subr_autoconf.c revision 1.267 1 /* $NetBSD: subr_autoconf.c,v 1.267 2020/02/25 19:14:05 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 1996, 2000 Christopher G. Demetriou
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the
18 * NetBSD Project. See http://www.NetBSD.org/ for
19 * information about NetBSD.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
35 */
36
37 /*
38 * Copyright (c) 1992, 1993
39 * The Regents of the University of California. All rights reserved.
40 *
41 * This software was developed by the Computer Systems Engineering group
42 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
43 * contributed to Berkeley.
44 *
45 * All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Lawrence Berkeley Laboratories.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 * 3. Neither the name of the University nor the names of its contributors
59 * may be used to endorse or promote products derived from this software
60 * without specific prior written permission.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 *
74 * from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
75 *
76 * @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
77 */
78
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.267 2020/02/25 19:14:05 jdolecek Exp $");
81
82 #ifdef _KERNEL_OPT
83 #include "opt_ddb.h"
84 #include "drvctl.h"
85 #endif
86
87 #include <sys/param.h>
88 #include <sys/device.h>
89 #include <sys/disklabel.h>
90 #include <sys/conf.h>
91 #include <sys/kauth.h>
92 #include <sys/kmem.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/errno.h>
96 #include <sys/proc.h>
97 #include <sys/reboot.h>
98 #include <sys/kthread.h>
99 #include <sys/buf.h>
100 #include <sys/dirent.h>
101 #include <sys/mount.h>
102 #include <sys/namei.h>
103 #include <sys/unistd.h>
104 #include <sys/fcntl.h>
105 #include <sys/lockf.h>
106 #include <sys/callout.h>
107 #include <sys/devmon.h>
108 #include <sys/cpu.h>
109 #include <sys/sysctl.h>
110
111 #include <sys/disk.h>
112
113 #include <sys/rndsource.h>
114
115 #include <machine/limits.h>
116
117 /*
118 * Autoconfiguration subroutines.
119 */
120
121 /*
122 * Device autoconfiguration timings are mixed into the entropy pool.
123 */
124 extern krndsource_t rnd_autoconf_source;
125
126 /*
127 * ioconf.c exports exactly two names: cfdata and cfroots. All system
128 * devices and drivers are found via these tables.
129 */
130 extern struct cfdata cfdata[];
131 extern const short cfroots[];
132
133 /*
134 * List of all cfdriver structures. We use this to detect duplicates
135 * when other cfdrivers are loaded.
136 */
137 struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
138 extern struct cfdriver * const cfdriver_list_initial[];
139
140 /*
141 * Initial list of cfattach's.
142 */
143 extern const struct cfattachinit cfattachinit[];
144
145 /*
146 * List of cfdata tables. We always have one such list -- the one
147 * built statically when the kernel was configured.
148 */
149 struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
150 static struct cftable initcftable;
151
152 #define ROOT ((device_t)NULL)
153
154 struct matchinfo {
155 cfsubmatch_t fn;
156 device_t parent;
157 const int *locs;
158 void *aux;
159 struct cfdata *match;
160 int pri;
161 };
162
163 struct alldevs_foray {
164 int af_s;
165 struct devicelist af_garbage;
166 };
167
168 static char *number(char *, int);
169 static void mapply(struct matchinfo *, cfdata_t);
170 static device_t config_devalloc(const device_t, const cfdata_t, const int *);
171 static void config_devdelete(device_t);
172 static void config_devunlink(device_t, struct devicelist *);
173 static void config_makeroom(int, struct cfdriver *);
174 static void config_devlink(device_t);
175 static void config_alldevs_enter(struct alldevs_foray *);
176 static void config_alldevs_exit(struct alldevs_foray *);
177 static void config_add_attrib_dict(device_t);
178
179 static void config_collect_garbage(struct devicelist *);
180 static void config_dump_garbage(struct devicelist *);
181
182 static void pmflock_debug(device_t, const char *, int);
183
184 static device_t deviter_next1(deviter_t *);
185 static void deviter_reinit(deviter_t *);
186
187 struct deferred_config {
188 TAILQ_ENTRY(deferred_config) dc_queue;
189 device_t dc_dev;
190 void (*dc_func)(device_t);
191 };
192
193 TAILQ_HEAD(deferred_config_head, deferred_config);
194
195 static struct deferred_config_head deferred_config_queue =
196 TAILQ_HEAD_INITIALIZER(deferred_config_queue);
197 static struct deferred_config_head interrupt_config_queue =
198 TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
199 static int interrupt_config_threads = 8;
200 static struct deferred_config_head mountroot_config_queue =
201 TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
202 static int mountroot_config_threads = 2;
203 static lwp_t **mountroot_config_lwpids;
204 static size_t mountroot_config_lwpids_size;
205 bool root_is_mounted = false;
206
207 static void config_process_deferred(struct deferred_config_head *, device_t);
208
209 /* Hooks to finalize configuration once all real devices have been found. */
210 struct finalize_hook {
211 TAILQ_ENTRY(finalize_hook) f_list;
212 int (*f_func)(device_t);
213 device_t f_dev;
214 };
215 static TAILQ_HEAD(, finalize_hook) config_finalize_list =
216 TAILQ_HEAD_INITIALIZER(config_finalize_list);
217 static int config_finalize_done;
218
219 /* list of all devices */
220 static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
221 static kmutex_t alldevs_lock __cacheline_aligned;
222 static devgen_t alldevs_gen = 1;
223 static int alldevs_nread = 0;
224 static int alldevs_nwrite = 0;
225 static bool alldevs_garbage = false;
226
227 static int config_pending; /* semaphore for mountroot */
228 static kmutex_t config_misc_lock;
229 static kcondvar_t config_misc_cv;
230
231 static bool detachall = false;
232
233 #define STREQ(s1, s2) \
234 (*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
235
236 static bool config_initialized = false; /* config_init() has been called. */
237
238 static int config_do_twiddle;
239 static callout_t config_twiddle_ch;
240
241 static void sysctl_detach_setup(struct sysctllog **);
242
243 int no_devmon_insert(const char *, prop_dictionary_t);
244 int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
245
246 typedef int (*cfdriver_fn)(struct cfdriver *);
247 static int
248 frob_cfdrivervec(struct cfdriver * const *cfdriverv,
249 cfdriver_fn drv_do, cfdriver_fn drv_undo,
250 const char *style, bool dopanic)
251 {
252 void (*pr)(const char *, ...) __printflike(1, 2) =
253 dopanic ? panic : printf;
254 int i, error = 0, e2 __diagused;
255
256 for (i = 0; cfdriverv[i] != NULL; i++) {
257 if ((error = drv_do(cfdriverv[i])) != 0) {
258 pr("configure: `%s' driver %s failed: %d",
259 cfdriverv[i]->cd_name, style, error);
260 goto bad;
261 }
262 }
263
264 KASSERT(error == 0);
265 return 0;
266
267 bad:
268 printf("\n");
269 for (i--; i >= 0; i--) {
270 e2 = drv_undo(cfdriverv[i]);
271 KASSERT(e2 == 0);
272 }
273
274 return error;
275 }
276
277 typedef int (*cfattach_fn)(const char *, struct cfattach *);
278 static int
279 frob_cfattachvec(const struct cfattachinit *cfattachv,
280 cfattach_fn att_do, cfattach_fn att_undo,
281 const char *style, bool dopanic)
282 {
283 const struct cfattachinit *cfai = NULL;
284 void (*pr)(const char *, ...) __printflike(1, 2) =
285 dopanic ? panic : printf;
286 int j = 0, error = 0, e2 __diagused;
287
288 for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
289 for (j = 0; cfai->cfai_list[j] != NULL; j++) {
290 if ((error = att_do(cfai->cfai_name,
291 cfai->cfai_list[j])) != 0) {
292 pr("configure: attachment `%s' "
293 "of `%s' driver %s failed: %d",
294 cfai->cfai_list[j]->ca_name,
295 cfai->cfai_name, style, error);
296 goto bad;
297 }
298 }
299 }
300
301 KASSERT(error == 0);
302 return 0;
303
304 bad:
305 /*
306 * Rollback in reverse order. dunno if super-important, but
307 * do that anyway. Although the code looks a little like
308 * someone did a little integration (in the math sense).
309 */
310 printf("\n");
311 if (cfai) {
312 bool last;
313
314 for (last = false; last == false; ) {
315 if (cfai == &cfattachv[0])
316 last = true;
317 for (j--; j >= 0; j--) {
318 e2 = att_undo(cfai->cfai_name,
319 cfai->cfai_list[j]);
320 KASSERT(e2 == 0);
321 }
322 if (!last) {
323 cfai--;
324 for (j = 0; cfai->cfai_list[j] != NULL; j++)
325 ;
326 }
327 }
328 }
329
330 return error;
331 }
332
333 /*
334 * Initialize the autoconfiguration data structures. Normally this
335 * is done by configure(), but some platforms need to do this very
336 * early (to e.g. initialize the console).
337 */
338 void
339 config_init(void)
340 {
341
342 KASSERT(config_initialized == false);
343
344 mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
345
346 mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
347 cv_init(&config_misc_cv, "cfgmisc");
348
349 callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
350
351 frob_cfdrivervec(cfdriver_list_initial,
352 config_cfdriver_attach, NULL, "bootstrap", true);
353 frob_cfattachvec(cfattachinit,
354 config_cfattach_attach, NULL, "bootstrap", true);
355
356 initcftable.ct_cfdata = cfdata;
357 TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
358
359 config_initialized = true;
360 }
361
362 /*
363 * Init or fini drivers and attachments. Either all or none
364 * are processed (via rollback). It would be nice if this were
365 * atomic to outside consumers, but with the current state of
366 * locking ...
