Home | History | Annotate | Line # | Download | only in kern
subr_autoconf.c revision 1.266
      1 /* $NetBSD: subr_autoconf.c,v 1.266 2020/02/20 21:14:23 jdolecek Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996, 2000 Christopher G. Demetriou
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *          This product includes software developed for the
     18  *          NetBSD Project.  See http://www.NetBSD.org/ for
     19  *          information about NetBSD.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
     35  */
     36 
     37 /*
     38  * Copyright (c) 1992, 1993
     39  *	The Regents of the University of California.  All rights reserved.
     40  *
     41  * This software was developed by the Computer Systems Engineering group
     42  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     43  * contributed to Berkeley.
     44  *
     45  * All advertising materials mentioning features or use of this software
     46  * must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Lawrence Berkeley Laboratories.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  * 3. Neither the name of the University nor the names of its contributors
     59  *    may be used to endorse or promote products derived from this software
     60  *    without specific prior written permission.
     61  *
     62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  * SUCH DAMAGE.
     73  *
     74  * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp  (LBL)
     75  *
     76  *	@(#)subr_autoconf.c	8.3 (Berkeley) 5/17/94
     77  */
     78 
     79 #include <sys/cdefs.h>
     80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.266 2020/02/20 21:14:23 jdolecek Exp $");
     81 
     82 #ifdef _KERNEL_OPT
     83 #include "opt_ddb.h"
     84 #include "drvctl.h"
     85 #endif
     86 
     87 #include <sys/param.h>
     88 #include <sys/device.h>
     89 #include <sys/disklabel.h>
     90 #include <sys/conf.h>
     91 #include <sys/kauth.h>
     92 #include <sys/kmem.h>
     93 #include <sys/systm.h>
     94 #include <sys/kernel.h>
     95 #include <sys/errno.h>
     96 #include <sys/proc.h>
     97 #include <sys/reboot.h>
     98 #include <sys/kthread.h>
     99 #include <sys/buf.h>
    100 #include <sys/dirent.h>
    101 #include <sys/mount.h>
    102 #include <sys/namei.h>
    103 #include <sys/unistd.h>
    104 #include <sys/fcntl.h>
    105 #include <sys/lockf.h>
    106 #include <sys/callout.h>
    107 #include <sys/devmon.h>
    108 #include <sys/cpu.h>
    109 #include <sys/sysctl.h>
    110 
    111 #include <sys/disk.h>
    112 
    113 #include <sys/rndsource.h>
    114 
    115 #include <machine/limits.h>
    116 
    117 /*
    118  * Autoconfiguration subroutines.
    119  */
    120 
    121 /*
    122  * Device autoconfiguration timings are mixed into the entropy pool.
    123  */
    124 extern krndsource_t rnd_autoconf_source;
    125 
    126 /*
    127  * ioconf.c exports exactly two names: cfdata and cfroots.  All system
    128  * devices and drivers are found via these tables.
    129  */
    130 extern struct cfdata cfdata[];
    131 extern const short cfroots[];
    132 
    133 /*
    134  * List of all cfdriver structures.  We use this to detect duplicates
    135  * when other cfdrivers are loaded.
    136  */
    137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
    138 extern struct cfdriver * const cfdriver_list_initial[];
    139 
    140 /*
    141  * Initial list of cfattach's.
    142  */
    143 extern const struct cfattachinit cfattachinit[];
    144 
    145 /*
    146  * List of cfdata tables.  We always have one such list -- the one
    147  * built statically when the kernel was configured.
    148  */
    149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
    150 static struct cftable initcftable;
    151 
    152 #define	ROOT ((device_t)NULL)
    153 
    154 struct matchinfo {
    155 	cfsubmatch_t fn;
    156 	device_t parent;
    157 	const int *locs;
    158 	void	*aux;
    159 	struct	cfdata *match;
    160 	int	pri;
    161 };
    162 
    163 struct alldevs_foray {
    164 	int			af_s;
    165 	struct devicelist	af_garbage;
    166 };
    167 
    168 static char *number(char *, int);
    169 static void mapply(struct matchinfo *, cfdata_t);
    170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
    171 static void config_devdelete(device_t);
    172 static void config_devunlink(device_t, struct devicelist *);
    173 static void config_makeroom(int, struct cfdriver *);
    174 static void config_devlink(device_t);
    175 static void config_alldevs_enter(struct alldevs_foray *);
    176 static void config_alldevs_exit(struct alldevs_foray *);
    177 static void config_add_attrib_dict(device_t);
    178 
    179 static void config_collect_garbage(struct devicelist *);
    180 static void config_dump_garbage(struct devicelist *);
    181 
    182 static void pmflock_debug(device_t, const char *, int);
    183 
    184 static device_t deviter_next1(deviter_t *);
    185 static void deviter_reinit(deviter_t *);
    186 
    187 struct deferred_config {
    188 	TAILQ_ENTRY(deferred_config) dc_queue;
    189 	device_t dc_dev;
    190 	void (*dc_func)(device_t);
    191 };
    192 
    193 TAILQ_HEAD(deferred_config_head, deferred_config);
    194 
    195 static struct deferred_config_head deferred_config_queue =
    196 	TAILQ_HEAD_INITIALIZER(deferred_config_queue);
    197 static struct deferred_config_head interrupt_config_queue =
    198 	TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
    199 static int interrupt_config_threads = 8;
    200 static struct deferred_config_head mountroot_config_queue =
    201 	TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
    202 static int mountroot_config_threads = 2;
    203 static lwp_t **mountroot_config_lwpids;
    204 static size_t mountroot_config_lwpids_size;
    205 bool root_is_mounted = false;
    206 
    207 static void config_process_deferred(struct deferred_config_head *, device_t);
    208 
    209 /* Hooks to finalize configuration once all real devices have been found. */
    210 struct finalize_hook {
    211 	TAILQ_ENTRY(finalize_hook) f_list;
    212 	int (*f_func)(device_t);
    213 	device_t f_dev;
    214 };
    215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
    216 	TAILQ_HEAD_INITIALIZER(config_finalize_list);
    217 static int config_finalize_done;
    218 
    219 /* list of all devices */
    220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
    221 static kmutex_t alldevs_lock __cacheline_aligned;
    222 static devgen_t alldevs_gen = 1;
    223 static int alldevs_nread = 0;
    224 static int alldevs_nwrite = 0;
    225 static bool alldevs_garbage = false;
    226 
    227 static int config_pending;		/* semaphore for mountroot */
    228 static kmutex_t config_misc_lock;
    229 static kcondvar_t config_misc_cv;
    230 
    231 static bool detachall = false;
    232 
    233 #define	STREQ(s1, s2)			\
    234 	(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
    235 
    236 static bool config_initialized = false;	/* config_init() has been called. */
    237 
    238 static int config_do_twiddle;
    239 static callout_t config_twiddle_ch;
    240 
    241 static void sysctl_detach_setup(struct sysctllog **);
    242 
    243 int no_devmon_insert(const char *, prop_dictionary_t);
    244 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
    245 
    246 typedef int (*cfdriver_fn)(struct cfdriver *);
    247 static int
    248 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
    249 	cfdriver_fn drv_do, cfdriver_fn drv_undo,
    250 	const char *style, bool dopanic)
    251 {
    252 	void (*pr)(const char *, ...) __printflike(1, 2) =
    253 	    dopanic ? panic : printf;
    254 	int i, error = 0, e2 __diagused;
    255 
    256 	for (i = 0; cfdriverv[i] != NULL; i++) {
    257 		if ((error = drv_do(cfdriverv[i])) != 0) {
    258 			pr("configure: `%s' driver %s failed: %d",
    259 			    cfdriverv[i]->cd_name, style, error);
    260 			goto bad;
    261 		}
    262 	}
    263 
    264 	KASSERT(error == 0);
    265 	return 0;
    266 
    267  bad:
    268 	printf("\n");
    269 	for (i--; i >= 0; i--) {
    270 		e2 = drv_undo(cfdriverv[i]);
    271 		KASSERT(e2 == 0);
    272 	}
    273 
    274 	return error;
    275 }
    276 
    277 typedef int (*cfattach_fn)(const char *, struct cfattach *);
    278 static int
    279 frob_cfattachvec(const struct cfattachinit *cfattachv,
    280 	cfattach_fn att_do, cfattach_fn att_undo,
    281 	const char *style, bool dopanic)
    282 {
    283 	const struct cfattachinit *cfai = NULL;
    284 	void (*pr)(const char *, ...) __printflike(1, 2) =
    285 	    dopanic ? panic : printf;
    286 	int j = 0, error = 0, e2 __diagused;
    287 
    288 	for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
    289 		for (j = 0; cfai->cfai_list[j] != NULL; j++) {
    290 			if ((error = att_do(cfai->cfai_name,
    291 			    cfai->cfai_list[j])) != 0) {
    292 				pr("configure: attachment `%s' "
    293 				    "of `%s' driver %s failed: %d",
    294 				    cfai->cfai_list[j]->ca_name,
    295 				    cfai->cfai_name, style, error);
    296 				goto bad;
    297 			}
    298 		}
    299 	}
    300 
    301 	KASSERT(error == 0);
    302 	return 0;
    303 
    304  bad:
    305 	/*
    306 	 * Rollback in reverse order.  dunno if super-important, but
    307 	 * do that anyway.  Although the code looks a little like
    308 	 * someone did a little integration (in the math sense).
    309 	 */
    310 	printf("\n");
    311 	if (cfai) {
    312 		bool last;
    313 
    314 		for (last = false; last == false; ) {
    315 			if (cfai == &cfattachv[0])
    316 				last = true;
    317 			for (j--; j >= 0; j--) {
    318 				e2 = att_undo(cfai->cfai_name,
    319 				    cfai->cfai_list[j]);
    320 				KASSERT(e2 == 0);
    321 			}
    322 			if (!last) {
    323 				cfai--;
    324 				for (j = 0; cfai->cfai_list[j] != NULL; j++)
    325 					;
    326 			}
    327 		}
    328 	}
    329 
    330 	return error;
    331 }
    332 
    333 /*
    334  * Initialize the autoconfiguration data structures.  Normally this
    335  * is done by configure(), but some platforms need to do this very
    336  * early (to e.g. initialize the console).
    337  */
    338 void
    339 config_init(void)
    340 {
    341 
    342 	KASSERT(config_initialized == false);
    343 
    344 	mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
    345 
    346 	mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
    347 	cv_init(&config_misc_cv, "cfgmisc");
    348 
    349 	callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
    350 
    351 	frob_cfdrivervec(cfdriver_list_initial,
    352 	    config_cfdriver_attach, NULL, "bootstrap", true);
    353 	frob_cfattachvec(cfattachinit,
    354 	    config_cfattach_attach, NULL, "bootstrap", true);
    355 
    356 	initcftable.ct_cfdata = cfdata;
    357 	TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
    358 
    359 	config_initialized = true;
    360 }
    361 
    362 /*
    363  * Init or fini drivers and attachments.  Either all or none
    364  * are processed (via rollback).  It would be nice if this were
    365  * atomic to outside consumers, but with the current state of
    366  * locking ...
