up a device instance for a given driver.
2219 */
2220 device_t
2221 device_lookup(cfdriver_t cd, int unit)
2222 {
2223 device_t dv;
2224
2225 mutex_enter(&alldevs_lock);
2226 if (unit < 0 || unit >= cd->cd_ndevs)
2227 dv = NULL;
2228 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2229 dv = NULL;
2230 mutex_exit(&alldevs_lock);
2231
2232 return dv;
2233 }
2234
2235 /*
2236 * device_lookup_private:
2237 *
2238 * Look up a softc instance for a given driver.
2239 */
2240 void *
2241 device_lookup_private(cfdriver_t cd, int unit)
2242 {
2243
2244 return device_private(device_lookup(cd, unit));
2245 }
2246
2247 /*
2248 * device_find_by_xname:
2249 *
2250 * Returns the device of the given name or NULL if it doesn't exist.
2251 */
2252 device_t
2253 device_find_by_xname(const char *name)
2254 {
2255 device_t dv;
2256 deviter_t di;
2257
2258 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2259 if (strcmp(device_xname(dv), name) == 0)
2260 break;
2261 }
2262 deviter_release(&di);
2263
2264 return dv;
2265 }
2266
2267 /*
2268 * device_find_by_driver_unit:
2269 *
2270 * Returns the device of the given driver name and unit or
2271 * NULL if it doesn't exist.
2272 */
2273 device_t
2274 device_find_by_driver_unit(const char *name, int unit)
2275 {
2276 struct cfdriver *cd;
2277
2278 if ((cd = config_cfdriver_lookup(name)) == NULL)
2279 return NULL;
2280 return device_lookup(cd, unit);
2281 }
2282
2283 /*
2284 * device_compatible_match:
2285 *
2286 * Match a driver's "compatible" data against a device's
2287 * "compatible" strings. If a match is found, we return
2288 * a weighted match result, and optionally the matching
2289 * entry.
2290 */
2291 int
2292 device_compatible_match(const char **device_compats, int ndevice_compats,
2293 const struct device_compatible_entry *driver_compats,
2294 const struct device_compatible_entry **matching_entryp)
2295 {
2296 const struct device_compatible_entry *dce = NULL;
2297 int i, match_weight;
2298
2299 if (ndevice_compats == 0 || device_compats == NULL ||
2300 driver_compats == NULL)
2301 return 0;
2302
2303 /*
2304 * We take the first match because we start with the most-specific
2305 * device compatible string.
2306 */
2307 for (i = 0, match_weight = ndevice_compats - 1;
2308 i < ndevice_compats;
2309 i++, match_weight--) {
2310 for (dce = driver_compats; dce->compat != NULL; dce++) {
2311 if (strcmp(dce->compat, device_compats[i]) == 0) {
2312 KASSERT(match_weight >= 0);
2313 if (matching_entryp)
2314 *matching_entryp = dce;
2315 return 1 + match_weight;
2316 }
2317 }
2318 }
2319 return 0;
2320 }
2321
2322 /*
2323 * Power management related functions.
2324 */
2325
2326 bool
2327 device_pmf_is_registered(device_t dev)
2328 {
2329 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2330 }
2331
2332 bool
2333 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2334 {
2335 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2336 return true;
2337 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2338 return false;
2339 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2340 dev->dv_driver_suspend != NULL &&
2341 !(*dev->dv_driver_suspend)(dev, qual))
2342 return false;
2343
2344 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2345 return true;
2346 }
2347
2348 bool
2349 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2350 {
2351 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2352 return true;
2353 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2354 return false;
2355 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2356 dev->dv_driver_resume != NULL &&
2357 !(*dev->dv_driver_resume)(dev, qual))
2358 return false;
2359
2360 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2361 return true;
2362 }
2363
2364 bool
2365 device_pmf_driver_shutdown(device_t dev, int how)
2366 {
2367
2368 if (*dev->dv_driver_shutdown != NULL &&
2369 !(*dev->dv_driver_shutdown)(dev, how))
2370 return false;
2371 return true;
2372 }
2373
2374 bool
2375 device_pmf_driver_register(device_t dev,
2376 bool (*suspend)(device_t, const pmf_qual_t *),
2377 bool (*resume)(device_t, const pmf_qual_t *),
2378 bool (*shutdown)(device_t, int))
2379 {
2380 dev->dv_driver_suspend = suspend;
2381 dev->dv_driver_resume = resume;
2382 dev->dv_driver_shutdown = shutdown;
2383 dev->dv_flags |= DVF_POWER_HANDLERS;
2384 return true;
2385 }
2386
2387 static const char *
2388 curlwp_name(void)
2389 {
2390 if (curlwp->l_name != NULL)
2391 return curlwp->l_name;
2392 else
2393 return curlwp->l_proc->p_comm;
2394 }
2395
2396 void
2397 device_pmf_driver_deregister(device_t dev)
2398 {
2399 device_lock_t dvl = device_getlock(dev);
2400
2401 dev->dv_driver_suspend = NULL;
2402 dev->dv_driver_resume = NULL;
2403
2404 mutex_enter(&dvl->dvl_mtx);
2405 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2406 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2407 /* Wake a thread that waits for the lock. That
2408 * thread will fail to acquire the lock, and then
2409 * it will wake the next thread that waits for the
2410 * lock, or else it will wake us.