367 */
368 int
369 config_init_component(struct cfdriver * const *cfdriverv,
370 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
371 {
372 int error;
373
374 if ((error = frob_cfdrivervec(cfdriverv,
375 config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
376 return error;
377 if ((error = frob_cfattachvec(cfattachv,
378 config_cfattach_attach, config_cfattach_detach,
379 "init", false)) != 0) {
380 frob_cfdrivervec(cfdriverv,
381 config_cfdriver_detach, NULL, "init rollback", true);
382 return error;
383 }
384 if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
385 frob_cfattachvec(cfattachv,
386 config_cfattach_detach, NULL, "init rollback", true);
387 frob_cfdrivervec(cfdriverv,
388 config_cfdriver_detach, NULL, "init rollback", true);
389 return error;
390 }
391
392 return 0;
393 }
394
395 int
396 config_fini_component(struct cfdriver * const *cfdriverv,
397 const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
398 {
399 int error;
400
401 if ((error = config_cfdata_detach(cfdatav)) != 0)
402 return error;
403 if ((error = frob_cfattachvec(cfattachv,
404 config_cfattach_detach, config_cfattach_attach,
405 "fini", false)) != 0) {
406 if (config_cfdata_attach(cfdatav, 0) != 0)
407 panic("config_cfdata fini rollback failed");
408 return error;
409 }
410 if ((error = frob_cfdrivervec(cfdriverv,
411 config_cfdriver_detach, config_cfdriver_attach,
412 "fini", false)) != 0) {
413 frob_cfattachvec(cfattachv,
414 config_cfattach_attach, NULL, "fini rollback", true);
415 if (config_cfdata_attach(cfdatav, 0) != 0)
416 panic("config_cfdata fini rollback failed");
417 return error;
418 }
419
420 return 0;
421 }
422
423 void
424 config_init_mi(void)
425 {
426
427 if (!config_initialized)
428 config_init();
429
430 sysctl_detach_setup(NULL);
431 }
432
433 void
434 config_deferred(device_t dev)
435 {
436 config_process_deferred(&deferred_config_queue, dev);
437 config_process_deferred(&interrupt_config_queue, dev);
438 config_process_deferred(&mountroot_config_queue, dev);
439 }
440
441 static void
442 config_interrupts_thread(void *cookie)
443 {
444 struct deferred_config *dc;
445 device_t dev;
446
447 mutex_enter(&config_misc_lock);
448 while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
449 TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
450 mutex_exit(&config_misc_lock);
451
452 dev = dc->dc_dev;
453 (*dc->dc_func)(dev);
454 if (!device_pmf_is_registered(dev))
455 aprint_debug_dev(dev,
456 "WARNING: power management not supported\n");
457 config_pending_decr(dev);
458 kmem_free(dc, sizeof(*dc));
459
460 mutex_enter(&config_misc_lock);
461 dev->dv_flags &= ~DVF_ATTACH_INPROGRESS;
462 }
463 mutex_exit(&config_misc_lock);
464
465 kthread_exit(0);
466 }
467
468 void
469 config_create_interruptthreads(void)
470 {
471 int i;
472
473 for (i = 0; i < interrupt_config_threads; i++) {
474 (void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
475 config_interrupts_thread, NULL, NULL, "configintr");
476 }
477 }
478
479 static void
480 config_mountroot_thread(void *cookie)
481 {
482 struct deferred_config *dc;
483
484 mutex_enter(&config_misc_lock);
485 while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
486 TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
487 mutex_exit(&config_misc_lock);
488
489 (*dc->dc_func)(dc->dc_dev);
490 kmem_free(dc, sizeof(*dc));
491
492 mutex_enter(&config_misc_lock);
493 }
494 mutex_exit(&config_misc_lock);
495
496 kthread_exit(0);
497 }
498
499 void
500 config_create_mountrootthreads(void)
501 {
502 int i;
503
504 if (!root_is_mounted)
505 root_is_mounted = true;
506
507 mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
508 mountroot_config_threads;
509 mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
510 KM_NOSLEEP);
511 KASSERT(mountroot_config_lwpids);
512 for (i = 0; i < mountroot_config_threads; i++) {
513 mountroot_config_lwpids[i] = 0;
514 (void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
515 NULL, config_mountroot_thread, NULL,
516 &mountroot_config_lwpids[i],
517 "configroot");
518 }
519 }
520
521 void
522 config_finalize_mountroot(void)
523 {
524 int i, error;
525
526 for (i = 0; i < mountroot_config_threads; i++) {
527 if (mountroot_config_lwpids[i] == 0)
528 continue;
529
530 error = kthread_join(mountroot_config_lwpids[i]);
531 if (error)
532 printf("%s: thread %x joined with error %d\n",
533 __func__, i, error);
534 }
535 kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
536 }
537
538 /*
539 * Announce device attach/detach to userland listeners.
540 */
541
542 int
543 no_devmon_insert(const char *name, prop_dictionary_t p)
544 {
545
546 return ENODEV;
547 }
548
549 static void
550 devmon_report_device(device_t dev, bool isattach)
551 {
552 prop_dictionary_t ev;
553 const char *parent;
554 const char *what;
555 device_t pdev = device_parent(dev);
556
557 /* If currently no drvctl device, just return */
558 if (devmon_insert_vec == no_devmon_insert)
559 return;
560
561 ev = prop_dictionary_create();
562 if (ev == NULL)
563 return;
564
565 what = (isattach ? "device-attach" : "device-detach");
566 parent = (pdev == NULL ? "root" : device_xname(pdev));
567 if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
568 !prop_dictionary_set_cstring(ev, "parent", parent)) {
569 prop_object_release(ev);
570 return;
571 }
572
573 if ((*devmon_insert_vec)(what, ev) != 0)
574 prop_object_release(ev);
575 }
576
577 /*
578 * Add a cfdriver to the system.
579 */
580 int
581 config_cfdriver_attach(struct cfdriver *cd)
582 {
583 struct cfdriver *lcd;
584
585 /* Make sure this driver isn't already in the system. */
586 LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
587 if (STREQ(lcd->cd_name, cd->cd_name))
588 return EEXIST;
589 }
590
591 LIST_INIT(&cd->cd_attach);
592 LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
593
594 return 0;
595 }
596
597 /*
598 * Remove a cfdriver from the system.
599 */
600 int
601 config_cfdriver_detach(struct cfdriver *cd)
602 {
603 struct alldevs_foray af;
604 int i, rc = 0;
605
606 config_alldevs_enter(&af);
607 /* Make sure there are no active instances. */
608 for (i = 0; i < cd->cd_ndevs; i++) {
609 if (cd->cd_devs[i] != NULL) {
610 rc = EBUSY;
611 break;
612 }
613 }
614 config_alldevs_exit(&af);
615
616 if (rc != 0)
617 return rc;
618
619 /* ...and no attachments loaded. */
620 if (LIST_EMPTY(&cd->cd_attach) == 0)
621 return EBUSY;
622
623 LIST_REMOVE(cd, cd_list);
624
625 KASSERT(cd->cd_devs == NULL);
626
627 return 0;
628 }
629
630 /*
631 * Look up a cfdriver by name.
632 */
633 struct cfdriver *
634 config_cfdriver_lookup(const char *name)
635 {
636 struct cfdriver *cd;
637
638 LIST_FOREACH(cd, &allcfdrivers, cd_list) {
639 if (STREQ(cd->cd_name, name))
640 return cd;
641 }
642
643 return NULL;
644 }
645
646 /*
647 * Add a cfattach to the specified driver.
648 */
649 int
650 config_cfattach_attach(const char *driver, struct cfattach *ca)
651 {
652 struct cfattach *lca;
653 struct cfdriver *cd;
654
655 cd = config_cfdriver_lookup(driver);
656 if (cd == NULL)
657 return ESRCH;
658
659 /* Make sure this attachment isn't already on this driver. */
660 LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
661 if (STREQ(lca->ca_name, ca->ca_name))
662 return EEXIST;
663 }
664
665 LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
666
667 return 0;
668 }
669
670 /*
671 * Remove a cfattach from the specified driver.
672 */
673 int
674 config_cfattach_detach(const char *driver, struct cfattach *ca)
675 {
676 struct alldevs_foray af;
677 struct cfdriver *cd;
678 device_t dev;
679 int i, rc = 0;
680
681 cd = config_cfdriver_lookup(driver);
682 if (cd == NULL)
683 return ESRCH;
684
685 config_alldevs_enter(&af);
686 /* Make sure there are no active instances. */
687 for (i = 0; i < cd->cd_ndevs; i++) {
688 if ((dev = cd->cd_devs[i]) == NULL)
689 continue;
690 if (dev->dv_cfattach == ca) {
691 rc = EBUSY;
692 break;
693 }
694 }
695 config_alldevs_exit(&af);
696
697 if (rc != 0)
698 return rc;
699
700 LIST_REMOVE(ca, ca_list);
701
702 return 0;
703 }
704
705 /*
706 * Look up a cfattach by name.
707 */
708 static struct cfattach *
709 config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
710 {
711 struct cfattach *ca;
712
713 LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
714 if (STREQ(ca->ca_name, atname))
715 return ca;
716 }
717
718 return NULL;
719 }
720
721 /*
722 * Look up a cfattach by driver/attachment name.
723 */
724 struct cfattach *
725 config_cfattach_lookup(const char *name, const char *atname)
726 {
727 struct cfdriver *cd;
728
729 cd = config_cfdriver_lookup(name);
730 if (cd == NULL)
731 return NULL;
732
733 return config_cfattach_lookup_cd(cd, atname);
734 }
735
736 /*
737 * Apply the matching function and choose the best. This is used
738 * a few times and we want to keep the code small.
739 */
740 static void
741 mapply(struct matchinfo *m, cfdata_t cf)
742 {
743 int pri;
744
745 if (m->fn != NULL) {
746 pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
747 } else {
748 pri = config_match(m->parent, cf, m->aux);
749 }
750 if (pri > m->pri) {
751 m->match = cf;
752 m->pri = pri;
753 }
754 }
755
756 int
757 config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
758 {
759 const struct cfiattrdata *ci;
760 const struct cflocdesc *cl;
761 int nlocs, i;
762
763 ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
764 KASSERT(ci);
765 nlocs = ci->ci_loclen;
766 KASSERT(!nlocs || locs);
767 for (i = 0; i < nlocs; i++) {
768 cl = &ci->ci_locdesc[i];
769 if (cl->cld_defaultstr != NULL &&
770 cf->cf_loc[i] == cl->cld_default)
771 continue;
772 if (cf->cf_loc[i] == locs[i])
773 continue;
774 return 0;
775 }
776
777 return config_match(parent, cf, aux);
778 }
779
780 /*
781 * Helper function: check whether the driver supports the interface attribute
782 * and return its descriptor structure.
783 */
784 static const struct cfiattrdata *
785 cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
786 {
787 const struct cfiattrdata * const *cpp;
788
789 if (cd->cd_attrs == NULL)
790 return 0;
791
792 for (cpp = cd->cd_attrs; *cpp; cpp++) {
793 if (STREQ((*cpp)->ci_name, ia)) {
794 /* Match. */
795 return *cpp;
796 }
797 }
798 return 0;
799 }
800
801 /*
802 * Lookup an interface attribute description by name.
803 * If the driver is given, consider only its supported attributes.
804 */
805 const struct cfiattrdata *
806 cfiattr_lookup(const char *name, const struct cfdriver *cd)
807 {
808 const struct cfdriver *d;
809 const struct cfiattrdata *ia;
810
811 if (cd)
812 return cfdriver_get_iattr(cd, name);
813
814 LIST_FOREACH(d, &allcfdrivers, cd_list) {
815 ia = cfdriver_get_iattr(d, name);
816 if (ia)
817 return ia;
818 }
819 return 0;
820 }
821
822 /*
823 * Determine if `parent' is a potential parent for a device spec based
824 * on `cfp'.
825 */
826 static int
827 cfparent_match(const device_t parent, const struct cfparent *cfp)
828 {
829 struct cfdriver *pcd;
830
831 /* We don't match root nodes here. */
832 if (cfp == NULL)
833 return 0;
834
835 pcd = parent->dv_cfdriver;
836 KASSERT(pcd != NULL);
837
838 /*
839 * First, ensure this parent has the correct interface
840 * attribute.