    367  */
    368 int
    369 config_init_component(struct cfdriver * const *cfdriverv,
    370 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    371 {
    372 	int error;
    373 
    374 	if ((error = frob_cfdrivervec(cfdriverv,
    375 	    config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
    376 		return error;
    377 	if ((error = frob_cfattachvec(cfattachv,
    378 	    config_cfattach_attach, config_cfattach_detach,
    379 	    "init", false)) != 0) {
    380 		frob_cfdrivervec(cfdriverv,
    381 	            config_cfdriver_detach, NULL, "init rollback", true);
    382 		return error;
    383 	}
    384 	if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
    385 		frob_cfattachvec(cfattachv,
    386 		    config_cfattach_detach, NULL, "init rollback", true);
    387 		frob_cfdrivervec(cfdriverv,
    388 	            config_cfdriver_detach, NULL, "init rollback", true);
    389 		return error;
    390 	}
    391 
    392 	return 0;
    393 }
    394 
    395 int
    396 config_fini_component(struct cfdriver * const *cfdriverv,
    397 	const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
    398 {
    399 	int error;
    400 
    401 	if ((error = config_cfdata_detach(cfdatav)) != 0)
    402 		return error;
    403 	if ((error = frob_cfattachvec(cfattachv,
    404 	    config_cfattach_detach, config_cfattach_attach,
    405 	    "fini", false)) != 0) {
    406 		if (config_cfdata_attach(cfdatav, 0) != 0)
    407 			panic("config_cfdata fini rollback failed");
    408 		return error;
    409 	}
    410 	if ((error = frob_cfdrivervec(cfdriverv,
    411 	    config_cfdriver_detach, config_cfdriver_attach,
    412 	    "fini", false)) != 0) {
    413 		frob_cfattachvec(cfattachv,
    414 	            config_cfattach_attach, NULL, "fini rollback", true);
    415 		if (config_cfdata_attach(cfdatav, 0) != 0)
    416 			panic("config_cfdata fini rollback failed");
    417 		return error;
    418 	}
    419 
    420 	return 0;
    421 }
    422 
    423 void
    424 config_init_mi(void)
    425 {
    426 
    427 	if (!config_initialized)
    428 		config_init();
    429 
    430 	sysctl_detach_setup(NULL);
    431 }
    432 
    433 void
    434 config_deferred(device_t dev)
    435 {
    436 	config_process_deferred(&deferred_config_queue, dev);
    437 	config_process_deferred(&interrupt_config_queue, dev);
    438 	config_process_deferred(&mountroot_config_queue, dev);
    439 }
    440 
    441 static void
    442 config_interrupts_thread(void *cookie)
    443 {
    444 	struct deferred_config *dc;
    445 
    446 	mutex_enter(&config_misc_lock);
    447 	while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
    448 		TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
    449 		mutex_exit(&config_misc_lock);
    450 
    451 		(*dc->dc_func)(dc->dc_dev);
    452 		if (!device_pmf_is_registered(dc->dc_dev))
    453 			aprint_debug_dev(dc->dc_dev,
    454 			    "WARNING: power management not supported\n");
    455 		config_pending_decr(dc->dc_dev);
    456 		kmem_free(dc, sizeof(*dc));
    457 
    458 		mutex_enter(&config_misc_lock);
    459 		dc->dc_dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
    460 	}
    461 	mutex_exit(&config_misc_lock);
    462 
    463 	kthread_exit(0);
    464 }
    465 
    466 void
    467 config_create_interruptthreads(void)
    468 {
    469 	int i;
    470 
    471 	for (i = 0; i < interrupt_config_threads; i++) {
    472 		(void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
    473 		    config_interrupts_thread, NULL, NULL, "configintr");
    474 	}
    475 }
    476 
    477 static void
    478 config_mountroot_thread(void *cookie)
    479 {
    480 	struct deferred_config *dc;
    481 
    482 	mutex_enter(&config_misc_lock);
    483 	while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
    484 		TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
    485 		mutex_exit(&config_misc_lock);
    486 
    487 		(*dc->dc_func)(dc->dc_dev);
    488 		kmem_free(dc, sizeof(*dc));
    489 
    490 		mutex_enter(&config_misc_lock);
    491 	}
    492 	mutex_exit(&config_misc_lock);
    493 
    494 	kthread_exit(0);
    495 }
    496 
    497 void
    498 config_create_mountrootthreads(void)
    499 {
    500 	int i;
    501 
    502 	if (!root_is_mounted)
    503 		root_is_mounted = true;
    504 
    505 	mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
    506 				       mountroot_config_threads;
    507 	mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
    508 					     KM_NOSLEEP);
    509 	KASSERT(mountroot_config_lwpids);
    510 	for (i = 0; i < mountroot_config_threads; i++) {
    511 		mountroot_config_lwpids[i] = 0;
    512 		(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
    513 				     NULL, config_mountroot_thread, NULL,
    514 				     &mountroot_config_lwpids[i],
    515 				     "configroot");
    516 	}
    517 }
    518 
    519 void
    520 config_finalize_mountroot(void)
    521 {
    522 	int i, error;
    523 
    524 	for (i = 0; i < mountroot_config_threads; i++) {
    525 		if (mountroot_config_lwpids[i] == 0)
    526 			continue;
    527 
    528 		error = kthread_join(mountroot_config_lwpids[i]);
    529 		if (error)
    530 			printf("%s: thread %x joined with error %d\n",
    531 			       __func__, i, error);
    532 	}
    533 	kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
    534 }
    535 
    536 /*
    537  * Announce device attach/detach to userland listeners.
    538  */
    539 
    540 int
    541 no_devmon_insert(const char *name, prop_dictionary_t p)
    542 {
    543 
    544 	return ENODEV;
    545 }
    546 
    547 static void
    548 devmon_report_device(device_t dev, bool isattach)
    549 {
    550 	prop_dictionary_t ev;
    551 	const char *parent;
    552 	const char *what;
    553 	device_t pdev = device_parent(dev);
    554 
    555 	/* If currently no drvctl device, just return */
    556 	if (devmon_insert_vec == no_devmon_insert)
    557 		return;
    558 
    559 	ev = prop_dictionary_create();
    560 	if (ev == NULL)
    561 		return;
    562 
    563 	what = (isattach ? "device-attach" : "device-detach");
    564 	parent = (pdev == NULL ? "root" : device_xname(pdev));
    565 	if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
    566 	    !prop_dictionary_set_cstring(ev, "parent", parent)) {
    567 		prop_object_release(ev);
    568 		return;
    569 	}
    570 
    571 	if ((*devmon_insert_vec)(what, ev) != 0)
    572 		prop_object_release(ev);
    573 }
    574 
    575 /*
    576  * Add a cfdriver to the system.
    577  */
    578 int
    579 config_cfdriver_attach(struct cfdriver *cd)
    580 {
    581 	struct cfdriver *lcd;
    582 
    583 	/* Make sure this driver isn't already in the system. */
    584 	LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
    585 		if (STREQ(lcd->cd_name, cd->cd_name))
    586 			return EEXIST;
    587 	}
    588 
    589 	LIST_INIT(&cd->cd_attach);
    590 	LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
    591 
    592 	return 0;
    593 }
    594 
    595 /*
    596  * Remove a cfdriver from the system.
    597  */
    598 int
    599 config_cfdriver_detach(struct cfdriver *cd)
    600 {
    601 	struct alldevs_foray af;
    602 	int i, rc = 0;
    603 
    604 	config_alldevs_enter(&af);
    605 	/* Make sure there are no active instances. */
    606 	for (i = 0; i < cd->cd_ndevs; i++) {
    607 		if (cd->cd_devs[i] != NULL) {
    608 			rc = EBUSY;
    609 			break;
    610 		}
    611 	}
    612 	config_alldevs_exit(&af);
    613 
    614 	if (rc != 0)
    615 		return rc;
    616 
    617 	/* ...and no attachments loaded. */
    618 	if (LIST_EMPTY(&cd->cd_attach) == 0)
    619 		return EBUSY;
    620 
    621 	LIST_REMOVE(cd, cd_list);
    622 
    623 	KASSERT(cd->cd_devs == NULL);
    624 
    625 	return 0;
    626 }
    627 
    628 /*
    629  * Look up a cfdriver by name.
    630  */
    631 struct cfdriver *
    632 config_cfdriver_lookup(const char *name)
    633 {
    634 	struct cfdriver *cd;
    635 
    636 	LIST_FOREACH(cd, &allcfdrivers, cd_list) {
    637 		if (STREQ(cd->cd_name, name))
    638 			return cd;
    639 	}
    640 
    641 	return NULL;
    642 }
    643 
    644 /*
    645  * Add a cfattach to the specified driver.
    646  */
    647 int
    648 config_cfattach_attach(const char *driver, struct cfattach *ca)
    649 {
    650 	struct cfattach *lca;
    651 	struct cfdriver *cd;
    652 
    653 	cd = config_cfdriver_lookup(driver);
    654 	if (cd == NULL)
    655 		return ESRCH;
    656 
    657 	/* Make sure this attachment isn't already on this driver. */
    658 	LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
    659 		if (STREQ(lca->ca_name, ca->ca_name))
    660 			return EEXIST;
    661 	}
    662 
    663 	LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
    664 
    665 	return 0;
    666 }
    667 
    668 /*
    669  * Remove a cfattach from the specified driver.
    670  */
    671 int
    672 config_cfattach_detach(const char *driver, struct cfattach *ca)
    673 {
    674 	struct alldevs_foray af;
    675 	struct cfdriver *cd;
    676 	device_t dev;
    677 	int i, rc = 0;
    678 
    679 	cd = config_cfdriver_lookup(driver);
    680 	if (cd == NULL)
    681 		return ESRCH;
    682 
    683 	config_alldevs_enter(&af);
    684 	/* Make sure there are no active instances. */
    685 	for (i = 0; i < cd->cd_ndevs; i++) {
    686 		if ((dev = cd->cd_devs[i]) == NULL)
    687 			continue;
    688 		if (dev->dv_cfattach == ca) {
    689 			rc = EBUSY;
    690 			break;
    691 		}
    692 	}
    693 	config_alldevs_exit(&af);
    694 
    695 	if (rc != 0)
    696 		return rc;
    697 
    698 	LIST_REMOVE(ca, ca_list);
    699 
    700 	return 0;
    701 }
    702 
    703 /*
    704  * Look up a cfattach by name.
    705  */
    706 static struct cfattach *
    707 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
    708 {
    709 	struct cfattach *ca;
    710 
    711 	LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
    712 		if (STREQ(ca->ca_name, atname))
    713 			return ca;
    714 	}
    715 
    716 	return NULL;
    717 }
    718 
    719 /*
    720  * Look up a cfattach by driver/attachment name.
    721  */
    722 struct cfattach *
    723 config_cfattach_lookup(const char *name, const char *atname)
    724 {
    725 	struct cfdriver *cd;
    726 
    727 	cd = config_cfdriver_lookup(name);
    728 	if (cd == NULL)
    729 		return NULL;
    730 
    731 	return config_cfattach_lookup_cd(cd, atname);
    732 }
    733 
    734 /*
    735  * Apply the matching function and choose the best.  This is used
    736  * a few times and we want to keep the code small.
    737  */
    738 static void
    739 mapply(struct matchinfo *m, cfdata_t cf)
    740 {
    741 	int pri;
    742 
    743 	if (m->fn != NULL) {
    744 		pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
    745 	} else {
    746 		pri = config_match(m->parent, cf, m->aux);
    747 	}
    748 	if (pri > m->pri) {
    749 		m->match = cf;
    750 		m->pri = pri;
    751 	}
    752 }
    753 
    754 int
    755 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
    756 {
    757 	const struct cfiattrdata *ci;
    758 	const struct cflocdesc *cl;
    759 	int nlocs, i;
    760 
    761 	ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
    762 	KASSERT(ci);
    763 	nlocs = ci->ci_loclen;
    764 	KASSERT(!nlocs || locs);
    765 	for (i = 0; i < nlocs; i++) {
    766 		cl = &ci->ci_locdesc[i];
    767 		if (cl->cld_defaultstr != NULL &&
    768 		    cf->cf_loc[i] == cl->cld_default)
    769 			continue;
    770 		if (cf->cf_loc[i] == locs[i])
    771 			continue;
    772 		return 0;
    773 	}
    774 
    775 	return config_match(parent, cf, aux);
    776 }
    777 
    778 /*
    779  * Helper function: check whether the driver supports the interface attribute
    780  * and return its descriptor structure.
    781  */
    782 static const struct cfiattrdata *
    783 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
    784 {
    785 	const struct cfiattrdata * const *cpp;
    786 
    787 	if (cd->cd_attrs == NULL)
    788 		return 0;
    789 
    790 	for (cpp = cd->cd_attrs; *cpp; cpp++) {
    791 		if (STREQ((*cpp)->ci_name, ia)) {
    792 			/* Match. */
    793 			return *cpp;
    794 		}
    795 	}
    796 	return 0;
    797 }
    798 
    799 /*
    800  * Lookup an interface attribute description by name.
    801  * If the driver is given, consider only its supported attributes.
    802  */
    803 const struct cfiattrdata *
    804 cfiattr_lookup(const char *name, const struct cfdriver *cd)
    805 {
    806 	const struct cfdriver *d;
    807 	const struct cfiattrdata *ia;
    808 
    809 	if (cd)
    810 		return cfdriver_get_iattr(cd, name);
    811 
    812 	LIST_FOREACH(d, &allcfdrivers, cd_list) {
    813 		ia = cfdriver_get_iattr(d, name);
    814 		if (ia)
    815 			return ia;
    816 	}
    817 	return 0;
    818 }
    819 
    820 /*
    821  * Determine if `parent' is a potential parent for a device spec based
    822  * on `cfp'.