2411 */
2412 cv_signal(&dvl->dvl_cv);
2413 pmflock_debug(dev, __func__, __LINE__);
2414 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2415 pmflock_debug(dev, __func__, __LINE__);
2416 }
2417 mutex_exit(&dvl->dvl_mtx);
2418 }
2419
2420 bool
2421 device_pmf_driver_child_register(device_t dev)
2422 {
2423 device_t parent = device_parent(dev);
2424
2425 if (parent == NULL || parent->dv_driver_child_register == NULL)
2426 return true;
2427 return (*parent->dv_driver_child_register)(dev);
2428 }
2429
2430 void
2431 device_pmf_driver_set_child_register(device_t dev,
2432 bool (*child_register)(device_t))
2433 {
2434 dev->dv_driver_child_register = child_register;
2435 }
2436
2437 static void
2438 pmflock_debug(device_t dev, const char *func, int line)
2439 {
2440 device_lock_t dvl = device_getlock(dev);
2441
2442 aprint_debug_dev(dev,
2443 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2444 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2445 }
2446
2447 static bool
2448 device_pmf_lock1(device_t dev)
2449 {
2450 device_lock_t dvl = device_getlock(dev);
2451
2452 while (device_pmf_is_registered(dev) &&
2453 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2454 dvl->dvl_nwait++;
2455 pmflock_debug(dev, __func__, __LINE__);
2456 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2457 pmflock_debug(dev, __func__, __LINE__);
2458 dvl->dvl_nwait--;
2459 }
2460 if (!device_pmf_is_registered(dev)) {
2461 pmflock_debug(dev, __func__, __LINE__);
2462 /* We could not acquire the lock, but some other thread may
2463 * wait for it, also. Wake that thread.
2464 */
2465 cv_signal(&dvl->dvl_cv);
2466 return false;
2467 }
2468 dvl->dvl_nlock++;
2469 dvl->dvl_holder = curlwp;
2470 pmflock_debug(dev, __func__, __LINE__);
2471 return true;
2472 }
2473
2474 bool
2475 device_pmf_lock(device_t dev)
2476 {
2477 bool rc;
2478 device_lock_t dvl = device_getlock(dev);
2479
2480 mutex_enter(&dvl->dvl_mtx);
2481 rc = device_pmf_lock1(dev);
2482 mutex_exit(&dvl->dvl_mtx);
2483
2484 return rc;
2485 }
2486
2487 void
2488 device_pmf_unlock(device_t dev)
2489 {
2490 device_lock_t dvl = device_getlock(dev);
2491
2492 KASSERT(dvl->dvl_nlock > 0);
2493 mutex_enter(&dvl->dvl_mtx);
2494 if (--dvl->dvl_nlock == 0)
2495 dvl->dvl_holder = NULL;
2496 cv_signal(&dvl->dvl_cv);
2497 pmflock_debug(dev, __func__, __LINE__);
2498 mutex_exit(&dvl->dvl_mtx);
2499 }
2500
2501 device_lock_t
2502 device_getlock(device_t dev)
2503 {
2504 return &dev->dv_lock;
2505 }
2506
2507 void *
2508 device_pmf_bus_private(device_t dev)
2509 {
2510 return dev->dv_bus_private;
2511 }
2512
2513 bool
2514 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2515 {
2516 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2517 return true;
2518 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2519 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2520 return false;
2521 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2522 dev->dv_bus_suspend != NULL &&
2523 !(*dev->dv_bus_suspend)(dev, qual))
2524 return false;
2525
2526 dev->dv_flags |= DVF_BUS_SUSPENDED;
2527 return true;
2528 }
2529
2530 bool
2531 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2532 {
2533 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2534 return true;
2535 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2536 dev->dv_bus_resume != NULL &&
2537 !(*dev->dv_bus_resume)(dev, qual))
2538 return false;
2539
2540 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2541 return true;
2542 }
2543
2544 bool
2545 device_pmf_bus_shutdown(device_t dev, int how)
2546 {
2547
2548 if (*dev->dv_bus_shutdown != NULL &&
2549 !(*dev->dv_bus_shutdown)(dev, how))
2550 return false;
2551 return true;
2552 }
2553
2554 void