841 */
842 if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
843 return 0;
844
845 /*
846 * If no specific parent device instance was specified (i.e.
847 * we're attaching to the attribute only), we're done!
848 */
849 if (cfp->cfp_parent == NULL)
850 return 1;
851
852 /*
853 * Check the parent device's name.
854 */
855 if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
856 return 0; /* not the same parent */
857
858 /*
859 * Make sure the unit number matches.
860 */
861 if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
862 cfp->cfp_unit == parent->dv_unit)
863 return 1;
864
865 /* Unit numbers don't match. */
866 return 0;
867 }
868
869 /*
870 * Helper for config_cfdata_attach(): check all devices whether it could be
871 * parent any attachment in the config data table passed, and rescan.
872 */
873 static void
874 rescan_with_cfdata(const struct cfdata *cf)
875 {
876 device_t d;
877 const struct cfdata *cf1;
878 deviter_t di;
879
880
881 /*
882 * "alldevs" is likely longer than a modules's cfdata, so make it
883 * the outer loop.
884 */
885 for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
886
887 if (!(d->dv_cfattach->ca_rescan))
888 continue;
889
890 for (cf1 = cf; cf1->cf_name; cf1++) {
891
892 if (!cfparent_match(d, cf1->cf_pspec))
893 continue;
894
895 (*d->dv_cfattach->ca_rescan)(d,
896 cfdata_ifattr(cf1), cf1->cf_loc);
897
898 config_deferred(d);
899 }
900 }
901 deviter_release(&di);
902 }
903
904 /*
905 * Attach a supplemental config data table and rescan potential
906 * parent devices if required.
907 */
908 int
909 config_cfdata_attach(cfdata_t cf, int scannow)
910 {
911 struct cftable *ct;
912
913 ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
914 ct->ct_cfdata = cf;
915 TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
916
917 if (scannow)
918 rescan_with_cfdata(cf);
919
920 return 0;
921 }
922
923 /*
924 * Helper for config_cfdata_detach: check whether a device is
925 * found through any attachment in the config data table.
926 */
927 static int
928 dev_in_cfdata(device_t d, cfdata_t cf)
929 {
930 const struct cfdata *cf1;
931
932 for (cf1 = cf; cf1->cf_name; cf1++)
933 if (d->dv_cfdata == cf1)
934 return 1;
935
936 return 0;
937 }
938
939 /*
940 * Detach a supplemental config data table. Detach all devices found
941 * through that table (and thus keeping references to it) before.
942 */
943 int
944 config_cfdata_detach(cfdata_t cf)
945 {
946 device_t d;
947 int error = 0;
948 struct cftable *ct;
949 deviter_t di;
950
951 for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
952 d = deviter_next(&di)) {
953 if (!dev_in_cfdata(d, cf))
954 continue;
955 if ((error = config_detach(d, 0)) != 0)
956 break;
957 }
958 deviter_release(&di);
959 if (error) {
960 aprint_error_dev(d, "unable to detach instance\n");
961 return error;
962 }
963
964 TAILQ_FOREACH(ct, &allcftables, ct_list) {
965 if (ct->ct_cfdata == cf) {
966 TAILQ_REMOVE(&allcftables, ct, ct_list);
967 kmem_free(ct, sizeof(*ct));
968 return 0;
969 }
970 }
971
972 /* not found -- shouldn't happen */
973 return EINVAL;
974 }
975
976 /*
977 * Invoke the "match" routine for a cfdata entry on behalf of
978 * an external caller, usually a "submatch" routine.
979 */
980 int
981 config_match(device_t parent, cfdata_t cf, void *aux)
982 {
983 struct cfattach *ca;
984
985 ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
986 if (ca == NULL) {
987 /* No attachment for this entry, oh well. */
988 return 0;
989 }
990
991 return (*ca->ca_match)(parent, cf, aux);
992 }
993
994 /*
995 * Iterate over all potential children of some device, calling the given
996 * function (default being the child's match function) for each one.
997 * Nonzero returns are matches; the highest value returned is considered
998 * the best match. Return the `found child' if we got a match, or NULL
999 * otherwise. The `aux' pointer is simply passed on through.
1000 *
1001 * Note that this function is designed so that it can be used to apply
1002 * an arbitrary function to all potential children (its return value
1003 * can be ignored).
1004 */
1005 cfdata_t
1006 config_search_loc(cfsubmatch_t fn, device_t parent,
1007 const char *ifattr, const int *locs, void *aux)
1008 {
1009 struct cftable *ct;
1010 cfdata_t cf;
1011 struct matchinfo m;
1012
1013 KASSERT(config_initialized);
1014 KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
1015
1016 m.fn = fn;
1017 m.parent = parent;
1018 m.locs = locs;
1019 m.aux = aux;
1020 m.match = NULL;
1021 m.pri = 0;
1022
1023 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1024 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1025
1026 /* We don't match root nodes here. */
1027 if (!cf->cf_pspec)
1028 continue;
1029
1030 /*
1031 * Skip cf if no longer eligible, otherwise scan
1032 * through parents for one matching `parent', and
1033 * try match function.
1034 */
1035 if (cf->cf_fstate == FSTATE_FOUND)
1036 continue;
1037 if (cf->cf_fstate == FSTATE_DNOTFOUND ||
1038 cf->cf_fstate == FSTATE_DSTAR)
1039 continue;
1040
1041 /*
1042 * If an interface attribute was specified,
1043 * consider only children which attach to
1044 * that attribute.
1045 */
1046 if (ifattr && !STREQ(ifattr, cfdata_ifattr(cf)))
1047 continue;
1048
1049 if (cfparent_match(parent, cf->cf_pspec))
1050 mapply(&m, cf);
1051 }
1052 }
1053 return m.match;
1054 }
1055
1056 cfdata_t
1057 config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
1058 void *aux)
1059 {
1060
1061 return config_search_loc(fn, parent, ifattr, NULL, aux);
1062 }
1063
1064 /*
1065 * Find the given root device.
1066 * This is much like config_search, but there is no parent.
1067 * Don't bother with multiple cfdata tables; the root node
1068 * must always be in the initial table.
1069 */
1070 cfdata_t
1071 config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
1072 {
1073 cfdata_t cf;
1074 const short *p;
1075 struct matchinfo m;
1076
1077 m.fn = fn;
1078 m.parent = ROOT;
1079 m.aux = aux;
1080 m.match = NULL;
1081 m.pri = 0;
1082 m.locs = 0;
1083 /*
1084 * Look at root entries for matching name. We do not bother
1085 * with found-state here since only one root should ever be
1086 * searched (and it must be done first).
1087 */
1088 for (p = cfroots; *p >= 0; p++) {
1089 cf = &cfdata[*p];
1090 if (strcmp(cf->cf_name, rootname) == 0)
1091 mapply(&m, cf);
1092 }
1093 return m.match;
1094 }
1095
1096 static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
1097
1098 /*
1099 * The given `aux' argument describes a device that has been found
1100 * on the given parent, but not necessarily configured. Locate the
1101 * configuration data for that device (using the submatch function
1102 * provided, or using candidates' cd_match configuration driver
1103 * functions) and attach it, and return its device_t. If the device was
1104 * not configured, call the given `print' function and return NULL.
1105 */
1106 device_t
1107 config_found_sm_loc(device_t parent,
1108 const char *ifattr, const int *locs, void *aux,
1109 cfprint_t print, cfsubmatch_t submatch)
1110 {
1111 cfdata_t cf;
1112
1113 if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
1114 return(config_attach_loc(parent, cf, locs, aux, print));
1115 if (print) {
1116 if (config_do_twiddle && cold)
1117 twiddle();
1118 aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
1119 }
1120
1121 /*
1122 * This has the effect of mixing in a single timestamp to the
1123 * entropy pool. Experiments indicate the estimator will almost
1124 * always attribute one bit of entropy to this sample; analysis
1125 * of device attach/detach timestamps on FreeBSD indicates 4
1126 * bits of entropy/sample so this seems appropriately conservative.
1127 */
1128 rnd_add_uint32(&rnd_autoconf_source, 0);
1129 return NULL;
1130 }
1131
1132 device_t
1133 config_found_ia(device_t parent, const char *ifattr, void *aux,
1134 cfprint_t print)
1135 {
1136
1137 return config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL);
1138 }
1139
1140 device_t
1141 config_found(device_t parent, void *aux, cfprint_t print)
1142 {
1143
1144 return config_found_sm_loc(parent, NULL, NULL, aux, print, NULL);
1145 }
1146
1147 /*
1148 * As above, but for root devices.
1149 */
1150 device_t
1151 config_rootfound(const char *rootname, void *aux)
1152 {
1153 cfdata_t cf;
1154
1155 if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
1156 return config_attach(ROOT, cf, aux, NULL);
1157 aprint_error("root device %s not configured\n", rootname);
1158 return NULL;
1159 }
1160
1161 /* just like sprintf(buf, "%d") except that it works from the end */
1162 static char *
1163 number(char *ep, int n)
1164 {
1165
1166 *--ep = 0;
1167 while (n >= 10) {
1168 *--ep = (n % 10) + '0';
1169 n /= 10;
1170 }
1171 *--ep = n + '0';
1172 return ep;
1173 }
1174
1175 /*
1176 * Expand the size of the cd_devs array if necessary.
1177 *
1178 * The caller must hold alldevs_lock. config_makeroom() may release and
1179 * re-acquire alldevs_lock, so callers should re-check conditions such
1180 * as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
1181 * returns.
1182 */
1183 static void
1184 config_makeroom(int n, struct cfdriver *cd)
1185 {
1186 int ondevs, nndevs;
1187 device_t *osp, *nsp;
1188
1189 KASSERT(mutex_owned(&alldevs_lock));
1190 alldevs_nwrite++;
1191
1192 for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
1193 ;
1194
1195 while (n >= cd->cd_ndevs) {
1196 /*
1197 * Need to expand the array.
1198 */
1199 ondevs = cd->cd_ndevs;
1200 osp = cd->cd_devs;
1201
1202 /*
1203 * Release alldevs_lock around allocation, which may
1204 * sleep.
1205 */
1206 mutex_exit(&alldevs_lock);
1207 nsp = kmem_alloc(sizeof(device_t[nndevs]), KM_SLEEP);
1208 mutex_enter(&alldevs_lock);
1209
1210 /*
1211 * If another thread moved the array while we did
1212 * not hold alldevs_lock, try again.
1213 */
1214 if (cd->cd_devs != osp) {
1215 mutex_exit(&alldevs_lock);
1216 kmem_free(nsp, sizeof(device_t[nndevs]));
1217 mutex_enter(&alldevs_lock);
1218 continue;
1219 }
1220
1221 memset(nsp + ondevs, 0, sizeof(device_t[nndevs - ondevs]));
1222 if (ondevs != 0)
1223 memcpy(nsp, cd->cd_devs, sizeof(device_t[ondevs]));
1224
1225 cd->cd_ndevs = nndevs;
1226 cd->cd_devs = nsp;
1227 if (ondevs != 0) {
1228 mutex_exit(&alldevs_lock);
1229 kmem_free(osp, sizeof(device_t[ondevs]));
1230 mutex_enter(&alldevs_lock);
1231 }
1232 }
1233 KASSERT(mutex_owned(&alldevs_lock));
1234 alldevs_nwrite--;
1235 }
1236
1237 /*
1238 * Put dev into the devices list.