    823  */
    824 static int
    825 cfparent_match(const device_t parent, const struct cfparent *cfp)
    826 {
    827 	struct cfdriver *pcd;
    828 
    829 	/* We don't match root nodes here. */
    830 	if (cfp == NULL)
    831 		return 0;
    832 
    833 	pcd = parent->dv_cfdriver;
    834 	KASSERT(pcd != NULL);
    835 
    836 	/*
    837 	 * First, ensure this parent has the correct interface
    838 	 * attribute.
    839 	 */
    840 	if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
    841 		return 0;
    842 
    843 	/*
    844 	 * If no specific parent device instance was specified (i.e.
    845 	 * we're attaching to the attribute only), we're done!
    846 	 */
    847 	if (cfp->cfp_parent == NULL)
    848 		return 1;
    849 
    850 	/*
    851 	 * Check the parent device's name.
    852 	 */
    853 	if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
    854 		return 0;	/* not the same parent */
    855 
    856 	/*
    857 	 * Make sure the unit number matches.
    858 	 */
    859 	if (cfp->cfp_unit == DVUNIT_ANY ||	/* wildcard */
    860 	    cfp->cfp_unit == parent->dv_unit)
    861 		return 1;
    862 
    863 	/* Unit numbers don't match. */
    864 	return 0;
    865 }
    866 
    867 /*
    868  * Helper for config_cfdata_attach(): check all devices whether it could be
    869  * parent any attachment in the config data table passed, and rescan.
    870  */
    871 static void
    872 rescan_with_cfdata(const struct cfdata *cf)
    873 {
    874 	device_t d;
    875 	const struct cfdata *cf1;
    876 	deviter_t di;
    877 
    878 
    879 	/*
    880 	 * "alldevs" is likely longer than a modules's cfdata, so make it
    881 	 * the outer loop.
    882 	 */
    883 	for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
    884 
    885 		if (!(d->dv_cfattach->ca_rescan))
    886 			continue;
    887 
    888 		for (cf1 = cf; cf1->cf_name; cf1++) {
    889 
    890 			if (!cfparent_match(d, cf1->cf_pspec))
    891 				continue;
    892 
    893 			(*d->dv_cfattach->ca_rescan)(d,
    894 				cfdata_ifattr(cf1), cf1->cf_loc);
    895 
    896 			config_deferred(d);
    897 		}
    898 	}
    899 	deviter_release(&di);
    900 }
    901 
    902 /*
    903  * Attach a supplemental config data table and rescan potential
    904  * parent devices if required.
    905  */
    906 int
    907 config_cfdata_attach(cfdata_t cf, int scannow)
    908 {
    909 	struct cftable *ct;
    910 
    911 	ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
    912 	ct->ct_cfdata = cf;
    913 	TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
    914 
    915 	if (scannow)
    916 		rescan_with_cfdata(cf);
    917 
    918 	return 0;
    919 }
    920 
    921 /*
    922  * Helper for config_cfdata_detach: check whether a device is
    923  * found through any attachment in the config data table.
    924  */
    925 static int
    926 dev_in_cfdata(device_t d, cfdata_t cf)
    927 {
    928 	const struct cfdata *cf1;
    929 
    930 	for (cf1 = cf; cf1->cf_name; cf1++)
    931 		if (d->dv_cfdata == cf1)
    932 			return 1;
    933 
    934 	return 0;
    935 }
    936 
    937 /*
    938  * Detach a supplemental config data table. Detach all devices found
    939  * through that table (and thus keeping references to it) before.
    940  */
    941 int
    942 config_cfdata_detach(cfdata_t cf)
    943 {
    944 	device_t d;
    945 	int error = 0;
    946 	struct cftable *ct;
    947 	deviter_t di;
    948 
    949 	for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
    950 	     d = deviter_next(&di)) {
    951 		if (!dev_in_cfdata(d, cf))
    952 			continue;
    953 		if ((error = config_detach(d, 0)) != 0)
    954 			break;
    955 	}
    956 	deviter_release(&di);
    957 	if (error) {
    958 		aprint_error_dev(d, "unable to detach instance\n");
    959 		return error;
    960 	}
    961 
    962 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
    963 		if (ct->ct_cfdata == cf) {
    964 			TAILQ_REMOVE(&allcftables, ct, ct_list);
    965 			kmem_free(ct, sizeof(*ct));
    966 			return 0;
    967 		}
    968 	}
    969 
    970 	/* not found -- shouldn't happen */
    971 	return EINVAL;
    972 }
    973 
    974 /*
    975  * Invoke the "match" routine for a cfdata entry on behalf of
    976  * an external caller, usually a "submatch" routine.
    977  */
    978 int
    979 config_match(device_t parent, cfdata_t cf, void *aux)
    980 {
    981 	struct cfattach *ca;
    982 
    983 	ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
    984 	if (ca == NULL) {
    985 		/* No attachment for this entry, oh well. */
    986 		return 0;
    987 	}
    988 
    989 	return (*ca->ca_match)(parent, cf, aux);
    990 }
    991 
    992 /*
    993  * Iterate over all potential children of some device, calling the given
    994  * function (default being the child's match function) for each one.
    995  * Nonzero returns are matches; the highest value returned is considered
    996  * the best match.  Return the `found child' if we got a match, or NULL
    997  * otherwise.  The `aux' pointer is simply passed on through.
    998  *
    999  * Note that this function is designed so that it can be used to apply
   1000  * an arbitrary function to all potential children (its return value
   1001  * can be ignored).
   1002  */
   1003 cfdata_t
   1004 config_search_loc(cfsubmatch_t fn, device_t parent,
   1005 		  const char *ifattr, const int *locs, void *aux)
   1006 {
   1007 	struct cftable *ct;
   1008 	cfdata_t cf;
   1009 	struct matchinfo m;
   1010 
   1011 	KASSERT(config_initialized);
   1012 	KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
   1013 
   1014 	m.fn = fn;
   1015 	m.parent = parent;
   1016 	m.locs = locs;
   1017 	m.aux = aux;
   1018 	m.match = NULL;
   1019 	m.pri = 0;
   1020 
   1021 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1022 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1023 
   1024 			/* We don't match root nodes here. */
   1025 			if (!cf->cf_pspec)
   1026 				continue;
   1027 
   1028 			/*
   1029 			 * Skip cf if no longer eligible, otherwise scan
   1030 			 * through parents for one matching `parent', and
   1031 			 * try match function.
   1032 			 */
   1033 			if (cf->cf_fstate == FSTATE_FOUND)
   1034 				continue;
   1035 			if (cf->cf_fstate == FSTATE_DNOTFOUND ||
   1036 			    cf->cf_fstate == FSTATE_DSTAR)
   1037 				continue;
   1038 
   1039 			/*
   1040 			 * If an interface attribute was specified,
   1041 			 * consider only children which attach to
   1042 			 * that attribute.
   1043 			 */
   1044 			if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
   1045 				continue;
   1046 
   1047 			if (cfparent_match(parent, cf->cf_pspec))
   1048 				mapply(&m, cf);
   1049 		}
   1050 	}
   1051 	return m.match;
   1052 }
   1053 
   1054 cfdata_t
   1055 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
   1056     void *aux)
   1057 {
   1058 
   1059 	return config_search_loc(fn, parent, ifattr, NULL, aux);
   1060 }
   1061 
   1062 /*
   1063  * Find the given root device.
   1064  * This is much like config_search, but there is no parent.
   1065  * Don't bother with multiple cfdata tables; the root node
   1066  * must always be in the initial table.
   1067  */
   1068 cfdata_t
   1069 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
   1070 {
   1071 	cfdata_t cf;
   1072 	const short *p;
   1073 	struct matchinfo m;
   1074 
   1075 	m.fn = fn;
   1076 	m.parent = ROOT;
   1077 	m.aux = aux;
   1078 	m.match = NULL;
   1079 	m.pri = 0;
   1080 	m.locs = 0;
   1081 	/*
   1082 	 * Look at root entries for matching name.  We do not bother
   1083 	 * with found-state here since only one root should ever be
   1084 	 * searched (and it must be done first).
   1085 	 */
   1086 	for (p = cfroots; *p >= 0; p++) {
   1087 		cf = &cfdata[*p];
   1088 		if (strcmp(cf->cf_name, rootname) == 0)
   1089 			mapply(&m, cf);
   1090 	}
   1091 	return m.match;
   1092 }
   1093 
   1094 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
   1095 
   1096 /*
   1097  * The given `aux' argument describes a device that has been found
   1098  * on the given parent, but not necessarily configured.  Locate the
   1099  * configuration data for that device (using the submatch function
   1100  * provided, or using candidates' cd_match configuration driver
   1101  * functions) and attach it, and return its device_t.  If the device was
   1102  * not configured, call the given `print' function and return NULL.
   1103  */
   1104 device_t
   1105 config_found_sm_loc(device_t parent,
   1106 		const char *ifattr, const int *locs, void *aux,
   1107 		cfprint_t print, cfsubmatch_t submatch)
   1108 {
   1109 	cfdata_t cf;
   1110 
   1111 	if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
   1112 		return(config_attach_loc(parent, cf, locs, aux, print));
   1113 	if (print) {
   1114 		if (config_do_twiddle && cold)
   1115 			twiddle();
   1116 		aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
   1117 	}
   1118 
   1119 	/*
   1120 	 * This has the effect of mixing in a single timestamp to the
   1121 	 * entropy pool.  Experiments indicate the estimator will almost
   1122 	 * always attribute one bit of entropy to this sample; analysis
   1123 	 * of device attach/detach timestamps on FreeBSD indicates 4
   1124 	 * bits of entropy/sample so this seems appropriately conservative.
   1125 	 */
   1126 	rnd_add_uint32(&rnd_autoconf_source, 0);
   1127 	return NULL;
   1128 }
   1129 
   1130 device_t
   1131 config_found_ia(device_t parent, const char *ifattr, void *aux,
   1132     cfprint_t print)
   1133 {
   1134 
   1135 	return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
   1136 }
   1137 
   1138 device_t
   1139 config_found(device_t parent, void *aux, cfprint_t print)
   1140 {
   1141 
   1142 	return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
   1143 }
   1144 
   1145 /*
   1146  * As above, but for root devices.
   1147  */
   1148 device_t
   1149 config_rootfound(const char *rootname, void *aux)
   1150 {
   1151 	cfdata_t cf;
   1152 
   1153 	if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
   1154 		return config_attach(ROOT, cf, aux, NULL);
   1155 	aprint_error("root device %s not configured\n", rootname);
   1156 	return NULL;
   1157 }
   1158 
   1159 /* just like sprintf(buf, "%d") except that it works from the end */
   1160 static char *
   1161 number(char *ep, int n)
   1162 {
   1163 
   1164 	*--ep = 0;
   1165 	while (n >= 10) {
   1166 		*--ep = (n % 10) + '0';
   1167 		n /= 10;
   1168 	}
   1169 	*--ep = n + '0';
   1170 	return ep;
   1171 }
   1172 
   1173 /*
   1174  * Expand the size of the cd_devs array if necessary.
   1175  *
   1176  * The caller must hold alldevs_lock. config_makeroom() may release and
   1177  * re-acquire alldevs_lock, so callers should re-check conditions such
   1178  * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
   1179  * returns.
   1180  */
   1181 static void
   1182 config_makeroom(int n, struct cfdriver *cd)
   1183 {
   1184 	int ondevs, nndevs;
   1185 	device_t *osp, *nsp;
   1186 
   1187 	KASSERT(mutex_owned(&alldevs_lock));
   1188 	alldevs_nwrite++;
   1189 
   1190 	for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
   1191 		;
   1192 
   1193 	while (n >= cd->cd_ndevs) {
   1194 		/*
   1195 		 * Need to expand the array.
   1196 		 */
   1197 		ondevs = cd->cd_ndevs;
   1198 		osp = cd->cd_devs;
   1199 
   1200 		/*
   1201 		 * Release alldevs_lock around allocation, which may
   1202 		 * sleep.
   1203 		 */
   1204 		mutex_exit(&alldevs_lock);
   1205 		nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
   1206 		mutex_enter(&alldevs_lock);
   1207 
   1208 		/*
   1209 		 * If another thread moved the array while we did
   1210 		 * not hold alldevs_lock, try again.