2555 device_pmf_bus_register(device_t dev, void *priv,
2556 bool (*suspend)(device_t, const pmf_qual_t *),
2557 bool (*resume)(device_t, const pmf_qual_t *),
2558 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2559 {
2560 dev->dv_bus_private = priv;
2561 dev->dv_bus_resume = resume;
2562 dev->dv_bus_suspend = suspend;
2563 dev->dv_bus_shutdown = shutdown;
2564 dev->dv_bus_deregister = deregister;
2565 }
2566
2567 void
2568 device_pmf_bus_deregister(device_t dev)
2569 {
2570 if (dev->dv_bus_deregister == NULL)
2571 return;
2572 (*dev->dv_bus_deregister)(dev);
2573 dev->dv_bus_private = NULL;
2574 dev->dv_bus_suspend = NULL;
2575 dev->dv_bus_resume = NULL;
2576 dev->dv_bus_deregister = NULL;
2577 }
2578
2579 void *
2580 device_pmf_class_private(device_t dev)
2581 {
2582 return dev->dv_class_private;
2583 }
2584
2585 bool
2586 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2587 {
2588 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2589 return true;
2590 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2591 dev->dv_class_suspend != NULL &&
2592 !(*dev->dv_class_suspend)(dev, qual))
2593 return false;
2594
2595 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2596 return true;
2597 }
2598
2599 bool
2600 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2601 {
2602 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2603 return true;
2604 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2605 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2606 return false;
2607 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2608 dev->dv_class_resume != NULL &&
2609 !(*dev->dv_class_resume)(dev, qual))
2610 return false;
2611
2612 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2613 return true;
2614 }
2615
2616 void
2617 device_pmf_class_register(device_t dev, void *priv,
2618 bool (*suspend)(device_t, const pmf_qual_t *),
2619 bool (*resume)(device_t, const pmf_qual_t *),
2620 void (*deregister)(device_t))
2621 {
2622 dev->dv_class_private = priv;
2623 dev->dv_class_suspend = suspend;
2624 dev->dv_class_resume = resume;
2625 dev->dv_class_deregister = deregister;
2626 }
2627
2628 void
2629 device_pmf_class_deregister(device_t dev)
2630 {
2631 if (dev->dv_class_deregister == NULL)
2632 return;
2633 (*dev->dv_class_deregister)(dev);
2634 dev->dv_class_private = NULL;
2635 dev->dv_class_suspend = NULL;
2636 dev->dv_class_resume = NULL;
2637 dev->dv_class_deregister = NULL;
2638 }
2639
2640 bool
2641 device_active(device_t dev, devactive_t type)
2642 {
2643 size_t i;
2644
2645 if (dev->dv_activity_count == 0)
2646 return false;
2647
2648 for (i = 0; i < dev->dv_activity_count; ++i) {
2649 if (dev->dv_activity_handlers[i] == NULL)
2650 break;
2651 (*dev->dv_activity_handlers[i])(dev, type);
2652 }
2653
2654 return true;
2655 }
2656
2657 bool
2658 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2659 {
2660 void (**new_handlers)(device_t, devactive_t);
2661 void (**old_handlers)(device_t, devactive_t);
2662 size_t i, old_size, new_size;
2663 int s;
2664
2665 old_handlers = dev->dv_activity_handlers;
2666 old_size = dev->dv_activity_count;
2667
2668 KASSERT(old_size == 0 || old_handlers != NULL);
2669
2670 for (i = 0; i < old_size; ++i) {
2671 KASSERT(old_handlers[i] != handler);
2672 if (old_handlers[i] == NULL) {
2673 old_handlers[i] = handler;
2674 return true;
2675 }
2676 }
2677
2678 new_size = old_size + 4;
2679 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2680
2681 for (i = 0; i < old_size; ++i)
2682 new_handlers[i] = old_handlers[i];
2683 new_handlers[old_size] = handler;
2684 for (i = old_size+1; i < new_size; ++i)
2685 new_handlers[i] = NULL;
2686
2687 s = splhigh();
2688 dev->dv_activity_count = new_size;
2689 dev->dv_activity_handlers = new_handlers;