1239 */
1240 static void
1241 config_devlink(device_t dev)
1242 {
1243
1244 mutex_enter(&alldevs_lock);
1245
1246 KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
1247
1248 dev->dv_add_gen = alldevs_gen;
1249 /* It is safe to add a device to the tail of the list while
1250 * readers and writers are in the list.
1251 */
1252 TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
1253 mutex_exit(&alldevs_lock);
1254 }
1255
1256 static void
1257 config_devfree(device_t dev)
1258 {
1259 int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
1260
1261 if (dev->dv_cfattach->ca_devsize > 0)
1262 kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
1263 if (priv)
1264 kmem_free(dev, sizeof(*dev));
1265 }
1266
1267 /*
1268 * Caller must hold alldevs_lock.
1269 */
1270 static void
1271 config_devunlink(device_t dev, struct devicelist *garbage)
1272 {
1273 struct device_garbage *dg = &dev->dv_garbage;
1274 cfdriver_t cd = device_cfdriver(dev);
1275 int i;
1276
1277 KASSERT(mutex_owned(&alldevs_lock));
1278
1279 /* Unlink from device list. Link to garbage list. */
1280 TAILQ_REMOVE(&alldevs, dev, dv_list);
1281 TAILQ_INSERT_TAIL(garbage, dev, dv_list);
1282
1283 /* Remove from cfdriver's array. */
1284 cd->cd_devs[dev->dv_unit] = NULL;
1285
1286 /*
1287 * If the device now has no units in use, unlink its softc array.
1288 */
1289 for (i = 0; i < cd->cd_ndevs; i++) {
1290 if (cd->cd_devs[i] != NULL)
1291 break;
1292 }
1293 /* Nothing found. Unlink, now. Deallocate, later. */
1294 if (i == cd->cd_ndevs) {
1295 dg->dg_ndevs = cd->cd_ndevs;
1296 dg->dg_devs = cd->cd_devs;
1297 cd->cd_devs = NULL;
1298 cd->cd_ndevs = 0;
1299 }
1300 }
1301
1302 static void
1303 config_devdelete(device_t dev)
1304 {
1305 struct device_garbage *dg = &dev->dv_garbage;
1306 device_lock_t dvl = device_getlock(dev);
1307
1308 if (dg->dg_devs != NULL)
1309 kmem_free(dg->dg_devs, sizeof(device_t[dg->dg_ndevs]));
1310
1311 cv_destroy(&dvl->dvl_cv);
1312 mutex_destroy(&dvl->dvl_mtx);
1313
1314 KASSERT(dev->dv_properties != NULL);
1315 prop_object_release(dev->dv_properties);
1316
1317 if (dev->dv_activity_handlers)
1318 panic("%s with registered handlers", __func__);
1319
1320 if (dev->dv_locators) {
1321 size_t amount = *--dev->dv_locators;
1322 kmem_free(dev->dv_locators, amount);
1323 }
1324
1325 config_devfree(dev);
1326 }
1327
1328 static int
1329 config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
1330 {
1331 int unit;
1332
1333 if (cf->cf_fstate == FSTATE_STAR) {
1334 for (unit = cf->cf_unit; unit < cd->cd_ndevs; unit++)
1335 if (cd->cd_devs[unit] == NULL)
1336 break;
1337 /*
1338 * unit is now the unit of the first NULL device pointer,
1339 * or max(cd->cd_ndevs,cf->cf_unit).
1340 */
1341 } else {
1342 unit = cf->cf_unit;
1343 if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
1344 unit = -1;
1345 }
1346 return unit;
1347 }
1348
1349 static int
1350 config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
1351 {
1352 struct alldevs_foray af;
1353 int unit;
1354
1355 config_alldevs_enter(&af);
1356 for (;;) {
1357 unit = config_unit_nextfree(cd, cf);
1358 if (unit == -1)
1359 break;
1360 if (unit < cd->cd_ndevs) {
1361 cd->cd_devs[unit] = dev;
1362 dev->dv_unit = unit;
1363 break;
1364 }
1365 config_makeroom(unit, cd);
1366 }
1367 config_alldevs_exit(&af);
1368
1369 return unit;
1370 }
1371
1372 static device_t
1373 config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
1374 {
1375 cfdriver_t cd;
1376 cfattach_t ca;
1377 size_t lname, lunit;
1378 const char *xunit;
1379 int myunit;
1380 char num[10];
1381 device_t dev;
1382 void *dev_private;
1383 const struct cfiattrdata *ia;
1384 device_lock_t dvl;
1385
1386 cd = config_cfdriver_lookup(cf->cf_name);
1387 if (cd == NULL)
1388 return NULL;
1389
1390 ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
1391 if (ca == NULL)
1392 return NULL;
1393
1394 /* get memory for all device vars */
1395 KASSERTMSG((ca->ca_flags & DVF_PRIV_ALLOC)
1396 || ca->ca_devsize >= sizeof(struct device),
1397 "%s: %s (%zu < %zu)", __func__, cf->cf_atname, ca->ca_devsize,
1398 sizeof(struct device));
1399 if (ca->ca_devsize > 0) {
1400 dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
1401 } else {
1402 KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
1403 dev_private = NULL;
1404 }
1405
1406 if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
1407 dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
1408 } else {
1409 dev = dev_private;
1410 #ifdef DIAGNOSTIC
1411 printf("%s has not been converted to device_t\n", cd->cd_name);
1412 #endif
1413 KASSERT(dev != NULL);
1414 }
1415 dev->dv_class = cd->cd_class;
1416 dev->dv_cfdata = cf;
1417 dev->dv_cfdriver = cd;
1418 dev->dv_cfattach = ca;
1419 dev->dv_activity_count = 0;
1420 dev->dv_activity_handlers = NULL;
1421 dev->dv_private = dev_private;
1422 dev->dv_flags = ca->ca_flags; /* inherit flags from class */
1423
1424 myunit = config_unit_alloc(dev, cd, cf);
1425 if (myunit == -1) {
1426 config_devfree(dev);
1427 return NULL;
1428 }
1429
1430 /* compute length of name and decimal expansion of unit number */
1431 lname = strlen(cd->cd_name);
1432 xunit = number(&num[sizeof(num)], myunit);
1433 lunit = &num[sizeof(num)] - xunit;
1434 if (lname + lunit > sizeof(dev->dv_xname))
1435 panic("config_devalloc: device name too long");
1436
1437 dvl = device_getlock(dev);
1438
1439 mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
1440 cv_init(&dvl->dvl_cv, "pmfsusp");
1441
1442 memcpy(dev->dv_xname, cd->cd_name, lname);
1443 memcpy(dev->dv_xname + lname, xunit, lunit);
1444 dev->dv_parent = parent;
1445 if (parent != NULL)
1446 dev->dv_depth = parent->dv_depth + 1;
1447 else
1448 dev->dv_depth = 0;
1449 dev->dv_flags |= DVF_ACTIVE; /* always initially active */
1450 if (locs) {
1451 KASSERT(parent); /* no locators at root */
1452 ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
1453 dev->dv_locators =
1454 kmem_alloc(sizeof(int [ia->ci_loclen + 1]), KM_SLEEP);
1455 *dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
1456 memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
1457 }
1458 dev->dv_properties = prop_dictionary_create();
1459 KASSERT(dev->dv_properties != NULL);
1460
1461 prop_dictionary_set_cstring_nocopy(dev->dv_properties,
1462 "device-driver", dev->dv_cfdriver->cd_name);
1463 prop_dictionary_set_uint16(dev->dv_properties,
1464 "device-unit", dev->dv_unit);
1465 if (parent != NULL) {
1466 prop_dictionary_set_cstring(dev->dv_properties,
1467 "device-parent", device_xname(parent));
1468 }
1469
1470 if (dev->dv_cfdriver->cd_attrs != NULL)
1471 config_add_attrib_dict(dev);
1472
1473 return dev;
1474 }
1475
1476 /*
1477 * Create an array of device attach attributes and add it
1478 * to the device's dv_properties dictionary.
1479 *
1480 * <key>interface-attributes</key>
1481 * <array>
1482 * <dict>
1483 * <key>attribute-name</key>
1484 * <string>foo</string>
1485 * <key>locators</key>
1486 * <array>
1487 * <dict>
1488 * <key>loc-name</key>
1489 * <string>foo-loc1</string>
1490 * </dict>
1491 * <dict>
1492 * <key>loc-name</key>
1493 * <string>foo-loc2</string>
1494 * <key>default</key>
1495 * <string>foo-loc2-default</string>
1496 * </dict>
1497 * ...
1498 * </array>
1499 * </dict>
1500 * ...
1501 * </array>
1502 */
1503
1504 static void
1505 config_add_attrib_dict(device_t dev)
1506 {
1507 int i, j;
1508 const struct cfiattrdata *ci;
1509 prop_dictionary_t attr_dict, loc_dict;
1510 prop_array_t attr_array, loc_array;
1511
1512 if ((attr_array = prop_array_create()) == NULL)
1513 return;
1514
1515 for (i = 0; ; i++) {
1516 if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
1517 break;
1518 if ((attr_dict = prop_dictionary_create()) == NULL)
1519 break;
1520 prop_dictionary_set_cstring_nocopy(attr_dict, "attribute-name",
1521 ci->ci_name);
1522
1523 /* Create an array of the locator names and defaults */
1524
1525 if (ci->ci_loclen != 0 &&
1526 (loc_array = prop_array_create()) != NULL) {
1527 for (j = 0; j < ci->ci_loclen; j++) {
1528 loc_dict = prop_dictionary_create();
1529 if (loc_dict == NULL)
1530 continue;
1531 prop_dictionary_set_cstring_nocopy(loc_dict,
1532 "loc-name", ci->ci_locdesc[j].cld_name);
1533 if (ci->ci_locdesc[j].cld_defaultstr != NULL)
1534 prop_dictionary_set_cstring_nocopy(
1535 loc_dict, "default",
1536 ci->ci_locdesc[j].cld_defaultstr);
1537 prop_array_set(loc_array, j, loc_dict);
1538 prop_object_release(loc_dict);
1539 }
1540 prop_dictionary_set_and_rel(attr_dict, "locators",
1541 loc_array);
1542 }
1543 prop_array_add(attr_array, attr_dict);
1544 prop_object_release(attr_dict);
1545 }
1546 if (i == 0)
1547 prop_object_release(attr_array);
1548 else
1549 prop_dictionary_set_and_rel(dev->dv_properties,
1550 "interface-attributes", attr_array);
1551
1552 return;
1553 }
1554
1555 /*
1556 * Attach a found device.