   1211 		 */
   1212 		if (cd->cd_devs != osp) {
   1213 			mutex_exit(&alldevs_lock);
   1214 			kmem_free(nsp, sizeof(device_t[nndevs]));
   1215 			mutex_enter(&alldevs_lock);
   1216 			continue;
   1217 		}
   1218 
   1219 		memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
   1220 		if (ondevs != 0)
   1221 			memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
   1222 
   1223 		cd->cd_ndevs = nndevs;
   1224 		cd->cd_devs = nsp;
   1225 		if (ondevs != 0) {
   1226 			mutex_exit(&alldevs_lock);
   1227 			kmem_free(osp, sizeof(device_t[ondevs]));
   1228 			mutex_enter(&alldevs_lock);
   1229 		}
   1230 	}
   1231 	KASSERT(mutex_owned(&alldevs_lock));
   1232 	alldevs_nwrite--;
   1233 }
   1234 
   1235 /*
   1236  * Put dev into the devices list.
   1237  */
   1238 static void
   1239 config_devlink(device_t dev)
   1240 {
   1241 
   1242 	mutex_enter(&alldevs_lock);
   1243 
   1244 	KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
   1245 
   1246 	dev->dv_add_gen = alldevs_gen;
   1247 	/* It is safe to add a device to the tail of the list while
   1248 	 * readers and writers are in the list.
   1249 	 */
   1250 	TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
   1251 	mutex_exit(&alldevs_lock);
   1252 }
   1253 
   1254 static void
   1255 config_devfree(device_t dev)
   1256 {
   1257 	int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
   1258 
   1259 	if (dev->dv_cfattach->ca_devsize > 0)
   1260 		kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
   1261 	if (priv)
   1262 		kmem_free(dev, sizeof(*dev));
   1263 }
   1264 
   1265 /*
   1266  * Caller must hold alldevs_lock.
   1267  */
   1268 static void
   1269 config_devunlink(device_t dev, struct devicelist *garbage)
   1270 {
   1271 	struct device_garbage *dg = &dev->dv_garbage;
   1272 	cfdriver_t cd = device_cfdriver(dev);
   1273 	int i;
   1274 
   1275 	KASSERT(mutex_owned(&alldevs_lock));
   1276 
   1277  	/* Unlink from device list.  Link to garbage list. */
   1278 	TAILQ_REMOVE(&alldevs, dev, dv_list);
   1279 	TAILQ_INSERT_TAIL(garbage, dev, dv_list);
   1280 
   1281 	/* Remove from cfdriver's array. */
   1282 	cd->cd_devs[dev->dv_unit] = NULL;
   1283 
   1284 	/*
   1285 	 * If the device now has no units in use, unlink its softc array.
   1286 	 */
   1287 	for (i = 0; i < cd->cd_ndevs; i++) {
   1288 		if (cd->cd_devs[i] != NULL)
   1289 			break;
   1290 	}
   1291 	/* Nothing found.  Unlink, now.  Deallocate, later. */
   1292 	if (i == cd->cd_ndevs) {
   1293 		dg->dg_ndevs = cd->cd_ndevs;
   1294 		dg->dg_devs = cd->cd_devs;
   1295 		cd->cd_devs = NULL;
   1296 		cd->cd_ndevs = 0;
   1297 	}
   1298 }
   1299 
   1300 static void
   1301 config_devdelete(device_t dev)
   1302 {
   1303 	struct device_garbage *dg = &dev->dv_garbage;
   1304 	device_lock_t dvl = device_getlock(dev);
   1305 
   1306 	if (dg->dg_devs != NULL)
   1307 		kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
   1308 
   1309 	cv_destroy(&dvl->dvl_cv);
   1310 	mutex_destroy(&dvl->dvl_mtx);
   1311 
   1312 	KASSERT(dev->dv_properties != NULL);
   1313 	prop_object_release(dev->dv_properties);
   1314 
   1315 	if (dev->dv_activity_handlers)
   1316 		panic("%s with registered handlers", __func__);
   1317 
   1318 	if (dev->dv_locators) {
   1319 		size_t amount = *--dev->dv_locators;
   1320 		kmem_free(dev->dv_locators, amount);
   1321 	}
   1322 
   1323 	config_devfree(dev);
   1324 }
   1325 
   1326 static int
   1327 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
   1328 {
   1329 	int unit;
   1330 
   1331 	if (cf->cf_fstate == FSTATE_STAR) {
   1332 		for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
   1333 			if (cd->cd_devs[unit] == NULL)
   1334 				break;
   1335 		/*
   1336 		 * unit is now the unit of the first NULL device pointer,
   1337 		 * or max(cd->cd_ndevs,cf->cf_unit).
   1338 		 */
   1339 	} else {
   1340 		unit = cf->cf_unit;
   1341 		if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
   1342 			unit = -1;
   1343 	}
   1344 	return unit;
   1345 }
   1346 
   1347 static int
   1348 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
   1349 {
   1350 	struct alldevs_foray af;
   1351 	int unit;
   1352 
   1353 	config_alldevs_enter(&af);
   1354 	for (;;) {
   1355 		unit = config_unit_nextfree(cd, cf);
   1356 		if (unit == -1)
   1357 			break;
   1358 		if (unit < cd->cd_ndevs) {
   1359 			cd->cd_devs[unit] = dev;
   1360 			dev->dv_unit = unit;
   1361 			break;
   1362 		}
   1363 		config_makeroom(unit, cd);
   1364 	}
   1365 	config_alldevs_exit(&af);
   1366 
   1367 	return unit;
   1368 }
   1369 
   1370 static device_t
   1371 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
   1372 {
   1373 	cfdriver_t cd;
   1374 	cfattach_t ca;
   1375 	size_t lname, lunit;
   1376 	const char *xunit;
   1377 	int myunit;
   1378 	char num[10];
   1379 	device_t dev;
   1380 	void *dev_private;
   1381 	const struct cfiattrdata *ia;
   1382 	device_lock_t dvl;
   1383 
   1384 	cd = config_cfdriver_lookup(cf->cf_name);
   1385 	if (cd == NULL)
   1386 		return NULL;
   1387 
   1388 	ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
   1389 	if (ca == NULL)
   1390 		return NULL;
   1391 
   1392 	/* get memory for all device vars */
   1393 	KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
   1394 	    || ca->ca_devsize >= sizeof(struct device),
   1395 	    "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
   1396 	    sizeof(struct device));
   1397 	if (ca->ca_devsize > 0) {
   1398 		dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
   1399 	} else {
   1400 		KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
   1401 		dev_private = NULL;
   1402 	}
   1403 
   1404 	if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
   1405 		dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
   1406 	} else {
   1407 		dev = dev_private;
   1408 #ifdef DIAGNOSTIC
   1409 		printf("%s has not been converted to device_t\n", cd->cd_name);
   1410 #endif
   1411 		KASSERT(dev != NULL);
   1412 	}
   1413 	dev->dv_class = cd->cd_class;
   1414 	dev->dv_cfdata = cf;
   1415 	dev->dv_cfdriver = cd;
   1416 	dev->dv_cfattach = ca;
   1417 	dev->dv_activity_count = 0;
   1418 	dev->dv_activity_handlers = NULL;
   1419 	dev->dv_private = dev_private;
   1420 	dev->dv_flags = ca->ca_flags;	/* inherit flags from class */
   1421 
   1422 	myunit = config_unit_alloc(dev, cd, cf);
   1423 	if (myunit == -1) {
   1424 		config_devfree(dev);
   1425 		return NULL;
   1426 	}
   1427 
   1428 	/* compute length of name and decimal expansion of unit number */
   1429 	lname = strlen(cd->cd_name);
   1430 	xunit = number(&num[sizeof(num)], myunit);
   1431 	lunit = &num[sizeof(num)] - xunit;
   1432 	if (lname + lunit > sizeof(dev->dv_xname))
   1433 		panic("config_devalloc: device name too long");
   1434 
   1435 	dvl = device_getlock(dev);
   1436 
   1437 	mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
   1438 	cv_init(&dvl->dvl_cv, "pmfsusp");
   1439 
   1440 	memcpy(dev->dv_xname, cd->cd_name, lname);
   1441 	memcpy(dev->dv_xname + lname, xunit, lunit);
   1442 	dev->dv_parent = parent;
   1443 	if (parent != NULL)
   1444 		dev->dv_depth = parent->dv_depth + 1;
   1445 	else
   1446 		dev->dv_depth = 0;
   1447 	dev->dv_flags |= DVF_ACTIVE;	/* always initially active */
   1448 	if (locs) {
   1449 		KASSERT(parent); /* no locators at root */
   1450 		ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
   1451 		dev->dv_locators =
   1452 		    kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
   1453 		*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
   1454 		memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
   1455 	}
   1456 	dev->dv_properties = prop_dictionary_create();
   1457 	KASSERT(dev->dv_properties != NULL);
   1458 
   1459 	prop_dictionary_set_cstring_nocopy(dev->dv_properties,
   1460 	    "device-driver", dev->dv_cfdriver->cd_name);
   1461 	prop_dictionary_set_uint16(dev->dv_properties,
   1462 	    "device-unit", dev->dv_unit);
   1463 	if (parent != NULL) {
   1464 		prop_dictionary_set_cstring(dev->dv_properties,
   1465 		    "device-parent", device_xname(parent));
   1466 	}
   1467 
   1468 	if (dev->dv_cfdriver->cd_attrs != NULL)
   1469 		config_add_attrib_dict(dev);
   1470 
   1471 	return dev;
   1472 }
   1473 
   1474 /*
   1475  * Create an array of device attach attributes and add it
   1476  * to the device's dv_properties dictionary.
   1477  *
   1478  * <key>interface-attributes</key>
   1479  * <array>
   1480  *    <dict>
   1481  *       <key>attribute-name</key>
   1482  *       <string>foo</string>
   1483  *       <key>locators</key>
   1484  *       <array>
   1485  *          <dict>
   1486  *             <key>loc-name</key>
   1487  *             <string>foo-loc1</string>
   1488  *          </dict>
   1489  *          <dict>
   1490  *             <key>loc-name</key>
   1491  *             <string>foo-loc2</string>
   1492  *             <key>default</key>
   1493  *             <string>foo-loc2-default</string>
   1494  *          </dict>
   1495  *          ...
   1496  *       </array>
   1497  *    </dict>
   1498  *    ...
   1499  * </array>
   1500  */
   1501 
   1502 static void
   1503 config_add_attrib_dict(device_t dev)
   1504 {
   1505 	int i, j;
   1506 	const struct cfiattrdata *ci;
   1507 	prop_dictionary_t attr_dict, loc_dict;
   1508 	prop_array_t attr_array, loc_array;
   1509 
   1510 	if ((attr_array = prop_array_create()) == NULL)
   1511 		return;
   1512 
   1513 	for (i = 0; ; i++) {
   1514 		if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
   1515 			break;
   1516 		if ((attr_dict = prop_dictionary_create()) == NULL)
   1517 			break;
   1518 		prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
   1519 		    ci->ci_name);
   1520 
   1521 		/* Create an array of the locator names and defaults */
   1522 
   1523 		if (ci->ci_loclen != 0 &&
   1524 		    (loc_array = prop_array_create()) != NULL) {
   1525 			for (j = 0; j < ci->ci_loclen; j++) {
   1526 				loc_dict = prop_dictionary_create();
   1527 				if (loc_dict == NULL)
   1528 					continue;
   1529 				prop_dictionary_set_cstring_nocopy(loc_dict,
   1530 				    "loc-name", ci->ci_locdesc[j].cld_name);
   1531 				if (ci->ci_locdesc[j].cld_defaultstr != NULL)
   1532 					prop_dictionary_set_cstring_nocopy(
   1533 					    loc_dict, "default",
   1534 					    ci->ci_locdesc[j].cld_defaultstr);
   1535 				prop_array_set(loc_array, j, loc_dict);
   1536 				prop_object_release(loc_dict);
   1537 			}
   1538 			prop_dictionary_set_and_rel(attr_dict, "locators",
   1539 			    loc_array);
   1540 		}
   1541 		prop_array_add(attr_array, attr_dict);
   1542 		prop_object_release(attr_dict);
   1543 	}
   1544 	if (i == 0)
   1545 		prop_object_release(attr_array);
   1546 	else
   1547 		prop_dictionary_set_and_rel(dev->dv_properties,
   1548 		    "interface-attributes", attr_array);
   1549 
   1550 	return;
   1551 }
   1552 
   1553 /*
   1554  * Attach a found device.