2690 splx(s);
2691
2692 if (old_size > 0)
2693 kmem_free(old_handlers, sizeof(void * [old_size]));
2694
2695 return true;
2696 }
2697
2698 void
2699 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2700 {
2701 void (**old_handlers)(device_t, devactive_t);
2702 size_t i, old_size;
2703 int s;
2704
2705 old_handlers = dev->dv_activity_handlers;
2706 old_size = dev->dv_activity_count;
2707
2708 for (i = 0; i < old_size; ++i) {
2709 if (old_handlers[i] == handler)
2710 break;
2711 if (old_handlers[i] == NULL)
2712 return; /* XXX panic? */
2713 }
2714
2715 if (i == old_size)
2716 return; /* XXX panic? */
2717
2718 for (; i < old_size - 1; ++i) {
2719 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2720 continue;
2721
2722 if (i == 0) {
2723 s = splhigh();
2724 dev->dv_activity_count = 0;
2725 dev->dv_activity_handlers = NULL;
2726 splx(s);
2727 kmem_free(old_handlers, sizeof(void *[old_size]));
2728 }
2729 return;
2730 }
2731 old_handlers[i] = NULL;
2732 }
2733
2734 /* Return true iff the device_t `dev' exists at generation `gen'. */
2735 static bool
2736 device_exists_at(device_t dv, devgen_t gen)
2737 {
2738 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2739 dv->dv_add_gen <= gen;
2740 }
2741
2742 static bool
2743 deviter_visits(const deviter_t *di, device_t dv)
2744 {
2745 return device_exists_at(dv, di->di_gen);
2746 }
2747
2748 /*
2749 * Device Iteration
2750 *
2751 * deviter_t: a device iterator. Holds state for a "walk" visiting
2752 * each device_t's in the device tree.
2753 *
2754 * deviter_init(di, flags): initialize the device iterator `di'
2755 * to "walk" the device tree. deviter_next(di) will return
2756 * the first device_t in the device tree, or NULL if there are
2757 * no devices.
2758 *
2759 * `flags' is one or more of DEVITER_F_RW, indicating that the
2760 * caller intends to modify the device tree by calling
2761 * config_detach(9) on devices in the order that the iterator
2762 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2763 * nearest the "root" of the device tree to be returned, first;
2764 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2765 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2766 * indicating both that deviter_init() should not respect any
2767 * locks on the device tree, and that deviter_next(di) may run
2768 * in more than one LWP before the walk has finished.
2769 *
2770 * Only one DEVITER_F_RW iterator may be in the device tree at
2771 * once.
2772 *
2773 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2774 *
2775 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2776 * DEVITER_F_LEAVES_FIRST are used in combination.
2777 *
2778 * deviter_first(di, flags): initialize the device iterator `di'
2779 * and return the first device_t in the device tree, or NULL
2780 * if there are no devices. The statement
2781 *
2782 * dv = deviter_first(di);
2783 *
2784 * is shorthand for
2785 *
2786 * deviter_init(di);
2787 * dv = deviter_next(di);
2788 *
2789 * deviter_next(di): return the next device_t in the device tree,
2790 * or NULL if there are no more devices. deviter_next(di)
2791 * is undefined if `di' was not initialized with deviter_init() or
2792 * deviter_first().
2793 *
2794 * deviter_release(di): stops iteration (subsequent calls to
2795 * deviter_next() will return NULL), releases any locks and
2796 * resources held by the device iterator.
2797 *
2798 * Device iteration does not return device_t's in any particular
2799 * order. An iterator will never return the same device_t twice.
2800 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2801 * is called repeatedly on the same `di', it will eventually return
2802 * NULL. It is ok to attach/detach devices during device iteration.