1557 */
1558 device_t
1559 config_attach_loc(device_t parent, cfdata_t cf,
1560 const int *locs, void *aux, cfprint_t print)
1561 {
1562 device_t dev;
1563 struct cftable *ct;
1564 const char *drvname;
1565
1566 dev = config_devalloc(parent, cf, locs);
1567 if (!dev)
1568 panic("config_attach: allocation of device softc failed");
1569
1570 /* XXX redundant - see below? */
1571 if (cf->cf_fstate != FSTATE_STAR) {
1572 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1573 cf->cf_fstate = FSTATE_FOUND;
1574 }
1575
1576 config_devlink(dev);
1577
1578 if (config_do_twiddle && cold)
1579 twiddle();
1580 else
1581 aprint_naive("Found ");
1582 /*
1583 * We want the next two printfs for normal, verbose, and quiet,
1584 * but not silent (in which case, we're twiddling, instead).
1585 */
1586 if (parent == ROOT) {
1587 aprint_naive("%s (root)", device_xname(dev));
1588 aprint_normal("%s (root)", device_xname(dev));
1589 } else {
1590 aprint_naive("%s at %s", device_xname(dev),
1591 device_xname(parent));
1592 aprint_normal("%s at %s", device_xname(dev),
1593 device_xname(parent));
1594 if (print)
1595 (void) (*print)(aux, NULL);
1596 }
1597
1598 /*
1599 * Before attaching, clobber any unfound devices that are
1600 * otherwise identical.
1601 * XXX code above is redundant?
1602 */
1603 drvname = dev->dv_cfdriver->cd_name;
1604 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1605 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1606 if (STREQ(cf->cf_name, drvname) &&
1607 cf->cf_unit == dev->dv_unit) {
1608 if (cf->cf_fstate == FSTATE_NOTFOUND)
1609 cf->cf_fstate = FSTATE_FOUND;
1610 }
1611 }
1612 }
1613 device_register(dev, aux);
1614
1615 /* Let userland know */
1616 devmon_report_device(dev, true);
1617
1618 (*dev->dv_cfattach->ca_attach)(parent, dev, aux);
1619
1620 if (((dev->dv_flags & DVF_ATTACH_INPROGRESS) == 0)
1621 && !device_pmf_is_registered(dev))
1622 aprint_debug_dev(dev,
1623 "WARNING: power management not supported\n");
1624
1625 config_process_deferred(&deferred_config_queue, dev);
1626
1627 device_register_post_config(dev, aux);
1628 return dev;
1629 }
1630
1631 device_t
1632 config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
1633 {
1634
1635 return config_attach_loc(parent, cf, NULL, aux, print);
1636 }
1637
1638 /*
1639 * As above, but for pseudo-devices. Pseudo-devices attached in this
1640 * way are silently inserted into the device tree, and their children
1641 * attached.
1642 *
1643 * Note that because pseudo-devices are attached silently, any information
1644 * the attach routine wishes to print should be prefixed with the device
1645 * name by the attach routine.
1646 */
1647 device_t
1648 config_attach_pseudo(cfdata_t cf)
1649 {
1650 device_t dev;
1651
1652 dev = config_devalloc(ROOT, cf, NULL);
1653 if (!dev)
1654 return NULL;
1655
1656 /* XXX mark busy in cfdata */
1657
1658 if (cf->cf_fstate != FSTATE_STAR) {
1659 KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
1660 cf->cf_fstate = FSTATE_FOUND;
1661 }
1662
1663 config_devlink(dev);
1664
1665 #if 0 /* XXXJRT not yet */
1666 device_register(dev, NULL); /* like a root node */
1667 #endif
1668
1669 /* Let userland know */
1670 devmon_report_device(dev, true);
1671
1672 (*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
1673
1674 config_process_deferred(&deferred_config_queue, dev);
1675 return dev;
1676 }
1677
1678 /*
1679 * Caller must hold alldevs_lock.
1680 */
1681 static void
1682 config_collect_garbage(struct devicelist *garbage)
1683 {
1684 device_t dv;
1685
1686 KASSERT(!cpu_intr_p());
1687 KASSERT(!cpu_softintr_p());
1688 KASSERT(mutex_owned(&alldevs_lock));
1689
1690 while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
1691 TAILQ_FOREACH(dv, &alldevs, dv_list) {
1692 if (dv->dv_del_gen != 0)
1693 break;
1694 }
1695 if (dv == NULL) {
1696 alldevs_garbage = false;
1697 break;
1698 }
1699 config_devunlink(dv, garbage);
1700 }
1701 KASSERT(mutex_owned(&alldevs_lock));
1702 }
1703
1704 static void
1705 config_dump_garbage(struct devicelist *garbage)
1706 {
1707 device_t dv;
1708
1709 while ((dv = TAILQ_FIRST(garbage)) != NULL) {
1710 TAILQ_REMOVE(garbage, dv, dv_list);
1711 config_devdelete(dv);
1712 }
1713 }
1714
1715 /*
1716 * Detach a device. Optionally forced (e.g. because of hardware
1717 * removal) and quiet. Returns zero if successful, non-zero
1718 * (an error code) otherwise.
1719 *
1720 * Note that this code wants to be run from a process context, so
1721 * that the detach can sleep to allow processes which have a device
1722 * open to run and unwind their stacks.
1723 */
1724 int
1725 config_detach(device_t dev, int flags)
1726 {
1727 struct alldevs_foray af;
1728 struct cftable *ct;
1729 cfdata_t cf;
1730 const struct cfattach *ca;
1731 struct cfdriver *cd;
1732 device_t d __diagused;
1733 int rv = 0;
1734
1735 cf = dev->dv_cfdata;
1736 KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
1737 cf->cf_fstate == FSTATE_STAR),
1738 "config_detach: %s: bad device fstate: %d",
1739 device_xname(dev), cf ? cf->cf_fstate : -1);
1740
1741 cd = dev->dv_cfdriver;
1742 KASSERT(cd != NULL);
1743
1744 ca = dev->dv_cfattach;
1745 KASSERT(ca != NULL);
1746
1747 mutex_enter(&alldevs_lock);
1748 if (dev->dv_del_gen != 0) {
1749 mutex_exit(&alldevs_lock);
1750 #ifdef DIAGNOSTIC
1751 printf("%s: %s is already detached\n", __func__,
1752 device_xname(dev));
1753 #endif /* DIAGNOSTIC */
1754 return ENOENT;
1755 }
1756 alldevs_nwrite++;
1757 mutex_exit(&alldevs_lock);
1758
1759 if (!detachall &&
1760 (flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
1761 (dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
1762 rv = EOPNOTSUPP;
1763 } else if (ca->ca_detach != NULL) {
1764 rv = (*ca->ca_detach)(dev, flags);
1765 } else
1766 rv = EOPNOTSUPP;
1767
1768 /*
1769 * If it was not possible to detach the device, then we either
1770 * panic() (for the forced but failed case), or return an error.
1771 *
1772 * If it was possible to detach the device, ensure that the
1773 * device is deactivated.
1774 */
1775 if (rv == 0)
1776 dev->dv_flags &= ~DVF_ACTIVE;
1777 else if ((flags & DETACH_FORCE) == 0)
1778 goto out;
1779 else {
1780 panic("config_detach: forced detach of %s failed (%d)",
1781 device_xname(dev), rv);
1782 }
1783
1784 /*
1785 * The device has now been successfully detached.
1786 */
1787
1788 /* Let userland know */
1789 devmon_report_device(dev, false);
1790
1791 #ifdef DIAGNOSTIC
1792 /*
1793 * Sanity: If you're successfully detached, you should have no
1794 * children. (Note that because children must be attached
1795 * after parents, we only need to search the latter part of
1796 * the list.)
1797 */
1798 for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
1799 d = TAILQ_NEXT(d, dv_list)) {
1800 if (d->dv_parent == dev && d->dv_del_gen == 0) {
1801 printf("config_detach: detached device %s"
1802 " has children %s\n", device_xname(dev),
1803 device_xname(d));
1804 panic("config_detach");
1805 }
1806 }
1807 #endif
1808
1809 /* notify the parent that the child is gone */
1810 if (dev->dv_parent) {
1811 device_t p = dev->dv_parent;
1812 if (p->dv_cfattach->ca_childdetached)
1813 (*p->dv_cfattach->ca_childdetached)(p, dev);
1814 }
1815
1816 /*
1817 * Mark cfdata to show that the unit can be reused, if possible.
1818 */
1819 TAILQ_FOREACH(ct, &allcftables, ct_list) {
1820 for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
1821 if (STREQ(cf->cf_name, cd->cd_name)) {
1822 if (cf->cf_fstate == FSTATE_FOUND &&
1823 cf->cf_unit == dev->dv_unit)
1824 cf->cf_fstate = FSTATE_NOTFOUND;
1825 }
1826 }
1827 }
1828
1829 if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
1830 aprint_normal_dev(dev, "detached\n");
1831
1832 out:
1833 config_alldevs_enter(&af);
1834 KASSERT(alldevs_nwrite != 0);
1835 --alldevs_nwrite;
1836 if (rv == 0 && dev->dv_del_gen == 0) {
1837 if (alldevs_nwrite == 0 && alldevs_nread == 0)
1838 config_devunlink(dev, &af.af_garbage);
1839 else {
1840 dev->dv_del_gen = alldevs_gen;
1841 alldevs_garbage = true;
1842 }
1843 }
1844 config_alldevs_exit(&af);
1845
1846 return rv;
1847 }
1848
1849 int
1850 config_detach_children(device_t parent, int flags)
1851 {
1852 device_t dv;
1853 deviter_t di;
1854 int error = 0;
1855
1856 for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
1857 dv = deviter_next(&di)) {
1858 if (device_parent(dv) != parent)
1859 continue;
1860 if ((error = config_detach(dv, flags)) != 0)
1861 break;
1862 }
1863 deviter_release(&di);
1864 return error;
1865 }
1866
1867 device_t
1868 shutdown_first(struct shutdown_state *s)
1869 {
1870 if (!s->initialized) {
1871 deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
1872 s->initialized = true;
1873 }
1874 return shutdown_next(s);
1875 }
1876
1877 device_t
1878 shutdown_next(struct shutdown_state *s)
1879 {
1880 device_t dv;
1881
1882 while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
1883 ;
1884
1885 if (dv == NULL)
1886 s->initialized = false;
1887
1888 return dv;
1889 }
1890
1891 bool
1892 config_detach_all(int how)
1893 {
1894 static struct shutdown_state s;
1895 device_t curdev;
1896 bool progress = false;
1897 int flags;
1898
1899 if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
1900 return false;
1901
1902 if ((how & RB_POWERDOWN) == RB_POWERDOWN)
1903 flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
1904 else
1905 flags = DETACH_SHUTDOWN;
1906
1907 for (curdev = shutdown_first(&s); curdev != NULL;
1908 curdev = shutdown_next(&s)) {
1909 aprint_debug(" detaching %s, ", device_xname(curdev));
1910 if (config_detach(curdev, flags) == 0) {
1911 progress = true;
1912 aprint_debug("success.");
1913 } else
1914 aprint_debug("failed.");
1915 }
1916 return progress;
1917 }
1918
1919 static bool
1920 device_is_ancestor_of(device_t ancestor, device_t descendant)
1921 {
1922 device_t dv;
1923
1924 for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
1925 if (device_parent(dv) == ancestor)
1926 return true;
1927 }
1928 return false;
1929 }
1930
1931 int
1932 config_deactivate(device_t dev)
1933 {
1934 deviter_t di;
1935 const struct cfattach *ca;
1936 device_t descendant;
1937 int s, rv = 0, oflags;
1938
1939 for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
1940 descendant != NULL;
1941 descendant = deviter_next(&di)) {
1942 if (dev != descendant &&
1943 !device_is_ancestor_of(dev, descendant))
1944 continue;
1945
1946 if ((descendant->dv_flags & DVF_ACTIVE) == 0)
1947 continue;
1948
1949 ca = descendant->dv_cfattach;
1950 oflags = descendant->dv_flags;
1951
1952 descendant->dv_flags &= ~DVF_ACTIVE;
1953 if (ca->ca_activate == NULL)
1954 continue;
1955 s = splhigh();
1956 rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
1957 splx(s);
1958 if (rv != 0)
1959 descendant->dv_flags = oflags;
1960 }
1961 deviter_release(&di);
1962 return rv;
1963 }
1964
1965 /*
1966 * Defer the configuration of the specified device until all
1967 * of its parent's devices have been attached.