   1555  */
   1556 device_t
   1557 config_attach_loc(device_t parent, cfdata_t cf,
   1558 	const int *locs, void *aux, cfprint_t print)
   1559 {
   1560 	device_t dev;
   1561 	struct cftable *ct;
   1562 	const char *drvname;
   1563 
   1564 	dev = config_devalloc(parent, cf, locs);
   1565 	if (!dev)
   1566 		panic("config_attach: allocation of device softc failed");
   1567 
   1568 	/* XXX redundant - see below? */
   1569 	if (cf->cf_fstate != FSTATE_STAR) {
   1570 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1571 		cf->cf_fstate = FSTATE_FOUND;
   1572 	}
   1573 
   1574 	config_devlink(dev);
   1575 
   1576 	if (config_do_twiddle && cold)
   1577 		twiddle();
   1578 	else
   1579 		aprint_naive("Found ");
   1580 	/*
   1581 	 * We want the next two printfs for normal, verbose, and quiet,
   1582 	 * but not silent (in which case, we're twiddling, instead).
   1583 	 */
   1584 	if (parent == ROOT) {
   1585 		aprint_naive("%s (root)", device_xname(dev));
   1586 		aprint_normal("%s (root)", device_xname(dev));
   1587 	} else {
   1588 		aprint_naive("%s at %s", device_xname(dev),
   1589 		    device_xname(parent));
   1590 		aprint_normal("%s at %s", device_xname(dev),
   1591 		    device_xname(parent));
   1592 		if (print)
   1593 			(void) (*print)(aux, NULL);
   1594 	}
   1595 
   1596 	/*
   1597 	 * Before attaching, clobber any unfound devices that are
   1598 	 * otherwise identical.
   1599 	 * XXX code above is redundant?
   1600 	 */
   1601 	drvname = dev->dv_cfdriver->cd_name;
   1602 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1603 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1604 			if (STREQ(cf->cf_name, drvname) &&
   1605 			    cf->cf_unit == dev->dv_unit) {
   1606 				if (cf->cf_fstate == FSTATE_NOTFOUND)
   1607 					cf->cf_fstate = FSTATE_FOUND;
   1608 			}
   1609 		}
   1610 	}
   1611 	device_register(dev, aux);
   1612 
   1613 	/* Let userland know */
   1614 	devmon_report_device(dev, true);
   1615 
   1616 	(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
   1617 
   1618 	if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
   1619 	    && !device_pmf_is_registered(dev))
   1620 		aprint_debug_dev(dev,
   1621 		    "WARNING: power management not supported\n");
   1622 
   1623 	config_process_deferred(&deferred_config_queue, dev);
   1624 
   1625 	device_register_post_config(dev, aux);
   1626 	return dev;
   1627 }
   1628 
   1629 device_t
   1630 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
   1631 {
   1632 
   1633 	return config_attach_loc(parent, cf, NULL, aux, print);
   1634 }
   1635 
   1636 /*
   1637  * As above, but for pseudo-devices.  Pseudo-devices attached in this
   1638  * way are silently inserted into the device tree, and their children
   1639  * attached.
   1640  *
   1641  * Note that because pseudo-devices are attached silently, any information
   1642  * the attach routine wishes to print should be prefixed with the device
   1643  * name by the attach routine.
   1644  */
   1645 device_t
   1646 config_attach_pseudo(cfdata_t cf)
   1647 {
   1648 	device_t dev;
   1649 
   1650 	dev = config_devalloc(ROOT, cf, NULL);
   1651 	if (!dev)
   1652 		return NULL;
   1653 
   1654 	/* XXX mark busy in cfdata */
   1655 
   1656 	if (cf->cf_fstate != FSTATE_STAR) {
   1657 		KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
   1658 		cf->cf_fstate = FSTATE_FOUND;
   1659 	}
   1660 
   1661 	config_devlink(dev);
   1662 
   1663 #if 0	/* XXXJRT not yet */
   1664 	device_register(dev, NULL);	/* like a root node */
   1665 #endif
   1666 
   1667 	/* Let userland know */
   1668 	devmon_report_device(dev, true);
   1669 
   1670 	(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
   1671 
   1672 	config_process_deferred(&deferred_config_queue, dev);
   1673 	return dev;
   1674 }
   1675 
   1676 /*
   1677  * Caller must hold alldevs_lock.
   1678  */
   1679 static void
   1680 config_collect_garbage(struct devicelist *garbage)
   1681 {
   1682 	device_t dv;
   1683 
   1684 	KASSERT(!cpu_intr_p());
   1685 	KASSERT(!cpu_softintr_p());
   1686 	KASSERT(mutex_owned(&alldevs_lock));
   1687 
   1688 	while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
   1689 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   1690 			if (dv->dv_del_gen != 0)
   1691 				break;
   1692 		}
   1693 		if (dv == NULL) {
   1694 			alldevs_garbage = false;
   1695 			break;
   1696 		}
   1697 		config_devunlink(dv, garbage);
   1698 	}
   1699 	KASSERT(mutex_owned(&alldevs_lock));
   1700 }
   1701 
   1702 static void
   1703 config_dump_garbage(struct devicelist *garbage)
   1704 {
   1705 	device_t dv;
   1706 
   1707 	while ((dv = TAILQ_FIRST(garbage)) != NULL) {
   1708 		TAILQ_REMOVE(garbage, dv, dv_list);
   1709 		config_devdelete(dv);
   1710 	}
   1711 }
   1712 
   1713 /*
   1714  * Detach a device.  Optionally forced (e.g. because of hardware
   1715  * removal) and quiet.  Returns zero if successful, non-zero
   1716  * (an error code) otherwise.
   1717  *
   1718  * Note that this code wants to be run from a process context, so
   1719  * that the detach can sleep to allow processes which have a device
   1720  * open to run and unwind their stacks.
   1721  */
   1722 int
   1723 config_detach(device_t dev, int flags)
   1724 {
   1725 	struct alldevs_foray af;
   1726 	struct cftable *ct;
   1727 	cfdata_t cf;
   1728 	const struct cfattach *ca;
   1729 	struct cfdriver *cd;
   1730 	device_t d __diagused;
   1731 	int rv = 0;
   1732 
   1733 	cf = dev->dv_cfdata;
   1734 	KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
   1735 		cf->cf_fstate == FSTATE_STAR),
   1736 	    "config_detach: %s: bad device fstate: %d",
   1737 	    device_xname(dev), cf ? cf->cf_fstate : -1);
   1738 
   1739 	cd = dev->dv_cfdriver;
   1740 	KASSERT(cd != NULL);
   1741 
   1742 	ca = dev->dv_cfattach;
   1743 	KASSERT(ca != NULL);
   1744 
   1745 	mutex_enter(&alldevs_lock);
   1746 	if (dev->dv_del_gen != 0) {
   1747 		mutex_exit(&alldevs_lock);
   1748 #ifdef DIAGNOSTIC
   1749 		printf("%s: %s is already detached\n", __func__,
   1750 		    device_xname(dev));
   1751 #endif /* DIAGNOSTIC */
   1752 		return ENOENT;
   1753 	}
   1754 	alldevs_nwrite++;
   1755 	mutex_exit(&alldevs_lock);
   1756 
   1757 	if (!detachall &&
   1758 	    (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
   1759 	    (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
   1760 		rv = EOPNOTSUPP;
   1761 	} else if (ca->ca_detach != NULL) {
   1762 		rv = (*ca->ca_detach)(dev, flags);
   1763 	} else
   1764 		rv = EOPNOTSUPP;
   1765 
   1766 	/*
   1767 	 * If it was not possible to detach the device, then we either
   1768 	 * panic() (for the forced but failed case), or return an error.
   1769 	 *
   1770 	 * If it was possible to detach the device, ensure that the
   1771 	 * device is deactivated.
   1772 	 */
   1773 	if (rv == 0)
   1774 		dev->dv_flags &= ~DVF_ACTIVE;
   1775 	else if ((flags & DETACH_FORCE) == 0)
   1776 		goto out;
   1777 	else {
   1778 		panic("config_detach: forced detach of %s failed (%d)",
   1779 		    device_xname(dev), rv);
   1780 	}
   1781 
   1782 	/*
   1783 	 * The device has now been successfully detached.
   1784 	 */
   1785 
   1786 	/* Let userland know */
   1787 	devmon_report_device(dev, false);
   1788 
   1789 #ifdef DIAGNOSTIC
   1790 	/*
   1791 	 * Sanity: If you're successfully detached, you should have no
   1792 	 * children.  (Note that because children must be attached
   1793 	 * after parents, we only need to search the latter part of
   1794 	 * the list.)
   1795 	 */
   1796 	for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
   1797 	    d = TAILQ_NEXT(d, dv_list)) {
   1798 		if (d->dv_parent == dev && d->dv_del_gen == 0) {
   1799 			printf("config_detach: detached device %s"
   1800 			    " has children %s\n", device_xname(dev),
   1801 			    device_xname(d));
   1802 			panic("config_detach");
   1803 		}
   1804 	}
   1805 #endif
   1806 
   1807 	/* notify the parent that the child is gone */
   1808 	if (dev->dv_parent) {
   1809 		device_t p = dev->dv_parent;
   1810 		if (p->dv_cfattach->ca_childdetached)
   1811 			(*p->dv_cfattach->ca_childdetached)(p, dev);
   1812 	}
   1813 
   1814 	/*
   1815 	 * Mark cfdata to show that the unit can be reused, if possible.
   1816 	 */
   1817 	TAILQ_FOREACH(ct, &allcftables, ct_list) {
   1818 		for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
   1819 			if (STREQ(cf->cf_name, cd->cd_name)) {
   1820 				if (cf->cf_fstate == FSTATE_FOUND &&
   1821 				    cf->cf_unit == dev->dv_unit)
   1822 					cf->cf_fstate = FSTATE_NOTFOUND;
   1823 			}
   1824 		}
   1825 	}
   1826 
   1827 	if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
   1828 		aprint_normal_dev(dev, "detached\n");
   1829 
   1830 out:
   1831 	config_alldevs_enter(&af);
   1832 	KASSERT(alldevs_nwrite != 0);
   1833 	--alldevs_nwrite;
   1834 	if (rv == 0 && dev->dv_del_gen == 0) {
   1835 		if (alldevs_nwrite == 0 && alldevs_nread == 0)
   1836 			config_devunlink(dev, &af.af_garbage);
   1837 		else {
   1838 			dev->dv_del_gen = alldevs_gen;
   1839 			alldevs_garbage = true;
   1840 		}
   1841 	}
   1842 	config_alldevs_exit(&af);
   1843 
   1844 	return rv;
   1845 }
   1846 
   1847 int
   1848 config_detach_children(device_t parent, int flags)
   1849 {
   1850 	device_t dv;
   1851 	deviter_t di;
   1852 	int error = 0;
   1853 
   1854 	for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
   1855 	     dv = deviter_next(&di)) {
   1856 		if (device_parent(dv) != parent)
   1857 			continue;
   1858 		if ((error = config_detach(dv, flags)) != 0)
   1859 			break;
   1860 	}
   1861 	deviter_release(&di);
   1862 	return error;
   1863 }
   1864 
   1865 device_t
   1866 shutdown_first(struct shutdown_state *s)
   1867 {
   1868 	if (!s->initialized) {
   1869 		deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
   1870 		s->initialized = true;
   1871 	}
   1872 	return shutdown_next(s);
   1873 }
   1874 
   1875 device_t
   1876 shutdown_next(struct shutdown_state *s)
   1877 {
   1878 	device_t dv;
   1879 
   1880 	while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
   1881 		;
   1882 
   1883 	if (dv == NULL)
   1884 		s->initialized = false;
   1885 
   1886 	return dv;
   1887 }
   1888 
   1889 bool
   1890 config_detach_all(int how)
   1891 {
   1892 	static struct shutdown_state s;
   1893 	device_t curdev;
   1894 	bool progress = false;
   1895 	int flags;
   1896 
   1897 	if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
   1898 		return false;
   1899 
   1900 	if ((how & RB_POWERDOWN) == RB_POWERDOWN)
   1901 		flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
   1902 	else
   1903 		flags = DETACH_SHUTDOWN;
   1904 
   1905 	for (curdev = shutdown_first(&s); curdev != NULL;
   1906 	     curdev = shutdown_next(&s)) {
   1907 		aprint_debug(" detaching %s, ", device_xname(curdev));
   1908 		if (config_detach(curdev, flags) == 0) {
   1909 			progress = true;
   1910 			aprint_debug("success.");
   1911 		} else
   1912 			aprint_debug("failed.");
   1913 	}
   1914 	return progress;
   1915 }
   1916 
   1917 static bool
   1918 device_is_ancestor_of(device_t ancestor, device_t descendant)
   1919 {
   1920 	device_t dv;
   1921 
   1922 	for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
   1923 		if (device_parent(dv) == ancestor)
   1924 			return true;
   1925 	}
   1926 	return false;
   1927 }
   1928 
   1929 int
   1930 config_deactivate(device_t dev)
   1931 {
   1932 	deviter_t di;
   1933 	const struct cfattach *ca;
   1934 	device_t descendant;
   1935 	int s, rv = 0, oflags;
   1936 
   1937 	for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
   1938 	     descendant != NULL;
   1939 	     descendant = deviter_next(&di)) {
   1940 		if (dev != descendant &&
   1941 		    !device_is_ancestor_of(dev, descendant))
   1942 			continue;
   1943 
   1944 		if ((descendant->dv_flags & DVF_ACTIVE) == 0)
   1945 			continue;
   1946 
   1947 		ca = descendant->dv_cfattach;
   1948 		oflags = descendant->dv_flags;
   1949 
   1950 		descendant->dv_flags &= ~DVF_ACTIVE;
   1951 		if (ca->ca_activate == NULL)
   1952 			continue;
   1953 		s = splhigh();
   1954 		rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
   1955 		splx(s);
   1956 		if (rv != 0)
   1957 			descendant->dv_flags = oflags;
   1958 	}
   1959 	deviter_release(&di);
   1960 	return rv;
   1961 }
   1962 
   1963 /*
   1964  * Defer the configuration of the specified device until all
   1965  * of its parent's devices have been attached.