2803 */
2804 void
2805 deviter_init(deviter_t *di, deviter_flags_t flags)
2806 {
2807 device_t dv;
2808
2809 memset(di, 0, sizeof(*di));
2810
2811 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2812 flags |= DEVITER_F_RW;
2813
2814 mutex_enter(&alldevs_lock);
2815 if ((flags & DEVITER_F_RW) != 0)
2816 alldevs_nwrite++;
2817 else
2818 alldevs_nread++;
2819 di->di_gen = alldevs_gen++;
2820 di->di_flags = flags;
2821
2822 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2823 case DEVITER_F_LEAVES_FIRST:
2824 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2825 if (!deviter_visits(di, dv))
2826 continue;
2827 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2828 }
2829 break;
2830 case DEVITER_F_ROOT_FIRST:
2831 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2832 if (!deviter_visits(di, dv))
2833 continue;
2834 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2835 }
2836 break;
2837 default:
2838 break;
2839 }
2840
2841 deviter_reinit(di);
2842 mutex_exit(&alldevs_lock);
2843 }
2844
2845 static void
2846 deviter_reinit(deviter_t *di)
2847 {
2848
2849 KASSERT(mutex_owned(&alldevs_lock));
2850 if ((di->di_flags & DEVITER_F_RW) != 0)
2851 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2852 else
2853 di->di_prev = TAILQ_FIRST(&alldevs);
2854 }
2855
2856 device_t
2857 deviter_first(deviter_t *di, deviter_flags_t flags)
2858 {
2859
2860 deviter_init(di, flags);
2861 return deviter_next(di);
2862 }
2863
2864 static device_t
2865 deviter_next2(deviter_t *di)
2866 {
2867 device_t dv;
2868
2869 KASSERT(mutex_owned(&alldevs_lock));
2870
2871 dv = di->di_prev;
2872
2873 if (dv == NULL)
2874 return NULL;
2875
2876 if ((di->di_flags & DEVITER_F_RW) != 0)
2877 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2878 else
2879 di->di_prev = TAILQ_NEXT(dv, dv_list);
2880
2881 return dv;
2882 }
2883
2884 static device_t
2885 deviter_next1(deviter_t *di)
2886 {
2887 device_t dv;
2888
2889 KASSERT(mutex_owned(&alldevs_lock));
2890
2891 do {
2892 dv = deviter_next2(di);
2893 } while (dv != NULL && !deviter_visits(di, dv));
2894
2895 return dv;
2896 }
2897
2898 device_t
2899 deviter_next(deviter_t *di)
2900 {
2901 device_t dv = NULL;
2902
2903 mutex_enter(&alldevs_lock);
2904 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2905 case 0:
2906 dv = deviter_next1(di);
2907 break;
2908 case DEVITER_F_LEAVES_FIRST:
2909 while (di->di_curdepth >= 0) {
2910 if ((dv = deviter_next1(di)) == NULL) {
2911 di->di_curdepth--;
2912 deviter_reinit(di);
2913 } else if (dv->dv_depth == di->di_curdepth)
2914 break;
2915 }
2916 break;
2917 case DEVITER_F_ROOT_FIRST:
2918 while (di->di_curdepth <= di->di_maxdepth) {
2919 if ((dv = deviter_next1(di)) == NULL) {
2920 di->di_curdepth++;
2921 deviter_reinit(di);
2922 } else if (dv->dv_depth == di->di_curdepth)
2923 break;
2924 }
2925 break;
2926 default:
2927 break;
2928 }
2929 mutex_exit(&alldevs_lock);
2930
2931 return dv;
2932 }
2933
2934 void
2935 deviter_release(deviter_t *di)
2936 {
2937 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2938
2939 mutex_enter(&alldevs_lock);
2940 if (rw)
2941 --alldevs_nwrite;
2942 else
2943 --alldevs_nread;
2944 /* XXX wake a garbage-collection thread */
2945 mutex_exit(&alldevs_lock);
2946 }
2947
2948 const char *
2949 cfdata_ifattr(const struct cfdata *cf)
2950 {
2951 return cf->cf_pspec->cfp_iattr;
2952 }
2953
2954 bool
2955 ifattr_match(const char *snull, const char *t)
2956 {
2957 return (snull == NULL) || strcmp(snull, t) == 0;
2958 }
2959
2960 void
2961 null_childdetached(device_t self, device_t child)
2962 {
2963 /* do nothing */
2964 }
2965
2966 static void
2967 sysctl_detach_setup(struct sysctllog **clog)
2968 {
2969
2970 sysctl_createv(clog, 0, NULL, NULL,
2971 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
2972 CTLTYPE_BOOL, "detachall",
2973 SYSCTL_DESCR("Detach all devices at shutdown"),
2974 NULL, 0, &detachall, 0,
2975 CTL_KERN, CTL_CREATE, CTL_EOL);
2976 }
2977