1968 */
1969 void
1970 config_defer(device_t dev, void (*func)(device_t))
1971 {
1972 struct deferred_config *dc;
1973
1974 if (dev->dv_parent == NULL)
1975 panic("config_defer: can't defer config of a root device");
1976
1977 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
1978
1979 config_pending_incr(dev);
1980
1981 mutex_enter(&config_misc_lock);
1982 #ifdef DIAGNOSTIC
1983 struct deferred_config *odc;
1984 TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
1985 if (odc->dc_dev == dev)
1986 panic("config_defer: deferred twice");
1987 }
1988 #endif
1989 dc->dc_dev = dev;
1990 dc->dc_func = func;
1991 TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
1992 mutex_exit(&config_misc_lock);
1993 }
1994
1995 /*
1996 * Defer some autoconfiguration for a device until after interrupts
1997 * are enabled.
1998 */
1999 void
2000 config_interrupts(device_t dev, void (*func)(device_t))
2001 {
2002 struct deferred_config *dc;
2003
2004 /*
2005 * If interrupts are enabled, callback now.
2006 */
2007 if (cold == 0) {
2008 (*func)(dev);
2009 return;
2010 }
2011
2012 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2013
2014 config_pending_incr(dev);
2015
2016 mutex_enter(&config_misc_lock);
2017 #ifdef DIAGNOSTIC
2018 struct deferred_config *odc;
2019 TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
2020 if (odc->dc_dev == dev)
2021 panic("config_interrupts: deferred twice");
2022 }
2023 #endif
2024 dc->dc_dev = dev;
2025 dc->dc_func = func;
2026 TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
2027 dev->dv_flags |= DVF_ATTACH_INPROGRESS;
2028 mutex_exit(&config_misc_lock);
2029 }
2030
2031 /*
2032 * Defer some autoconfiguration for a device until after root file system
2033 * is mounted (to load firmware etc).
2034 */
2035 void
2036 config_mountroot(device_t dev, void (*func)(device_t))
2037 {
2038 struct deferred_config *dc;
2039
2040 /*
2041 * If root file system is mounted, callback now.
2042 */
2043 if (root_is_mounted) {
2044 (*func)(dev);
2045 return;
2046 }
2047
2048 dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
2049
2050 mutex_enter(&config_misc_lock);
2051 #ifdef DIAGNOSTIC
2052 struct deferred_config *odc;
2053 TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
2054 if (odc->dc_dev == dev)
2055 panic("%s: deferred twice", __func__);
2056 }
2057 #endif
2058
2059 dc->dc_dev = dev;
2060 dc->dc_func = func;
2061 TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
2062 mutex_exit(&config_misc_lock);
2063 }
2064
2065 /*
2066 * Process a deferred configuration queue.
2067 */
2068 static void
2069 config_process_deferred(struct deferred_config_head *queue, device_t parent)
2070 {
2071 struct deferred_config *dc;
2072
2073 mutex_enter(&config_misc_lock);
2074 dc = TAILQ_FIRST(queue);
2075 while (dc) {
2076 if (parent == NULL || dc->dc_dev->dv_parent == parent) {
2077 TAILQ_REMOVE(queue, dc, dc_queue);
2078 mutex_exit(&config_misc_lock);
2079
2080 (*dc->dc_func)(dc->dc_dev);
2081 config_pending_decr(dc->dc_dev);
2082 kmem_free(dc, sizeof(*dc));
2083
2084 mutex_enter(&config_misc_lock);
2085 /* Restart, queue might have changed */
2086 dc = TAILQ_FIRST(queue);
2087 } else {
2088 dc = TAILQ_NEXT(dc, dc_queue);
2089 }
2090 }
2091 mutex_exit(&config_misc_lock);
2092 }
2093
2094 /*
2095 * Manipulate the config_pending semaphore.
2096 */
2097 void
2098 config_pending_incr(device_t dev)
2099 {
2100
2101 mutex_enter(&config_misc_lock);
2102 config_pending++;
2103 #ifdef DEBUG_AUTOCONF
2104 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2105 #endif
2106 mutex_exit(&config_misc_lock);
2107 }
2108
2109 void
2110 config_pending_decr(device_t dev)
2111 {
2112
2113 KASSERT(0 < config_pending);
2114 mutex_enter(&config_misc_lock);
2115 config_pending--;
2116 #ifdef DEBUG_AUTOCONF
2117 printf("%s: %s %d\n", __func__, device_xname(dev), config_pending);
2118 #endif
2119 if (config_pending == 0)
2120 cv_broadcast(&config_misc_cv);
2121 mutex_exit(&config_misc_lock);
2122 }
2123
2124 /*
2125 * Register a "finalization" routine. Finalization routines are
2126 * called iteratively once all real devices have been found during
2127 * autoconfiguration, for as long as any one finalizer has done
2128 * any work.
2129 */
2130 int
2131 config_finalize_register(device_t dev, int (*fn)(device_t))
2132 {
2133 struct finalize_hook *f;
2134
2135 /*
2136 * If finalization has already been done, invoke the
2137 * callback function now.
2138 */
2139 if (config_finalize_done) {
2140 while ((*fn)(dev) != 0)
2141 /* loop */ ;
2142 return 0;
2143 }
2144
2145 /* Ensure this isn't already on the list. */
2146 TAILQ_FOREACH(f, &config_finalize_list, f_list) {
2147 if (f->f_func == fn && f->f_dev == dev)
2148 return EEXIST;
2149 }
2150
2151 f = kmem_alloc(sizeof(*f), KM_SLEEP);
2152 f->f_func = fn;
2153 f->f_dev = dev;
2154 TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
2155
2156 return 0;
2157 }
2158
2159 void
2160 config_finalize(void)
2161 {
2162 struct finalize_hook *f;
2163 struct pdevinit *pdev;
2164 extern struct pdevinit pdevinit[];
2165 int errcnt, rv;
2166
2167 /*
2168 * Now that device driver threads have been created, wait for
2169 * them to finish any deferred autoconfiguration.
2170 */
2171 mutex_enter(&config_misc_lock);
2172 while (config_pending != 0)
2173 cv_wait(&config_misc_cv, &config_misc_lock);
2174 mutex_exit(&config_misc_lock);
2175
2176 KERNEL_LOCK(1, NULL);
2177
2178 /* Attach pseudo-devices. */
2179 for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
2180 (*pdev->pdev_attach)(pdev->pdev_count);
2181
2182 /* Run the hooks until none of them does any work. */
2183 do {
2184 rv = 0;
2185 TAILQ_FOREACH(f, &config_finalize_list, f_list)
2186 rv |= (*f->f_func)(f->f_dev);
2187 } while (rv != 0);
2188
2189 config_finalize_done = 1;
2190
2191 /* Now free all the hooks. */
2192 while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
2193 TAILQ_REMOVE(&config_finalize_list, f, f_list);
2194 kmem_free(f, sizeof(*f));
2195 }
2196
2197 KERNEL_UNLOCK_ONE(NULL);
2198
2199 errcnt = aprint_get_error_count();
2200 if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
2201 (boothowto & AB_VERBOSE) == 0) {
2202 mutex_enter(&config_misc_lock);
2203 if (config_do_twiddle) {
2204 config_do_twiddle = 0;
2205 printf_nolog(" done.\n");
2206 }
2207 mutex_exit(&config_misc_lock);
2208 }
2209 if (errcnt != 0) {
2210 printf("WARNING: %d error%s while detecting hardware; "
2211 "check system log.\n", errcnt,
2212 errcnt == 1 ? "" : "s");
2213 }
2214 }
2215
2216 void
2217 config_twiddle_init(void)
2218 {
2219
2220 if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
2221 config_do_twiddle = 1;
2222 }
2223 callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
2224 }
2225
2226 void
2227 config_twiddle_fn(void *cookie)
2228 {
2229
2230 mutex_enter(&config_misc_lock);
2231 if (config_do_twiddle) {
2232 twiddle();
2233 callout_schedule(&config_twiddle_ch, mstohz(100));
2234 }
2235 mutex_exit(&config_misc_lock);
2236 }
2237
2238 static void
2239 config_alldevs_enter(struct alldevs_foray *af)
2240 {
2241 TAILQ_INIT(&af->af_garbage);
2242 mutex_enter(&alldevs_lock);
2243 config_collect_garbage(&af->af_garbage);
2244 }
2245
2246 static void
2247 config_alldevs_exit(struct alldevs_foray *af)
2248 {
2249 mutex_exit(&alldevs_lock);
2250 config_dump_garbage(&af->af_garbage);
2251 }
2252
2253 /*
2254 * device_lookup:
2255 *
2256 * Look up a device instance for a given driver.
2257 */
2258 device_t
2259 device_lookup(cfdriver_t cd, int unit)
2260 {
2261 device_t dv;
2262
2263 mutex_enter(&alldevs_lock);
2264 if (unit < 0 || unit >= cd->cd_ndevs)
2265 dv = NULL;
2266 else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
2267 dv = NULL;
2268 mutex_exit(&alldevs_lock);
2269
2270 return dv;
2271 }
2272
2273 /*
2274 * device_lookup_private:
2275 *
2276 * Look up a softc instance for a given driver.
2277 */
2278 void *
2279 device_lookup_private(cfdriver_t cd, int unit)
2280 {
2281
2282 return device_private(device_lookup(cd, unit));
2283 }
2284
2285 /*
2286 * device_find_by_xname:
2287 *
2288 * Returns the device of the given name or NULL if it doesn't exist.