   1966  */
   1967 void
   1968 config_defer(device_t dev, void (*func)(device_t))
   1969 {
   1970 	struct deferred_config *dc;
   1971 
   1972 	if (dev->dv_parent == NULL)
   1973 		panic("config_defer: can't defer config of a root device");
   1974 
   1975 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   1976 
   1977 	config_pending_incr(dev);
   1978 
   1979 	mutex_enter(&config_misc_lock);
   1980 #ifdef DIAGNOSTIC
   1981 	struct deferred_config *odc;
   1982 	TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
   1983 		if (odc->dc_dev == dev)
   1984 			panic("config_defer: deferred twice");
   1985 	}
   1986 #endif
   1987 	dc->dc_dev = dev;
   1988 	dc->dc_func = func;
   1989 	TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
   1990 	mutex_exit(&config_misc_lock);
   1991 }
   1992 
   1993 /*
   1994  * Defer some autoconfiguration for a device until after interrupts
   1995  * are enabled.
   1996  */
   1997 void
   1998 config_interrupts(device_t dev, void (*func)(device_t))
   1999 {
   2000 	struct deferred_config *dc;
   2001 
   2002 	/*
   2003 	 * If interrupts are enabled, callback now.
   2004 	 */
   2005 	if (cold == 0) {
   2006 		(*func)(dev);
   2007 		return;
   2008 	}
   2009 
   2010 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2011 
   2012 	config_pending_incr(dev);
   2013 
   2014 	mutex_enter(&config_misc_lock);
   2015 #ifdef DIAGNOSTIC
   2016 	struct deferred_config *odc;
   2017 	TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
   2018 		if (odc->dc_dev == dev)
   2019 			panic("config_interrupts: deferred twice");
   2020 	}
   2021 #endif
   2022 	dc->dc_dev = dev;
   2023 	dc->dc_func = func;
   2024 	TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
   2025 	dev->dv_flags |= DVF_ATTACH_INPROGRESS;
   2026 	mutex_exit(&config_misc_lock);
   2027 }
   2028 
   2029 /*
   2030  * Defer some autoconfiguration for a device until after root file system
   2031  * is mounted (to load firmware etc).
   2032  */
   2033 void
   2034 config_mountroot(device_t dev, void (*func)(device_t))
   2035 {
   2036 	struct deferred_config *dc;
   2037 
   2038 	/*
   2039 	 * If root file system is mounted, callback now.
   2040 	 */
   2041 	if (root_is_mounted) {
   2042 		(*func)(dev);
   2043 		return;
   2044 	}
   2045 
   2046 	dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
   2047 
   2048 	mutex_enter(&config_misc_lock);
   2049 #ifdef DIAGNOSTIC
   2050 	struct deferred_config *odc;
   2051 	TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
   2052 		if (odc->dc_dev == dev)
   2053 			panic("%s: deferred twice", __func__);
   2054 	}
   2055 #endif
   2056 
   2057 	dc->dc_dev = dev;
   2058 	dc->dc_func = func;
   2059 	TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
   2060 	mutex_exit(&config_misc_lock);
   2061 }
   2062 
   2063 /*
   2064  * Process a deferred configuration queue.
   2065  */
   2066 static void
   2067 config_process_deferred(struct deferred_config_head *queue, device_t parent)
   2068 {
   2069 	struct deferred_config *dc;
   2070 
   2071 	mutex_enter(&config_misc_lock);
   2072 	dc = TAILQ_FIRST(queue);
   2073 	while (dc) {
   2074 		if (parent == NULL || dc->dc_dev->dv_parent == parent) {
   2075 			TAILQ_REMOVE(queue, dc, dc_queue);
   2076 			mutex_exit(&config_misc_lock);
   2077 
   2078 			(*dc->dc_func)(dc->dc_dev);
   2079 			config_pending_decr(dc->dc_dev);
   2080 			kmem_free(dc, sizeof(*dc));
   2081 
   2082 			mutex_enter(&config_misc_lock);
   2083 			/* Restart, queue might have changed */
   2084 			dc = TAILQ_FIRST(queue);
   2085 		} else {
   2086 			dc = TAILQ_NEXT(dc, dc_queue);
   2087 		}
   2088 	}
   2089 	mutex_exit(&config_misc_lock);
   2090 }
   2091 
   2092 /*
   2093  * Manipulate the config_pending semaphore.
   2094  */
   2095 void
   2096 config_pending_incr(device_t dev)
   2097 {
   2098 
   2099 	mutex_enter(&config_misc_lock);
   2100 	config_pending++;
   2101 #ifdef DEBUG_AUTOCONF
   2102 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
   2103 #endif
   2104 	mutex_exit(&config_misc_lock);
   2105 }
   2106 
   2107 void
   2108 config_pending_decr(device_t dev)
   2109 {
   2110 
   2111 	KASSERT(0 < config_pending);
   2112 	mutex_enter(&config_misc_lock);
   2113 	config_pending--;
   2114 #ifdef DEBUG_AUTOCONF
   2115 	printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
   2116 #endif
   2117 	if (config_pending == 0)
   2118 		cv_broadcast(&config_misc_cv);
   2119 	mutex_exit(&config_misc_lock);
   2120 }
   2121 
   2122 /*
   2123  * Register a "finalization" routine.  Finalization routines are
   2124  * called iteratively once all real devices have been found during
   2125  * autoconfiguration, for as long as any one finalizer has done
   2126  * any work.
   2127  */
   2128 int
   2129 config_finalize_register(device_t dev, int (*fn)(device_t))
   2130 {
   2131 	struct finalize_hook *f;
   2132 
   2133 	/*
   2134 	 * If finalization has already been done, invoke the
   2135 	 * callback function now.
   2136 	 */
   2137 	if (config_finalize_done) {
   2138 		while ((*fn)(dev) != 0)
   2139 			/* loop */ ;
   2140 		return 0;
   2141 	}
   2142 
   2143 	/* Ensure this isn't already on the list. */
   2144 	TAILQ_FOREACH(f, &config_finalize_list, f_list) {
   2145 		if (f->f_func == fn && f->f_dev == dev)
   2146 			return EEXIST;
   2147 	}
   2148 
   2149 	f = kmem_alloc(sizeof(*f), KM_SLEEP);
   2150 	f->f_func = fn;
   2151 	f->f_dev = dev;
   2152 	TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
   2153 
   2154 	return 0;
   2155 }
   2156 
   2157 void
   2158 config_finalize(void)
   2159 {
   2160 	struct finalize_hook *f;
   2161 	struct pdevinit *pdev;
   2162 	extern struct pdevinit pdevinit[];
   2163 	int errcnt, rv;
   2164 
   2165 	/*
   2166 	 * Now that device driver threads have been created, wait for
   2167 	 * them to finish any deferred autoconfiguration.
   2168 	 */
   2169 	mutex_enter(&config_misc_lock);
   2170 	while (config_pending != 0)
   2171 		cv_wait(&config_misc_cv, &config_misc_lock);
   2172 	mutex_exit(&config_misc_lock);
   2173 
   2174 	KERNEL_LOCK(1, NULL);
   2175 
   2176 	/* Attach pseudo-devices. */
   2177 	for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
   2178 		(*pdev->pdev_attach)(pdev->pdev_count);
   2179 
   2180 	/* Run the hooks until none of them does any work. */
   2181 	do {
   2182 		rv = 0;
   2183 		TAILQ_FOREACH(f, &config_finalize_list, f_list)
   2184 			rv |= (*f->f_func)(f->f_dev);
   2185 	} while (rv != 0);
   2186 
   2187 	config_finalize_done = 1;
   2188 
   2189 	/* Now free all the hooks. */
   2190 	while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
   2191 		TAILQ_REMOVE(&config_finalize_list, f, f_list);
   2192 		kmem_free(f, sizeof(*f));
   2193 	}
   2194 
   2195 	KERNEL_UNLOCK_ONE(NULL);
   2196 
   2197 	errcnt = aprint_get_error_count();
   2198 	if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
   2199 	    (boothowto & AB_VERBOSE) == 0) {
   2200 		mutex_enter(&config_misc_lock);
   2201 		if (config_do_twiddle) {
   2202 			config_do_twiddle = 0;
   2203 			printf_nolog(" done.\n");
   2204 		}
   2205 		mutex_exit(&config_misc_lock);
   2206 	}
   2207 	if (errcnt != 0) {
   2208 		printf("WARNING: %d error%s while detecting hardware; "
   2209 		    "check system log.\n", errcnt,
   2210 		    errcnt == 1 ? "" : "s");
   2211 	}
   2212 }
   2213 
   2214 void
   2215 config_twiddle_init(void)
   2216 {
   2217 
   2218 	if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
   2219 		config_do_twiddle = 1;
   2220 	}
   2221 	callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
   2222 }
   2223 
   2224 void
   2225 config_twiddle_fn(void *cookie)
   2226 {
   2227 
   2228 	mutex_enter(&config_misc_lock);
   2229 	if (config_do_twiddle) {
   2230 		twiddle();
   2231 		callout_schedule(&config_twiddle_ch, mstohz(100));
   2232 	}
   2233 	mutex_exit(&config_misc_lock);
   2234 }
   2235 
   2236 static void
   2237 config_alldevs_enter(struct alldevs_foray *af)
   2238 {
   2239 	TAILQ_INIT(&af->af_garbage);
   2240 	mutex_enter(&alldevs_lock);
   2241 	config_collect_garbage(&af->af_garbage);
   2242 }
   2243 
   2244 static void
   2245 config_alldevs_exit(struct alldevs_foray *af)
   2246 {
   2247 	mutex_exit(&alldevs_lock);
   2248 	config_dump_garbage(&af->af_garbage);
   2249 }
   2250 
   2251 /*
   2252  * device_lookup:
   2253  *
   2254  *	Look up a device instance for a given driver.
   2255  */
   2256 device_t
   2257 device_lookup(cfdriver_t cd, int unit)
   2258 {
   2259 	device_t dv;
   2260 
   2261 	mutex_enter(&alldevs_lock);
   2262 	if (unit < 0 || unit >= cd->cd_ndevs)
   2263 		dv = NULL;
   2264 	else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
   2265 		dv = NULL;
   2266 	mutex_exit(&alldevs_lock);
   2267 
   2268 	return dv;
   2269 }
   2270 
   2271 /*
   2272  * device_lookup_private:
   2273  *
   2274  *	Look up a softc instance for a given driver.
   2275  */
   2276 void *
   2277 device_lookup_private(cfdriver_t cd, int unit)
   2278 {
   2279 
   2280 	return device_private(device_lookup(cd, unit));
   2281 }
   2282 
   2283 /*
   2284  * device_find_by_xname:
   2285  *
   2286  *	Returns the device of the given name or NULL if it doesn't exist.
   2287  */
   2288 device_t
   2289 device_find_by_xname(const char *name)
   2290 {
   2291 	device_t dv;
   2292 	deviter_t di;
   2293 
   2294 	for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
   2295 		if (strcmp(device_xname(dv), name) == 0)
   2296 			break;
   2297 	}
   2298 	deviter_release(&di);
   2299 
   2300 	return dv;
   2301 }
   2302 
   2303 /*
   2304  * device_find_by_driver_unit:
   2305  *
   2306  *	Returns the device of the given driver name and unit or
   2307  *	NULL if it doesn't exist.
   2308  */
   2309 device_t
   2310 device_find_by_driver_unit(const char *name, int unit)
   2311 {
   2312 	struct cfdriver *cd;
   2313 
   2314 	if ((cd = config_cfdriver_lookup(name)) == NULL)
   2315 		return NULL;
   2316 	return device_lookup(cd, unit);
   2317 }
   2318 
   2319 /*
   2320  * device_compatible_match:
   2321  *
   2322  *	Match a driver's "compatible" data against a device's
   2323  *	"compatible" strings.  If a match is found, we return
   2324  *	a weighted match result, and optionally the matching
   2325  *	entry.
   2326  */
   2327 int
   2328 device_compatible_match(const char **device_compats, int ndevice_compats,
   2329 			const struct device_compatible_entry *driver_compats,
   2330 			const struct device_compatible_entry **matching_entryp)
   2331 {
   2332 	const struct device_compatible_entry *dce = NULL;
   2333 	int i, match_weight;
   2334 
   2335 	if (ndevice_compats == 0 || device_compats == NULL ||
   2336 	    driver_compats == NULL)
   2337 		return 0;
   2338 
   2339 	/*
   2340 	 * We take the first match because we start with the most-specific
   2341 	 * device compatible string.
   2342 	 */
   2343 	for (i = 0, match_weight = ndevice_compats - 1;
   2344 	     i < ndevice_compats;
   2345 	     i++, match_weight--) {
   2346 		for (dce = driver_compats; dce->compat != NULL; dce++) {
   2347 			if (strcmp(dce->compat, device_compats[i]) == 0) {
   2348 				KASSERT(match_weight >= 0);
   2349 				if (matching_entryp)
   2350 					*matching_entryp = dce;
   2351 				return 1 + match_weight;
   2352 			}
   2353 		}
   2354 	}
   2355 	return 0;
   2356 }
   2357 
   2358 /*
   2359  * Power management related functions.
   2360  */
   2361 
   2362 bool
   2363 device_pmf_is_registered(device_t dev)
   2364 {
   2365 	return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
   2366 }
   2367 
   2368 bool
   2369 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
   2370 {
   2371 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2372 		return true;
   2373 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2374 		return false;
   2375 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2376 	    dev->dv_driver_suspend != NULL &&
   2377 	    !(*dev->dv_driver_suspend)(dev, qual))
   2378 		return false;
   2379 
   2380 	dev->dv_flags |= DVF_DRIVER_SUSPENDED;
   2381 	return true;
   2382 }
   2383 
   2384 bool
   2385 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
   2386 {
   2387 	if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2388 		return true;
   2389 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2390 		return false;
   2391 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
   2392 	    dev->dv_driver_resume != NULL &&
   2393 	    !(*dev->dv_driver_resume)(dev, qual))
   2394 		return false;
   2395 
   2396 	dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
   2397 	return true;
   2398 }
   2399 
   2400 bool
   2401 device_pmf_driver_shutdown(device_t dev, int how)
   2402 {
   2403 
   2404 	if (*dev->dv_driver_shutdown != NULL &&
   2405 	    !(*dev->dv_driver_shutdown)(dev, how))
   2406 		return false;
   2407 	return true;
   2408 }
   2409 
   2410 bool
   2411 device_pmf_driver_register(device_t dev,
   2412     bool (*suspend)(device_t, const pmf_qual_t *),
   2413     bool (*resume)(device_t, const pmf_qual_t *),
   2414     bool (*shutdown)(device_t, int))
   2415 {
   2416 	dev->dv_driver_suspend = suspend;
   2417 	dev->dv_driver_resume = resume;
   2418 	dev->dv_driver_shutdown = shutdown;
   2419 	dev->dv_flags |= DVF_POWER_HANDLERS;
   2420 	return true;
   2421 }
   2422 
   2423 static const char *
   2424 curlwp_name(void)
   2425 {
   2426 	if (curlwp->l_name != NULL)
   2427 		return curlwp->l_name;
   2428 	else
   2429 		return curlwp->l_proc->p_comm;
   2430 }
   2431 
   2432 void
   2433 device_pmf_driver_deregister(device_t dev)
   2434 {
   2435 	device_lock_t dvl = device_getlock(dev);
   2436 
   2437 	dev->dv_driver_suspend = NULL;
   2438 	dev->dv_driver_resume = NULL;
   2439 
   2440 	mutex_enter(&dvl->dvl_mtx);
   2441 	dev->dv_flags &= ~DVF_POWER_HANDLERS;
   2442 	while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
   2443 		/* Wake a thread that waits for the lock.  That
   2444 		 * thread will fail to acquire the lock, and then
   2445 		 * it will wake the next thread that waits for the
   2446 		 * lock, or else it will wake us.
   2447 		 */
   2448 		cv_signal(&dvl->dvl_cv);
   2449 		pmflock_debug(dev, __func__, __LINE__);
   2450 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2451 		pmflock_debug(dev, __func__, __LINE__);
   2452 	}
   2453 	mutex_exit(&dvl->dvl_mtx);
   2454 }
   2455 
   2456 bool
   2457 device_pmf_driver_child_register(device_t dev)
   2458 {
   2459 	device_t parent = device_parent(dev);
   2460 
   2461 	if (parent == NULL || parent->dv_driver_child_register == NULL)
   2462 		return true;
   2463 	return (*parent->dv_driver_child_register)(dev);
   2464 }
   2465 
   2466 void
   2467 device_pmf_driver_set_child_register(device_t dev,
   2468     bool (*child_register)(device_t))
   2469 {
   2470 	dev->dv_driver_child_register = child_register;
   2471 }
   2472 
   2473 static void
   2474 pmflock_debug(device_t dev, const char *func, int line)
   2475 {
   2476 	device_lock_t dvl = device_getlock(dev);
   2477 
   2478 	aprint_debug_dev(dev,
   2479 	    "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
   2480 	    curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
   2481 }
   2482 
   2483 static bool
   2484 device_pmf_lock1(device_t dev)
   2485 {
   2486 	device_lock_t dvl = device_getlock(dev);
   2487 
   2488 	while (device_pmf_is_registered(dev) &&
   2489 	    dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
   2490 		dvl->dvl_nwait++;
   2491 		pmflock_debug(dev, __func__, __LINE__);
   2492 		cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
   2493 		pmflock_debug(dev, __func__, __LINE__);
   2494 		dvl->dvl_nwait--;
   2495 	}
   2496 	if (!device_pmf_is_registered(dev)) {
   2497 		pmflock_debug(dev, __func__, __LINE__);
   2498 		/* We could not acquire the lock, but some other thread may
   2499 		 * wait for it, also.  Wake that thread.
   2500 		 */
   2501 		cv_signal(&dvl->dvl_cv);
   2502 		return false;
   2503 	}
   2504 	dvl->dvl_nlock++;
   2505 	dvl->dvl_holder = curlwp;
   2506 	pmflock_debug(dev, __func__, __LINE__);
   2507 	return true;
   2508 }
   2509 
   2510 bool
   2511 device_pmf_lock(device_t dev)
   2512 {
   2513 	bool rc;
   2514 	device_lock_t dvl = device_getlock(dev);
   2515 
   2516 	mutex_enter(&dvl->dvl_mtx);
   2517 	rc = device_pmf_lock1(dev);
   2518 	mutex_exit(&dvl->dvl_mtx);
   2519 
   2520 	return rc;
   2521 }
   2522 
   2523 void
   2524 device_pmf_unlock(device_t dev)
   2525 {
   2526 	device_lock_t dvl = device_getlock(dev);
   2527 
   2528 	KASSERT(dvl->dvl_nlock > 0);
   2529 	mutex_enter(&dvl->dvl_mtx);
   2530 	if (--dvl->dvl_nlock == 0)
   2531 		dvl->dvl_holder = NULL;
   2532 	cv_signal(&dvl->dvl_cv);
   2533 	pmflock_debug(dev, __func__, __LINE__);
   2534 	mutex_exit(&dvl->dvl_mtx);
   2535 }
   2536 
   2537 device_lock_t
   2538 device_getlock(device_t dev)
   2539 {
   2540 	return &dev->dv_lock;
   2541 }
   2542 
   2543 void *
   2544 device_pmf_bus_private(device_t dev)
   2545 {
   2546 	return dev->dv_bus_private;
   2547 }
   2548 
   2549 bool
   2550 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
   2551 {
   2552 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
   2553 		return true;
   2554 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
   2555 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
   2556 		return false;
   2557 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2558 	    dev->dv_bus_suspend != NULL &&
   2559 	    !(*dev->dv_bus_suspend)(dev, qual))
   2560 		return false;
   2561 
   2562 	dev->dv_flags |= DVF_BUS_SUSPENDED;
   2563 	return true;
   2564 }
   2565 
   2566 bool
   2567 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
   2568 {
   2569 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
   2570 		return true;
   2571 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
   2572 	    dev->dv_bus_resume != NULL &&
   2573 	    !(*dev->dv_bus_resume)(dev, qual))
   2574 		return false;
   2575 
   2576 	dev->dv_flags &= ~DVF_BUS_SUSPENDED;
   2577 	return true;
   2578 }
   2579 
   2580 bool
   2581 device_pmf_bus_shutdown(device_t dev, int how)
   2582 {
   2583 
   2584 	if (*dev->dv_bus_shutdown != NULL &&
   2585 	    !(*dev->dv_bus_shutdown)(dev, how))
   2586 		return false;
   2587 	return true;
   2588 }
   2589 
   2590 void
   2591 device_pmf_bus_register(device_t dev, void *priv,
   2592     bool (*suspend)(device_t, const pmf_qual_t *),
   2593     bool (*resume)(device_t, const pmf_qual_t *),
   2594     bool (*shutdown)(device_t, int), void (*deregister)(device_t))
   2595 {
   2596 	dev->dv_bus_private = priv;
   2597 	dev->dv_bus_resume = resume;
   2598 	dev->dv_bus_suspend = suspend;
   2599 	dev->dv_bus_shutdown = shutdown;
   2600 	dev->dv_bus_deregister = deregister;
   2601 }
   2602 
   2603 void
   2604 device_pmf_bus_deregister(device_t dev)
   2605 {
   2606 	if (dev->dv_bus_deregister == NULL)
   2607 		return;
   2608 	(*dev->dv_bus_deregister)(dev);
   2609 	dev->dv_bus_private = NULL;
   2610 	dev->dv_bus_suspend = NULL;
   2611 	dev->dv_bus_resume = NULL;
   2612 	dev->dv_bus_deregister = NULL;
   2613 }
   2614 
   2615 void *
   2616 device_pmf_class_private(device_t dev)
   2617 {
   2618 	return dev->dv_class_private;
   2619 }
   2620 
   2621 bool
   2622 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
   2623 {
   2624 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
   2625 		return true;
   2626 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2627 	    dev->dv_class_suspend != NULL &&
   2628 	    !(*dev->dv_class_suspend)(dev, qual))
   2629 		return false;
   2630 
   2631 	dev->dv_flags |= DVF_CLASS_SUSPENDED;
   2632 	return true;
   2633 }
   2634 
   2635 bool
   2636 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
   2637 {
   2638 	if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
   2639 		return true;
   2640 	if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
   2641 	    (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
   2642 		return false;
   2643 	if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
   2644 	    dev->dv_class_resume != NULL &&
   2645 	    !(*dev->dv_class_resume)(dev, qual))
   2646 		return false;
   2647 
   2648 	dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
   2649 	return true;
   2650 }
   2651 