2289 */
2290 device_t
2291 device_find_by_xname(const char *name)
2292 {
2293 device_t dv;
2294 deviter_t di;
2295
2296 for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
2297 if (strcmp(device_xname(dv), name) == 0)
2298 break;
2299 }
2300 deviter_release(&di);
2301
2302 return dv;
2303 }
2304
2305 /*
2306 * device_find_by_driver_unit:
2307 *
2308 * Returns the device of the given driver name and unit or
2309 * NULL if it doesn't exist.
2310 */
2311 device_t
2312 device_find_by_driver_unit(const char *name, int unit)
2313 {
2314 struct cfdriver *cd;
2315
2316 if ((cd = config_cfdriver_lookup(name)) == NULL)
2317 return NULL;
2318 return device_lookup(cd, unit);
2319 }
2320
2321 /*
2322 * device_compatible_match:
2323 *
2324 * Match a driver's "compatible" data against a device's
2325 * "compatible" strings. If a match is found, we return
2326 * a weighted match result, and optionally the matching
2327 * entry.
2328 */
2329 int
2330 device_compatible_match(const char **device_compats, int ndevice_compats,
2331 const struct device_compatible_entry *driver_compats,
2332 const struct device_compatible_entry **matching_entryp)
2333 {
2334 const struct device_compatible_entry *dce = NULL;
2335 int i, match_weight;
2336
2337 if (ndevice_compats == 0 || device_compats == NULL ||
2338 driver_compats == NULL)
2339 return 0;
2340
2341 /*
2342 * We take the first match because we start with the most-specific
2343 * device compatible string.
2344 */
2345 for (i = 0, match_weight = ndevice_compats - 1;
2346 i < ndevice_compats;
2347 i++, match_weight--) {
2348 for (dce = driver_compats; dce->compat != NULL; dce++) {
2349 if (strcmp(dce->compat, device_compats[i]) == 0) {
2350 KASSERT(match_weight >= 0);
2351 if (matching_entryp)
2352 *matching_entryp = dce;
2353 return 1 + match_weight;
2354 }
2355 }
2356 }
2357 return 0;
2358 }
2359
2360 /*
2361 * Power management related functions.
2362 */
2363
2364 bool
2365 device_pmf_is_registered(device_t dev)
2366 {
2367 return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
2368 }
2369
2370 bool
2371 device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
2372 {
2373 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2374 return true;
2375 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2376 return false;
2377 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2378 dev->dv_driver_suspend != NULL &&
2379 !(*dev->dv_driver_suspend)(dev, qual))
2380 return false;
2381
2382 dev->dv_flags |= DVF_DRIVER_SUSPENDED;
2383 return true;
2384 }
2385
2386 bool
2387 device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
2388 {
2389 if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2390 return true;
2391 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2392 return false;
2393 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
2394 dev->dv_driver_resume != NULL &&
2395 !(*dev->dv_driver_resume)(dev, qual))
2396 return false;
2397
2398 dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
2399 return true;
2400 }
2401
2402 bool
2403 device_pmf_driver_shutdown(device_t dev, int how)
2404 {
2405
2406 if (*dev->dv_driver_shutdown != NULL &&
2407 !(*dev->dv_driver_shutdown)(dev, how))
2408 return false;
2409 return true;
2410 }
2411
2412 bool
2413 device_pmf_driver_register(device_t dev,
2414 bool (*suspend)(device_t, const pmf_qual_t *),
2415 bool (*resume)(device_t, const pmf_qual_t *),
2416 bool (*shutdown)(device_t, int))
2417 {
2418 dev->dv_driver_suspend = suspend;
2419 dev->dv_driver_resume = resume;
2420 dev->dv_driver_shutdown = shutdown;
2421 dev->dv_flags |= DVF_POWER_HANDLERS;
2422 return true;
2423 }
2424
2425 static const char *
2426 curlwp_name(void)
2427 {
2428 if (curlwp->l_name != NULL)
2429 return curlwp->l_name;
2430 else
2431 return curlwp->l_proc->p_comm;
2432 }
2433
2434 void
2435 device_pmf_driver_deregister(device_t dev)
2436 {
2437 device_lock_t dvl = device_getlock(dev);
2438
2439 dev->dv_driver_suspend = NULL;
2440 dev->dv_driver_resume = NULL;
2441
2442 mutex_enter(&dvl->dvl_mtx);
2443 dev->dv_flags &= ~DVF_POWER_HANDLERS;
2444 while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
2445 /* Wake a thread that waits for the lock. That
2446 * thread will fail to acquire the lock, and then
2447 * it will wake the next thread that waits for the
2448 * lock, or else it will wake us.
2449 */
2450 cv_signal(&dvl->dvl_cv);
2451 pmflock_debug(dev, __func__, __LINE__);
2452 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2453 pmflock_debug(dev, __func__, __LINE__);
2454 }
2455 mutex_exit(&dvl->dvl_mtx);
2456 }
2457
2458 bool
2459 device_pmf_driver_child_register(device_t dev)
2460 {
2461 device_t parent = device_parent(dev);
2462
2463 if (parent == NULL || parent->dv_driver_child_register == NULL)
2464 return true;
2465 return (*parent->dv_driver_child_register)(dev);
2466 }
2467
2468 void
2469 device_pmf_driver_set_child_register(device_t dev,
2470 bool (*child_register)(device_t))
2471 {
2472 dev->dv_driver_child_register = child_register;
2473 }
2474
2475 static void
2476 pmflock_debug(device_t dev, const char *func, int line)
2477 {
2478 device_lock_t dvl = device_getlock(dev);
2479
2480 aprint_debug_dev(dev,
2481 "%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
2482 curlwp_name(), dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
2483 }
2484
2485 static bool
2486 device_pmf_lock1(device_t dev)
2487 {
2488 device_lock_t dvl = device_getlock(dev);
2489
2490 while (device_pmf_is_registered(dev) &&
2491 dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
2492 dvl->dvl_nwait++;
2493 pmflock_debug(dev, __func__, __LINE__);
2494 cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
2495 pmflock_debug(dev, __func__, __LINE__);
2496 dvl->dvl_nwait--;
2497 }
2498 if (!device_pmf_is_registered(dev)) {
2499 pmflock_debug(dev, __func__, __LINE__);
2500 /* We could not acquire the lock, but some other thread may
2501 * wait for it, also. Wake that thread.
2502 */
2503 cv_signal(&dvl->dvl_cv);
2504 return false;
2505 }
2506 dvl->dvl_nlock++;
2507 dvl->dvl_holder = curlwp;
2508 pmflock_debug(dev, __func__, __LINE__);
2509 return true;
2510 }
2511
2512 bool
2513 device_pmf_lock(device_t dev)
2514 {
2515 bool rc;
2516 device_lock_t dvl = device_getlock(dev);
2517
2518 mutex_enter(&dvl->dvl_mtx);
2519 rc = device_pmf_lock1(dev);
2520 mutex_exit(&dvl->dvl_mtx);
2521
2522 return rc;
2523 }
2524
2525 void
2526 device_pmf_unlock(device_t dev)
2527 {
2528 device_lock_t dvl = device_getlock(dev);
2529
2530 KASSERT(dvl->dvl_nlock > 0);
2531 mutex_enter(&dvl->dvl_mtx);
2532 if (--dvl->dvl_nlock == 0)
2533 dvl->dvl_holder = NULL;
2534 cv_signal(&dvl->dvl_cv);
2535 pmflock_debug(dev, __func__, __LINE__);
2536 mutex_exit(&dvl->dvl_mtx);
2537 }
2538
2539 device_lock_t
2540 device_getlock(device_t dev)
2541 {
2542 return &dev->dv_lock;
2543 }
2544
2545 void *
2546 device_pmf_bus_private(device_t dev)
2547 {
2548 return dev->dv_bus_private;
2549 }
2550
2551 bool
2552 device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
2553 {
2554 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
2555 return true;
2556 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
2557 (dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
2558 return false;
2559 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2560 dev->dv_bus_suspend != NULL &&
2561 !(*dev->dv_bus_suspend)(dev, qual))
2562 return false;
2563
2564 dev->dv_flags |= DVF_BUS_SUSPENDED;
2565 return true;
2566 }
2567
2568 bool
2569 device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
2570 {
2571 if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
2572 return true;
2573 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
2574 dev->dv_bus_resume != NULL &&
2575 !(*dev->dv_bus_resume)(dev, qual))
2576 return false;
2577
2578 dev->dv_flags &= ~DVF_BUS_SUSPENDED;
2579 return true;
2580 }
2581
2582 bool
2583 device_pmf_bus_shutdown(device_t dev, int how)
2584 {
2585
2586 if (*dev->dv_bus_shutdown != NULL &&
2587 !(*dev->dv_bus_shutdown)(dev, how))
2588 return false;
2589 return true;
2590 }
2591
2592 void
2593 device_pmf_bus_register(device_t dev, void *priv,
2594 bool (*suspend)(device_t, const pmf_qual_t *),
2595 bool (*resume)(device_t, const pmf_qual_t *),
2596 bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2597 {
2598 dev->dv_bus_private = priv;
2599 dev->dv_bus_resume = resume;
2600 dev->dv_bus_suspend = suspend;
2601 dev->dv_bus_shutdown = shutdown;
2602 dev->dv_bus_deregister = deregister;
2603 }
2604
2605 void
2606 device_pmf_bus_deregister(device_t dev)
2607 {
2608 if (dev->dv_bus_deregister == NULL)
2609 return;
2610 (*dev->dv_bus_deregister)(dev);
2611 dev->dv_bus_private = NULL;
2612 dev->dv_bus_suspend = NULL;
2613 dev->dv_bus_resume = NULL;
2614 dev->dv_bus_deregister = NULL;
2615 }
2616
2617 void *
2618 device_pmf_class_private(device_t dev)
2619 {
2620 return dev->dv_class_private;
2621 }
2622
2623 bool
2624 device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
2625 {
2626 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
2627 return true;
2628 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2629 dev->dv_class_suspend != NULL &&
2630 !(*dev->dv_class_suspend)(dev, qual))
2631 return false;
2632
2633 dev->dv_flags |= DVF_CLASS_SUSPENDED;
2634 return true;
2635 }
2636
2637 bool
2638 device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
2639 {
2640 if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
2641 return true;
2642 if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
2643 (dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
2644 return false;
2645 if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
2646 dev->dv_class_resume != NULL &&
2647 !(*dev->dv_class_resume)(dev, qual))
2648 return false;
2649