   2652 void
   2653 device_pmf_class_register(device_t dev, void *priv,
   2654     bool (*suspend)(device_t, const pmf_qual_t *),
   2655     bool (*resume)(device_t, const pmf_qual_t *),
   2656     void (*deregister)(device_t))
   2657 {
   2658 	dev->dv_class_private = priv;
   2659 	dev->dv_class_suspend = suspend;
   2660 	dev->dv_class_resume = resume;
   2661 	dev->dv_class_deregister = deregister;
   2662 }
   2663 
   2664 void
   2665 device_pmf_class_deregister(device_t dev)
   2666 {
   2667 	if (dev->dv_class_deregister == NULL)
   2668 		return;
   2669 	(*dev->dv_class_deregister)(dev);
   2670 	dev->dv_class_private = NULL;
   2671 	dev->dv_class_suspend = NULL;
   2672 	dev->dv_class_resume = NULL;
   2673 	dev->dv_class_deregister = NULL;
   2674 }
   2675 
   2676 bool
   2677 device_active(device_t dev, devactive_t type)
   2678 {
   2679 	size_t i;
   2680 
   2681 	if (dev->dv_activity_count == 0)
   2682 		return false;
   2683 
   2684 	for (i = 0; i < dev->dv_activity_count; ++i) {
   2685 		if (dev->dv_activity_handlers[i] == NULL)
   2686 			break;
   2687 		(*dev->dv_activity_handlers[i])(dev, type);
   2688 	}
   2689 
   2690 	return true;
   2691 }
   2692 
   2693 bool
   2694 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
   2695 {
   2696 	void (**new_handlers)(device_t, devactive_t);
   2697 	void (**old_handlers)(device_t, devactive_t);
   2698 	size_t i, old_size, new_size;
   2699 	int s;
   2700 
   2701 	old_handlers = dev->dv_activity_handlers;
   2702 	old_size = dev->dv_activity_count;
   2703 
   2704 	KASSERT(old_size == 0 || old_handlers != NULL);
   2705 
   2706 	for (i = 0; i < old_size; ++i) {
   2707 		KASSERT(old_handlers[i] != handler);
   2708 		if (old_handlers[i] == NULL) {
   2709 			old_handlers[i] = handler;
   2710 			return true;
   2711 		}
   2712 	}
   2713 
   2714 	new_size = old_size + 4;
   2715 	new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
   2716 
   2717 	for (i = 0; i < old_size; ++i)
   2718 		new_handlers[i] = old_handlers[i];
   2719 	new_handlers[old_size] = handler;
   2720 	for (i = old_size+1; i < new_size; ++i)
   2721 		new_handlers[i] = NULL;
   2722 
   2723 	s = splhigh();
   2724 	dev->dv_activity_count = new_size;
   2725 	dev->dv_activity_handlers = new_handlers;
   2726 	splx(s);
   2727 
   2728 	if (old_size > 0)
   2729 		kmem_free(old_handlers, sizeof(void * [old_size]));
   2730 
   2731 	return true;
   2732 }
   2733 
   2734 void
   2735 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
   2736 {
   2737 	void (**old_handlers)(device_t, devactive_t);
   2738 	size_t i, old_size;
   2739 	int s;
   2740 
   2741 	old_handlers = dev->dv_activity_handlers;
   2742 	old_size = dev->dv_activity_count;
   2743 
   2744 	for (i = 0; i < old_size; ++i) {
   2745 		if (old_handlers[i] == handler)
   2746 			break;
   2747 		if (old_handlers[i] == NULL)
   2748 			return; /* XXX panic? */
   2749 	}
   2750 
   2751 	if (i == old_size)
   2752 		return; /* XXX panic? */
   2753 
   2754 	for (; i < old_size - 1; ++i) {
   2755 		if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
   2756 			continue;
   2757 
   2758 		if (i == 0) {
   2759 			s = splhigh();
   2760 			dev->dv_activity_count = 0;
   2761 			dev->dv_activity_handlers = NULL;
   2762 			splx(s);
   2763 			kmem_free(old_handlers, sizeof(void *[old_size]));
   2764 		}
   2765 		return;
   2766 	}
   2767 	old_handlers[i] = NULL;
   2768 }
   2769 
   2770 /* Return true iff the device_t `dev' exists at generation `gen'. */
   2771 static bool
   2772 device_exists_at(device_t dv, devgen_t gen)
   2773 {
   2774 	return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
   2775 	    dv->dv_add_gen <= gen;
   2776 }
   2777 
   2778 static bool
   2779 deviter_visits(const deviter_t *di, device_t dv)
   2780 {
   2781 	return device_exists_at(dv, di->di_gen);
   2782 }
   2783 
   2784 /*
   2785  * Device Iteration
   2786  *
   2787  * deviter_t: a device iterator.  Holds state for a "walk" visiting
   2788  *     each device_t's in the device tree.
   2789  *
   2790  * deviter_init(di, flags): initialize the device iterator `di'
   2791  *     to "walk" the device tree.  deviter_next(di) will return
   2792  *     the first device_t in the device tree, or NULL if there are
   2793  *     no devices.
   2794  *
   2795  *     `flags' is one or more of DEVITER_F_RW, indicating that the
   2796  *     caller intends to modify the device tree by calling
   2797  *     config_detach(9) on devices in the order that the iterator
   2798  *     returns them; DEVITER_F_ROOT_FIRST, asking for the devices
   2799  *     nearest the "root" of the device tree to be returned, first;
   2800  *     DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
   2801  *     the root of the device tree, first; and DEVITER_F_SHUTDOWN,
   2802  *     indicating both that deviter_init() should not respect any
   2803  *     locks on the device tree, and that deviter_next(di) may run
   2804  *     in more than one LWP before the walk has finished.
   2805  *
   2806  *     Only one DEVITER_F_RW iterator may be in the device tree at
   2807  *     once.
   2808  *
   2809  *     DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
   2810  *
   2811  *     Results are undefined if the flags DEVITER_F_ROOT_FIRST and
   2812  *     DEVITER_F_LEAVES_FIRST are used in combination.
   2813  *
   2814  * deviter_first(di, flags): initialize the device iterator `di'
   2815  *     and return the first device_t in the device tree, or NULL
   2816  *     if there are no devices.  The statement
   2817  *
   2818  *         dv = deviter_first(di);
   2819  *
   2820  *     is shorthand for
   2821  *
   2822  *         deviter_init(di);
   2823  *         dv = deviter_next(di);
   2824  *
   2825  * deviter_next(di): return the next device_t in the device tree,
   2826  *     or NULL if there are no more devices.  deviter_next(di)
   2827  *     is undefined if `di' was not initialized with deviter_init() or
   2828  *     deviter_first().
   2829  *
   2830  * deviter_release(di): stops iteration (subsequent calls to
   2831  *     deviter_next() will return NULL), releases any locks and
   2832  *     resources held by the device iterator.
   2833  *
   2834  * Device iteration does not return device_t's in any particular
   2835  * order.  An iterator will never return the same device_t twice.
   2836  * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
   2837  * is called repeatedly on the same `di', it will eventually return
   2838  * NULL.  It is ok to attach/detach devices during device iteration.
   2839  */
   2840 void
   2841 deviter_init(deviter_t *di, deviter_flags_t flags)
   2842 {
   2843 	device_t dv;
   2844 
   2845 	memset(di, 0, sizeof(*di));
   2846 
   2847 	if ((flags & DEVITER_F_SHUTDOWN) != 0)
   2848 		flags |= DEVITER_F_RW;
   2849 
   2850 	mutex_enter(&alldevs_lock);
   2851 	if ((flags & DEVITER_F_RW) != 0)
   2852 		alldevs_nwrite++;
   2853 	else
   2854 		alldevs_nread++;
   2855 	di->di_gen = alldevs_gen++;
   2856 	di->di_flags = flags;
   2857 
   2858 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2859 	case DEVITER_F_LEAVES_FIRST:
   2860 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2861 			if (!deviter_visits(di, dv))
   2862 				continue;
   2863 			di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
   2864 		}
   2865 		break;
   2866 	case DEVITER_F_ROOT_FIRST:
   2867 		TAILQ_FOREACH(dv, &alldevs, dv_list) {
   2868 			if (!deviter_visits(di, dv))
   2869 				continue;
   2870 			di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
   2871 		}
   2872 		break;
   2873 	default:
   2874 		break;
   2875 	}
   2876 
   2877 	deviter_reinit(di);
   2878 	mutex_exit(&alldevs_lock);
   2879 }
   2880 
   2881 static void
   2882 deviter_reinit(deviter_t *di)
   2883 {
   2884 
   2885 	KASSERT(mutex_owned(&alldevs_lock));
   2886 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2887 		di->di_prev = TAILQ_LAST(&alldevs, devicelist);
   2888 	else
   2889 		di->di_prev = TAILQ_FIRST(&alldevs);
   2890 }
   2891 
   2892 device_t
   2893 deviter_first(deviter_t *di, deviter_flags_t flags)
   2894 {
   2895 
   2896 	deviter_init(di, flags);
   2897 	return deviter_next(di);
   2898 }
   2899 
   2900 static device_t
   2901 deviter_next2(deviter_t *di)
   2902 {
   2903 	device_t dv;
   2904 
   2905 	KASSERT(mutex_owned(&alldevs_lock));
   2906 
   2907 	dv = di->di_prev;
   2908 
   2909 	if (dv == NULL)
   2910 		return NULL;
   2911 
   2912 	if ((di->di_flags & DEVITER_F_RW) != 0)
   2913 		di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
   2914 	else
   2915 		di->di_prev = TAILQ_NEXT(dv, dv_list);
   2916 
   2917 	return dv;
   2918 }
   2919 
   2920 static device_t
   2921 deviter_next1(deviter_t *di)
   2922 {
   2923 	device_t dv;
   2924 
   2925 	KASSERT(mutex_owned(&alldevs_lock));
   2926 
   2927 	do {
   2928 		dv = deviter_next2(di);
   2929 	} while (dv != NULL && !deviter_visits(di, dv));
   2930 
   2931 	return dv;
   2932 }
   2933 
   2934 device_t
   2935 deviter_next(deviter_t *di)
   2936 {
   2937 	device_t dv = NULL;
   2938 
   2939 	mutex_enter(&alldevs_lock);
   2940 	switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
   2941 	case 0:
   2942 		dv = deviter_next1(di);
   2943 		break;
   2944 	case DEVITER_F_LEAVES_FIRST:
   2945 		while (di->di_curdepth >= 0) {
   2946 			if ((dv = deviter_next1(di)) == NULL) {
   2947 				di->di_curdepth--;
   2948 				deviter_reinit(di);
   2949 			} else if (dv->dv_depth == di->di_curdepth)
   2950 				break;
   2951 		}
   2952 		break;
   2953 	case DEVITER_F_ROOT_FIRST:
   2954 		while (di->di_curdepth <= di->di_maxdepth) {
   2955 			if ((dv = deviter_next1(di)) == NULL) {
   2956 				di->di_curdepth++;
   2957 				deviter_reinit(di);
   2958 			} else if (dv->dv_depth == di->di_curdepth)
   2959 				break;
   2960 		}
   2961 		break;
   2962 	default:
   2963 		break;
   2964 	}
   2965 	mutex_exit(&alldevs_lock);
   2966 
   2967 	return dv;
   2968 }
   2969 
   2970 void
   2971 deviter_release(deviter_t *di)
   2972 {
   2973 	bool rw = (di->di_flags & DEVITER_F_RW) != 0;
   2974 
   2975 	mutex_enter(&alldevs_lock);
   2976 	if (rw)
   2977 		--alldevs_nwrite;
   2978 	else
   2979 		--alldevs_nread;
   2980 	/* XXX wake a garbage-collection thread */
   2981 	mutex_exit(&alldevs_lock);
   2982 }
   2983 
   2984 const char *
   2985 cfdata_ifattr(const struct cfdata *cf)
   2986 {
   2987 	return cf->cf_pspec->cfp_iattr;
   2988 }
   2989 
   2990 bool
   2991 ifattr_match(const char *snull, const char *t)
   2992 {
   2993 	return (snull == NULL) || strcmp(snull, t) == 0;
   2994 }
   2995 
   2996 void
   2997 null_childdetached(device_t self, device_t child)
   2998 {
   2999 	/* do nothing */
   3000 }
   3001 
   3002 static void
   3003 sysctl_detach_setup(struct sysctllog **clog)
   3004 {
   3005 
   3006 	sysctl_createv(clog, 0, NULL, NULL,
   3007 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3008 		CTLTYPE_BOOL, "detachall",
   3009 		SYSCTL_DESCR("Detach all devices at shutdown"),
   3010 		NULL, 0, &detachall, 0,
   3011 		CTL_KERN, CTL_CREATE, CTL_EOL);
   3012 }
   3013