2650 dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
2651 return true;
2652 }
2653
2654 void
2655 device_pmf_class_register(device_t dev, void *priv,
2656 bool (*suspend)(device_t, const pmf_qual_t *),
2657 bool (*resume)(device_t, const pmf_qual_t *),
2658 void (*deregister)(device_t))
2659 {
2660 dev->dv_class_private = priv;
2661 dev->dv_class_suspend = suspend;
2662 dev->dv_class_resume = resume;
2663 dev->dv_class_deregister = deregister;
2664 }
2665
2666 void
2667 device_pmf_class_deregister(device_t dev)
2668 {
2669 if (dev->dv_class_deregister == NULL)
2670 return;
2671 (*dev->dv_class_deregister)(dev);
2672 dev->dv_class_private = NULL;
2673 dev->dv_class_suspend = NULL;
2674 dev->dv_class_resume = NULL;
2675 dev->dv_class_deregister = NULL;
2676 }
2677
2678 bool
2679 device_active(device_t dev, devactive_t type)
2680 {
2681 size_t i;
2682
2683 if (dev->dv_activity_count == 0)
2684 return false;
2685
2686 for (i = 0; i < dev->dv_activity_count; ++i) {
2687 if (dev->dv_activity_handlers[i] == NULL)
2688 break;
2689 (*dev->dv_activity_handlers[i])(dev, type);
2690 }
2691
2692 return true;
2693 }
2694
2695 bool
2696 device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
2697 {
2698 void (**new_handlers)(device_t, devactive_t);
2699 void (**old_handlers)(device_t, devactive_t);
2700 size_t i, old_size, new_size;
2701 int s;
2702
2703 old_handlers = dev->dv_activity_handlers;
2704 old_size = dev->dv_activity_count;
2705
2706 KASSERT(old_size == 0 || old_handlers != NULL);
2707
2708 for (i = 0; i < old_size; ++i) {
2709 KASSERT(old_handlers[i] != handler);
2710 if (old_handlers[i] == NULL) {
2711 old_handlers[i] = handler;
2712 return true;
2713 }
2714 }
2715
2716 new_size = old_size + 4;
2717 new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
2718
2719 for (i = 0; i < old_size; ++i)
2720 new_handlers[i] = old_handlers[i];
2721 new_handlers[old_size] = handler;
2722 for (i = old_size+1; i < new_size; ++i)
2723 new_handlers[i] = NULL;
2724
2725 s = splhigh();
2726 dev->dv_activity_count = new_size;
2727 dev->dv_activity_handlers = new_handlers;
2728 splx(s);
2729
2730 if (old_size > 0)
2731 kmem_free(old_handlers, sizeof(void * [old_size]));
2732
2733 return true;
2734 }
2735
2736 void
2737 device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
2738 {
2739 void (**old_handlers)(device_t, devactive_t);
2740 size_t i, old_size;
2741 int s;
2742
2743 old_handlers = dev->dv_activity_handlers;
2744 old_size = dev->dv_activity_count;
2745
2746 for (i = 0; i < old_size; ++i) {
2747 if (old_handlers[i] == handler)
2748 break;
2749 if (old_handlers[i] == NULL)
2750 return; /* XXX panic? */
2751 }
2752
2753 if (i == old_size)
2754 return; /* XXX panic? */
2755
2756 for (; i < old_size - 1; ++i) {
2757 if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
2758 continue;
2759
2760 if (i == 0) {
2761 s = splhigh();
2762 dev->dv_activity_count = 0;
2763 dev->dv_activity_handlers = NULL;
2764 splx(s);
2765 kmem_free(old_handlers, sizeof(void *[old_size]));
2766 }
2767 return;
2768 }
2769 old_handlers[i] = NULL;
2770 }
2771
2772 /* Return true iff the device_t `dev' exists at generation `gen'. */
2773 static bool
2774 device_exists_at(device_t dv, devgen_t gen)
2775 {
2776 return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
2777 dv->dv_add_gen <= gen;
2778 }
2779
2780 static bool
2781 deviter_visits(const deviter_t *di, device_t dv)
2782 {
2783 return device_exists_at(dv, di->di_gen);
2784 }
2785
2786 /*
2787 * Device Iteration
2788 *
2789 * deviter_t: a device iterator. Holds state for a "walk" visiting
2790 * each device_t's in the device tree.
2791 *
2792 * deviter_init(di, flags): initialize the device iterator `di'
2793 * to "walk" the device tree. deviter_next(di) will return
2794 * the first device_t in the device tree, or NULL if there are
2795 * no devices.
2796 *
2797 * `flags' is one or more of DEVITER_F_RW, indicating that the
2798 * caller intends to modify the device tree by calling
2799 * config_detach(9) on devices in the order that the iterator
2800 * returns them; DEVITER_F_ROOT_FIRST, asking for the devices
2801 * nearest the "root" of the device tree to be returned, first;
2802 * DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
2803 * the root of the device tree, first; and DEVITER_F_SHUTDOWN,
2804 * indicating both that deviter_init() should not respect any
2805 * locks on the device tree, and that deviter_next(di) may run
2806 * in more than one LWP before the walk has finished.
2807 *
2808 * Only one DEVITER_F_RW iterator may be in the device tree at
2809 * once.
2810 *
2811 * DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
2812 *
2813 * Results are undefined if the flags DEVITER_F_ROOT_FIRST and
2814 * DEVITER_F_LEAVES_FIRST are used in combination.
2815 *
2816 * deviter_first(di, flags): initialize the device iterator `di'
2817 * and return the first device_t in the device tree, or NULL
2818 * if there are no devices. The statement
2819 *
2820 * dv = deviter_first(di);
2821 *
2822 * is shorthand for
2823 *
2824 * deviter_init(di);
2825 * dv = deviter_next(di);
2826 *
2827 * deviter_next(di): return the next device_t in the device tree,
2828 * or NULL if there are no more devices. deviter_next(di)
2829 * is undefined if `di' was not initialized with deviter_init() or
2830 * deviter_first().
2831 *
2832 * deviter_release(di): stops iteration (subsequent calls to
2833 * deviter_next() will return NULL), releases any locks and
2834 * resources held by the device iterator.
2835 *
2836 * Device iteration does not return device_t's in any particular
2837 * order. An iterator will never return the same device_t twice.
2838 * Device iteration is guaranteed to complete---i.e., if deviter_next(di)
2839 * is called repeatedly on the same `di', it will eventually return
2840 * NULL. It is ok to attach/detach devices during device iteration.
2841 */
2842 void
2843 deviter_init(deviter_t *di, deviter_flags_t flags)
2844 {
2845 device_t dv;
2846
2847 memset(di, 0, sizeof(*di));
2848
2849 if ((flags & DEVITER_F_SHUTDOWN) != 0)
2850 flags |= DEVITER_F_RW;
2851
2852 mutex_enter(&alldevs_lock);
2853 if ((flags & DEVITER_F_RW) != 0)
2854 alldevs_nwrite++;
2855 else
2856 alldevs_nread++;
2857 di->di_gen = alldevs_gen++;
2858 di->di_flags = flags;
2859
2860 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2861 case DEVITER_F_LEAVES_FIRST:
2862 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2863 if (!deviter_visits(di, dv))
2864 continue;
2865 di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
2866 }
2867 break;
2868 case DEVITER_F_ROOT_FIRST:
2869 TAILQ_FOREACH(dv, &alldevs, dv_list) {
2870 if (!deviter_visits(di, dv))
2871 continue;
2872 di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
2873 }
2874 break;
2875 default:
2876 break;
2877 }
2878
2879 deviter_reinit(di);
2880 mutex_exit(&alldevs_lock);
2881 }
2882
2883 static void
2884 deviter_reinit(deviter_t *di)
2885 {
2886
2887 KASSERT(mutex_owned(&alldevs_lock));
2888 if ((di->di_flags & DEVITER_F_RW) != 0)
2889 di->di_prev = TAILQ_LAST(&alldevs, devicelist);
2890 else
2891 di->di_prev = TAILQ_FIRST(&alldevs);
2892 }
2893
2894 device_t
2895 deviter_first(deviter_t *di, deviter_flags_t flags)
2896 {
2897
2898 deviter_init(di, flags);
2899 return deviter_next(di);
2900 }
2901
2902 static device_t
2903 deviter_next2(deviter_t *di)
2904 {
2905 device_t dv;
2906
2907 KASSERT(mutex_owned(&alldevs_lock));
2908
2909 dv = di->di_prev;
2910
2911 if (dv == NULL)
2912 return NULL;
2913
2914 if ((di->di_flags & DEVITER_F_RW) != 0)
2915 di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
2916 else
2917 di->di_prev = TAILQ_NEXT(dv, dv_list);
2918
2919 return dv;
2920 }
2921
2922 static device_t
2923 deviter_next1(deviter_t *di)
2924 {
2925 device_t dv;
2926
2927 KASSERT(mutex_owned(&alldevs_lock));
2928
2929 do {
2930 dv = deviter_next2(di);
2931 } while (dv != NULL && !deviter_visits(di, dv));
2932
2933 return dv;
2934 }
2935
2936 device_t
2937 deviter_next(deviter_t *di)
2938 {
2939 device_t dv = NULL;
2940
2941 mutex_enter(&alldevs_lock);
2942 switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
2943 case 0:
2944 dv = deviter_next1(di);
2945 break;
2946 case DEVITER_F_LEAVES_FIRST:
2947 while (di->di_curdepth >= 0) {
2948 if ((dv = deviter_next1(di)) == NULL) {
2949 di->di_curdepth--;
2950 deviter_reinit(di);
2951 } else if (dv->dv_depth == di->di_curdepth)
2952 break;
2953 }
2954 break;
2955 case DEVITER_F_ROOT_FIRST:
2956 while (di->di_curdepth <= di->di_maxdepth) {
2957 if ((dv = deviter_next1(di)) == NULL) {
2958 di->di_curdepth++;
2959 deviter_reinit(di);
2960 } else if (dv->dv_depth == di->di_curdepth)
2961 break;
2962 }
2963 break;
2964 default:
2965 break;
2966 }
2967 mutex_exit(&alldevs_lock);
2968
2969 return dv;
2970 }
2971
2972 void
2973 deviter_release(deviter_t *di)
2974 {
2975 bool rw = (di->di_flags & DEVITER_F_RW) != 0;
2976
2977 mutex_enter(&alldevs_lock);
2978 if (rw)
2979 --alldevs_nwrite;
2980 else
2981 --alldevs_nread;
2982 /* XXX wake a garbage-collection thread */
2983 mutex_exit(&alldevs_lock);
2984 }
2985
2986 const char *
2987 cfdata_ifattr(const struct cfdata *cf)
2988 {
2989 return cf->cf_pspec->cfp_iattr;
2990 }
2991
2992 bool
2993 ifattr_match(const char *snull, const char *t)
2994 {
2995 return (snull == NULL) || strcmp(snull, t) == 0;
2996 }
2997
2998 void
2999 null_childdetached(device_t self, device_t child)
3000 {
3001 /* do nothing */
3002 }
3003
3004 static void
3005 sysctl_detach_setup(struct sysctllog **clog)
3006 {
3007
3008 sysctl_createv(clog, 0, NULL, NULL,
3009 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3010 CTLTYPE_BOOL, "detachall",
3011 SYSCTL_DESCR("Detach all devices at shutdown"),
3012 NULL, 0, &detachall, 0,
3013 CTL_KERN, CTL_CREATE, CTL_EOL);
3014 }
3015